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$1. INTRODUCTION 

IF :V4” is a closed, oriented, smooth manifold then the index of ICI’“, I(hl) E Z, is given by 

I(M) = (L(Y%f), [W> c*> 
where ,5(t) = 1 + L,(t) + L,(t) + . . , L,(t) E H4'(B; Q), is a characteristic class for vector 

bundles, 5 --f B. L(s) is given by the inverse of the Hirzebruch polynomial in the Pontrjagin 

classes (see [3, page 861). Thorn extended this class to p.f. bundles and, in fact, showed that 

there is a unique characteristic class 

L(5) = 1 + L,(t) + . . .) Ili(5.l E N4i(B; 0) 

for p.1. bundles, r + B, which is multiplicative, i.e. L(5 0 r]) = L(g) . L(q), and such that (*) 

holds for all p.1. manifolds [9]. This extends to topological bundles and manifolds by the 

triangulation theory in [4]. 

Thus I(fVI) is a function of the characteristic classes of the geometric normal bundle of 

M. If we are only interested in the index modulo 2, then the situation simplifies, 

I(M) = rank,,,(H’“(M; H/2)) (mod 2) 

which is obviously an invariant of the homotopy type of M. Furthermore this rank may be 
calculated in terms of characteristic classes of the homotopy type of the normal bundle of M. 
An easy argument shows 

Z(fM) = (u2,‘(v&, [MI) mod 2 (**) 

where uZn(v,+,) E H’“(M, Z/2) is the Wu class of the normal bundle. Formula (**) is valid for 

any space satisfying Poincare duality where the role of the normal bundle is played by the 

Spivak normal fibration [ll]. 

The above formulae may be extended to a larger class of “ manifolds “, Z/2’ manifolds. 

A Z/2’ manifold is an oriented manifold, M, together with an orientation preserving iso- 

morphism of 2’ copies of a manifold Sa with aM, cp: LIZ, Sii? -+ a&f. ii?i denotes the space 

obtained by collapsing the 2’ copies of Sh?i together. Unless r = 1, &f is not a manifold but 

does possess a fundamental class [A] E H,(fi; Z/2’), an oriented normal bundle, vR , and an 

index, which modulo 2’ is a bordism invariant [IO]. A 2/2'P. D. space is (X”, 40 : LIzr 6if -+ 3~) 
where (X, 3X) is a P.D. pair and cp is a homotopy equivalence. Let 8 be the associated 
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quotient space. AS in the manifold case it has a fundamental class [r?] E H,(x; Z/2’), an 

oriented normal fibration vf, and an index which modulo 2’ is a bordism invariant. 

Thorn’s theorem generalizes to the following. There is a unique multiplicative character- 

istic class 

L(5) = 1 + L,(5) + . . . , Li(<) E H4’(B; Z,,,) for < + B 

a topological bundle for which (*) is satisfied for closed topological manifolds and (*) is 

satisfied mod 2’ for closed Z/2’-manifolds (see [lo]). 

The above discussion about the index modulo 2 holds more generally, and we have 

I(X) 3 (Use’, [8]) mod 2 

for any Z or Z/2’P.D. space. Since c? is multiplicative it follows that ~~~~(5) = L,,(<) mod 2 for 

any topological bundle 5. 

One object of this paper is to make an analogous discussion modulo 4. That is, find a 

characteristic class of spherical fibrations 

so that 

5 ~ B, 1(5) = l + 1,(5) + 12(r) + . . .) r,(5) E HJi(B; P!4), 

Z(X) = (l(vf), [8]) mod 4 

for any Z or air manifold or P. D. space, r >= 2, and so that I(< @q) = l(t) . I(q). We first 

prove (Corollary 6.3) that 

I(x) 3 (Y(v,,(vz)), [_?I) mod 4 (***) 

where 5’ is the Pontrjagin square. By adding to 1 + 9’(~‘~(()) + 9(c4(t)) + . . . , a polynomial 

in the Stiefel-Whitney classes, i, o,(Iv,(~), . . . , w4,({)), we can produce Z(5) E H4*(B; Z/4) 

which still gives the index mod 4 for any h or Z/2’ P.D. space (r 2_ 2), and which is multi- 

plicative. By uniqueness f(c) = L(t) mod 4 for any topological bundle. 

To construct I we use only elementary facts from the theory of quadratic functions and 

cocycle arguments. By using the deeper results of [5] and [6] on Poincare transversality we 

define, in another paper, a canonical Z/S characteristic class for spherical fiber spaces which 

gives the index mod 8 of any Z or Z/2’ P. D. space, r >= 3, and which agrees for topological 

bundles with L mod 8. This class restricts mod 4 to I, however it cannot be chosen to be multi- 

plicative. 

A key step in the proof of (***) is Th eorem 4.3 which isaformulafortheindexmodulo8 

of a P. D. space with boundary, (I+‘, a W). This formula is based on a “ Gauss sum” formula 

of Van der Blij [14], for the index modulo 8 of a symmetric matrix. Specifically, we show 

that if B E H’“( W, a W; Z/Z) is a lifting of the Wu class u?~(v~) E H2”( W, Z/2), and Ic/ is a 

quadratic function on the torsion in H2”(aW, Z) which is “compatible” with D, then Z(W) 

modulo 8 is given by a formula involving a and the Arf invariant of I(/. The Arf invariant of 

1+9 is the 8th root of unity Arg(x e2”‘JI(X)) E S’. This Z/8 invariant was first studied in the con- 

text of manifold theory by E. H. Brown [l]. More recently it was used by Milgram in [8] 

and Morgan-Sullivan in [lo]. 

92 is devoted to developing the requisite theory of quadratic functions and quoting 
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Van der Blij’s theorem. In $3 we study intersection pairings and linking pairings in P. D. 

spaces. We work in cohomology and use cocycle arguments. If we were only interested in 

manifolds we could work dually in homology and use embedded submanifolds. It is through 

this point of view that we first were able to prove Theorem 4.3 for manifolds. It was then 

necessary to translate to cohomology in order to get proofs that work for P. D. spaces as well. 

In $4 we apply the results in $2 and 93 to produce the formula for the index module 8 

of a P.D. space with boundary. We assume here the existence of compatible liftings of the 

Wu class and quadratic functions. This is proved in $5. We also prove an equivariant version 

of compatibility for H,/Z-manifolds which is used in the applications. 

The applications are given in $6. In addition to the formula for the mod 4 L-class 

discussed above, we give a formula for the invariant a(M”“-‘) of a closed, oriented, smooth 

manifold, M4”-r where o(M4”-l) is the number modulo 2 of 2-primary summands in the 

torsion subgroup of H’“(M, Z). In [7] the analogous invariant for manifolds of dimension 

4n + 1 was expressed as a Z/2 cohomology characteristic number, specifically cZn . .Sqlvzn. 

For manifolds of dimension 4n - 1 such a formula is impossible, since, for example, M(3) 

is parallelizable, but @U’(3)) = 1. Our formula is a kind of secondary characteristic class 

formula for a(M4”-i ). Specifically, let 2M4”-’ = dW4” where W4” is a smooth manifold. 

Form the resulting E/2 manifold I@ and let 0 E H2”( p, SW, Z/2) = H2”(W, aI%‘, Z/2) lift the 

Wu class I~Jv~) E f12”( I?, Z/2). Let 2: H/2 -+ Z/4 be the inclusion. Then we prove (Corollary 

6.2) 

2a(M Jn-i) = Z(W) - (9(B), [W, awl) E Z/4 

for any such choice of Wand 0. 

$2. QUADRATIC FUNCTIONS 

Let K be a finite abelian group and let L: K x K+ Q/Z be a symmetric, bilinear, non- 

singular pairing. (Here, non-singular means if L(s, y) = 0 for all x E K then y = 0.) Such 

maps L will be called pairings. L identifies K with its dual K* = Hom(K, Q/Z). There are 

obvious notions of an isomorphism between two pairings and orthogonal direct sum of two 

pairings. The negative of a pairing (K, L), denoted (K, -L), is defined by 

(-LXX, Y) = -L(x, Y) E Q/Z. 

A qmdruticfirnction over L is a function II/: K--t Q/Z which satisfies 

Ij/(x + Y) - 4G) - II/(J) = L(x, Y), X, ~1 E K, and (1) 

ti(nx) = n211/(x), n fs P, x E K. (2) 

We point out that, given (I), condition (2) is equivalent to 

2rl/(x) = L(x, x), x E K. (2’) 

In this section we will develop some of the theory of pairings and quadratic functions 

and relate them to symmetric inner products and quadratic functions on free abelian groups. 

In our applications, K will generally be the torsion subgroup of H2”(M, Z), where M is a 

closed, oriented (4n - 1) manifold, and L will be the classical linking pairing of torsion 

cocycles. 
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Here is one way that pairings arise. Let F be a free abelian group of finite rank and let 

B: F x F- Z be a symmetric pairing. B is equivalent to a map B: F + F* = Hom(F, Z). We 

assume that det(B) # 0. Let KB denote the cokernel of B: F-+ F*. Then KB is a finite abelian 

group, I&I = Idet(B)l, and we have an exact sequence 

B d 
O+F-F*-K,-0. 

Thus B induces an isomorphism B: F@ Q ; F* @ Q. We define L,: KB x KB -+ Q/Z by 

L,(x + F, J + F) = (x, B-‘(y)) E Q/Z, where .Y, y E F* and B-‘(y) E F@ Q. One checks 

easily that L, is well-defined and that (KB , L,) is a non-singular, symmetric, bilinear pairing. 

THEOREM 2.1. Any pairing (K, L) is isomorphic to (KB, LB) for some B: F + F*. 

Proof. This is proved in Theorem 6 of [ 151. (We will not make essential use of Theorem 

2.1 below.) 

THEOREM 2.2. Gicen a bilinear pairing (K, L) there exist quadratic functions orer L. Such 

quadratic functions correspond bijecticely with elements J’ E K such that 2_v = 0. 

Proof. K N KCoddj 0 KC2,, where KCoddj is the subgroup of elements of odd order and 

KCz, is the subgroup of elements of order a power of 2. Since we must have 2$(-r) = L(x, x) 

and ,I’$(x) = $(,Lx) = 0 ifiz = 0, there is a unique choice for $: KCoddj -+ Q/Z and one checks 

that this $ is quadratic. If x, ... x, is a minimal set of generators for Ktz,, choose xi E Q/Z 

with 2ri = L(xi, xi) and set $(xi) = zi. Then there is a unique extension to a quadratic 

function II/: KC*, -+ Q/Z, namely 

$(C ni -xi) = F ni’ai + & ni nj JYXi, -yj>9 n, E Z. 

If I+?, tb’: K + Q/Z are two quadratic functions over L then $ - $‘: K-t Q/Z is linear 

and 2(11/ - tj’) = 0. Thus all quadratic functions lb’ are obtained by choosing y E K, 2y = 0 

and setting Ii/,,(x) = G(X) + L(y, x) E Q/Z, I E K. 

The following construction also produces quadratic functions. Let 

B a 
O-+F---+F*-K,-+O 

be as above. By a Wu class for B we mean t’ E F such that (Bz, c) = (Bz, z) (mod 2) for all 

z E F. Given B and a Wu class L’ we define $“: KB + Q/Z by 

I,LJ~(x + F) = +((s, B-‘(x)) - (x, r>> E Q/Z, (2.3) 

where ,Y E F*. It is not hard to check that $, is well-defined and that $, is quadratic over 

(6 > LA. 

A generalization of Theorem 2.1 is that all quadratic functions II/: K -+ Q/Z arise as 

Ic/“: KS + Q/Z. 

THEOREM 2.4. Let B: F- F*, (KB, L,) be as abore. Then the function ~.~ti, is a bijectice 

correspondence between mod 2 reductions of Wu classes for B and quadratic functions ocer 

(KB, LB). 

Proof. It is clear that the function II/, defined in (2.3) depends only on the class of I’ in 
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F@ &‘2. Conversely, given a quadratic function $: K, + Q"Z, define I’$: F* 4 Z’Z as 

follo\vs : 
r+(X) = 4(X, B-‘(X)) - $(2x) E *z z c Q/Z. (2.5) 

We have I.J.Y, + .Y:) = r+(_yl) + L.,~(+‘s~) since rc/ is quadratic over L,. Thus l‘+: F* + 252 is 

equivalent to an element c E F@ Z,,Z and L‘ is the Z,‘Z reduction of a Wu class since (Bz, r) = 

l.+(Bi) = (Bz. z), regarded as elements of Z/2. It is clear that the constructions (2.3) and (2.5) 

are inverses of each other. and (2.4) follows. 

Let B: F-F* be as above and let 1‘ E F be a Wu class for B. It is easy to see that 

(Br, C) moduio 2 is independent of L’. Our next result relates the index of B, the invariant 

(Br, r> E if!;:! and an invariant of K,. 

THEOREM 2.6. index(B) - (Bc, c> E rank,,,(i(, @ 2:2) (mod 2). 

Proof. There is an exact sequence 

FQOH,‘Z- B’ F*@Z:‘2&Ks@Z/2+0. 

Thus rank(F*) - rankHIZ(image(B,)) = rankzi2(K, 0 Z/2). But rank(F*) = index(B)(mod 2). 

Also, B, defines a non-singular bilinear form on (F@ Z/2)/(kernel(Bz)), which is isomorphic 

to image (B2), and I‘ E F@ 2’2 is a Wu class for this non-singular form. Then, by a well- 

known argument, rank,,,(image(B,)) E (B2(u), o) = (Bc, r) (mod 2), and (2.6) follows. 

Let $ : K -+ Q/Z be a quadratic function over a pairing L. We will study the “ Gaussian 

sum ” invariant 
a(K, ti) = c e2ni’ir’x) E @. 

XEii 

We first state certain elementary properties of a(K, $I). For proofs, see [2, Theorem 4.31. 

THEOREM 2.7. (i) a(K, -$) = a(K, e) h w ere ii is the conjugate of a E @. 

(ii) a(K, 0 K2 , 11/, 0 tid = a(&, $1> . 4K2, (1/J. 
(iii) l/a(K, $)[I = 1 KI I”. In particular, a(K, $) # 0. 

A deeper formula is a theorem of F. van der Blij. See [14] for a proof which uses 

properties of Fourier series. 

THEOREM 2.8. Let B: F + F*, (KB, LB) be as abore. Let c E F be a Wu class for B and let 

I/J, be the associated quadraticjimction on K, Then 

If we let A(K,, t),) = Arg(a(K,, II/,)) E S’ then (2.8) implies that A(K, , t,bJ is an element 

of &Z/Z c [w/Z = S’. There is the obvious isomorphism .8: +Z/Z A Z/U and we will usually 

regard A(K, , II/,) as an element of Zj8Z. Thus we have 

index(B) = (Bc, t;) + A(K,, rl/,) E Z/S. (2.9) 
We regard (2.9) as a module 8 generalization of (2.6). Note that it follows from (2.6) that 

A(K,, I(/,) = rank,,?(K, 0 Z/2) (mod 2). 

Since by (2.1) and (2.4) any quadratic function (K, I/) is isomorphic to (KS, II/,) for some 

Band some Wu class c, we deduce that A(K, ti) = Arg(a(K, $)) is always in 2182 Y QZQ c S’ 

and 

A(K, II/) = rankzi2(K @ Z/2) (mod 2). (2. IO) 
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If K is a Z 2 vector space then ,i(K, II/) E Z’S coincides with the Arf invariant studied by 

E. H. Brown, Jr. [l]. In general, then. we will refer to ,-l(K, II/) as the Arf invariant of II/. 

In $3 and $4, we will study the torsion subgroups in the cohomology sequence 

where (W, d W) is an oriented 4n-manifold with boundary. The final result in this section 

isolates the algebraic results we will need then. 

Let II/: K-t Q.‘Z be a quadratic function over a pairing L, and let i: G -+ K be a homo- 

morphism. Using L, we identify K with K* = Hom(K, QiZ). Form the dual map i* : K + G*. 

Suppose that the sequence 
I ir 

G-K-G* 

satisfies i* . i = 0. Let R = kernel(i*)‘image(i). Then L induces a non-singular pairing L on 

R, defined by E(.Y t G, y + G) = L(s, y) E Q/Z for x, y E kernel(i*). L is well-defined since 

L(x, i(g)) = (i*(x), g) = 0 if x E kernel(i*). 

Since L vanishes on G @ G, ti . i: G + Q/Z is linear and 2$ . i = 0. Thus there is a 

unique element u f G* such that 2a = 0 and $i(g) = (a, g) for all g E G. 

THEOREM 2.11. (i) a = i*(b) for some b E K tvith 26 E i(G). (ii) $*(.Y i G) = 

$(x) - L(b, x) E Q/Z, s E kernel(i*), defines a quadratic fitnction $tb: R--t Q,lZ otter E, 

here b is us in (i). (iii) A(R, (C/*) = A(K, II/) - t&b) E @/Z. (Since 2b E i(G), 0 = 2$(2b) 

= 811/(b) E Q/Z, hence G(b) E &Z/Z c Q/Z and Theorem 2.1 l(iii) makes sense.) 

Proof. In general if x E G* then x f i*(K) if (x, g) = 0 for all g E G with i(g) = 0. Since 

(a, g) = $ . i(g), we see that a = i*(b’) for some 6’ E K. Since 2u = 0, 26’ E kernel(i*). 

For any such choice of b’, $I~,: R + Q/Z, defined in (ii), is well-defined and satisfies 

tib.(x + y) = $b(x) + $b,(y) + il(x, y), for x, y E R. Let $: R + Q/Z be a quadratic function 

over L. Then $b, - $: R -+ Q/Z ’ IS mear, hence $b.(~) - q(x) = L(x, z) for some z E R. Let I‘ 

2’ E kernel(i*) represent 2 E R. Then 26’ - 2~’ E image(i) since for all x E kernel(i*), 

L(x, 22’) = 2t+hbS(x) - 2$(x) = 21,$~,(x) - L(x, x) = L(x, 26’). Thus, if we replace 6’ by 

b = b’ - z’, then a = i*(b) and 2b E i(G). It is easy to check that 2$*(x) = i;(x, x) for x E R, 

hence $* is quadratic over L. This completes the proof of Theorem 2.1 l(i) and (ii). - 

To prove (iii), choose subsets K2 c K such that -b E K2 and K2 + i*(K) is a bijection 

and K, c kernel(i*) such that K, -+ R is a bijection. Each element of K has a unique expres- 

sion g + x1 + x2, where g E i(G), xl E K,, x2 E K2. 

u(K, $) = c e2n%7+xl+xz) 

B.XI.XZ 

=9 SI, 
e2ni(jlte)+~(xI)+~L(xz)+L(X2.B+XI)) 

I. 

= xz~Kz e2ni+(xz) 
( 
x;K, e2ni(ti(x~)+~(x~. .~t))(lz~) e2nfUb+.rl. ~1)) 

since $(g) = L(b, g). Since the sum of the elements in a non-trivial subgroup of S’ vanishes, 
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the terms above vanish unless x2 = -6. Thus 

= e2ni+(-b) . a@. $,) . [i(G)] 

and Theorem 2.1 I(iii) follows. 

53. CONSEQUENCES OF POWCARl? DUALITY 

In this section we collect some well-known facts implied by Poincare duality, and prove 

some technical lemmas needed in later sections. If X is a finite complex, denote by rk(X) the 

torsion subgroup of Hk(X, Z) and denote by Fk(X) the quotient Hk(X, 2!)j~k(X>. ThenFk(X) 

is a free abelian group and there is a short exact sequence 

0 -+ F(X) -+ Hk(X, Z) -+ Fk(X) + 0. 

If N is a closed, oriented Poincare duality space of dimension 171, then the cup product 

pairing H’(N, Z) @ H”-‘(N, Z) -+ H”(N, Z) = Z induces non-singular pairingsof freeabelian 

groups F’(N) @F”-‘(N) --+ Z. Also, for i > 0, there are non-singular pairings T’(N) 0 

r m+l-i(N) + QLZ defined as follows. If x E T’(N), y E T”+‘-‘(N) choose cocycles 

x# E C’(N, iZ) and y, E Cmflei (N, Z) representing x and y respectively. Since x isa torsion 

element we have kx = 6u, for some k E Z and U# E C’-‘(N, Z). Define: 

L(.y, Y) = (llk)(u, u Y,, WI) E Q/z. (3.1) 

In particular, if m = 417 - 1 then L defines a symmetric, bilinear, non-singular “linking” 

pairing 

L: T2”(N4”-’ ) @ T’“(N’“-‘) -+ Q/Z. 

Now let (W, 8W) be an oriented, Poincarl duality pair of dimension M. The cup product 

pairings H’( W, Z) @ Hmmi( W, ~3 W, Z) -+ H”( W, d W, Z) = Z define non-singular pairings of 

free abelian groups F’(W) @ F”-‘(W, dW) -+ B. Also, there are non-singular pairings 
T’(w) 0 y-mfl-i (W, d W) + Q/Z defined just as in (3.1). If 111 = 4~2, the cohomologysequence 

of the pair (W, c?W) gives a diagram (which may be regarded as a short exact sequence of 

chain complexes, with center row acyclic): 

0 

1 I” Y Y 

--) T’“( W, &V)i T’“(W): T’“(L? W)-r: T’“+‘( W, 8 W) -+ 

1. 1 1 1 1 
--, Hz”-’ (aw,h)~H~“(W,aW,Z)SH~“(W,~)fH~“(aW,~)~H~”+~(W,aw,B)-t 

1 1 1 1 1 (3.2) 
+ FL”-‘(dW$ F’“(W, aW)i, F’“(W)1 F2”(aW): 

1 1 1 1 
0 0 0 0 

The pairing F2”( W) 8 F2”( W, 8 W) -+ Z identifies F2”( W) with F’“( W, 2 W)* = 

Hom(F’“(W, aW), Z). Similarly, the pairing F2”-’ (a W) 0 F’“(d W) -+ Z identifies F”‘(d W) 

with F”-‘(dW)*. The well-known formula <i*(x) u y, [awl) = <x LJ 6*(y), [W, awl), 
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where x E H*(@‘> Z), y E H*(? W. Z), implies that the maps 5: F’“-‘(i; W) -+ F’“( W. t W) and 

I: F’“(W) -+ F’“(C W) are adjoints of each other. 

The mapj: F’“( W. d W) -+ F’“( W. 2 W)* = F’“(W) corresponds to the cup product form 

Frn( W, a W) 0 F’“(W, JW) -+ Z. Thus index(j) = index(W). The radical of 1 is the 

subgroup kernel(j) c Frn( CV, d W). Let F = f’“( W. 2 W). kernel(]) A image(j). 7 he group 

kernel(i) c F’“(W) is easily identified with F* = Hom(F, Z), hence j induces 

B 
O-+F-F*+K,-,O 

where KB = kernel(I)/image(]). The form B induces a non-singular pairing (KB, LB) as in $2, 

and index(B) = index(f) = index(W). 

The pairings defined above on the torsion subgroups give identifications T’“(G W) Ir 

Hom(T2”(8W), Q/Z) and T2”+’ (W, a W) =+ Hom(TZ”( W), Q/Z). 

LEMMA 3.3. The maps i: T2”( W) + T’“(8 W) and 6: T2”(d W) + T2”’ ‘( W, d W) are adjoints 

of each other, that is L(i(x), y) = (x, 6y), where x E TLn( W) and _v E T2”(Z W). 

Proof. This is proved using the cocycle definitions of the pairing L and the maps i and 6. 

Choose cocycles x# E C’“(W, Z) and y# E C’“(d W, Z) representing x and y. Choose 

j+ E C2”(W, Z) with i#(j#) =y, and choose U# E C 2n-1(W, Z) with 6(u,) = kx, Then, 

by definition (3.1), 

Ui(x), Y> = (I/k)<i*(u,) u Y, , [dwl> 

= (llk)(6Cu, ” B#>, [W awl> 
= (I/k)(kx, u J#, [W, dW)> + (I:k)(u, u 6-C,, [U: SW) 

3 (l/k)(u, u6JS, [W,dW]) (modZ) 

= (x, 6(Y)) E e/z. 

Lemma 3.3 implies (see the discussion preceding Theorem 2.11) that the homology 

group R = kernel(S)/image(i) of the sequence 

T’“(W)i T2”(8 W) 6 - 2-2”+‘( w, ZW) 

inherits a non-singular pairing c: R @ R + Q/Z from the pairing L: T2”(3 W) @ T”‘(dW)A 

Q/Z’. From Diagram 3.2, regarded as a short exact sequence of chain complexes, there is a 

natural homology isomorphism 

KB = kernei(i)/image(j) ---=-+ kernel(d)/image(i) = R. 

The first part of the next lemma shows there is an isomorphism of linking pairings 
-- 

(K L) h WB , -LB). 

LEMMA 3.4. Let y, y’ E H2”( W, Z) with i*(y) and i*(y’) in T’“(d W). 

(a) (y’, (j*)-‘Y) + L(i*y’, i*y) = 0 in Q,D!. Here (j*)-‘y E H’“(W, ZW, Q). 

(b) Ify# E C”‘(W, Z) is a cocycle representatice for y and i#y# = 2)~~ E C2”(cW, Z), 

and if w E H’“(d W, Z) is the class represented by w# and z E Hzn( W, l? W; Z/2) is the class 

represented by p2(y#) E C2”( W, 8 W; H/2), then 

)<y’, z) = f(y’, (j*)-Iy) + L(i*y’, IV) in Q/Z. 
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LEbl>IA 3.5. (a) If y, J’ E H2”( W. iz) are torsion classes and x# , J=’ E C’“( W, Z) are 

cocycle representatives for _v and y’, with i#y+ = 212, a& i’j’,’ = 2~,,’ in C”“(ZW. Z) then 

*(yIc U yt’. [W, ZW]} = L(I\,‘, \t,) i/z Q Z 

where 11’ and I\.’ E H’“(Z W. Z) are represented by tfte coq,cles wr and hi.=’ respectirely. 

(b) If J‘ E H’“(CV, Z) is a torsion class represented by a cocJ,cle J.! ir.ith i’!,, = 

2M’# E C’“(?W, Z) and if w E H’“(? W, Z) is the class represerlted by ~1’~ and 

z E Hzn( W, ?W, Z/2) is the class represented by p?(y#) E C2”( W. ZW, Z 2), then 

(.9(z), [ W, d IV]) = L(rrB. \\,) i/l Z 4 

where Y(z) E H’“( W, d W, Z/4) is the Pontrjagin square of z. 

LEMMA 3.6. If W is a Z/2 P.D. space and i*(y) = (w,, 11.~) ill T’“(?W) = T’“(6%) @ 

T2”(6 IT,), u?th w, + w2 = 2w in T’“(S@‘). and if : E H’“( I?, Z;2) satisfies n*(z) = 

p2(~) E Hzn( W, Z/2). w*here T[: W -+ fi is the collapsing map, then 

A(=‘, [RI) = +(y. (i*)-‘y) + 2L(u. n,) - L(\\.,. I(~,) in Q z. 

Proofs. Choose J# , J#‘, cocycle representatives for j’ and ,v’. Since i*j. and i*y’ are 

torsion there are cochains 11~ and u#’ in Cl”-‘(a W, Z) such that &,= = ki#j*, , &, = 

ki#_v#‘. Let ‘7, and ii,’ be extensions of these classes to C2”( IV. Z). Thsn 

is a cocycle representative for (j*)-‘J*. Thus 

(Y’.(j*)-‘y, [W,dWJ) =k (y#‘.(X-y, -SC,), [W, SW]) 

= (L’#’ . J’# ? [W, awl) - f (S(_r, . C.#), [W, ;w]> (3.7) 

= (Y#’ . I’# . [CV. ~W]> - i (i"!,,' . ur, [2 WI) E Q 

Lemma 3.4(a) follows immediately from this equation since 

L(i*y’, i*y) = i (i#y,’ I(#, [JW]) in 

Under the hypothesis of Lemma 3.4(b) we may choose _v# 

bv# a cocycle in C’“(aW, Z). Clearly, 

L(i*y’, w) = k (i’J*#’ . L’# , [awl>. 
i 

Q;Z. 

such that i#c’# = 2~‘~ for 

p2(y+) is a relative cocycle in C’“(W, i: W; Q’2) since x# IO’W = 0 (mod 2). Thus pzOt) 

is a cocycle representative for z E H2”( W, d W; Z/2) and (J.,’ . J#, [W, d W]) E 

(y’ * -_, [W, ?Wl) (mod 2). Thus dividing (3.7) by 2 we have +(J,‘, (j*)-‘4.) = 
i(J . z, [W, ZW]) - L(i*y’, w) in Q/Z. This proves Lemma 3.4(b). 
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If y and y’ are torsion then (_v’, (j*)-‘4.) = 0. If i*y = 2\v and i*),’ = 2\v’, then 

Thus dividing (3.7) by 4 we see 

0 = $(J’#’ . y, ) [W, aw]) - L(w’. II’). 

This proves Lemma 3.5(a). 

To prove Lemma 3.5(b), let Gs E C”‘(W, Z) be a cochain extending I(‘~ E C’“(dW? i2). 

Then y+ - 29, E C*“( IV, d W, Z) is an integral cochain which represents the Z/2 class I. 

By definition of the Pontrjagin square Y(z) is represented by the cochain (a Z/4 cocycle) 

(I’# - 29,) u (!‘# - 2G,) + S(L’# - 2S,) u (I’# - 2E#) 

s y# U y, - 2~: u ylr - 2y# U G, + 2617, v _t*# (mod4). 

From the coboundary formula [12, Theorem 5.11 

6(C,Ciy,)=-13,Uy~+L.xuW’x+S~,ii~, 

we deduce that 

b(z)+S(2w;,I)yx)-~*Ulr (mod4). 

But 29, u y# is a relative 2!4 cochain, 25, U y# E C’“-‘(W, CiW, Z/4), since 

i’(?*.~~S)=2~v~V2irl.Thus 1 

(Wh [W awl> Z(Y, IJ Y,, [W ZWI) in z/4 

and Lemma 3.5(b) follows immediately from Lemma 3.5(a). 

Finally, to prove Lemma 3.6, choose cocycles (wi),+ , (w2)# and KJ# E C2”(S@, Z) 

representing \vi, 1v2, and \v with 2w, = (+c,)# + (\v2)# . We assume i#(y++) = ((wI)#, (w2)#). 

The Z/2 reduction of y, is symmetric on 8 W = 26 w, and hence gives rise to a cocycle 

z# = p,(y,) E C2”( p, H/2) which represents a class z E H’“(@, Z/2) with n*(z) = 

p,(y) E H2”( W, Z/2). Choose u#, (ui)# E C’“-i(dm, Z) with 6(ni)# = k . WiT i = 1, 2, 

6u, = kw,, and (ui)# + (~1~)~ = 2u, . From (3.7), with y’ = y, we obtain 

t-0, (j*)-‘y> = +Y, [@I> - I& (((wA++~ 2)~~ - (W,>#> . ((UL)# 9 21(, - OVI>#>, [awl) 

as desired. 

= Hz2, [W - & (OVI)# . (UI)# > VW) 

- & <PJ# - O%)#) * W# - (u,),>, [6m) 

= )(z2, [bvl) - L(w,, WI) - L(2w, NJ) + L(H’, \(.I) + L(V,, IV) 

= 3(z2, [IV]) - ‘Lpw, w) + L(w,, w2) 
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$4. A FORhlUL.4 FOR THE INDEX JIODULO 8 

Let (IV, al+‘) be an oriented, (4n)-dimensional PoincarC pair. In this section we prove 

our main formula, Theorem 4.3, relating the index of W modulo 8 and the invariant 

A(T’“(d W), $I), where IJ?: T’“(S W) -+ Q, Z is a quadratic function over the linking pairing L. 

Dejnition 4.1. A lifting $ E Hzn( W, d W, 812) of the Wu class L’?, E H’“( F’, Z/2) is said 

to be compatible with $ if, for all .\: E T’“(i,W) such that .Y = i*(y). where _V E H’“(W, Z). 

we have 

$(x) = t_(~ . i?, [W, d W]) - f(y . (j*)-'J-, [W, d W]) E Q,Z. 

Definition 4.1 is formally very similar to (2.3). In fact, our plan is to begin with a quad- 

ratic function $: T’“(d W) -+ Q ,‘H and a compatible lifting ofthe Wu class L: E H’“( W. d W, Z/2) 

and reduce this to the algebraic situation of (2.3). Then we will apply Theorem 2.8 to obtain 

a formula for I( W4”) (mod 8). 

We will assume for now the following theorem. The proof will be given in the next 

section. 

THEORN 4.2. Given a quadraticfilnction on T’“(d W) there is a compatible lifting of the 

Wu class, ir E H’“( W, d W; 212). 

Consider the sequence 

7+(W) i T2”(dW) J -TZn+‘(W, aw). 

By Lemma 3.3 this has the form 
L i’ 

G-K-G* 

studied in $2. In particular, if $: T’“(dW) + Q/Z is quadratic over L then the composition 

Ii/i: T’“(W) + Q/Z is linear and 2tji = 0, hence there is a unique element a E T’“+‘( W, d W) 

such that 2a = 0 and It/i(y) = (a, y) for all J E T2”( W). Moreover, by Theorem 2.1 I(i), 

there exists b E T”‘(cYW) such that 6(b) = a and 26 = i(t) for some t E Tzn( W). A choice of b 

gives a quadratic function I,/?~: R = kernel(h)/image(i) -+ Q/Z over L as in Theorem 2.1 I(ii). 

On the other hand, R = K, where 

B 
O-F----+ F*- KB-0 

is constructed in $3 from the sequence of free groups 

F+‘(d W)L F”‘( W, d W) j F”‘(W) i F’“(Zw> 

We will construct an element u E H”‘( W, d W, Z) which represents a Wu class for B: F-+ F*. 

(Recall that F = F2"(W, ZJFV)/kernel(]).) This defines $“: KB --f Q/Z, quadratic over L,, as 

in (2.3). It will turnout(Lemma4.7) that tjV: KS --f Q/Z may be identified with - $*: R --) Q/Z. 

But, by (2.9), 

A(K, , +,) = index(B) - (Br,, c) 

= index(W) - (c’, [W, d W]) E Z/8 

and by Theorems 2.1 I(iii) and 2.7 

A(R, - tib) = @(b) - A(T’“(d W), Ic/) E Z/8 
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where we interpret both $(6) and the Arf invariants in Z 82 c &Z’Z. \t’e thus deduce our 

main formula: 

THEOREM 4.3. in&x(W) = ((P. [W’, ? IV)) + $(b)) - A(T~“(?M/). Ic/) E H 8. 

Here are the details. 

LEMMA 4.4. Lef (1/: T”‘(dCV’] --t Q:Z be quadratic orer L, let C E H2”( W, 2 W, Z/2) be a 

compatible Iifting of the Wu class and let b E T’“(Z W) satisJv @i(J) = L(b, i(y)) for all 

Y E T’*(W). Then ,R? = S*b lrhere /?: H’“( W, 2 W, 212) --+ H’““( W, SW. Z) is the irztegral 

Bochstein and d* : H2”(d W, Z) -+ H ‘“+‘( W, 6 W, Z) is the coboundary map of thepair ( W, d W). 

Proof. It suffices to prove that (y, /%> = (I’, 6*b) for all J E Trn( W). It is not hard to 

show from the definition of the pairing Tzn(W) @ Tznfl( W, 6 W) -+ Q’Z that (J, 00) = 

+(Y . 0, [W. d W]) E $iI/Z c QZ On the other hand, (J, 6*b) = L(i(y), 6) = I(li(y). Since 

_V is a torsion element, (j*)-‘(x) = 0 E H2”( W, d W, Q), hence the condition (4.1) that C is 

compatibIe with IJ reduces to $i(,‘) = +(_Y . 2, [W, d W]), as desired. 

LEMMA 4.5. Let $: T2”(d W) -+ Q/Z, D E H2”( W, a W, Z, 2) atld b E T2”(Z W) be as abore. 

Then there is an integra/ class c’ E p”( W, Z) such that p?(6) = rzn( W) E Hzn( W, Z/2) and 

i*(c’) = 26 E Hz”@ W, Z). 

Proof. Lemma 4.4 and an easy diagram chase imply that there exists c‘ E H2”(W, Z) 

with p,(c’) = rZn( W) E H2”( W, Z/2). An elementary cochain argument, which we leave to 

the reader, gives that u’ may be chosen such that i*(~.‘) = 26 E H’“(d W, 22). 

We now have i*(u’> = i*(t) = 26. where I.‘, t E H2n( W, H). Choose L‘ E H2*( W, d W, Z) 

such that j*(r) = z*’ - t. 

LEMMA 4.6. Tile class L’ E Hzn( W, C? W, Z> restricts to a Wu class in Fzn( W, d W) for the 

bilinear form j: F2”( W, d W) -+ F’“( W, d W)* = F2”( W). 

Proof. We must show that (j*(z) * z, [W, d W]) E (j*(z) . c, [W, ~3 W]) (mod 2) for all 

z E Hrn( W, 8 W, Z). But (j*(z) . 3, [W, 8 W]) = (?, [W, d W]) s (I . d, [W, d W]) (mod 2). 

Since t E H’“( W, Z) is a torsion element., (r . I*‘, [W, d W]) = (I. (c’ - t), [W, awl) = 

(z .j*(r), [W. SW]) = (j*(z) I’, [W, awl), as desired. 

It is obvious that c also gives a Wu class for the bilinear form B: F+ F* where F = 

imagz(j: F2”( W, 8W) + F’“(W)) and F* = kernel(2: F’“(W) -+ F’“(8 W)) as in $3. Thus, as 

in (2.3), we obtain a quadratic function I+/I”: kernel(l)iimage(j) = KB -+ Q/iZ over L,. We 

want to compare the quadratic functions (K,, JI,) and (K, $*). Recall from Lemma 3.4(a) 

that (K,, LB) = (K, -L). 

LEMMA 4.7. II/, = - $b: R -+ Q/Z. 

Proof. Let x E kernel(d) represent .? E R = kernel(d)!image(i). Choose _Y E H’“(W, Z) 

with i*(y) = x. Then, by Definition 2.3, $,(.F) = ) (y . (j*)-‘J, [W, d WI> - f(,: f c, 
[W, CWl>. 

Define s E H’“(W, d W, 2!‘2) by p2(c) = 0 - s. Clearly, j*(s) = pz(l) E HZn( W, iz,‘l) 

since j*p2(r) = p2j*(r) = P~(L” - t) = rln - p2(f), and by Definition 4.1, 

~,(.~)=_t(~~(j*)-‘~~,[W,~W])-~(~~~~,[W,~W]>+t(~~‘~.[W.~Wl> 

= -$(x) + j(4’ .s, [W, awl). 
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By Lemma 3.4(b). )(, s, [W. c?W]) = L(b, x) in 9 Z sine: (j*)-‘(t) = 0 in H’“( CY, ? W; P). 

Hence 

as desired. 

li/&.U) = - $(x) i- Ub, X) = - It/*(S) 

Remark 4.8. Our main formula 4.3, merits some discussion. Module 2, 4.3 reduces to 

index(W) 3 (O’, [W, i: W]) - a(; W) mod 2. 

IModulo 4, our formula also simplifies. We will prove in Theorem 6.1 that 

index(W) E (Y(G), [W, ii@‘]) - A(T”‘(S W), II/) mod 4. 

(The first equation follows from the second together with (2.10) which says A(T”‘(dW), $) s 

a(aW) mod 2.) 

35. COMPATIBILITY 

In this section we will prove Theorem 4.2 that for a P.D. pair (WA”, SW) there are 

compatible liftings of the Wu class, D E Hzn( W, Z W; Z/2), and quadratic functions II/: 

T’“(d W) -+ Q/Z. We shall also prove an equivariant version of this for Z/2 P.D. spaces 

which will be used in 46. 

If (I@“, ZM) is given the structure of a Z/2 manifold, then an equivariant quadratic 

function $: T’“(dM) + Q’Z is one with the same values on the two copies of TZn(8fi). An 

equivariant lifting of the Wu class is a class 0 E H’“(M, dM; Z/2) such that DH L,~,,(v~) 

under the map H’“(M, dM; Z/2) N H’“(&?, S&i; Z/2) --+ H’“(fi, Z/2). By Theorem 2.2, 

equivariant quadratic functions exist, and equivariant liftings of the Wu class exist since 

Z’?,(V‘Q) 1 (cm) = 0. 

THEOREM 5.1 (Compatibility). 

(a) Gicen (&I”‘, aM>, a P. D. pair, and I/I : T’“(olM) -+ Q/Z a quadratic flmction, the,1 

there is a lifting of the Wu class G.~~(I?,,~) to D E H’“(M, aM; Z/2) satisJving 

$(i*y> = *(a, y) - t(y, (j*>-‘y) in Q,/Z (*) 

for all y E H’“(M, Z) with i*y E T*“(dM). 

(b) If (Man, dA4) is a Z/2 P.D. space and $ as in (a), is equirariant then there is m 

equicariant lifting of the Wu class, it, tt*hich satisjes (*). 

Proof C E H’“(M, aM; B/2) is completely determined by its values on H’“(M; Z/2) and 

any homomorphism H*“(M; Z/2) --f Z/2 is realizable as (2, ) for some D. In both cases (a) 

and (b) there are two subspaces A, and A1 of H’“(M; 2,/2) on which the values of L? are 

forced. The values are predetermined on A, by the condition that D is a lifting of the Wu class 

(or an equivariant lifting) and on A, by the condition that L’ is compatible with rl/. Thus there 

will be a a E H’“(il/, dill; B/2) meeting both these conditions if and only if they determine 

the same values on A, n A2. 

Proof of (a). Here A, = im(j*: H’“(M, aM; Z/2) -+ H’“(M; Z/Z)), and (a, i*(z)) = 

(z, j*z) (= (z’, [M, aMI>) is the forced homomorphism ‘pl: A, -+ Z/2. Az = im(p,: B-+ 
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H’“(M; 2’2)) where B c H’“(M; Z) is {v[ i*y E H’“(SM; Z) is torsion). Compatibility re- 

quires that 

f<c. Pa) = I(/(i*Y) + +(J’, tj*)-'y). t*> 

The right hand side of this equation is easily seen to define a homomorphism (p2 : A, 4 Z/2. 

We must show that qi[A, n A, = q2jA, n AZ. 

A, n Al consists of ~~0)) for J E B with i*y E 0 mod 2 (since i*y E 0 mod 2 if and only 

if p2(y) = j*z for some z in H2”(M, d&Z; Z/2)). Thus ids = 2)~ for some N’ E T’“(dM). By 

Lemma 3.4(b) _I(z, j*:) = -S_(y, (i*)-‘y) + 2L(rv, NV). Since (Il/i*y) = rc/(Z\v) = 4$(1v) = 

2 21c/(~v) = 2L(v, iv), we see that (pi(p2(y)) = (p2(p2(,v)). This proves vi = cpz on A, n A2 

and shows a compatible t’ E H’“(M, 8M; Z/2) exists. 

Proofof( In this case A, = im(x *: H’“(fi; Z/2) + H’“(M; Z/2)) and ‘pl: A, + 2,‘2 is 

given by qi(n*z) = (z’, [iii]), since it is shown in [IO] that (L~~~(Y.~) . z, [A]) = (z*, [A]). 

A, = im(pz: B -+ H’“(M; iZ/2)) as before and (p2: A, -+ B!2 is again defined by the 

equation (*). 

A, n A, = {pz(y)l i*y is torsion and pz(y) = rr*z}. The condition that p2(y) = n*(z) 

for some z implies that i*(y) = (y,, y, + 2~‘) in T2”(ZM) = r2”(Sfif) 0 rzn(8fi). We may 

rewrite this as i*(y) = (y,, 2w - J,). Thus by Lemma 3.6, 

+z . z = +(y, (j*)-‘y) + 2L(kv, \v) - L(p,, y2). 

rl/(i*Y) = $(u,) + iN1.2) = iMY,> + $(2rv - Yi) = 2$(~,) + 411/(w) - L(2nv, yi) 

= L(1’,, y,) + 2LOr1, M’) - L(y,, Yi) - L(Yz 3 Y1) = 2-q,Y, ,v) - UY,, Y,). 

Thus we see 40, = (p2 on A, n AZ in this case also. This proves Theorem 5.1. 

Note. We could also prove that given a lifting (equivariant lifting) of the Wu class, then 

there is a compatible quadratic (equivariant quadratic) function. However, there is not a one 

to one correspondence between liftings of the Wu class and quadratic functions. There is a 

natural extension of Theorem 5.1 to B/k P. D. spaces for any k. Once again one may prove 

that there are compatible equivariant Wu classes and quadratic functions. The proof, how- 

ever, is much more complicated since if k # 2, fi does not satisfy PoincarC duality with Z/2 

coefficients. Thus nln(vty) is not determined by its cup product with cohomology classes as 

in the proof of Theorem 5.1(b). 

S6. APPLICATIONS 

In this section we will give some applications of our main formula, Theorem 4.3. 

THEOREM 6.1. Let ( W, d W) be a PoincarC pair of dimension 4n and let Ic/ : T2”(a Wj -+ Q/Z 

be a quadratic function ocer the linking pairing. Let 0 E H’“( W, 8 W, Z/2) be a lifting of the Wtc 

class compatible with I/I. Then 

I( W’“) z (s(C), [W, 3 WI) - A(T’“(a W), $) (mod 4) 

where 9’(O) E Hdn( W, 8 W, Z/4) is the Pontrjagin square of 8. 

Before proving Theorem 6.1, we give some corollaries. 
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COROLLARY 6.2. Let W’” be a Z ‘2 P.D. space with d WA” = 2.11’“-‘. Let i? E 

H’“( W, ZW, 2.‘2) be an equicariant lifting of the Wu class. Then 

I( W’“) = (Y(D), [W, d W]) - 20(M) E z/4 

where o(M) E U/2 is the number module 2 of 2-primary summands of T’“(M). and 2 : IF2 + 2,‘4 

is the inclusion. 

COROLLARY 6.3. Let W be a 214 P. D. space and let i? E H2”( W, 2 W. Z/2) be an eqzrirariant 

lifting of the Wu class. Then 

I( WS”) z5 (9(D), [W, a W]) E z, 

Proof of Corollary 6.2. Let $: T’“(d W) -+ Q/Z be an equivariant quadratic function 

compatible with 6 E H’“( W, 8 W, Z/2), say I) = 3 @ $. 4: T’“(M) --* Q/Z. By (2.10) 

A(T’“(M), 4) = a(M) (mod 2) hence, byTheorem 2.7(ii), A(T’“(aW), $) = 2A(T*“(M), $) = 

2a(M) (mod 4) and Corollary 6.2 follows immediately from Theorem 6.1. 

Proof of Corollary 6.3. Since the index modulo 4 of Z/4 P. D. spaces is a bordism invari- 

ant, it suffices to check Corollary 6.3 for generators of the Poincarl duality bordism group 

@,“(pt, Z/4). There is an exact sequence 

. . . -+ ngypt, a/2) f n;,“cpt, Z/4) 5 n,‘f(pt, Z/2) 5 n:;_ ,(pt, Z/2) -+ *. . 

where, if P is a Z/2 P.D. space, i[r] = [2v] and S[p] = [6P]. It is clear from Corollary 6.2 

or Remark 4.8 that Corollary 6.3 holds for Z/4 P. D. spaces Cv, with [I@] = i[P], ra Z, 2 P.D. 

space. 

Suppose S[P] = [6v] = 0 E nif- I(pt, Z/2). Then from the exact sequence 

..* -+ fl,‘,“_,(pt, E)J+ fI,‘,“_,(pt, Z)+ @,“_,(pt, Z/2) + ... 

we can find a P. D. cobordism v’ from - Sv to 2N, for some (4n - 1) Poincart space N. 

Then W = V Uav 2V’ (see diagram) is a Z/4 P. D. space with j[l”v] = [P] E R,P,D(pr, Z/2). 

W 

It suffices to prove Corollary 6.3 for this Z/4 P.D. space W. 

First Z(W) = I(V) + 2Z(y’. Secondly, form the space W’ by identifying with one an- 

other the two copies of V’, and then the copies of N. 
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Then W’ has a “normal bundle “, and the Wu class of this normal bundle lifts to a 

class L.’ E Zf’“( CV’, ijp u .y; 2'2). Define c = x*(L.‘) E Zfz”( W, 2 W; Zt2) where n: W-+ W’ js 

the obvious map. Then ? is an equivariant Wu class for LV, i*(~.‘) E H’“(p, 6P; i2;2) is an 

equivariant Wu class for the Z; 2-manifold p, and j*(,‘) E Zfl”( Y. ? v’ ; Z 3) is a lifting of the 

Wu class for V’, where i: i; -+ W’ and j: v’ -+ W’ are the obvious maps. Moreover, it is not 

difficult to see that 

(P(C). [W, dW]) = (a(i*(c’)), [v, 6P]) + Z(j*(c’)‘, [V’, SV]) 

= I( V) + 2a(@) + 2(j*(c’)*, [V’, CV’]) (mod 4) by Corollary 6.2 

z:(y)+- 2a(6P) + 2(Z( Y) + ~(i.vI)) (mod 4) by Remark 4.8. 

Since 3 V’ = SP + 2N, 2a(?V’) = 2a(6p) (mod 4) and hence 

(b(c), [W, 8 W]) z Z(V) + 21( V’) = Z(W) (mod 4), 

which proves Corollary 6.3 

We point out that if we had proved in $5 the existence of compatible equivariant 

liftings of the Wu class and equivariant quadratic functions for z,‘4 P.D. spaces, Corollary 

6.3 would follow trivially from Theorem 6.1. The above argument turns out to be simpler, 

however. 

Proof of Theorem 6.1. We need to recall some notation from 5%. We have the Wu class 

L‘?” E N’“( W, Z/2) and liftings 0 E ZZ’“( I+‘, 8 W, z/2), ~1’ E H2”( IV, 2’) with j*(8) = pz(v’) = 

rln E Hln( W, Z/2). We have a class b E T’“(d W) such that $i(x) = L(b,i (x)) for s E T”( W), 

and a class t E T’“(W) such that i*(t) = 26. Moreover, i*(d) = 26 E H*“(d W, Z). Choose 

cocycle representatives 0, , c #‘, 6, and t, for D, v’, b and t respectively, such thati’ = 

p2(v#‘) and i#(c,‘) = i”(r#) = 2b,. Then U# = L’#’ - t, e C’“( W, 8 FV, Z) is a relative co- 

cycle, which represents a class v E H’“( Pv, d W, Z). Let pz(c,) = a # - sx E C2”( rY, a W, 212). 

Then s# represents a class s E ZZ’“( W, 8 W, 212) andj*(,) = pz(t) E ,I”( W, Z/2). 

Formula 4.3 asserts that 

z(w4”) = cc*, [w, awl) + $(b) - Apyaw), $1 E zg. 

Since 2$(b) = L(b, b) E iZ,‘Z c Qiiz, we see that if we interpret L(b, b) E Z/4 we have 

I( Wsn) = (v*, [W, a W]) + L(b, 6) - A(T’“(S W), Ic/) E ;2,:4. 

Since also 

p-r(c’) = P(v) = P(3 + s) = P(D) + P(s) + i*(s’) 

= P(D) - 9(s) E P( w, a w; Z/4), 

where i *: H*( , H/2) --+ H*( , 2,‘4) is induced by the inclusion 2: Z/2 --* 2!4, Theorem 6.1 

follows if we prove that L(b, 6) = (9(s), [W, a W]) E 2!4. But this is exactly Lemma 3.5(b), 

hence Theorem 6.1 is proved. 

For our final application we produce a multiplicative characteristic class Z(t) for spher- 

ical fiber spaces, 5, so that 

I( bp) E (Z(V~), [CT]) mod 4 
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for any Z or D1’P.D. space, r 2 2. It will then follow that I(c) E L(5;) mod 4 for any topo- 

logical bundle. Here L(j) is the characteristic class for topological bundles which is multi- 

plicative, and which gives the index for Z P. D. spaces and the index mod 2k for H/2k P. D. 

spaces. It follows from results of [IO] that these two properties characterize L E 

H’*(Bsror ; Zt,,). A slight generalization of the argument there shows that any Z/2k charac- 

teristic class of topological bundles which is multiplicative, gives the index mod 2k for any Z 

or Z/2k P. D. space, and which agrees with the Z/2k reduction of L for vector bundles is equal 

to the Z/Zk reduction of L for all topological bundles. We will show I satisfies all these 

properties. 

To construct 1, first consider L E H4*(Bso, I$,,). Since p,(L,) = ~~(9’(o~J) = 

rZn2 E HJ"(Bso , &‘Z), it follows that pA(L,) = ~I(c~J + i, a,(~,~ . . N;,,) E H”“(B,o, Z/4), 

where o,(+v~ . . . wdn) E HS”(Bs, , Z/Z) is a polynomial in the Stiefel-Whitney classes, well- 

defined module image($‘). Using the formulas of [13] one can compute the on(\v2 . . . rv4,). 

For example 

p,(.&) = 9(rjJ + i,(w:, + iv6 w2 + wz4) 

p,(L,) = 9(P6) + i*(w, NJ22 + W62 + wg wz3 + IV,3 + w, w3 lYz + w-j w4 IV3 + w32w23). 

THEOREM 6.4. Lef I, = Y(uJ + i,a,,(w, . . . w4,,) E HJ”(Bs,, Z/4). Let I = 1 -t I, + I2 

+ . . . then, 

(i) 1(t) = I_.(s) mod 4for all oector bundles; 

(ii) 1 is multiplicative for sphericalfiber spaces, and 

(iii) if Iv is a Z/4 P. D. space with normal bundle vcy then 

Z(p) = (l(vw), [WI) mod 4. 
As a corollary, we have 

COROLLARY 6.5. p,(L,) = 9(uZn) + i*(a(rcr , . . , w4,)) E H’“(Bsrop; Z/4). 

Proof of Theorem 6.4. (i) is obvious from the definition of 1. 

(ii) Given two oriented spherical fiber spaces <, ‘I, we may compute 

l(5 0 II) = C (S(+,(< 0 tl)) + i, o”(5 @ v)) 
n;r_O 

mechanically using the formulae for 9(x + y), 9(x . y), ck(( Or,-), and )v~(< 0 17). We know 

that if t: and II are vector bundles, the result of this computation is l(t; 0 q) = 1(t) - I(q) 

since I = p,(L) E H”*(Bso, Z/4). But there are natural inclusions H*(B,,, 712) c 

H*(Bx 7 Z/2) and H*(Bso, Z/4) c H*(B,, , iZ/4) (defined by thestiefel-Whitneyclassesand 

their Pontrjagin squares), compatible with all structure involved. Thus /(t @q) = /(Q . I(q) 

for arbitrary spherical fibrations. This proves Theorem 6.4(ii). 

(iii) Now let IF be a Z/4 PoincarC space. It follows readily from Corollary 6.3 that 

f( @) = (v*9(rZn), [w]) E B/4. Thus Theorem 6.4(iii) is equivalent to 

(v*i, a,(~, . . w& [W]) = 2(v*cr,(w, . . . W&$“), [ Gq) = 0 E 2(2/2) c Z/4. 

This is true if IT is a closed smooth manifold. Thus the element 

cJ,(\1’2 . . . w,,,)U E H4”(MS0, Z/2) 
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is decomposable over the Steenrod algebra since it vanishes on n,(MSO) and there is a map 

from MS0 to a product of Eilenberg-MacLane spaces, which induces an isomorphism in 

Z/2 cohomology [16]. It follows that G,,(w~ . . . WJ U E H’“(MSG, 2,‘2) is also decomposable 

over the Steenrod algebra. But if I? is a ZJ’~ PoincarC space we can find a proper embedding 

of pairs (kv, b I- c (Sg+““, Sqc4”-‘) where Sj+‘” = Y+‘“-’ u4 eqT4”. Such an embedding 

defines a collapsing map c: Sz”’ + T(vaq), of degree one in the top dimension. Since all 

Steenrod operations vanish in Sq+‘“, it follows that 

(v*G,(Wt . . . W&), [ CV]) = (c*(Tv)*c7,(wt’z . . . W.$“)U, [s;+-y> = 0, 

where T(v) : T(v~*) -+ MSG. This proves Theorem 6.4(iii). 
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