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Abstract

The cohomology groups of the Seifert manifolds are well known. In this article a method is given
to compute the cup products in the cohomology ring of any orientable Seifert manifold whose
associated orbit surface &, and for any coefficients. In particular ti#/2 cohomology ring is
completely determined. This is applied to determine the existence of degree 1 maps from the Seifert
manifold toR P2, and to the Lusternik—Schnirelmann categary2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The ring structure of cohomology is a classical invariant associated with any CW-
complex and has many applications. For instanc#/ ifs a closed, orientable 3-manifold
then the homotopy classes of sections of the bundle of Lorentz metric tensors over the
(3+ 1)-dimensional space-time manifol x R turns out to be isomorphic g/, R P3]

(cf. Shastri, Williams and Zvengrowski [28], Zvengrowski[32]), which is an Abelian group
that depends only o#/X(M; Z/2) and whether there exists a degree 1 nMip> RP3
(type M = 1) or not (typeM = 2). It is well known that typeM = 1 if and only if there is

an elementc € H1(M; 7/2) with o # 0 (cf. [28], Shastri and Zvengrowski [27]).
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Another application appears in a theorem by Bredon and Wood [1] which asserts
the equivalence between the existence of a non-zero cup cubé(M; Z/2) and the
existence of an embedded, closed surface of odd Euler characteristic in the orientable 3-
manifold M (cf. [10]). As an example, this equivalence is used in a theorem by Kirby
and Melvin [13] relating the existence of two spin structures with different mod 4 Rochlin
invariant and having one non-zero Witten—Reshetikhin—Turaev invariant. Furthermore, the
existence of a non-orientable surface in an orientable 3-manifold is closely related to the
existence of one-sided Heegaard splittings (cf. Rubinstein [23]). Other applications of the
existence of a non-zero cup cube include the calculation of the invariants of 3-manifolds
introduced by Murakami, Ohtsuki and Okada [17, §3], and in the construction of normal
bordisms fromM to R P2 (cf. Taylor [31]).

The explicit calculation of the cup products is often quite complicated. There are several
methods available for determining the cup productsHdfX; A) for any commutative
ring A. One such method, for a manifold, uses the intersection theory of chains and
Poincaré duality. On the other hand, to obtain the cup products from their definition
(cf. [29]), it is necessary to find a chain approximation to the diagdfial- M x M.

This algebraic method will be used herein. The theory behind the construction of a chain
approximation to the diagonal is elementary (cf. Steenrod and Epstein [30, Chapter 5]),
but in practice the algebraic calculations involved can be daunting. One may well ask if
the construction of the diagonal approximation could be carried out on a computer. To
the best of the authors’ knowledge this is not feasible. This is because at each stage of the
construction there are infinitely many choices which must be correlated to produce a single
formula which is applicable in every case. On the other hand, a computer verification of
the diagonal formula, once constructed, may very well be possible.

If the fundamental grouplZ, of an irreducible, orientable 3-manifoltf is infinite,
which is always the case apart from a few well known exceptions (cf. Orlik [19]), then
M is an Eilenberg—MacLane spa&&/1, 1) (cf. Epstein [8] or [20, Satz 5]). The fact that
M is an Eilenberg—MacLane space is crucial since it then follows from MacLane [15,
Theorem 11.5] thati*(M; A) = H*(I1; A). Thus the computation of the cup products in
H*(M; A) can be transformed into a purely algebraic calculation in group cohomology,
S0 it is necessary to obtain a projectiél -resolution ofZ. One such resolution is the
equivariant chain complex, that is, the chain complex of the universal cdfvet M. This
method was developed by Reidemeister (cf. [22]) in order to classify lens spaces and to
calculate the Alexander polynomial in knot theory. The boundary maps are determined with
the help of the Fox calculus (cf. Fox [9], Burde and Zieschang [4]). A similar construction
has been used by Chevalley [5] in the theory of Lie groups.

In this paper the problem will be restricted to the case of the orientable Seifert manifolds
with orbit surfaces?. The results that are described here have (apart from Theorem 1.4)
been announced in [2], and it is the purpose of this work to give full details of the methods
and proofs involved, as well as to lay the foundation for a forthcoming generalization
of these results to the cohomology ring of any orientable Seifert manifold Hjith
coefficients (cf. [3]), for any prime (which will then solve the problem of the existence
of degree one maps onto any lens spA¢g, ¢g), by applying Theorem 2.1 [10]).



J. Bryden et al. / Topology and its Applications 105 (2000) 123-156 125

The family of Seifert fibred 3-manifolds has been studied extensively since they were
first introduced by Seifert in 1932. Any such 3-manifold is the union of disjoint circles,
called fibres, in a particular way. The orbit space, obtained by identifying each fibre to a
point, is a surface called the orbit surface of the manifold. Seifert developed a complete set
of invariants that characterize this family up to fibre preserving homeomorphism. Aside
from some well known exceptions, they fall into the category of 3-manifolds which are
completely determined up to homeomorphism by their fundamental group. The basic
definition and properties of Seifert manifolds are discussed in Seifert’s original paper [25]
(which was translated into English by Heil and can be found in the Appendix of [26])
and in such works as Hempel [12], Montesinos [16], Orlik, Vogt and Zieschang [20], and
Scott [24].

The notationM = (0,0,0] e : (a1, b1), ..., (am, by)) denotes an orientable Seifert
manifold with m singular fibres having invariantgi1, b1), ..., (aw, b,;), Euler number
e and orbit surfacé?. For each, (a;, b;) is a pair of relatively prime integers, with > 2.

The fundamental group i is

T =m1(M)=(s1,...,5m } | [s5,hl,s7 kP, for 1< j <m, s1...5mh°)

J
andR = ZI1 is the integral group ring ofT.
More specifically, the additive structure of the cohomology ring of the Seifert manifold
M =(0,0,0]¢: (a1,b1),..., (an,by)) is well known and can be determined by first
calculating its homology by using a CW-decomposition (or by abelianizingnd then
applying Poincaré duality. Assume that ..., a, are even and, 11, ..., a, are odd.
(i) If n>0thenHY(M;Z/2) ~ H3(M; Z)2) ~ (Z/2)" L.
(i) If n=0,letby,....bp=2(mod 4, bps1,...,b, =0(mod 4, andb, 11, ..., b, =
1 (mod 2, then
(@ HY(M;Z/2)~ H*(M;7/2) =0, if m —r + e =1 (mod 2 and
(b) HYM;72)2) ~ H3(M; 7)2) ~ 7,/2, if m —r + e =0 (mod 2.
Our main results are described in the following three theorems (cf. Section 3).

Theorem 1.1. Let M be the Seifert manifoldO, 0,0] e : (a1, b1), ..., (am, b)) and let
8 jx denote the Kronecker delta.

(i) f n>0(soay,...,a, are even andu,+1, ..., a, are odd, as abovyethen there
are generatorsy;, i, y in dimensionsl, 2, and 3, respectively, such that as a
vector spaceH*(M;7Z/2) = Z/2{1, «;, Bi,y | 2<i < n}. For 2< j, k < n, the
cup products inH*(M; 7Z./2) are given by

al aj
aj k=, )Pt | , )Ai and o - B =38ky;
wheref1 = B2+ --- + B,. Moreover, if2 <i < n as well, then

‘g)y if i # jor j #k,

2=[(5)+(3)]

Qi -Aj - =
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(i) If n=0anda denotes the generator &f1(M; Z/2) whenm — r + ¢ =0 (mod 2
then,

«®#0 ifandonlyif e—2p+ Y a;b;=2(mod 4.
j=r+1

Furthermore, ife® = 0 thena? = 0.
Theorem 1.2. With the above notation, if > 2, thentype M = 1 exactly when

(CJZl) + (azl) =1(mod2 forsomei,j,1<i,j<n.

If n =1, thentype M = 2. Finally, if » = 0, thentype M = 1 if and only if

m
m—r+e=0(mod? and e—2p+ Z ajb; =2 (mod 4.
j=r+1

Let catX denote the normalized Lusternik—Schnirelmann category of the spaitet
is, catX + 1 is the least number of open sets, each contractiblé,ithat coverX. The
Ganea conjecture for Lusternik—Schnirelmann category states that,¥dJ,

caf(X x §") =catX)+1

(cf. [(3), 84]). This conjecture is resolved for Seifert manifolds in a number of different
cases.

Theorem 1.3. With the above notation, suppose that

(1) n > 2 and there exist$?) # (%) (mod 2 for somel <i, j <n, or

(2) n=0,m—r+e=0(mod2,ande —2p+31_  1a;b;=2(mod 4.
ThencatM = 3 and furthermore for any integers, ..., n; > 1,

Cat(MxS"1 NEEE xS"k):CatM—i—k:S—i—k.

In Section 2 we describe the equivariant chain comglex C.(M) (= C.(M; 7)) for
the universal coveM of M, and state the “Diagonal Approximation Theorem” giving
the necessary chain approximation to the diagahal — C ® C. The calculation of
the cohomology ringH*(M; Z/2) and the application to type is made in Section 3.
In Remark 3.11 we show that the results on type, which follow from Theorem 1.2,
generalize the previous calculations on type given in [27,32]. The final application given in
Theorem 3.12, resolves the Ganea conjecture for the Seifert manifolds in numerous cases.
The construction of the equivariant chain complkis carried out in Section 4. Finally,
Section 5 contains the details of the verification of the Diagonal Approximation Theorem.
The paper has been arranged so that all of the main results are contained in Sections 1,
2, and 3 (which can be read independently of the other sections), while Sections 4 and 5
contain the somewhat arduous technical details of our method.
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2. The equivariant chain complex and the diagonal approximation

The equivariant chains for the universal cogérof the Seifert manifold are the free
R-modules in dimensions, @, 2, 3 with generators (which are described completely in
Section 4)

0 0

(Go) 0: og,....05:

(G1) 1 all,...,an%;p&,...,p,},;ncl),...,ni;
(G2) 2: 012,...,an%;pg,...,pi;u%,...,ufn;csz;
(G3) 3 o,....05; 8%

The definition of the boundary map, of the chain complexC requires the following
conventions and definitions in the group riy First of all, in addition to the list of
generators given itnG1), (G2) adoptthe notationc} =0, (rg = 0. Next, letr; = sos1...5;,
r_1 =1 and observe that, = 1. Given relatively prime integers; > 2, b;, choose
integersc; > 0,d; > 0 so that

and letr; =s;'h%i. Thens; = t;bj andh =1;’. When j = 0 setag = 1, bo = ¢, SO that
so = h~¢. Now define the Laurent polynomials

aj_l
-1 j
frj=1l4tj+-+670 121 fajj=Fj=-—7>
J b
=112 ST _Gy =L
o —=b; o —bj(c;—=1) L aj o aj(dj—1)
Pp=1+1"+ - +1 , Qj=1+1+- +1 .

In particular,
Fo=1 and Go=1—h"¢)/(h—1).
The freeR-resolutionC is given by the exact sequence
C:0— Ca(M) 2 oy B cromy B comy S 2 0,
Wherea(ajo) = 1. The differentials are given by
(Ruy)  doj=0p—05, 1<j<m;

(RLz)  dpj=(s; —Doj. 0<j<m;

(R1,3) 877]1- =(h— 1)0}’, 0<j<m;



128 J. Bryden et al. / Topology and its Applications 105 (2000) 123-156

(Rey)  dof=ng—mj+(h—Doj,  1<j<m

m
2 _ 1
(R23)  98%°=) 77,
j=0
wherer} =r;_1(o} + pj) — rjo; (which impliestg = pg):

(Roa)  u5=Fj p}+Gj-nj, 0<j<m;

(R31) 907 =pf+A—tju;.  0<j<m:

m
(Rs2)  98°=(1—ms? = x%,
Jj=0
wheren? = —r;_1(0? + p?) + rjo? (and this impliesrs = —pj).

Remark 2.1. Observe that (@7} = (r; —rj-1)og, (0) 977 = (rj —rj-1)ng+ (L —h)7}.

The free resolutio suffices to find the additive structure &f*(M; A). However, to
find the ring structure (i.e., the cup products), mékeC into a R-chain complex by setting
xRy)=0xRy+ (—1)dedny @ dy, and(nu +mv)(x ® y) = n(ux Quy) +m(vx Q@ vy)
form,neZ,u,vell, x,yeC.Then seek a diagonal approximatianC — C ® C, such
that

(&) Ais aR-chain map,

(b) A preserves augmentation, i.e., there is a commutative diagram:

c—2scecC

l ) s@gl

71——7Q7

Such a diagonal map exists by acyclic models (cf. [30, Chapter 5]), but it must be
found explicitly (it is not unique). Of course, by (a), it suffices to kndwon the (free)
generators of the complex

, , , —bjc;
Before stating the central result, we introduce the 1-chia Pjpt+1,"'“ 0 nt.

Diagonal Approximation Theorem 2.2. A diagonal approximation of the equivariant
chain complex is defined on the generators of the chain confpdesdfollows

o; )_ac-)@ao; A(ajl)=0}®al?+ag®a~l;
P =siotpttoloct  AUh=hoPen el

g

Alo;
Ap}) =
A(0?)=hog ®0? —hoi @nt+0? @0 +n5@0

A(62) = 2008 + s} © 1t~ hot @+ o 0 %
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2y _ 2o ,7bj 0, aj—bj 0 2
A(uf)=n@1; Top+1;" VoP @ uj

aj—1 -1 aj—laj—bj—1
11
> Y detedd =X Y deeds)
k=0 I==b; =0 k=Il-b;
-1 k—1 -1 aj+-1
1.1
-2 2 umenT+ ) ) hren
k=1-b; I==b; I=1-bjk=aj—b;
aj—1

r_1 1
—G;j thfj‘g’f’»-/fj - /Z’ T P ® 8T /’
r=1

A(8%) =82 ® 5004 + rm—108 ® 8% + 70, ® 7oy + PG ® pg + T ® PG
m—1j—-1

—ZZ?‘[ ® 7; —}—Zr]o Qrj— 1,0, Z?T rj- 10,,
j=2i=1
A(a3)—a3®ao+t61'f7b'fao®a3—t~ 2®t7b'frl—t61'f7b'frl®t-
j)=0ojwo; Tl j Yoy Tk @l Ty = j LK
=+ t./'/L? X Gj‘l.'} — ;L? X G‘/'E]:-L
—bj 2 1 1 ajr 1 1 2.
— 1y PinG ® (0j +Gjtj) = 1) (0} + GjTy) ® Pjus:
A3 =83 ® 5008 + rm—1hod ® 8% — h8? @ sonj

— N3 ® 82 — P2 @ pi + w2 @7}
—hnt @n2 + 72 ® pt+hrk @ pg + hod ® pi

m—1j—1 m—1j-1
- Zzﬂf®ﬂil+ ZZhn}@nf
j:2 i=1 j=2i=1

—er ®rj— 10 Zhn ®rj- 10

2 1 1 2
- Z rjoj ®rj-1pj + Z rjho; ®rj-1pj.
j=1 j=1

3. The cohomology ringH*(M; Z,/2)

For the Seifert fibred manifoldM = (0,0,0] e : (a1, b1), ..., (am, b)) with infi-
nite fundamental group, first assume that...,a, =0 (mod 2, 1< n < m, and

ay =1 (mod 2 (this implies b1,c1,...,by, ¢, =1 (Mmod 2). The Z/2-

cohomology is determined by the cochain complex:

a0 1 n2
Homg (Co; Z/2) &> Homg (C1; Z/2) 2> Homr (Ca; Z/2) &5 Homg (C3: Z,/2),
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whereZ/2 is regarded as a trivial leRR-module. For any generatarof C;, let @ denote
the dual generator of HopiC;; Z/2); that is,&(a) = 1, @(B8) = 0 for any other generator
pofC;, fori=0,...,3. Forthe case =0, i.e., when alk; are odd, see Lemma 3.7.

Theorem 3.1. If M is an orientable Seifert fibre@8-manifold withl < »n < m as above,
then

_ 7/2, i=0,3,
H (M:;7/2) =3 /2", i=12,
0, i>3.
Moreover, the generators are
1= [2’7 an] dimensiorD,

[,0/ +pl] 2<j<n, dimension,
ﬂ =[21=1[6%, 2<j<n, dimensiore,
Y= [53] =[651="" [A,ﬁ] dimensiors.

Proof. The mod 2 cohomology groups & can easily be computed by Poincaré duality
and the fact that{1(M; Z) = (w1(M))ap. However, in order to compute the cohomology
ring structure, it is also necessary to determine the generators of the cohomology groups
and so the cohomology @ must be computed directly.

Computation of°.  First of all observe tha,ﬁofrg =746} and thataoa/ =4} It
follows thatd® >~ 080 =0%¢ +0°"7_;69=0and hence kéio (X 06?). Thus
HOM;2/2) = (Y7_67) Z/2

Computation of#1. A straightforward calculation reveals

a6} =0,
’ m
alﬁézzAjz+€'ﬂ(2), 0 pg =82+ g, (3.1)
j=1 '
624+ 02 1<j<n, 52 1<j<
817?1:: PRt J 31,(3372 x SV
I8 +bias nt1<is T A ntl<is<m,

Thus ke(d?l) = (o-ll,,61+,ol |1<i<m, 2<j <n)andsince in@° = (& ].l|1<j<
m), it follows thatHl(M, Z)2) = {aj:= [,0/. +p1112< j <n)=(Z/2" L.

Computation of#2. Since

(3.2)
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the 2-cocycles are generated &9, 82, /lf. The relations in (3.1) imply thai? ~ 62 for
1< <n, and32~,a0~ﬂ ~o~ 2 SincealAl—Szforl j<n §2~pZ~
fi2 g~ -~ 2 ~0. Furthermoreb,u +(7 ~0 forn +1<j<m, and henccar2 ~0
forn+1< j <m. This eliminates all butthe elemeraiﬁ 1< j<n,from c0n5|derat|0n
Finally observe than:l aj +e-0~ Z,/:l 0] ~ 0 is the only relation amongst these
elements. This shows thgt?] = Z;fzz[&jz]. Thus

HA M;2/2) = ([62112< j <n)=([A3]12< j <n)= (Z/2" ™.
Defineg; := [8/.2] = [MZ] 1< j <n,and observe thes = >"j_, B;.
Computation ofi73. It follows from (3.2) thats® ~ 63. This means thalg®] = [7] for

1< j <m, and henced3(M; Z/2) = ([§3]) = ([&f]) =7/2. Lety denote the generator
of H3(M:;7/2). O

The goal now is to turn to the computation of the ring structuréf/iiM; Z/2), that
is, to find the cup products; - ax, «; - Bi. SinceHY(M; Z,/2) ~ H>(M; Z,/2) = 0 when
n =1, assume that > 2.

By definitiona; = [,o + pl] It follows thata; - o = [(,o/ + ,01) — (,ok + p%)] where
foranyz € Ca:

(B} + A1) — (B + D) (@) = x((5] ® pi + 4} ® pi + A1 ® fi + A1 ® p1)(A2))
andx :Z/2® Z/2 — Z/2 is the multiplication map. Then for sorwe«?, «!, k!* € Z/2,
m m m
(3 43) = 5+ A1) =524 Y62+ ol R Yl
i=0 i=0 i=0
and the coefficients, «7, «/, «!* are given by:
= x((5] ® pic + b} ® Py + b1 ® B + 1 ® p1)(482)),
Ky =x((b} ® pr + 7 ® p1 + 1 ® fip + A1 ® p1)(Ac))).
Kkl =x((p]® P+ PT® b1+ AL ® Pt + A1 ® p1)(ApD)).
kl'=x((p] ® pi + P ® 1+ P1 ® fit + 1 ® p1)(AuD)).

(3.3)

Next recall thatg, = [;lk] [&k] and observe that; - g = Ay, for somei € Z/2.
Moreover, sincer; - B = [(5] + p%) f2] = (5} — fi2 + pt— 427 it follows that there
exists, ¢ € Z/2 such thato} — Q24 pt— p2 =¢84+ Y o063, where

¢ =x((5] ® if + 1 ® A (A8%),
& = x((p] ® Af + 1 ® A (Ad)), (3.4)

r=c+>y ¢
i=0
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Lemma 3.2. Let §;; denote the Kronecker delta. Then - o = ()81 + 8,k () B;, for
2< j, k< n.

Proof. From the discussion above, it suffices to compute the coefficients”, «!,
k' €Z/2.
It is clear that the coefficients
Kk =x((pr® pit + pT ® P + 1 ® i + h1 ® p1)(AcP)),
kf = x((pr@pt+pt @ pt+ pt @ pt+ L@ ph(Apd)
are zero, since the expressions tw,? and Apl?, given in the Diagonal Approximation
Theorem, do not involve any terms of the fOH}’I@ oL, ,o} ® pi, p1 ® o, or p1 ® pi.
Furthermore, sincé? ~ 0 H2(M; 7./2), the coefficientgc of 82 is immaterial.
Finally, considek/ = x (5} ® A} + 51 ® 1 + 1 ® ot + p1 ® p%)(Alez) Observe that
the only terms ofA/L,2 which contribute tOci" are of the formo, ® 'Ol (for j =k=1)and
pi‘® ,o% (forall j, k). To complete the calculation af; - «, it suffices to count the number

of terms of the formp! ® p} in Ap? for 1< j =k =1<n, modulo 2.
Thus, when K I < n, the number of terms of the forwf ® ptin Au?is

aq-1i-1 aj—la—b— aj—1
DN EDID (cl)+blZ(rcl)+alZ(rcl)
i=0 j=—=b j=0 i=j—b;
a—1 aj—1 u b +1
—Cz|:§(i+bz)+]Z:E)(az—j)+blcl<21>+a,cl< [2 )] (3.5)

Sinceb; = ¢; =1 (mod 2, andag; = 0 (mod 2 it follows that the expression in (3.5) is
equal to

b +1
Cl|:<6121) +albl+alz— <1121> +blcl<azl> +alcl< l;_ )] ( ) (mod 2. O

Lemma3.3. Let2< j,k <n.Thena; - B =8ky.

Proof. SinceAs® does not involve:? at all, ¢ =0 in either case.
Forj #k, itis clear that” =0, sinceAaf only involves cells with subscript Finally,
for j =k, the same reasoning implies ttggt = 0 for i # &, while

< (At ® A2 (Ac)))
= x((ot ® pD) (e 1t @ el + 1 (of + Grtd) @ Pupsd)).

RecallingGy = tk_ + ", rk = Pk,ok + 1 brek ank with P, =1+ tk_b" + -+
tk’b"("k’l), and by also recalling tha, ¢, are both odd here, it follows that

é‘lg=Ck~1+(1+bkck)~ck=1€Z/2. O

Corollary 3.4. If i # jor j #k,2<i, j, k <n, thena; -a; -ar = (4)y.
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The seemingly exceptional role of the invariamtis due to the choice of the generators
{a; | 2<i <n} made in Theorem 3.1.

Corollary 3.5. If 2< k <n, then

[0 (9)+(3)=0mod2,
k Vv, (“21)+(“2k)51(m0d 2.

This corollary can be rewritten in a more perspicacious form. Observ@‘gi)att (“Zk) =
1 (mod 2 for somek, 2 < k < n, if and only if the set{(%) | 1 <i < n} contains two
numbers of opposite parity. The next theorem follows from this observation.

Theorem 3.6. One hasx? = y for somek, 2 < k < n, if and only if

(2) + (“2/') =1(mod 2, forsome, j,1<i,j<n.

This concludes the case> 0O (i.e., when at least ong is even).

Lemma 3.7. Suppose that; =1 (mod 2 forall i =1,...,m, b1,...,b, =2 (mod 4,
bps1,....,b,=0(mod 4, by41,...,b,=1(mod 2, and sets =m —r.

(1) f s+e=1(mod 2 thenHY(M; 7Z/2) = H*(M; Z,/2) = 0.

(2) If s+e=0(mod 2, thenHY(M; Z/2) = H*(M; 7./2) =7 2.
Furthermore, if is the generator oH(M; Z,/2), thena® # 0 if and only if

m
e—2p+ Z ajbj=2(mod 4.
j=r+1

Proof. This relatively simple case can be settled using [27, Theorem 2.3]. To apply this
theorem it is necessary to computie(M; 7Z/2) and Hy(M; 7Z./4). Abelianizingz1(M)
modulo 2 to obtainH1(M; 7Z,/2) gives the abelian group generated/ys, ..., s, with
relations

m

Zsj'zeh, s1=---=s5=0, Spp1=---=8u =h.

j=1

It follows that (m — r)h = ¢eh, or (n —r — e)h = (s —e)h = 0. In cases — ¢ =
1 (mod 2, this impliesh = 0 and consequently1(M; Z/2) = 0, which completes (1)
(using Poincaré duality), while if — ¢ =0 (mod 2 one obtainsH1(M; Z/2) = 7./2
(generated by = [h] = [s,41] = - - - = [si]), which similarly completes (2) as far as the
additive structure is concerned.

To determine the multiplicative structure, assuming (2) henceforth] oM ; Z/2) it
suffices to know whether or ne = 0. Using [27], and the universal coefficient theorem,
we see from the above th&% (M; Z/4) is eitherZ/4 orZ /2, corresponding respectively to
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a3 =0, #0. As in the above computation &1 (M; Z/2), it is found thatHy(M; Z./4)
is generated by the same classes with relations

~.
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ajsj+bjh=0, forr4+1<j<m.

Sinceajz. =1 (mod 4, one obtains; = —a;b;h and hence

m m

O=eh — Zsj =eh —2ph+ ( Z ajbj>h = Ah,
j=1 j=r+1

whereA =e — 2p + Z’};rﬂ“jbj- ThusH1(M;Z/4) = 7Z/4 whenA = 0 (mod 4, and

Hi(M;Z/4) =7/2 whenA = 2 (mod 4, completing the proof for the multiplicative

structure A cannot be odd since only case (2) is under consideratian).

Remark 3.8. In Lemma 3.7(2), it is apparent that in faef = 0 whene — 2p +
> iry1ajbj=0(mod 4, sincea? = Sq*a, which is just the Bockstein homomorphism
applied tow.

Returning to the question of determining the type\df recall thatM has type 1 if and
only if there existsy € H*(M; Z/2) with o 0, and otherwise has type 2. Thus, the type
of M can now be calculated from Theorem 3.6, whel 1, or from Lemma 3.7 when
n = 0. The following theorem is immediate.

Theorem 3.9.1f a1, ..., a, are even2 < n < m, thentype(M) = 1 exactly wher(}) +
(“21) =1 (mod 2 for somei, j, 1<1i, j <n. If exactly ones; is even, therype(M) = 2.
Finally, if all the a; are odd, then using the notation of Lem®\4&, type(M) = 1 if and
onlyifm —r +e=0(mod2 ande — 2p + Z’};,Hajbj =2 (mod 4.

Remark 3.10.Fori =1,...,k let M; be from the class of Seifert manifolds under
consideration. Suppose thaf is the connected sumi #---#M,. The type ofM can
be determined by Theorem 3.9 and [27, Corollary 2.5] which states thatMg)pe
min{type(M1), ..., type(My)}.

Remark 3.11. Givenaz, ..., a, = 0 (mod 2, suppose thats, ...,a, =0 (mod 4 and
ary1, ...,a, =2 (mMod 4. Theorem 2.3 [27] states that if there are an odd numbg&y 2%
in the cyclic decomposition off1(M; Z) thenM has type 1. This result can be compared
to Theorem 3.9 by computing1(M; Z/4) from the chain comple€ ® Z /4, whereZ /4 is
considered as the trividt-module. The following cases cover all possibilities (the details
are omitted).

(1) » > 1: in this case [27, Theorem 2.3] shows thi#dt has type 1 ifn — r is odd,

whereas Theorem 3.9 shows tiddthas type 1 ifn —r > 1,
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(2) r =0,n odd: here [27, Theorem 2.3] gives no conclusion, while Theorem 3.9 shows
thatM has type 2,
(3) r =0,n > 2 even: both theorems show that the typdbis 2,
(4) n = 0:in this final case, both theorems can be used to determine the tyyeaofd
the results agree.
This demonstrates that Theorem 3.9 not only agrees with all previous results but
generalizes these results as well.
There is a final application of the preceding results to Lusternik—Schnirelmann category
and the Ganea conjecture. This will be stated here, but for complete details see [3].

Theorem 3.12. With the above notation, suppose that

(1) n > 2 and there exist$?) # (%) (mod 2 for somel <i, j <n, or

(2) n=0,m—r+e=0(mod2,ande —2p+3 " . a;b;=2(mod4.
ThencatM = 3 and furthermore for any integers, ..., n; > 1,

catM x S"t x ... x §S™*)y=catM + k=3 +k.

Although the proof of Theorem 3.12 is not given here the hypotheses of the theorem are
equivalent to the existence of a non-trivial 3-fold cup product of one-dimensional classes
in HY(M; Z/2). The result follows from this fact.

4. The equivariant chain complex of a Seifert manifold

We will start with an introduction to the theory of equivariant chain complexes (which
were called ‘Homotopieketten’ by Reidemeister [22]).

4.1. The general theory of equivariant chain complexes

Let W be a CW-complexg : W — W a regular covering with automorphism groGp
(cf. Spanier [28]). Then there is a regular CW-structuréiosuch that

(i) every open cell o is mapped bijectively to a cell d¥, and

(ii) to any two ceIISUf, aé‘ C W which are mapped to the same cefl c W there is a

uniquely determined elemepte G such thaig(oX) = oX.

The CW-structure oW (cf. Dubrovin, Fomenko, and Novikov [7, Chapter 1, §11])
is obtained by first lifting the 0-cells oW, then the 1-cells, etc., t¥. This is possible
because the closed cells are continuous images of the contractibleXisks

Forg € G and ak-cell 5 € W defineg - ¥ := g(¢¥). This is aG-action on the cells
of W, and is free by (ii) above. Define the augmentatiaiZ.G — Z by Zg neg
(D_gng8)" =D ng. Let R denote the group rin@G. The G-action on the cells oV
induces arRr-action on thet-chainsCy (W). The elementgo* | 0% € W} form anR-basis
of Cr (W) and hence&, (W) is free as arR-module.

To complete the description of the augmenidomplex

) o
Ciooom CoaW) oo X . B cowy S 20,
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it remains to describe the boundary mapsSince these arB-maps and sincé€y (W) is a

free R-module, it suffices to defing(e - t¥), for eachk-cell % of W, k > 1 (heree denotes

the identity element o). As a slight abuse of notation, writé for e - t¥. SinceW is

a regular CW-complex, its boundary is determined (cf. [6, Chapter 2]) by an incidence
function[z¥ : o%—1], for eachk-cell ¥ and eachk — 1)-cell o%~1, satisfying:

(1) [th:ok " =0if tknokL =y,

(2) [tk o =21if o1 7k,

(3) setDy(t%) =Y [tF : k1o k1, thenDy_1 Dy (%) = 0, for all k andt*,

(Note that the sum in (3) is necessarily finite and that the conditions given in (1), (2) exhaust
all possibilities for ak-cell ¥ and a(k — 1)-cell o¥~1.) It is then possible to choose an
orientation on the cells o so that the boundary map of the complex equajs thus

0k = Dx.

The formulae ford; are self evident because the boundary of a 1-ceWirs just the
initial and final point of a path lifted from a closed pathWh. Since the boundary of any
2-cell 2 represents a relation ifi, the Fox (or free) calculus can be used to deterréine
Its use is described in more detail in Section 4.3. In generak, 08, 9, is determined by
properties (1)—(3) above.

The coveringr : W — W will henceforth be assumed to be the universal cover. Since
is regularG = 1 (W). In the next two sections these techniques will be applied to the case
whereW = M. SinceM is a 3-manifold, it follows that;, (M) = C,(M) =0 for k > 3.

4.2. TheCW-structure of the Seifert manifolds

Before describing the CW-structure of the Seifert manifold itself, we consider the CW-
structure of a twisted solid torus. To deal with a Seifert fibration it is necessary to have a
CW-structure which uses a “twisted” meridian and longitude. So firsVlet D? x S*.

Let ﬂi =9D? x {1} andxi = {1} x S be the respective standard meridian and longitude
of 3V. Now let pi, 2 be a pair of simple closed curves 6 which cut the torus into

a disk with base poind® = p1 Nyl = ul Nl Then, for suitable integets b, ¢, d with

ad — bc = £1, there are homologies

ul~apt+ byt A~cpl+dpl onav.

Assume thatud — bc = 1, then there eX|sts a map: D> - V such that<p|D2 is an
embedding of the interior of the disk into. Furthermoreyp(d D?) C pLuUnl and the cycle
(pI(aDz) ~apl+ byl ondV. This defines a 2-cejt? := Im(¢) C V and the complement
v \ #? is an open 3-cell, denoted tay?. Thus, the solid toru§’ has the following CW-
structure:

o®=pinn; pt=pi\e% nt=ni\o%
pP=03V\(pyum), w% o°

In this construction the mapping|,2:9D? — 8V of the boundary of the disk is not
unique. By deforming over the 2-cell 0BV and within the graplp? U 51, itis clear that
any two choices of the map are homotopic ol V.
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Next consider an orientable Seifert manifditihaving orbit surfac&?. Such a manifold
is characterized by the Seifert invarianM: = (0,0,0| e : (a1, b1), ..., (am, bw)) (cf.
Seifert [24]). The manifold will be decomposed into+ 1 solid toriV4, ..., V,,, Vo and
its central part M’ = B(m + 1) x S*, whereB(m + 1) = 52\ (Dg U---UD2), is the
closure of the sphere minus + 1 disks. The solid toriV ;, for 1 < j < m, are regular
neighborhoods (cf. [12, p. 7]) of the exceptional fibres with characteristic numbers
(aj,bj) and Vq is a regular neighborhood of a normal fibre with characteristic numbers
(1,e). Now, B(m + 1) has the following cell structure: on thgh boundary component
there is a O-cellrg? and the 1-ce|jo}, for j =0,1,...,m. Furthermore there are 1-cells
a} from 08 to oc/.’, 1< j < m, and an open 2-celi? obtained from the spher§? by
rémoving the closed disks bounded by the 1-c)e}lsalong with the 1-cells given by the
pathsajl. The attaching map fa¥? is given by

(0g) - (o1pi@D ™) - -+ - (0P (o) 7).
MoreoverM’ has(m + 1) 1-cells 17} and 2-ce||s,o§, for 0 < j < m, on the boundary
componentsV ;. The 1-ceII37} correspond to the twisted Iongitudéj (defined above) of

9V j with the O-cello  deleted, while the 2-cells are defined togfe= 0V, \ (p}; U ;)
and have attaching maps given by:

@) - H-@H~H(pH

In addition there are: ‘interior’ 2-cellsa§: that sit over the 1-cells} with attaching maps
@p) - (eFaH e D).

Finally, there is a 3-ce8® which sits oves? in M’, defined bys® := 62 x n}.

Now each of the solid torV ;, j =0,..., m, has the CW-structure described above and
is compatible with the cell structure af’. This completely describes the CW-structure of
the Seifert manifold\.

4.3. The boundary map

Having established the CW-structureMf in Section 4.2, the boundary maps 02 93
in C = C.(M) can now be determined. The formul@®, 1), (R1,2), and(R1 3) (which are
stated in Section 2) givingy are obvious consequences of the respective factsarghizsta
path in M from the base poimg to o?, while p} represents the elemente I7 andr/}
represents the generic fibkes 17 (based atrg.’).

The Fox calculus is used to derive the formulae giveriia 1)—(R2.4) for d2. This
procedure will now be outlined. Consider the general situation of the covering space
W 5 W described in Section 4.1, and for the time being supposeWhéias a single
0-celle®. Also suppose that a finite presentationtbf= (W, €V) is specified. Then each
1-cell a} represents a generator € G and the boundary of each 2-ce|f represents
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awordw; in the presentation of;. Given any such?, suppose thaty, ..., x; are the
elements of; which correspond to the elements occurringin Then
aa)j 1

o;,
ax; !

M~

(F)  oatf=

i=1
where dw;/0x; denotes the Fox derivative of the wortd;. The Fox derivatives are
characterized by the following formulae:

ax; 0 d d
Fp iy, dw w0y
0x; 0x 0x 0x
It follows from these two formulae that:
dx" "1
(F3) R :
0x x—1
ox~ " n_1
x =_(x—1_|_...+x—”)=x , n>0.
0x x—1

This method can be generalized to the case witérmay have several 0-cellg?, and
where some of therl.1 may be paths rather than loops (thus, in this case,G(W), the
fundamental groupoid o). When the union of the proper paths (i.e., the non-loops) in
W is a tree, as is the case for the CW-structurdffthese paths can simply be identified
with e € w1(W) when computing the Fox derivatives. (For related references see Lustig,
Thiele, and Zieschang [14], Nielsen [18], Osborne and Zieschang [21].)

To apply this toM, let o}, the path fromog to o?, for all 1 < j < m, represent
qj € G(M). These are the only proper paths among the 1-cell®adnd their union is
atree. Let:; denote the element Gf(M) correspondingtq}. Now, when calculating the
Fox derivatives, identify ; with e in w1(M, 08) (as mentioned above) aid with #. The
formulae given in(R2,1), (R2.2) and(R2,3) follow immediately from the above procedure
applied to the words ig (M) represented by the boundariesn%f, pf ands? (respectively
hoq.jh;lqj_l, h.,-s.,-h;lsj_l, soqlslql_lqzszqz_l .. .qmsmqrzl).

For example, to obtain the expression ﬁ@nf given in (R2,1), letw = hoqjh;lq;l.
The basic formulae of Fox calculus (F2), (F3) show that:

860 —h h ~h_l _1 86() _1 86() N h ~h_l

36]j =hno 04 j j qj' > aho =1, 3hj = 04 i
which reduce to:

w _ w _ w _

dg; dho — dh; 7

in IT =m1(M, o). The expression

(Ro1)  d0?=(h—Do}+ng5—n;

now follows directly from Eq. (F1). (Recall tha, /0, i ; are represented by the respective

1-ce||s<y}, s, n} in M.) The derivation of R2,2) and(Rz,3) are similar and are omitted.
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To obtain(R2.4), start with the ceIl&? representing the remaining reIati@?fhbf and
apply the formulae given in (F1)—(F3), to obtain

-1 tfab_l B l‘ab—l
1_ ,01+l ab 77]1'»

s —1 h?
aAz. = l a i —] .
@5 Pt A= 1 a1

J P

where the subscrigtis now dropped from;, 7;, a; andb;. A more convenient choice for
this generator (with a simpler boundary) is given;b?y: ;l? + xpjz., for a suitable choice
of x € R. Infactx € Z[r,r~1] C R (thatis,x is a Laurent polynomial in) and is specified
in the following lemma.

Lemma 4.1. For relatively prime integersg, b,

1 i eZlt,t™ 4
T T —Dab -1 bk

Proof. First of all rewritex in the following manner:

1 1—9b 1 14tb 42 .. yplaDb
X = — = —
1—t taDbia _1)(1—-1tb) 1—¢ tla=Db(ra _ 1)
_ p(t)
- t(a—l)b(ta — 1)
where

pt) 1= 1@ Db+ p@=DbH2 4 @ DOFD (g b2 glamDb)
= (@D 2 Y (L P @D

To complete the proof of the lemma, it suffices to show fh@j is divisible byz¢ — 1, as
polynomials inZ[t]. Considerp(¢) ands* — 1 as polynomials irC[¢]. Clearly, p(1) = 0.
For anyath root of unityw € C, w # 1, recall that H o + w? + - - - + w*~1 = 0. Also,
sincea, b are relatively primeg? is anothewth root of unity withw? # 1. Itis then clear
that p(w) = 0. Thus, p(¢) is divisible by allz — w, for all ath roots of unity (including
o = 1), whencegr* — 1)|p(¢) in C[¢]. Butz“ — 1 is monic andp(z) € Z[t], so the quotient
mustin fact be irZ[r]. O

Now takex as given in Lemma 4.1 and? = 1% + xp%. Thendou? = dp02% + xdzp?
and a straightforward calculation gives the expressidiRiu).

Finally, consider the 3-cellsj3, 83, which are somewhat analogous to the 2-cg|}s
ands?. To verify that the formula€Rz 1) and(R3 2) are correct, one need only check (cf.
Section 4.1), say fofj3, that the geometric boundarymf.’ is contained irp? anduﬁ, that
82830}3 = 0, and that the coefficients in the formula f&yaf are=+1. The first condition
is clear from Section 4.2, the second is an easy calculation, and the third is obvious since
(R3.1) may be writterﬁg,crj3 =1. pjz. +1. M? +(-1)- tjuﬁ. The proof for(R3.2) is similar.
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5. Proof of the Diagonal Approximation Theorem

This section contains the details of the verification of the factdhat A9, for A given
in the Diagonal Approximation Theorem 2.2. This will complete the proof.

There are several routine cases to be considered first. Before proceeding, recall that
the boundary of the tensor product of two complexes is givemky® y) = dx ® y +
(=DPx ®ay if p=dim(x).

The diagonal orar](.). Clearlya(Aaj(.’) =0= A(aa](.)), and(s ® a)(Aaj(.’) =1= 8(0](.)).

The diagonal orarjl. Observe that

d (ajl ® a](-) + (ré) ® (7/1)
=G.,(-)®U‘?—08®0‘?+08®0j(-)—aé’@aé’
= a?@ajo —od®ad= A(UJQ — (ro) = A(E)(rjl).
Thus, takinng-jl = ajl ® Uj(') +00® ajl (as in Theorem 2.2), we ha\aeAajl) = A(aajl)
as required. The same reasoning appliesito;;, o2 and p?. The routine verifications of

these cases is omitted.

The rest of the proof is divided into two parts. In (A) the verification is donquf?)rof,
and in (B) fors? ands3. The proofs given in parts (A) and (B) are simple in principle, as
in the above cases they involve nothing more than showingthat A9, i.e., thatA is a
chain map. However these calculations are combinatorially complex.

Part A. i and 0}3

The diagonal om?. Herea, b are relatively prime positive integers ah@ Z| =1 (the
subscript; is dropped uniformly throughout Part A. Using the formulae fgrt, Ant it

follows that
A@u?) = FApt + GApt
=F1t 0@ 0t +p'®0%) +Gte° @nt + nt ®00). (5.1)
Thus

a—1 a—1 1
A@pd) =) t1e%@tpt+ )Y rptere®+ Y eyt
j=0 i=0 j=1-b

(5 ® 2
-1
+ta—b60®t—bnl+ Z tin1®ti00+t—bnl®t—b00. (5.2)
—— — X ————

(6
It remains to show that(Ar?) equals the expression in (5.2) above.
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First recall (from Section 2) that' = Pp! 4 r=>¢Qn*, and notice thait! = (r — 1)0°.
Also observe that there is the following telescoping series (this identity is used frequently
but not mentioned):

8<Zt"rl> ="t — 160, (5.3)
k=u
It follows from (5.3) that

afith = =)o  agrtH=0—-17)0"

Also notice thatp! = (=% — 1), ' = (+* — 1)6°. For clarity each term in (5.2) and
in the following expression (5.4) is labeled, such that the corresponding terms in the two
expressions receive the same label.

d(Au?)
a—1 -1
= (Zti,ol> ®1 7%+ ( > tinl) @t e+ 17t @1 bo®
i—0 i=1—b T
(c4 (cl)
-1
19050 g (th) ab00®(ztinl) 1960 g 1yt
j=1-b T
(c3) (€2
a—1 i-1 a—1 a—1
4 Z Z (tl _ti—b)0_0®t‘/rl_’_ztipl@tiao_Ztipl®t—b0_0
i=0 j=—b i=0 i=0
(A) 3 (c4)
a—1 a—la—b-1
_Z( 19t 0 @ 1 pl tj7b00®tjpl)+z Z frle b — 16O
=0 ©3 ®) j0i=ih
(B)
-1 i-1 -1
+ >0 Y@=l + Y (Meie’—inette?)
i=1-b j=—b i=1-b ®) )
(A")
-1
+ Z (ta+'j0’0®t'j771 4= —b O®t/ l)
j=1=b @ ©2
-1 a+j-1

+ Y Y At -1t

j=1—bi=a—b

(B")
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a—1 a—1
+ G(Z(t/ —t/hHel @ fjrl) +G<Zt-’“{l Q1 — 1)00)

j=1 j=1
(X) )
b b
+ F(Z(t/ - tlj)(ro®gjtl> + F<Zt/rl ® (1- t])ao>, (5.4)
j=1 Jj=1

(X" "
where two terms that are underscored with the same “c” cancel each other. By comparing

terms in expressions (5.2) and (5.4) it follows that the proof can be completed by showing
that

A+A +X+X' =0, B+B +Y+Y' =0. (5.5)
For this it will suffice to establish the following identities.
A+A =Gt '@ FthH) — Ft"e°® Gth = —(X + X)), (5.6)
B+B =G(Ftt®c®) - F(Gr'®c)=—(¥ +Y). (5.7)
Since
a—1 ) ) b _ )
X+X = G(Z(ﬂ —t/the0g fjr1> + F(Z(t/ A A gjr1>,
j=1 j=1
where
a—1

oW —tthel g f7t
=1
a—1 j—1 a Jj—2
=Y tie%@) 1t =Y toO® ) it
j=1 i=0 j=2 i=0
a—1

j-1 j-2 a2
=t'o®@t'+) 1e'® (Zt‘rl—Zﬂrl> —1%0%0 ) it
j=2 0 =0 i=0

i= i

a—1 a—2
= Zr’ao @tI 1l 1450 Ztlrl
j=1 i=0

a—2 a—1
- Z e’ @ tH +1* Lte’ @Y —190° ® Z et
j=0 i=0

=F(to’®1tY) —1%6°® Frl
and

b -1
Z(fj —tl*j)ao® Z ket
j=1

k=—]j

b -1 b—1 -1
=ijao® Z tktl—Zf"aO@) Z ket
j=1 j=0

k=—j ke=—(j+1)
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k—*] k==(j+1)

b0 Z el o0 11

k=—b
=— Zt_-jao ® t7I711 50 ® 171 + t7060 ® Gtl

=—Go®tH+1 "0 Gt
it follows that
X+X =G[Fto®® 1t — 1@ Fr']|+ F[ - Gte® @ tH) + 0% @ G1?]
=FGto’®tH - G(t*e° @ Ft1) — FG(te’ @ tH) + Ft 0% ® Gt1)
=-Gt0°@ Fth + Ft 6% ® Gth,

as required. A somewhat more straightforward calculation yields
a—1
Y+Y = G<Z(tjrl®tfao — tjrl®(ro)>
j=0
b
+ F < Z(t_-jrl ®c?—17l® t_jao)>

j=1
=G(Ft*®0% —Ft'®o®) + F(G'® 0% - Gt ® oY)
=GF('®0% - GF1'®c% - FG'®0° + F(Gt'® 09
=-G(Ftt®d% + F(Grl®dY),
as required.
It remains to show thad + A’, B + B’ are as givenin (5.6), (5.7). Far+ A’, first note
that expanding; (1%c° ® Ft1) — F(t 6% ® G11) gives
a-1 -1
Z Z (19 60 @ (K H gl — b+ 0 g ket 1y
k=01=—b
The fact thatd + A" equals this expression is immediate from the following identity where
u(i, j) can be any elements of an Abelian group, defined fgre Z.

a—1 i—1 -1 -1
Yo [uG iy —u—=b.p]+ Y D [uG. i) —ula+i. )]
i=0j=-b i=1-b j=—b
a—1 -1
=Z Z [ua+1k+1) —u(=b+k k+D)]. (5.8)
k=0l=-b

where of course for our purpose we substitute j) = t'0% ® 1/ 1. The proof of (5.7) for
B + B’ is quite similar, and is based on the identity:
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a—la—b—-1 -1 a+j-1
S Y [wi-h—u@ ]+ Y Y [ ) —utia+ )]
j=0i=j—b j=1-bi=a—b
a—1 -1
=§:§:[Mk+hb—u&+hkﬂ, (5.9)
k=0Il=-b

where in this case(i, j) =t t1 @ /0.

Identities (5.8) and (5.9) (as well as (5.10) below) can all be established by first
converting all summands ta(i, j), then making suitable cancellations in the double
summations. The proof for (5.8) is now indicated, the others are quite similar and can
safely be omitted. First, the left hand side of (5.8) is equal to

i=0 j=—b i=—b j=—b i=1-bj=—b i=lta—b j=—b

Combining the first and fourth sums, the second and third, and also omitting)
henceforth, one obtains

i=—b j=— i=1-b j:—b ‘/:—b i=0 j=-b

a—b i—-1 a—1 -1 i+b-1 a—-b-1li+b-1
Yy Yry-r Y-y Yy

i=0 j=—b i=a+l1-bj=i—a i=—bj=—b i=1-b j=i i=0 j=—b

a—b-1 i—1 a—1 -1 -1 i+b—-1 a—b-1li+b-1
e DILDDIED DD IS

i=0 j=—b i=a—bj=i—a i=—b j=i i=0 j=—b

a—1 i-1 -1 i+b-1 a—b-1li+b-1 a—1 i-1 a—b—1li+b-1
P IIDIED DD IED D UED I D

i=a—b j=i—a i=—b j=i i=0 j=i  i=a—bj=i—a i=—b j=i

This last expression is precisely the right hand side of (5.8) when converted to the
summand:(i, j).

The diagonal or?.
Lemma5.1.
(a) F‘L’l — 7]1 =9d[(1+ t*b + -+ t*b(c‘*l))'uz] — 3(P,LL2),
(b) G'L’l + ,01 _ a[tfbc'(l_'_ta U ta(dfl))MZ] — a(l‘ichuz),

Proof. Use the formula

PG+1=Ft b0
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which follows from the fact that on the left-hand side there appear with coefficient 1 all
powers oft betweens—*¢ and°, and thatF Q consists of all powers fronf to 24—,
Therefore

A(Pu2) = P(Fpl + Gy = FPpt + (PG + Lnt — n*
=FPpt+ Ft ™ Qnt —pt=Frt -y
and

=106yt + (PG + 1)pt
=G(Ppr+170nt) +pt =Gt + ot O

The rest of the proof is divided into two steps. The first part, given in the next lemma, is
a simplification of the expression far(do ). Once this is carried out, the formula fae3
is quite easy to verify. It will first be useful to have another identity for double summations
over Abelian groups similar to (5.8) and (5.9) (and given without proof).

a—1i-1
ZZ u(i, j)—u(—>b,j—>b) +ZZ u(a—i,a—j)—u(—i, —J)]
i=1 ;=0 i=1j=1
b a—1
=Y [uta—i.j)—u(j—b,—D)]. (5.10)
i=1j=0
Lemma5.2.

A(BO'S)=p2®00+t_bnl®pl—tapl®771+ta b0'0®p +/'L 1 bo,O
—_— ——— ) — —
@ 2 (©) 4 5
4 e bO'O®,LL tu2®llib(io tlJra b 0®t,u ,01®G‘L'1
—_——
6) (7 ()] 9)
+p @ Ftl4+19p @ Gl =1 PFrl @ pr + it @ Gt
—_——

(109 11 (12 (13
— Gttt + Gl Frl— 1P Frle Gt
—_——
(14 (15 (16)
—t(Fpr+GnhH @t et + 1Pt @ 1 (Fpt + Gnby.
an (18

Proof. From the calculation oft on p2 andy?, it follows that

Ao = Ap? + Ap® —tAu?
=02®0%+ 50t ® pt — ol @ nt+ hso® ® p? + u2 @ 160

419 bO'O®,LL tu2®t7b+lo.0 14— b+1 0®t,u
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a—1 i—-1
" Z Z (—ript@ et +1i+ipl @ itled)
i=0 j=—b
a—la—b—-1
n Z Z (= ittt + i+l @ i+ipl)
j=0i=j—-b
-1 i-1
n Z Z (—rint@ et 4 i+l @ itisl
i=1—b j=—b
-1 a—1+j
+ > > (Ftedpt -ttt e d iyt
J=1—b i=a—b
a—1
e Z (frt® firt— il g fied)
i=1
b
—F Z (Tt gt -1t @ rgith).
i=1

To simplify this observe that the four double sums “telescope” and reduce to nine single
sums, while the second to last sum simplifies by writihg' ® fit! —fitlcl @ rfitl =
1-0)('r1® f;t1) and using the fact thatG(1 — 1) =1 — . A similar remark holds

for the last sum, since’ — 1= F(r — 1). Thus

A(803)=p2®00+t7bnl®pl_tap1®nl
+1°76%® p? + p2 @170 + 19700 @ 1
-1
12 @G0 a0 gy 2 Z pletirl
j=—b

a=1 a—1 a—b-1
—Zt’pl®t_btl+ Z “pterict — Z frlept

i=1 j=—bt1 i=—b

a -1 -1
+Zta_bl'l®tjpl— Z tinl®t_brl+ Z r)1®tj1'l
j=1

i=1-b j=1-b
-1 a—1
+ Z 1 Peleint - Z frtent
j=1-b i=a—b+1

a—1 b
+A— Y e it =D ) e git!
i=1 i=1
=p2®00+fbn1®p1_tap1®nl
4—t“‘ba°<8>p2-+/Lzé§t‘bao-+t“_ba°<®;12
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+19 @ (F+G -t )t —t7PFel @ pt + 17 Pet @ 1 Fplt
— G =ttt 0t ® (G-t )+ 1P @ (G — )yt
G-ttt + Gt Frt =P Frl @ Gt

where the final two terms of the second last expression simplify to the final two terms of
the last expression by substituting = Zj;%tj, gi= Z;zlff, and then using (5.10).
The last expression now quickly simplifies to that given in the lemma by grouping

(1) —(F-Dprter bl +17p1 @ (=170t = —tFpl @ t~bt,

2 - G-ttty pte (-t Pt = -Gt @bl and

() 1Pl e (G-t Dyt + e trlepl=r"rleiGyl. O

It is now easy to prove the formula fato 3. Indeed, it follows from Lemma 5.1 that

3 A0 = p2@ 00412 @00 — 112 ® o°
——
(€8]

F19b60® p2 4197060 @ 2 —19b 60 @ 12

(4 (6)
ot F + Gy @t — 12 @ 1P o0 412 @ 100
1w (7
_ t1+afb00 ® tMZ _}_tafbao ® tﬂz
—_——
()]

+ 197t @1 (Fpt+ Gy + 10t @ Gl — pt @ Gt

—_——

18 11 )
+ 771 ®Grl —tibnl Q Gl + tuz ® (% —17"0
—_——
13
— 20+ 121 et Frl g pt
%) (12
) th—i-t_bnl ® ,0l —H_bnl ® Gt
(16) 2)
+1p @ Ftl 419Gt @ Frl—rpt @ nt — Gl @ ot
—_— ——
(10) (15) 3) (14

which matches exactly with the result in Lemma 5.2 apart from the extra terms which
cancel in (five) pairs.

Part B.§2 ands3

Throughoutthis section recall the following notation introduced in Sectieé% ag =
0,ro=s0,r_1=1.
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Lemma 5.3. Letu(j, i) be any elements of an Abelian group, defined fgre Z. Then

m—1j—-1 m—1
Y3 [uGiy—uG=1.0]=Y " [utm—1.j)—u(j. j].
j=2i=1 j=1
Proof
m—1j-1
D o [uG iy —uli—1,0)]
j=2i=1
m—1j—1
=Y "> [uG i) —u(i—1,0)]
j=1i=1
m—1j-1 m—2
=Y > uGiy =y > uli)
j=1i=1 j=1i=1
m—2 m—2 /j—1 j
=Y um-10+y (Zu(j,i)—Zu(j,i))
i=1 j=1 \i=1 i=1
m—2 m—1
[um —1, ) —uGi, ] =D [um =1, ) —u(j, ] O
Jj=1 j=1

The next corollary follows from this lemma and Remark 2.1. It will be used to compute
9(A8%) andd(As3).

Corollary 5.4.
m—=1j-1
@i T3 rtont)
j=2i=1
m—1 m—1 m—1
:Zrm,la(?@nl/-l—Zr]aO@n +Z7T ®so(70 Z?T Qrj— 100,
j=1 j=1 j=1
m—1j-1
i $ 3 orl)
j=2i=1
m—1j— 1 m—1j— 1
=—ZZM®n+zzn@wQ}wmm
j=2i=1 j=2i=1

mf mf mf
1 1 2 2
Y rnbert - X ool + . ner 108
j:l j:l j:l
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m—1j—1
(©) a ( Y hrie nf)

j=2i=1
m—1j—-1 m—1j—1
:ZZhn}@hn ZZhn ® 7; +Zrm 1hao®71
j=2i=1 j=2i=1
m—1
- Zr hao Q75 —Zhn ®rj— 1770+Zh71 ®so770
j=1 j=1 j=1

Finally, take note of the following two formulae which will be used to simplify the
computations of bothA(a(Sz) and A(38%). These formulae follow directly from the

definitions ofnj, 72 in Section 2 and the formulae faﬁ(a’) A(,o ), t =1,2, given

in Theorem 2.2.

1 1 1 1 1
Amy =m; ®rj,1(rjc~)+rj,108®rj,1(rj +rjo;®(rj-1—rj)o; —rja(?@rjaj

0 1
+rjo; @rj-1p;j,

2 _7220ri_109 Loy 7l 0l 1 0o 2
Any =7 ®rj-10; +h; Q@rj—1n; —rjn; ®rj-1p;j r]h(;j ®rj-1p}
0 2 2 0
—rj—1hoy ®r.,-_1aj —rjoj ® rj-10;

—rj,lné®rj,1ajl+rjh(rg®rj(7j2
2 0 1 1 1 1 1 1
+rjof®rjo; +ring@rjo; +r.,-h0j Q®rj-1n; —r.,-haj ®rjnj. (5.11)

The diagonal or?. ~ Sinceds? =Yy x} , it follows from (5.11) that

m m
A(862) = Zn} ® r<,~_1aj(.)+ Zr.,-_lag ® r‘/_lajl + Zr.,-ajl ®(rj—1— r‘/)UJQ

j=0 j=0 j=0
(A) (B) ©)
m m
0 1 0 1
- Z”./'UO Qrjo;+ Z"./'Uj Qrj-1pj- (5.12)
j=0 j=0
(D) (E)

The expression fons? in Theorem 2.2 and Corollary 5.4(a) now give

m m
8(A62) = Zn/l ® soag +rm_108 ® Zn/l
j=0 j=0

(c) (€2
+08®7r,}l —rm_laé)@n,}l—nm ®08
——— —_— ——
(s (c4) (=)
+ 7y ® 105 + 5000 ® Pj — 96 ® P
———

— —
(c6) (s7) (c8)
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—pé®soag+p3®08+ag®pé—rm_lac?@pé
—_—  — ) — ) —

(€9 (s10 (c8 (cl)

—71,,11 ®soag+n,}l ®08

—— e —

(c12 (€S

m—1 m—1 m—1
- Z Fm-100 ® 71‘/1 + Z riog ® n.,-l - Z 71‘/1 ® 5003

j=1 j=1 j=1

(c13 (s14 (c19H

m—1 m
+ Yt or a0+ Y re?er s}

j=1 j=1

(clp (s1?
m m

= 2100 ®rj-1py = ) 1j0} ®1jo)

j=1 j=1

(s18 (s19

m m
+ Z r.,-ajl ® r.,-_lajo — Z rjag ® rj_lajl

j=1 j=1

(s20 (s21)

m m m

1 1 1

+ E rjfla(?@rj,l(rj + E 7 ®rj,1crjo— E T ®rj,108. (5.13)
j=1 j=1 j=1

(s22 (s23 (c24)
As a first step in the verification that (5.12) equals (5.13), observe that the terms in the
expression (5.13) labelled c5 and ¢8 cancel in two pairs. Furthermore, a direct calculation

shows that the following expressions from (5.13), displayed in (5.14), equal 0.
cl+c9+c15+¢c12=0,
(5.14)
c2+4c4+c11+¢c13=0, c6+cl6+c24=0.

Finally, observe that the sum of the remaining terms of the expression given in (5.13) is
equal to the expression far(982), given in (5.12), as indicated below in display (5.15).

A =510+s23 B =522 C =s20+s19
D =s3+ 51445184 s21, E =s7+s17

(5.15)

The diagonal or83.  Since
m
3_ 2 2
383 = (1—h)s% — an
i=0

it follows from the expression fonn/? in (5.11) that
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A08%) =82 ® 5000 + rm-100 @ 82+ 1L @k + pi @ pt+ 7L @ p}
—_—  — e N
) (B) © (D) (E)
—h8°® sohag — rmflh(rg ® hé?

(F) )

— hmy ® hyy, — hpg ® hog — hms ® hog

—_—
(H) ) )

m—1j—1
_ZZ” ® 7} +Zrltf Qrj— 1,Oj
j=2i=1
(K) (L)
m—1j—1
—Zn ®rj— 10; +ZZhn ®h7r
j=2i=1
(M) (N)

m m
— Z rjh(rjl ® rj;lh,oj1 + Z hnjl ® rj,lh(rjl

j=1 j=1
(0) (P)
m
—Zn Qrj— 10 Zhn ®rj_ 177]
j=0
Q) (R)
m m
+ Yy ®rj-api+ Y riho] @ rj1pf
j=0 j=0

($) (1)

m m
0 2 2 0
+ er_lhao Qrj-107 + Zr.jaj Qrj-10;

j=0 j=0
) V)
m m
+ erflné' X rj*lo‘./l — erh()'g ® I’jO'jz
j=0 j=0
W) (X)
—Zr,(f ®r,0 —Zrm%@r.jaj
j=0

) (2)

m m
1 1 1 1
— erh(rj Qrj-1n; —I—erh(rj Qrjnj.
Jj=0 j=0

(A) (B)

151

(5.16)
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The expression fons® in Theorem 2.2 and Corollary 5.4(b), (c) now give

3(A8%) = 82 ® so00 — h$> @ so0(
—— ———

(sD) (c2)

m
— Z njz ® so(rg + rmflh(rg ®8%— rmflh(rg ® hs?

=0 (c 5
(c3)
m m
— rm,1h08 ® Z njz — Z hrrjl ® soncl)
j=0 j=0
(c6) (c7)

—h8%® sohag—}— hé? ® soa(? — rmflh(rg ® 82

(s9 (c? (c4

m
+ 7100 ® 82+ rm-11g® Y 7}
——’ -0
(s9 !
(€10

— 15 ® pg +s0n5 ® pg — hpg ® PG+ pg ® Ph
—_— ——— ) — ) ——

(cly (s12 (€13 (s14
— Pb ® 5006 + P§ ® 05 + 1 ® Ty — P11 O 7,
———— ———— S—— N ———ee
(c19 (s16 (17 (c19

—ht@nl4nlerl+r2eal
——— —— —
(c19 (s20 (c2))
— 71,721 ® rm_lag — hag ® 7751 + hrm_lag ® 71,721
—_— —_—
(c22) (s23 (c249
+hrl @ng—hnk @ ry_ing —hn} @ b}
———
(c25 (c26) (s27)
+hrl @k + 105 ® pd —rm-1n§ ® p§ — hs ® pg
—— — ) — ) —
(c19 (€11 (c28 (€29

+ T ® P + Ty @ 5000 — T, ® 0L
—— ———— ——

(s30 (c3) (c22)

+ hag & pS - hrm,108 ® ,08 — hrrnll ® 17%

—_—
(€32 (c33 (c295

+ hﬂnl1 ® Soﬂé — hn,}, ® h,o& + hﬂnl1 ® ,08
——
(c34) (s35 (c29



J. Bryden et al. / Topology and its Applications 105 (2000) 123-156

+ s0hog ® p§ — hog @ p§ — hog © ng + hpg ® song
—_——  — — ————— —,———

(s36 (€32 (s37 (c38
m—1j—1
—hpG ®hpg+hpg @ pg+ Y Y hr @7}
M M j=2i=1
(s39 (€13
(c40

m—1j-1 m—1 m—1
=2 D T = Y g ® 7+ Y rg ®

j=2i=1 j=1 j=1

(s4) (c42 (s43

m—1 m—1
+ 5 w2 esnd= Y w2er

Jj=1 Jj=1

(c44) (c45)

m—1j-1 m—1j-1 m—1
Yt ohrt - S Y ot S s hof @ 72

j=2i=1 j=2i=1 j=1

(s49 (c40 (c47)

m—1 m—1
= D_rihog @} =) hj@rug

Jj=1 j=1

(s48 (c49

m—1 m m
1 1 1 1 1 1
+ ) hni@song— Y ring®ri-10) + ) rj-1g® ri-10]

j=1 j=1 j=1
(c50) (s5) (s52
m
—i—Zhn Qrj-10] —Zn Qrj— 10
j=1 j=1
(c53 (s59

—Zﬁ Qrj-10; +Zn Qrj— 100 Zrhag@rj_lajz

j=1
(s55 (c56) (s57)
m m
+ Z rj,lha(? ® rj,l(rjz + Z hnjl ® rjflﬂcl)
j=1 j=1
(s58 (c59

—Zhn ®rj— 1n1+2hn ®hrj_ 10 Zhn ®rj— 10

Jj=1 Jj=1

(s60 (s61) (€53

153
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m m
=D rino®rj=1py+ ) rin; @ rj-10]

j=1 j=1
(s62 (s63
m m m
1 1 1 1 2 0
— D riho} ®@rjapi+ ) riof @ri1pi =) ricf®rjo]
j=1 j=1 j=1
(c64) (s65 (s66
m m
+ o] ®rj-10) + ) riho} @rj-10]
j=1 j=1
(s67 (s68
m m m
0 2 1 1 1 1
= D 1ihag ®rjapf =) rihof @i+ ) rihoy @
j=1 j=1 j=1
(s69 (s70 (s7)
m m
— Zr.jh(f}®rj_1h,0}+Zr.jhaj;'@rj_lp}. (5.17)
j=1 j=1
(s72 (c64

As a first step in the verification that (5.16) equals (5.17), observe that the terms in
the expression (5.17) which have the same labels cancel in twelve pairs (namely, the
pairs labelled c2, c4, c11, c13, c19, c21, c25, ¢c29, c32, c40, c53 and c63). Furthermore,
a straightforward calculation shows that the following expressions from (5.17), given in
display (5.18), equal O.

c44+c31+¢c154+¢c3=0, c47+c33+c24+c6=0,
504 c38+ ¢34+ ¢c7=0, c10+ c42+ 28+ c18=0, (5.18)

€56+ c454c22=0, €59+ c49+ c26=0.

Finally, observe that the sum of the remaining terms of the expression given in (5.17) is
equal to the expression far(d5%), given in (5.16), as indicated below in (5.19).

A=sl H=s27 0=s72 V =s67,

B=s9 [=s39 P=s6]1 W =s52

C=s20 J=s35 (Q=s55+s16 X =548+ s57+ s69+ s23

D=s14 K =s41 R =s60+s37 Y =s64

E=s30 L=s65 S=s63+s12 Z=s4345s51+562+5sl17

F=s8 M=s54 T =s684+s36 A =s70Q

G=s5 N=s46 U =sb58 B ' =s71 O

(5.19)
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