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Surface bundles: some interesting examples

Jim Bryan, Ron Donagi, András I. Stipsicz

1. Introduction

It is a well-known fact that Euler characteristics multiply in a fibration. According to
classical examples of Atiyah [1] and, independently, Kodaira [6], the signature does not
admit this property — there are 4-manifolds with nonzero signature admitting surface
bundle structure. After sporadic examples [1, 5, 6], a more systematic study of this
phenomenon was initiated by Endo [2]. More recently it has been proved that

Theorem 1.1 ([3]). For any h ≥ 3 and g ≥ 9 there is a genus-h surface bundle X → Σg
with nonzero signature.

Remark 1.2. It is fairly easy to see that for g = 0, 1 a fibration X → Σg has vanishing
signature. 1 It can be proved that the same holds once h ≤ 2. Therefore Theorem 1.1
almost solves the “geography problem” of surface bundles with nonzero signature, i.e., the
determination of pairs (g, h) ∈ N × N for which a genus-h fibration over the surface of
genus g with nonzero signature exists. Notice that a surface bundle with g = 2, h = 3 and
nonzero signature (such a manifold admits a symplectic structure according to [13]) would
violate the Bogomolov-Miyaoka-Yau inequality c21(X) ≤ 3c2(X). (This inequality is known
to be true for complex surfaces and is conjectured to hold for symplectic 4-manifolds.)

In this note we give two constructions for surface bundles with nonzero signature. In
Section 2 a very elementary topological construction of a genus-5 fibration of nonzero
signature is given. In Section 3 — by improving techniques already present in [5] —
we get surface bundles over the genus-3 surface. Using these examples we can improve
bounds on the asymptotic behaviour of the genus function gh(k). (For the definition of
gh(k) see Section 3 or [3].) We also show a construction which produces rational curves
in moduli spaces of complex curves of certain genus. In some of our constructions we
will use the correspondence between Lefschetz fibrations and relators in mapping class
groups composed by right-handed Dehn twists. (This correspondence is given by the
monodromies of the singular fibers; for a more careful treatment of these issues see [3, 4].)

1The proof of this fact follows from the equality χ(X) = 4(g − 1)(h− 1) and the inequality b1(X) ≤
2g+2h for a genus-h fibration over Σg. The above inequalities show |σ(X)| ≤ b2(X) ≤ 4gh+2, hence for
g = 0 the iterated fiber sum X#fX#fX has vanishing signature (since σ(X#fX#fX) = 3σ(X)); this

implies σ(X) = 0. For g = 1 the pull-back of X → Σ1 via a (4h+ 3)-fold unramified cover π : Σ1 → Σ1

shows that |σ(π∗(X))|= (4h+ 3)|σ(X)| = 0.
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2. The topological construction

Consider the 4-manifold Σ2 × S2 (here, as always, Σg denotes the Riemann surface of
genus g), and fix the singular curve C = ∪4

i=1{qi} × S2
⋃
∪2
j=1Σ2 × {pj} ⊂ Σ2 × S2 (qi

and pj are distinct points in Σ2 and S2 resp., i = 1, . . . , 4 and j = 1, 2).

Lemma 2.1. The desingularization Y of the double branched cover of Σ2 × S2 branched
along C is diffeomorphic to Σ2 × S2#8CP2.

Proof. Compose the map ϕ : Y → Σ2× S2 with the projection to Σ2. The resulting map
η : Y → Σ2 equips Y with a fibration over Σ2; the generic fiber is the double branched
cover of S2 branched in two points — hence it is the sphere S2 again. Therefore η defines
a singular ruling on Y . By taking a closer look at the desingularization process, we will
show that Y is diffeomorphic to Σ2 × S2#nCP2 for some n and also determine the value
of n. (It is known that a singular ruling is the blow-up of a ruling [4], but we will not use
this fact in our discussion.)

One way of resolving the singularities of a double branched cover of Σ2 × S2 along
C is the following: blow up Σ2 × S2 in the singular points of C and take the branched
cover along the (smooth) proper transform in Σ2 × S2#8CP2. The blow-ups turn the
trivial S2-bundle Σ2 × S2 → S2 into an S2-fibration with four singular fibers — each
singular fiber is the plumbing of two disjoint rational (−1)-curves and a rational (−2)-
curve which intersects the two exceptional curves transversally once. The (−1)-curves give
rise to rational (−2)-curves in the branched cover (since the exceptional curves are not
in the branch locus), while the (−2)-curves become rational (−1)-curves upstairs, since
the (−2)-curves are in the branch locus. (For more details about the above process see
Chapter 7 of [4].) Blowing the four (−1)-curves in Y down we still have a singular ruling
on the resulting 4-manifold — each of the four singular fibers consist of two transversally
intersecting (−1)-curves now. Blowing down four of these we end up with an honest
S2-fibration over Σ2, hence Y is diffeomorphic to Σ2 × S2#8CP2.

The composition of ϕ : Y → Σ2 × S2 with pr2 : Σ2 × S2 → S2 provides a holomorphic
map h : Y → CP1; after perturbing h slightly we get a genus-5 Lefschetz fibration gY : Y →
S2 on Y . (For more about Lefschetz fibrations see [3, 4, 8], for example.)

Lemma 2.2. The Lefschetz fibration gY : Y → S2 admits 20 singular fibers.

Proof. From the handlebody decomposition of a genus-g Lefschetz fibration X → S2 it
is clear that χ(X) = 2(2 − 2g) + s where s denotes the number of singular fibers in the
fibration. In our case Y = Σ2 × S2#8CP2, hence computing χ(Y ) in two different ways
yields χ(Y ) = 2(2−4) +8 = 2(2−10) +s. This implies s = 20, concluding the proof.

Notice that h : Y → S2 has two singular fibers (over the points p1 and p2 ∈ S2 in
the above notation), and the two singular fibers admit coinciding monodromies. By
perturbing h we can achieve that the critical points of the projection Y → S2 become
Morse critical points and the new map is injective on the set of its critical points. It
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is not hard to see that the monodromy of each (new) singular fiber is a right-handed
Dehn twist along some simple closed curve (see, e.g., [4]). Since we can assume that the
perturbations of h agree near the two singular fibers, the word in the mapping class group
corresponding to the perturbed fibration gY : Y → S2 is of the form Πm

i=1ti · Πm
i=1ti = 1.

Lemma 2.2 now implies that m = 10, hence the relator given by the monodromies of
gY : Y → S2 is (Π10

i=1ti)
2 = 1 (where all ti are right-handed Dehn twists along the

appropriate vanishing cycles of the singular fibers). It is a well-known fact that the
mapping class group Γg is perfect (i.e., (Γg)′ = Γg) once g ≥ 3, consequently (Π10

i=1ti)
−1

can be written as the product of commutators: (Π10
i=1ti)

−1 = Πk
j=1[aj, bj] ∈ Γ5. The

relator Π10
i=1tiΠ

k
j=1[aj, bj] = 1 now defines a genus-5 Lefschetz fibration gZ : Z → Σk

over Σk with 10 singular fibers (corresponding to the Dehn twists ti in the defining
relator). Fix disks D1, D2 ⊂ S2 and DZ ⊂ Σk containing 10 critical values of gY and
gZ respectively (and Di ⊂ S2 contains the 10 critical values corresponding to the 10
singular fibers providing monodromy equal to Π10

i=1ti). It is now easy to see that the
fibrations g−1

Y (Di) → Di (i = 1, 2) and g−1
Z (DZ ) → DZ are fiber- and orientation-

preserving diffeomorphic. By changing the orientation on Z this diffeomorphism becomes
orientation-reversing, hence can be used to glue Y − (g−1

Y (D1)∪ g−1
Y (D2)) and two copies

of Z − g−1
Z (DZ ) together along their boundaries. In this way we get a genus-5 surface

bundle f : X → Σ2k with signature σ(X) = σ(Y ) − 2σ(Z). (The negative sign in the
formula results from reversing the orientation on Z.) Now we are ready to prove

Theorem 2.3. For all sufficiently large g there exists a 4-manifold X which carries a
surface bundle structure f : X → Σg with fiber genus 5 and has positive signature.

Proof. Consider the genus-5 fibration X → Σ2k constructed above. All we need to show
is that σ(X) 6= 0. (If σ(X) < 0 then reverse the orientation on X; this leaves the
surface bundle structure unchanged but changes the sign of the signature.) We will show
that σ(X) is not divisible by 8 — in particular, it is nonzero. Notice that (based on
our previous description) we know that σ(Y ) = −8, hence we only need to examine
σ(Z). According to a result of Gompf (see [4], for example), a Lefschetz fibration with
fiber genus at least 2 admits a symplectic, hence an almost complex structure. Since
the Noether formula applies to almost complex manifolds, we get that σ(Z) + χ(Z) is
divisible by 4. Now χ(Z) can be computed as (2−2 ·5)(2−2 ·k)+10 ≡ 2 (mod 4), hence
−2σ(Z) ≡ 4 (mod 8). This observation shows that σ(X) ≡ 4 (mod 8), hence it is not
divisible by 8, consequently it is nonzero. Now for any g ≥ 2k the fiber sum of the above
X with the trivial genus-5 fibration Σ5×Σg−2k → Σg−2k gives the desired fibration since
σ(X) = σ(X#f (Σ5 × Σg−2k)).

Remark 2.4. According to [7], k can be chosen to be at most 6, hence we can arrange
that X (with the properties given by Theorem 2.3) fibers over a Riemann surface of genus
at most 12.

Remark 2.5. Similar argument works for any fiber genus of the form 4n+ 1. For other
fiber genera either the modification of the argument or the (tedious) determination of the
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signature σ(Z) is needed in order to reach a conclusion similar to the one we proved in
Theorem 2.3.

3. Branched cover constructions

Now we describe our construction of surface bundles with small base genus (allowing the
fiber genus to become comparatively large). The main result of this section is summarized
by the following theorem:

Theorem 3.1. There exist smooth algebraic surfaces Xn that have signature σ(Xn) =
8
3n(n− 1)(n+ 1) and admit two smooth fibrations Xn → B and Xn → B̃ so that the pair
(g, h) given by the base genus and fiber genus of the fibrations are (3, 3n3 − n2 + 1) and
(2n2 + 1, 3n) respectively.

In proving Theorem 3.1 we will describe an improved version of Hirzebruch’s original
branched cover construction given in [5].

Proof. Hirzebruch showed ([5], page 262) that if D1, D2 ⊂ S are smooth, disjoint curves
in an algebraic surface S, and the homology class of the divisor D = D1 −D2 is divisible
by n, then there exists an algebraic surface X which is a Z/n cyclic cover of S, totally
ramified over D, and the signature of X is given by

σ(X) = nσ(S) − n2 − 1
3n

D2.

Let B be a curve of genus 3 with a free involution τ . (Consider, for example an
unramified double cover B → C of a genus-2 curve C and choose τ to be the nontrivial
deck transformation.) Let ∆ ⊂ B × B denote the diagonal and let ∆′ denote its image
under Id × τ . ∆ and ∆′ are smooth, disjoint curves, but ∆−∆′ is not a divisible class
so we cannot directly apply Hirzebruch’s construction. The solution is to find a certain
unramified cover π : B̃ → B and pull ∆ and ∆′ back to B̃ ×B. We define π as follows.

Note that the image of 1−τ∗ : H1(B;Z/n)→ H1(B;Z/n) has rank two, hence we have

0→ Ker(1− τ∗)→ H1(B;Z/n)→ (Z/n)2 → 0.

Let π : B̃ → B be the (Z/n)2 cover corresponding to the surjection π1(B)→ H1(B;Z/n)→
(Z/n)2. Note that the genus of B̃ is 2n2 + 1.

Let Γπ ⊂ B̃ × B be the graph of π and let Γ′π be the image of Γπ under Id × τ . Γπ
and Γ′π are smooth, disjoint curves; let D = Γπ − Γ′π.

Lemma 3.2. The homology class of D is divisible by n.

Proof. We need to show that [D] is 0 in H2(B̃ × B;Z/n). For any unramified map
f : Z → Y , the class of the graph Γf ⊂ Z × Y is given by

∑
i f
∗(αi)× αi where {αi} is a

basis for H∗(Y ) and αi is the dual basis so that αi · αj = δij . (Here · is the intersection
product, i.e., the Poincaré dual of the cup product.) Since f is a free cover, if α is a
geometric cycle then f∗(α) is just represented by the inverse image f−1(α).
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For the sake of concreteness, we pick a geometric basis {a, b, c, d, e, f} for H1(B;Z/n)
such that the intersection form and τ∗ are given respectively by

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 and


0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 .

This is simply what one gets if one draws B with its 3 holes in a row, assigns (a, b), (c, d),
and (e, f) to the three standard pairs of generators, and lets τ be the involution obtained
by 180◦ rotation about the axis passing through the middle hole.

We then have the basis {pt, a, b, c, d, e, f, B} forH∗(B;Z), and its dual basis is {B, b,−a,
d,−c, f,−e, pt}. Thus

Γπ = π∗(pt)×B + π∗(B) × pt
+ π∗(a)× b− π∗(b)× a + π∗(c) × d− π∗(d)× c
+ π∗(e) × f − π∗(f) × e

and

Γ′π = π∗(pt) ×B + π∗(B) × pt
+ π∗(a)× f − π∗(b) × e + π∗(c) × d− π∗(d)× c
+ π∗(e)× b− π∗(f) × a

so

D = π∗(a)× (b− f) + π∗(e) × (f − b)
− π∗(b)× (a− e) − π∗(f) × (e− a)

= π∗(a− e) × (b− f) − π∗(b− f) × (a− e).

One can use the definition of π to directly check that the elements π∗(b−f) and π∗(a−e)
are 0 modulo n. This proves the lemma.

Let Xn be the Z/n cyclic branched cover of B̃ × B ramified over D. Let Xn → B̃
and Xn → B be the induced projections. Since D|pt×B is the divisor π(pt) − τ (π(pt)),
the fibers of Xn → B̃ are smooth Z/n covers of B totally ramified over 2 points, hence
have genus 3n. Similarly, since D|

eB×pt is the divisor π−1(pt) − τ (π−1(pt)), the fibers of

Xn → B are Z/n covers of B̃ ramified over 2n2 points, hence have genus 3n3 − n2 + 1.
The signature of Xn is determined by Hirzebruch’s formula which, since σ(B̃×B) = 0,

becomes

σ(Xn) = −n
2 − 1
3n

D2.
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Now D2 is easily computed as follows:

D2 = 2π∗(a− e) · π∗(b− f) × (b − f) · (a− e)
= 2π∗(a · b+ e · f) × (b · a+ f · e)
= −8π∗(pt) × pt
= −8n2.

Thus we have σ(Xn) = 8
3(n3 − n) which completes the proof of our main theorem.

Remark 3.3. One way we improved Hirzebruch’s construction in the above was by con-
sidering an n2-fold cover as opposed to the n6-fold cover taken in [5]. (We replaced
the kernel of the natural map π1(B) → H1(B;Z/n) by the kernel of the composition
π1(B)→ H1(B;Z/n)→ (Z/n)2 when we defined the unramified cover of B.) This makes
us able to find fibrations over the same base genus as in [5] with smaller fiber genera.
The other basic improvement was to observe that both the projections to B and B̃ induce
smooth fibrations, in particular, Hirzebruch’s original construction gave a fibration with
base genus 3. (This latter fact was also observed by LeBrun [9].)

4. Concluding remarks

4.1. Asymptotics of the genus function

The question of determining the smallest possible base genus of a surface bundle over
a surface with nonzero signature can be refined as follows:

Definition 4.1. Let gh(k) be the smallest possible base genus for a smooth genus-h fibra-
tion with signature 4k, i.e.

gh(k) = min{g | ∃ a Σh-bundle X → Σg with σ(X) = 4k}.

It is not hard to see that the sequence gh(k)
k converges; following [3] we define Gh as

limk→∞
gh(k)
k

.

As a corollary of Theorem 3.1 we have:

Corollary 4.2. For h = 3n the asymptotic value Gh satisfies G3n ≤ 3n
n2−1 .

Proof. The proof follows the standard argument by taking an m-fold unbranched cover
B̃m of the base B̃ and pulling back the family Xn → B̃ found in Theorem 3.1. In this
way we obtain a genus-3n fibration over a curve of genus 1 +2n2m, whose total space has
signature 8m

3
(n3 − n). Therefore g3n(2m

3
(n3 − n)) ≤ 1 + 2n2m and so

G3n ≤ lim
m→∞

1 + 2n2m

2m(n3 − n)/3
=

3n
n2 − 1

.

This concludes the proof of the corollary.
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Remark 4.3. Notice that in Definition 4.1 we used the fact that the signature of a surface
bundle is divisible by 4. This follows from the Noether formula (because a surface bundle
of fiber genus ≥ 2 admits an almost complex structure) in the same way as this formula
had been used in the proof of Theorem 2.3.

Remark 4.4. By setting h = 3n we get that Gh ≤ 9
h− 9

h

≤ 9
h−2

once h is divisible by 3.
This bound improves the bound found in [3] nearly by 50%.

4.2. Surfaces in the moduli of curves

By fixing a Riemann metric on a surface bundle f : X → Σg of fiber genus h the
fibers become complex curves, therefore the map f induces a map ϕf : Σg →Mh, where
Mh is the moduli space of genus-h complex curves. It is known that H2(Mh;Z) ∼= Z
once h ≥ 5 and from Meyer’s work [11] for a generator a of this cohomology group we
have 4〈a, (ϕf)∗[Σg]〉 = ±σ(X). Therefore a surface bundle with nonzero signature gives a
(real) 2-dimensional surface in Mh representing a nontrivial homology class. Hence the
problem of determining the smallest possible base genus of a surface bundle with nonzero
signature and fiber genus h is in close connection with the minimal genus problem of
2-dimensional homology classes ofMh. Notice, though, that because of the failure of the
existence of the universal curve overMh, a map ϕ : Σg →Mh does not necessarily come
from a surface bundle through the above construction.

We conclude the paper by a construction of a holomorphic map ϕ : CP1 →M321. Since
ϕ(CP1) is a complex submanifold, it is nontrivial in homology (because the Kähler form
of M321 evaluates nontrivially on it).

Remark 4.5. It is known [10] that π1(Mh) = 0, hence H2(Mh;Z) ∼= π2(Mh), implying
that every second homology class can be represented by a sphere. The novelty of our
construction is that it provides an example of a class represented by a holomorphic sphere,
i.e. a complete rational curve.

4.2.1. The construction of the map

Consider an unramified double cover τ : C ′ → C of the holomorphic genus-2 curve
C. For c ∈ C we construct a genus-321 holomorphic curve (and therefore an element in
M321) in the following way: take the unramified cover of C ′ − τ−1(c) corresponding to
the subgroup of π1(C ′− τ−1(c)) specified by the kernel of the natural surjection π1(C ′ −
τ−1(c)) → H1(C ′ − τ−1(c);Z/2). Let Bc be the compactification of this curve; an easy
argument shows that Bc is of genus 321. The complex structure on Bc only depends on
the complex structure of C and the point c, therefore Bc is isomorphic to Bt(c) where
t : C → C is the hyperelliptic involution of C. Since the quotient of C by the action of t
is CP1, we get the desired map ϕ : CP1 →M321 by [c, t(c)] 7→ [Bc].

One can also argue that the classifying map B → M3n3−n2+1 induced by Xn (see
Section 3) factors through B → C → CP1 which gives in particular a rational curve in
M21. In all of the above cases, it is not hard to show that the family over the genus-3
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curve B will not descend to a family over the genus-2 curve C (or CP1, obviously). Thus,
to find a fibration with a base of genus 2 requires a different construction.
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