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the K-theory of quadratic forms. Let H: KR — KQuad(R, —, €) be the hyperbolic
map, and let F: KQuad(R,—,¢) - KR be the forget map. Then the Witt groups

Wo(R, —, &) = coker (KOR il KoQuad(R, —, s))

Wi (R, —, &) = ker (F: KQuad,(R,—,€) 5 K,R)

have been highly studied. See [6], [29, 32,42,46,68], and [861-[89]. However, the
higher dimensional quadratic K-theory has received considerably less attention,
than the higher K-theory of f.g. projective modules. (See however, [34,35,39], and
[36].)

Suppose M is an oriented, closed topological manifold of dimension 7. We let
G(M) = simplicial monoid of homotopy automorphisms of M , ’
Top(M) = sub-simplicial monoid of self-homeomorphisms of M ,and
S(M) = U G(N)[Top(N) ,

where we take the disjoint union over homeomorphisms classes of manifolds
homotopy equivalent to M. Then 8(M) is called the moduli space of manifold
structures on M.
In classical surgery theory (see Sect. 3.3) certain subquotients of K; Quad(R,—, €)
withj=0,1; R = ZmM; and £ = &1 are used to compute 1o 3{(M).
The main goals of this survey article are as follows:
1. Improve communication between algebraists and topologists concerning
quadratic forms
2. Call attention to the central role of periodicity.
3. Call attention to the connections between KQuad(R, —, €) and $(M), not just
TE()/S (M)
4 Stimulate interest in the higher dimensional quadratic K-groups.

The functor which sends a f.g. projective module P to Homg(P, R) induces an
involution T on K(R). For any i,j € Z and any T-invariant subgroup X C Kj(R),
topologists (see Sect. 3.5) have defined groups L¥(R). The subgroup X is called the
decoration for the L-group. Here are a few properties:

1. Periodicity LX(R) ~ L¥ ,(R)

2. IXR) = Wy (R, (-1))

3. 15 (R) >~ W (R,— (1))

4 ij(R) o~ L?j_l (R), where Oj is the trivial subgroup of Ki-1(R)
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5. Rothenberg Sequences IfX C Y C Kj(R), we getan exact sequence

s IXR) > LR H(Z)2,Y[X) = -

6. Shaneson Product Formula For alli,j € Z,

K.+ _ ~ Kv+ K;
L5 (Rl 2 LS (R @ LT (R

where we extend the involution on R to the Laurent ring R[¢, 1 byt=1t"

Notice that LX(R) ® Z[3]is independent of X. Different choices for X are used
to study various geometric questions. The classification of compact topological
manifolds uses X C Ky (See Sect. 3.3). The study of open manifolds involves
XC Kj,withj < 1,(See {25,31,50,54,65] and [711). The study of homeomorphisms
of manifolds involves X C K, withj> 1, (see Sect. 3.6).

Localization Sequences: Suppose S is a multiplicative system in the ring R. Then
we get an exact sequence

o = Ki(R,S) = Ki(R) =~ Ki(ST'R) = >

where Ki(R,S) is the K-theory of the exact category of S-torsion R-modules of
homological dimension 1. In the case of L-theory(with appropriate choice of dec-
orations) one gets an analogous exact sequence using linking forms on torsion
modules (see [61,64], and [53]). However, what is striking about the L-theory
localization is that it is gotten by splicing together two 6-term exact sequences.
One of these involves (R,—,+1) quadratic forms and the other involves (R, ——1)
quadratic forms. The resulting sequence is then 12-fold periodic. In fact L-theory
satisfies many other such periodic exact sequences (see [64]).

Let LZ™°7(R) be the direct limit of LX(R) — LKV (R) = o

Let K(R) be the K-theory spectrum constructed by Wagoneer [78] where for
alli e Z,Ki(R) = 71;(K(R)). Similarly, let KQuad(R, —€) be the spectrum where
for all i € Z,KQuadi(R,—» €) ni(KQuad(R,—,e)). Similarly, let KHerm(R, — €)
be the K-theory spectrum for Hermitian forms (see Sects. 3.2 and 3.4). There is
a functor Quad(R,—,€) = Herm(R, —, €) which induces a homotopy equivalence
on K-theory when 2 is a unit inR.

Given a spectrum K equipped with an action by a finite group G we get the
norm homotopy fibration sequence

H(G,K) 2 H*(G,K) > H'(GK),

where H,. (G, K) is the homotopy orbit spectrum of G acting on K, H* (G, K) is the
homotopy fixed spectrum, and N is the norm map.

The key example for us s K = K(R), G = Zf2, and the action is given by the
involution T.

e

Theorem 1: (Hermitian K-theory Theorem ) There exists a homotopy cartesian
diagram

KH@TT’”(R, —,5) — oC(R) ™ E)
Pl o
" (22 KR) — B (Z/2KR)

with the following properties.
1. If2isaunitingR, thenfori=0orl,

mL(R,— 1) = L7 (R)
mL(R,——1) = L7 (R)

2. Periodicity: If 2 is a unitin R, then Q*L(R, €)= L(R,—,—€).

3. The composition KHerm(R, — €) 5 H*(Z[2, K(R)) — K(R) is the forgetful
map F.
4 The homotopy fiber of KHerm(R, =, £)—L (R, —,€) is a map H: H, ()2, K(R))

— erm(R, —, ) such that the composition K(R) — H. (Z/Z,K(R)) il
KHerm(R, —€) is the hyperbolic map.

We call T the enhanced forgetful map, and H the enhanced hyperbolic map.

Before we state an analogous theorem for §(M) we need to introduce some
more background.

Let hcob(M) be the simplicial set of h-cobordisms on M andlet heob(M) — S(M)
be the map which sends an h-cobordism h: (W,0W) — (M X I,M x o) to
h\fMl - M, — M x 1 wheredW = MU M,. Let HCOB(M) be the homotopy colimit
0

heob(M) — hcob(M x I) — heob(M x I*) -+

Igusa has shown that if M is smoothable, then the map heob(M) — HCOB(M)
is at least k + 1-connected where n = dimM = max(2k + 7,3k +4).

Let QWH (Zm (M )) be the homotopy fiber of the assembly map H*(M, KZ) —
KZm, (M). For n > 4, the s-cobordism theorem yields a bijection o (hcob(M )) =
o (QWH (Zm(M))). Waldhausen [80] and Vogel (76 77] has shown how in
the definition of KZm(M) we can replace (M) with the loop space of M
and Z with the sphere spectrum. This yields A(M), the K-theory of the space
M. There exists a linearization map A(M) — KZm; (M) which is 2-connected.
Furthermore, there exists a homotopy equivalence HCOBM) — QWH(M),
where QWH(M) is the homotopy fiber of the assembly map H (M, Ax)) —
AM).

Constructions of Ranicki yield spectrum LX(R) such that m;(IL*(R)) = LX(R).
Let L be the 1-connected cover of LX(Z).
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Let iso?(R) be the category with objects finitely generated projective mod-
ules, and maps R-linear isomorphisms. The hyperbolic functor H: isoP(R) —>
Quad(R, —, €) is defined as follows:

objects : P> [ P @ P¥, 00 )
eval 0

maps: (f: P> Q) > fa ('),

where eval(p,a) = ap) for P € Pand a € P*.

We let GQy(R, -, €) := Aut (H(R')), and GQ(R, -, ¢) is the direct limit of the di-
rect system {GQyi(R, —, €), 05} where 65: GQu(R, -, &) = GQu2(R,—,¢) is given
by

A0BO

A B 0100
_)

(CD) coDO

0001

Recall that if X is a connected topological space and 7, (X) is a quasi-perfect group,
ie. [m(X), m (X)] is perfect, then the Quillen plus construction is a map X — X*
which abelianizes 77; and which induces an isomorphism on homology for all local
coefficient systems on X*.

Theorem 4 The group GQ(R, —, £) is quasi-perfect and KQuad(R, —, ¢) is homotopy
equivalent to KQuady (R, —, €) x BGQ(R, —,¢)*.

See [6, 57], and [29] for information on the group GQ(R, —,¢), in particular
about generators for the commmutator subgroup.

The hyperbolic functor induces a map of infinite loop spaces H : KR —
KQuad(R, —,€) and we let KQuad“V(R, -, ¢) be the homotopy fiber of the de-
loop of H. Thus we get a homotopy fibration sequence KR A KQuad(R,—,¢) —
KQuad“="(R, -, ¢).

The forgetful functor F : Quad(R,—, &) — isod(R) is given as follows:

objects : (P,a) +— P,
maps: [f: (P,a) > (P,a)]| +> f .

This induces a map of infinite loop spaces F: KQuad(R, —,£) — K(R) and we
let KQuad'V(R, -, €) denote the homotopy fiber.

Let T : isoP(R) — isod(R) be functor which sends an object P to P* and which
sends a map f to (f!)". Then T induces a homotopy involution on KR for all i.
Also the composition Fo H: K:(R) — K:AR)eauals 1+ T
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Theorem 5: (Karoubi Periodicity)
Asume 2 is a unit in R. Then the 2nd loop space of KQuad""(R, —, €) is homotopy
equivalent to KQuadV (R, -, —¢).

In Sect. 3.3 we'll see that part (2) of the Hermitian K-theory Theorem follows

from Karoubi Periodicity.

Giffen has suggested that there should be a version of Karoubi Periodicity
without the assumption that 2 is a unit. Let Even(R, —, €) be the category of even
hermitian forms and let Split(R, —, €) be the category of split quadratic forms (see
{64] for definitions). Then we get forgetful functors

Spllt(R, — E) — Quad(R) I E) - EV@TZ(R, ) E) g Herm(R> i} E) b

which are equivalences when 2 is a unit in R. We can define analogues of
KQuadV (R, —, —¢) and KQuad"V(R, —, ¢) for each of these categories, Giffen’s idea
is that the 2nd loop space of KQuad' ™V (R, —, €) should be homotopy equivalent to
KEvenV(R, —, —¢). There should also be a similar result for each adjacent pair of

categories.

L-Theory of Quadratic Forms

When we are using only one involution on our ring R well write (R, ¢) as short for
(Ra ) £)~

Let F;: KQuad;(R,£) — KjR be the map induced by the forgetful functor F.

Let H;: K;R — KQuad;(R, €) be the map induced by the hyperbolic functor.

Based L-Groups Following [88]
L3,(R) = L2 (R) := ker (disc : mo (KQuad (R, (-1)') - KiR))
LS., (R) = IX2 \(R) := ker (F\ : KQuad; (R,(-1)") > KiR) ,

where 1o(KQuad™V (R, (—1)") can be identified as the K of the category of based,
even rank quadratic forms and “disc” is the discriminate map.

Free L-Groups
LYN(R) := ker (Fo : KQuad, (R, (1)) — KoR)
L;LI(R) = coker (HI : KiR — KQuad, (R, (—l)i))

Remarks: In the next section we’ll explain how these free L-groups are used to
classify compact manifolds.

Projective L-Groups
. Ko _ 7P — Ho —1) i itin R
Fori € Z, L,Y(R) = L5,(R) := coker (KOR — KQuad, (R,( 1) ) .If2isaunitin R,



then Lf(R) is often denoted by W (R). If R is also commutative, then tensor product
of forms makes W(R) into a ring called the Witt ring.(See [7,46,51], and [68].)
Remarks: the letter “p” stands for “projective”.

See [57] where Ranicki defined Lé_’i,l (R). in terms of “formations”.

Also he proved the following Shaneson Product Formula

LN(R) = coker (L, SR - L (RIE, t"l]))

for all i, j = 0 or 1 and where we extend the involution on R to the Laurent ring
R[t,t7 ' byf=1¢71,
Ranicki also constructed the Rothenberg Sequence
— LIR) — LY (R) = H (Z[2, Ki(R)) —
foralli € Z,andj=0or 1.

“Lower” L-Groups
This product formula suggests the following downward inductive definition:
Forj<Oandanyiec Z,

LYR) = coker (Lﬁff‘(R) Lt (Rl ]))

Notice how this is analogous to Bass’s definition of Kj(R) for j < 0 (see[8]).
By using the fundamental theorem of algebraic K-theory, and the fact that the
involution T interchanges the two Nil terms in K;(R{t, t"Hitisto easy that

A (2)2, K (RI6,1711)) = HY (Z)2, K0 (R) & H' (Z]2, K(R)

foralli,i € Z.
Then one can deduce the following Rothenberg exact sequence

o — [K1(R) — LNR — I:I(Z/Z,Kj(R)) -

forallie Zandallj <0.

Recall that it was much harder to find the “correct” definition for high dimen-
sional K-theory than for low dimensional K-theory. Similarly, the definition of
L,Kj (R) for j > 1is harder than for j < 1. See Sect. 3.5 for the definition of L-groups
with “higher” decorations for all Hermitian rings. In Sect. 3.4 we use Karoubi
periodicity to give another description when 2 is a unit in the Hermitian ring.

Classification of Manifolds
up to Homeomorphism

Surgery theory was invented by Kervaire-Milnor, Browder, Novikov, Sullivan, and
Wall [87]. The reader is encouraged to look at the following new introductions to
the subject [48, 66], and [30].

Poincaré Complexes

We first introduce the homotopy theoretic analogue of a closed manifold. A con-
nected finite CW complex X is an (oriented) n-dimensional Poincaré complex with
fundamental class [X] € H,(X) if [X] N —: H*(X;A) — H,_.(X;A) is an iso-
morphism for every Zn-module A, where m = m(X). Assume q >> 7, then X
has a preferred §7°! spherical fibration Sx such that Thom(Sx) has a reduction,
i.e. a map cx: S"" — Thom(Sx) which induces an isomorphism on H,.,. We
call Sy the Spivak fibration for X, and given any S7~'-fibration 1 equipped with
a reduction ¢, there exists a map of spherical fibrations y : n — Sx which
sends ¢ to cx. The map y is unique up to fiber homotopy. Notice that if X
is a closed manifold embedded in §"*? with normal bundle vy, then the map
cx: §7T — (S (S“*‘I — tubular nghd)) =~ Thom(vy) is a reduction.

Manifold Structures

If X is an (oriented) n-dimensional Poincaré complex, we let 4(X) denote the
simplicial set of topological manifold structures on X. An element in mo($(X)) is
represented by a homotopy equivalence h: M — X where M is a closed topological
manifold. A second homotopy equivalence h;: M; — X represents the same
element if there exist a homeomorphism a: M — M, such that h is homotopic to
hy o a. A k-simplex in $(X) is given by a fiber homotopy equivalence M x Ak —
X x AF over AF.

Let’s consider the following two questions.

(Existence) When is §(X) nonempty?

(Classification) Suppose h: M — X and hi: M; — X represent [h] and [h;] in
o(8(X)). How do we decide when [h] = [ ]2

We break these two questions into a series of subquestions.

Existence Step I: Euclidean bundle structure on the Spivak fibration
Question 1E: (Homotopy Theory) Does there exist a topological R? bundle n over
X with a reduction ¢ : S — Thom(n)?

Notice the answer to 1E is yes iff the map Sx: X — BG which classifies Sx factors
thru BTop, the classifying space for stable Euclidean bundles. Also suppose b :
M — X is a homotopy equivalence where M is a closed topological manifold.
If g is a homotopy inverse to &, then 1, = g*vy has a reduction ¢;: S"1 il
Thom(vy) — Thom(ny). We call the pair (1, c) the normal invariant of the
manifold structure h.

This construction yields a map of simplicial sets n : $(X) — Lift(Sx), where
Lift(Sy) is the simplicial set of lifts of Sy thru BTop.

Existence Step II: Surgery Problem

Suppose the answer to 1E is yes. Then by replacing ¢ by a map transversal to the
copy of X given by the zero section in Thom(n), we geta pair (f: M — X .f), where
M = ¢! (zero section), f = c|y, and f: vy — nis the bundle map covering f given
by transversality. The pair (f, ) is an example of a surgery map. Notice that f might
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not be a homotopy equivalence, but we can assume that f induces an isomorphism
on H,. A second surgerymap (f;: M; — X ,f1) is normal cobordantto (f, f) iff there
exists a manifold (W,8W) C (8" x I, 5" x 3I) with W = M U M, and maps
F:W — X x LF: vy — nx Isuchthat Fly = f,fls, = fi,Flyy, = f,and Fl,,, =
yofl,where y: n — n is abundle isomorphism. The pair (n, c: "1 — Thom(n))
determines (f,f) up to normal cobordism.

Question 2E: (Surgery Theory) Is (f, ) normal cobordant to a homotopy equiva-
lence?

Given a group ring Zm we let —: Zm — Zn be the anti-involution

Z Heg > Z ngg_1

gem genm

We need the following minor variation of the free L-groups. Let

Li(Zn) = 15} (Zn), and

LQ, n(Zm) = L 1 (Zm) modulo the subgroup generated by < iol é) .

Here “h” stands for homotopy equivalence.

Theorem 6:  (Surgery Theorem) Assume n > 4. An n-dimensional surgery prob-
lem (f: M" — X ,f) determines an element o(f, He L"(Zm) such that o(f, fHr=o
iff (f,f) is normal cobordant to a homotopy equlvalence

There is also a relative version of this where the closed manifold M is replaced by
a compact manifold with boundary (M, dM), the Poincaré complex X is replaced
by a Poincaré pair (X, Y) ie [X, Y] N—: H*(X;A) = H, (X, Y;A) is an isomor-
phism, and f : (M,0M) — (X,Y) is such that f[oM: M — Y is a homotopy
equlvalence Then (f, f ) still determines an element in L (Zm (X )) which is trivial
iff (f,f) is normal cobordant (rel the boundary) to a homotopy equivalence of
pairs.

The first paragraph of the Surgery Theorem yields a map
o: mo(Lift(Sx)) — L*(Zm) such that mo8(X) = moLift(Sx) — L'(Zn) is exact at
moLift(Sx).

From Geometry to Quadratic Forms
A detailed explanation of the Surgery Theorem is given in [48] and [66]. Here we’ll
just give a brief outline.
First we'll introduce some terminology.

Suppose V™ is a cobordism from 8-V to 9.V, i.e. 0V = 9_V LUd., V. Given an
embedding g: U (S7! x D) — 9,V, we let V' be the result of using g to attach
handles of index ito V,i.e. V' = VU, (L(D' x D™). Then V' is a cobordism from
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d_V to a new manifold 3, V', and we say that 9, V' is the result of doing surgery
ong.

Suppose (F: W — X x I, F)) is a normal cobordism from (f : M — X f) to
some other surgery problem. Then W has a filtration (M x 1) = Wo C W, C --- C
W, = W where for each i, W;;; = W; U (handles of index i + 1).

Our surgery problem (f M — X, f) is a homotopy equivalence iff f induces an

1somorphlsm on m, and f H; (M) — H; (X) isan isomorphism for each j, where
f M — X is a m-equivariant map of umversal covers over f.

Special case: n = 21 > 4

Then up to normal cobordism there is no obstruction to arranging that (f, )
induces an 1somorphlsm on Ty, f* H; (M ) = H; (X) is an isomorphism for j # i,
and kernel(H; (M) — H{(X)) ~ n,+1(f) is a free er module of even rank 2/. Any
elementa € 1, (f) is presented by a continuous map da: ' = dD'*! — M plus an
extension of fodato D'*!. This extension plus the bundle map f determines aregular
homotopy class of immersions a: S’ x D' — M. Notice that if this immersion is
in fact an embedding then one can do surgery on a. By considering transversal
intersections of these immersions one gets a nonsingular (—1)’-Hermitian form
B : 11 (f) x w1 (f) — Zm. By considering transversal self intersections one gets
a quadratic form a such that (1 + T-ji)a = f. (See [85] and [48].)

Suppose we have an isomorphism of quadratic forms H ((Z‘n) ) - 11 (f). Let
(a, k = 1,...1) be a basis for the i image of (Zm) c H ((|) ) — 7711 (f). Then there
exists an embedding g = Lidy: US x D' — M such that if we do surgery on g we
get a normal cobordism to a homotopy equivalence.

Special case:n =2i+1>3

Suppose one has a nonsingular (—1)'- quadratlc form (P, ), plus two isomorphisms
Ay, Ay H((Zm)') — (P, ). Then A" o A, is an element in GQu(Zm, (- 1)! which
maps to L., (Zm). Roughly speaking this is what one gets from a 2i+1-dimensional
surgery problem after it is made highly connected. To make this precise it is best
to introduce the notion of formations. See [57] and [66].

Classification:
Suppose h: M — X and h;: M, — X represent [h] and [h;] in o (8(X)).

Classification Step I: Normal invariant

Question 1C: (Homotopy Theory) Are the normal invariants (1, cx) and (np, ¢n, )
equivalent?

(To simplify notation let (13, ¢) := (g, ¢i) and (11, ¢1) = (7, > oy ).)

In other words does there exist a bundle isomorphism y: n — 1; and a ho-
motopy H: §"*9 x I — Thom(n;) such that H|S"" x 0 = Thom(y) o ¢, and
H|S™ x 1 = ;. If y and H exist, then we can choose H so that it is transver-
sal to X x I. This then yields a normal cobordism (F: W — X x I, Ervw — m)
fromh: M — Xtohy: M} - X.



624 Bruce Williams

Suppose n(h),m : X — BTop are_tk_lglifts ﬂ: X — BG which classify
(k> ) and (7w ) respectively. Then n(h) and n(h,) are homotopic as lifts iff
(1> cn) and (7, Cy ) are equivalent. Furthermore, the group [X, G[Top] acts simply
transitively on the set of homotopy class of lifts of Sx. See [49] for results of Sullivan
and others on the space G/Top.

Classification Step II: Relative surgery problem
Question 2C: (Surgery Theory) Suppose (F: W — X< I,E: vw — m)isasolution
to 1C. Is (F, F) normal cobordant (rel boundary) to an h-cobordism?
Here W is an h-cobordism from M to M; iff the two inclusion maps M C W and
M, C W are homotopy equivalences.

Notice that the second paragraph of the Surgery Theorem yields an element
o(F,F) € LZ +1(Zm) whichis 0 iff the answer to 2C is yes.

Classification Step III: H-cobordism problem
Question 3C: (Product Structure on H-cobordisms) Suppose W is an h-cobordism
from M to M;. When is W homeomorphic to M x I?

Let hcob(M) = 8(M x I,M x 0) be the simplicial set of topological manifold
structures on M x I rel M x 0. Thus an element in 110 (hcob(M) is represented by
an h-cobordism from M to some other manifold. Two such h-cobordism represent
the same element iff there exists a diffecomorphisms between them which is the
identity on M.

We let Why () := coker ({£m} — GL(Zm) — K\(Zm)).

Theorem 7: (S-Cobordism Theorem) Assume n > 4. There exists a bijection
12 1o (hcob(M)) — Why(m (M) such that the product h-cobordism M x I maps
to the unit element.

Suppose R is a ring such that R* > R” implies that n = m. Let B be a nontrivial
subgroup of K1 (R). Letg: R” 75 Pandg: R* — Pbetwobases foraf.g. R-module
P. The bases g and g; are said to be B-equivalent iff the map GL,(R) — Ki(R) sends
¢! o g to an element in B. We say that P is B-based if it is equipped with an
B-equivalence class of basis. Notice that an isomorphism between two f.g. B-based
modules determines an element in K; (R)/B. More generally an R-chain homotopy
equivalence g between two f.g. B-based, R-chain complexes determines an element,
1(g) € K1(R)/B called the torsion of g, (See [48, 2.2]).

Geometric Example: Suppose f: A — A, is a homotopy equivalence between
finite CW complexes with fundamental groups isomorphic to 7. Then the universal
covers A; and A, are also CW complexes, and the CW -chain complexes C (A7) are
C(A3) are B-based, where B = im ({ﬂ:n} — Gll(an — Kl(Zn)). Iff: Al — Ay s
a TT-equivariant map covering f, welet 7(f) = 7 (c( )) € Whi(m).

The map 7 in the s-cobordism theorem sends an h-cobordism M C W D M, to
(M c W)Y,

%
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Let S"(M) = (m, (8(M)) /h-cobordisms) = orbit set of the action of Wh, (m (M)
on o (8(M)).

Theorem 8: (Wall’s h-Realization Theorem) Assume 1 > 4, There is an action of
L, (Zm) on S"(M) such that the normal invariant map mo$(M) — moLift(Sy)
factors thru an injection S*(M)/L%, | (Zm) — moLift(Sy).

ntl

Let 1: mp8(M) — Wh,(m) be the map which sends h: M; — M to r(h). Let
S (M) = ker (T: M8 (M) — Whl(n)).
Let L$,(Zm) = LE(Zm), and let L}, (Zm) = L3, (Zn) modulo the subgroup

0 1 .
generated by <i1 O)’ where B = im ({11} — GL(Zn) — K\(Zm)).

Theorem 9: (Wall’s s-Realization Theorem) Assume 1 > 4. There is an action of
L:,,(Zm) on $(M) such that the restriction of the normal invariant map §(M) C
mo8(M) — moLift(Sy) factors thru an injection S (M)/[L;,, | (Zm) — moLift(Spr)-

ntl

Higher Hermitian K-Theory

Homotopy Fixed Spectrum, Homotopy Orbit Spectrum,
and the Norm Fibration Sequence

See [2,28,72-74], and [41]. Suppose K is an Q-spectrum equipped with an action
by a finite group G.

Classical Example: Suppose K is the Eilenberg-MacLane spectrum H(A) where
mo(H(A)) = A, a G-module.

Let
H*(G;K) = K" = F4(Z®FEG,,K), and
H.(GK) = Ky = Q¥ (Z"EG, A6 K) 5

where Fg is the function spectrum of G-equivariant maps, and where Q* is the
functor which converts a spectrum to a homotopy equivalent Q2-spectrum.
Notice that

;i (IHI* (G; H(A))) = H(G;A), and

m; (H, (G H(A))) = Hi(G;A) .
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ror general I, there exist spectral sequences wnich abut 1o 7, (' (G5 1s)) and
tO I, (]HI*(G; K)), where E, is H* (G; TI*K) and H, (G; T[*K) respectively.

The map EG — pt induces maps H* (G;K) — K and K — H (GK). Let
n: K — K be the map given by [ [, ¢-

Then Adem-Dwyer-Cohen [2], and May-Greenlees [28] have constructed
a norm fibration sequence

(G K) & HYG K) » H(GK),

where the following diagram is homotopy commutative

n

K — K

J 3
H,(GK) & H(GK),

see also [91]. Furthermore, 7; (]ﬂl* (G;H(A))) ~ H(G;A) in the sense of Tate,
see [69]. Thus H*(G; K) is called the Tate spectrum for G acting on K.

Thomason’s Homotopy Limit
and Homotopy Colimit Problems

If G is a finite group, then G is the category with a single object, and maps are
elements of the group G. Composition of maps is given by multiplication in G. Let
Cat be the category of small categories. An action of G on a category C is a functor
G — Car which sends the single object in G to €. Let SymMon be the category

with objects small symmetric monoidal categories, and maps symmetric monoidal
functors. The category of G symmetric monoidal categories, G — SymMon, is then
the category of functors from G into SymMon.

Suppose C is a G-symmetric monoidal category. Constructions of Thomason,
then yield the following commutative diagram which commutes up to a preferred
homotopy. (See [72-74], [43] and the next two page of this paper.)

T

K(C) = K(€C)
J Fl
H,(G,KC) > H*(G,KC)

In [74] Thomason showed that the left vertical map is a homotopy equiva-
lence, and in [72] he observed that many fundamental questions can be viewed
as asking when the right vertical map becomes an equivalence after some sort of
completion.

Examples: We'll ignore the complication that each of the following categories
should be replaced with equivalent small categories,

1. \chdl \JU.‘I}CLLUI CJ) LTl LU ve U LdngUl y UL 1LIILE DELD, cqulyycu WILLLL LT LIlVia)
actionby G. Then K(C"%) ~ K(finite G-sets) is equivalent to VZ®B(NGH[H).,,
where we wedge over the set of conjugacy classes of subgroups of G. Also
H*(G, KC) is equivalent to the function spectrum F (Z*°BG,, S), where S is the
sphere spectrum. The Segal Conjecture as proved by Carlsson states that in this

case the map K( C"S) - H*(G, KC) becomes an equivalence after completion
rank

with respect to I(G) = kerKy(finite G — sets) — Z. (See [16])
2. (Quillen-Lichtenbaum) Let ¢ = $(F) where the field F is a finite, Galois
extension of a field f. Let G = Gal(F[f). If g € G and V is a F-module with

multiplication m: Fx V — V,then Fx V S Fx V% Visanew F-module
structureon V. This yields an action of Gon & (F) such that K(P (F VhGYy ~ K o).
Then Thomason [73] has shown that a version of the Quillen-Lichtenbaum
Conjecture can be reduced to showing that the map Kf — H*(G,KF) is an
equivalence after profinite completion.

3. (Hermitian K-theory) Suppose (R, —, £) isa hermitian ring. Then T is “almost”
an involution on £ (R) in that there exists a natural equivalence between T?
and id. We can rectify this to get an honest action by Z/2 via the following
construction. Let P(R, —, £) be the category where an object is a triple (P, Q,  :
P = %), where P and Q are objects in P(R) and h is an isomorphism.
A map from (P,Q, P LY Q*) to (P, Q1. P Lt Q7). is given by a pair of R-
module isomorphisms f: P — P; and g: Q — Q; suchthath = g*o by of.

Then ﬁ(R, —, €) is equivalent to iso/?(R). Furthermore we get an involution
h*

i: P(R, -, &) — P(R, -, ¢) that sends (P,Q,h) to (Q,P,Q Ty Q** — Px),
where Q g Q- Ls the natural equivalence n_.(q)(f) = s)?@ forallg € Qand
all f € Q*. Then P(R, —, £)"? is equivalent to KHerm(R, -, €).

Conjecture: The map F: KHerm(R, —,€) — H*(Z[2, KR) becomes an equiv-
alence under profinite completion. (See [23] and [9].)

Let €G be the transport category for the group G. Thus Obj(€G) = G, and
Mapeg (g1, 82) has just one element for each pair ordered (g1, ;). Then G acts on
&G via multiplication in G. Notice that the classifying space BE Gis contractible and
the induced action of G on BEG is free. Thomason defines C"C as Fung(€G, C), the
category of G-equivariant functors from G to C. Notice that an object in C"C can
be viewed as a pair (x, ) where x is an object in € and « is a function assigning
to each ¢ € G an isomorphism a(g): x — gx. The function & must satisfy the
identities (1) = 1 and a(gh) = ga(h) - a(g). Then we get the transfer functor:

Tr: @ — @"C

x (ng,a),

geG

where a(h): 3 gx = hY_ gxis the obvious permutation isomorphism.
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See [74] and [41] for the construction of C;¢ and the factorization
Tr: C — Cug —T—; S .

When € = P (R, —, ), Tr is the hyperbolic functor.

Karoubi Periodicity

See [391 and [43-45].
Let H be the composition

H,(ZJ2, KR) ~ K(P (R, —, )iz — KHerm(R, ) .

We want to improve the following homotopy commutative diagram in a couple
of ways:

H,(Z/2,KR) 2 KHerm(R, —,¢)
id | Fl
H.(Z/2,KR) &> H*(Z/2,KR)

1. We want to replace the (—1)-connective spectra KR and KHerm(R, —, ¢} with
spectra KR and KHerm(R, —, €) where for all i € Z, K;(R) = m;(KR) and
KHerm;(R, —, €) = mi{(K(R, -, €)).

2. We want to use Karoubi periodicity to show that when 2 is a unit in R, then
Q2L(R,— €) ~ L(R,—, —£) whNere L(R,—,€) is the deloop of the homotopy

fiber of the map H, (Z/2, KR) -> KHerm(R, —¢).

Disconnected K-theory

For any ring R we let CR, the cone of R, be the ring of infinite matrices (a;), (i,j) €
N x N such that each row and each column has only a finite number of nonzero
entries. let SR, the suspensioh of R, be CR modulo the ideal of matrices with only
a finite number of nonzero rows and columns. Gersten and Wagoneer [78] have
shown that KCR = x and that QKSR =~ KR. This yields a spectrum KR such that
KR is the (~1)-connected cover of KR and for i < 0, 1;(KR) ~ KiR in the sense of
Bass.

If ¢: Ry — R, is a ring homomorphism, we let

r(¢) = lim (SRI 3 SR, « CRz)
and following Wagoneer [78] we get a homotopy fibration sequence

Suppose (R, —,£) is a hermitian ring. We then get hermitian rings C(R,—,¢)
and S(R, —, €) with underlying rings CR and SR respectively. The anti-involution

. » . . = . .
of the matrix rines CR and SR is civen bv M > M  ie apblv — componentwice -
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and then take the matrix transpose. The choice of central unit is eI where [ is
the identity matrix. Then Karoubi has shown that KHermC(R, —, €) > # and that
QKHermS(R, —, €) ~ KHerm(R, —, ). This yields the spectrum KHerm(R, —, £) with
(—1)-connected cover
KHerm (R, —, €/.

If ¢: (Ry,~1,€1) = (Ra,—3,¢€;) is a map of hermitian rings, then I'(¢) inherits
hermitian structure and we get a homotopy fibration sequence

KHerm(Ry,—1,€1) — KHerm(Ry, =3, €,) — KHerm (I'(¢)) .

Karoubi’s Hyperbolic and Forgetful Tricks

For any hermitian ring (R, —, ) we let (R X R, 5, £ x ) be the hermitian ring where
s(a,b) = (b, a).

Theorem 10:  (Forgetful Trick) Let d: R — R x R send r to (r,7). Then we get
the following commutative diagram

KHerm(R,~,€) 2 KHerm (R x R”,s,€ X &)
i | =
KHerm(R, —,€) A KR,
where F is the forgetful map.

Thus if V(R, —, &) = I'(d), we get a homotopy fibration
KHerm(R,—,€) £ KR - KHerm (V(R,— )

with connecting homomorphism d: QKHerm (V(R, - z)) — KHerm(R, —, £).
Let KHerm (R, —, &) = QKHerm (V(R, -, £)).
We can iterate the construction of V and let

KHerm" (R, -, e) = @KHerm (V/(R,-,¢)) , forj=1,2-- .
Also we let KHerm(®) (R, —, £) be the homotopy limit of the diagram
e —> KHerm(j)(R,—,e) — KHermU_”(R,—,s) — .. KHerm(R, —,€) .

Theorem 11:  (Kobal’s Forgetful Theorem) There exists a homotopy fibration

KHerm ™ (R, -, ) — KHerm(R, — €) - H*(Z2,K)
such that the following diagram commutes
KHerm(R,—¢) - H*(Z/2,K(R))

\ \J
KHerm(R, -, ¢) - H*(ZJ2,K(R)).



For any hermitian ring (R, —, &) welet (M2(R), > €l ) be the hermitian ring wnere
ab) _ db
Y\ca za)

12 Theorem 12: (Hyperbolic Trick) Ife: (R x R?,s,e x €) = (Mz(R), 7, el) is given

by e(a, b) = a .Z), then we get the following commutative diagram
0

KHerm(R x R,5,¢ X E) 5 KHerm(M,(R),y,€l)
>~ =~
KR kil KHerm(R,—,€)

where H is the hyperbolic map.

Thus if U(R, —,£) = I'(¢), we get a homotopy fibration
KR 55 KHerm(R,~,¢) = KU(R,—€) .

Let KHerm™V(R, -, ) = KHerm (U(R, -, £))-
We can iterate the construction of U and let

KHerm (R, -, €) = KHerm (Uj(R, —,s)) , forj=1,2,---.
Also we let £(R, —, ¢) be the homotopy colimit of the diagram

KHerm(R, — €) —> KHerm (R, -, &) — . KHerm' ™ (R, — €) -+

13 Theorem 13: (Kobal’s Hyperbolic Theorem) There exists a homotopy fibration
sequence

H,(Z/2, KR) > KHerm(R, —,€) = L(R, =€)

such that the following diagram commutes

H,(ZJ2,KR) 5 KHerm(R, —,¢)
\ . \
H,(Z/2,KR) 5 KHerm(R,~,¢)

where the top horizontal map was described earlier using results of Thomason.

Let KHerm©(R,—,e) = KHerm(R,—¢), and for all j € Z we let KHY =
KHermW (R, -, €).

{WISTS ana vimension >mrung 1or CONoOIuivyy

Consider the short exact sequence of Z [Z/2]-modules
75 sz [z S Z

where e(rn + mT) = n+ m. Here T € ZJ2 acts trivially on Z and Z<""> is a copy of
Z with the nontrivial action by Z/2.

Let J: Z [Z/2)-modules — Z [Z[2]-modules be the functor which sends a mod-
ule P to P ®y Z<'> where ZJ2 acts diagonally. Then for j = 1,2,--- we let
P<7> = Ji(P). We let P> = P, Notice that P<"2” = P as Z [Z[2]-modules.

If we apply H*(Z[2; P®z?) to the above sequence we get a long exact sequence
with connecting homomorphism d: H*(Z[2; P) — H* Y (Z[2; P<71>).

If K is a spectrum with an action by Z/2 we can perform an analogous con-
struction by replacing Z by the sphere spectrum. In particular we get a connecting
homomorphisms H*(Z/2; K) — H*(Z[2; Q7' K<17).

Warning: K<> is not necessarily equivariantly equivalent to K. Consider the
special case when K is the sphere spectrum with the trivial action and compare
homotopy orbits.

There is a homotopy equivalence between H*(Z{2; K) and the homotopy colimit
of the diagram
H* (Zf23K) - H (2[5 Q7' K<) » - H* (Z/3Q7K"77) - -,

such that the map H*(Z[2;K) — H*(Z/Z; K) from the norm fibration sequence
gets identified with the map

H*(Z)2;K) — heolimH*(Z]2; Q7K~7) .
Consider the following commutative diagram

KHerm™(R,— ) — KHerm'7™D(R,— &) — -
Fl Fl
H* (Z)2, KUI(R, -,€)) — H* (ZJ2, KU (R,—€)) = - .

Notice that each square in this diagram is homotopy cartesian (compare the
horizontal homotopy fibers.) One can than conclude that the square in the Hermi-
tian K-theory Theorem is homotopy cartesian by observing that it is equivalent to
the following homotopy cartesian square.

KHerm (U°(R,—,€)) —  hcolim; KHerm (U(R,~¢)

+ \
H* (Zf2,KU°(R, —¢)) — heolimiH* (Z{2,KU/(T,—,€)) .

If we replace (R, —, €) by U/(R,—, &) we get the same Karoubi tower, but shifted
to the left j steps. Similarly, if we replace (R, -, €) by VI(R,—, £) we get the same
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Karoubi tower, but shifted to the right j steps. This observation plus the Karoubi
Periodicity theorem in Sect. 3.2 yields the following.

14 Theorem 14: (Generalized Karoubi Periodicity) Assume 2 is a unit in R.Then the
2nd loop space of KHerm” (R, —, €) is homotopy equivalent to KHermW (R, —, —¢).
Thus Q2L(R, —€) ~ L(R,—, —€).

3.4.6 General Definition of L-Groups (when 2 is a Unit)

Let KHerm (R, —e) = KHerm(R,—¢), and for all j € Z we let KHY =
KHerm% (R, —, €).
The following diagram is called the Karoubi Tower.
QKR QKR
HU+HD J g y
FUHD | i,
QKR QKR

where for eachj € Z

Q¥ RR ™S KHID o KHO B VKR

is a homotopy fibration sequence.

, Dogd .. ) :
Furthermore, @’KR B oiKRis homotopic to (¥ of I + Te.

The F9 for j > 0 can be viewed as higher order forgetful maps. The H W forj <0
can be viewed as higher order hyperbolic maps .

Let m,F? and mHY be the induced maps on the k-th homotopy groups.

For any T,-invariant subgroup X C K;j(R) we let

(mFP) ™ (X)

LER) = . , where £ = (1)’
MR = Sy 0 D)
mFID) T (x) A
£§;+1(R) = g(—T:_I—I—(]:‘_l)S)_&T s where € = (-1)l .
1
15 Proposition 15:  (Rothenberg Se uence) (Assume 2is a unitin R.) Foranyi,j € Z
g oeq ALY

we get an exact sequence

...——>aC,KjH(R)—>aC?i(R)—’Hi(Z/ZJKj)_)“'

Quadratic K-Theory and Geometric Topology 633

Following [88] the proof of this is an easy diagram chase except for exactness at
the middle term of

K . Kis
Ly, (R) = A’ (Z/Z’Kj) - °C4l]\—+11(R) .

The proof of this step uses the commutativity of the following diagram

. 2 pl(j-2) .
QKHerm D (Re) 75 Q20FKR

Periodicity |, =

)

KHermW (R, —¢) 5 QKR .

KIt is fair}\y easy to see that when 2 is a unit in R, Theorem 1.1 impiies that
L7(R) = £i(R) foralli € Zandj = 1 or 2 (see [40] for details).

Proposition 16:  (Shaneson Product Formula) Assume 2 is a unit in R. For all
i€Z,andj <1

Kin

LR e LR = L7 (R

The map oCif{l (R) — QC:E{TI (R[t,¢7']) is induced by a map of Hermitian rings.

Karoubi [39] has constructed pairings KHUY(Ry,£1) x KH® (Ry,62) —
KH*2)(R; ® Ry, €1 @ €). There exists an element 0 € KHerm i)
such that when i is even, the map LYR) - aCfﬁl (R[t,#71]) is induced by
pairing with o. When i is odd, the map uses periodicity plus pairing with o.
The element o can be viewed as the “round” symmetric signature of the circle
(see [65]).

When j = 1 one can see that the sum of these two maps is an isomorphism
by using the Shaneson product formula from Sect. 3.2. One then does downward
induction on j using the Rothenberg sequences.

Theorem 17 Assume 2 is a unit in R. Then
LER) = £ (R)
forallie Zandj< 1.

We already noted this is true when j = 1. We then do downward induction of j
by using the fact that both sides satisfy a Shaneson Product formula.
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Symmetric and Quadratic Structures
on Chain Complexes

See [62-64,67], and [58]. Connections between geometric topology and algebra
can be greatly enhanced by using chain complex descriptions of K-theory and
L-theory. Also we want a version of periodicity without the assumption that 2 is
a unit.

For example, a parameterized version of Whitehead torsion is gotten by applying
Waldhausen’s S. construction to the category of f.g. projective R-chain complexes
to get a more “geometric” model for KR. (See [79-84], and [22])

Our goal in this section is to give a quick introduction to some of the key ideas
from the work of Ranicki on L-theory (see also [52]).

Let (R, —, +1) be a hermitian ring. Recall that in Sect. 3.2, symmetric (i.e. hermi-
tian) forms on a module P were defined using the group Sesq(P) equipped with the
involution T.. Quadratic forms were defined using the map N, = I +T¢: Sesq(P) —
Sesq(P).

Symmetric Complexes

Given a chain complex
d d
C: - Cr+1 - Cr g Cr—l - C0 — 0

of f.g. projective R modules write C" = (C,)". Let C™* be the chain complex with
8;1—* - Cn—r and d%_* - (—l)rdct Cn—r - Cn—r+l.
. The duality isomorphisms

T: Homg(CF,C,;) — Homg(C%, Cp); ¢ > (=D)Fi¢*

are involutions with the property that the dual of a chain map f: €"™* — € is
a chain map Tf: C"* — €, with T(Tf) =f.

Let

we oz Fzzp S zep Y e S zizp)

be the free Z [Z[2)-module resolution of Z.

A n-dimensional symmetric chain complex is a pair (C,¢) where € is an n-di-
mensional f.g. projective chain complex and ¢ is an n-dim cycle in the Z-module
chain complex

Homg|z) (W, Hompgp(C*, @)) .

The element ¢ can be viewed as a chain map ¢o: € — C, plus a chain
homotopy ¢; from ¢g to T¢p, plus a second order homotopy from ¢, to T¢, etc.
The nair (@ &) is Poincaré i.e. nonsingular, if ¢, is a homotopy equivalence.
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ModeLExample: (Miscenko) Let X" be an oriented Poincaré complex with universal
cover X and cellular Z7n-chain complex C(X), where = m; (X). Then capping with
the~fundamental class [X] yields a chain homotopy equivalence ¢y: cXy* —
C(X). The higher chain homotopies ¢, ¢, - are given by an analogue of the
construction of the Steenrod squares.

By using Poincaré duality for a compact manifold with boundary (W,9W)
as a model, Ranicki also introduced the notion of Poincaré symmetric pairs of
complexes and bordism of Poincaré symmetric complexes. Then the n-th (pro-
jective) symmetric L-group, L} (R), is defined as the group of bordism classes of
n-dimensional Poincaré symmetric chain complexes. One also gets symmetric L-
groups with other decorations such as Ly(Zm) and L{(Zm) by using free or based
chain complexes.

An oriented Poincaré complex X, then determines an element o} (X) € Ly (Zm)
called the symmetric signature of X. If n = 4k, then the image of o7;(X) under the
map L¥(Zn) — L2X(Z) ~ Z is just the signature of the the pairing,

H*(X,R) x H¥(X,R) - H¥(X,R) ~ R

given by cup products. If X is a manifold M, then 0} X) has a preferred lifting to
o (M) € L{(Zm).

It is easy to see that Lg(R, —,+1) =~ KoHerm(R, —, +1)[metabolic forms, (see
[64] p.66, [64] p.74, and [6] p.12).

Quadratic Chain Complexes

Recall from Sect. 3.4 that given a spectrum K with action by Z2 we get a norm
map

N: Q®(S®EZf2, Agp K) = Fzp (3°EZ[24,K) .
Similarly, we get a norm map for the Z [Z/2]-chain complex Homg(C*, C).
N: W ®z [Z[2] Homg(C*, C) — Homy [Z[2] (W, Hom,(C*,C)) .

(Notice that W is the cellular chain complex for EZ/2.)
An n-dimensional quadratic chain complex is a pair (C, p) where C is an n-di-
mensional f.g. projective chain complex and y is an n-cycle in W ®z, [Z]2] Hompg
@*,G). Notice that then (G,N(p)) is an n-dim symmetric chain complex. If
C,N (zp)) is Poincaré, we say (C, p) is Poincaré. Similarly there are notions of
quadratic pairs and quadratic bordism. The n-th (projective) quadratic L-group,
I2(R), is the the bordism group of n-dimensional Poincaré quadratic chain com-
plexes. One also gets quadratic L-groups with other decorations such as L(Zm)
and L (Zm) by using free or based chain complexes.
The norm map N induces a map 1+ T : L,(R) — L" (R) for any choice of
decoration. If 2 is a unit in R, then 1 + T is an isomorphism. Furthermore for all
ringsR, 1+ T: L,(R) @ Z[1] - L"(R) ® Z[1] is an isomorphism.
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Suppose £ is any central unit in R such that &€ = 1. If we replace T by
Te: Homg(CF,Cq) — Homg(C%L Cp); ¢ > (~1)Ped* we get the quadratic groups
Ln(R, ).

Itis easy to see thatif n = 0 or 1, then these quadratic chain complex descriptions
of the quadratic L-groups are consistent with the definitions in Sect. 3.2. The
following result implies consistency for all 7.

18

Theorem 18: (Ranicki Periodicity) For all n > 0, and for all rings R, I2(R,—€) =
I, (R, €)

Model Example: Suppose (f : M n s X,f)isasurgery problem where f induces an
isomorphismon . Let C(f) bethe mapping cone of C(M) — C(X).Itis easily seen
that C(f) admits Poinare symmetric structure which represents o, (X) — o} (M) in
L} (Zmi (M }). However, Ranicki [63] has shown that the bundle map f determines
an element oﬁ(f,f) € LZ(Zm(X)) such that N(o*(f,f)) = o} (X) - oy (M). Under
Ranicki Periodicity, oi(f, 1) gets identified with the surgery obstruction discussed
in Sect. 3.3.

There are operations on symmetric and quadratic chain complexes which are
algebraic analogs of surgeryon a manifold. This algebraic surgery is what is used
to prove the Ranicki Periodicity Theorem. It would be good to have a better
understanding of the relationship between Karoubi and Ranicki Periodicity (Also
see Sharpe Periodicity [70] [40].)

Applications of Quadratic Chain Complexes
Besides bordism and surgery there are other geometric operations such as trarnsver-
sality which have quadratic chain complex analogues. Ranicki’s chain complex
description of L-theory has helped to yield many important results.
1. (Instant descriptions of the surgery o@struction)
Given a surgery problem f,f)> O« (f.f) € L,(Zm (X)) is defined without first
making f highly connected.
2. (Product Formula)
Suppose N k is a k-dimensional manifold. There exists a pairing

p: I (Zm (N)) % Ly (Z (X)) = Lien (ZImN X mX])

such that the surgery obstruction for idn x (f> fisp (0* (M), ox(f> f )).

3. (Relative L-groups)
Suppose f: Ri = Rz is a map of rings with involution. Then there exist
4-periodic relative L-groups, L,(f) such that with appropriate choice of deco-
rations there exists a long exact sequence

ceo = Ly(Ry) = La(R2) = Lalf) = Ly (Ry) = -
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Here L,(f) is defined in terms of n-Poincaré quadratic R,-pairs where the
“poundary” is induced by f from a (n — 1)-dim Poincaré quadratic R;-chain
complex. When fisa localizing map, then L,(f) has a description in terms
of quadratic linking pairings [53, 61, 64]. When a group G is the result of
an amalgamated product or a LNN construction, one gets Mayer-Vietoris
sequences for L-theory analogous to those given by Waldhausen for K-theory
[15,59,60].

(L-theory Spectrum)

Quinn [55,56] and Ranicki [58, 65] have constructed Q-spectra LX(Zm) and
Lyx(Zm) with decorations X C K;(Zm),j < 2 such that m,LX (Zm)) =~ L;(Zm)
and 7, (ILX(ZH)) ~ L}(Zm). A k-simplex in the infinite loop space associated
toL? (Z) is given by a pair (C, ¢) where @ is a functor from the category of faces
of the standard k-simplex A¥ to the category of f.g. proj. chain complexes of Zm-
modules, and where ¢ is a Poincaré symmetric structure on such a functor.
Thus a 1-simplex is a symmetric bordism, a 2-simplex is a second order
symmetric bordism,etc. The definitions of LMZn) and L*(Zm) are similar
except projective is replaced by free and based respectively.

Suppose we let L° = L Lt = L, 1 = L, and LK = L9 for j =
—1,-2,=3, Let Co be the infinite cyclic group Then forj = 2,1,0,---, we get
that L9 (Zm) is homotopy equivalent to the homotopy fiber of LY*1>(Zm) —
L (Zlm x Ceo)). Notice that the map L*(Zn) — LP(Zm) is induced by
commutativity of the following diagram

Ls (Zm) - L* (Z[m % Cwl)
\ 2
L} (Zr) — L* (Z{n x Cxl) -

Then by downward induction on j we get maps L (Zm) — LYY (Z[m) for

j=2y1,0,"'.

Let <" (Z) be the homotopy colimit of

LA (Zm) — L= (Zm) — L (Z) =

Open Question: Are ]L<‘°°>(Z[%]n) and GC(Z[%]H, —,+1) homotopy equiva-
lent?

(Block Space of Homeomorphisms) .

Suppose M is a compact manifold, and Top(M) is the singular complex of
the topological group of homeomorphisms of M. A k-simplex in Top(M) is
given by a homeomorphism h: AF x M — A% x M which commutes with
projection to AF, Classical surgery is not strong enough to determine Top(M)
itself so we introduce a pseudo or block version Top(M); where a k-simplex is
a homeomorphism h: AF % M — AK x M such that for any face 7 C Ak, h(r
M) C(xM ). Notice that we get an inclusion of simplicial groups Top(M ) C
Top(M).If G(M) is the simplicial monoid of homotopy automorphisms we get
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a similar inclusion G(M) C G(M) but in this case the inclusion is a homotopy
equivalence. For a Poincaré complex X we let

3(X) = uG(N)[Top(N) ,

where we take the disjoint union over homeomorphism classes of manifolds
homotopy equivalent to X.

Notice that a component of S(X) is represented by a homotopy equivalence
N—- X

If X is a manifold M, we let $*(M) be the union of the components of S(M)
represented by simple homotopy equivalences. The ideas described in Sect. 3.3
can be used to prove the following theorem. (See [5,58], and [14].)

19

Theorem 19: (Surgery Exact Sequence) Assume n > 4. Suppose M is a n-di-
mensional closed oriented manifold. There exists a homotopy equivalence between
%5(M) and the union of certain components of the —1-connected cover of Q" of
the homotopy fiber of the assembly map

H,(M,L) — LY(Zm (M)
where L is the 1-connected cover of L7 (Z).

The question of which components involves resolving homology manifolds
(see [10] and [58]). _

The homotopy fiber of (M) — 3(M) over the “identity vertex” id: M —
M is equivalent to Top(M )[Top(M). It is easy to see that there is an exact
sequence 1hcob(M) — o Top(M) — 1 Top(M). Hatg\}ler [33] has shown
that here exists a spectral sequence which abuts to 1. (Top(M)[Top(M)) and
E, of the spectral sequence is given in terms of 1, (hcob(M x ). Recall from
the introduction that HCOB(M) is the homotopy colimit of

heob(M) — hcob(M x I) — hcob(M x Y- .

In [90] it is shown that there exists an involution on the infinite loop space
HCOB(M) such thatfif HCOB,(M) is the 0-connected cover of HCOB(M) then
there exists a map Top(M)[Top(M) — H..(Z[2, HCOBy(M)) which is at least
k + 1 connected where dim M > max(2k + 7,3k +4) and M is smoothable.
6. (Map from L-theory to Tate of K-theory)

In order to study S(M) instead of S(M) in the next section we need to under-
stand how to “glue together” L-theory with higher K-theory. Suppose R is any
ring with involution, and X C Kj(R) is an involution invariant subgroup. We
let cx: KX(R) — K(R) be such that m(KX(R)) = 0, fori <, nj(KX(R)) =X,
and cx induces an isomorphism on 7; for i > j. Then one can construct the
following homotopy cartesian square,

LX(R) —  L7(R)
= =
f(zf2, KX(R)) — H(ZJ2,K(R)) .
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It is then very easy to see that we get the Rothenberg sequences and Shaneson
formulae mentioned in the introduction. If j < 2, this L*(R) is consistent with
the one constructed by Quinn and Ranicki.

The map Z is constructed by using the Thomason homotopy limit problem
map K(C"®) — H*(G,KC) plus a “bordism-like” model for H(Z, K(R)),
see [91,92]. It would be good to have a better understanding of the relationship
between = and the right vertical map in the Hermitian K-theory Theorem.

Manifold Structures

Let M" be a connected, oriented, closed manifold.
Our first goal is to explain the following tower of simplicial sets

S(M) —> $°(M xR = - — "M x R) — -

Given two spaces over R/, X £ Riand Y 5 R/, we say that a continuous map
f: X — Yisbounded ifthere exists K € Rsuchthatforallx € X, [p(x) —q(h(x))] <
K. When we write M x R/ we mean the space over R given by the projection map
Mx R > R.

Given p: X — R’ we get the following diagram of simplicial monoids

Top®(p) — G'(p)
N d
Top'(p) — G'(p)

where the superscript “b” denotes the fact we are using bounded versions of
the simplicial monoids defined in previous sections. The map G'(p) — Gl (p) is
a homotopy equivalence. Furthermore, the map G(M) — GP'(M x W) gotten by
crossing with idg; is a homotopy equivalence.

We say that p: V" — R/ is an m-dimensional manifold approximate fibration if
V is an m-dimensional manifold, p is proper, and p satisfies the e-homotopy lifting
property for all £ > 0, (see [37]).

Key Example: (Siebenmann and Hughes-Ranicki [37, Chap.16]) Assume n > 4.
Let W be a manifold with a tame end &, Then ¢ has a neighborhood which is the
total space of a manifold approximate fibration over R'.

Let
SYM" x RY) == UG’ (p: V™ — R) /Top (p: V™ — R),

where we take the disjoint union over bounded homeomorphism classes of (1 +)-
dimensional manifold approximate fibrations homotopy equivalent to M. Notice
that if j = 0, then 8°(M x R/) = $(M).



3.6.1

640 Bruce Williams

Crossing with the identity map on R' gives maps 85(M x R)) — 8°(M x Ri*1),
and Top?(M x R/) — Top?(M x RI*'). Let (M) = heolim; 8% (M x ).

Let hcob”(M x R/ be the simplicial set of bounded h-cobordisms on M x R/,
Then there exists a homotopy fibration (see [3,4])

heob(M x ) 5 8°(M x RI) > 8/ (M x R*).

Furthermore Qhcob? (M x RJ) = hcob?(M x I x RI™!). This makes HCOB(M) =
heolim;hcob® (M x I') into the 0-th space of an (-spectrum with j-th delooping
given by HCOB(M x R/) = heolimihcob?(M x I' x RV).

Let 7t = 71, (M), then (see [3])

Why(m), fork=0
m(HCOB(M)) = { Ko(Zm),  fork=-1
K1 (Zm), fork<-1.

Anderson and Hsiang have conjectured that for k < 1, Ki(Zm) is trivial.
Carter [17] has proved this for finite groups. Farrell and Jones [24] have proved
this for virtually infinite cyclic groups

Let A(X) be Waldhausen’s algebraic K-theory of the connected space X, see [80].
Let A(X) be the disconnected 2-spectrum constructed by Vogel [76] [77] such
that A(X) — A(X) induces an isomorphism on homotopy groups in positive
dimensions. Also there exists a linearization map A(X )y — K(Zm; (X)) which is 1-
connected. Let QWH (X) be the homotopy fiber of the assembly map H*(X, A(x)) —
A(X). Then we get
(1:) There exists a homotopy equivalence HCOB(M) — QWH(M). (See [79-84],

and [22, §9].)
(2:) There exists a homotopy fibration sequence

Top~°(M)[Top(M) — 8(M) — 87°(M),

where Top™°(M) = heolim/ Top®(M x R).
(3:) There exists an involution T on QWH (M) and a map

w : Top > (M)[Top(M) — Hi, (Z/Z,QWH(M))

which is at least k + 1 connected where k satisfies dim M > max(2k + 7,3k +4)
and M is smoothable. (See [90].)

Higher Whitehead Torsion

Recall the Whitehead torsion map 1: o (8(M)) — Wh, (M). We want to promote
7 to a map of spaces §(M) — QWH(M) and analogous maps for 8(M x R).
(See [18-21] and [38].)
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Let Q be the Hilbert cube, and let 85(M x R/) be the same as 8*(M x R/) but
instead of using finite dimensional manifolds we use Hilbert cube manifolds. Then
Q85(M x R) =~ 84(M x RI™"). Thus 85(M x RY) is an infinite loop space for all j.
We'll abuse notation and let /Sg(M x R/) also denote the associated Q2-spectrum.
We get the following properties.

(1) 85(M x R/) = HCOB(M x R/) = the j-th delooping of Q2WH(M)

(2:) The map 8(M) xQ Sq(M) induces the torsion map 7 when we apply .

(3) The map 8°(M x R™') — 4%(M x R) has a lifting to the homotopy fiber
of 8°(M x R/) xQ Jg(M x R/) which is at least j + k + 1 connected where
dim M > max(2k + 7, 3k + 4) and M is smoothable.

(4:) There exists a homotopy commutative diagram

heob(M x ®R) 5 85(M x R))
| o
oFiwHM) T QHiwHM)
where the 1eft vertical map is the composition hcob(M x R — HCOB(M x
R/) ~ Q' TWH(M). and the right vertical map is the composition 7 : 85 (M x
Ri) X3 8b(M x R)) = Q" TWH(M),

Notice the analogy between the following tower and the right half of the Karoubi
Tower described in Sect. 3.4.

heob(M) heob?(M x RY) heob?(M x RY)

N P Pl

S(M) — S MxR) — - S(MxR) - -

T 7 T :
QWH(M) WH(M) QU TWH(M)

Bounded Block Structure Spaces

In order to use surgery theory to compute §~* (M) we need to introduce the block
or pseudo version of 8P (M x R)).
Let

Fo M x ®)) = U Gh(p: V™ — R)[Top(p: V™ — R)),

where we take the disjoint union over bounded homeomorphism classes of (n+7)-
dimensional manifold approximate fibrations homotopy equivalent to M. Notice
that if j = 0, then 8°(M x R/) = §(M).

Notice that crossing with the identity map on R' gives a map (M x R) —

3P(M x RI*1). Let 57°(M) = hcolim; 87 (M x ).
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20 Theorem 20: (Stabilization Kills the Difference Between Honest and Pseudo) The
maps 8°(M x R/) — 3P(M x R)), for j = 0, 1,--- induce a homotopy equivalence
£-°(M) =~ $-°(M). (See [90].)

Since mo(8Y(M x R))) =~ noA(th(M x RJ)) we get a “torsion map” 10(82(M x
R)) — m_(QWH(M)). Let 375(M x R/) be the union of the components of
3b(M x RV) with trivial torsion.

21 Theorem 21: (Bounded Surgery Exact Sequence) Assume 71 +j > 4. Suppose M
is a n-dimensional closed oriented manifold. There exists a homotopy equivalence
between 37°(M x R/) and the —1-connected cover of Q" of the homotopy fiber of
the assembly map

H*(M,L) — L7 (Zm (M) ,

where L is the 1-connected cover of LA(Z).

Thus we get that §7°(M) = 3-%°(M) is homotopy equivalent to the —1-
connected cover of 2" of the homotopy fiber of the assembly map

H,(M,L) = L<°(Zm (M) .

Notice that so far we have explained the top horizontal map in the Manifold
Structure Theorem from the introduction. Also we have outlined the proofs of the
following parts of that theorem: (1), (2), (3) , and (4).

The diagram in the Manifold Structure Theorem is then a consequence of
constructing an involution T on QWH(M) and factorizations 7 of 7 : (M x
R) — Q7WH(M) thru H*(Z[2, @ TWH(M)) for j = 0,1,2,- such that we get
commutative diagrams

S(M x R) — (M x Rty — -
7 7l
H*(Z)2, Q7 TWHM)F) — H*(Zf2, 2T WH(M)F*>) = -

3.6.3 More About Torsion
First we'll recall more about the construction of the map 7 : 8(M) — QWH(M).
Recall that QWh(M) is the homotopy fiber of the assembly map H, (M; A(x)) —
A(M), and that QWh(M) is the (—1)-connected cover of QWH(M).
Suppose G is a simplicial monoid and A is a simplicial G-set. Then AFC =
Mapg(EG,A) = Sec(EG x¢ A — BG), where Sec( ) denotes the simplicial set of
sections.

Notice that QWh(M) is also the homotopy fiber of
EG(M) X g Hu(M; A(%)) — EG(M) xgan AM) ,

where G(M) is the simplicial monoid of homotopy automorphisms of M. The
map T is constructed by first constructing ¥ € A(X)"6™X) and then a lifting
x™: BTop(M) — EG(M) xgan Ha(M;A(%)) of the composition BTop(M) —
BG(M) 5 EG(M) x g AM).

Thus x* € H* (M A(x))TorM),

Construction of of ¥ :
For any space X, R(X) is the category of retractive spaces over the topological

space X. Thus an object in R(X) is a diagram of topological spaces W < X such

that rs = idy and s is a closed embedding having the homotopy extension property.
The morphisms in R (X) are continuous maps over and relative to X. A morphism
is a cofibration if the underlying map of spaces is a closed embedding having the
homotopy extension property. A morphism is a weak equivalence if the underlying
map of spaces is a homotopy equivalence.
Let R(X) be the full subcategory of homotopy finitely dominated retractive spaces
over X (see [22, +11,Sec.6] for details). Then RM(X) is a category with cofibrations
anf;l weak equivalences, i.e. a Waldhausen category, and A(X) is the K-theory of
RAX).

If X is a finitely dominated CW complex we let y(X) be the vertex in A(X)

. — . S
represented by the retraction space X U X < X where r is the identity on each

copy of X, and s is the inclusion into the first copy of X. Suppose p: E — B is
a fibration with finitely dominated fibers, then it is shown in [22] that the rule
b y(pi(b) € A(p~'(b)) for each b € B is continuous. If we apply this to
the universal M-fibration over BG(M), this continuous rule is the desired map
y: BG(M) — EG(M) X6 A(M).

The lifting x™ is constructed using controlled topology in [22].

The construction of 7 : (M X R)) — QUTWH(M) forj > 0is similar except
A(X) is replaced by Vogell’s Ab(X x Ri) where Q1A (X x R/) = A(X).

Poincaré Duality and Torsion

Recall Thomason’s map K (€'%?) — H* (2|2 K (C)) where C is a Z[2-symmetric
monoidal category.

Recall that Waldhausen used his S, construction to define K-theory for Wald-
hausen, i.e. categories with cofibrations and weak equivalences. In [92] axioms are
given for the notion of duality D in a Waldhausen category €. Duality in € can be
used to define non-singular pairings in € and an involution so that one gets a map
K (non-singular D-pairings in e) — H* (Z[2:K(C))
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Examples:

(1): Suppose € = Ch(R) is the category of f.g. projective chain complexes over R
which is equipped with an (anti)-involution. The weak equivalences are the chain
homotopy equivalences. The cofibrations are the chain maps which are split mono
in each dimensional For each # = 0, 1,2, --- there exists a duality D,-such that the
non-singular D,-pairings are n-dimensional Poincaré symmetric complexes in the
sense of Ranicki.

(2): Suppose C = R(X), where X is equipped with a spherical fibration 1. Then by
essentially just following Vogel [75,91,92,94] one gets dualities D, forn = 0, 1,2, ---
such that if X is an n-dimensional Poincaré complex and 7 is the Spivak fibration

of X, then the retractive space X U X Z X has a preferred non-singular self
S

D,-pairing. The homotopy invariance of the Spivak fibration and this preferred

pairing implies that we have a lifting of of y to H*(Z/2; A(X))**™.

(3): Same as (2) except weak equivalence are controlled (see [22,§2and §7]) and X =

M is a closed manifold. Then we get the desired y* & H*(Z[2; H, (M; A(x))Tor®),
The construction of 7 : (M x R/) — H* (Zf2; Q" TWH(M)) for j > O1is similar.
With the exception of showing that the square in the Manifold Structure Theo-

rem is homotopy cartesian for a certain range, we are now done.

Homotopy Cartesian for a Range

Forj=0,1,2,--- we get the following homotopy commutative diagram.

S(M x R)) — (M x Rt
7 Fl
H*(Z[2, Q' TWH(M)9>) — H*(Z2, Q TWH(M)5+1>)

The top horizontal homotopy fiber is hcob(M x R/), the bottome horizontal homo-
topy fiber is ' 7WH(M)¥”). The induced map X between them is the composition
of the stabilization map hcob(M x R/)) — HCOB(M x R/)) and the equivalence
HCOB(M x R/)) ~ Q'7WH(M). By Anderson-Hsiang [3] hcob(M x R/)) —
HCOB(M x RY)) induces an isomorphism on 74 for k < j. Also if we loop this map
j times we get the stabilization map hcob(M) — HCOB(M) which Igusa has shown
is at least k + 1 connected where k satisfies dim M > max(2k + 7,3k + 4) and M is
smoothable. The connectivity of hcob(M) — HCOB(M) is called the h-cobordism
stable range.

By combining this with Sect. 3.4.5 we get part (5) of the Manifold Structure
Theorem.

More on Connections Between Quadratic Forms
and Manifold Structures

Let 4°(M) be the components of (M) with trivial torsion. Let QWh,(M) be the
0-connected cover of QWH (M) Then we get the following homotopy commutative
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diagram which is homotopy cartesian for the same range as the diagram in the
Manifold Structure Theorem.

85(M) - (M)

¥ I
H* (Z[2; QWhy(M)) — H* (Z[2;QWhy(M)) .

1t is natural to ask for a so-called “super simple” form of surgery theory such
that its assembly map determines 4°(M) (at least in the h-cobordism stable range)
in the same way that L° determines 4°(M) via the surgery exact sequence. This
leads one to ask for an algebraic description of the the right vertical map in the
above diagram. In particular one might ask how this map is related to the right
vertical map in the Hermitian K-theory Theorem, or the map =* : L2 (Zm;(M)) —
i (Z{2,K (Zm(M))) from Sect. 3.5.

Suppose (€, D) is a Waldhausen category with duality such as examples (1),
(2), and (3). Then we get a quadratic L-theory spectrum L, (C, D), a symmetric
L-theory spectrum .*(C, D), a 1 + T map L.(G,D) — LL*(G, D), an involution on
KC¢,and amap =: L* (C’, D) — H*(Z; K(C)). (It might be interesting to compare
this L-theory of Waldhausen categories with duality with Balmer’s notion of Witt
groups for triangulated categories [7].) Examples:

(1): Suppose € = Chg and D = D, then L.(ChzC,D,) = LL(R) = Q"LP(R).
Similarly L*(ChgC, D,,) = Q"L,(R).

(2): Suppose € = R(X) where X is equipped with the oriented spherical fibra-
tion 1. Then for # = 0,1,--- we get a homotopy equivalence L, (R¥(X), D,) —
LA (Zm (X )), but the analogous map for symmetric L-theory is not an equivalence.
Thus we getamap = : 2 (Zn;(X)) — H* (Z;A(X)).

(3): By using the controlled version of example (2) we get that = is natural with
respect to assembly maps, i.e. we get the following diagram which commutes up
to a preferred homotopy.

H. (M;L5(Z)) - L (Zm(X)
+ -
H (Z)2Ha (M; A(%))) — H* (Z[2; A(M)) .

There is an analogous s-version of this diagram. By the Surgery Exact Sequence
the induced map on the horizontal homotopy fibers of the s-version is 2 map

35(M) — H* (22 QWhy(M))

which can be identified with the right vertical map in the previous diagram.

Localize at Odd Primes

If we localize at odd primes, it is easy to see that 8°(M) =~ 85(M) x T?)E)(M)/Top(M),
see [12,13], or [93, 1.5.2]. Burghelea and Fiedorowicz [11, 12] have used this to
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show that in the h-cobordism stable range 8°(M) can be rationally computed using
KHerm(ZQM), where QM is the simplicial group gotten by applying Kan’s G-
functor to the singular complex of M. In order to get a similar result at odd primes
one needs to replace Z with the sphere spectrum, see [26] and [27].
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