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ON THE GLUING PROBLEM
FOR THE ^/-INVARIANT

ULRICH BUNKE

Abstract

We solve the gluing problem for the ^-invariant. Consider a general-
ized Dirac operator D over a compact Riemannian manifold M that is
partitioned by a compact hypersurface N such that M :- Mχ UN M2 .
We assume that the Riemannian metric of M and D have a product
structure near N, i.e., D = I{d/dτ + DN) with some Dirac operator
DN on N. Using boundary conditions of Atiyah-Patodi-Singer type
parametrized by Lagrangian subspaces L, of kerD^ we define selfad-
joint extensions D / , i = 1,2, over M{. We express the //-invariant
of D in terms of the //-invariants of Di, an invariant m(Lι, L2) of
the pair of the Lagrangian subspaces Lχ, L2 , which is related to the
Maslov index and an integer-valued term J . In the adiabatic limit, i.e.,
if a tubular neighborhood of N is long enough, the vanishing of J is
shown under certain regularity conditions. We apply this result in order
to prove cutting and pasting formulas for the ^/-invariant, a Wall non-
additivity result for the index of Atiyah-Patodi-Singer boundary value
problems and a splitting formula for the spectral flow.

1. The gluing problem and applications

1.1.. Introduction. We solve the gluing problem for the ^/-invariant
of generalized Dirac operators. Consider a closed, compact Riemannian
manifold carrying a Dirac bundle with a generalized Dirac operator. As-
sume that this manifold is separated into two pieces by a compact hyper-
surface. The gluing problem for the ^/-invariant consists in expressing the
^/-invariant of the original Dirac operator in terms of the ^/-invariants of
the Dirac operators living on the pieces.

The selfadjoint operators on the two components with boundary de-
pend on a boundary condition given by Lagrangian subspaces Lx, L2 of
a certain symplectic vector space. The gluing formula also contains an ad-
ditional real-valued term m(L{, L2), which is nicely related to the sym-
plectic geometry and the Maslov index.
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Moreover, there will be an integer-valued term which is not very man-
ageable. Hence it is interesting to have conditions under which this term
vanishes. In fact, we will give such conditions under certain regularity
assumptions. This leads to a very explicit version of the gluing formula
for the //-invariant.

We apply our gluing formula to derive a cutting and pasting formula
for the //-invariant. Thus, we compute how the //-invariant changes if
the manifold and the Dirac bundle are cut into two pieces by a compact
hypersurface and glued together again using a different identification.

As another application we derive a Wall nonadditivity result for Atiyah-
Patodi-Singer index problems. This generalizes the special case of the
signature operator considered by Wall in a topological context.

A gluing problem for the //-invariant appeared first in Cheeger [20] in
the context of manifolds with conical singularities. By now the main idea
of studying the gluing problem has been to use the adiabatic limit. Let
DN be the Dirac operator on the induced Dirac bundle over the sepa-
rating hypersurface. The easiest case is the one where dimkerZ)^ = 0.
Under this assumption the additivity of the //-invariant mod Z follows
easily from the results of Douglas-Wojciechowski [24]. Moreover, the au-
thor was informed by K. Wojciechowski about a real-valued version of the
sum formula [40]. Without the regularity assumption it contains a nonex-
plicit integer depending on the exponentially small (in the adiabatic limit)
eigenvalues of D.

The case where keτDN Φ {0} was studied by Mazzeo-Melrose and
Muller. Using the fe-pseudodifferential calculus, Mazzeo-Melrose [33] de-
fined a b- //-invariant and proved a gluing formula. Without the regularity
assumption it involves the signature for the exponentially small eigenval-
ues. The author was informed by W. Muller that he has proved the gluing
formula in full generality [36].

In the present section we give a detailed introduction to the subject and
present the main results and applications. The remainder of the paper
consists of three sections. In §2 we discuss the Maslov index, the signature
defect and the function m(Ll9 L2). In §3 we provide the details of the
proof of the gluing formula, Theorem 1.9. We first study the relative index
of projections, and then review the finite propagation speed method, which
is applied to compare the heat kernels of different Dirac operators. We
carry out the program sketched in §1.6. In §4 we deal with the behavior of
the small eigenvalues in the adiabatic limit and prove Theorem 1.17. The
results of this paper have been announced in [13], [14], [15].

I want to thank W. Muller for introducing me to the gluing problem for
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the ^-invariant, for showing me related literature and for many interesting
discussions. I am also grateful to M. Lesch for showing me his computation
on the cylinder, which was very helpful for guessing the right formula.

1.2. The ^-invariant. The ^/-invariant first appeared in the study of in-
dex problems for generalized Dirac operators on compact manifolds with
boundary (Atiyah-Patodi-Singer [1]). Let (X, M) be a compact Rieman-
nian manifold X of even dimension with boundary M. We assume
that there is a metric product collar (—ε,0]xM-^X with a metric
gx = (dr)2 + gM , where gM is a Riemannian metric on M independent
of the normal coordinate r. Let Dχ: T(Eχ) —• Γ(FX) be an elliptic first
order differential operator. We assume that, on the product collar, there ex-
ist identifications Eχ = pτ*ME and Fχ = pr^Z7 for certain real or hermi-
tian vector bundles E, F over M, and that Dx = σ(d/dr+D) for a bun-
dle isomorphism σ e C°°(M, Hom(£', F)) and a selfadjoint first order
differential operator D: Γ(E) -> Γ(E). Here, prM: (-ε, 0]xM c X -^ M
is the projection of the collar (—ε, 0] x M to M. Note that X is con-
sidered to be on the left-hand side of M. Thus, M is a right boundary,
and dr points in the outward normal direction. Let P< be the projection

onto the subspace of L2(M, E) spanned by the eigenvectors correspond-
ing to nonpositive eigenvalues of D. Let C°°(X, Eχ, Pκ) be the space
of smooth sections ψ of Eχ such that P<ψ,M = 0.

Theorem 1.1 (Atiyah-Patodi-Singer). The operator

has a finite-dimensional kernel and cokernel and its index is given by

/i\ Λ 7Λ ϊ c^ίTΛ \ Ά(P) — d i m k e r D
(I) indexDχ = / Ω{Dχ) + -^—*—^ >

where Ω(DX) is the local index density (defined with the asymptotic ex-
pansion of the heat kernel associated to Dx), and η(D) is the η-invariant
of D defined below.

We will only consider ^-invariants of generalized Dirac operators. A
generalized Dirac operator D on a hermitian or real vector bundle E —> M
with compatible connection V is a first order elliptic formally selfad-
joint differential operator satisfying a Weizenboeck formula of the type
D2 = (V£)*V +3? , where 31 is a bundle endomorphism of E. We say
briefly that D is the Dirac operator associated with the real or complex
Dirac bundle E. Examples of generalized Dirac operators are d + δ on
E = /\* Γ*M, the spin Dirac operator on the spinor bundle associated
with a spin structure on M, and the odd signature operator on /\ev T*M
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given by (-l)k+p(*d - d*)ω for ω e T{KlpT*M) if M is oriented and
dimM = Ak - 1 (some of these examples are in fact real operators).
More examples can be obtained by twisting a generalized Dirac operator
with an auxiliary real or hermitian vector bundle with compatible connec-
tion. A detailed exposition on generalized Dirac operators can be found
in Lawson-Michelsohn [30] and Berline-Getzler-Vergne [4]. Readers who
are not so familiar with Dirac operators should keep in mind the example
of the odd signature operator.

Let M be a closed Riemannian manifold, E —• M be a complex or
real Dirac bundle and D be the associated generalized Dirac operator on
E. The //-invariant η(D) is a global spectral invariant of D in the sense
that it is not the integral of a density locally determined by D, but is
defined as follows. D has eigenvalues -λ_{ < 0 < λQ < λ{ which are
counted with multiplicity, and its //-function is defined by

i€Z

where sign( c) is the sign of x for x Φ 0 and sign(0) = 0. This sum
converges for Re(s) > n, where n := dimM. Using the heat-equation
method one can show that η(M)(s) has a meromorphic extension to the
whole complex plane and is regular at s = 0 (see, e.g., Gilkey [25]).

Definition 1.2. The η-invariant of the Dirac operator is defined as the
value of its //-function at s = 0:

η(D):=η(D){0).

It is a regularized version of the signature of the quadratic form defined
by D, i.e., formally η(D) = fl{λ. > 0} - 8{λ. < 0} .

1.3. The gluing problem. The gluing problem for the //-invariant fits
well into the class of gluing problems for spectral invariants of elliptic
differential operators. Let M be a closed Riemannian manifold, E —• M
be a real or complex Dirac bundle and D be the generalized Dirac operator
on E. Let N c M be a compact hypersurface cutting M into two
components M.9 i = 1,2. We assume that there is a product collar
(-ε, ε) x N —> M such that {0} x N —• N, carrying a product metric
(dr)2+gN, where gN is a Riemannian metric on TV, which is independent
of the normal coordinate. We assume that dr points to M2 . Thus, N is
the right boundary of M{ and the left boundary of M2 . Concerning the
generalized Dirac operator D over (-ε, ε) xN —> M we assume that there
is a hermitian vector bundle EN over TV with a compatible connection,
a parallel automorphism / (i.e., [VEN , /] = 0), and a generalized Dirac
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operator DN such that £ , ( _ β f β ) x i V = Φ*NEN and D = I(d/dr + DN). It
is easy to see that / satisfies

/* = - / , / 2 = - l , IDN + DNI = 0.

The gluing problem for a spectral invariant consists in defining the cor-
responding spectral invariant for the restrictions Dt of D to Mt (using
a suitable boundary condition) and in computing the invariant of D in
terms of the invariants of D. and possibly some invariant depending on
the boundary condition and DN. On even-dimensional manifolds the
interesting spectral invariant is the index (associated to a Z2-grading of
the Dirac bundle E), and the corresponding gluing problem was solved by
Atiyah-Patodi-Singer [1] and, more generally, by Booss-Wojciechowski [7].
The gluing problem for the //-invariant is interesting for odd-dimensional
manifolds M.

The first step is to define selfadjoint extensions of D. using suitable
boundary conditions. In this paper we will consider global boundary con-
ditions of Atiyah-Patodi-Singer type. The conditions are very natural and
can be defined in any case (Lesch-Wojciechowski [31]), while there are
topological obstructions against the existence of selfadjoint local bound-
ary conditions (e.g., for the odd signature operator). The //-invariant of
Dirac operators with global boundary conditions was first considered by
Cheeger [19, p. 612]. Cheeger attached cones over TV to the boundaries.
The choice of an ideal boundary condition there corresponds to the choice
of the Lagrangian subspaces in our case (see below).

Let P> denote the positive spectral projection of DN , i.e., the orthog-

onal projection in L2(N, EN) onto the subspace spanned by all eigenvec-

tors corresponding to positive eigenvalues, let P < be the negative spectral

projection and PQ = 1 - P < - P> . Let V := kerD^ = i m P 0 . Note that

V is a ("hermitian" in the complex case) symplectic vector space with a

symplectic structure given by Φ(x, y) := (Ix, y), where (x, y) is the

L -scalar product. In fact, the multiplication by / anticommutes with

DN and, thus, acts on kerDN. A Lagrangian subspace L c V is a sub-

space satisfying L θ IL = V, Φ(L, L) = 0. Let prL be the orthogonal

projection onto L. Set IΪL = P< + PQ- prL , Πι

L = P>+PQ- prL . Here

the index / stands for left while r stands for right. The projection Π^ )

satisfies -IΠ^I θ lί^ = 1.
Let us choose two Lagrangian subspaces L{, L2. We define essentially

selfadjoint operators D( depending on the choice by setting
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domDχ := {ψ e Coo(Mι, E), Π ^ ΨlN = 0},

domZ)2 := {ψ e C°°(M2, E), Uι

Lψ]N = 0} .

For this kind of boundary conditions one has the usual elliptic regular-
ity (see Atiyah-Patodi-Singer [1], Booss-Wojciechowski [7], and also the
calculation in [10]).

The Dirac operators D.9 i = 1,2, have again a pure point spec-
trum, and the ^-function η(Di9 L^s) can be defined as above. It is
regular in s = 0 (Douglas-Wojciechowski [24]), and we set η(D.9 Lt) :=
η(D , L.)(0). We include the Lagrangian subspace L into the notation
in order to indicate that η(D, L) depends on I in a very definite way
(Lesch-Wojciechowski [31] and Corollary 1.12).

A more precise version of the gluing problem for the ^/-invariant is to
compute

η(D) - η(Dχ, Lχ) - η(D2, L2) =: d(DN, Lχ, L2).

For a real number x let [x] be its class in R/Z. Let δD be a deformation
of generalized Dirac operators which is trivial in a neighborhood of the
hypersurface N. Then there exists a locally defined density Ω(D, δD)
such that

(2) δ[η(D)]= f a{D,δD),
JM

(3) δ[η{Di,Li)]= ί Ω{D,δD).

Hence [d(DN, Lχ, L2)] is a deformation invariant with respect to defor-
mations δD in the interior of M..

We conclude this subsection with some remarks on our sign conventions
made for gluing. Note that, above, Mχ is considered to be on the left-hand
side of the boundary N, while M2 is on the right-hand side and dr points
into M2 . To make our considerations more symmetric we will sometimes
consider two manifolds M. with right boundaries N. and Dirac bundles
Ei —> M. with Dirac operators D.. We assume product structures as
above. Let EN be the corresponding Dirac bundles over Λf with Dirac
operators DN . Let N{ —> iV2 be an isometry denoted by a and assume an
isomorphism of tuples (EN , DN , Iχ) -• (EN , DN , I2) over a denoted
by A. We can glue the manifolds Mt using a and obtain M := M{UaM2 .
Moreover we glue the bundles Eχ, E2 using the composition of A with
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I2 and obtain E := Eχ u 7 oA E2. It is easy to check that Dχ and -D2

glue nicely.
We will also use the convention that the symbol M stands for all struc-

tures over M. Thus, we write, e.g., η(Mχ, Lχ) for η(Dχ, Lχ). If the left
manifold M2 is considered as a right manifold with Dirac operator -D2 ,
we write -M2 , and vice versa. In particular we have

(4) V(M2, L2) = -η(-M2 , /L 2 ) .

The bundle is^ is identified with the restriction of E2 to N2 using / .

This is the reason for the appearance of IL2 on the right-hand side of (4).

We will always identify V. = keτDN , / = 1, 2, using A.

1.4. The ^-invariant of cylinders. A simple manifold with boundary
consisting of two copies of N is the cylinder Z = [-1, 1] x N. Let
Ez := pτ*NEN. Then Ez is a real or complex Dirac bundle with the
generalized Dirac operator Dz := I(d/dr + DN). Of course, Z has a
left boundary {-1} x N and a right boundary {1} x N. Hence, we have
to fix two Lagrangian subspaces L{ c V, i = 1, 2, in order to define
the boundary conditions, where L2 is employed at the right boundary
{1} x N, and Lχ at the left boundary {-1} xJVof Z .

The //-invariant η(Z, Lχ, L2) was first computed by Lesch-Wojcie-
chowski [31] using separation of variables and the spectral symmetry of
DN. In order to state this result we introduce the involution σL := 1 — 2prL

on V. Note that with / σL anticommutes while the unitary σL σL

commutes.
We define the real-valued function m(Lχ, L2) on pairs of Lagrangian

subspaces by
Definition 1.3.

1 ' 2 π "
* lλ€spec(-[(i+/)/2i]<τLiσL2)

λe{-π,π)

in the complex case and by
Definition 1.4.

m(Lλ, LΛ := — y^ λ

λ€(-π,π)

in the real case, where we consider V as a complex vector space with the
complex structure given by / .
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Theorem 1.5 (Lesch-Wojciechowski). η(Z, Lχ, L2) = m(Lχ, L2).
Note that η(Z , Lχ, L2) is independent of the length of Z (which is

1 in [31]). There is a simple relation of the functions m(Lχ, L2) in the
real and the complex cases. Consider V to be complex. Assume that V
has a real structure V := VR <g>R C and / respects this real structure, i.e.,
acts as 7R Θ l c . Then VR has a euclidean structure given by (x, y) =
Re(x ® 1, y ® 1) and a symplectic structure Φ R (x, y) = (IRx, y). We
make the following simple observation:

Lemma 1.6. If Li = /. <g>R C are complexifications of real Lagrangian

subspaces /., then m{Lχ, L2) = m(lχ, l2).

Proof V decomposes as V = V+ e V~, where V± are the ±ι-
eigenspaces of / . There is a canonical identification of complex vector
spaces W: VR -• V+ given by W(x) := x <g> 1 - 7RJC ® /. The extension

A (8) 1 to F of any operator 4̂ € End(FR)7 respects the splitting of V
and decomposes as A <g> 1 = ^4+ θ 4̂~ . Moreover, ^4+ = WAW~ . Thus,
Lemma 1.6 follows, q.e.d.

We give now a relation of m to the Maslov index. Let (V, Φ) be
a real symplectic vector space with a compatible complex structure (see
Definition 2.5). The Maslov index is an integer τ{Lχ, L2, L3) defined for
a triple of Lagrangian subspaces (see Lion-Vergne [32] and §2, Definition
2.3). The complex structure I determines a maximal compact subgroup
K of the symplectic group G of (V, Φ) as its stabilizer. We have (see
Propositions 2.6 and 2.8)

Proposition 1.7. If Lz c V, i - 1, 2, is a pair of Lagrangian sub-
spaces, then

m(Lχ,L2)= / τ(kL,Lχ,L2)dk,
JK

where L is an arbitrary Lagrangian subspace.
The function m is the unique function on pairs of Lagrangian sub-

spaces, which is invariant under K (with respect to the diagonal action
k(Lχ, L2) = (kLχ, kL2), k e K) such that

m{Lχ, L2) + m(L2, L3) + m(L 3, Lχ) = τ(Lj, L2, L 3 ) .

1.5. The gluing formula. We start with stating the gluing formula
modZ. Recall the geometric situation described in §1.3. In particular
we consider M2 to be on the right-hand side of N. Then

Theorem 1.8 (Gluing formula mod Z ) . The class

[η(D) - η(Dχ, Lχ) - η(D2, L2)] = [d(DN, Lχ, L2)] G R/Z
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depends only on the relative position of the Lagrangian subspaces Lχ, L2

with respect to the automorphism group K of (V, <, >, /) and

In order to state the real-valued version of the gluing formula we mod-
ify the situation slightly. We change the notation for the manifolds M{

and M which now are denoted by Mt and M respectively. Let M be
the manifold obtained by gluing Mχ \ΔN Z UNM2. Then, M is derived
from M by stretching the product collar of N such that a copy of Z
is embedded into M. There is a natural generalized Dirac operator D
over M. Let δD be the infinitesimal deformation of D corresponding
to the stretching. It is supported in a tubular neighborhood of N, which
can also be considered to be a subset of Z . Applying the local variation
formula first to Z we get J Z Ω ( D Z , δDz) = 0 by Theorem 1.5 since
η(Dz , L, L) = 0 and hence η(Dz , L, L) does not depend on the length
of the cylinder. Consequently

δ[η(D)] = ί Ω{D,δD) = 0.
JM

Thus, varying the length of the cylindrical part of M changes the η-
invariant at most by an integer. Alternatively, one could show Ω(D, δD) =
0 by direct computation.

We set Mχ := Mχ\JNZ and M2:= Z UN M2. Mi can be considered
as overlapping subsets of M with the overlap M{ Π M2 = Z . There are
generalized Dirac operators Dt over Mt in a natural way. By the same
discussion as above the ^/-invariants of Mi differ from that of Mt at most
by an integer. The gluing problem for this modified geometric situation
consists in computing

d(DN, Lχ, L2) := η(M) - η(Mχ , L , ) - η(M2, L2).

Recall that D is the Dirac operator on M, while Dz lives on Z .

The latter is essentially self adjoint with boundary conditions given by the

Lagrangian subspaces L2, Lχ. Here Lχ is employed at { 1 } X J V , and

L2 at {-1} x N. Let H := L2(M, E) θ L2(Z, Ez). There we have the

Dirac operator D+ = DΘDZ . Analogously we define Ho := L2(Mχ, Eχ)φ

L2(M2,E2) and Do := DχφD2. Again, Di are essentially selfadjoint

with the boundary condition given by the L(. The ^/-invariant is additive

under the direct sum. Thus, η(D+) = η(M) + η(Z , L 2 , Lχ) and η(D0) =

η(Mχ , L X ) + η(M2, L 2 ) . H o w e v e r η ( Z 9 L 2 , L X ) = m ( L 2 , L χ ) i s k n o w n

by Theorem 1.5. We want to compare η(D+) and η(D0). This is done
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by comparing suitable functions of D+ and D_ . For this, both operators
must act on the same Hubert space, say H. The key idea is the definition
of a unitary operator U: H —• HQ. Let D_ := U*DQU. U is defined
using the canonical identifications of the parts of M U Z on the one hand
and of Mχ U M2 on the other hand. We employ smooth cut-off functions.
The unitary U identifies the corresponding boundary pieces such that
domD+ = domD_ . Moreover, G := D+- D_ is a bounded but nonlocal
operator on H.

Let P± be the positive spectral projections of D± . Then it turns out that
P+ - P_ is compact (see §3.3); therefore the relative index I(P+ , P_) e Z
of these projections is well defined (see Kato [28], Avron-Seiler-Simon [2],
[3], [11], and §3.1, Proposition 3.3).

The gluing formula for the //-invariant is given by
Theorem 1.9 (Gluing formula).

η(M) - η(M{, Lχ) - η(M2, L2) = m{Lχ, L2) - 2I(P+,P_)

+ dimkerZ)+ - dimkerZ>_ .

The mod Z-gluing formula (Theorem 1.8) follows immediately from
Theorem 1.9 and the discussion on how stretching the cylinder influences
the //-invariant. The proof of Theorem 1.9 is outlined in §1.6 and com-
pleted in §3.

Note that

dim ker D+ = dim ker DM + dim ker Dz ,

dimkerZ>z = dim(Lj n L2),

dimkerZ>_ = dimkerZ)M + dim ker DM .

In general, the index term as well as the dimensions of the kernels cannot be
computed. Hence, we would prefer to have a simpler formula not involving
those nonexplicit terms. Later in this paper (see Corollary 1.18) we will
show that, under a certain regularity condition, the index term and the
kernels vanish if one uses a specially adapted boundary condition (given
by the limiting values of the extended L2-solutions) and the cylindrical
part of M is long enough.

In [20] Cheeger explains the use of a sort of a gluing formula for com-
puting the //-invariant of mapping tori. He employs manifolds with cones
attached. In order to untwist the mapping torus he pinches a cross-section
to obtain a manifold with two conical singularities, and then deforms
this manifold back to a product. The change of the //-invariant during
the latter deformation is calculated by his formula for the variation of
the //-invariant for manifolds with conical singularities; see also [5]. The
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pinching process leaves the //-invariant unchanged (mod Z) . The idea
of pinching provides an alternative approach to the gluing problem. The
//-invariant of a Dirac operator on a manifold with a cone attached dif-
fers from the //-invariant of the Dirac operator with Atiyah-Patodi-Singer
boundary conditions by at most an integer.

1.6. Outline of the proof of the gluing formula. We compare suitable
functions of D± . First we represent the //-function of a generalized Dirac
operator using the heat operator

ί°° (s-Vβ-r TΛ -rE>2 JJ r ΎτDe dr-
This integral converges absolutely for Rφ) > - 2 (see Bismut-Freed [6],
Branson-Gilkey [8]). Hence, it also provides the required analytic exten-
sion of η(D)(s) up to s = 0.

Define sign(D) := £^(0, oo) - ED(-oo, 0), where ED( ) is the family
of spectral measures of D. Set

r D e dr>

where the integral converges in the trace norm for Re(ί) > 0 and Re(s) >
- 1 or Re(0 > 0 and Rφ) > n. Then

R(s, t) = e-tD\ign(D)\D + ED{0}fs.

For Re(s) > n we have

The idea of introducing the new parameter t is that we get an holomorphic
extension of ΎrR(s, t) up to the interesting point (s, t) = (0, 0). Thus,
we can replace analytic continuation by the limit (0, t) ^ (0, 0) in the
discussion below.

Let R^s, t) be defined as above for D with i = ± . Set A{s, t) :=
Tr(R+(s, t) - R_(s, ή) and A{t) := i?+(0, t) - i?_(0, t). The function
Δ(s, t) is holomorphic for Rφ) > -1/2, Re(ί) > 0, and

\imA(s,t) = η(D+)(s)-η(D_)(s)

exists uniformly in s on a compact set for Rφ) > -1/2. This follows
from the estimate

\Ίτ(D+e~tD2+) - Tr(D_e~tD-)\ < Ce~cte~φ W > 0

with C < oo, c > 0, which is proved by the finite propagation speed
method.
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We want to compute

(5) δ:=limA(0,ή = η(D+)

Formally, δ is the trace of the strong limit

s - Mm A{t) = sign(D+) - sign(D_) = 2P+ - 2P_ + ED+{0} - ED {0} .

Unfortunately the limit on the left-hand side of this equation does not
exist in the trace norm, and the right-hand side is not of trace class.

The first idea is that one can add a suitable commutator K to P + - P_
(see Lemma 3.2) such that P+ - P_ + K is of trace class and such that

The second idea is to get control over the convergence of A(t) in the
trace norm as follows. We can extend K to a holomorphic family of
commutators K{t) that are of trace class for Re(ί) > 0 (see Definition
3.4). We find another holomorphic family of trace class operators B(t)
with ΎΐB(t) = 0 and commutators K{t) such that the limits B := s -
limt_^0 B(t), K := s - Umt_^0K(t) exist. Moreover, B + IK is of trace
class and Ύτ{B + 2K) = 0. These families are constructed such that

A(t) + 2K{t)-B(t)-2K{t)tί?2P+-2P_+2K-B-2K + ED {0}-ED {0}

in the trace norm. It follows that

δ = limTr(Λ(ί) + 2K(ή - B(ή - 2K(ή)

= Tr(2P+ -2P_ + 2K-B- 2K) + Ίτ{ED+ {0} - ED {0})

P_) + dimker/)+ - dimker£>_ .

The gluing formula follows immediately.

The families B{t), K(t) will be constructed analogously to A(t), K(t).

Note that M U Z and also Mχ u M2 contain two copies of the cylin-

der Z . Thus, we can consider the corresponding Hubert space h :=

L2(Z u Z , Ez U Ez) as a subspace of H. On A we consider the un-

bounded operators D+ := Dz θ Dz and D_ := U*(DZ Θ DZ)U. We

extend these operators by zero in order to obtain operators on H, and

we define R(s, t)± and K(t) by the same procedure as for D± . Then

B(t) := R+{0, t) - R_(0, t). The main point behind this construction is

that D± and D± coincide locally on the set where the cut-oίf functions

used for defining U are not constant. Note that D± and D± should not

be compared in a neighborhood of the boundary of the copies of Z .
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1.7. Applications. Let (M., N.), / = 1, 2, 3 , be a triple of compact
Riemannian manifolds with boundary, and E. —• M. be real or com-
plex Dirac bundles with Dirac operators D. over Mt. All manifolds are
considered as left manifolds. We assume that N. are pairwise isomet-
ric (we denote the isometry by a) and {E^N , /., DN) are isomorphic
(with the isomorphism A over the given isometry a) as explained in §1.3
such that we can glue arbitrary pairs, thus obtaining Mχ2:= MχuN-M2,
M23 := M2UN—M3, and M3χ := M3UN—Mχ together with the correspond-
ing Dirac operators Z>12, Z>23, D3χ. From the gluing formula (Theorem
1.9) and (see the proof of Lemma 2.9)

(6) T j { L x , L 2 , L 3 ) : = m ( L χ , I L 2 ) + m ( L 2 , 7 L 3 ) + m { L 3 , I L χ ) e Z

we obtain
Corollary 1.10 (Cocycle). [η(Ml2) + ^(M2 3) + ι/(Λ/31)] = 0 e R/Z.
Later we will study the integer-valued cocycle η(Ml2) + η(M23) + η(M3l)

in the adiabatic limit. In the special case of the odd signature operator
this cocycle can be computed from the nonadditivity theorem for the sig-
nature of Wall [39]. For the odd signature operator on oriented manifolds
(M, N) of dimension n — Ak—\ we consider the real symplectic vector
space V := H2k~x(N, R) with the symplectic structure given by the inter-
section form. Let /. := im(H2k~ι(Mi, R) -> H2k~ι(N, R)), i = 1, 2, 3 .
Then the I. are Lagrangian subspaces. In the signature operator case we
have (see Lemma 2.12)

(7) η(Ml2) + η(M23) + η(M3l) = τ{lχ, /2, / 3 ) ,

where τ(lχ, /2, /3) is the Maslov index of lχ, /2, /3. Note that the identifi-
cations of the bundles of differential forms are different from those used in
the case of general Dirac operators. This is the reason for the appearance
of the Maslov index instead of the /-twisted Maslov index (6) in (7).

Let (Mi, Nt), / = 1, 2, be a pair of compact Riemannian manifolds

with boundary, and E{ —• M{ be real or complex Dirac bundles with

the Dirac operator Z>z being again isomorphic over N.. If Mχ D Nχ Λ

N2 c M2 is another isometry, and / is covered by some isomorphism

F: EN -> EN which intertwines (Iχ, DN ) with (/2, DN ) , then we can

also use (/, F) instead of (α, A) for gluing. We denote the resulting

manifold by Mf = MχUZuf-M2 . It carries the Dirac bundle EF -> Mf

and the Dirac operator D . We use the boundary conditions defined by
the Lagrangian subspace L at Nχ and the subspace IL at N2.
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Let PF be the positive spectral projections for D± (of course D_ and

DF_ are unitary equivalent).
Corollary 1.11 (Cutting and pasting formula).

η(Mf) - η(M) = m{F{L), L) + dim(L n F(L)) - \ dimkerZ^

+ dimkeri/- dimkerD - 2/(Pf, PF) + 2I(P+, P_),

where F(L) is the image of L under the action of F on kerDN. In
particular,

[η(Mf) - η(M)] = [m(F(L),L)] e R/Z.

One can simplify

-I{P+ , Pi) + I(P+, P J = I{UP+U*, UFPF{UF)*).

One can also reproduce and refine the result of Lesch-Wojciechowski

about the dependence of the ^/-invariant on the boundary condition. Let

(MQ, N) be a compact Riemannian manifold with boundary, and Eo —•

MQ be a real or complex Dirac bundle with the Dirac operator D. If we

are given two Lagrangian subspaces L / , / = 1, 2, we can take (Mχ, TV) :=

(Mo, AT) with the boundary condition Lχ and (M2, JV) := (M o, N) with

the boundary condition L2 . By gluing we obtain M = Mχ\JNZ UN —M2

and η(M) = 0 for symmetry reasons. The gluing formula gives
Corollary 1.12 (Dependence of η on the Lagrangian subspace).

η(M0, Lχ) - η(MQ, L2) = m(IL2, Lχ) + 2I(P+ , P_) - dimkerZ)^

- dim(Lj Π /L2)+dimkerZ>M + dimkerZ>M .

Taking this modulo Z we obtain Theorem 3.1 of Lesch-Wojciechowski
[31]. Note that m(L 2 , /L2) + m(/L 2 , Lχ) + m(L2, L2) = τ(L 2 , 7L 2, L t ) ,
m(L 2 , 7L2) = 0, and, hence,

m(/L 2 , Lj) = m(L2, Lχ), mod Z.

1.8. The adiabatic limit. In this subsection we discuss the vanishing

of the index term 7(P+ , PJ) and of the kernels of D± in the adiabatic

limit. Recall the modification of the geometric situation made in §1.5.

There we have defined M := Mχ UN Z UN M2, Mχ := MχUN Z, and

M2 := Z UN M2 . For r > 0 we could glue a cylinder Zr := [—r, r] x N

into M and obtain Mτ := Mχ ΌN Zr UN M2 . Let Mχ r = Mχ ΌN Zr and

M2 r = Zr uN M2. There are generalized Dirac operators Dr, D. r over
Mr, M'. r in a natural way. We will often omit the parameter r to make
the notation more compact. The gluing formula Theorem 1.9 is valid for
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any r > 1. We will study the index term I(P+ , P_) and dimkerD± for
large r. Note that both terms depend very sensitively on the data D., Lt,
i = 1, 2, as, e.g., the dimension of kernels or eigenspaces in general. Thus,
there is no hope to compute I(P+, P_) in general. Our way out is to make
a special choice of the Lagrangian subspaces L. depending on Zλ (and
not on r) such that, under certain regularity conditions, I(P+, P_) = 0
and kerZ)± = {0} for all r > r0 .

We will also need more general boundary conditions. Recall that V :=
ktrDN. To a general subspace L c V we associate the boundary con-
ditions BL := {(Pκ + P ^ - L ) ^ = 0} at the right boundaries and BL :=
{(P> + p i ^ j . ) ^ = 0} at the left boundaries. Of course, BL gives rise
to a self adjoint extension of the corresponding Dirac operator iff L is
Lagrangian.

Let B. be the closure of Zλ subject to the boundary condition Bv.
Then keτBi is finite dimensional. Let us have, for / = 1, 2,

Definition 1.13.

In other words, LM is the space of the limiting values of the extended

iΛsolutions of the Dirac operator if one glues a complete half-cylinder on
M.. The following fact was proved by Yoshida [41] in a special case (with
a different method) and also by Nicolaescu [37].

Proposition 1.14. The LM c V, i = 1, 2, are Lagrangian subspaces.

See Proposition 4.1 for a proof. Of course, the position of the LM

inside V is highly sensitive with respect to Zλ .
Next we discuss the regularity assumptions. Note that B* is the closure

of Z). subject to the boundary conditions B^, .

Assumption 1.15. kerZ?* = {0} .
Assumption 1.16. LM n LM = {0} .

Set Lχ := LM and L2 := LM , and define the selfadjoint extensions
Zλ and Dz as above using the Lagrangian subspaces L f . We employ Lχ

at {-r} x N and L2 at {r} x N. Then the assumptions will imply

kerZ)r = {0} for r > r 0 ,
kerZ)z = 0,
kerD^ = 0, / = 1, 2.

In fact, kerZ)z = LχΠL2, and with Assumption 1.15 also ktτDi = LχΠL2 .
The claim for Dr follows from the discussion of the small eigenvalues
when r becomes large. Thus, for r > r0 , also kerZ)+ = kerZ)_ = {0} .

Unfortunately the regularity condition excludes a lot of interesting cases.
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For the odd signature operator this condition is valid iff the image of
H*(M.9 N) in H*(M) vanishes. This follows from the discussion of
the limiting L2-solutions given in Atiyah-Patodi-Singer [1]. On the other
hand, in Yoshida [41] it is shown by example that regularity holds in other
cases.

Theorem 1.17 [Vanishing of the relative index term]. Assume Assump-
tions 1.15 and 1.16. Then there is an r0 > 1 such that for all r>r0

This vanishing is stable against small perturbations of the Li. We prove
Theorem 1.17 in §4 by first interpreting the relative index as the spectral
flow of the family D(u) := D_ + uG, u e [0,1] (see [11]) and then
proving a splitting formula showing that this spectral flow vanishes indeed
for r > r0 . The argument is a variation of Yoshida's proof of the splitting
formula [41].

Using Theorem 1.17 we can restate our gluing formula for the η-
invariant as follows.

Corollary 1.18 (Simplified gluing formula). Assume Assumptions 1.15
and 1.16. Then there is an ro> 1 such that for all r>r0

η(M) = η(Mχ, L2) + η(M2, Lχ) + m(L2 , Lχ).

Note that the L. are not arbitrary.
1.9. Applications in the adiabatic limit. As in §1.7 we consider here

all manifolds (M., Nt) with boundary to be left manifolds. Moreover, we
assume isometries (called a in §1.3) of the Ni and identifications (denoted
by A) of the bundles EN . We will denote LM by Lr Assumption 1.16
has to be modified to

Assumption 1.19. Lχ n IL2 = {0} .
If M and D are obtained by gluing Mχ and -M2 using the given

identifications under the regularity conditions 1.15 and 1.19, the gluing
formula for the ^/-invariant reads

(9) η(M) = η(Mχ, IL2) - η(M2,ILχ) + m(IL2,Lχ)

if r > r0^

Let (M., N.), i = 1, 2, 3, be a triple of compact Riemannian man-

ifolds with boundary, and E. —> Mt be real or complex Dirac bundles

with Dirac operators Z>. over Af.. We assume the product structures

and that N and (EN , 7z, DN) are pairwise isomorphic such that by glu-

ing arbitrary pairs we can obtain Mn+ := Mχ VJN Zr ΌN —M2, M23 :=
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M2 UN Zr UN -M3, and M3l := M3 UN Zr \JN -Mχ, together with the cor-
responding Dirac operators Dn, Z>23 and Z)31. Moreover, recall that L{,
i = 1, 2, 3, are given by

(10) ^ . ^ { p r ^ ^ E k e r ^ . } ,

where B. is the closure of Zλ with respect to the boundary condition Bγ .
Recall the /-twisted Maslov index of the triple of Lagrangian subspaces

(Lχ,L2,L3):

(11) τj{Lλ, L2, L 3 ) := m(Lχ, IL2) + m(L2, IL3) + m(L3 ,ILχ).

Corollary 1.20 (Cocycle). Assume the regularity conditions 1.15 and
1.19, i.e., kerB* = {0} for i = 1, 2, 3, and L. n lLj = {0} for iφ j ,
i, j = 1, 2, 3 . Then there is an r0 > 1 such that for all r>r0

η(Mn) + η(M23) + η(M31) = τ 7 ( L , , L 2 , L 3 ) € 2Z.

Pwo/ Recall that we consider all Mt to be left manifolds. We apply
equation (9). Let rQ be large enough. Then

η(Mt, IL2) - η(M2,ILi) - m{Lχ, IL2)

+ η(M2,IL3)-η(M3,IL2)-ιn(L2,IL3)

+ η(M3 ,ILχ)- η(Mχ, IL3) - m(L3 , / L , ) .

We also have

(13) η(Mι, IL2) - η{Mχ, IL3) = m{Lχ, IL2) - m(L,, IL3),

η{M2, IL3) - η(M2 , / £ , ) = m(L2, ILJ - m(L2 ,ILχ),

η{M3, ILχ) - η(M3, IL2) = m(L3, ILχ) - m(L3, IL2).

We explain (13). Note that there is a path of Lagrangian subspaces L(t)

from IL3 to IL2 inside of the affine set AL := {L e V\L n Lχ = {0}} .
Consider Dz(t) on Zr subject to the boundary conditions BL at {-r}χ

N and BL,(, at {r} x N. Then, by the method of Lesch-Wojciechowski
[31],

Both families of ^-invariants are smooth by the definition of the path
L(t). Equation (13) follows from Theorem 1.5. Substituting this in (12)
we get the claim. It will be shown in Lemma 2.9 that the /-twisted Maslov
index is even, q.e.d.
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Via the index theorem of Atiyah-Patodi-Singer [1] (see Theorem 1.1)
Corollary 1.20 provides a generalization of Wall's nonadditivity of the
index for the signature operator [39] (which is discussed extensively in
§2) to general Atiyah-Patodi-Singer boundary value problems. We recall
the geometric situation described in §1.2 adapted to our current problem.
Assume that X± are (/t+l)-dimensionalRiemannian manifolds with Z2-
graded Dirac bundles F± = F±ΘF~ and Dirac operators D± . Moreover,
assume that dX+ = Mχ2, dX_ = M23 (metrically) and that the metric
and the bundles respect a product structure near the boundary. Finally,
we assume that

near the boundary, where D±: Γ(F±) -> Γ(F~) is 'half of D± with
respect to the grading of F± . Hence, we assume that

F+ — F F+ — F
Γ+\Mι2 ~ n\2 ' - | M 2 3 ~ ^ 2 3 *

Recall that, e.g., Mn = M{ UN Zr UN -M2. One can now glue
u ί> . . m i M X- 9 obtaining the Riemannian manifold X and a Dirac

bundle F —> X with the Dirac operator D (here one has to smooth the

corner in some nonunique way). X has the boundary dX = Mχ \ΔΉ Zr UN

—M3. Consider the Dirac operators as maps

D+

+: {ψ e Coo(X+,F*)\EDii(-oO,0]ψWιi = 0}

D+_:{ψ€ C°°(X_ , O l ^ ί - o o , ϋ\ψWn - 0}

D+:{ψ€ C°°{X, F+)\EDJ-cx>,0]ψlMi} = 0}

where ED(—oo, 0] denotes the spectral projection onto the nonpositive
subspace of D. Then the index of these maps is well defined, and by the
theorem of Atiyah-Patodi-Singer

index(Z)+) = fa(D+)
Jχ_

index(i)+) = ί Ω(Z)+)
Jxx

Applying Corollary 1.20 we obtain
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Corollary 1.21. Assume the regularity condition 1.15, i.e., kerBi = {0}

for i = 1, 2, 3, as well as 1.19, i.e., L{ n 1L. = {0} for iφ j , i,j =

1 , 2 , 3 . Then there is an rQ> 1 such that for all r>r0

index(Z)^) + index(Z>+) - index(Z)+) = ^ ( 1 ^ , L 2 , L3).

In fact, the integrals of the index densities cancel out each other. Using
the product structure one can smooth the objects near the corner such that
the indexjiensity vanishes in that region.

Let (Mi, N.), / = 1, 2, be a pair of compact Riemannian manifolds
with boundary, and Et —> M. be real or complex Dirac bundles with
Dirac operators Di. We assume product structures near the boundary.
Moreover, we assume that a: Nχ —> N2 is an isometry, and there is an
isomorphism A: EN —» EN of bundles intertwining with It and DN

living over α.

If MχD N{ ^ N2c M2 is another isometry, and / is covered by some

isomorphism F: EN —> EN of bundles intertwining with I. and D^ ,

then we can also use {f,F) for gluing. We denote the resulting manifold

by Mf = M{ U Zr uf -M2 . It carries the Dirac bundle EF -• M / and

the Dirac operator DF . Again this construction contains a parameter r
being the half of the length of the cylinder glued in. Recall that we identify
keτDN using A.

Corollary 1.22. Assume 1.15 for i = 1, 2 am/

Z,! Π LL2 = ^(Lj) Π 7L2 = {0} .

Then there is an r0 > 1 such that for all r >r0

η{DF

r) - η(Dr) = m ^ ) , IL2) - m{Lχ, IL2).

Proo/ Both D., i = 1, 2, are considered to live on the left-hand side
of the boundary Nt. We apply equation (9).

η(Mf) - η(M) = η(Mχ, ^~1(/L2)) - η(M2, IF(L{)) - m{F{Lχ),IL2)

- η(Mχ, IL2) + //(M2, /Lj) + m ^ ! , /L 2 ) .

Moreover, similarly as for equation (13)

η(Mχ, IF~\L2)) - η(Mχ, IL2) = m(F(Lχ), IL2) - m(Lχ, IL2),

) - η(M2, 7LJ = m(IL2, F ^ ) ) - m(/L2, Lχ).

The claim now follows.
1.10. A splitting formula for the spectral flow. Another application

of Theorem 1.17 provides a splitting formula for the spectral flow. Let
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(M., N.) be a pair of compact Riemannian manifolds with boundary and
Ei —• Mi be Dirac bundles. We assume a product structure of the metrics
and the Dirac bundles near the boundary N.. This provides EN —• N. and
/• e Γ(End(EN)) as explained in §1.3. Moreover, we assume that N. are
isometric with an isometry denoted by a and that there is an isomorphism
A : ( E N χ 9 I λ ) ^ { E N i , I 2 ) . L e t D . ( t ) , ι = 1 , 2 , te[0, 1 ] , b e a f a m i l y o f
Dirac operators on Et such that Dt(t) have a constant principal symbol.
Equivalently, D.(t) - D.(s), s, t e [0, 1], is a bundle endomorphism.
Such a family, for example, comes from a family of connections on the
Clifford bundles Ei. We assume that the Dirac operators D (t) have a
product structure near TV for all t e [0, 1]. We obtain a family DN(t)
on EN . Moreover, we assume that (EN , I.9 DN(t)) are isomorphic for
i = l , 2 and all t via the identification A . Then we can glue the operators
for each t e [0, 1] and obtain a family D(t) of Dirac operators on M
(recall that we glue in a cylinder of length r). Let V{t) := kerD^ (ί).
Note that the dimension of V(t) may be discontinuous. Let L.{t) c
F(ί), i = 1, 2, be families of Lagrangian subspaces and define families
of selfadjoint extensions D.(t), / = 1, 2, and Dz{t) as above using the
boundary conditions given by L.(t). Recall the construction of D± in
§1.5. Thus, we can also form the families D±{t) and make the following
assumptions.

Assumption 1.23. D±(t) are 'continuous' such that the spectral flow is
well defined.

Assumption 1.24. kerD+(ί) = kerD_(t) = {0} for t = 0, 1.
Assumption 1.23 is formulated informally, but it is, what we really

need. At the points t where dim V(t) is continuous, it is enough to have
a continuous family of Lagrangian subspaces L.(t) (the union of all V(t),
t € [0, 1], has the structure of a continuous bundle of symplectic vector
spaces at those points as explained in Yoshida [41]). The continuity con-
dition for L;(t) at points where dim V(t) jumps has to take into account
which vectors of V(t) come from or move into the positive or negative
spectral subspace of DN(t) (see Nicolaescu [37] for a detailed account).

Assuming 1.23 and 1.24 it can be shown (compare [11] or Proposition
3.3) that P±(l) - P±(0) is compact and that

where P±(t) are the positive spectral projections of D±(t). By the alge-
braic properties of the relative index we have
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and, thus,

(14) sf{D+(t)} - sf{D_(t)} = -7(P+(0), P_(0)) + /(P + ( l ) , P_(l)).

Hence we obtain

Corollary 1.25 (Splitting Formula for the Spectral Flow). Assume 1.15,
1.19 (1.24 is implied by 1.15 and 1.19 if r > r0) for Z).(O) and Z)f.(l)f

i= 1,2, and 1.23. // L (0) and Lf.(l) are given by (10), ίAerc ί/*m> w α«
r0 > 1 swcΛ that for all r>rQ

sf{D(t)} = sf{D{(t)} + sf{D2(t)} - sf{Dz(t)}.

The spectral flow of {Dz(ή} is related to a symplectic invariant of the
family of pairs of Lagrangian subspaces {Lχ(t), IL2(t)} as explained in
Yoshida [41] (see also [18]). Such a splitting formula was proved also by
Cappell-Lee-Miller in [17] as cited in Kirk-Klassen [29]. Moreover there
is a very interesting paper by Nicolaescu [37], which the author received
after this work was finished. There, a more general splitting theorem is
proved without the assumption of a constant principal symbol and regu-
larity. Moreover, one finds also a nice discussion of the Maslov index for
families of pairs of Lagrangian subspaces in a infinite-dimensional frame-
work.

2. The Maslov index

2.1. Cochains. We recall the definition of the complex of (measurable)
cochains C^(X) associated with a (measurable) space X. If there is a
group G acting on X, we consider the cohomology of the complex of
G-invariant cochains.

Let X be a measurable space. Set

Cq(X) := {bounded measurable functions on I x x l j .

Without further notice we will consider real-valued functions. The differ-
ential d: Cq(X) -> Cq+\X) is given by the formula

q+\

i=0

for / € Cq{X). Let C*λ{X) c C\X) be the subcomplex of completely
antisymmetric functions.

Lemma 2.1. The complexes (C*(X), d) and (C*(X), d) are acyclic.
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Proof Fix a point o e X. Then there is a contraction s0: C

C j J ! ( * ) given by

(sof)(x0, ••• , x ^ ) :=/(<?, x 0 , ••• , ^ _ 1 ) .

In fact

(15) d?.so + ̂  = id.

See also Spanier [38]. q.e.d.
Let G be a group acting on X (preserving the measurable structure).

Then G acts o n ί x x l (q + 1 factors) diagonally. Hence, it acts on
the cochains C*λ^(X) by

gf(x0, ••• ,xq):=f(g~lx0, ••• , ί ~ \ ) ,

where g e G, and g/ , / e Cq

{λ){X). Let C*λ)(X)G c C*λ)(X) denote the
G-invariant functions.

The complex (C?λΛX)G

 9 d) need not be acyclic in general. If, e.g., G
is a countable group and X = G, then

H*{C\G)G) = H*(G, R)

(compare Brown [9]).
Let now G be a compact topological group with normalized Haar mea-

sure dg. Assume that G x X —• ^ is measurable. Then there is a
projection m: CϊλΛX) —• Cμx(A')G; given by

w / : = / #/</£.

It is easy to check that

(16) dm = md.

It follows that
Lemma 2.2. If G is a compact group acting on X such that G x X —> X

is measurable, then H*(C{λ)(X)G) = 0.

In fact, for finite groups H*(G, Z) is a torsion group and thus H*(G, R)
= 0.

2.2. The Maslov index. We recall the definition of the Maslov index
τ(/j, l2, /3) associated to a triple (lχ, l2, /3) of Lagrangian subspaces of
a real symplectic vector space (V, Φ). τ gives a 2-cocycle over Λ, the
space of Lagrangian subspaces of V (see Lion-Vergne [32] for most of
that material). We will find 1-cochains μ such that dμ = τ.
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Let (V, Φ) be a symplectic vector space over R, and G be the group
of linear symplectic automorphisms G = Sp(K). Let Λ be the space of
Lagrangian subspaces of F . Λ is a compact manifold, and there is an
obvious G-action on Λ.

A triple lx, l2, /3 G Λ determines a quadratic form Q on lχ e l2 θ /3:

Q(XX , X2 , X3) = Φ(Xj , X2) + Φ(X2 , X3) + Φ(X3 , AΓj) ,

where *,-€/,-, / = 1, 2, 3 .
Definition 2.3. The Maslov index of / j , /2 , /3 is given by the integer

Here signζ) := /? - q, where /? is the number of Γs, while q is the
number of - Γ s on the diagonal of a matrix representing Q with respect
to a suitable diagonalizing basis.

The following is proved in Lion-Vergne [32].
Theorem 2.4 (Vergne). The Maslov index τ satisfies

1. τ e C2

λ(A)G and
2. dτ = 0.
Note that there is no G-invariant μ e Cι

χ (Λ) with dμ = τ. In fact,

(Si, g2) -> cι(8ι > g2)
 := τV> S\l> g\8il)

is a nontrivial (over R) group cochain, and thus 0 Φ [τ] e H2(Cλ(A)G).
If K c G is a maximal compact subgroup, we can find of course a

^-invariant cochain μ with dμ = τ . Such a cochain is then naturally
associated to a compatible complex structure on V.

Definition 2.5. A complex structure / in V is said to be compatible
if (. 9 .) := φ(. 9 /.) is a positive-definite scalar product.

Let us fix a compatible complex structure / o n F . Then K := StabG(/)
= Gl(V, /) Π Sp(F) = ί/(K) is a maximal compact subgroup of G. Note
that AT acts transitively on Λ.

Proposition 2.6. There is a unique μ e C\ (K)κ with dμ = τ .
Proof. Fix some / € Λ and set μ := ms^τ), where m is the averaging

with respect to K. Thus, by the G-invariance of τ

lχj2)= f τ(kl,lxj2)dk.
J K

By (15), (16) and Theorem 2.4(2) we have dms^τ) = mds^τ) = m(τ) =
τ . Obviously, μ is ίΓ-invariant.

We have to show the uniqueness. Let μt e Cι

λ (K)κ, / = 1, 2, with

dμx = dμ2 = τ. Then d(μ{ - μ2) = 0 and there is a ζ e C°(Λ)* with
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dξ = μ{ -μ2 by Lemma 2.2. However K acts transitively on Λ and thus
ξ is constant. Hence, dξ = 0. q.e.d.

We compute μ in the two-dimensional case V := R 2 . Let V '.—
RP θ RQ, where (P, Q) is a basis, with the symplectic structure given
by Φ(P, Q) = 1, Φ(P, P) = Φ ( β , β) = 0. Fix the complex structure
/ by I(P) = Q, I(Q) = -P. Then <P, P) = (Q, Q) = 1, (P,Q) = 0.
We have G = Aut(F, Φ) = SL{2, R) and K = StabG(7) = SO{2). Any
one-dimensional subspace / parametrized by the angle a(l) between RP
and /, with a £ [0, π), is a Lagrangian subspace.

Lemma 2.7.

, α(/1) = α(/2).

This is an easy computation if one uses that τ(l{, l2, /3) = 0
if any two of the subspaces coincide and that τ(l{, /2, /3) = 1 if a(lχ) <
α(/2) < α(/ 3). q.e.d.

2.3. The equality μ = m. Let F be a real vector space with an eu-
clidean structure ( , ) and a compatible complex structure / , i.e., / =
-I* and I2 = - 1 . / defines a symplectic structure Φ(x, y) := (Ix, y) .
Let Λ := Λ(F) be the space of Lagrangian subspaces of V, and K be the
automorphism group of (V,(,),/). For / e Λ we define the involution
σι := pr7 - (1 - pr7) that acts as the identity on / and by - 1 on the
orthogonal complement Λ . The following properties are easy to verify:

2 Λ *

σι = 1, σι =σl9

σj + 7σ ; = 0 ,

σw/ = w<7zw*, u e K.

For a pair l{, l2e A we form Af (/j, /2) := σι σt . Then
ι

M(ll9l2)eK,
M{lι,l2)M{l29l3)M{l39lι) = l,
M(ulχ, ul2) = uM{lχ, /2)«*,

M(Al, I) = AA~l for A e Sp(K) with 1 := σ , ^ .
Recall that from Definition 1.4 and Proposition 2.6 we have, respectively,
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(17) β(lι,l2)= ί τ{kl,lλ,l2)dk.
J K

Proposition 2.8. m(lχ, l2) = μ(lχ, l2).
Proof. If lχ, /2, /3 G Λ are pairwise transverse, then (see Guillemin-

Sternberg [27, 2.2.26])

(18) m(/,, l2) + m(/ 2, /3) + m(/ 3, /,) = τ(/, , /2, / 3 ) .

By the properties of M(lχ, /2) listed above, m(w/j, ul2) = m(/j, /2) for
all w G K and m(/j, /2) = -m{l2, /j). Let /,, /2 e Λ be transverse, and
define

A: := {w G AΊM/ n lx = {0} ,ulnl2 = {0}}.

Then Â \AΓ has measure zero. Substituting (18) in (17) yields

μ(ll9l2)= fmτ(ul,lx,l2)du
J K

Jk

Here the integral vanishes for symmetry reasons. It requires a little bit
more effort to check the equality in the case if lχ, l2 are not transverse.
This can be done by studying the jumps of m(lx, l(ή) and μ(lχ, l(ή) if
l(t) is a family with 1(0) = l2 that goes transversely through {/ G A|/n/j Φ
{0}}. Then

2m(lχ, l2) = m(lχ, /(+0)) + m(lχ, / ( -

We omit the details.
2.4. The twisted Maslov index. Recall the definition of the twisted

Maslov index (11)

τ 7 (L 1 ? L 2 , L3) = m(Lχ, IL2) + m(L2, IL3) + m{L3, ILχ).

Lemma 2.9. // L{ n /L y = {0} /or y\ i = 1, 2, 3, i ^ j , then
τ 7 ( L 1 ? L 2 , L 3 ) G 2 Z .

/ Let L be any Lagrangian subspace. By the antisymmetry of
2m, m(L, L) = 0. Since I e K and 72 = -1 we have m(L, IL) =

m(IL, L) = -m(L, IL). Hence, m(L, IL) = 0. A simple computation
shows

τ / (L 1 , L2, L3) = τ(Lχ, IL2, L2) + τ(L2, 7L 3, L3)
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By Proposition 1.9.3 of Lion-Vergne [32] for any triple of Lagrangian sub-
spaces L{, L2, L3,

τ(Lj, L2, L3) = «+dim(L1ΠL2)+dim(L2ΠL3)-f dim(L3nLj) (mod 2),

where n = dim(F)/2. Thus we obtain

τχ(Lλ, L2, L3) = 2(dim(Lj Π L2) + dim(L2 Π L3) + dim(L3 nLχ)) + An

= 0 (mod 2).

2.5. The signature defect. We recall the theorem of Atiyah-Patodi-
Singer [1] on the signature of a compact manifold with boundary and the
result of Wall [39] on the signature defect.

Let (X, M) be a compact oriented Riemannian manifold with bound-
ary of dimension dim X = 4/c. Assume that the metric is product near the
boundary. Let η(M) be the ^/-invariant associated with the odd signature
operator introduced by Atiyah-Patodi-Singer [1]. Then

Theorem 2.10 (APS).

sign(X)= [ &-η(λί),

where 3* is the Hirzebruch-Jϊ? polynomial in the Pontrjagin forms of X.
Let (X+, Mχ, -M2, N), (X_ , M2, -M3, N) be oriented manifold 4-

tuples (the sign indicates the orientation) with MχΓ\M2 — N, M2nM3 =
N, MγUN -M2 = dX+ , M2 UN -M3 = dX_ . Give N the orientation as
the boundary of M2 . We form X := X+ \JM X_ . Let V := H2k_χ{N, R).
V is a symplectic vector space, where the symplectic structure Φ is given
by the intersection number. Let

/,. := ker(F -> H^M;)), / = 1 , 2 , 3 .

It can be shown that the /z are Lagrangian subspaces. The result of Wall
[39] is

Theorem 2.11.

(19) sign(Z) = sign(Z+) + sign(jr_) + τ(/1, l2,

By Theorem 2.10 we have

= f 3 - η(Mχ UN -M2),
Jx+

_) = ί & - η(M2 UN -M3),
J x_

sign(X) = ί S? - η(Mι ΌN -M3).
J X
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Substituting these equations into (19) we obtain

(20) η(Mx UN -M2) + η(M2 UN -M3) + η(M3 UN -Mχ) = τ(/,, l2, /3).

Lemma 2.12. Equation (20) holds for any three pairs {Mt, N), i =
1 , 2 , 3 , of compact, oriented Riemannίan manifolds of dimension 4k - 1
with a boundary isometric to N and a product metric near the boundary.

Proof We form the compact oriented Riemannian manifolds

Yλ := Mχ UN -M2, Y2 := M2 UN -M3.

Since the oriented cobordism vanishes rationally Ω 4 f c - 1 <g> Q = {0} in
dimension 4k-1, there are oriented manifolds with boundary {X+, nYχ),
(X_ , mY2), n, m e N . In fact, we can assume n = m. Applying now
Theorem 2.10 to the 4-tuples (X+, nMv -nM2, nN), (X_, nM2, -nMv

nN), we see that H-times equation (20) holds. The lemma follows.

3. The proof of the gluing formula

3.1. The relative index of projections. Let H be a separable Hubert
space. The space of bounded operators L(H) contains the ideals K of
compact operators and L{(H) c K of trace class operators. Moreover,
there is the family Lι{H) C LN(H) C K of Schatten classes for N >
1 (see Connes [23, Appendix]). The Nth Schatten class consists of all
operators A e L(H) such that \A\N is of trace class. A projection P e
L(H) is a selfadjoint idempotent, i.e., P* = P and P2 = P.

Let P, Q be infinite dimensional projections on H such that P-Q e
K. Then the operator PQ: Im(Q) —• lm(P) is Fredholm, and its index
is the relative index of P and Q denoted by I(P, Q). We consider the
space h := Im(P) Θ Im((?) and the operator

where W\ Im(P) —• Im(Q) is some isometric isomorphism which exists
by the assumption on the dimensions of P, Q. Let

0

Then

and

Ή
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are compact operators. Thus, A is Fredholm with parametrix B and

Assume now that S,T e LN(H), i.e., they are in the Nth Schatten
class for some N > 1. Then we have the following proposition (proved,
e.g., in Connes [23])

Proposition 3.1. I{P, Q) := Tr SN - Tr TN.
In terms of the projections P, Q this formula is equivalent to

I(P, Q) = Tr((β - β/>β)" - (P - PQPf)

The following lemma provides us with the commutator K announced
in the outline of the proof in §1.6.

Lemma 3.2. If P, Q are projections on H, then

(Q - QPQf -(P- f

where K is a commutator given by

L /=o

Proof. A simple computation shows that for / > 0

(21) [[β, P], (Q(PQ)l + P(QP)1)] = 2(Q(PQ)M-P(QPfι).

Now we expand the Nth powers (Q - QPQ)N and (P - PQP)N and
use the fact that Q commutes with QPQ and P commutes with PQP.
Substituting (21) in these expansions and collecting all commutator terms
prove the lemma.

3.2. Construction of the isometry U. Recall the modified geometric
situation introduced in §1.5 and the Hubert spaces H := L2(M, E) Θ
L2{Z, Ez) and Ho := L2(Mχ ,Eχ)φL2(M2, E2). We define an isometry

U:H^H0.

We start with choosing a function χ e C°°[-l, 1] with χ = 1 on
[-1,-1/2] , χ(r) e [0, 1] if r e [-1/2, 1/2] and / = 0 on [1/2, 1]

such that γ := y 1 - χ2 is also smooth, χ gives rise to a function on Z
depending only on the radial variable. We extend χ by 1 to the left on
Mj and by 0 to the right on M2 . The corresponding extension of γ is

y \— y 1 — χ2 . Thus, we obtain functions on M, Mx, M2 also denoted

by χ, y.
We define operators a, b, c, d: H -+ Ho as follows (compare[12]):
α is the multiplication by / on ¥ followed by the transfer to Mχ .



GLUING PROBLEM FOR THE ?y-INVARIANT 425

6 is the multiplication by / on Z followed by the transfer to M2 .
c is the multiplication by γ on M followed by the transfer to M2 .
d is the multiplication by γ on Z followed by the transfer to Mχ.

Here we use the canonical identifications of the different parts of M, Mχ,
M2 , and Z and of the Dirac bundles over these parts.

Note that a*a is the multiplication by χ2 on M. Analogously, c*c

is the multiplication by γ2 on M and similarly for 6, d. Thus, a*a +

6*6 + c*c + έ/V = lH. We define

Then

U*U = a* a + 6*6 + c*c + ύfV + a(b + c-d)

+ 6*(α + c - rf) + c*(a + b-d) - d*(a + b + c)

= lH - ad + b*c + c*6 - d*a

= !//>

where we have employed that a*d = c*b, b*c = d*a, a*b = 0, a*c =
0, 6*α = 0, 6 V = 0, c*a = 0, c*rf = 0, d*b = 0, and d*c = 0.
Analogously UU* = lH .

3.3. The difference of the positive spectral projections. We consider

now the Dirac operators D+ on H and Z)o on Ho. Their domains
are specified by the boundary conditions defined by Lagrangian subspaces
LX and L 2 at { 1 } X J V and { - 1 } X J V , respectively. Since the transfer
used above identifies the boundary components, where we have put the
same condition, and U is defined by smooth cut-off functions, we have
U*domD0 = domD + . Let D_ := U*DQU. Then we can consider D as a
bounded perturbation of D+ . The operator G := D + - D_ is the sum of
nonlocal bundle endomorphisms over the flip interchanging the cylindrical
parts of MUZ . It is supported on (-1/2, 1/2) x iVU(-l/2, 1/2) x N
in the cylindrical parts, and is the sum of products of functions depending
only on the r-coordinate with the composition of the flip and the multi-
plication by / .

We define Sobolev spaces Hk , k e Z , using the operator D+ . We set

Hk = domD*l with the norm | |^ | |^ := ||(1 + |Z) + | f c )^ | | . Using D_ yields

equivalent spaces. Let LN(H) denote the Nth Schatten class of H. Let

P± be the positive spectral projections of D± .

Proposition 3.3. The difference P+-P_ is continuous from H to // 1 / 2

and, hence, (P+ - P_) e LN(H) for N>2n.
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Proof. We use the technique of [11, §3]. We represent P± by strongly
convergent integrals

1 ίs -i
P, = 1/2 + lim -ί- / (D. - β + iλ) dλ,

^ s^κχ> 2π J_s ^

where ε > 0 is smaller than the smallest positive eigenvalue of D± . Then

P+-P- = J- Π [(£>+ - « + 'ΛΓ1 - (/)_-« + ί λ ) " 1 ] ^ ,+ 2π y . ^ +

and this integral converges in the norm of L{H, / / 1 / 2 ) . In fact, using the
resolvent identity we can estimate the norm of the integrand by

+ _ e + ιλy
ιG(D_ - ε + I A ) " 1 ^ ^ < C(l + |A|)"3 / 2.

The proposition now follows, q.e.d.
Applying now Proposition 3.1 we see that the relative index of P+ and

P_ is well defined and can be computed by the formula given in Lemma
3.2 as follows:

where

i=0

For Re(ί) > 0 we give now the extension of K to a holomorphic family
of commutators K{t) announced in §1.6. We introduce the regularized

'projections' P±{t) = e~tr>1±P± .
Definition 3.4. K{t) := [[P+(ή, P_(ή], Q].
Then K{t) is of trace class and obviously ΊrK{t) = 0 if Re(ί) > 0.
3.4. Finite propagation speed and comparison of heat kernels. In this

section we compare the heat kernels of two Dirac operators in places
where they coincide locally. We explain the general method (introduced by
Cheeger-Gromov-Taylor [21] and employed for comparison in [10]) that
will be frequently applied in the sequel.

For ι = 0, let (Mi, g ) be Riemannian manifolds of dimension n , and
Et —• M( be Dirac bundles with Dirac operators Di. We assume that Mέ,
ι" = 0, 1, decompose as Kt U Ui with Ui open and precompact, and there
exists an isometry between Uo and U{ covered by a bundle isomorphism
E^v -+Eχ>v intertwining with the Dirac operators. Let

MT = L2(K0, Eo) Θ L\KX, Ex) θ L2(U0, Eo).
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Identifying the sections over Uo with those over U{ there are natural
embeddings L2{Mi,Ei) —> %*. Let P. be the projections onto these
subspaces. We extend the Dirac operators to %? by zero where they have
not been defined before. Let Hi := D] . Let W.{t9x9y)9 t > 0, be
the heat kernel of Dt, i.e., the integral kernel of e~tHi. If Mt has a
nonempty boundary, we assume a selfadjoint elliptic boundary condition.
We represent the heat kernels by the Fourier transform in terms of the
wave operator:

e-<»
= * Γ

VϊπϊJ-o
where the integral converges in the operator norm for t > 0. The operators

D\e~tHi, / > 0, are smoothing and we represent the kernels Dι

iWi by

D\w.{t9 x, y) = (δ(x),Dι

ie-
tHiδ(y)) e EUx®E*ty.

The following lemma states the finite propagation speed property of the
wave operator (Chernoff [22]).

Lemma 3.5 (Finite propagation speed). The operators eίλΣ>i extend to
allSobolev spaces ^(M^E^ and, for ψ e /^(Aff., £.) , suppetλΣ>iψ is
contained in a \λ\-neighborhood of supp ψ.

Let x, y e Vi such that max(dist(x 9Kχ)9 dist(y, Kγ)) =: u > 0. We
can choose a family of smooth cut-off functions χu(r) such that χu{r) = 1

if \r\ > u/2 and χu(r) = 0 if \r\ < u/4 such that the C^-norms of χu

depend polynomially on u~ι. Then

(22) D[wQ{t,x,y)-D[wχ{t,x,y)

(23) =(δ{x),-=J e [Doe °-D{e
 ι]dλδ(y)) .

We can exclude [-w, u] from the integration since by Lemma 3.5 the
integrand vanishes in that interval, if it is applied to the delta distributions.
Thus,

(24) I ΐi \ 1 /* / , x -λ2/4trrιl ιλDn jJ iλD., ,» t , , \

Using partial integration in order to regularize the difference, (24) can be
estimated by
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Here Bε(x) is the ball of radius ε > 0 centered at x and c > 0. If
k > n/2, the norms of the ^-distributions are bounded.

Lemma 3.6 (Estimate of the difference of heat kernels).

(25) \\Dl

0W0(t, x, y) -D[wx{t, x, y)\\ < Ce^'1.

By essentially the same technique we also have the off-diagonal estimate:
Lemma 3.7 (Off-diagonal estimate of a heat kernel).

(26) | | Z ; ^

for all x, y e Mt.
The finite propagation speed property fails to be true along the bound-

ary dMi, where a global boundary condition is posed. Let x e MQ and
consider the distribution φλ := eιλD°δ(x). As long as \λ\ < dist(dΛ/0, x)
we have supp(</>A) c B(x, \λ\). If supp(φλ) hits dM0, then it instanta-
neously spreads out along dM0. Thus,

supp(^) c B(x, \λ\) U {y € MJdistQ;, dM0) < \λ\ - dist(*, dM0)}.
The same holds on Mχ. Consider now the integrand of (22). It vanishes
as long as the supports of eιλE>iδ(z), i — 0, 1, z = x, y are contained in
the set where Do and Dχ coincide. Let us redefine the distance of points
of Ui from Kt. For x e £/. let

dϊst(x, Kt) := min(dist(x, Kt), dist(x, dMt) + distίaM,., K^).

With this definition of the distance the estimate (25) holds. A similar
modification works for (26).

3.5. Comparison away from the cylinder. Recall the definition of
R(s,ή±:

R(s, t)± = e-tD±sign(D±)\D± + ED±{0}\-s.

We use the finite propagation speed method in order to compare these
functions away from the set (-5/8, 5/8) x N u (-5/8, 5/8) x J V c M u Z ,
where D+ and D_ differ. Let υ, /, r be smooth cut-off functions with
/ + v 4- r = 1 and such that the following hold:

supp t c h β / 8 , 6/8] x N u [-6/8, 6/8] x N,
supp/cMj UNZuZ,
1 = 0 on [-5/8, l]jxN\J[-5/i, l]xN,

suppr cZuZΌNM2,

r = 0 on [-1, 5/8]xΛru[-l, 5/8] x JV.

Let W±(t, x, y) be the integral kernels of e~tD± and M+ := MUZ . The
kernels W±(t, x,y) are smooth on (t,x,y)e(0,oo)xM+xM+ up to
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the boundary of M+ . They diverge on the diagonal if t -> 0. However,
these divergences cancel each other if one forms differences. This can
by quantified by the finite propagation speed method which provides the
following estimates.

Corollary 3.8. There are constants c > 0 and C < oo such that for all
t>0, {x,y) eM+χ M+

\l{x)(W+{t,x9y) - W_(t,x,y))\ < Ce~φ,

\l(x)(D+W+(t,x,y) - D_W_(t,x,y))\ < Ce'c/te'et

9

W+(t,x,y)-W_(t,x,y))l(x)\<Ce-c/t,

\(D+W+(t,x,y)-D_W_(t,x,y))l(x)\<Ce-c/te-ct,

\r(x)(W+(t,x,y) - W_(t,x,y))\ < Ce~φ,

\r(x)(D+W+(t, x, y) - D_W_(t, x, y))\ < Ce~c/ίe~ct,

\(W+(t,x,y) - W_(t,x,y))r(x)\ < Ce~cί\

\(D+W+{t ,x,y)-D_W_(t,x, y))r(x)\ < Ce~φe~ct.

Similar estimates hold for higher derivatives in the ( c, y)-coordinates.
Lemma 3.9. The integral kernels of the restricted differences l(R(s, t)+

-R(s,t)_), r(R(s,t)+-R(s,t)_), (R(s, t)+- R(s, t)_)l, (R(s,t)+-
R(s > t)_)r are smooth and uniformly bounded on (s, t, x, y) e (-1/3, C]
x [0, oo] x Λf+ x M + . In particular, the following limits exist in the trace
norm:

limr(iϊ(0, 0+ - Λ ( 0 , 0_) = r(R(09

lim(iί(0, t)+-R(0, t)_)l =

, t)_)r =(

Proof The operator-valued function R(s, ί) has the following integral
representation:

The integral kernel of difference l(R(s, t)+ - R{s, t)_) is given by the
integral

Γ u{s-l)/2l(x)(D+W+(t+u, x, y)-D_W_(t+u, x, y))du.
Jo
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By Corollary 3.8 this integral absolutely converges in Ck, k > 0, in the
region (s, t, x, y) e (-1 /3, C] x [0, oo] x M+ x M+ . The claim for the
kernel of l(R(s, t)+ - R(s, £)_) follows. The other differences are treated
similarly, q.e.d.

It remains to consider the behavior of v(R(0, t)+ - i?(0, t)_)v as t -»
0. Unfortunately it does not converge in the trace norm. This is exactly
the reason for introducing other families R±(s, t) to compare with.

3.6. Comparison on the cylinder. In this section we carry out the con-

struction of the operators B{t), K(t) used for comparison on the cylinder.

Note that M U Z contains two copies of the cylinder Z , namely Z it-

self and the middle part of M. Thus, we have a canonical embedding

L2(Z, Ez) Θ L2(Z, Ez) —• H, where the first summand is the subspace

of L (M, E). Moreover, Mχ U M2 contains two copies of the cylin-

der Z (recall the modified geometry in §1.5) and we have the embedding

L2(Z, Ez) Θ L2(Z , Ez) -• Ho . Then U restricts to a unitary isomor-

phism of these subspaces. Let D+ be the sum of two copies of Dz with

boundary conditions given by the Lagrangian subspaces L{, L2 as before,

and let Do be the sum of two copies of Dz now considered on HQ. De-

fine D_ := U*D0U . We extend these operators by zero to the complement

of the cylinders. Repeating all the above constructions for D± we obtain

R(s, 0±> P±> P±(t) a n d K{t). Let W±(t,x,y) be the integral kernels

of e~ω2± , which are smooth on (t, x, y) e (0, oo) x [Z U Z] x [Z U Z ] .
By the finite propagation speed method we have

Corollary 3.10. There are constants c > 0 and C < oo such that for
all t>0, (x,y)eM+xM+

\l(x)(W+(t,x,y) - WJt,x,y))\ < Ce~c/ί,

φ { t 9 x, y) -D_ΪV_(t, x, y))\ < Ce~c/te~ct,

+t,x9y) - W_(t,x,y))l(x)\ < Ce~φ,

+(t, x, y) - D_W_(t, x , y))l(x)\ < Ce'φe'c\

\r(x)(W+(t, x,y)- WJt,x,y))\ < Ce~φ,

+ί+(t, x, y) -D_W_(t, x, y))\ < Ce~c/te~ct,

\(W+(t,x,y) - W_(t,x,y))r(x)\ < Ce~φ,

\Φ+W+{t, x, y) -D_ΪV_(t, x9y))r(x)\ < C ^ " c V c ί .

Similar estimates hold for higher derivatives in the (x, y)-coordinates.
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Lemma 3.11. The integral kernels of the restricted differences l(R(s, t)+

-R(s,t)_), r(R(s,t)+-R(s,t)_), (R(s, t)+- R(s, t)_)l, (R(s,t)+-

R(s 5 0_)Γ are smooth and uniformly bounded on (s, t, x, y) e (-1/3, C]
x [0, oo] x [Z U Z] x [Z U Z ] . /ft particular the following limits exist in the
trace norm:

( ( , t)+-R(0, t)_) = l(R(0, 0)+~R(0, 0)_),

limr(i?(0, ί) + - R(0, t)_) = r(R{0,

lim(7?(0, ί ) + - Λ(0, 0 . )/ =

(

Lemma 3.12.

TΓ(J?(J, t)+ - R(s, t)_) = 0, Tr(P+ - P_ + K) = 0.

Proo/ The first equation is obvious since R(s 9 t)+ and Λ(j, ί)_ are
unitary equivalent. The second equation is true since one can interchange
the roles of D± by applying U. q.e.d.

Note that the domains of D± and D± are not compatible, but D± and

D± coincide on ([-7/8, 7/8] x TV) U ([-7/8, 7/8] x N) locally.

Lemma 3.13. The integral kernels of v(R(s, t)± - R(s, t)±)v are uni-
formly bounded and smooth on (s, t, x, y) e [-1 / 3 , C] x [0, oo] x M+ x
Af+ . //i particular, the limits

\imv(R(0, t)± - Λ(0, 0 ± )v = υ(R{0, 0) ± - R(0, 0±)t;

//i the trace norm.
Proof We employ again the integral representation (27). The finite

propagation speed method provides constants C < oo, c > 0 such that
for all ί > 0 and (x, y) e M +

 x ^ +

JF±(ί, x , y) - 5 ± ί F ± ( ί , x , y))t;(y)| < Ce'cte'φ

holds. A similar estimate holds for higher derivatives in the (x, ^-coor-
dinates, q.e.d.

Define B(t) = R(s, ί) + - Λ(.s, t)_ . Then

(0 + - 2P

3.7. The proof of the gluing formula. In the preceding sections we have
constructed families of trace class operators A(t), K(t), B(t) and K(t).
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We already know that

limΊv A(t) = limTr(i4(0 + 2K{ή) = δ

(see equation (5)). Moreover, we know that

A(0) + 2K(0) = 2(P+ - P J + 7X + ^ + {0} - £ D {0}

is of trace class. Since the limit limt_^0(A(t) + 2K(ή) does not exist in the
trace norm, we use the family B(t) + 2K{t) for comparison. In fact,

Tτ(A(t) + 2K(ή) = Tr(Λ(ί) + 2tf(ί) - 5 ( 0 - 2K(ή)

and
Tr(Λ(0) + 2K(0)) = Tr(Λ(0) + 2K(0) - 5(0) - 2^(0))

by Lemma 3.12.
Theorem 3.14. The limit

lim(A(t) + 2K(t) - B(ή - 2K{ή) = ^(0) + 2K(0) - 5(0) - 2K(0)

exists in the trace norm. Hence,

δ = Tφ4(0) + 2K{0)) = -2I(P+, P_) + dimkerZ)+ - dimker/)_ .

Proof. It is sufficient to show that the following families converge in
the trace norm:

2K(t)-B(t)-2K(ή),

2K(t)-B(t)-2K(t))9

v(A(t) + 2K(t) - B{t) - 2K(t))(l + r),

υ(A(t) + 2K(t) - B(t) - 2K(t))υ .

According to Lemmas 3.9, 3.11 and 3.13 it is enough to show the conver-
gence in the trace norm of the terms lK(t), lK{t), rK(t), rK(t),
υK(t)(l + r), vK(t)[l + r), ^ ( ^ ( 0 - K{t))v . The arguments for all these
terms are very similar. Thus, we consider only the first and the last ones.
Let us start with

= l[P+(t),P_(t)]Q-lQ[P+(t),PAt)].

Let lχ be a smooth cut-off function with II\ = / and lχ = 0 in a 1/100-
neighborhood of ([-6/8, 6/8] x N) U ([-6/8, 6/8] x N). Inserting lχ

between Q and the commutator provides

lK{t) = l[P+(t), P_(t)]Q - lQlχ[P+(t), P_(ή] -
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It is enough to show that

(28) °

(29) χ + ^

(30) IQ{\ - lx){P+{t), P_(ή] ^° [P+, P_]

exist in the trace norm. First we consider the term (28). For this, we need
the following lemmas.

Lemma 3.15. The integral kernel of l{P+{t) - P_{t)) is uniformly
bounded and smooth on (t, x, y) e [0, oo) x M+ x M+ .

Proof We represent P±(t) as follows:

2P±(t) = i?(0, t)± + e~tD± - e~tD±ED±{0}.

Hence, the claim follows immediately from Corollary 3.8 and Lemma
3.9. q.e.d.

The same is true for / replaced by lχ. Applying the finite propagation
speed method in order to obtain an off-diagonal estimate we have

Lemma 3.16. The integral kernels of lP±{t){\ - lχ), (1 - lχ)P±(t)l are
uniformly bounded and smooth on (t, x, y) e [0, oo) x M+ x M+ .

We have

(31) l[P+(t), P_(ή] = lP+(t)(P_(t) - P+(0) - l(PJt) - P+(t))P+(t).

We discuss the first term of the right-hand side of (31)

l
( 3 2 ) = lP+(t)lx(P_(t) - P+(ί)) + lP+(t)(l - l{)(P_(t) - P+(ή).

Let us again consider the first term in more detail. By Lemma 3.15
one can find a compact operator T and a family S(t) converging in
the trace norm as t -» 0 such that lχ(P_(t) ~ P+(ή) = TS(t). Since

lP+{t) tj=^ IP+ strongly, the family P+(t)T converges uniformly. Hence,
P+(t)TS(t) = lP+(t)lx{P_(t) - P+(ή) converges in the trace norm. The
second term in (32) is handled in a similar way using Lemma 3.16. Anal-
ogously, we show the convergence in the trace norm of the second term in
(31). The same method applies to (29). The term (30) converges in the
trace norm since IQ{\ - l{) has a bounded smooth kernel. This can also
be shown with the finite propagation speed method without appealing for
the pseudodifferential calculus and using the fact that /(l-/ 1 ) = 0.

Since [P+(0, P_(t)] converges strongly as t —• 0, we have proved the
convergence in the trace norm of IK(t) as / —• 0.
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Now we show how to deal with v{K(t) - K(t))υ . Let vχ be a smooth
cut-off function with υχv = v and

supp vχ c ([-6/8, 6/8] x N) u ([-6/8, 6/8] x N).

Set

lN~l fN\ N-i N-i-l ~ ΛΓ-/-1

ι=0 x 7

We have to consider

v(K(ή-k(t))v = υ[[P+(t),P_{t)], Q]v-v[[P+(ή,P_(ή], Q]v

(33) =v[[P+(t),P_(t)]9(Q-Q)]υ

(34) + v[[P,(t), P (01 - [Λ.(0, ^ (015 Q\v

We write the term (33) as

«[[/»+(0, i»_(ί)] > ( β - β)l« = υ[P+(t), P_(t)](Q - β)«

-v(Q-Q)[P+(t),P_(t))v

= v[P+(t),P_(t)]υι(Q-Q)v

-v{Q-Q)vχ[P+{t),P_{t)]v

+ v[P+(t),P_(t)](l-Vi)(Q-Q)v

All these terms converge in the trace norm as t —• 0. To see this we use
the following facts:

V\{Q - Q)v has a smooth bounded integral kernel.
υ[p+(t), ^_(01vi converges strongly.
v[P+(t)9 ^_(0](l - ^i) converges in the trace norm due to the
off-diagonal estimates.

The term (34) is handled in a similar way. Thus, we have proved the
theorem, q.e.d.

This also finishes the proof of the gluing formula for the //-invariant
(Theorem 1.9):

η(M) - η(M{, L{) - η(M2, L2) = m(Lχ, L2) - 2I(P+, P_)

+ dimkerZ)+ - dimkerD_ .

Probably this formula could also be proved using a variation formula.
In fact D + - D_ = G is a compactly supported bundle endomorphism
(nonlocal!). It seems not to be too complicated to show that the variation



GLUING PROBLEM FOR THE //-INVARIANT 435

of the //-invariant for the family Όχ — D — tG vanishes. Then one has
only to count the jumps of the //-invariant of Dt. The resulting integer is
exactly -21 (P+, P_) + dimkerZ)+ - dimkerZ)_ . A related application of
the variation formula was discussed by Cheeger [20].

4. Vanishing of the relative index term

4.1. The space of limiting values is Lagrangian. We start with proving
Proposition 1.14. Let (M, N) be a compact odd-dimensional Rieman-
nian manifold with right boundary N, and E —> M be a Dirac bundle
with Dirac operator D. We assume a product structure for the Rieman-
nian metric and for E near N as explained in §1.3. Moreover, let B be
the closure of D with boundary condition Bry, (§1.8), i.e., for φ € domi?
we require that P_Φ\N = 0, where P_ is the negative spectral projection
of DN . Recall the definition of

L := LM := {pτvφlN\φ e ker£}.

L is a subspace of the symplectic vector space V := keτDN with the
symplectic structure given by Φ(u, υ) = {Iu, υ)Li.

Proposition 4.1. L is a Lagrangian subspace of V, i.e., L _L IL and
LθIL=V.

Proof. We show that the restriction of Φ to L vanishes. Let u, v e L
and φ, ψ e kerJ? with pτvΦ\N — u, ΦVΨ\N = v. Then, because of
IP_I = -P+ , by the partial integration formula for the Dirac operator

0={Bφ, ψ)Li - {φ, Bψ)Li = {Iu, V)L2{NEN)=Φ{U,V).

Since this is true for all pairs u, υ e L, the claim follows. Note that B* is
the closure of D with the initial domain given by the boundary condition
BrOy. Thus, a vector φ e kerB satisfying pτvφ^N = 0 belongs already to
ker£*. It follows that

dim L = dim ker B — dim ker B* = index B.

It remains to show that index B = dim V/2. We consider M := [-1, 0] x
N and let Έ —• Jf be the Dirac bundle induced from that of M over the
product collar with Dirac operator D. We define B to be the closure of D
subject to the boundary condition Bγ at {0} x N and to B-^ at {-1} x
JV, where Z is an arbitrary Lagrangian subspace of K. By separation
of variables one can compute ker 2? = L and cokerϊ? = {0}. Hence,
index 5 = dimL = dimF/2. We can apply a variant of the relative
index theorem of Gromov-Lawson [26] to infer indexB = dimF/2. In
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fact, Έ and B coincide on the cocompact set (-ε, 0]x N and are both
Fredholm. Thus, the difference of their indices is the difference of integrals
of index densities (the left boundary of ~M does not contribute since we
have chosen a self adjoint boundary condition). Since the dimension of M
is odd, this integral vanishes. This proves the claim and finishes also the
proof of the proposition.

4.2. Adjusting U in the adiabatic limit. Recall that M, Mi,D,Di

depend on a parameter r > 1, that is half of the length of the cylinder
glued in at the hypersurface N as explained in §1.8. We will now make a
more convenient r-dependent choice of the unitary U. Let Fs: [s, s] x
{NUN) -> [-1, 1] x (NUN) be the stretching map and F* be the induced
pullback of sections of the Dirac bundle. Let U{ denote the isometry U
defined above on the cylinder of length 2. For r > 1 we define

Ur := U{ outside \-rjl, r/2] x{NuN),

Ur:=F"UχF;u on [-r/2, r/2] x (NU N).
In what follows we will again omit the index r, assuming this new choice of
U. Then also G becomes r-dependent and supported in [-r/2, r/2] x
(N u N). Since G involves derivatives of cut-off functions, there is a
C < oo such that

(35) \\G\\<C/r.

Since in Theorem 1.9 the relative index term I(P+, P_) (note that P±

are the positive spectral projections of D±) is the only one depending on
the unitary U, it turns out that I(P+, P_) is independent of the choice
of U.

4.3. The operator B(u). Recall the definition of D(u) := D_ + uG,
u e [0, 1], with G := D+ - D_ . As explained below the statement of
Theorem 1.17 we have to show the vanishing of the spectral flow of this
family of Dirac operators with constant principal symbol if r is large.
These operators live on M U Z . Note that M U Z contains cylindrical
parts Z U Z , Z + : = [ r / 2 , r ] x (NUN) and Z~ :=[-r, r/2]x (NU N),
where the operator D(u) has a product structure for all u. We refer to the
component of Z U Z , which is not glued to M{ as the second component,
while the first component is a part of M. On Z U Z we define another
family B(u) as an extension of (Dz θ Dz) + (u - l)G subject to the
following boundary conditions:

We require BL at the left boundary of the second component {-r} x

TV, and BL at the right boundary of the second component {r} x iV.

On the first component we require that ψ e domB(u) satisfies ψ e
(L{ e N+) at {-r} x N and ψ e {L2 θ N_) at {r}xJV, where N± are
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the positive and negative spectral subspaces of DN.
On the first component the boundary conditions is nonelliptic. How-

ever B(u) decomposes into a sum of one-dimensional operators labeled
by spec(DN). These one-dimensional operators are essentially selfadjoint
and elliptic. This gives the selfadjoint extension of B(u). Note that D(u)
and B(u) coincide locally over Z± . We will compare the spectral flow
of B{ύ) with that of D(ύ) for large r. Since this concerns the small
eigenvalues, actually only a part of B(u) is interesting. The next lemma
takes the special structure of G into account.

Lemma 4.2. Let h0 := L2([-r9r]9V®V)c L2(Z UZ,EZUEZ) be

the subspace of ψ with ψ(s) e V Θ V for all s e [-r, r]. Then B(u)

leaves h0 invariant.

Proof This holds for 5(1) = I(d/dr + (DN θ DN)). However G con-
sists of compositions of multiplication operators pi with functions p
only depending on the r-variable with transportation using the flip inter-
changing the two copies of Z . Hence, G also leaves h0 invariant, q.e.d.

We define BQ(u) to be the restriction of B(u) to h0 . Let

Note that |spec(J?(l)|ΛJ.)| > d. There is an r0 such that if r > r0, then

by (35), ||G|| < d/2 and also |spec(5(w),^)| > d/2 for all u e [0, 1].

In this case all eigenvectors of B(u) corresponding to eigenvalues λ with

|λ| < d/2 are in fact eigenvectors of B0(u). Hence, for r > r0 we have

sf{B(u)} = sf{B0(u)}.

4.4. The structure of the eigenvectors on the cylinder. We identify

L2(ZUZ,EZUEZ) with L2([-r,r]9L
2(N,EN)θL2(N,EN)). Let

N± c L2(N, Ez) be the positive and negative spectral subspaces of DN,

respectively. If ψ is an eigenvector of D(u) or B(u) corresponding to

the eigenvalue λ, then we can split it over Z u Z as ψ = ψ0 + ψ+ + ψ_ ,

where ψo(s) e(V®V)9 ψ+(s) eN+®N+9 and ψ_(s) e (N_ θ 7VJ .

We give now expressions for the eigenfunctions of I(d/dr + DN). Let

{hμ} and {Ihμ} be orthonormal bases of Λ̂ + and N_ such that DNhμ =

μhμ with μ > 0 and DNIhμ = -μlhμ. If |λ| < d/2, we can define

aμ e (-π/2, π/2) by sinaμ = λ/μ. Let

(36) rf(s) := [(1 - c o s α ^ + ύnaμlhμ]esμcι"a>,
μlhμ

(37) H;(s) := [sinaμhhμ

Then one can check I(d/dr + DN)Hμ = λHμ
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4.5. Definition of the map K. We start now with the comparison of
the spectral flow of the families D(u) and B(u) by defining a linear,
almost unitary map K mapping eigenvectors of B(u) corresponding to
small eigenvalues to approximate eigenvectors of D(ύ) of the same eigen-
value. The approximation becomes better when r becomes larger and
\λ\ smaller. Starting from now on we define D(u) and B(u) using the
Lagrangian subspaces Lχ := LM and L2 := LM given by the limiting
values. Note that M2 is considered as a right manifold. Lχ is employed
at {-r} x(NuN), while L2 at {r} x(NuN).

We fix linear maps x.: L{ —• ker B. (B. is the extension of D subject to

the boundary condition Bv living on Mi, i.e., without the cylinder glued

on (see §1.8)), such that prvxχ(υ)(-r) = v , υ e Lχ and prvx2(u)(r) = u,

u e L2. Note that every element φ e ker 2^ has an obvious extension to

the first component of Z~ of the form φ = φo + φ+, where

(3$) \\Φ+(s)\\N<Cec{-r-s)\\φ0(-r)\\N

and || | |^ is the norm on L2(N, EN). Every χ e ker5 2 has an extension

Xo + X- to the first component of ZΓ

+ with

(39) WxΛs)\\N<Cec{s-r)\\χ0{r)\\N.

We choose smooth cut-off functions a± with
a_(s) = 1 for s<-3r/4- 1,
a_(s) = 0 for s> - 3 r / 4 + 1,
a+(s) = 1 for 5 > 3r/4+ 1,

a+(s) = 0 for s < 3r/4 - 1

such that the C1-norm is uniformly bounded with respect to r. Let ^ be
an eigenvector of B(u) corresponding to an eigenvalue λ with |A| < d/2.
Then we have ψ = ψo+ ψ_ + ψ+ on Z U Z . Since λ is small, actually
ψ = ψ0. Moreover, ψo(-r) e Lx and ψo(r) e L2 on both components.

Let φ := xχ(ψ0(-r)) and χ := x2(ψ0(
r)) ( w e t a ^ e Λe boundary val-

ues on the first component). We define K{ψ) to be ψ on the second
component of Z u Z and by

φ on Mχ,
^ + 0 + on [-r, - 3 r / 4 - l ] x i V ,

V + &-Φ+ on [-3r/4 - 1, - 3 r / 4 + 1] x N,

ψ on [ - 3 r / 4 + l , 3r/4 - l]xN,

Ψ + α + Z _ on [3r/4 - 1, 3r/4 + l ] x i V ,

1̂  + Z_ on [3r/4 +l,r]xN,

χ on M2.
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Then K(ψ) is continuous, piecewise smooth, and satisfies the boundary
conditions for D(u). We extend K linearly to linear combinations of
eigenvectors.

Lemma 4.3 (K maps eigenvectors to approximate eigenvectors). There
are constants C < 0, c > 0, and ro>2 such that the following holds for
all r > r0, u e [0, 1]: Let ψ be a normed eigenvector of B(u) to the
eigenvalue λ with \λ\ < d/2. Then

\\D(u)K(ψ) - λK(ψ)\\ < C(\λ\/Vf + O .

If ψχ, ψ2 are two such eigenvectors, then

\(ψl9ψ2)-(K{Ψι)9K(ψ2))\<C/y/?.

Proof We compute D{ύ)K(ψ) - λK(ψ) obtaining 0 on the second
component, and on the first component the result is

—λφ on Mχ,
-λφ+ on [-r, - 3 r / 4 - l]xJV,
gradα_0+ -λa_φ+ on [-3r/4 - 1, - 3 r / 4 + 1] x N,

Oon [ - 3 r / 4 + l , 3 r / 4 - l]xJV,
gradα+χ_ - λa+χ_ on [3r/4 - 1, 3r/4 + l ] x J V ,
-λχ_ on [ 3 r / 4 + l , r ] x 7 V ,

-λχ on M2.
Note that ψ0 is oscillating. Hence,

(40) 1 = \\ψ\\L2 > \\ψo\\L2{z±iEz) = y/7/2\\ψo(±r)\\N.

Applying this and (38), (39) we obtain
\\λφ\\L2 < C\λ\l^~r on MX,
||A0+||L2 < C\λ\/y/r on [-r, -3r/4 - 1] x N,

\\gmda_φ+-λa_φ+\\L2 < C{l/y/r)e~cr on [-3r/4-l , -3r/4+l]x7V,

\\grada+χ_ -λa+χ_\\L2 < C(l/y/ϊ)e-cr on [ 3 r / 4 - 1 , 3r/4+1] x JV,

i μ Z _ | | L 2 < C\λ\/y/ϊ o n J 3 r / 4 + 1 9 r ] x N ,

\\λχ\\L2<C\λ\/y/fon M2.
Summing up the terms we obtain the first inequality of the lemma. In
order to see the second inequality note that most of the mass of ψ. is
concentrated in ( ^ ) 0 on the cylinder, q.e.d.

Thus for large r we know by the variational principle, that for every
small eigenvalue λ of multiplicity m of B(u), there are eigenvalues of
D(u) of total multiplicity at least m in a neighborhood of λ of size
C(\λ\/y/r+e~cr). In order to check that we cover all small eigenvalues with
the right multiplicity we will construct a map A from the eigenvectors of
D(u) to the approximate eigenvectors of B(u).
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4.6. The small eigenvectors of D(u). We first study the structure of
the eigenvectors of D(u) corresponding to small eigenvalues.

Lemma 4.4. For every Jo there are constants C < oo, c > 0, and
r 0 > 1 such that for all r > r0 the following holds: Let ψ be a normed
eigenvector of I(d/dr + DN) on [0,r]xN corresponding to the eigenvalue
λ with \λ\<c and assume

(41)

Then

Proof

there is a

Since

. - I I

point v

llv(θ)||Λ

\\ψΛmN<

ψ\\]} > / \\Ψ(S).
Jo

e [3r/4, r] with

,<J<

C(J\λ\

•V

+ e

•L[
r\\ψJs)\\2

N
Jo

ds,

(42) ll<^)lέ<4/r.

Without loss of generality we can assume that ψ = c*H* + c"H~ (see

(36), (37)). Writing (41) and (42) out provides

(43) |(1 - cosα )c+ -fsinα c~\ < J,

(44) I sin aμc
+ -f (1 - cos α )c~ | < / ,

(45) I ώ α / ^ V + (1 - cosaμ)e-vμcosaxc-\ < 2/V?.

From (43) we derive

(46) | c " | < ^ +

Substituting (46) in (45) yields

\c+\ I I s i n α l e
μ I sin a,, I

(47)

If c > 0 is small enough, the factor at \c+\ is positive. Choosing c > 0
even smaller (depending on /0) we can simplify (47) to

(48) | c + | < 8
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Substituting (48) in (46) we obtain

(49) \c-\<^ μ>

( 5 0 )

)

From (44), (48), and (49) we get

$ £ ^ ^ t/ \̂  I — LOS OL ) l U U ^ 1 — LUo Ot )(? *

since (1 - cosα )/|sinα | < C\λ\ and ?; > 3r/4. Here C and c are
independent of μ.

Lemma 4.5. There are constants C < oo, c> 0, and rQ > 1 swc/z that
the following holds for all r > r0 am/ w € [0, 1]: Let ψ be a normed
eigenvector of D(u) corresponding to the eigenvalue λ with \λ\ < c. Then,
on the first component

(51) \\ψJ-r)\\N<C(\λ\+e-cr),

(52) I I M r ) I U < C ( | A | + O .

Proof In order to get the first estimate we apply Lemma 4.4 to ψ
on the first component of Z ~ , noting that a priori there is a Jo < oo
with | |^(-r)IU < ^OIIVIIL2 ^ Λ) Tk e second estimate is obtained by a
reflection-symmetric argument.

Lemma 4.6. Assume 1.15. 77ZOT ί/ẑ re are constants C < oo, c > 0,
and r0 > 1 such that for all r > r0 and u e [0, 1] the following holds:
Let ψ be a normed eigenvector of D(u) corresponding to an eigenvalue λ
with \λ\<c. Then

for i = 1 , 2 . _
Proof We consider the assertion for M{. Let F be the closure of Dχ

with the boundary condition BL± . Then F is self adjoint and inflspecti7)!

> 2c > 0 for some c > 0 by the regularity assumption 1.15. Hence, for

any φ e domF if \λ\ < c we have

(53)

Let γ be a smooth cut-off function on M t with γ = 0 on{-r}xJV and
y = 1 outside of the collar (-r - ε, -r] x N.
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Now let ψ be a normed eigenvector of D(u) corresponding to the
eigenvalue λ with |Λ| < c and ψ = ψ0 + ψ_ + ψ+ near {-r} x N of the
first component. We define φ e dom F to be

ψ on Mχ \(—r - ε, -r] x TV,

Ψ+ + y(ψo + Ψ-) °n (-r-e, -r]xN.
Since ^ 0 is oscillating, we have ψQ(s) < C/y/r for all s e (-β, 0] x TV.
By Lemma 4.5 we also have

for s e (-ε ,0]xN. This shows

(54) l l ^ - ^ l l L

On s e (-r - ε, -r] x N we compute

(F - λ)0 = [A(l - y)

We give the zΛnorm estimates of the various terms using Lemma 4.5:

(55) ||[A(1 - 7) + grady]^_|| i2 < C(\λ\ + e~ίr),

(56) U(γ-l)ψ+\\L2<C\λ\,

Uτadγψo\\L2<C/Vr.

Hence,
\\{F-λ)φ\\l}<C{\λ\ + \lsΓr).

Now (53) also implies ||</>||L2 < C(\λ\ + 1/Λ/T) and the claim follows from
(54).

Lemma 4.7. Assume 1.15. Then there are constants C < oo, c > 0,
tfra/ r0 > 1 5wc/z that for all r>r0 and u e [0, 1] the following holds: Let
ψ be a normed eigenvector of D(u) corresponding to an eigenvalue λ with
\λ\ < c. Then for the boundary values on the first component the following
hold:

(57) \\ψ(-r)\\N<C{\λ\

(58) \\ψ(r)\\N<C(\λ\

(59) \\ψΛ-r)\\N < c(λ2

(60) l l ψ + { r ) \ \ N

2

Proof The first two estimates (57) and (58) follow from Lemma 4.6
since there is an a priori estimate of the C^norm. In order to get (59)
and (60) substitute (57) and (58) in Lemma 4.4, i.e., use / =
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Lemma 4.8. Assume 1.15. Then there are constants C < oo, c > 0,
and r0 > 1 such that for all r > r0 and u e [0, 1] the following holds:
Let ψ be a normed eigenvector of D(u) corresponding to an eigenvalue λ
with \λ\<c. Then

2

for ι = l , 2 .
Proof We proceed as in the proof of Lemma 4.6, but we substitute the

better estimates (59) for ψ_ in (55) and (57) for ψ+ into (56).
Lemma 4.9. Assume 1.15. Then there are constants C < oo, c > 0,

and r0 > 1 such that for all r > r0 and u e [0, 1] the following holds:
Let ψ be a normed eigenvector of D(u) corresponding to the eigenvalue λ
with \λ\ < c. Then, on the first component, the following hold:

\\prL{.ψ0(-r)\\N < C(λ2 + \λ\/V~r + e~cr) and
2

Proof We consider the first estimate. Let FL be the closure of Dλ

with the boundary condition BL, where L is Lagrangian. By the method
of Lesch-Wojciechowski [31] it can be shown that the spectrum of FL

depends continuously on L. Since the parameter space of all Lagrangian
subspaces of V is compact, we have

(61) inf sup inf(|spec(/v)|\{0}) = 2c1 > 0 .
χ£γeLcv

Let ψ be a normed eigenvector of D(u) corresponding to the eigenvalue

λ with \λ\ < min(c, cχ) (the c from Lemma 4.8) and ψ = ψ0 + ψ_ + ψ+

its decomposition on Z U Z . We define φ on Mχ by

ψ on Mχ\(-r-ε, -r]x N,
Ψo + Ψ+ + 7Ψ- on (-r-ε,-r]xN.

Let LcV realize the maximum of inf |(spec(iΓ

L)\{0}|) subject to ψo{-r)
e L. Then φ e domFL . We compute

(FL-λ)φ = [λ(l - γ) +grady]^_ + λ(γ -

Applying now Lemma 4.7 to ψ+ and ψ_ yields

Let φ = φn + φo with FLφn = 0 and φ0 _L kerF L . Then

and, hence, \\φo\\L2 < C{λ2 + \λ\/y/r + e~cr). Since the C^-norm of the φ

is a priori bounded, we have φo(-r) < C(λ2 + \λ\/y/r + e~cr) too. From
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prvφn(-r) e LΓ\Lλ c Lχ, it follows that pτL±ψ0(-r) = pτL±φo(-r).

Hence the lemma follows.
4.7. The construction of the map A. Now we construct a linear, almost

unitary map A mapping eigenvectors of D(ύ) corresponding to small
eigenvalues λ to approximate eigenvectors of B(u). The approximation
becomes better when r increases and \λ\ is small.

Choose smooth cut-off functions p± with
p_ = 0 near {-r} ,
p_ = 1 on [-r + 1, r ] ,
/?+ = 0 near {r} ,
p+ = 1 on [ - r , r - 1]

such that the C1-norms are uniformly bounded with respect to r. Let ψ
be an eigenvector of D(u) corresponding to λ, and let ψ = ψ0 + ψ_ + ψ+

be the decomposition on Z U Z . We define A(ψ) to be ψ on the second
component, and on the first component to be

pr L i^ 0 + ^+-h/?_(prLiLV/0+^_) on [-r, -r-f l]xΛΓ,

ψ on [-r + 1, r - 1] x (N U N),

PΓL 2^O + V- + / M P ^ V o + V+) o n [r - 1 > Ί * W.
Then ^ ( ^ ) G domJ5(w). A will be extended linearly to linear combina-
tions of eigenvectors.

Lemma 4.10 (A maps eigenvectors to approximate eigenvectors).
There are constants C < oo, c > 0, and r0 > 1 such that for all r > rQ,
u G [0, 1], the following holds: Let ψ be a normed eigenvector of D(u)
corresponding to an eigenvalue λ with \λ\ < c. Then

\\B(u)A(ψ) - λA(ψ)\\L2 < C(λ2 + \λ\/V~r + O .

If ψ{, ψ2 are two such eigenvectors, then

(62) \(Ψι, ψ2) - (A(Ψι),A{ψ2))\ <

Proof We compute B(u)A(ψ) - λA(ψ) and obtain 0 on the second
component, compute

grad/?_]prLjL + λ(/>_ - l)prL)v/0 + (grad/?_

on [-r, - r + 1] x JV, and obtain 0 on [-r -f 1, r - 1] x N, and compute

r L 2 ) ^ 0 + (grad/?+ + A(l -



GLUING PROBLEM FOR THE ^-INVARIANT 445

o n [r- l9 r]x N. L e m m a s 4.9 a n d 4.7 provide

\\B{u)A{ψ) - λA(ψ)\\L2 < C(λ2 + \λ\/V? + e~cr).

Using Lemmas 4.7 and 4.8 we further obtain (62). q.e.d.
Thus, for large r by the variational principle we know that for every

small eigenvalue λ of multiplicity m of D(u), there are eigenvalues of
B(u) of total multiplicity at least m in a neighborhood of λ of size

4.8. Comparison of the spectral flows of D(ύ) and B(u). We fix now
some large rQ. The small eigenvalues λ of B(ύ) with \λ\ < d/2 are
eigenvalues of BQ(u). For r > rQ and an eigenvector ψ of B0(u) let
^(s) := ψ(ros/r). Then ^ r is an eigenvector of BQ(u)r (it is more conve-
nient not to omit the r in this subsection) to the eigenvalue rQλ/r. Here
we employ the r-dependent choice of U.

Lemma 4.11. Assume 1.15 and 1.16. There is an rχ > r0 such that, for
all r >r{, we have equality of the spectral flows

sf{B(u)r} = sf{D(u)}.

Proof We label the eigenvalues of B0(l)r as follows (note that

ker£ 0 ( l ) r = {0} by Assumption 1.16, i.e., Lι°nL2 = {0}) < λ_2 <

λ_χ < 0 < λ0 < λ{ < ••• . Then we extend this labeling by continuity

to all u e [0, 1] such that the order is maintained, i.e., λ.(u) < A/+1(w).

By rescaling this induces a labeling of the small eigenvalues (i.e., with

μ | < d/2) of B(u)r for all r>r0.

There exists a small cχ > 0 such that for r = r0 and every u e[0, I]

there is an N(u) e Z such that |^ ( M )(^) - ^MM)+i(t!)l - c\ w ^ v e

[u~, u+], where [u~, u+] is a small neighborhood of u. We choose

finitely many ui such that \Jj[u~ , u*] = [0, 1].

Now we choose the Γj SO large that the following hold for all r > rχ:

(i) λN(Uj(υ) < c for all i and v e [u~ , w^], where c is the smallest c

of the preceding lemmas.

(ϋ)

(63) ^ > i o o c μ ^

for all υ e [u~ , u*] and /, where C is the maximum of the C's given in
the preceding lemmas and c is again the minimum of the c's given there.
Note that λN,u Jυ) ~ l/r. Hence, the inequality above can be fulfilled if
rχ is large enough.
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(iii) Let q := inf |spec(J50(l) )| > 0 (by (1.16!). Then

(64) qrjr - lOOC((qro/r)2 + qro/r3/2 + e'cr) > 0.

To every eigenvalue λ of D(u) with \λ\ < c, there corresponds an
eigenvalue of B(ύ)r with a neighborhood of λ of size C(λ2 + λ/y/r + ecr),
and vice versa. Here all eigenvalues are counted with multiplicity. We will
use this in order to construct an induced labeling of the small eigenvalues
of D(u). Let us consider some /. For v e [u~, u*] define pN. Λv) to
be the largest eigenvalue of D(v) smaller than

It is easy to see that PN(U\{v) is continuous since no other branch of

eigenvalues of D(υ) may enter the neighborhood of λN,u, from above

because we have chosen N(wz) such that there is a 'large' gap according to

(63). Now we can label all the other eigenvalues of D(v) using their order.

Then all branches p.(v) become continuous. Moreover, one can check

that the labeling is compatible over the intersections [u~ , u*] Π [u~ , u*].

In fact, there are only finitely many eigenvalues between λN,uΛv) and

λN{u){v), and the same is true for PN{u)(v) and PN(u){v) - Furthermore

we have for all u £ [0, 1], i e Z,

(65) 1̂ .(11) - .̂(11)1 < Ciλ+u)2 + iλWl/VΪ + e-")

if Iλ^u)] < c. Due to (64) the choice of rχ assures that

Let / := -sf{B{ύ)r} be the spectral flow of {B(u)r} . Then

< λ_2+f(0) < λ_ι+f(0) < 0 < A/0) < A1+/(0) < .

Hence, again by (64) and (65)

< />_2+/(0) < ^-i+/(0) < 0 < pf(0) < pι+f(0) <

Thus sf{D(u)} = sf{B(u)r}.
The following lemma finishes the proof of our main Theorem 1.17.
Lemma 4.12. sf{B(u)r} = 0.
Proof. Let V be the restriction of the unitary U to h0 . Then, by the

definition of G, we have VBQ(u)rV* = BQ(l - u)r and the claim follows
since sf{B(u)r} = sf{B0(u)r}.
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