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NORMAL MAPS, COVERING SPACES, AND
QUADRATIC FUNCTIONS

G. W. BRUMFIEL AND R. J. MILGRAM

1. Introduction
1.1. Survey of results
In this paper we investigate the relations between normal maps, covering

spaces, and quadratic functions.
If zr M’ -- M is an m-fold covering and M’, M are closed manifolds, then r

can be interpreted as a normal map of degree m. Motivated by the theory of
degree normal maps, we are led to study relations between quadratic func-
tions defined on an appropriate cohomology group of M and quadratic func-
tions defined on the corresponding groups for M’. The theory we develop holds
in the generality of coverings r X’ X of Poincar6 duality spaces, and using
the transfer r H*(X’, 7Z./2) H*(X, 77./2) we obtain formulas relating these
associated quadratic functions.
The theory is applied to two types of problems. First we consider coverings

of odd degree. Here - is surjective and K kernel (r), which is analogous to a
surgery kernel, inherits a canonical quadratic function " K--* 7Z/2. If
X’ X is a principal G-bundle, [G odd, we prove that the Arf invariant of
(K, ) is x(X) if IGI-- 3, 5(8) and 0 otherwise, where x(X) is the (mod 2) Euler
characteristic of X.

Second, if X’ -- X is a double cover, we construct canonical quadratic func-
tions H*(X’) -- Q/Tz. IfX is 2n dimensional, H*(X’) means Hn(x’, 77./2),
while if X is 4n- 1 dimensional H*(X’) is the torsion subgroup,
Tn(x’) C/Fn(X’, 77.). In the 2n-dimensional case A[H’(X’, 7Z/2), ] is an ob-
struction to a certain transversality problem for P.D. spaces. In the 4n- 1
dimensional case our results extend the surgery product formulas of [16], [17]
to P.D. spaces.

Since the first version of the present paper appeared, there have been addi-
tional applications.

First I. Hambleton and Milgram [22] have constructed free involutions s on
spaces homotopy equivalent to S S2, S3 S with

A[H"(S" S", 77./2, (1] 4: O,

and on taking products with CPzm further examples in all even dimen-
sions. In these examples the orbit spaces X--X’/s are thus Poincar6
duality spaces such that the map f: X-- RP classifying the covering
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7r X’ -- X cannot be made transversal to RPN 1o In particular X is not the
homotopy type of any manifold. Also [22] shows how, in case the mapfcan be
made transversal, the Browder-Livesay invariant [23] comes from our quadratic
form.

Secondly, the formulas have applications to the problem of the existence of
framed manifolds of Arf invariant one in dimensions 2 2. J. Jones, at Ox-
ford, has claimed that the dihedral group of order 8, D4, acts freely on
Ara0 M S7 S S S, where Mz is the oriented surface of genus 5,
so that N/D is a 7r-manifold. Moreover, with respect to the composition se-
ries D4 D K C2 C, D C {1} at least one of the manifolds

Na/D, Na/K, N/Cz

admits a framing with Arf invariant 1. Jones’ method is to apply our formula
4.2.1 along with other results, to the sequence of double covers

]Wo ]W/C --. NaO/K NO/D4.

Also, Brumfiel has shown that if the Kervaire manifold/G’- is smooth, then
it admits a fixed point free involution s so that the orbit manifold K/s is also a 7r

manifold which admits framings both of Arf invariant and 0.

1.2. Constructing quadratic functions
In 1.4 we summarize the algebraic results on quadratic functions that we

need in the paper. In 2, we recall E. H. Brown’s method [2] of obtaining quad-
ratic functions on H"(XTM, 7Z/2) from the suspension

s [X, K(TZ/2, n)] {X, K(TZ/2, n)} li [ZX, ZK(ZZ/2, n)].
q

Also, we recall from [4] an analogous study of the suspension

s [Y, K(Q/TZ, 2n 1)] -- {Y, K(Q/TZ, 2n 1)},

which leads to a construction of quadratic functions on T"(Y), Y an oriented
4n dimensional P.D. space.

In 3 we study normal maps between P.D. spaces. From the definition it is
easy to show how a quadratic function q defined on Hn(X, 7Z/2) [resp. Tn(X)]
induces a quadratic function q’ on H"(X’, 7-Z/2) [resp. Tz"(X’)] for any normal
map zr :X’ X, of any degree.

The quantity which we emphasize is the function qr- q’ defined on
H,(X’, 77,/2) [resp. T"(X’)], where r H*(X’) H*(X) is the cohomology
map induced by Dzr 5;qX+ EqX. The function has the following proper-
ties:

(1) t) is independent of q.
(2) If 7r:X’X is a normal map of odd degree, so that Hn(S’, 7Z/2)

rr*H’(X, 7Z/2) K, where Kn kernel (z) C Hn(x’,TZ/2), then Cl/n q’[in
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is computable as a functional square and 4 is an analogue of the usual quadratic
function defined on a surgery kernel.

(3) If rr X’ X has odd degree, then tl,i,(x, /2) q q’rr* Hn(X, 77,/2)
7-/,/2. Thus formulas for include the Brown twisting formula [3].
(4) If 7r X’ X is a normal map of degree 2, then c :H"(X 77,/2)-- ;/2

is actually a quadratic function refining the non-singular pairing

’(a, b) (a Sb, IX’J) 7Z/2,

where S zr*z Id H’*(X’, 7Z/2) H’(X 7Z/2), [resp. c T"(X’) Q/TZ
is a quadratic refinement of {(a, b) linking (a, Sb) Q/Tz, S zr*z Id].

In 4, we show how coverings zr X’ X of degree m can be interpreted as
normal maps of degree m in our sense. Then, in some special cases, we give
explicit formulae for the function ) H"(X’, 7Z/2) 7Z/2 [resp.
c Tn(x’) Q/TZ] discussed above.

Consider a double cover 7r X’ --* X of 2n-dimensional P.D. spaces, and let
S :X’ -- X’ be the involution over X. Then S* 7r*z Id:H"(X’, 7Z/2)

H’*(X’, 7Z/2). The pairing {(a, b)= (a. S’b, [X’]) 7Z/2 is even, that
is, (a S’a, [X’])=-0 (rood 2). Specifically, S*a rr*za a and
(a 7r*za, [X’]) (za za, [X]) (Sq"(za), [X]) (z(Sq"(a)), [X]) (Sqn(a),
IX’I) (a a, [X’]). (We have used certain properties of the transfer r which
will be discussed in greater detail later.)

Construct a classifying diagram for the double cover

There is then a diagram

X’ --L-, RP(o)

X’ -- S X’ X’

X v___, SOO X, X’
2Z/2

where F’ f’ /d x S. If a, is a cocycle on X’, then (R) a, (R) a, is a 7Z/2
equivariant cocycle on S X’ X’, hence represents a class a
H*(S X’ X’, 7Z/2). One of our main formulas (4.2.1) is

7Z/2

O(a) (F*(a), IX]) 7Z/2

where a H’*(X’, 7Z/2), ) qr q’ as above. On the cochain level we can
write

O(a) (a,. S*a,, IX’I) 7Z/2,
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where a C"(X’, 7Z) is a cochain representative for a H"(X’, 7Z/2). (X’
need not be orientable. In this chain formula, an integral chain [X’] is obtained
by first lifting the 7Z/2 fundamental class of X to an integral chain, then using
the double cover r X’ X to obtain two cells of X’ for each cell of X.)
A second, but more complicated, formula is also obtained for

gl T"(X’) Q/, where X’ X is a double cover of oriented 4n 1 di-
mensional P.D. spaces. Let u# "-I(X’, Q) be a rational cochain with

u 0 (mod ). Thenu represents a class a T"(X’) and (4.2.2) implies

(u .Su# IX’]) Q/.(a) ,
There is also a cohomological version obtained from a suitable equivariant
class.

Finally, we describe a third example of a formula for q,- q’. Let
X’ X be a principal G-bundle, ]G] 2k + 1. As a covering, is a normal

map, and H"(X’, /2) *H"(X, /2) @ K", since the degree is odd. Now

K CH"(X’,/2) isamoduleoverthequotientringA /2(G)/( g),
where /2(G) is the group ring. This is because K Kernel (r) Kernel

(*) H(X’, /2), and *(a) g*a where g X’ X’ are the cov-

ering transformations, g G. Write G {1, g g,g g;}. Consider

0(a) =(a" ga,[X’])/2.
i=1

Then : K" /2 is quadratic over the cup product pairing in K", and is
independent of how one represents G {1, gl"’’g, g?a’’" gl}. Notice
that

a g? a, [X’ (gO1)*a. a, [X’
i=1 i=1

Thus if a Kn,

and hence

a
k k

g* a + (g/-1)*a,
i=1 i=1

l(a) a gi* a, IX’
i=1

is a "coherent" way of dividing (a a, [X’]) by 2. We prove that this formula
coincides with the qr q’ of the general theory in this case also.

1.3. Some applications
From the point of view of surgery theory, the important invariant of a qua-

dratic function q: K Q/TZ is its Arf invariant, A(K, q) /8. (See 1.4 for
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definition and properties. If K is a 77,/2 vector space with an even form, then
A(K, q) 477,/8 2Z/2 is the classical Arf invariant.) The main applications
of this paper essentially are computations of the Arf invariants of the quadratic
functions c)= q- q’ described above.
For example, consider the case of a principle G-bundle r: X’- X,

G {1, gl g/e, g g }, K" C Hn(x’, 7Z/2) the kernel of the transfer,

and c): K" 7Z/2 defined by O(a) a g[ a, [X’] ;/2. Then
i=1

1.3 A(Kn c)) { x(X) if i l--3 or 5 (mod 8)
0 if [G[=I or 7(mod8)

where (X) is the (mod 2) Euler characteristic of X.
This result is expected for manifolds or" M’ M. First it is true for the trivial

cover or" M x G M. Secondly, A(Kn, q) is a bordism invariant of covers
7r: M’ -- M. Thirdly, iflG is odd, then/-/,(BG, 77,/2) 0, hence ,(BG) O.
However, our computation of A(K", gl) for P.D. spaces involved quite a lot of
algebra, including the solvability of groups of odd order and the structure of the
group rings 7Z/2(TZ/P), p an odd prime. Because of their length, these alge-
braic arguments are not included in the paper.

In general, for covers of odd order, 7r: X’ - X, the Arf invariant A(K", gl)
seems quite difficult to compute. In the manifold case there are theoretically
computable cohomology formulae

1.3.2 A(Kn, O) (VZ(M) f*(K), [M]) 77,/2

where M is a manifold and f: M B Sere classifies the m-fold cover
zr: M’ M, m odd. Here, K H*(B 2fm, 77/2) is a certain universal charac-
teristic class. In particular, K0 H(B 2fm, 7-Z/2) if m 3 or 5 (mod 8),
K0= 0ifm=-I or7(modS),andK=0unlessj= 2- 2, i>- 1. Thus 1.3.1
can be interpreted as a special case of 1.3.2 for P.D. spaces X BG -- B ,IG[ m, G C m by a regular representation.
Formula 1.3.2 does not hold for all m-fold covers zr: X’ - X, X a P.D. space,

rn odd. We conjecture that the difference of the two sides of 1.3.2 is a certain
Poincar6 transversality obstruction. We will discuss this further below.
Next consider a double cover zr: X’ X of 2n dimensional P.D. spaces. We

have the quadratic function t) H’(X’, 77,/2) 77,/2, gl(a) (1/2) (a, S’a#,
IX’]} 72:,/2, refining the pairing (a, b) (a. S’b, [X’]} 72:,/2. If
zr: M’ -- M is a double cover of manifolds, then A(H’(M’, ;/2), 0) 0 (see
5.2 for details). Roughly, this is so because if a, and Sa, have disjoint support,
clearly O(a) 0. But iff M RP(N) classifies the double cover zr: M’ M,
then makingf transversal to RP(N 1) C RP(N) splits M’ into two manifolds
with a common boundary, interchanged by the involution S: M’ M’ and
each carrying half the homology of M’. Thus t) vanishes on half of a symplectic
basis for the form and hence A(H"(M’, 7Z/2), 0) O.

This result, A(H’(M’, ;/2), 0) 0 for double covers of manifolds
zr" M’ M, can be interpreted positively in at least two ways. First, if M’ and
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M are manifolds but r: M’ --. M is only assumed to be a normal map of degree
2, then the quadratic function gl qz- q’: Hn(M’, ZZ/2) 77,/2 is still de-
fined and its Arf invariant A(H"(M’, 7Z/2), t)) 7Z/2 can be interpreted as an
obstruction to cobording rr" M’ M, through normal maps of degree 2, to a
double cover. Secondly, if r: X’ X is a double cover, but X’ and X are as-
sumed only to be P.D. spaces, then A(Hn(X’, 7Z/2), ) 7Z/2 is an obstruc-
tion (non-trivial by [22]) to making the classifying map f: X RP(N) of the
double cover transversal to RP(N 1) C RP(N).
We conjecture that double covers and odd covers are related as follows. An

m-fold cover f: X B 5e,, determines a double cover pf: X-- B 5em
B(SYm/m)= RP(), where ,, C 5era is the alternating group. We con-

jecture that if m is odd, then the difference of the two sides of 1.3.2 is exactly
the Arf invariant A(H"(X’, 7Z/2), t)) 7Z/2 of the double cover rr: X’ X,
classified by pf. We prove this, in fact, for some (but not all) non-principle triple
covers; note also that 1.3.1 is consistent with this conjecture, since if IGI m is
odd, G C 5em, then G C ZCm, so that associated double cover of a principal G-
bundle is trivial.

Next, consider the case rr: X’ X, a double cover of oriented 4n di-
mensional P.D. spaces, and c: T"(X’) Q/Tz, the resulting quadratic func-
tion refining the pairing ?(a, b) linking (a, S’b) Q/TZ. We use our cochain
formula, c(a) 1/2 (uS,3u, [X’]) Q/Tz, us C2"-1 (X’, Q), [u] a

Tz"(X’), to prove a’ certain deli6ate product formula for surgery obstruc-
tions, which we now outline in some detail.

Consider rr: X’ X a degree one normal map of 7Z/2 P.D. spaces. A "77,/2
P.D. space" is constructed as follows (and should not be confused with "Poin-
car6 duality with 7Z/2 coefficients"). Let X0 be an oriented P.D. space with
boundary, together with an orientation preserving homotopy equivalence from
OXo to two copies of an oriented P.D. space 8X. Gluing the two components of
OXo to O(X /) gives an (unoriented) P.D. space X such that
wa(X) H(X, /2) is the reduction of a class z(X) H(X, 77,). Namely, the
Poincar6 embedding 8X I c X defines a map z l: (X, 8X) (S, pt). 8X is
called the Bockstein of X. We assume all normal maps rr: X’ --* X between
7Z/2 P.D. spaces are maps of pairs rr: (X’, 8X’) --* (X, 8X).
Given such a degree one normal map rr: (X’, 8X’) (X, 8X) of 4n-dimen-

sional 77,/2 P.D. spaces, we define an obstruction s(rr) 77,/2 to cobording rr
to a homotopy equivalence of pairs, via a 7z/2 P.D. cobordism. Specifically,

s2(r) (1/8)(index (X) index (X0) + 20(SX’-- 8X)) 77,/2

where O(SX’--8X) 7Z/8 is a difference of Arf invariants. To be more pre-
cise, rr" 8X’ 8X is a degree one normal map of closed, oriented, 4n di-
mensional P.D. spaces. Any quadratic function q: T"(SX) Q/ZZ refining the
linking pairing induces a quadratic function q’: Tz"(,3X’) - Q/TZ. The transfer
-:/-F-(SX 7Z) /-Fn(SX, 7Z) induces an orthogonal direct sum splitting



NORMAL MAPS, COVERING SPACES AND QUADRATIC FUNCTIONS 669

T"(X’) I" +,
where K2" kernel (’[,<x,) C T"(SX’). Then

O(SX’ 8X) A(K2n, q’) ,/8.

Since q’rr*: T2’*(SX) Q/ is also a quadratic function on Tn(SX), we have

O(SX’ --, 8X) A(Tzn(sx’), q’) A(T2n(SX), q’Tr*).

The obstruction s2(Tr) for normal maps of manifolds 7r: M’ M plays a key
role in the study of the spaces G/TOP and BTOP, localized at the prime 2, [4],
[161, [17]. In particular, s satisfies a certain product formula, which enables
one to define canonical characteristic classes k4n H4n(G/TOP, 7Z(z)),
which are used to split the 2Z(z)-localization of G/TOP into a product of Eilen-
berg-MacLane spaces. The most difficult case of this product formula is the
following. Let ,r: N4a ___> M4a- be a degree one normal map of 7Z/2 P.D.
spaces of dimension 4a and let L4b / be a 7Z/2 P.D. space of dimension
4b + 1. Consider the product

7r x Id: N L-+M x L.

Then 7rlu 8N 8M is a normal map of oriented P.D. spaces of dimension
4a 2, hence has a Kervaire obstruction A(SN 8M) 7Z/2. We claim

1.3.3 sz(Tr Id) A(SN-+ 8M)(v2,(L)Sqlvz,(L), [L]) 7Z/2.

Formula 1.3.3 was proved geometrically for (PL) manifolds in [17] and for
differentiable manifolds in [16]. Most of the machinery necessary for a homo-
topy theoretic proof of 1.3.3 was developed in [16]. We indicate here how the
techniques of this paper can be used to complete a homotopy theoretic proof of
1.3.3, which, in particular, extends the surgery results of [16], [17] to P.D.
spaces.

It is only necessary to establish 1.3.3 in the following special case. Let K4
be the Kervaire manifold, obtained by plumbing together two tangent disc bun-
dles of S-. K4-z has an orientation reversing involution
t K z ---> K , interchanging the two disc bundles. One can easily find an
orientation reversing involution t" S" --> S" and a degree one normal map,
r: K ---> S which commutes with t.
We thus obtain a normal map of 7Z/2 manifolds of dimension 4a 1, by

mapping the "Kervaire Klein bottle"/f to the ordinary Klein bottle . That is,
we construct

[f K4a- I/(y, O)’ (ty, 1)
S4a- I/(x, O)-- (tx, 1)

and

+=r x Id/-:R .
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By the construction A(6’-% ) A(K4a- 2 _% $4,- 2) 1 7Z/2.
Let L4b + be any 77#2 P.D. space of dimension 4b + 1. Consider 7? Id:

[(,4a-2 X L4b +1.__> 4a-1 X L4 + 1. 1.3.3 reduces to

s2 ((r Id) (v2o Sq v2o (L), ILl) ZE/2.

Moreover, in the formula for s((r Id), the index terms vanish, that is,

0 index (K4- I L+ ) index (S4- I L+ ).

Thus 1.3.3 reduces to

0(([ L) ia, 8( L)) 4 (v2bSqlv2o(L), ILl) 7Z/8.

Now, the Bocksteins (/ L) and ( L) are double covered by K x L
and S /, respectively, where L is the orientation double cover of L. Specifi-
cally, the involution on K L, where L L/, gives

8([( x L) K x L/t x ,
and similarly (@ x L) S x L/t x . We thus get a diagram

KxL ---> SxL

aOt x L) --, a(3’ x L)

where the vertical maps are double covers.
Let a T*(K x L) be in the middle dimensional kernel of T*(K x L)
T*(S x L). Then r(a) T*(6(/( x L)) is in the middle dimensional kernel of

T*(6(/ x L)) T*(6( x L)). A quadratic function q: T*(a(/ x L))
---> Q/TZ induces q’: T*(K x L)---> Q/w,. But now our chain formula 4.2.2
enables us to compute O(a) q’(a) q’(a) and the more standard product for-
mulas of [16] compute q’(a) since T*(K x L) is easy to describe. Combining
these results gives a computation of q-(a). This provides precisely enough alge-
braic information to evaluate the difference of Arf invariants O(6(/ x L)
---> 6( x L)) and prove 1.3.3. However, because of the length of the argument,
we restrict our discussion in this paper to this outline.

1.4. Definitions and basic properties of quadratic functions
In this section we collect the algebraic results we need later in the paper. For

the most part we do not give proofs, but refer to the papers [4], [5], [16].
Let K be a finite abelian group, and let : K K Q/7Zbe a non-singular,

symmetric, bilinear pairing. Non-singular means that the associated map
K K* =Hom (K, Q/) is an isomorphism; equivalently, if ,e(x, y) 0 for
all y, then x 0.

Definition 1.4.1. A quadratic function refining is a function q: K Q/Tz
with the properties"

(a) q(x + y) q(x) + q(y) + e(x, y), x, y K
(b) q(nx) n2q(x), n 7Z, x K.
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It follows from (a) that q(0) 0. Also, given (a), condition (b) is equivalent to
either of the conditions

(b’) 2q(x) e(x, x), x K or
(b") q(-x) q(x), x K.
Suppose q and q’ are two quadratic functions refining . Then (a) implies

q’ q: K Q/TZ is linear, and (b’) implies 2(q’ q) 0. It can be shown
that any non-singular, symmetric pairing, e, on K can indeed be refined to a
quadratic function, q. Any other such quadratic function, q’, thus has the form

q’ (x) q(x) + f(x, y)

for some y K with 2y 0. We denote by qu this perturbation of q by y K.
Let q: K Q/TZ and q’: K’ Q/Tz be two quadratic functions, refining

pairings and e, respectively. Define q q’ K K’ Q/T/. by
q q’(x, x’) q(x) + q’(x’) and define q: K Q/TZ by (- q)(x) -q(x),
for x K, x’ K’. Then q q’ refines the direct sum pairing e e’ on
K K’ and -q refines the pairing _e on K.
Given a quadratic function q: K Q/Tz, consider the complex number

a(K, q) eiz) (.
xK

The following is elementary. [4].

PROPOSITION 1.4.2. (a) a(K, -q) a(K, q), denotes the complex con-
jugate.)
(b) a(K K’, q q’) a(K, q) a(K, q’)
(c) a(K, q) a(K, qu) e), (y K and 2y 0).

It is, in fact, a theorem that arg(a(K, q)) is always an eighth root of unity,
[16], and (see 1.4.6 below) that [[a(g, qll Igl 1/, where igl is the order of the
finite abelian group K. We thus define A(K, q) 77./8 by the equation

1.4.3 a(K, q) Igl 1/ eA(I’:’q)’i/4

We call A(K, q) /8 the Arf invariant of q.

Let q’K--) Q/Tz be a quadratic function refining g’K K---> Q/Tz and
let L --) K be a homomorphism of finite abelian groups. Then has an adjoint
i* K --> L* Hom(L, Q/), defined by (i*(y), x) e(y, i(x)) for x L,
y K. Suppose that in the sequence

1.4.4. L/- K/--% L*

we have i* 0; equivalently, f(i(x), i(x’)) 0 for all x, x’ L. Then e in-
duces a non-singular, symmetric, bilinear pairing ’" R R Q/, where
[( Kernel(i*)/Image(i) is the homology group of the sequence 1.4.4. Namely,
if z, z’ Kernel(i*), set

?(z + i(L), z’ + i(L)) e(z, z’) Q/TZ.
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Moreover, q L -- Q/Tz is linear and 2q 0. Thus there is a unique
element y* L* of order 2 defined by (y*, x) qi(x), x L. If x Kernel(i)
then (y*, x)= 0. It follows by considering the dual sequences 0 Ker-
nel(i) L K and K K* L* - (Kernel(i))* -- 0 that y* i*(y) for
some y K. The following is proved in [5].

PROPOSITION 1.4.5. (a) y K may be chosen such that 2y Image(L)
(b) t :/Q/ defined by (l(Z) q(z) (z, y) Q/Tz, z Ker-

nel(i*), is a quadratic function refining [ [( Q/TZ.

(c) a(K q)=(lK] )vzik
a(k, 4) eZ"q(’ .

Remark 1.4.6. IlL C.. K, ILl IK[ 1/ and qlz 0 then in the situation above
we have 0, y 0, and 1.4.5(c) states a(K, q)= IK[/. For example, if
q K -- Q/Tz is any quadratic function, form q -q K K - Q/Tz. Let
L AK {(x, x)lx K} C K K. By 1.4.2 and 1.4.5, Ila(K, q)ll a(K K,
q -q) IK KIV2= Igl
There are various simplifications of the theory above if the group K is a

vector space over 7Z/2, that is, if 2x 0, all x K. In fact, in the context of
the Arf invariant, this was the case first investigated, particularly by E. H.
Brown, Jr., [2], [3].

First, 2e(x, y) 0 all x, y K and, secondly, 4q(x) 0, all x K. Here e
K K Q/7-z is a bilinear pairing and q K Q/Tz is a quadratic refine-

ment. In fact, condition 1.4.1(a), q(x + y) q(x) + q(y) + (x, y) implies
0 q(2x) 2q(x) + (x, x). Hence condition 1.4. l(b) is redundant if 2K 0.
Brown’s notation is somewhat different from ours. He writes q K 7Z/4

instead of q K Q/TZ. (That is, he multiplies by 4). If g K K 7-Z/2 is
the bilinear pairing, the quadratic condition 1.4.1(a) is written
q(x + y) q(x) + q(y) + 2e(x, y) 7Z/4.
Let v K be the Wu class of the pairing e; that is e(v, x) e(x, x) for all

xK. Then 2q 0 if and only if v 0.
If v 0, we will write :K K77,/2, q:K--TZ/2, rather than

q K -- Q/2Z. (That is, we multiply by 2.) Our notation then agrees with the
classical notation. In this case (K, re) has a symplectic basis
{Xl’’’Xrt, Yl"’" Yn}. That is, +a(x, xj) 0, g(y, yj) 0, g(x, y) . Thus
(K, e) splits as an orthogonal direct sum,

K + {xi, Yi}.
i=1

If q K 7Z/2 is a quadratic refinement of, we have from 1.4.2 and 1.4.3,

1.4.7. A(K, q) 4 q(x,)q(yO 7Z/8.
i=1

2. Quadratic functions on the cohomology of P.D. spaces
2.1. 7Z/2 coefficients
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The idea of using results from stable homotopy theory to define quadratic
functions on the cohomology of P.D. spaces is due to E. H. Brown, Jr. [2]. We
first outline his approach to studying quadratic functions Hn(x"2n, /2) 77,/4
refining the cup product pairing, where W2 is a 2n dimensional space satisfying
Poincar6 duality with /2 coefficients.

Let K(7Z/2, n) be the Eilenberg-MacLane space. Then H’(X, 7Z/2)
IX, K(2Z/2, n)]. We consider the suspension map

s [X, K(TZ/2, n)] --+ {X, K(TZ/2, n)} lim

The following is proved in [2].

[qX=", qK(TZ/2, n)].

PROPOSITION 2.1.1. (a) {S’", K(TZ/2, n)} 7Z/2. A map f" S+ 2,
__

EK(TZ/2, n) is essential if and only if the functional operation Sq’] + l(Et,) is
non-zero in the group

=/2 H + 2, + ’(qK(7-Z/2, n) ev+2n + 1, vK(TZ/2, n), 7Z/2]
/

C Hq+2n+ l(qK(TZ/2, n)(.J eq+2n+17Z/2)
(b) If is a connected 2n dimensional P.D. space, there is an exact se-

quence

where

0 --+ 71,/2 i_. {xzn, K(TZ/2, n)} ev(x.,, H,(X=,, 77./2) --+ 0,

i* {S2n, K(TZ/2, n)} /2 {Are", K(TZ/2, n)}

is induced by a degree one map X=n--+ S2 and ev(Et,)(f)=f*(vt,)
Hv + "(qX=", 7Z/2) H"(X", 7Z/2),f vX=" --+ vK(TZ/2, n).

(c) The suspension s H"(X=", 7Z/2)-+{X=", K(TZ/2, n)} satisfies
ev(n) (s(x))= x and s(x + y) s(x) + s(y) + i*(x.y, [Wan]} {XTM,
K(TZ/2, n)}, x, y H"(X, 7Z/2).

It follows easily from 2.1.1 that quadratic functions q:H"(Wa", 7Z/2)
--+ 77,/4 refining the cup product pairing correspond bijectively with linear
functions q {X=n, K(TZ/2, n)} --+ 7Z/4 which satisfy q. i* 2 /2 7Z/4.
The correspondence is defined by q s.

2.2. Q/Tz coefficients
We next consider oriented P.D. spaces of dimension 4n- 1, X4n- 1. Let

Ta"(X) denote the torsion subgroup of/-F"(X, 7Z). The coefficient sequence
0 --+ 7Z --+ Q --+ Q/Tz 0 yields a natural isomorphism

fl. /_/’2.--l(X Q/TZ)/Image(IF"-1(/, Q)) T2,(X) c/-F"(X, 7Z).
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Moreover, the linking pairing is identified with the pairing

e(x, y) (x. fly, IX]) 0/77,,.

Here, x, y /-- (X, Q/TZ) and the product x fly corresponds to the pair-
ing Q/TZ (R) 77, - Q/TZ of coefficient groups.
We seek quadratic functions T(X)- Q/Tz refining (. Let

s tn -’(X, Q/TZ) IX, K(Q/TZ, 2n 1)] {X, K(Q/TZ, 2n 1)}

denote suspension. The following analogue of 2.1.1 is proved in [4].

PROPOSITION 2.2.1. (a) {S4n- a, K(Q/TZ, 2n 1)} Q/Tz. This identifi-
cation can be chosen such that if f" S + 4,- i,K(Q/TZ, 2n 1) repre-
sents t Q/TZ, then 2t *((. fl0), IS + 4,-1]) Q/2Z. Here

I4" a(K(Q/TZ, 2n 1), Q/TZ) is the fundamental class and
H4" -(K(Q/TZ, 2n 1), Q/w,).

(b) IfX4" is an oriented, connected, P.D. space ofdimension 4n 1 then
there is an exact sequence

0 Q/TZ --X* {X4n- 1, K(Q/7-Z, 2n 1)} ev,, ,/_/,- I(X Q/2Z) O.

Here i* is induced by a degree one map X4n $4,- and

ev(i,O(f) f*(,qO nq + 2,- x(oX4n- 1, Q/2Z) =/4n l(X4n- 1, Q/zz)

where f" ,X4 -1 i,K(Q/TZ, 2n 1).
(c) The suspension s I-1n I(X, Q/Tz) {x, K(Q/TZ, 2n 1)} satisfies

ev(,O(s(y)) y I-1 -I(X, Q/TZ) and

s(x + y) s(x) + s(y) + i*(x. fly, IX4n- 1])
{X, K(Q/7-Z, 2n 1)}, x, y Hn -x(X, Q/7z).

It follows from 2.2.1 that quadratic functions q T"(X) Q/TZrefining the
linking pairing e, correspond to linear functions q {X, K(Q/7Z, 2n- 1)}

Q/77. which satisfy the three conditions q i* Id" Q/77. Q/7-z,
2q ev(,( flO), and q(Image({X, K(Q, 2n 1)} {X, K(Q/ZZ, 2n 1)}))

0. The correspondence is defined by q q s, together with the identifica-
tion of T"(X) with I4 a(X, Q/TZ)/Image(H- I(X, Q)). (It is also proved in
[4] that such linear q exist.)

3. Normal maps
3.1 Definitions
Let QS lim 12qS, and let Sq be the basepoint. If X is a space, a

map o: X 12S has an adjoint X (S, ) X (S, ); equivalently, we
regard the adjoint of o as a map Ad(o): X+ EX+, where X/ is the union of
X with a disjoint point. In particular, ro(QS) 7z, and, if X is connected, a
map o: X-- QS has a degree, which can be computed as the degree of
Ad(o)lsq: S S, where Sq c X+ is the natural inclusion.
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Remark 3.1.1. For later use we point out that there is an obvious suspen-
sion isomorphism, (with any coefficients) 2q: Hi(X) Hq + t(2X+), >- 0,
which is essentially cup product with the generator ofH(S, 7Z). It follows that
the map (Ad())* H*(YX+) -- H*(YX+) is multiplication by degree () 7Z.
Let X’ and X be n-dimensional P.D. spaces. The usual definition of a normal

map from X’ to X is a diagram

X’ - X
where v, and v are the Spivak normal spherical fibrations of X’ and X, and

" v, v is a bundle map covering or: X’ --, X. S-duality Theory yields maps
X+ --, 2X, dual to the map of Thom spaces TTr: Tv,--, Tv. However,
duality depends on choices of degree one maps S + ’ --, Tvl, and S + n _, Tv;
there is no canonical way to obtain ,qx+ - ,qx. from 7: v,g,--> v.

In the covering space situations studied in this paper, we arrive very natural-
ly at triples of maps r: X’ --> X, Dr: Y,,qx+ --> Y,.,qx, ,: X--> QS, related in
various ways. It thus seems more natural just to define normal maps in terms of
this data, and to suppress v,g,--> v altogether.
We thus make the following definition. X’ and X are P.D. spaces of dimen-

sion n, both oriented or both unoriented. We have fundamental classes
[X’] H,(X’), [X] H,(X), with 7Zor 77../2 coefficients, depending on orient-
ability. We assume X is connected, but not necessarily X’.

Definition 3.1.2. A normal map from X’ to X consists of a triple of maps
r" X’ -, X, Dzr" 2X+ --, ,X, " X-, QS such that

(a) (Dr), [X] [X’] H+.(X),
(b) The composition r o Dr: EX+ EXg X+ is homotopic to

Ad(,)" ,X+ X+,
(c) Let r (E)-(Dr)*E" H*(X’) H + *(,X_) H + *(X+)

H*(X). Then for all a H*(X’), b H*(X), we require r(a r*b)
za b H*(X), whenever the coefficients are such that these products are

defined.
We refer to the map z: H*(X’) H*(X) of (c) as the transfer map of the

normal map (r, Dr, o).

Remark 3.1.3. It follows from 3.1.1 and 3.1.2(a), (b) that on the bottom
cell, the degree of Dr" EqX+ X is equal to degree (o), and that on the top
cell 7r: X’ X has degree equal to degree (o), that is, 7r,[X’] degree (o)[X].
(This last statement is interpreted modulo 2 if X’ and X are unoriented.)

3.2 Quadratic functions andnormal maps
We begin this subsection with a reminder that in 2 we outlined a homotopy

theoretic construction of quadratic functions H(X, 77,/2)--, 77,/4 or
Tzn(x4n 1) __, Q/TZ for connected P.D. spaces X. The connectedness assump-

tion is no real restriction. IfX Xi, then each Xi is a P.D. space. A
eomlonents
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function q" H(Xn, ZZ/2)- /4 is quadratic over the cup product pairing if
the restrictions to the components q" H(X, 77’,/2) 7Z/4 are quadratic. A
similar statement holds in the 4n 1 dimensional, oriented case.
Suppose X’ and X are (unoriented) P.D. spaces of dimension 2n. Let

zr: X’ X, DTr: ,X+ ---) ,X, o" X---) QS be a normal map. Suppose given
a linear homomorphism q: {Xz, K(7-/,/2, n)} 77,/4 such that
qi*(1) 2 77,,/4, where i*" 77,/2 {S, K(TZ/2, n)}---) {X, K(7Z/2, n)} is
as in 2.1.1(b). Then for each component of X’, the composition
tO’ tO (DTr)* {X’, K(/2, n)} {X, K(7-Z/2, n)} ---) 7Z/4 is also linear and

satisfies tO’i*(1) 2, since, by 3.1.2(a), (DTr).E[X] I,.J E[V].
components

We thus see that a choice of a quadratic function q" H(X, 7Z/2) 7Z/4 de-
termines a quadratic function q" H(X’, ;/2) ---) 77,/4. Namely, if
q q s" [X, g(TZ/2, n)] ---) {X, g(/2, n)} ---) 7Z/4, then q’ tO’ s:
[, K(TZ/2, n)] ---) {, K(TZ/2, n)} ---) 7-Z/4 on each component of X’.

If X’ and X are oriented P.D. spaces of dimension 4n- 1 and
tO: {X, K(Q/, 2n 1)} ---) Q/TZis a linear function which satisfies the three
conditions stated at the end of 2.2, then an argument just like that above gives
that for each component X of X’, q’ q (DTr)* {X, K(Q/TZ, 2n 1)}-- {X, K(Q/TZ, 2n- 1)}--)Q/7z, also satisfies these three conditions.
Thus, a choice of a quadratic function q" T"(X)--, Q/ refining the
linking pairing induces a quadratic function q" T"(X’)

In the following two subsections we will study these induced quadratic func-
tions, first, for normal maps X’ ---) X of odd degree with X’ and X 2n dimen-
sional, unoriented P.D. spaces, and secondly, for normal maps of degree two,
in both the unoriented case and the 4n dimensional, oriented case.

3.3 Normal maps of odd degree
Let 7r: X’ ---) X, Dr" ,X+ ,X, o" X ---) QS be a normal map of odd de-

gree, where X’ and X are 2n-dimensional P.D. spaces with 77,/2 coefficients.
Since ,Tr Dzr Ad(o), we see from 3.1.1 that the composition

nq + i(qx+, 2Z/2) )*, nq +i(qx, 77’,/2) nq + i(,qx+, 7Z/2)

is the identity. Thus H*(X’, 2Z/2) K* 7r*H*(X, 7Z/2), where K*
Kernel (r) C H*(X’, 7Z/2), . H*(X’, ;/2) ---) H*(X, 7-/,/2), the transfer.
Moreover, if a K, b /-/"- (X, 7Z/2), then by 3.1.2(a), (c),

<a. 7r*(b), IX’I> (’(a. 7r*(b), IX]>
(ra. b, IX])= 0.

Thus the direct sum splitting H*(X’, 77,/2) K* 7r*H*(X, 7-Z/2) is an ortho-
gonal splitting for the cup pairing on H*(X’, 77,/2).
We have seen in 3.2 that a quadratic function q: H*(X, 2Z/2) 77,/4 induces

a quadratic function q" H"(X’, 2Z/2) ---) 2Z/4. q’ will be described if we can
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describe the restrictions of q’ to Kn C ltn(x’, /2)and to r*Hn(X, 77,/2)
H"(X’, /2).
Note that if a K", then in the composition

YX+ o= ZX_ (_ka_L) Y,K(/2, n)

we have (Drr)*s(a)*(,,) 0. Thus the functional operation S-’" +

defined and has its value in the subgroup

/2= Hq + n + I(,qK(7Z/2 n) (..J Cone(Zqx+), ,qK(7/2, n); ;/2)
S(a)

C H + 2n + I(,qK(TZ/2 n) k.J Cone(Zqx+), 7-Z/2),
S(a) Dzr

with zero indeterminancy, (since Sqn + 0: Hn (X, 7Z/2) --./_/’2n

(X, Z/2)).

PROPOSITION 3.3.1. If a K" C Hn(x’, 7-Z/2), then q’(a) Snls(a)+ Dr
7Z/2.

Proof. This is immediate from the definition of q’ in 3.2 together with Prop.
2.1.1.

Next, observe that the degree one component of QS is the space SG. There
is the natural map SG---) BSG, hence there are "suspended Wu classes"
o(vO H -I(SG, 7Z/2). We will extend these characteristic classes to arbi-
trary maps of odd degree, p: X ---) QS.

Begin with Ad(o): X (Sv, m) ---) X x (Sv, ). Form the mapping torous
M X x S I/(x, y, O) =- (Ad(p)(x, y), 1), which is the analogue of a Hu-
rewicz SV-fibration with a section, X x m x S over X x S1. Finally collapse
X x Sv x 0 t_J X x m x SIC Mo to a point, obtaining a space To. If de-
gree(o) 1, To is the Thom space of a spherical fibration over X+. Since
degree () is odd, HV(T, ;/2) ;/2, with a generator U, and for i- 1,
there are isomorphisms

H"- l(X, 2Z/2)--) Hi(IX+, 7Z/2) "- Hq + (Tp, ZU2)

where (I) is cup product with U. Define p*(r(v) H -(X, 2Z/2) by the for-
mula *(r(v0 -lc}-Sq(U).

Remark 3.3.2. If degree (o) n, n odd, it is easy to see that there is a map

Sq kJ eq + ---) Tp inducing isomorphisms in /2 cohomology in dimensions

q and q + 1. It follows that

1 H(X, 7Z/2) 7Z/2

0 H(X, /2) ;/2

if degree (o) 3(rood 4)

if degree (o)-- l(mod 4).
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We now return to the computation of the quadratic function q’ restricted to
rr*H"(X, /2) C It"(X’, /2).

PROPOSITION 3.3.3. If b H"(X, 7Z/2), then

q’rr*(b) q(b) + 2(b .V(X)o*(trV), IX]) 77,/4,

where o*(trV) o*tr(v) H*(X, /2), and V(X) v,(X) is the Wu
i=1 i=0

class of the P.D. space X.

This result is proved in [4] for maps o X ---> QS of degree one and is due to
E. H. Brown, Jr. The general odd degree case is proved by an identical argu-
ment, if one makes use of the space To and the definition of o*o-(v0 given
above.

Remark 3.3.4. Note that if a K, q’(a) 77,,/2. An explicit formula is
given in 3.3.1. Thus the quadratic function q’ K ---> 77,/2 has an Arf invariant
A(K, q’) 47Z/8 C 77;,/8. A(K, q’) is called the Kervaire obstruction of the
normal map 7r" X’---> X of odd degree; we occasionally denote it by
a(x’ ----- X) /2.

Suppose now that 7to X’ X, DTro ,X+ ,X;, Oo X QS and
X’qY" X’77" .e’ "--> X’, DTrl qx_ +, o ---> QS are normal maps of odd d-

gree no and n respectively. We consider the compositions 7r 7r07r1 X" ---> X
and DTr D’n’lD’n’o’,qS+ ----> ,S_. One presumes that the maps 7r, DTr are
part of the structure of a normal map from X" to X, of degree n no n. In any
case, properties 3.1.2(a) and (c) are easily verified, and this is all one needs to
establish an orthogonal decomposition with respect to cup product,

H*(X", 2Z/2) K* 7r*n*(x’, 77,/2)

K*I @ 7r l(Ko @) Zr*oH*(X, 7Z/2))

K* q) r*H*(X, 7Z/2),

where K* C. H*(X", 7Z/2), K C H*(X’, 7Z/2), and K* KI* q) zr’K0** C
H* (X", 77,/2) are the kernels of the transfer maps 1, r0, and r associated to
(Try, DTr0, (Tr0, DTr0) and (Tr, Dr), respectively.
Moreover, a quadratic function q: H"(X, 77,/2) ---> 7Z/4 induces a quadratic

function q" H"(X’, 7Z/2) --. 77,/4 which, in turn, induces q": H"(X", 77,/2)
---> 77,/4. By an elementary naturality property of functional squares and
3.3.1, we have if a K C K C H(X", 7Z/2), then
3.3 5 q"(a) C,n +1 (ql,n) C,.n +1 (qln) 77,,/2,tts(a)Dr ’tts(a)DrxDro

By 3.3.3, if b K c H’(X’, 7Z/2), then

3.3.6. q"(7*b) q’(b) / (b. V(X’)*(o-V), IX’I/ 77,/2.

(Note q’(b) /2 C /4, so we forget the factor 2 on the second term in
3.3.3.)
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Now, the element y (V(X’) ,*(trV)),, H"(X’, 7Z/2) has components in
K and rH’*(X, 77./2). Specifically, y Yro + Yx K’ + rr*oH’*(X, 77../2)

H’*(X’, 7Z/2), where Y/o (rzo Id)y and yx rzoy. Since b K, we
have (by, [X’]) (b. (r’o Id)y, [X’]). Also since V(X’) "gV(X), 3.1.2(c)
implies Ylo (rr zo Id) (V(X’) ,P*I (trV)),, (V(X’) (r Zo Id)*a trV)),,.
Finally since Kn=K] * "r 1Ko C H"(X", 7Z/2), we have from 3.3.5, 3.3.6,
and 1.4.2(c) a formula for the Arf invariant A(K", q").

3.3.7. A(X" ==oo X) A(X" ---L’ X’) + A(X’ __o_.o X) + 4q’(y/o 77./8
where Yo (V(X’) (r Zo Id) ,* (o’V)), K’ C H"(X’, 77./2) and
q’ (Yro) ’"o"o (EX-) 7_Z/2.

Remark 3.3.8. We have assumed ol X’ -- QS has a degree, nl. This
means each component of X’ maps to QnlS by o, which guarantees that
(r$Zo Id)p](trVO 0 K C H(X’, 77,/2), even if X’ is not connected. As
a consequence,

(;% ,*( (.*0 2 ,*(v B*(x’, /2.
=

In particular, if ’X’ QS factors through a space with vanishing
reduced 7Z/2 cohomology (for example, p :X’ B(TZ/p) QS, where
B(TZ/p) is the classifying space of/p, p an odd prime), then the error term in
3.3.7 drops out. That is, for such a , A(X" - X)= A(X" ’ X’)+
A(X’ X).

Remark 3.3.9. To make 7r :X" X, DTr EqX+ -- Eq,V+ into a normal
map, where 7r zr07ra and DTr DTrlDTro, we need an appropriate map
:X QS, constructed from Oo X- QS and X’ QS. The map

DTr0 EX+ EX has an adjoint Ad(DTro) X - fEX’+C QX’+. Since Q is
a functor and since there is a natural map a QQS - QS, we can consider

X aato),QXQQS -QS(a: QQS--> QS is flEIE(S) flqE(El)q)E (S)] lq[E(S)].) We assert
(-, Dr,.) is a normal map in the sense of 3.1.2 where o a Q,1 Ad(Dro).
This is just a diagram chase with E and 1 functors and adjoint maps. We never
really need this fact, so we don’t prove it.

3.4 Normal maps of degree two
Let 7r X’ --, X, DTr EX+ -- EX’+, o X -- QS, be a normal map of de-

gree two. We define S H*(X’) -- H*(X’) (for any coefficients) by

Sa rr*za a, a H*(X’),

where H*(X’) --. H*(X) is the transfer.

LEMMA 3.4.1. (a) S2a a, a H*(X’), hence S is an involution.
(b) STr*b 7r’b, b H*(X).
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Proof. (a) Sa 7r*rTr*ra zr*ra 7r*ra + a

zr*(2’a) zr*(za) zr*(za) + a

Proof.
cause

since zzr* H*(X) -- H*(X) is multiplication by 2, by 3.1.1.
(b) Szr*b r*’r*b r*b zr*(2b) zr*(b) zr*(b).

Remark 3.4.2. As will be apparent in 4, what we have in mind here are
double covers, zr X’ --o X. If S X’--. X’ is the involution with X X’/S,
then it will turn out that the map S defined above is simply
S*’H*(X’) H*(X’). This is the case because our transfer
z H*(X’) H*(X) will agree with the classical transfer for covering spaces,
which satisfies zr*za a + S’a, a H*(X’), if X’ X X’/S, is a double
cover.

LEMMa 3.4.2. (a) Let X’, X be 2n-dimensional P.D. spaces with 7Z/2-
coefficients. Then the bilinear pairing Hn(X’, 77,/2) (R) Hn(X’, 7Z/2)

7Z/2

?(aa, a) (al" Saz, [X’]} 77,/2

is non-singular, symmetric, and even (?(a, a) 0).
(b) Let X’, Xbe 4n 1 dimensional, oriented P.D. spaces. Then the bilinear

pairing ?" Tn(x’) (R) Tn(X’) -- Q/TZ

?(al, a2) e’(al, Sa2) Q/TZ

is non-singular and symmetric, where ’ is the standard linking pairing on
T.(X’).

(a) is non-singular since S is an isomorphism. ? is symmetric be-

?(al, a) (al Sa, IX’I)
(a,. (zr*za az), [X’]}
(’r(ax" 7r*a2), [X]) (aa2, IX’])
(7"al .za2, [X]) (al" ae, IX’I).

? is even because a a v,(X’) a. zr*v,(X) z(a. zr*v,(X)) za. v,(X)
(za). The proof of (b) is almost the same.
We now consider quadratic functions. We have two cases, X’, X unoriented,

2n-dimensional and X’, X oriented, 4n 1 dimensional. In either case q will
denote a quadratic function on an appropriate cohomology group of X, and q’
will be the induced quadratic function on the cohomology of X’.

PROPOSITION 3.4.3. (a) If X’ and X are 2n-dimensional P.D. spaces with
2Z/2 coefficients, then the function O’Hn(X’, 77,/2)-- 7Z/4 defined by
O(a) q(za) q’(a), a Hn(x’, 7Z/2) is quadratic over the pairing ?.
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(b) IfX’ and Xare 4n dimensional, oriented P.D. spaces, then thefunc-
tion (t Tz’(X’) ---> Q/TZdefined by (t(a) q(’a) q’(a), a T2n(X’) is quad-
ratic over the pairing .

Proof. (b) (aa + a2) q(’aa + ’az) q’(aa + az)

q(’aa) + q(’a) + ,(’a1" ’az)

q’ (aa) q’ (a2) ,e’ (al, az)

/(al) + gl(az) + e’(a,, Saz)

(aa) + O(az) + ?(al, a2).

Also, (t(na) q(n(ra)) q’(na)

n2q(-a)- ng.q,(a)

nZt(a).

(The proof of (a) is included in this argument.)

Remark 3.4.4. In case (a), since ?" Hn(X’, 7Z/2) (R) Hn(X’, 7Z/2) ---> 7Z/2
is an even pairing, we have 2 0.

3.5. The function (1 associated to a quadratic function
We continue with our study of a normal map ,r X’ ---> X of P.D. spaces.

Thus a quadratic function q" H*(X)---> Q/TZ will induce a quadratic function
q’’H*(X’)---> Q/TZ, using the results above. (Cohomology will be either
H"(X, 7Z/2) or Tzn(X), depending on whether X is 2n dimensional, unoriented,
or 4n- dimensional, oriented.) There is also the function
gl H*(X’) ---> Q/7-z defined by 1 qr q’, r H*(X’) ---> H*(X) the transfer.

Recall that q H*(X) ---> Q/Tz and q’’H*(X’)---> Q/TZ are defined by
q q s and q’ q (DTr)* s, where q {X, K} ---> Q/TZis a suitable linear
map and s is suspension (K is an Eilenberg-MacLane space K(TZ/2, n) or
K(Q/TZ, 2n- 1).) If a H*(X’) then (a)= q’(a)- q’(a) is computed in
terms of a non-commutative diagram

Y_,X+ Y_,X_
3.5.1. s(ra) , Us(a)

EqK

Namely, (a) q-(a) q’(a) tk(s(ra) s(a)Dzr) Q/TZ.
Now, the rectangle in the diagram below does commute

3.5.2. s(-a) * s(a) Xq(a)

,K q’ K(q)

where fZK(q) K, that is, K(q) K(TZ/2, q + n) or K(Q/TZ, q + 2n 1).
Applying the functor lI to 3.5.2 gives
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X+ AaZ. QX_

’ril l Qo/+
K QK ,r<, K

where the rectangle and left-hand triangle commute, but not the center triangle.
(If Y is a space, Q Y means lim fEY.)

The space QK is homotopy equivalent to J K, by the map j i" J K
-+ QJ, where (J, j) is the fibre of fE QK K. Now J is highly connected.
Specifieally, if K K(TZ/2, n), J J(TZ/2, n) is 2n 1 connected and
7r2n(d0 7Z/2. If K K(Q/TZ, 2n 1), J J(O/TZ, 2n 1) is 4n 2 con-
nected and 7r4,_ l(J) Q/TZ. (See Propositions 2.1.1 and 2.2.1).

If a H*(X’), then s(za) s(a) DTr {X, K} corresponds under ad to
za Qa Ad(DTr) [X, QK]. Under the homotopy equivalencej J

K---> QK, the elements za and Qa Ad(DTr) [X, QK] have the same K-
component; namely za H*(X). To compute (l(a) q(i za Qa ad(DTr)),
we need to compute the J-component of za Qa Ad(DTr).
Let us choose appropriate "fundamental classes" k I-lZn(J(TZ/2, n), 7Z/2)

and k H4"- I(J(Q/TZ, 2n- 1), Q/Tz). In the Q/Tz case, k depends on a
choice of isomorphism r4,- l(J(Q/7-z, 2n 1)) Q/7-z. Since j x J x
K QK is a homotopy equivalence, there are unique classes
r, I-I’’(QK(TZ/2, n), /2) and r n4" -(QK(Q/TZ, 2n 1), Q/w,) with
j*(r) k and i*(r) 0. The J-component of any mapf" X QK is then given
by ev(r)(f) *(), [X]) 7Z/2 or O/TZ.
To obtain more precise formulas, we quote some results from [15], where a

specific model of QK is studied. There is the Dyer-Lashof map

.S x Kx K---QK
/9

which is trivial on P== S (* x *).
m/2

PROPOSITION 3.5.3. [15] @" S K K/P - QK is a

equivalence through (almost) three times the connectivity of QK.

homotopy

The significance of 3.5.3 for our purposes is that we can compute a cochain
representative for @*(r) H*(S K K), where r H*(QK) is the fun-

damental class above which detects the first unstable homotopy group, that is,
either ,rr,(OK(TZ/2, n)) 77,/2 or 7r4,_ (QK(Q/TZ, 2n 1)) 0/77’,. Name-
ly, consider the double cover 7r S K x K S x K K. Then also in

[15], the homology classes of

S" QK(TZI2, n) or S4" --1 ._..> QK(Q/TZ, 2n 1)
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are characterized in terms of the homology map @,zr, H,(S x K x K)
H,(QK). The result is the following.

PROPOSITION 3.5.4. Consider r S x K x K -- QK, K H*(QK).
Then if K K(7Z/2, n), (QK, /2) is the unique class with

**(K) 1 , , "(S x K x K, /2).

If K K(Q/, 2n 1) then H4"- (QK,Q/) is the unique class with

**() @ zn--1 fl[2n- H4n- x(S X K x K, Q/)

Remark 3.5.5 (a). The composition w:S=x K x K QK is up to
homotopy. The multiplication of two copies of i(K) in the H-space QK. That is,

(i x i) K x K QK x QK QK.
(b) It follows that the class r H*(QK) satisfies the following "diagonal

formula" for : QK x QK QK:

*() + lr + ,, if K= K(/2, n)

*(r) r + lr + 2n-lfl2-1 if K= K(Q/,2n- 1).

(In the Q/ case, one actually has equality 2,- fit2,- fl2,- 2,- 1,

explaining the seemingly non-symmetric formula.)
(c) These quadratic propeies of r H*(QK) enable us to compute

O(a) (i za Qa Ad(D)) ev(r)(i za Qa Ad(D)) /2 or
Q/, where a H*(X’). Precisely, if :X’ X, Dw EX+ EaX is a
normal map, q is a quadratic function on H*(, q’ is the induced quadratic
function on H*(X’), qz q’, and a H*(X’), we have O(a) <Ad(Bw)*
(Qa)* (r),[ > /2 orQ/whereAd(D) X QX and Qa QX’ QK.
We now use Prop. 3.5.3 and 3.5.4 to produce explicit cochain representatives

for *(r)H*(S x K x K). The cohomology of S x K x K can be
/2 /2

computed as the cohomology of the complex of /2 equivariant cochains on
S x K x K. As a model for C,(S x K x K), we take C,(S)
C,(K) C,(K), where C(S) has two generators, e and Te, with

ae Te_ + (-1)e_ a, where T /2 is the generator. In cohomology,
C(S, ) has two dual generators, e and Te, with e Te + (- 1)e + .
Example 3.5.6. Let K K(/2, n) and consider S x (K(/2, n) x

K(/2, n)) QK(/2, n). Then , , C*(S) C*(K(/2, n))
C*(K(/2, n)) is an equivariant /2 cocycle. It follows immediately from

3.5.3 and 3.5.4 that

*(r) [1 @ , @ ,] "(S x (K(/2, n) x K(/2, n)), /2).
/2

Example 3.5.7. Let K K(Q/, 2n 1) and consider :S x
/2

K(Q/, 2n- 1) x K(Q/, 2n- 1) oQK(Q/, 2n- 1). Let ,
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Cn I(K(Q/TZ, 2n 1), Q) be a rational cochain which represents the funda-
mental class /_/n-I(K(Q/TZ, 2n- 1), Q/Tz). Thus 8% is a 7-Z-cocycle
which represents /3 Hn(K(Q/TZ, 2n- 1), 7Z). Consider the rational co-
chain

(,) eo (R) , (R) , + Te (R) , (R) , + e (R) , (R) ,
C*(S, 7Z) (R) C*(K(Q/TZ, 2n 1), Q) (R) C*(K(Q/TZ, 2n 1)Q).

It is easy to check that () is a Q/ cocycle and is 7z/2 equivariant. More-
over, e(R)%(R)8%+Te (R) % (R) % + e (R) % (R) , (e + Te) (R) % (R) % +
8(Te % %) % 8% + 8(Te (R) % @ %). Thus zr*(%) @ @/3
H*(S K(Q/TZ, 2n 1) K(Q/TZ, 2n 1)). It follows from 3.5.3 and 3.5.4
that

*() [(%)] H4n -l(SZ K(Q/TZ, 2n 1) K(Q/TZ, 2n 1), Q/TZ).
/2

4. Covering spaces
4.1. Coverings as normal maps
Let 7r X’ X be an m-fold cover, classified by a mapf: X -- BSm, where

5m is the symmetric group. If p Em --* Bm is the universal m-fold cover of
BSTm, there is a diagram

X’ e---’ Em

X --L-, BStm

Let Em -- BSm be the principal bm bundle over BSCm. Then E6m may be iden-
tified with the set of bijections from {1,2, m} to a fibre of p Em Bm.
We define a map

F X Em x (X’)m
m

by F(x) (e, x,..., x) where {x... x} rr-’(x) C X’ and e {1,2,
m} p-if(x) is a bijection withf’(x) e(i). Note that if e is replaced by

ecr, o" Sm, then (eo-, y,() Y(m)) (e, y Ym) Em (X’)m, hence
F is well-defined. em

Let X QX be the adjoint of the identity EqX --* EqX. Consider
the composition

im

X - ESfm (X’)m Em (OX’+)m __O(S ),

where is the Dyer-Lashof operation [9], [13], [14]. Set

D’rr Ad(@(1 im)F) ’X+ EqX_
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and set

0 f; X -- Bm QmS.

Then we have

PROPOSITION 4.1.1. The triple 7r X’ ---> X, DTr i,qX+ ---> XqX-,
X ---> QmS is a normal map of degree m, if X and X’ are P.D. spaces.

Proof. We refer to the definition of normal maps, 3.1.2. 3.1o2(b) follows
from the commutative diagram

X F ESm (S’)m QX_

f x $ l ,tr , QTr

Btm X X ’ xa,, Em X (gm) QX+.

Also, one knows, ([9]), that the homology map (D), H,(oX+)
is the map associated to the chain map which assigns to each simplex A ofX the

m

sum A of the m simplexes A of X’ over A. Thus (D), is the classical
i=1

homology transfer of a cover. Propeies 3.1.2(a), (c) follow.

4.2 Quadratic functions and covering spaces
We apply the results of 3.5 to covering spaces ’X’ X. In this case,

Ad(D) X QX; is given by the composition X Em x (X’) Qx.

We will derive chain formula for 0 qr- q’’H*(X’) /2 or Q/ in
three cases.

Case 1. X, X’, 2n-dimensional, unoriented and X’ X a double cover.
Then there is a diagram

Xt_f, .S X’ X X’ a S K(7-Z/2, n) K(TZ/2, n)

lxaxa

X -, S x X’ x X’ / S x K(TZ/2, n) x K(TZ/2, n),
7Z/2 /2

wheref’ X’ S is 77,/2 equivariant and S X’ --* X’ is the involution on X’,
and a Hn(X’, 2Z/2). From 3.5.3 and 3.5.5 we deduce

4.2.1.

where a cn(x’, TZ)

represented by the
C*(X’, ZZ).

(t(a) q(’a) q’(a)

{F*(a), [X])
(1/2)(a .Sa, [X’])

represents a and a /-/n(S X’ X’, 7Z/2) is
7Z/2

cochain a a C*(S) (R) C*(X’, 7Z)
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Case 2. X, X’, 4n dimensional, oriented and 7r X’ X a double cov-
er. Again, consider

X’ ’’xxxs,S x X’ x X’

X - S x X’ x X’
7742

for any a /-P"- l(X’, Q/TZ).
From 3.5.3 and 3.5.6, 3.5.7, we deduce

4.2.2. 0(a) q(za)- q’(a)

(F*(a), IX])
(1/2)(a. SSa, [X’])

where a C" x(X’, Q) represents a and a H" 1(S= x X’ x X’, Q/TzI
7Z/9 /

is represented by the cochain (a) e (R) a (R) 8a + Te (R) a (R) a
+ e (R) a (R) a C*(S) (R) C*(X’,Q) (R) C*(X’,Q).

Case 3. x, x’ 2n-dimensional, unoriented, zr’X’- X a principal G-
bundle, IGI m, rn odd. Let e G --> 5era be the representation of G given by
left multiplication by elements of G. As an m-fold cover, there is a diagram

X’ Y--, EG Em

X - BG --eBSm
Now, the map F X ESCm x (X’)m factors through ESCm x (x’)m; that is, we

9,. G

identify EG and ESCm, use BG Em/G, BSCm ESCm/m, and construct a dia-
gram

Xt F Xm (X’)m 9m (X’)m

X m .(X’)m--* (X’)m

by writing out G {gl,""" ,gm}, which explicitly identifies G ((G) C 0%.
In fact, if x’ X’ is a point, F(x’) (f’(x’),x’gl,... ,X’gm) EG
(X’)m-- ECfm X (X’)m.

If a Hn(x’, 7-Z/2), we get a diagram
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4.2.3.

From 3.5.3, and the fact that ]G m is odd, we deduce

4.2.4. l(a)=(Fp*(1 am)*@*(K),[X])

NOW,
((F()*(1 am)*r*p*@O), [X’]).

H*(Emm K(TZ/2, n)’n, 2Z/2) ( H*(K(2Z/2, n), 7Z/2),
m-times

with fundamental classes
diagram

,m. For each pair -< < j -< m, we get a

ETZ/2 K(7/2, n), K(2Z/2, n)----> ESm K(TZ/2, n)m

ETZ/2 K(TZ/2, n), K(TZ/2, n)--,Em K(TZ/2, n)m

since we identify 7Z/2 with the subgroup {Id, (ij)} C 5m and identify ETZ/2
with Em. From 3.5.5, rcr**(r) (R) i (R) j /-/"(E(77’./2)
K(TZ/2, n)i K(TZ/2, n), 77./2). Finally combining this with diagram 4.2.3
and equation 4.2.4, we have proved

4.2.5. (a) (g(a)g(a), IX’])
l<_i<j_m

where gi X’ - X’ is the covering transformation associated to g G.

We conclude this chapter with a discussion of the derivation of formula 1.3.1
from 4.2.5. Recall that if r: X’ -- X is a principal G-bundle, IGI odd, and if
Kn C Hn(X’) is the kernel of the transfer ’" H"(X’)- Ha(x), then
dl q"- q" Kn-- 7Z/2. Formula 1.3.1 states that
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A(X’ X) A(Kn, (1) x(X) if [GI---3,5(mod8)
0 if IGI 1, 7 (mod 8)

First, write G {1, hi’’’ h, h] h }. We need to reconcile the
seemingly different formulas for ) given in 1.3.1 and 4.2.5. Let rn 2k + 1,
G= {gi}, 1-<i<-m.

k

LEMMA 4.2.6. (g (a) g(a), [X’]) , (a. h’ (a), [X’])
l_<i<j<m i=1

7Z/2 for all a Hn(x’, 7Z/2).

We leave this computation as an exercise.
Secondly, using solvability of groups of odd order, [7], a principal G-bundle

X’--X can be factored X’ =XrXr_I’’’X0=X, where each
Xi X_ is a principal 7Z/p bundle, p prime. The Arf invariants add in this

very special situation by 3.3.8, that is, A(X’--- X)= A(X’--. X_ 1).
i=1

Simple 7/’,/8 arithmetic then shows that if 1.3.1 is true for principal 7Zip bun-
dies, p prime, then 1.3.1 is true for any group G of odd order.

Finally, the proof is completed by a routine but fairly lengthy investigation of

the structure of K*CH*(X’, 7/,/2)as 7Z/2(TZ/p)/( i=1 T)module, where

7Z/2(TZ/p) is the group ring and T 7Z/p is a generator.

$. Double covers
5.1. The quadratic function induced by a double cover

Let zr" X’ X be a double cover, with classifying diagram

X’ ’ S

X RP(o)

In 4, we defined a commutative diagram

X’ "xlx’S S X X’ X X’
5.1.1 7r

X S x X’ xX’
z/2

where S X’ --> X’ is the involution over X. We then considered the composi-
tion

X S x X’ x X’ S x (QX’+ x QX QX’+
12 77.12

where is the Dyer-Lashof map [13], [14], and is induced by the natural
inclusion X’ C IX’.
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Moreover, if X’ and X are PD spaces and Dr Ad( F)" EX+ --> EX_,
then we verified that (r, Dr, o) is a normal map from X’ to X, where ," X
QS is the composition

X --, RP() BTZ/2 QzS,
the Dyer-Lashof map, [9].
Assume that X’ andX are 2n-dimensional PD spaces with 7Z/2 coefficients, X

connected. A quadratic function q: H"(X, 7Z/2) /4 induces a quadratic
function q’: H"(X’, /2) /4 as in 2. In 3.4.3(a), we proved that the func-
tion : H"(X’, /2) /4, defined by, O(a)= q(ra)- q’(a), is quadratic
over the pairing H"(X’, /2) @ H"(X’, @/2) /2, where
{(a, a) (a S*az, IX’]). In 4.2.1, we established a chain formula for O(a).
Namely, ifa C"(X, /2) is a cochain representative for a H" (X’, /2) then

5.1.2. (a) (V(1 a a), [)

(a, s’a,, Ix’l) e

where F: X S x X’ x X’ is as in diagram 5.1.1. (By 3.4.4, 20(a) 0, so
/

we take the values of 0 in /2, rather than /4.)
It is fairly easy to prove directly that 5.1.2 defines a quadratic function 0

refining . The results of this section use nothing more than this, so this section
is essentially independent of the rest of the paper. It is interesting, nonetheless,
that the 0 defined by 5.1.2 is a special case of the general theory developed in
2,3,4.
We first compute 0 *: H(X, /2) /2. Since r*(b) 2b 0,

b H(X,/2), we have O*(b)= q’*(b). Also, since {*b .*b,
[X’]} {*(bb), [X’]} 0, we have that 0*: H(X, /2) /2 is linear.

Pooso 5.1.3. If b H(X, /2) then

0*(b) b v,- 2j +1
j=

where Wl f*(e) H(X, /2), f: X (), e HI((), /2) the
generator.

Proof. This turns out to be a consequence of the definition of the Steenrod
squares. From 5.1.1 we construct a diagram

X - S X’ X’
/2

fx 1 $ jxTrx 7r

IRP() xX a_ S x XxX
71./2
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From 5.1.2, we obtain (b is a cocycle representative for b)

(f 1)* e (R) Sq"-i(b) [X]
i=

/(R) Sq- (,, Ix].
=0

The second equality is an application of the definition of Steenrod squares [20].
SinceifSq= + Sq + Sq + ..., --Sq(w1,- 1) WIi- + k,

k=0

we compute

2 ? Sq-(, Sq(f -" ,
j=O

which proves 5.1.3.

Remark 5.1.4. Prop. 5.1.3 gives a formula for q’*(b), b Hn(x, /2),
since q’* *. This formula is very similar to the formula of Prop. 3.3.3, for
q’*(b), b Hn(X, /2), when : X’ X is a map of odd degree. In fact, ff
() is the canonical line bundle, then the Wu class

Thus the term

V(:) Z 82’-1 H*(IRP(o), 7Z/2).
j_>0

Z Err- 2J + l(S)Wl2-1 (W(S) f*V())n

in 5.1.3 is provocatively similar to the term V(X)*(rV) in 3.3.3. One even
expects *(rV) to vanish, except in dimensions 2 1. (This is true for degree
one maps ,: X QS.)
Our proofs of 3.3.3 and 5.1.3 are quite different; one wonders if the similarity

can be explained by a uniform proof.

5.2. A sufficient condition that A(Hn(X’, 7Z/2), ) 0
Consider again the diagram

X,

_
X IRP(2n)
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Let Z" f-l(]RP(2n 1)) C Xn. Transversality implies that Z" has a
regular neighborhood in X homeomorphic to the total space of a line bundle

_._) Zn- 1. Let V X E(), where E(:) is the open unit interval bundle of :.
Then zr-l(V) C X’ is the disjoint union of two copies of V, say V0 and V1. More-
over, 0V OE() admits an involution, s, since it double covers Z. X’ is con-
structed from the two copies of V by identifying p 0 V0 with s(p) 0 V1,

Xt-- V0 J V1/(p 0) (s(p), 1) if p OVo
The involution S" X’ --) X’ over X is defined by S(p, i) (p, 1 i), all p V,
i= 0, 1. (if p OVo, S(p, 0) (p, l)--(s(p), 0) S(s(p), 1), so S is well-de-
fined.)

Definition 5.2.1. r: X’ --) X is Poincard splittable if after a homotopy of
f: X -- IRP(2n), the pair (V, 0 V) is a 2n-dimensional P.D. space with boundary,
and Z 0V/s is a (2n 1) dimensional PD space, P.D. embedded in X.
Of course, if r" X’ - X is a double cover of manifolds, it is splittable by

manifold transversality. There are obstructions to Poincar5 splittability, in gen-
eral. For example, our next result shows that the Arf invariant
A(H"(X’, 7Z/2), t) Z/2 is such an obstruction. All we require for this argu-
ment is the simple chain formula 5.1.2 for .
PROPOSITION 5.2.2. If r: X’ --) X is a Poincard splittable double cover of

2n dimensional PD spaces, then

A(Hn(X’, 7Z/2), t)) 0.

Proof. We consider the cohomology exact sequence of the pair (X’, V0),
with 7/,/2 coefficients.

""----> Hn -l(yo) -’-) Hn(X’, Vo) Hn(x’) ’--:, Hn(Vo) ----> Hn + l(X’, Yo) ---)

By excisionj*" H*(X’, Vo) - H*(V1, OVl), where j: Vl, OV Xt, V0 is the in-
clusion. Thus there is a natural dual pairing

H’(X’, Vo) Hn(Vo) 7Z/2
by identifying H’(X Vo) with H’(V1, 0 V) usingj*, and identifying H’(Vo) with
H"(V1) using S. Moreover, if a Hn(x’), b Hn(x’, Vo),

O’*b. Si*a, [Vl, 0Vii (S*p*b. a, IX’])
?(p’b, a).

We are thus in the algebraic situation considered in 1.4.4 and 1.4.5, with the
simplification that the sequence

Hn(X’, Vo) ’----* Hn(X’) A Hn(Vo)

is exact. Moreover, if b H"(X’, Vo) then Op*(b) 0. Simply choose a co-
cycle representative b, for b with support in the interior of V1. Then b, and
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S*b, have disjoint support and hence

tp*(b) (1/2) (b, t,J Sb,, [X’]) 0.

The proposition now follows, as in Remark 1.4.6.

Conjecture 5.2.3. In general, we conjecture that the Are invariant
A(H"(X’, 7/,,/2, )) 7/,,/2 is the only obstruction to the Poincar6 splittability of
rr" X’ --- X.5.3. The Kervaire obstruction of certain non-principal triple covers

inthis section we give an application of Prop. 5.2.2.
We have maps of groups 7Z/2 5e - Z/2 with ji Id, namely is de-

fined by any two cycle, say (12), in 5e, and j is projection on 5e/ 7z/2.
Thus there are maps of classifying spaces

IRP(o) Bz IRP(),

and Bi*, Bj* are isomorphisms on 7/,/2 cohomology (Bi* is injective since
i(Z/2) C 5a is a Sylow 2-subgroup and Bi* is surjective since Bi* Bj* Id.)
Consider a map f: X IRP(o), classifying a double cover rr" X’ X, X a

2n-dimensional PD space, and consider the triple cover classified by
Bi f: X -- IRP(o) -- BS?. This is, of course, simply r +/d: X’ + X -- X,
where + indicates disjoint union.
Let q: H"(X, Z/2) 7/,/4 be a quadratic function, q’: H"(X’, Z/2) 72,/4

the induced quadratic function, and let 0 q’- qr,
r.: H"(X’, 7/,/2) H"(X, 7/,/2) the transfer for the double cover rr: X’ - X.
The triple cover rr + Id: X’ + X X has a Kervaire obstruction in 7/,/2, de-
fined in 3.3.4. Our result is

PROPOSITION5.3.1. A(X’ + X + Ia, X) A(H"(X’, TZ/2), gl) + ( Vz(X)

(j=l Wa2J-2) [S]} where w =f*(e)H(X, 7Z/2),f: X--- IRP().

Proof. The transfer r0 associated to the triple cover X’ + X--* X is given
by

ro(a b) r(a) + b H"(X, Z/2)

if a H’(X’, 7Z/2), b H"(X, /2). We define an isomorphism

H"(X’, Z/2) -- K6 Kernel (r0)

by assigning a + ra to a H"(X’, Z/2). Let q0 K -- 7Z/2 be the quadratic
function whose Are invariant is A(X’ + X--. X). Then

qo(a + ra) q’(a) + q(ra)

(a) + 2q(ra)

l(a) + 2(ra. v,(X), [X])
(a) + 2(a. rr*v,(X), IX’I) 7Z/4
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By 1.4.2(c) and 5.1.3, we compute in 7Z/8

A(K qo) A(H"(X’, 7Z/2), 0) 20(r*V,,(X))

A(H’(X’, 7Z/2), 0) 4 V(X) V(X) Wl’-1
’’-0

A(H"(X’, 7Z/2), 0) 4 V w-z

This proves 5.3.1.

Remark 5.3.2. For any odd m, consider the Dyer-Lashof map
: Bm QmS. Ther are surgery obstruction classes k (QmS, /2)
which measure the Kervaire obstruction of degree m normal maps associated
to manifolds : M QmSo. Specifically, if s is the Kervaire obstruction

se(M, e) (* 2 k /2.
j=0

It is not too hard to relate these classes rather closely to the (more familiar)
special case of the degree m 1 component of QS. In paicular, k 0 un-
less 2j 2 2, 1. Also (related to the results of 5), in degree 0,

1 if m3 or 5(roodS).
k0= 0 if ml or 7(modS).

If m 3, one can compute N*(k) pretty easily since Bi: ()B is a
/2 cohomology isomorphism. The result is

*(_ ) w?,- ,-(),
where

w (nj)*e, nj: BY () (/).

If we combine 5.2.2 and 5.3.1, we have thus proved the following

PROPOSITIOY 5.3.3. Let f: X (), Bi f: X QaS, X a
2n-dimensional PD space. Let : X’ X be the double cover classified by
and assume it to be Poincar splittable (see .2.1). Let + Id: X’ + X X be
the triple cover Bi of: X () Ba. Then

A(X’ + X ( * 2 -In general, for a PD space f: " Bm, m odd, one expect the difference

A(2 (*

_
[ /2

j=l

to measure some kind of Poincar6 transversality obstruction for the m-fold
cover : 2 X classified by f. A plausible conjecture is that this difference is
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the Poincar6 splittability obstruction of the double cover 7r" X’ X classified
by X BOm B(m/g3)= IRP(), which, in turn, by Conjecture 5.2.3,
should be the Arf invariant A(Hn(X’, 7Z/2), ).
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