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1 On the topological contents of η-invariants

Ulrich Bunke∗

March 23, 2011

Abstract

We discuss an universal bordism invariant obtained from the Atiyah-Patodi-
Singer η-invariant from the analytic and homotopy theoretic point of view. Classical
invariants like the Adams e-invariant, ρ-invariants and String-bordism invariants
are derived as special cases. The main results are a secondary index theorem about
the coincidence of the analytic and topological constructions and intrinsic expres-
sions for the bordism invariants.
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1 Introduction

This work is a mixture of a research article and a survey. Its purpose is to understand
which topological information is encoded in the η-invariant, a spectral-geometric invariant
introduced by Atiyah-Patodi-Singer [6] in the context of index theory for boundary value
problems for Dirac-operators. By now there are many examples in the literature where the
η-invariant has been used to define bordism invariants ([8],[12], [11], [21], [29], [42], [27],
. . . 1). In the present paper we consider the universal structure behind these examples.
We define a bordism invariant which we call the universal η-invariant. We use Section
5 in order to review some of the known η-invariant based bordism invariants. We put
the emphasis on the demonstration how they can be interpreted as special cases of our
universal construction. Though we have not checked it in detail our construction may
also subsume (by constructions similar to the one in Subsection 5.5) other invariants of
Kreck-Stolz type or Eeells-Kuiper type, [45], [30], or the generalized Rochin invariants of
[48].
The universal η-invariant comes in two incarnations. The analytic version ηan (Def. 3.5)
is the bordism invariant which is easily derived from the appearance of the reduced η-
invariant in the local index theorem for the Atiyah-Patodi-Singer boundary value problem
by canceling out the dependence on geometric data. The ideas for this construction are
more or less standard and have been used previously in many special situations.
The topological counterpart ηtop (Def. 2.2) is constructed by a simple homotopy-theoretic
consideration using the interplay of Q/Z-bordism and K-theory. By their universal char-
acter the precise definitions of ηan and ηtop are somewhat technical and will therefore not
be reproduced in this introduction.
While it is not so complicated to see that ηan is a bordism invariant, to understand its
homotopy-theoretic meaning is slightly deeper. The bridge between analysis and topology

1A complete list would be too long to be given here!
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is provided by our first main Theorem 3.6 stating that

ηan = ηtop .

Its proof uses standard methods in index theory like the analytic picture of K-homology
[14], [43], the Atiyah-Patodi-Singer index theorem [6], and some ideas from Z/lZ-index
theory [33].
Bordism classes can be represented geometrically by manifolds with additional structures,
called cycles (see Subsection 3.2 for details). It is then an interesting question how one
can calculate the universal η-invariant or its specializations in terms of the cycle. The
definition of both, the topological or the analytical version of the universal η-invariant
involves the choice of a zero bordism of some multiple of the cycle. In applications it is
often complicated to find such a zero bordism. It is a striking advantage of the analytic
picture that it can be reorganized to an expression which only involves structures on the
cycle itself. In special cases this has been previously exploited in [54], [29] (the case of the
Adams e-invariant, see Subsection 5.1), and [21] (to calculate String-bordism invariants,
see Subsection 5.4). We consider the intrinsic formula for ηan given in Theorem 4.12 as
one of the main original contributions of the present paper. This formula is based on
a new object which we call a geometrization. We will sketch the main idea here and
refer to Definition 4.2 for a precise description. We consider a map from a manifold to
a space f : M → B and let I : K̂0(M) → K0(M+) denote the map which associates to
a differential K-theory class (see Subsection 4.2 for a review) the underlying topological
K-theory class. A geometrization of (M, f) is a lift G

K̂0(M)

I
��

K0(B+)
f∗ //

G
99

K0(M+)

satisfying some additional properties explained in detail in Definition 4.2. If Γ is a compact
Lie group, then a map f : M → BΓ classifies a Γ-principal bundle on the manifold M .
A connection on this principal bundle allows to define for every representation ρ of Γ
a vector bundle Vρ = (Vρ, h

Vρ ,∇Vρ) on M with hermitean metric and connection by
the associated bundle construction. Using the completion theorem [9] this construction
extends to a geometrization

G : K0(BΓ+) → K̂0(M) , [ρ] 7→ [Vρ] .

The notion of a geometrization thus partially generalizes the notion of a connection on the
in general non-existent principal bundle classified by the map f : M → B. The details
are slightly more complicated since we will take structures on the normal bundle into
account.
In this paper we generally decided to work with complex K-theory. We think that there is
a real version of the whole theory which can be obtained by replacing complexK-theory by

3



real KO-theory, BSpinc by BSpin, and taking the real structures on the spinor bundles
into account properly on the analytic side. The real version of the universal η-invariant
would be slightly stronger than its complex counterpart which loses some two-torsion
classes. In order to recover the Adams e-invariant or the string bordism invariant [21]
completely as special cases of the universal η-invariant we would need the real version.
Let us now describe the contents of the paper. In Section 2 we introduce the topological
version ηtop of the universal η-invariant and study its properties. Most interesting is prob-
ably the relation with the Adams spectral sequence Proposition 2.9 and its consequence
Corollary 2.10 which asserts (under the simplifying Assumption 2.6) that the universal
η-invariant exactly detects the first non-trivial subquotient of the bordism theory with
respect to the K-theory based Adams filtration.
In Section 3 we introduce the analytic version ηan of the universal η-invariant and prove the
secondary index Theorem 3.6 stating that ηan = ηtop. Before we can define ηan we have to
recall in Subsections 3.2 and 3.3 some preliminary technical details concerning the relation
of structures on the stable normal bundle as they come out of the Pontrjagin-Thom
construction, and structures on the tangent bundle which will be used to do geometry
and analysis.
Section 4 is devoted to geometrizations (Def. 4.2) and the intrinsic formula for ηan (Thm.
4.12).
In the last Section 5 we discuss in detail various specializations of the universal η-invariant.
It contains mainly a review of known constructions and results with slight improvements
or generalizations at some points (e.g. Corollary 5.11). In the Propositions 5.12 and 5.13
we show how the usual geometric structures of Spin- and String-geometry (see [59] for
the latter) give rise to geometrizations which lead to the known intrinsic formulas for
the corresponding bordism invariants. It has been the initial motiviation for this work
to understand the general principles behind the String-bordism invariants introduced in
[21]. The arguments used here for the String = MO〈8〉-bordism case should easily be
adaptable to bordism theories MO〈n〉 associated to higher connected covers BO〈n〉 of
BO.
This paper is written for a reader with basic background in homotopy theory without being
an expert. We will assume some knowledge on spectra and how they represent homology
and cohomology theories. We decided, however, to explain some of the homotopy theoretic
constructions and their translation to the geometric picture with more details as one would
usually do in a paper written for topologists.
On the analytic side, in particular in the proof of Theorem 3.6, we assume a sound
familiarity with K-theoretic arguments in index theory.
The theory of geometrizations and some of the examples in Section 5 require a certain
experience with differential cohomology theories and elements of Chern-Weyl theory like
transgressions etc.
Acknowledgement: I thank Bernd, Ammann, Sebastian Goette, Diarmuid Crowley, and
Niko Naumann for stimulating discussions. The pictures have been typeset using the
frobeniusgraphcalc.sty-package written by Clara Löh.
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2 The topological construction

2.1 A rough description of ηtop

In this section we introduce the homotopy theoretic version of the universal η-invariant
of torsion classes in bordism theory. Before we come to technical details we will give a
rough description of the idea. Any torsion class in the respective bordism group vanishes
after rationalization. Therefore we can choose a preimage under the Bockstein operator
assoziated to the sequence

0 → Z → Q → Q/Z → 0 .

This preimage is thus a Q/Z-bordism class of one degree higher. To this bordism class
we apply the unit of complex K-theory in order to obtain a Q/Z-K-homology class of the
corresponding bordism theory. It can be paired with K-cohomology classes in order to
obtain values in Q/Z. In this way our original bordism class gives rise to a Q/Z-valued
homomorphism from the K-cohomology of the considered bordism theory. The preimage
of an element under the Bockstein operator is not uniquely determined, in general. In
order to obtain a well-defined bordism invariant we therefore take the equivalence class
of our homomorphism in a quotient of the group of Q/Z-valued homomorphisms from
K-theory which is defined exactly such the ambiguity of the choice of that preimage does
not matter any more.
Let us now describe the contents of the subsequent Subsections. In Subsection 2.2 we
collect some basic facts from the homotopy theory of Thom spaces. An experienced reader
may skip this section and immediately proceed to the construction of ηtop in Subsection
2.3. In Subsection 2.4 we analyse the target group of the universal η-invariant in greater
detail. Subsection 2.5 is devoted to the relation between the universal η-invariant and the
Adams spectral sequence. Finally, in Subsection 2.6 we study the functorial properties of
the universal η-invariant with respect to transformations of the data.

2.2 Thom spaces and the Thom isomorphism

On the homotopy theoretic side bordism theories are represented by Thom spectra. In
the following we briefly review the basic construction of Thom spectra. More details can
be found e.g. in [53, Ch.IV].
If V → Y is a k-dimensional real vector bundle over a CW -complex Y we define its Thom
space Th(V ) as the homotopy quotient

Th(V ) := V/h(V \ Y ) ,

where we identify Y with the zero section of V . The associated Thom spectrum is then
defined by

Y V := Σ∞−kTh(V ) ,

where Σ∞ is the suspension spectrum functor, the left-adjoint of the adjoint pair

Σ∞ : Top∗ ⇆ Sp : Ω∞ (1)
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of functors between pointed topological spaces and spectra, and Σ∞−k stands for the
composition of Σ∞ with the k-fold down shift.
The following functoriality will be important. If Y ′ ⊆ Y is an inclusion of a subcomplex
carrying a vector bundle V ′ → Y ′ of dimension k′ ≤ k, and we have fixed an identification

V|Y ′
∼= V ′ ⊕ (Y ′ × Rk−k′) ,

then we get an induced map (Y ′)V
′

→ Y V of Thom spectra. This allows us to define the
Thom spectra associated to the sequences of classical groups (G(n))n≥1, where G belongs
to the list

{U, SU,O, SO, Spin, Spinc, Sp} .

These groups come with families of stabilization maps

G(n) → G(n + 1) , n ≥ 1 .

We consider the homotopy colimit of the corresponding sequence of classifying spaces

BG := hocolimn BG(n) .

For any map B → BO from a CW -complex B we define a Thom spectrumMB as follows.
The restriction of the map to a finite subcomplex A has a factorization A → BO(n).
It classifies an Rn-bundle VA → A which gives rise to the Thom spectrum AVA. The
functoriality of the construction explained above provides natural maps (A′)VA′ → AVA

for inclusions A′ ⊆ A ⊆ B of finite subcomplexes. The Thom spectrum associated to the
map B → BO is then defined as

MB := hocolimA A
VA ,

where A runs over the finite subcomplexes of B.
For a map of CW -complexes over BO with a given homotopy making the diagram

B′

!!DD
DD

DD
DD

// B

}}{{
{{

{{
{{

BO

(2)

we get a homotopy class of maps of Thom spectra MB′ → MB. In this way the Thom
spectrum construction provides a functor from the homotopy category of CW/hBO of CW -
complexes over BO to the homotopy catgeory of spectra, where the subscript h indicates
that a morphism in this over-category is a triangle (2) filled by a specified homotopy.
For our theory it will be important that the bordism theory is K-oriented. The natural
K-oriented bordism theory is Spinc-bordism [5], [53, Ch. VI].
We take the flexibility of considering bordism theories which are K-oriented through a
map to Spinc-bordism.
We now come back to the description of our set-up. The compatible family of maps

Spinc(n) → O(n) , n ≥ 0
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induces a map
BSpinc → BO (3)

and therefore a Thom spectrum MBSpinc. In order to keep a compatible notation in
our paper we use this symbol for the Thom spectrum which would usually denoted with
MSpinc. We fix a map of spaces

σ : B → BSpinc . (4)

It gives rise to a triangle

B //

!!C
CC

CC
CC

C
BSpinc

zzttttttttt

BO

filled by the constant homotopy. It therefore induces a map of Thom spectra

Mσ :MB →MBSpinc . (5)

The homology theory represented by the spectrum MB will be called B-bordism theory.
If Y is a pointed space or a spectrum, then the B-bordism groups of Y are defined as
πn(MB ∧ Y ).
Let us note the following important special case where B = ∗ is the one-point space. In
this case the Thom spectrum S :=MB is the sphere spectrum.
We let K denote the complex K-theory spectrum. It is a commutative ring spectrum
with unit and multiplication

ǫK : S → K , mult : K ∧K → K . (6)

By [5] the Spinc-bordism theory is K-oriented. This orientation is given by a Thom class

α :MBSpinc → K . (7)

Its composition with (5) induces the K-orientation

β :=Mσ ◦ α :MB → K (8)

of B-bordism theory. It leads to Thom isomorphisms in homology and cohomology. We
need some details of the construction of the Thom isomorphisms later in the proof of
Theorem 3.6.
We start with the cohomological version. Let Y be a pointed space or spectrum. If E
is another spectrum, then we let E∗(Y ) denote the E-cohomology of Y . Note that we
use this notation for the reduced cohomology. If Y is a space, then the unreduced E-
cohomology of Y will be given by E∗(Y+), where Y+ is the disjoint union of Y with an
additional base point.
The Thom spectrum MB is K-oriented by (8). We therefore have for any spectrum or
pointed space Y a Thom isomorphism

ThomK : K∗(B+ ∧ Y )
∼
→ K∗(MB ∧ Y ) . (9)
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Let us describe this map in detail. We consider the product B ∧ B+ as a space over BO
via the projection onto the first factor. The diagonal B → B ∧ B+ then becomes a map
over BO and thus induces a map of Thom spectra

∆ :MB →M(B ∧ B+) ∼= MB ∧B+ (10)

which is usually called the Thom diagonal. Let φ ∈ K∗(B+ ∧ Y ) be represented by

φ : B+ ∧ Y → Σ−∗K .

Then the image of φ under the Thom isomorphism is represented by the composition

MB ∧ Y
∆
→ MB ∧B+ ∧ Y

β∧φ
→ K ∧ Σ−∗K

mult
→ Σ−∗K . (11)

In the present paper we denote the E-homology of a pointed space or spectrum Y by
π∗(E∧Y ) (we do not use the notation E∗(Y ) since the swaps like EQ/Z∗(Y ) = E∗(YQ/Z)
some times become notationally confusing). We must understand the Thom isomorphism

ThomK : π∗(K ∧MB ∧ Y )
∼
→ π∗(K ∧B+ ∧ Y )

in K-homology in a similarly explicit way. It is induced by the composition

K ∧MB ∧ Y
∆
→ K ∧MB ∧ B+ ∧ Y

β
→ K ∧K ∧B+ ∧ Y

mult
→ K ∧B+ ∧ Y . (12)

Its precomposition with the unit MB ∧ Y
ǫK→ K ∧MB ∧ Y coincides with

MB ∧ Y
∆
→ MB ∧B+ ∧ Y

β
→ K ∧B+ ∧ Y . (13)

This gives the relation

ThomK(ǫK(z)) = β(∆(z)) ∈ π∗(K ∧B+ ∧ Y ) (14)

for z ∈ π∗(MB ∧ Y ).
More generally, we have Thom isomorphisms for cohomology theories which areK-module
theories. These isomorphisms will be denoted by the same symbols ThomK and ThomK .
They are defined by natural modifications of (12) and (11). We will apply this e.g. in the
case of KQ/Z or K[[q]] which will be introduced later.
We now describe the pairing between homology and cohomology and derive some formulas
clarifying its compatibility with the Thom isomorphisms. For spectra or pointed spaces
Y, Z we have a pairing between the K-theory K∗(Y ) and the K-homology π∗(K ∧Y ∧Z)
with values in π∗(K ∧ Z). If the homology and cohomology classes are represented by
maps

φ : Y → Σ−iK , y : ΣjS → K ∧ Y ∧ Z ,

then the pairing is given by the composition

〈φ, y〉 : Σi+jS
y
→ ΣiK ∧ Y ∧ Z

φ
→ K ∧K ∧ Z

mult
→ K ∧ Z . (15)
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It turns out to be useful to consider the cohomology groups of a space or spectrum as
topological groups. The topology on a cohomology group is determined by the system
of neighbourhoods of the identity given by the system of kernels of restrictions to finite
complexes or spectra. This is the profinite2 topology defined in [18, Def. 4.9]. By Homcont

we mean continuous homomorphisms into the target which in this paper is always a
discrete group. We will interpret the evaluation pairing described above as a map

πj(K ∧ Y ∧ Z) → Homcont(K∗(Y ), π∗+j(K ∧ Z)) . (16)

For later use let us consider the situation where y ∈ πj(K ∧ MB ∧ Y ∧ Z) and φ ∈
Ki(B+ ∧ Y ). Then we have the relation

〈ThomK(φ), y〉 = 〈φ, ThomK(y)〉 ∈ πj+i(K ∧ Z) . (17)

Let us further assume that y = ǫK(z) for z ∈ πj(MB ∧ Y ∧ Z). Then we can apply the
orientation β :MB → K to ∆(z) ∈ πj(MB ∧B+ ∧ Y ∧ Z). Combining (14) and (17) we
get the following equality

〈ThomK(φ), ǫK(z)〉 = 〈φ, β(∆(z))〉 ∈ πj+i(K ∧ Z) . (18)

2.3 The definition of ηtop

On the level of spectra we define rationalizations and Q/Z-versions of a homology theory
using Moore spectra. For an abelian group A we let MA3 denote the Moore spectrum of
A. It is characterized by the property that

πn(HZ ∧ MA) ∼=

{

A n = 0
0 n 6= 0

.

More generally, for a spectrum Y we have exact sequences

0 → πn(Y )⊗A→ πn(Y ∧ MA) → Tor(πn−1(Y ), A) → 0 (19)

([19, (2.1)]) for all n ∈ Z. For cyclic groups A a construction of MA is indicated in
Subsection 3.5. Note that MZ and MQ are equivalent to the sphere spectrum S and
the Eilenberg-MacLane spectrum HQ, respectively. For any spectrum E we abbreviate
EA := E ∧ MA. For example, we have an equivalence EZ ∼= E. We let MZ → MQ be
the map of Moore spectra induced by the inclusion Z → Q. It extends to a fibre sequence

MZ → MQ → MQ/Z → ΣMZ (20)

of Moore spectra.
Our invariant will be defined on the torsion elements of the B-bordism theory of a space
X (or a spectrum X as explained later in Subsection 2.6).

2Note that this topology is in general not the profinite topology in the sense of group theory!
3Please do not confuse the letter M used for Moore spectra and M used to denote Thom spectra.
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Smashing the fibre sequence of Moore spectra (20) with MB ∧ X+ and K ∧MB ∧ X+

gives the vertical sequences in the following diagram:

Σ−1MBQ ∧X+

��

// Σ−1K ∧MBQ ∧X+

��
x̂ Σ−1MBQ/Z ∧X+

//

��

x̃ Σ−1K ∧MBQ/Z ∧X+

��
x MB ∧X+

��

// K ∧MB ∧X+

��
0 MBQ ∧X+

// K ∧MBQ ∧X+

. (21)

The horizontal arrows are all induced by the unit (6) of K-theory.
The little letters in diagram (21) denote elements which will be chased through this dia-
gram. We consider a torsion class x ∈ πn(MB∧X+)tors. It has a lift x̂ ∈ πn+1(MBQ/Z∧
X+) which is well-defined up to classes in the image of πn+1(MBQ ∧ X+). This lift x̂
maps to a class x̃ ∈ πn+1(K ∧MBQ/Z ∧ X+). This element is well-defined up to the
image of πn+1(MBQ ∧X+). We thus have defined a homomorphism x 7→ x̃

πn(MB ∧X+)tors →
πn+1(K ∧MBQ/Z ∧X+)

image(πn+1(MBQ ∧X+))
. (22)

We now specialize the evaluation pairing (16) to our situation. We consider the case
where Z = MQ/Z and Y = MB ∧ X+. We furthermore precompose with the Thom
isomorphism (9) in K-theory and get a homomorphism

πn+1(K ∧MBQ/Z ∧X+) → Homcont(K0(B+ ∧X+), πn+1(KQ/Z)) . (23)

We let
U ⊆ Homcont(K0(B+ ∧X+), πn+1(KQ/Z)) (24)

denote the subgroup given by the pairings with the elements in image(πn+1(MBQ∧X+)).
The following group plays a central role in the present paper as the target of our universal
η-invariant.

Definition 2.1 We define

Qn(B,X) :=
Homcont(K0(B+ ∧X+), πn+1(KQ/Z))

U
. (25)

Note that Qn(B,X) also depends on the choice of the map σ in (4), but this dependence
will be suppressed from the notation. Note that Qn(B,X) is a torsion group. Indeed,
by continuity every element of Homcont(K0(B+ ∧X+), πn+1(KQ/Z)) factors over a finitely
generated quotient of K0(B+ ∧X+). Since it has values in a torsion group it is of finite
order.

10



Composing (22) with (23) and with the projection to the quotient by U we obtain a
homomorphism

ηtop : πn(MB ∧X+)tors → Qn(B,X) . (26)

Let us collect the essentials of this construction in the following definition.

Definition 2.2 The homotopy theoretic version of the universal η-invariant is the homo-
morphism

ηtop : πn(MB ∧X+)tors → Qn(B,X)

defined by the following prescription: If x ∈ πn(MB ∧ X+)tors, then we choose a lift
x̂ ∈ πn+1(MBQ/Z ∧X+) whose pairing with K0(B+ ∧X+) represents the class ηtop(x) ∈
Qn(B,X).

2.4 Simplification of Qn(B,X)

The target of our universal η-invariant is the group Qn(B,X) defined in (25). The univer-
sal η-invariant is designed to detect torsion elements in the bordism group πn(MB ∧X+).
For an effective use of the universal η-invariant we have to know the group Qn(B,X). To
this end first of all we must know the K-theory K0(B+ ∧ X+). In many examples this
K-theory is a lot easier than the bordism theory. So take for example B = ∗ and X = ∗.
Then πn(MB∧X+) = πSn are the stable homotopy groups of the sphere, a central and very
complicated object of stable homotopy theory which has not been calculated completely
so far. On the other hand K0(B+ ∧ X+) ∼= Z is known. Another interesting example is
the case where B = BG for G ∈ {U, SU, Spin, Spinc} and X = BΓ for another compact
Lie group Γ. In this case we can calculate K0(B+ ∧ X+) using the completion theorem
[9] in terms of the representation rings

K0(B+ ∧X+) ∼= limn R(G(n)× Γ)ˆIn , (27)

where In ⊂ R(G(n)× Γ) is the augmentation ideal.
In addition to the K-theory group K0(B+ ∧X+) the other ingredient of the construction
of Qn(B,X) is the subgroup U given in (24). Its calculation requires the knowledge of the
rationalization of πn+1(MB ∧X+) which is easy in some cases, but may be complicated
in others.
One goal of the present section is to give a simplified picture of the group Qn(X,B). This
picture turns out to be quite useful when we try to construct maps out of this group to
simpler targets. We make a simplifying assumption.

Assumption 2.3 We assume that B+∧X+ is rationally of finite type, i.e. dimH i(B+∧
X+;Q) is finite for all ∈ N.

This assumption is satisfied for eample, if B and X are of finite type. This means that
they are homotopy equivalent to CW -complexes whose skeleta are are build with finitely
many cells.

11



Let
HPQ :=

∨

i∈Z

Σ2iHQ (28)

be the spectrum which represents 2-periodic rational homology. For each i ∈ Z we have
a projection p2i : HPQ → Σ2iHQ to the corresponding component. We set pn := 0 for
odd n. It is useful to write HPQ ∼= HQ[b, b−1], where deg(b) = 2.
The Chern character is an equivalence

ch : KQ
∼
→ HPQ .

We furthermore need the Todd class Td ∈ HPQ0(BSpinc+) which we describe in the
following passage. The splitting principle gives a way to define multiplicative characteristic
classes for real vector bundle from even formal power series (see [9] for a detailed account).
For a complex line bundle L → X we let c1(L) ∈ H2(X ;Z) denote its first Chern class.
We consider a formal power series

K(x) = 1 + x2a1 + x4a2 + · · · ∈ Q[b, b−1][[x2]]

of total degree zero where deg(x) = 2 and ai ∈ Q[b, b−1] has degree −2i. Then there exists
a unique multiplicative characteristic class which associates to the real vector bundle
V → X the class K(V ) ∈ HPQ0(X+) such that K(LR) = K(ic1(L)), where LR is L
considered as a real bundle. Multiplicativity here refers to the property that

K(V ⊕ V ′) = K(V ) ∪K(V ′) .

The characteristic class associated to the formal power series

x
2b

sinh( x
2b
)
∈ Q[b, b−1][[x2]]

is usually denoted by Â(V ). By the multiplicativity of Â the family of classes (Â(ξn) ∈
HPQ0(BO(n)+))n≥1 of the universal bundles ξn → BO(n) is compatible with restriction
along the maps BO(n) → BO(n+1) and therefore gives rise to a class Â ∈ HPQ0(BO+)
which restricts to the classes Â(ξn) for all n. In order to simplify the notation we use the
same symbol Â in order to denote the pull-back of this class along a map e : B → BO,
i.e. we will write Â ∈ HPQ0(B+) for instead of e∗Â. In particular we have a class

Â ∈ HPQ0(BSpinc+) .

The group Spinc(n) has a natural character χn : Spinc(n) → U(1) whose restriction to
the center U(1) ∼= Z(Spinc(n)) is the two-fold covering. This character determines a line
bundle Ln → BSpinc(n) and therefore a class c1(Ln) ∈ H2(BSpinc(n);Z). The collection
of classes (c1(Ln))n≥1 is compatible with respect to the restrictions along the family of
maps BSpinc(n) → BSpinc(n+ 1) and therefore determines a class

c1 ∈ H2(BSpinc;Z)
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which restricts to the classes c1(Ln) for all n ≥ 1. The Todd class is defined as the class

Td := Â ∪ exp(
c1
2b

) ∈ HPQ0(BSpinc+) .

The Todd class is a unit in the cohomology ring so that Td−1 ∈ HPQ0(BSpinc) is defined
as well.
The importance of the Todd class comes from its role in the compatibility of the Thom
isomorphism for Spinc-vector bundles and the Chern character. Let ThomKdenote the
Thom isomorphism (9). There is an ordinary orientation

MB →MBSpinc →MBSO → HPQ

of B bordism theory which induces a Thom isomorphism

ThomHPQ : HPQ∗(B+ ∧X+)
∼
→ HPQ∗(MB ∧X+)

in periodic rational cohomology. Then we have the relation in HPQ∗(MB ∧X+)

ch ◦ ThomK(φ) = ThomHPQ(ch(φ) ∪Td−1) (29)

for all φ ∈ K∗(B+ ∧X+).
The composition of the Chern character with multiplication by the inverse of the universal
Todd class and the projection pn+1 gives a map

pn+1(Td−1 ∪ ch(. . . )) : K0(B+ ∧X+) → HQn+1(B+ ∧X+) .

We consider the kernel

V := ker

(

K0(B+ ∧X+)
pn+1(Td

−1∪ch(... ))
−→ HQn+1(B+ ∧X+)

)

. (30)

We now formulate the desired simplification of the description of the group Qn(B,X).

Lemma 2.4 The restriction to V ⊆ K0(B+ ∧X+) induces a well-defined map

Qn(B,X) → Homcont(V, πn+1(KQ/Z)) (31)

which is an isomorphism if we assume 2.3.

Proof. First we show that the restriction is well-defined. We must show that if φ ∈ V ,
then the pairing of φ with an element of πn+1(K ∧ MBQ/Z ∧ X+) coming from y ∈
πn+1(MBQ ∧X+) vanishes. This pairing can be calculated as the image in πn+1(KQ/Z)
of the evaluation pairing (15) (with Y =MB ∧X+ and Z =MQ)

〈ThomK(φ), ǫK(y)〉 ∈ πn+1(KQ) ∼= Q ,

13



where ǫK is the map induced by the unit ofK-theory. The identification of πn+1(KQ) ∼= Q

can be viewed as given by the application of pn+1 ◦ ch : πn+1(KQ) → π0(HQ) ∼= Q. We
therefore can write

〈ThomK(φ), ǫK(y)〉 = pn+1(〈ch ◦ ThomK(φ), ch(ǫK(y))〉) .

Note that

pk(ch(ǫK(y))) = pk(ǫHPQ(y)) =

{

0 k 6= 0
ǫHQ(y) k = 0

,

where ǫHPQ and ǫHQ is induced by the unit of periodic and non-periodic rational homology.
Therefore by equation (29) and the fact that pn+1 ◦ Thom

HPQ = ThomHQ ◦ pn+1 we obtain

〈ThomK(φ), ǫK(y)〉 = 〈ThomHQ(pn+1(Td−1 ∪ ch(φ))), ǫHQ(y)〉 . (32)

If φ ∈ V , then the right-hand side of this equality vanishes. This shows that the restriction
map (31) is well-defined.
We now show that it is an isomorphism under Assumption 2.3. We use the general fact
that if f : A → V is a homomorphism of an abelian group into a Q-vector space such
that its image is finitely generated as an abelian group, then there exists a splitting
A ∼= ker(f)⊕A′. Indeed, in this case the image is free and hence projective.
Note that there exists an integer N (only depending on n) such that the image of
pn+1(Td−1 ∪ ch(. . . )) is contained in 1

N
Hn+1(B+ ∧ X+;Z) ⊆ Hn+1(B+ ∧ X+;Q) and

is therefore finitely generated as an abelian group since we assume that B+ ∧X+ is ratio-
nally of finite type. We conclude that

K0(B+ ∧X+) ∼= V ⊕ V c ,

where V c ∼= image(pn+1(Td−1∪ch(. . . )) is a free abelian group. This immediately implies
that (31) is surjective.
Any homomorphism φ ∈ Homcont(K0(B+∧X+), πn+1(KQ/Z)) can uniquely be decomposed
as a sum of its restrictions to V and V c. We claim that U ∼= Hom(V c, πn+1(KQ/Z)), where
U is as in (24). The claim implies that (31) is injective.
A homomorphism f : V c → πn+1(KQ/Z) can be lifted to a homomorphism f̂ : V c →
πn+1(KQ) since V c is free. This lift further extends uniquely to an homomorphism of
Q-vector spaces f̂Q : V c ⊗ Q → πn+1(KQ). Via the Chern character we can view
V c ⊗ Q as a subspace of HQn+1(B+ ∧ X+). Hence there exists a homomorphism f̃ :
HQn+1(B+ ∧ X+) → Q which restricts to f̂Q. We interpret f̃ as a homology class
f̃ ∈ πn+1(HQ ∧ B+ ∧ X+). We now use the identification MQ ∼= HQ and the Thom
isomorphism for rational homology in order to get an isomorphism πn+1(MBQ ∧X+) ∼=
πn+1(HQ ∧ B+ ∧ X+). It follows that any homomorphism V c → πn+1(KQ/Z) can be
obtained as evaluation against a class in πn+1(MBQ ∧X+). 2

The definition of ηtop is based on first lifting the torsion element in the bordism group to
an Q/Z-bordism element which is then paired with elements of K-theory. The pairing
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with torsion K-theory elements can be expressed in a dual way as a pairing of the original
bordism class with Q/Z-lifts of the K-theory elements. We now explain the details.
Assume that φ ∈ K0(B+∧X+) satisfies ch(φ) = 0. Then φ ∈ V and we get an evaluation

evφ : Qn(B,X) → πn+1(KQ/Z) .

In view of the exact sequence

KQ/Z−1(B+ ∧X+)
∂
→ K0(B+ ∧X+)

ch
→ HPQ(B+ ∧X+)

we can choose φ̂ ∈ KQ/Z−1(B+ ∧ X+) such that ∂φ̂ = φ. If we want to calculate
evφ(η

top(x)), then instead of lifting the class x to a Q/Z class we can instead evaluate

the class ǫK(x) ∈ πn(K ∧MB ∧ X+) against the lift φ̂. Indeed, using that KQ/Z is a
K-module spectrum we get a Thom isomorphism

ThomK : KQ/Z∗(B+ ∧X+)
∼
→ KQ/Z∗(MB ∧X+) .

The following assertion follows easily from the definition of ηtop and commutativity of the
diagram

B+ ∧X+ ∧ MQ/Z
φ∧idMQ/Z //

∂
��

KQ/Z

B+ ∧X+
φ̂ // KQ/Z

.

Lemma 2.5 For x ∈ πn(MB ∧X+)tors we have

evφ(η
top(x)) = 〈ThomK(φ̂), ǫK(x)〉 .

This Lemma will play a role when we compare the universal η-invariant of the present
paper with other classical secondary invariants, e.g. in Subsection 5.2.

2.5 Relation with the Adams spectral sequence

A classical approach to a calculation of the homotopy groups π∗(MB ∧ X+) uses the
Adams spectral sequence. We refer to [2] and [52] for a detailed description of this method.
For our purpose the Adams spectral sequence (Er, dr) based on complex K-theory is of
particular importance. It does not really calculate the B-bordism groups π∗(MB ∧X+)
of X , but rather the homotopy groups π∗((MB ∧X+)K) of the Bousfield localization of
MB ∧X+ with respect to K-theory [19].
In order to understand the strength of the universal η-invariant it is interesting to under-
stand its relation with the K-theory based Adams spectral sequence. In this subsection
we will show that the universal η-invariant factorizes over the first line of this spectral
sequence and exactly detects the first subquotient of πn(MB ∧ X+) with respect to the
associated Adams filtration. The main result of the present Subsection will be formulated
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as Proposition 2.9 and Corollary 2.10. It is relevant if one wants to calculate ηtop(x) for
an element x ∈ πn(MB ∧ X+)tors about which one knows the element in [x] ∈ E1,n+1

2

which detects x (also called the symbol of x). This approach has been used to calculate
invariants of String-bordism classes in [21], see Subsection 5.4.
This relation between ηtop and theK-theory based Adams spectral sequence is particularly
clean under some simplifying assumtions which we will adopt here.

Assumption 2.6 1. We assume that π∗(K ∧MB ∧X+) is torsion free.

2. We further assume that the groups Es,t
2 (MB∧X+) are finite for all t ∈ Z and s ≥ 1.

These assumptions hold true e.g. if B ∈ {∗, BU,BSU,BSpin, BSpinc} and X = BΓ
for some compact Lie group. In order to see 1. in this case note that by the Thom
isomorphism

π∗(K ∧MB ∧X+) ∼= π∗(K ∧ B+ ∧X+) .

The right-hand side vanishes in odd degree and is given by (27) for even degree.
Let us now describe the Adams filtration. Let Y be a spectrum or pointed space. The
unit ǫK of K-theory extends to a fibre sequence

Σ−1K̄
δ
→ S

ǫK→ K → K̄

of spectra which in particular determines the spectrum K̄ and the map δ. The latter
induces the maps in the following sequence

Σ−kK̄∧k

∧ Y → Σ−(k−1)K̄∧k−1

∧ Y → · · · → Σ−1K̄ ∧ Y → Y

which is called the Adams tower. The Adams filtration measures how far elements in
the homotopy group of Y can be lifted in the Adams tower. More precisely, an element
x ∈ πn(Y ) belongs to the step F kπn(Y ) if it can be lifted to an element in πn+k(K̄

∧k
∧Y )

in the Adams tower. In this way we obtain the decreasing Adams filtration

F kπn(Y ) ⊆ F k−1πn(Y ) ⊆ · · · ⊆ F 1πn(Y ) ⊆ πn(Y )

on πn(Y ).
We want to apply the geometric boundary theorem [52, Thm. 2.3.4] and the discussion
of [21, Sec. 5.3]. The Assumption 2.6 implies the assumption for the geometric boundary
theorem, namely that

π∗+1(K ∧MBQ/Z ∧X+) → π∗(K ∧MB ∧X+) (33)

vanishes. Note that Assumption 2.6,1. implies that

πn(MB ∧X+)tors ⊆ F 1πn(MB ∧X+) . (34)

Lemma 2.7 If we assume 2.6, then the restriction of ηtop to F 2πn(MB∧X+)tors is trivial.
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Proof. Assume that x ∈ F 2πn(MB ∧ X+)tors. If we can show that we can choose
x̂ ∈ F 1πn+1(MBQ/Z ∧X+), then x̃ = 0 and therefore ηtop(x) = 0.
Let [x̂] ∈ E0,n+1

2 (MGBQ/Z ∧X+) be the symbol of x̂. The geometric boundary theorem
gives a map

δ2 : E
0,n+1
2 (MBQ/Z ∧X+) → E1,n+1

2 (MB ∧X+) (35)

so that δ2[x̂] = [x] is the symbol of x. By our assumtion on x we have δ2[x̂] = 0. By [21,
Sec. 5.3] we have a long exact sequence

0 → E0,n+1
2 (MB ∧X+)⊗Q/Z

j
→ E0,n+1

2 (MBQ/Z ∧X+)
δ2→ E1,n+1

2 (MB ∧X+)tors → 0 .
(36)

Therefore [x̂] = j(α) for some class α ∈ E0,n+1
2 (MB ∧ X+) ⊗ Q/Z. We further have

surjections

E∗,∗
2 (MBQ ∧X+) ∼= E∗,∗

2 (MB ∧X+)⊗Q
q
→ E∗,∗

2 (MG ∧X+)⊗Q/Z → 0 . (37)

Our assumption 2.6.2 implies that E∗,s
2 (MBQ∧X+) = 0 for s ≥ 1. Therefore the Adams

spectral sequence for MBQ ∧X+ degenerates at the E2-term.
We can write α = q(β) for some β ∈ E0,n+1

2 (MBQ ∧ X+) which is necessarily a per-
manent cycle. We choose b ∈ πn+1(MBQ ∧ X+) with symbol [b] = β. The image ŷ ∈
πn+1(MBQ/Z∧X+) of the element b has the property that x̂−ŷ ∈ F 1πn+1(MBQ/Z∧X+).
We can replace our choice of x̂ by this difference. 2

We define a map
κ : E1,n+1

2 (MB ∧X+) → Qn(B,X) (38)

as follows. By Assumption 2.6, 2. and (36) the map δ2 in (35) is surjective. For γ ∈
E1,n+1

2 (MB ∧ X+) we thus can choose β ∈ E0,n+1
2 (MBQ/Z ∧ X+) such that δ2(β) = γ.

The element β is well-defined up to the image of j. We have a natural inclusion map

a : E0,n+1
2 (MBQ/Z ∧X+) → πn+1(K ∧MBQ/Z ∧X+) .

We define κ(γ) ∈ Qn(B,X) as the element represented by the homomorphism K0(B+ ∧
X+) → πn+1(KQ/Z) given by the pairing with a(β). In the proof of Lemma 2.7 we see
that pairings with elements in the image of j give the zero element in Qn(B,X). Therefore
κ(γ) is well-defined independ of the choice of β.

Lemma 2.8 If we assume 2.6 and that n is odd, then the homomorphism

κ : E1,n+1
2 (MB ∧X+) → Qn(B,X)

is injective.

Proof.Let γ ∈ E1,n+1
2 (MB∧X+). Assume that κ(γ) = 0. We write γ = δ2(β) for some β ∈

E0,n+1
2 (MBQ/Z∧X+). We have κ(γ) = 0 if an only if there exists y ∈ πn+1(MBQ∧X+)
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which induces the same pairing with K0(B+ ∧X+) as a(β) ∈ πn+1(K ∧MBQ/Z ∧X+).
By Pontrjagin duality and the Thom isomorphism we have

πn+1(K ∧MBQ/Z∧X+) ∼= Homcont(K0(MB∧X+),Q/Z) ∼= Homcont(K0(B+∧X+),Q/Z) .

We conclude that a(β) = a(j(q([y]))), where [y] ∈ E0,n+1
2 (MBQ∧X+) and q and j are as

in (37) and 36). Since a is injective this implies γ = δ2(j(q([y]))) = 0. 2

By (34) we have a natural map

s : πn+1(MB ∧X+)tors → E1,n+1
2 (MB ∧X+)

mapping x to its symbol s(x) = [x].

Proposition 2.9 If we assume 2.6, then there is a factorization

ηtop = κ ◦ s : πn(MB ∧X+)tors → E1,n+1
2 (MB ∧X+) → Qn(B,X) .

Proof. Let x ∈ πn(MB ∧X+)tors and x̂ ∈ πn+1(MBQ/Z∧X+) be its lift. Then η
top(x) is

represented by the homomorphism given by the pairing with ǫK(x̂) ∈ πn+1(K∧MB∧X+).
On the other hand if, in the construction of κ, we set γ := s(x), then we can take β such
that a(β) = [ǫK(x̂)]. It follows that κ(s(x)) is also represented by the homomorphism
given by the pairing with ǫK(x̂) ∈ πn+1(K ∧MB ∧X+). 2

If we combine Lemma 2.8 with Proposition 2.9 and use the inclusion

F 1πn(MB ∧X+)tors/F
2πn(MB ∧X+)tors ⊆ E1,n+1

2 (MB ∧X+)

we get the following corollary.

Corollary 2.10 If we assume 2.6 and that n is odd, then we have an injection

ηtop : F 1πn(MB ∧X+)tors/F
2πn(MB ∧X+)tors → Qn(B,X) .

2.6 Functorial properties and a stable version

We let CW/hBSpin
c be the categeory of CW -complexes over BSpinc (see the text after

(2) where the meaning of the subscript h is explained). Furthermore, we let Top denote
the category of spaces. The association (B,X) 7→ Qn(B,X) becomes a functor from the
product

CW/hBSpin
c × Top → Ab

as follows.
Let us consider a pair of morphisms

B
φ //

σ

##HHHHHHHHH B′

σ′

zzvvv
vvvvvv

BSpinc

, ψ : X → X ′ (39)
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in CW/hBSpin
c and Top. Pull-back along (φ, ψ)∗ : K0(B′

+ ∧X ′
+) → K0(B+ ∧X+) induces

a map

Homcont(K0(B+ ∧X+), πn+1(KQ/Z)) → Homcont(K0(B′
+ ∧X ′

+), πn+1(KQ/Z))

whose restriction to the subgroup U has values in the corresponding subgroup U ′. Hence
we get a functorial map

(φ, ψ)∗ : Qn(B,X) → Qn(B
′, X ′) .

We also have an induced map of spectra

Mφ ∧ ψ :MB ∧X+ →MB′ ∧X+ .

Lemma 2.11 The following diagram commutes:

πn(MB ∧X+)tors

Mφ∧ψ
��

ηtop // Qn(B,X)

(φ,ψ)∗
��

πn(MB′ ∧X ′
+)tors

ηtop // Qn(B
′, X ′)

.

Proof. This is an easy consequence of the definitions. 2

Observe that the group Qn(B,X) depends on X only via the space X+ obtained by
attaching a disjoint base point. There is an immediate extension of the definitions to
arbitrary pointed spaces Z in place ofX+. By a slight abuse of notation we write Qn(B,Z)
for the resulting groups. Our motivation for using spaces of the form X+ is that the
geometric picture of the bordism group πn(MB ∧X+) is simpler than in the general case
πn(MB ∧Z). Note that the homotopy theoretic construction of ηtop immediately extends
to general pointed spaces so that we get by adapting Definition 2.2 a transformation

ηtop : πn(MB ∧ Z)tors → Qn(B,Z) .

More generally, let X be a spectrum and Ω∞X be the associated infinite loop space. We
can redo the construction of ηtop in 2.3 with the spectrum X in place of X+. Then in the
definition of Qn(B,X ) we have to intepret K0(B+ ∧ X ) as spectrum cohomology. The
counit of the adjunction (Σ∞,Ω∞) (see (1)) is a natural map

u : Σ∞Ω∞X → X (40)

which induces a map
Qn(B,Σ

∞Ω∞X ) → Qn(B,X )

such that the following diagram commutes.
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Lemma 2.12

πn(MB ∧ Ω∞X )tors

id∧u
��

ηtop // Qn(B,Ω
∞X )

(id,u)
��

πn(MB ∧ X )tors
ηtop // Qn(B,X )

.

Proof. This is again an easy consequence of the definitions. 2

These generalizations will play a role in the application to algebraic K-theory developed
in Subsection 5.3.

3 The spectral geometric construction

3.1 Motivation

In this section we define an analytic invariant of torsion elements in the B-bordism theory
of a space X . The analytic invariant will be derived from geometric and spectral geometric
quantities associated to geometric cycles for bordism classes. The relation between the ge-
ometric and homotopy theoretic picture of the bordism group is given by Thom-Pontrjagin
construction, see [53, Ch IV.7]. In Subsection 3.2 we give the details of the geometric
picture of the B-bordism theory. Subsection 3.3 is devoted to some technical details on
the transfer of Spinc-structures from the normal bundle to the tangent bundle. A reader
with some experience with the Thom-Pontrjagin construction and Spinc-structures may
immediately proceed to the construction of ηan in Subsection 3.4. The final Subsection
3.5 of this part contains the proof the main theorem about the equality of the analytic
and topological universal η-invariant.

3.2 Geometric cycles for B-bordism theory

Cycles for elements of the B-bordism group πn(MB∧X+) of X are triples (M, f, g) which
we now describe in detail. The first entry is a closed n-dimensional manifold M . The
remaining two entries are maps f : M → B and g : M → X , where the map f classifies
a B-structure on the stable normal bundle of M . To say that f classifies a B-structure
on the stable normal bundle of M involves an additional structure which we drop in
the notation for simplicity. This structure fixes the relation between the map f and the
tangent bundle of M . Since M is compact, for suitable k ≥ 1 there exists a factorization

BO(k)

��
M

f̂
66

f // B // BO

up to homotopy. Let ξk → BO(k) denote the k-dimensional universal real euclidean
vector bundle. To say that f represents a B-structure on the stable normal bundle of f
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means that we are given a trivialization of the sum

TM ⊕ f̂ ∗ξk ∼= M × Rn+k . (41)

Definition 3.1 We call the choice of f̂ together with such an isomorphism a representa-
tive of the normal B-structure on M .

The normal B-structure itself is given by the equivalence class of the representative under
the equivalence relation generated by stabilization (which allows to change k) and joint
homotopy of f̂ together with isomorphism (41).
The bordism group πn(MB ∧ X+) is the set of equivalence classes of cycles, where the
equivalence relation is given by bordism, and the group structure is induced by the disjoint
sum. A zero bordism of (M, f, g) is given by a triple (W,F,G) of similar data, where W is
a compact n+1-dimensional with boundary ∂W ∼=M , and F : W → B and G :W → X
are maps which extend f and g. We require that the B-structure on the stable normal
bundle of W represented by F restricts to the B-structure on the stable normal bundle of
M represented by f . In detail this means the following. The representative of the normal
B-structure on W by F involves an isomorphism

TW ⊕ F̂ ∗ξk ∼= W × Rn+1+k . (42)

An outgoing normal field of TW|∂W provides a decomposition

TW|M
∼= TM ⊕ (M × R) .

Let f̂ s :M → BO(k + 1) be the composition of f̂ with the map BO(k) → BO(k + 1) so
that

f̂ s∗ξk+1
∼= (M × R)⊕ f̂ ∗ξk .

The restriction of the isomorphism (42) induces an isomorphism

TM ⊕ f̂ s∗ξk+1
∼= TM ⊕ (M × R)⊕ f̂ ∗ξk ∼= TW|M ⊕ f ∗

k ξk
(42)
∼= M × Rn+1+k .

The requirement about the restriction of the B-structure from W to M thus is that
isomorphism represents the given B-structure on M .

3.3 Normal and tangential Spinc-structures

Because of the factorization B → BSpinc → BO a normal B-structure induces a normal
Spinc-structure. As we will do geometry on the tangent bundle we must transfer normal
Spinc-structures to tangential Spinc-structures. The homotopy theoretic picture of this
transition is explained in [21, Sec. 8] in the example of String-structures. In the following
we describe its geometric counterpart.
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Let V → M be an m-dimensional real vector bundle. Then a geometric Spinc-structure
on V is pair (P, κ), where P → M is a Spinc(m)-principal bundle and κ is an isomorphism
of real vector bundles

κ : P ×Spinc(n) R
m ∼= V .

With this definition a Spinc-structure induces a euclidean metric and an orientation on
V so that the oriented orthonormal frame bundle is SO(V ) := P ×Spinc(m) SO(m).
The collection of all Spinc-structures on the vector bundle V naturally forms a groupoid.
For glueing and certain functorial constructions we have to be very careful with identifi-
cations. In these cases it is not sufficient to work with the set of isomorphism classes of
Spinc-structures.
For an oriented euclidean vector bundle V we let Spinc(V ) denote the groupoid of Spinc-
structures which induce the given metric and orientation. The objects of the groupoid
Spinc(V ) are the Spinc-structures (P, κ), and the morphisms (P, κ) → (P ′, κ′) are iso-
morphisms of Spinc(m)-principal bundles P → P ′ which are compatible with the isomor-
phisms κ and κ′. This in particular implies that automorphisms of (P, κ) are given by the
central action of C∞(M,U(1)) on P .
If we associate to any open subset A ⊆ M the groupoid Spinc(V|A) of Spinc-structures
on the restriction of V to A, then we obtain a sheaf of groupoids Spinc(V ) which actually
is an U(1)-banded gerbe. We refer to [20],[49], or [36] for an introduction to gerbes.
Isomorphism classes of U(1)-banded gerbes G are classified by their Dixmier-Douady
classes DD(G) ∈ H3(M ;Z). In particular, the Dixmier-Douday class of the Spinc-gerbe
Spinc(V ) is the class

DD(Spinc(V )) = W3(V ) = βw2(V ) ∈ H3(M ;Z) ,

where w2(V ) ∈ H2(M ;Z/2Z) is the second Stiefel-Whitney class and β : H2(M ;Z/2Z) →
H3(M ;Z) is the Bockstein operator [46, Thm. D2]. The groupoid Spinc(V ) is non-empty
exactly if W3(V ) = 0, i.e. the class W3(V ) is the obstruction against the existence of a
Spinc-structure on V . In the following we will simplify the notation and write P for the
Spinc-structure (P, κ).
Let BU(1)(M) denote the Picard groupoid (see [28]) of U(1)-principal bundles on M .
Given an U(1)-principal bundle E ∈ BU(1)(M) and a Spinc-structure P ∈ Spinc(V ), we
can define a new Spinc-structure E ⊗ P ∈ Spinc(V ). This is most easily described in
terms of cocycles. If (φαβ) is the cocycle for E and (λαβ) is the cocycle for P with respect
to some open covering of M , then (φαβλαβ) is the cocycle for E ⊗ P , where the action
uses the central embedding U(1) ⊂ Spinc(m). The structure map κE⊗P is induced by κP
in the canonical manner. Alternatively, a global formula is given by (45) specialized to
the case n = 0, see below. This construction defines bifunctor

BU(1)(M) × Spinc(V ) → Spinc(V ) . (43)

If Spinc(V ) is not empty, then the set of isomorphism classes of Spinc-structures on V is a
torsor over the group of isomorphism classes in BU(1)(M). Since the latter is canonically
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isomorphic to H2(M ;Z) we get a simply transitive action of H2(M ;Z) on Spinc(V )/iso.
Furthermore, the tensor product with the respective identities induces isomorphisms

C∞(M,U(1)) ∼= AutBU(1)(M)(E) ∼= AutSpinc(V )(E ⊗ P ) ∼= AutSpinc(V )(P ) .

The sum of two vector bundles with Spinc-structures has a naturally induced Spinc-
structure. This is formalized with the natural bifunctor

Spinc(V )× Spinc(U) → Spinc(V ⊕ U) . (44)

On the level of objects this bifunctor is given by

(P,Q) 7→ P ⊗Q ,

where the Spinc(n+m)-principal bundle

P ⊗Q := (P ×M Q)×(Spinc(n)×Spinc(m)) Spin
c(n+m) (45)

is obtained from the Spinc(n)×Spinc(m)-principal bundle P ×M Q by extension of struc-
ture groups along the natural map

Spinc(n)× Spinc(m)

��

// Spinc(n+m)

��
SO(n)× SO(m) // SO(n+m)

.

Here n = dim(V ) and m = dim(U), and the compatibility with the lower part of this
diagram is used to define the structure map κP⊗Q from κP and κQ. The bifunctor comes
equipped with natural associativity constraints. We omit the details of the latter two
aspects.
We set Spinc(0) := U(1) and let 0M denote the zero dimensional vector bundle on M .
Then we get an identification of Spinc(0M) ∼= BU(1)(M), and for n = 0 the bifunctor
(44) specializes to (43). As a consequence of associativity the bifunctor (44) is compatible
with the action (43) of BU(1)(M) in the sense that for E ∈ BU(1)(M) have natural
isomorphisms

(E ⊗ P )⊗Q ∼= E ⊗ (P ⊗Q) ∼= P ⊗ (E ⊗Q) . (46)

A trivialized vector bundle M × Rn has a preferred trivial Spinc-structure Q(n) :=M ×
Spinc(n). We can use this to produce a canonical equivalence of groupoids

Spinc(V ) ∼= Spinc(V ⊕ (M × Rn)) , P 7→ P ⊗Q(n) .

On the level of Spinc-structures we speak of stabilizations.
Let us now consider a pair (M, f) of a compact oriented n-dimensional Riemannian man-
ifold and a map f :M → B which represents a normal B-structure. Then we can assume
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that f has a factorization over BSpinc(k) as in the diagram

ξSpin
c

k
//

��

ξSOk
//

��

ξk

��
BSpinc(k) //

��

BSO(k)

��

// BO(k)

��
M

f̃
55

f // B // BSpinc // BSO // BO

.

The map f̃ classifies a Spinc(k)-principal bundle f̃ ∗Qk → M , where Qk → BSpinc(k)
denotes the universal Spinc(k)-bundle. Note that we have f̃ ∗Qk ∈ Spinc(f̃ ∗ξSpin

c

k ).

We let f̂ :M → BO(k) be induced by f̃ so that f̂ ∗ξk ∼= f̃ ∗ξSpin
c

k . With these identifications
the trivialization (41) induces a bifunctor (44)

Spinc(TM)× Spinc(f̃ ∗ξSpin
c

k ) ∼= Spinc(M × Rn+k) .

Since BU(1)(M) acts simply transitively on isomorphisms classes we conclude using (46)
that there is a unique isomorphism class of geometric Spinc-structures P ∈ Spinc(TM)
such that

P ⊗ f̃ ∗Qk
∼= Q(n + k) . (47)

One can further check that this isomorphism class does only depend on the normal B-
structure represented by f and not on its representative. This is the tangential Spinc-
structure determined by the normal Spinc-atructure.
For constructions which involve glueing or in the notion of a Spinc-map we need a rigidified
notion of a tangential Spinc-structure.

Definition 3.2 Assume that we have fixed a representative of a normal B-structure in
terms of the factorization f̃ and the isomorphism (41). Then we define a tangential rep-
resentative of the normal Spinc-structure as a pair of a Spinc-structure P ∈ Spinc(TM)
together with a choice of an isomorphism in (47).

There are many tangential representatives of the normal Spinc-structure, but the main
point is that two of them are isomorphic by a unique isomorphism.
Let h :M →W be a smooth map and assume that we are given oriented euclidean vector
bundles VM →M and VW → W together with an isomorphism

VM ⊕ (M × Rk) ∼= h∗VW ⊕ (M × Rl) . (48)

Assume further that we are given Spinc-structures PM ∈ Spinc(VM) and PW ∈ Spinc(VW ).

Definition 3.3 A representative of a refinement of h to a Spinc-map is a choice of an
isomorphism

h∗PW ⊗Q(l) ∼= PM ⊗Q(k) (49)
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in Spinc(VM ⊕ (M ×Rk)) (this uses (48)). These representative are subject to the equiv-
alence relation generated by stabilization und homotopy of both isomorphisms (48) and
(49). A Spinc-map is a map h together with an equivalence class of representatives of a
refinement of h to a Spinc-map.

Being a Spinc-map is an additional datum, not just a property of the map. Observe that
we can compose Spinc-maps in a natural way.
We now assume that (W,F ) is a zero bordism of (M, f). Recall that this involves an iden-
tification of the restriction of the B-structure on the stable normal bundle of W classified
by F to M with the normal B-structure on the stable normal bundle of M represented
by f . This has be explained in detail in Subsection 3.2. We choose a representative of
the normal B-structure on W involving the factorization F̃ :W → BSpinc(k). On M we
take the induced factorization f̃ := F̃|M .
We choose a Riemannian metric on M and extend it to a Riemannian metric on W with
a product structure close to the boundary. Then we have a natural decomposition of
oriented euclidean vector bundles

TW|M
∼= TM ⊕ (M × R) , (50)

where we trivialize the normal bundle by the outgoing unit normal vector field. Assume
now that we have chosen tangential representatives P (TM) and P (TW ) of the normal
Spinc-structures on M and W . Note that this involves the choices of isomorphisms of
the type (47) which we dropped from the notation. We claim that in this situation we
get a natural refinement of the inclusion M → W to a Spinc-map. This refinement is
distinguished by the condition that the following diagram in Spinc(M × Rn+1+k)

P (TM)⊗Q(1)⊗ f̃ ∗Qk

∼= //

∼=
��

P (TW )|M ⊗ f̃ ∗Qk

∼=
��

Q(n+ 1 + k) Q(n + 1 + k)

commutes up to homotopy. Here the upper corners are interpreted in Spinc(M ×Rn+1+k)
using the representative of the normal B-structure on M or W , respectively. The vertical
morphisms are given by the tangential representative of the normal Spinc-structures. Fi-
nally, the upper horizontal isomorphism uses (50) and fixes the refinement of the inclusion
M →W to a Spinc-map.

3.4 The definition of ηan

We now assume that the class x = [M, f, g] ∈ πn(MB ∧X+) is torsion. Then there exists
a suitable integer l ∈ N such that lx = 0. We can thus find a zero bordism (W,F,G) of
the disjoint union l(M, f, g) of l copies of (M, f, g).
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A picture of M and the zero bordism W of 4M

We will define ηan(x) ∈ Qn(B,X) in terms of a collection of indices of associated Z/lZ-
index problems [33]. In order to formulate these index problems and to express the
indices in terms of geometric and spectral invariants we must choose appropriate geometric
structures.
We choose a Riemannian metric on M and observe that TM is oriented. We can now
choose a tangential representative (P, κ) ∈ Spinc(TM) of the normal Spinc-structure
determined by f . A connection ∇̃TM on P induces via κ a connection on TM . We
say that ∇̃TM is a Spinc-extension of the Levi-Civita connection on M if it induces the
Levi-Civita connection ∇TM,LC on TM .
The group Spinc(n) has a distinguished unitary representation called the spinor represen-
tation ∆n. For even n its dimension is 2n/2, and it has a decomposition ∆n ∼= ∆n,+⊕∆n,−.
It is related with the odd-dimensional case by ∆n,+

|Spinc(n−1)
∼= ∆n−1.

The bundle S(TM) := P ×Spinc(n) ∆
n → M is called the Spinor bundle of M . If we

have chosen a Spinc-extension ∇̃TM of the Levi-Civita connection on M , then the spinor
bundle carries the structure of a Dirac bundle. We thus obtain the Spinc-Dirac operator
D/M which acts on sections of S(TM). Standard references for these constructions are [15,
Ch. 3], [46, App. D].
We have a map (f, g) : M → B+ ∧ X+. If we are given a class φ ∈ K0(B+ ∧ X+),
then we can choose a Z/2Z-graded vector bundle V → M whose K-theory class satisfies
[V ] = (f, g)∗φ ∈ K0(M+). We choose a hermitean metric hV and a metric connection ∇V

which preserve the grading. The triple V := (V, hV ,∇V ) will then be called a geometric
vector bundle. We let D/M ⊗V be the Dirac operator twisted by V. It acts on sections of
S(TM)⊗ V .
We now assume that n = dim(M) is odd. The η-invariant [6] of the twisted Dirac operator

η(D/M ⊗V) ∈ R
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is defined as the value at s = 0 of the meromorphic continuation of the η-function function

η(D/M ⊗V)(s) := Trs |DM ⊗V|−ssign(DM ⊗V) ,

where Trs is the super trace with respect to the grading of V . Note that the trace exists
if ℜ(s) > n, and that the meromorphic continuation of the η-function is regular at s = 0
by the results of [6]. The η-invariant depends on the geometry of M and V in a possibly
discontinuous way with jumps when eigenvalues of D/M ⊗V cross zero. In order to get a
quantity which depends continuously on the geometry one usually considers the reduced
η-invariant for which we will use the symbol ξ in the present paper:

ξ(D/M ⊗V) := [
η(D/M ⊗V) + dim ker(D/M ⊗V))

2
] ∈ R/Z. (51)

We now take into account that we have a zero-bordism (W,F,G) of l copies of (M, f, g). In
an appropriate model of πn(MBQ/Z∧X+) the object (W,F,G) geometrically represents
the lift of x to a class

x̂ = [W,F,H ] ∈ πn+1(MBQ/Z ∧X+) ,

using the notation of the diagram (21). We refer to Lemma 3.7 for more details.
We choose a Riemannian metric on W which extends the Riemannian metric on ∂W
induced by the previously chosen metric onM with a product structure. Furthermore, we
extend the associated Levi-Civita connection to a Spinc-connection ∇̃TW which extends
the connection on ∂W induced by ∇̃TM . The class (F,G)∗φ ∈ K0(W+) extends the class
(F,G)∗|∂Wφ ∈ K0(∂W+) which restricts to (f, g)∗φ ∈ K0(M+) on the copies of M in the
boundary of W . Hence we can assume, after adding some trivial bundles to the even
and odd parts of V , that the bundle on ∂W induced by V has an extension U to W .
We choose a hermitean metric hU and a metric connection ∇U on U which extend the
corresponding already given data on the boundary. In this way we get a geometric bundle
U := (U, hU ,∇U).
We can now form the Atiyah-Patodi-Singer boundary value problem for D/W ⊗ U. The
analytic details of that boundary value problem are not important for our present purpose
so that we refer to [6] for a precise description. We only have to know that it produces a
Fredholm operator (D/W ⊗U)APS which has a well-defined index

index((D/W ⊗U)APS) ∈ Z ,

and that the following index formula proved in [6] holds true:

index((D/W⊗U)APS) =

∫

W

pn+1(Td(∇̃TW )∧ch(∇U))−l
η(D/M ⊗V) + dim ker(D/M ⊗V))

2
.

(52)
In this formula the closed form Td(∇̃TW ) ∈ Ω0(W )[b, b−1] is the Chern-Weyl represen-
tative determined the universal class Td ∈ HPQ0(BSpinc+) and the connection ∇̃TM .
Similarly, the form ch(∇U) ∈ Ω0(W )[b, b−1] is the Chern-Weyl representative determined
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by the class ch ∈ HPQ0(BU+) and the connection ∇U . Note that we use powers of b to
shift the higher form-degree components to total degree zero.
We consider the element

e := [
index(D/W ⊗ U)APS

l
] ∈ Q/Z . (53)

Equivalently, by the index theorem (52) and (51) we can write

e = [
1

l

∫

W

pn+1(Td(∇̃TW ) ∧ ch(∇U))]− ξ(D/M ⊗V) (54)

if we interpret this equality in R/Z. The quantity e can be interpreted as a Z/lZ-index
in the sense of [33]. In the following proposition we formulate how the number e depends
on the data.

Proposition 3.4 1. The value of e does not depend on the choices of geometric struc-
tures on M and W .

2. The value of e only depends on the K-theory class φ. This dependence is additive
and determines an element ẽ ∈ Homcont(K0(B+ ∧X+),Q/Z).

3. The class [ẽ] ∈ Qn(B,X) of this homomorphism does not depend on l or the choice
of the zero bordism of (W,F,G).

4. The element [ẽ] ∈ Qn(B,X) described in 3. only depends on the bordism class x.
This dependence is additive so that we obtain a well-defined homomorphism

ηan : πn(MB ∧X+)tors → Qn(B,X) .

Proof. On the one hand, we have e ∈ 1
l
Z/Z ⊆ R/Z. On the other hand, we know

that the right-hand side of (54) depends continuously on the geometric data. This shows
that e does not depend on the geometric structures at all since two choices of geometric
structures can be connected by a family. This proves 1.
The element e is additive in the bundle U . It therefore descends uniquely to a homomor-
phism ẽ ∈ Hom(K0(B+ ∧ X+),Q/Z). Since it factors over the restriction along the map
(f, g) :M → B+ ∧X+ and M is compact this homomorphism is continuous. This shows
2.
Assume that we have a second zero bordism (W ′, F ′, G′) of l′(M, f, g) yielding ẽ′ ∈
Homcont(K0(B+ ∧X+),Q/Z). Then by glueing along boundary components we can form
the closed n + 1-dimensional B-manifold W̃ := l′W ∪ll′M lW ′ which comes with maps
F̃ : W̃ → B and G̃ : W̃ → X .
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Pictures of W , W ′, and 1
2
W̃ with l = 4 and l′ = 2

Note that the tangential representative of the normal Spinc-structures (P, κ) and (P ′, κ′)
come with isomorphisms of the type (47). Compatibility with these fixes the morphism
which we have to use order to glue P with P ′. In this way we get a tangential representative
of the normal Spinc-structure on W̃ . The triple (W̃ , F̃ , G̃) is thus cycle for a class

y := [W̃ , F̃ , G̃] ∈ πn+1(MB ∧X+) .

Then for φ ∈ K0(B+ ∧X+) we get from the right-hand side of (54) that

ẽ(φ)− ẽ′(φ) = [
1

ll′
〈Td(TW̃ ) ∪ (F̃ , G̃)∗ch(φ), [W̃ ]〉] .

Since (F̃ , G̃)∗Td−1 = Td(TW̃ ) this is exactly the formula (32) for the evaluation of
ǫK(

1
ll′
y) ∈ πn+1(K ∧MBQ∧X+) against Thom

K(φ) ∈ K0(MB ∧X+). Therefore the class
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[ẽ] ∈ Qn(X,B) is independent of the choice of l and the zero bordism (W,F,G). This
finishes the verification of 3.
We observe that the map which associates to (M, f, g) the class [ẽ] ∈ Qn(B,X) is additive
under disjoint unions. Moreover, if (M, f, g) itself is zero bordant, i.e. we can find
(W,F,G) as above with l = 1, then [ẽ] = 0. It follows that the construction above
uniquely descends to a homomorphism

ηan : πn(MG ∧X+)tors → Qn(B,X) . (55)

2

Let us collect the essentials of this construction in the following definition.

Definition 3.5 We define ηan := 0 for even n. For odd n we define the homomorphism

ηan : πn(MB ∧X+)tors → Qn(B,X)

by the following prescription: If x ∈ πn(MB ∧ X+) is represented by (M, f, g), then we
choose a zero bordism (W,F,G) of l(M, f, g) for a suitable l ∈ N. Let φ ∈ K0(B+ ∧
X+) then we choose a bundle U → W which represents (F,G)∗φ in K-theory and whose
restrictions to the l copies of M in the boundary are pairwise isomorphic.
We choose a Spinc-geometry forW and a geometric refinementU for U whose restrictions
to the l copies of M in the boundary of W are again pairwise isomorphic. Then ηan(x) ∈
Qn(B,X) is represented by the homomorphism

K0(B+ ∧X+) ∋ φ 7→ [
1

l
index((D/W ⊗U)APS)] ∈ Q/Z ∼= πn+1(KQ/Z) . (56)

3.5 The secondary index theorem

In the Definitions 2.2 and 3.5 we have described homomorphisms

ηtop : πn(MB ∧X+)tors → Qn(B,X) , ηan : πn(MB ∧X+)tors → Qn(B,X) .

Both constructions follow a common idea. Given a torsion element x ∈ πn(MB ∧X)tors
in a first step a lift x̂ ∈ πn(MBQ/Z ∧ X+), respectively a geometric representative of
such a lift, is chosen. The homotopy theoretic invariant ηtop(x) is the represented by
the homomorphism K0(B+ ∧ X+) → Q/Z induced by the lift in a homotopy theoretic
way. The analytic variant ηan(x) is represented by a homomorphisms, which this time
is obtained by constructing a suitable family of Atiyah-Patodi-Singer index problems on
the geometric representative of the lift x̂. Because of these coincidences it is very natural
to expect that the following theorem holds true.

Theorem 3.6

ηan = ηtop .
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Proof. The main task in the proof is to find a bridge where one can translate the analytic
constructions going into the definition of ηan to homotopy theory. What remains then is
the identification of the resulting homotopy theoretic picture with ηtop. An obvious option
is to apply the Z/lZ-index theorem [33] directly to ηan in order to express it in homotopy
theoretic terms.
In this paper we decided to go a different path. It is interesting since it explains in greater
detail in which sense the homotopy theoretic construction of ηtop and the geometric or
analytic constructions involved in ηan correspond to each other. Our bride between anal-
ysis and topology will be the identification of homotopy theoretic K-homology with the
analytic picture [14] and the ordinary Atiyah-Singer index theorem for elliptic operators
[10], respectively its local form described in [15, Ch. IV].
Some ideas of our proof of Theorem 3.6, in particular about the usage of Moore spaces,
are taken from [33] and the proof of the R/Z-index theorem [8, Thm 5.3].
We start with a description of Moore spaces for cyclic groups. Moore spaces are related
with Moore spectra as discussed in 2.3 via the suspension spectrum construction. Let
S1 → S1 be the l-fold covering of the pointed circle. Its mapping cylinder Zl and mapping
cone Cl fit into the cofibre sequence of spaces

S1 → Zl → Cl
∂
→ ΣS1 → . . . . (57)

Note that the shifted suspension spectrum Σ∞−1Cl is then a model for the Moore spectrum
MZ/lZ. Further note that the inclusion of the cylinder basis S1 → Zl is a homotopy
equivalence. Hence we have equivalences Σ∞−1S1 ∼= S ∼= MZ. Applying the functor Σ∞−1

to the sequence (57) and using these identifications we get the fibre sequence

MZ
l
→ MZ → MZ/lZ

∂
→ ΣMZ (58)

of Moore spectra. We use the Moore spectra MMZ/lZ and the sequence (58) as approxi-
mations for MQ/Z and (20) in the sense that

MQ/Z ∼= hocoliml MZ/lZ .

The connecting maps are fixed by their compatibility with the inclusions

Z/lZ → Q/Z , [n] 7→ [
n

l
] . (59)

Smashing the sequence (58) with MB ∧ X+ and taking homotopy groups we get a long
exact sequence of abelian groups

· · · → πn+1(MBZ/lZ ∧X+)
∂
→ πn(MB ∧X+)

l
→ πn(MB ∧X+) → . . . . (60)

Let x = [M, f, g] ∈ πn(MB∧X+) be an l-torsion element. In the following we construct a
geometric representative (W̃ , F̃ , G̃) of a lift x̂ ∈ πn+1(MBZ/lZ∧X+), where F̃ : W̃ → B
represents a B-structure and G̃ = (G̃1, G̃2) : W̃ → Cl ∧ X+. Here we implicitly use the
identification of spectra

ΣMBZ/lZ ∧X+
∼=MB ∧ (Cl ∧X+) . (61)

We will obtain (W̃ , F̃ , G̃) by closing up the boundary of the triple (W,F,G) found in 3.4.
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A picture of S1 ×W

The details follow. We consider a two-sphere S2
l with l holes.

A picture of S2
4 ×M

More precisely we let S2
l ⊂ S2 be the closed submanifold with boundary ∂S2

l
∼=
⊔l
i=1 S

1

obtained by deleting the interiors of l disjoint discs from S2. The identification of the
boundary with the l copies of S1 is fixed such that it preserves the natural orientations.
We now have an identification

∂(S1 ×W ) ∼= l(S1 ×M) ∼= ∂(S2
l ×M) .

We let
W̃ := (S1 ×W ) ∪l(S1×M) (S

2
l ×M) (62)

be the manifold obtained by glueing along the boundary.
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A picture of W̃

We define F̃ : W̃ → B such that it restricts to

S1 ×W
prW→ W

F
→ B , S2

l ×M
prM→ M

f
→ B .

Since S2
l and S1 have stable normal framings the composition W̃

F̃
→ B

(4)
→ BSpinc repre-

sents a stable normal Spinc-structure of W̃ .
In a similar manner we define G̃2 : W̃ → X such that it restricts to

S1 ×W
prW→ W

G
→ X , S2

l ×M
prM→ M

g
→ X .

We now consider the map

S1 ×W
prS1
→ S1 i

→ Cl , (63)

where i : S1 → Cl is the identification of S1 with the basis of the mapping cone. Note
that the map

⊔lj=1i : ∂S
2
l
∼=

l
⊔

j=1

S1 → Cl

can be extended to a map
g1 : S

2
l → Cl . (64)

We can and will restrict the choice g1 such that it is smooth on the preimage of a neigh-
bourhood ∂Cl ⊂ U ⊂ Cl of the cone basis ∂Cl, and regular values of g1 in the interior
U \ ∂Cl have exactly one preimage. We advise the reader to make his own picture of
this situation. The restriction of the map (63) to ∂(S1 ×W ) ∼= l(S1 ×M) thus has an
extension across the other part S2

l ×M of W̃ given by

S2
l ×M

pr
S2
l→ S2

l

g1
→ Cl ,
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Alltogether we obtain the first component G̃1 : W̃ → Cl of the map G̃ = (G̃1, G̃2) : W̃ →
Cl ∧X+. The cycle (W̃ , F̃ , G̃) represents a class in

x̂ := [W̃ , F̃ , G̃] ∈ πn+2(MB ∧ Cl ∧X+)
(61)
∼= πn+1(MBZ/lZ ∧X+) .

First of all we have an unreduced class [W̃ , F̃ , G̃] ∈ πn+2(MB∧(Cl∧X+)+). But it belongs
to the reduced bordism group since [W̃ , F̃ ] is zero-bordant. To see this fill S1 ×W by
D2 ×W and S2

l ×M by D3 ×M compatibly with the glueing (62).
Let ∂ : πn+1(MBZ/lZ ∧X+) → πn(MB ∧X+) be the boundary as in (60).

Lemma 3.7 We have ∂x̂ = x

Proof. The boundary operator ∂ in the Lemma is induced by the map denoted by the
same symbol in (57)

∂ : Cl
p
→ ΣS1 ∼= S2 ,

where p is the projection which contracts the cone basis to a point. Therefore ∂x̂ ∈
πn+2(MB ∧ S2 ∧X) is represented by (W̃ , F̃ , (p ◦ G̃1, G̃2)). We must show that it corre-
sponds to x under the suspension isomorphism

πn(MB ∧X+) ∼= πn+2(MB ∧ S2 ∧X+) .

To this end we invert the suspension isomorphism in the geometric picture. This inverse
is of course given by taking the inverse image of a regular point in S2 of the corresponding
component p◦G̃1 of the structure map. If we take the inverse image of a point in the neigh-
bourhood U \∂Cl mentioned above we exactly recover the representative (M, f, g) of x. 2

The construction of ηtop involves the K-homology of a based space Y defined homotopy
theoretically as π∗(K ∧Y ). It is equivalent to the analytic picture introduced in [14]. The
analytic K-homology is subsumed in the more general bivariant KK-theory (see [43] and
the text book [17]) which allows to treat K-homology and cohomology on equal footing.
Of particular importance for our purpose is that the product in KK-theory provides a
description of the ∩-product between K-homology and K-theory which easily compares
with the operation of twisting Dirac operators.
The unit of K-theory induces the map

ǫK : πn+2(MB ∧ Cl ∧X+) → πn+2(K ∧MB ∧ Cl ∧X+) . (65)

We use the Thom isomorphism for MB in K-homology in order to identify

ThomK : πn+2(K ∧MB ∧ Cl ∧X+)
∼
→ πn+2(K ∧B+ ∧ Cl ∧X+) . (66)

Finally we use KK-theory in order represent this K-homology of a pointed space analyt-
ically. For the moment we assume that X and B are compact. This is no real restriction
since we are calculating with a finite number of cycles at a time and their structure maps
can only hit compact parts of the spaces B and X . For a compact based space Y we
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let C(Y ) denote the C∗-algebra of functions which vanish on the base point. Then by
the equivalence between homotopy theoretic and analytic K-homology [14] we have an
isomorphism

πn+2(K ∧ B+ ∧ Cl ∧X+) ∼= KKn+2(C(B+ ∧ Cl ∧X+),C) . (67)

Recall that in Subsection 3.4 we have already chosen a Riemannian metric and a Spinc-
extension of the Levi-Civita connection W . We choose a Riemanian metric and a Spinc-
extension of the Levi-Civita connection on S1. Then we get a corresponding geometric
product structure on S1×W . The choice of the geometry on S1 also induces a geometric
structure on the boundary ∂S2

l
∼= lS1 which we extend to S2

l , again with a product
structure. We get a corresponding product metric and Spinc-extension of the Levi-Civita
connection on S2

l ×M . These geometric structures glue nicely and give a Riemannian
metric and a Spinc-extension of the Levi-Civita connection on W̃ . We let D/W̃ denote the
corresponding Dirac operator. It acts on the complex spinor bundle S(TW̃ ). The Hilbert
space L2(W̃ , S(W̃ )) of square integrable sections of this bundle carries an action ρ of the
C∗-algebra C(W̃+) of continuous functions on W̃ by multiplication. The triple

(D/W̃ ) := (L2(W̃ , S(W̃ )), D/W̃ , ρ)

is an unbounded Kasparov module for the pair of C∗-algebras (C(W̃+),C) and represents
a class

[D/W̃ ] ∈ KKn+2(C(W̃+),C) .

The map (F̃ , G̃) induces a homomorphism of C∗-algebras

(F̃ , G̃)∗ : C(B+ ∧ Cl ∧X+) → C(W̃+)

which in turn induces the push-forward in analytic K-homology in the statement of the
following Lemma.

Lemma 3.8 The image of the class x̂ ∈ πn+2(MB ∧ Cl ∧X+) under the composition of
the unit (65), Thom isomorphism, (66) and the identification (67) is given by

(F̃ , G̃)∗[D/W̃ ] ∈ KKn+2(C(B+ ∧ Cl ×X+),C) .

Proof. The image of x̂ under the unit and Thom isomorphism is given by (14) as

ThomK(ǫK(x̂) = β(∆(x̂)) ∈ πn+2(K ∧ B+ ∧ Cl ∧X+) .

The triple (W̃ , F̃ , G̃) of a B-manifold with a map G̃ : W̃ → Cl ∧X+ represents the class
x̂ ∈ πn+2(MB ∧Cl ∧X+). Then ∆(x̂) = [W̃ , F̃ , (F̃ , G̃)]. Formally we can view this as the
push-forward of the B-bordism fundamental class of W̃ along the map (F̃ , G̃). Its image
under the K-orientation β : MB → K of B-bordism theory is then the push-forward of
theK-theory fundamental class of W̃ associated to the Spinc-structure along this map. In
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the analytic picture of K-homology the K-theory fundamental class of W̃ is represented
by the Spinc-Dirac operator. Hence it is equal to [D/W̃ ]. We thus get

β([W̃ , F̃ , (F̃ , G̃)] = (F̃ , G̃)∗[D/W̃ ] .

2

We let φ ∈ K0(B+ ∧X+). The pairing on the right-hand side in the following calculation
in πn+2(K ∧Cl) ∼= Z/lZ is reminiscent to the evaluation occuring in the definition of ηtop:

〈ThomK(φ), ǫK(x̂)〉
(17)
= 〈φ, ThomK(ǫK(x̂))〉

Lemma 3.8)
= 〈φ, (F̃ , G̃)∗[D/W̃ ]〉

= G̃1∗([D/W̃ ] ∩ (F̃ , G̃2)
∗φ) .

We choose a geometric bundle Ṽ whose underlying K-theory class is equal to (F̃ , G̃2)
∗φ.

The restriction of the maps F̃ and G̃2 to the part S1×W ⊂ W̃ factor over the projection
to W and (F,G) : W → B+ ∧ X+. Hence we can assume that the restriction of Ṽ to
S1 ×W ⊂ W̃ is isomorphic to the pull-back of the bundle U on W , if we allow some
stablization of Ṽ and U.
In the KK-picture the ∩-product

[D/W̃ ] ∩ (F̃ , G̃2)
∗φ ∈ KKn+2(C(W̃+),C)

is realized by the unbounded Kasparov module (L2(W̃ , S(W̃ )⊗Ṽ), D/W̃ ⊗Ṽ, ρ) associated

to the twisted Dirac operator D/W̃ ⊗ Ṽ, where ρ again denotes the action of C(W̃+) on

L2(W̃ , S(W̃ )⊗ Ṽ) by multiplication. Hence we have

[D/W̃ ⊗ Ṽ] = [D/W̃ ] ∩ (F̃ , G̃2)
∗φ .

We conclude that ηtop(x) ∈ Qn(X,B) is represented by the map

K0(B+ ∧X+) ∋ φ 7→ G̃1∗[D/W̃ ⊗ Ṽ] ∈ KKn+2(C(Cl),C) ∼= πn+1(KZ/lZ) ⊂ πn+1(KQ/Z) ,
(68)

where the last inclusion is induced by (59).
Next we want to calculate the element in Z/lZ given by G̃1∗([D/W̃ ⊗ Ṽ]). Since the
usual index theorem [10] calculates integral indizes we have to construct and calculate
an integral representative of this Z/lZ-valued index. The inclusion of the cone base
i : S1 → Cl induces a surjective map

Z ∼= πn+2(K ∧ S1) → πn+2(K ∧ Cl) ∼= Z/lZ .

We try to construct a lift of G̃1∗([D/W̃ ⊗ Ṽ]) to πn+2(K ∧ S1) by providing a factorization
γ as in the diagram

S1

i
��

W̃

γ
>>

G̃1 // Ci

.
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For our given representative such a factorization does not exist in general. The idea is
to modify the representative without changing its Z/lZ-valued index such that this lift
exists for the modified cycle.
Note that M is a closed odd-dimensional manifold. The Dirac operator D/M ⊗ V is
selfadjoint. We can find a selfadjoint smoothing operator Q on L2(M,S(M) ⊗ V ) such
that D/M ⊗ V + Q is invertible. In [23] such a perturbation was called a taming. As
described in this reference such a taming can be lifted to the product S2

l ×M and also
to collar neighbourhood l(S1 × (−1, 0] × M) ∼= Z ⊂ S1 × W of ∂(S1 × W ). This lift
is a selfadjoint operator Q̄ on L2(Z ∪l(S1×M) S

2
l × M,S(W̃ ) ⊗ Ṽ ) which is an integral

operator along M and local in the remaining directions. Let χ : W̃ → [0, 1] be a cut-off
function which is supported on Z ∪l(S1×M) S

2
l ×M , is equal to one in a neighbourhood

of the subset S2
l ×M , and only depends on the normal variable near ∂(S1 ×W ). We

define the extension Q̃ := χQ̂χ of Q̄ to all of W̃ . Note that Q̃ commutes with the image
of G̃∗

1(C(Cl)). Adding Q̃ to D/W ⊗ Ṽ gives a relatively compact perturbation. Therefore

G̃1∗[D/W̃ ⊗ Ṽ] = G̃1∗[D/W̃ ⊗ Ṽ + Q̃] .

On the part S2
l ×M ⊂ W̃ the perturbed operator D/W ⊗ Ṽ + Q̃ is invertible along the

fibres of the projection to S2
l . We define the manifold

˜̃W := S1 ×W ∪l(S1×M) l(S
1 × [0,∞)×M) .

Its geometry is the cylindrical extension of the geometry of the piece S1×W . In a similar

manner we define the geometric bundle ˜̃
V on ˜̃W by a cylindrical extension of Ṽ|S1×W .

We define an operator ˜̃Q similarly to Q̃ by lifting Q to the cylinder S1 × [0,∞)×M and

cutting off in the interior of S1×W . Finally we let ˜̃G1 :
˜̃W → Cl be given by G1 on S

1×W
and the radially constant extension to of (G̃1)|∂(S1×W ) to the cylinder l([0,∞)×S1 ×M).

The operator D/ ˜̃W
⊗ ˜̃

V + ˜̃Q is invertible along the fibre M of the projection from the

cylindrical end of ˜̃W to S1 × [0,∞). Therefore (L2( ˜̃W,S(T ˜̃W )⊗ ˜̃V ), D/ ˜̃W
⊗ ˜̃
V+ ˜̃Q, ˜̃ρ) is a

Kasparov module over the C∗-algebra C( ˜̃W ) of bounded continuous functions.

The operators D/W ⊗ Ṽ+ Q̃ and D/ ˜̃W
⊗ ˜̃
V+ ˜̃Q coincide on S1×W and are invertible along

the fibres M outside of this submanifold of W̃ and ˜̃W . In this situation we can apply a
relative index theorem (the version [22]) in order to get

G̃1∗[D/W̃ ⊗ Ṽ] = ˜̃G1∗[D/ ˜̃W
⊗ ˜̃

V + ˜̃Q] .
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+

+

A picture of the relative index theorem. The operator is invertible on the parts which are
not blue. The index of the operator associated to the upper picture is the index of its left

part W̃ . The index is preserved under cut-and paste as indicated. The index of the

operator associated to the lower picture is again the index of the left part ˜̃W .

Note the factorization ˜̃G1 :
˜̃W

prS1
→ S1 i

→ Cl, where the last map is the embedding of the
cone basis. Therefore

prS1∗[D/ ˜̃W
⊗ ˜̃

V + ˜̃Q] ∈ πn+2(K ∧ S1) ∼= Z

represents the desired integral lift.

Note that ˜̃W ∼= S1 × Ŵ , where Ŵ = W ∪∂W l([0,∞) × M). We equip Ŵ with the
cylindrical extension of the geometry of W . Similarly we let Û be the geometric bundle
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on Ŵ obtained by the cylindrical extension of U. The taming Q has a unique lift Q̂ to Ŵ

such that its lift to the product ˜̃W = S1 × Ŵ coincides with ˜̃Q. Then the whole operator

D/ ˜̃W
⊗ ˜̃
V + ˜̃Q is the lift of D/Ŵ ⊗ Û+ Q̂ to this product. Therefore prS1∗[D/ ˜̃W

⊗ ˜̃
V + ˜̃Q] ∈

πn+2(K ∧ S1) represents the suspension of [D/Ŵ ⊗ Û+ Q̂] ∈ πn+1(K) ∼= Z.
We now calculate this index. The index theory for these kinds of perturbations of Dirac
operators has been developed in [23]. In the language of this reference the operator Q
defines taming (M ⊗ V)t of the geometric manifold M ⊗ V and a boundary taming
(W ⊗ U)bt of the geometric manifold W ⊗ U. The integer [D/Ŵ ⊗ Û + Q̂] is the index
of the boundary tamed geometric manifold index((W ⊗ U)bt). The index theorem [23,
Thm. 4.18] gives

index((W ⊗U)bt) =

∫

W

pn+1(Td(∇̃TW ) ∧ ch(∇U))− lη((M ⊗V)t) .

In R/Z we have [η((M ⊗U)t)] = ξ(DM ⊗V). Hence by comparison with (52) we get the
equality in Q/Z

[
1

l
index((W ⊗U)bt)] = [

1

l
index((D/W ⊗U)APS)] .

In view of the construction of ηan, in particular of (56), we see that the map (68) also
represents ηan(x). This finishes the proof of Theorem 3.6. 2

4 An intrinsic formula

4.1 Motivation

In a typical situation for the theory of the present paper one is given a geometric repre-
sentative (M, f, g) for a torsion class x = [M, f, g] ∈ πn(MB∧X+) and wants to calculate
the universal η-invariants ηtop(x) = ηan(x) ∈ Qn(B,X). The expressions for the universal
η-invariant that we have at our disposal at the moment share the disadvantage that one
has to find a lift x̂ ∈ πn+1(MBQ/Z ∧ X+) or a geometric zero bordism (W,F,G) of l
copies of (M, f, g) explicitly. It is at this point where differential and spectral geometry
helps. Often the cycle (M, f, g) already comes with geometric structures, e.g. connections
on appropriate bundles. In the present section we develop a generalization of Chern-Weil
theory and Cheeger-Simons [26]characteristic classes which is designed to finally obtain
formulas for the universal η-invariant which are intrinsic in the cycle (M, f, g).
The main new object is the notion of a geometrization of (M, f, g, ∇̃) which is defined
in Definition 4.2. The notion of a geometrization involves differential K-theory which is
reviewed in Subsection 4.2. In the Subsection 4.3 further we show existence of geometriza-
tions and study their functorial properties. In Subsection 4.4 we introduce a special class
of geometrizations which we called good. In contrast to general geometrizations they have
the property that they extend over zero bordisms. The main result is the intrinsic formula
for the universal η-invariant formulated in Theorem 4.12.
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4.2 Review of Differential K-theory

The main technical tool in the definition of a geometrization is the notion of a differential
extension of K-theory, or shorter, differential K-theory. Recall that Chern classes of
complex vector bundles take values in integral cohomology. Complex vector bundles with
hermitean connections have refined Chern classes in differential integral cohomology. This
theory has been introduced in [26] where differential integral cohomology classes are called
differential characters. The relation of differential K-theory to topological K-theory is
very similar to the relation of differential integral cohomology with integral cohomology.
In particular, a complex vector bundle represents a K-theory class, and the datum of a
hermitean connection refines this class to an element differential K-theory.
Differential K-theory by now also has some history [32], [38], [24]. Nevertheless we think
that it is less standard so that we will recall the relevant structures in the following. A
complete model has been constructed in [24], and by [25] we know that the properties
listed below uniquely characterize differential K-theory so that one can take and use these
properties as axioms.
Differential K-theory is a five-tuple

(K̂, I, R, a,

∫

)

of the following objects. The first entry is a contravariant functor

K̂ : smooth manifolds −→ Z/2Z− graded commutative rings .

The remaining entries are natural transformations between functors. The domains and
ranges of the first three are given by

I : K̂ → K , R : K̂ → ΩPcl .

a : ΩP/im(d)[1] → K̂

Here ΩP (M) := Ω(M)[b, b−1] is denotes the space of two-periodic smooth differential
forms on M . By ΩPcl(M) ⊆ ΩP (M) we denote its subspace of closed forms. The
transformations R and I preserve the ring structures while a is just additive. These
transformations are compatible in the sense that for every manifold M the following
diagram commutes

ΩP ∗−1(M)/im(d)

a

((PPPPPPPPPPPP

d // ΩP ∗
cl(M)

Rham

''NNNNNNNNNNN

HPR∗−1(M+)

55llllllllllllll

))RRRRRRRRRRRRRR
K̂∗(M)

R

99ssssssssss

I

%%KKKKKKKKKK
HPR∗(M+)

KR/Z∗−1(M+)

66nnnnnnnnnnnn
Bockstein // K∗(M+)

ch

77ppppppppppp

.
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Here we define HPR similarly as HPQ in (28). The flat part of differential K-theory is
defined as the kernel of the curvature transformation R. It is canonically isomorphic to
R/Z-K-theory (with a shift), i.e. we have

K̂∗
flat(M) := ker(R : K̂∗(M) → ΩP ∗

cl(M)) ∼= KR/Z∗−1(M+) . (69)

Furthermore, we have the equalities

a(x) ∪ y = a(x ∧R(y)) , for all x ∈ ΩP ∗−1(M)/im(d) , y ∈ K̂∗(M) ,

and the sequence

K∗−1(M+)
ch
→ ΩP ∗−1(M)/im(d)

a
→ K̂∗(M)

I
→ K∗(M+) → 0 (70)

is exact. The integration is a natural transformation
∫

: K̂∗(S1 ×M) → K̂∗−1(M)

whose existence and compatibility with the other structures fixes the odd part of the
differential extension uniquely up to unique isomorphism as discussed in [25]. Since we do
not need the integration in the present paper we will not write out the long list of these
compatibilities explicitly.
Let V = (V, hV ,∇V ) be a geometric bundle on the manifold M , where hV is a hermitean
metric which is preserved by the connection ∇V . Then we have a natural class

[V] ∈ K̂0(M) . (71)

This class is in fact tautological in the model [24] in view of [24, 2.1.4]. It satisfies

I([V]) = [V ] ∈ K0(M+) , R([V]) = ch(∇V ) ∈ ΩP 0
cl(M) .

4.3 Geometrizations

Let M be a compact manifold equipped with maps f : M → B and g : M → X . At the
moment we do not require any connection of f with the tangent bundle. Nevertheless
we must imitate this situation. We can assume that f has a factorization over f̃ : M →
BSpinc(k) which classifies a Spinc(k)-bundle f̃ ∗Qk ∈ Spinc(f̃ ∗ξSpin

c

k ) on M . The role of
the tangent bundle is taken by the choice of a complementary Spinc-bundle. In detail, we
choose an l-dimensional oriented euclidean vector bundle η →M for some l ≥ 0 together
with an orientation preserving isomorphism of euclidean vector bundles.

η ⊕ f̃ ∗ξSpin
c

k
∼= M × Rl+k . (72)

Then we choose a Spinc-structure P ∈ Spinc(η) together with an isomorphism

P ⊗ f̃ ∗
kQk

∼= Q(l + k) ,
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where we use the isomorphism (72) in order view the left- and right-hand sides in the
same groupoid Spinc(M × Rl+k) (see Subsection 3.3 for details).
We choose a connection ∇̃ on P and get an induced Todd form Td(∇̃) ∈ ΩP 0

cl(M) which
represents the class f ∗Td−1 ∈ HPQ0(M+).
We now consider a continuous homomorpism

G : K0(B+ ∧X+) → K̂0(M) ,

where the domain has the profinite topology (see Subsection 2.2) and the target is discrete.
Since ΩP 0

cl(M) is a rational vector space and

Td−1 ∪ ch(. . . )⊗Q : K0(B+ ∧X+)⊗Q → HPQ0(B+ ∧X+)

is an isomorphism onto a dense subspace, there exists a unique continuous factorization
cG in the following diagram

K0(B+ ∧X+)
G //

Td
−1∪ch(... )

��

K̂0(M)

Td(∇̃)∧R(... )
��

HPQ0(B+ ∧X+)
cG // ΩP 0

cl(M)

.

Definition 4.1 The map cG is called the cohomological character of G.

We say that the cohomological character cG preserves degree if it preserves the decompo-
sitions

HPQ0(B+ ∧X+) ∼=
∏

k∈Z

b−kH̃2k(B+ ∧X+;Q) , ΩP 0
cl(M) ∼=

∏

k∈Z

b−kΩ2k
cl (M) .

Definition 4.2 A geometrization of (M, f, g, ∇̃) is a continuous map

G : K0(B+ ∧X+) → K̂0(M)

such that the following diagram

K̂0(M)

I
��

K0(B+ ∧X+)

G
77

(f,g)∗ // K0(M)

commutes and the associated cohomological character cG preserves degree.

As already indicated in the Introduction 1 the notion of a geometrization generalizes the
notion of a connection. This is demonstrated in Lemma 5.12 for the case B = BSpin and
X = ∗. At this place we will discuss another example where we put B in the background
and consider connections on a bundle classfied by the auxiliary map g : M → X . Let us
assume that we already have a geometrization G0 of (M, f, ∇̃). Its existence is garanteed
by Proposition 4.4. We now consider a compact Lie group Γ and set X = BΓ. The map
g :M → BΓ classifies a Γ-principal bundle R →M . We let ∇R be a connection on R.
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Lemma 4.3 There exists a natural geometrization G of (M, f, g, ∇̃) associated to this
data.

Proof. The completion theorem [9] gives an isomorphism K0(BΓ+) ∼= R(Γ)ˆIΓ of topologi-
cal groups, where IΓ ⊆ R(Γ) is the dimension-ideal of the integral representation ring. We
consider a representation σ : Γ → U(mσ) which represents an element [σ] ∈ K0(BΓ). The
associated complex vector bundle Vσ := R ×Γ,σ C

mσ on M then represents the element
[Vσ] = f ∗[σ] ∈ K0(M+). This bundle comes with a hermitean metric hVσ and a metric con-
nection ∇Vσ induced by ∇R. We therefore get a geometric bundle Vσ := (Vσ,∇

Vσ ,∇Vσ).
It represents the class [Vσ] ∈ K̂0(M) refining [Vσ] ∈ K0(M+), i.e we have I([Vσ]) = [Vσ],
see (71). Let φ ∈ K0(B+). Then we get the element φ× [σ] ∈ K0(B+ ∧BΓ+). We define

G(φ× [σ]) := G0(φ) ∪ [Vσ] .

This construction defines G by linear extension on a dense subgroup of K0(B+ ∧BΓ+).
We now show that the map G extends by continuity to all of K0(B+ ∧BΓ+) and defines
a geometrization of (M, f, g, ∇̃). Indeed, the map R(Γ) → K̂0(M) induced by σ 7→ [Vσ]
is multiplicative and annihilates I2n+1

Γ . Since G0 is continuous, this implies that G is
continuous. We let cΓ : HPQ0(BΓ+) → ΩP 0

cl(M) be the unique continuous map such
that ch(∇Vσ) = cΓ(ch([σ])). Note that cΓ preserves degree. Since the cohomological
character cG0 preserves degree, the cohomological character cG = cG0 × cΓ of G preserves
degree, too. 2

The geometrization G allows to recover the Chern character form of ∇Vσ by

ch(∇Vσ) = Td(∇̃)−1 ∧R(G(1⊗ [σ])) .

It also allows to partially recover transgressions. If ∇R′ is a second connection on R and
G ′ is the associated geometrization, then

G ′(1⊗ [σ])− G ′
M (1⊗ [σ]) = a(Td(∇̃) ∧ c̃h(∇Vσ ′,∇Vσ)) .

Here c̃h(∇Vσ′,∇Vσ) ∈ ΩP−1(M) denotes the transgression form which satisfies

dc̃h(∇Vσ ′,∇Vσ) = ch(∇Vσ′)− ch(∇Vσ) .

The following Proposition 4.4 asserts that geometrizations exist. Its proof uses the func-
toriality of geometrizations in the pair (B,X). Consider a pair of maps φ and ψ as in
(39). Given a geometrization G of (M,φ ◦ f, ψ ◦ g, ∇̃) we get a geometrization

(φ, ψ)∗G := G ◦ (φ, ψ)∗ (73)

of (M, f, g, ∇̃).
Note that our standing assumption is that M is compact.

Proposition 4.4 Given (M, f, g, ∇̃) there exists a geometrization.
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Proof. Since M is compact the maps f and g factor over compact subspaces of B or X
respectively. In view of the functoriality of the geometrization (73) we can assume that B
and X are compact. Then K0(B+ ∧X+) is a finitely generated abelian group. We choose
a (non-canonical) decomposition

K0(B+ ∧X+) ∼= Ators ⊕ Afree

into a torsion and a free part. We write

Ators :=
⊕

y∈I

yZ/ord(y)Z

for some set of generators I ⊂ Ators. For all y ∈ I, using the exactess at the right end of
(70), we choose ỹ0 ∈ K̂0(M) such that I(ỹ0) = (f, g)∗y. Then ord(y)ỹ0 = a(ωy) for some
ωy ∈ ΩP−1(M)/im(d), again by (70). We define

ỹ := ỹ0 − a(
1

ord(y)
ωy) .

Then ord(y)ỹ = 0 and we can define G|Ators : Ators → K̂0(M) such that G(y) = ỹ for all
y ∈ I. Since Td−1 ∧ ch vanishes on Ators and G|Ators maps to flat classes it is clear that
the cohomological character of this part of G preserves degree.
We now come to the free part. We choose a basis J ⊂ Afree and classes z̃0 ∈ K̂0(M) such
that I(z̃0) = (f, g)∗z for all z ∈ J . We further choose a basis J ′ ⊂ Afree ⊗ Q such that
{Td−1 ∧ ch(z′)}z′∈J ′ is a homogeneous basis with respect to the decomposition

HPQ0(B+ ∧X+) ∼=
⊕

m∈Z

b−mH2m(B+ ∧X+;Q) .

We define the even integers nz′ := deg(Td−1 ∧ ch(z′)) for all z′ ∈ J ′. Then there exists
an invertible rational (J, J ′)-indexed matrix A such that z =

∑

z′∈J ′ Azz′z
′ for all z ∈ J .

We now can choose a collection of forms αz′ ∈ ΩP−1(M)/im(d) for z′ ∈ J ′ such that

∑

z∈J

A−1
z′z Td(∇̃) ∧R(z̃0)− dαz′ ∈ b−

n
z′
2 Ω

nz′

cl (M) ⊆ ΩP 0
cl(M)

for all z′ ∈ J ′. We define
G|Afree

: Afree → K̂0(M)

by linear extension such that

G(z) = z̃0 − a(Td(∇̃)−1 ∧
∑

z′∈J ′

Azz′αz′) .

By construction its cohomological character preserves degree.
2
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Geometrizations can be pulled back along Spinc-maps over X . Let (M ′, f ′, g′) be a
manifold with maps f ′ : M → B and g′ : M ′ → X . We consider a smooth map
h : M ′ → M that f ◦ h is homotopic to f ′. This implies that we can choose a stable
isomorphism of complementary bundles

η′ ⊕ (M ′ × Rs) ∼= η ⊕ (M × Rt) ,

This is exactly the situation where we can talk about a refinement of h to a Spinc-map
by choosing an isomorphism

P ′ ⊗Q(s) ∼= h∗P ⊗Q(t) . (74)

The refinement of h to a Spinc-map is given by the joint homotopy class of this pair
isomorphisms. In order to define a pull-back of geometrizations we need of course also a
compatibility of the maps to X , i.e. we require that g′ and g ◦ h are homotopic. In this
case we speak of a Spinc-map over X .
Assume now that we have connections ∇̃ on P and ∇̃′ on P ′. They induce connections
on the stabilizations P ⊗Q(t) and P ′ ⊗Q(s). We thus can define the transgression

T̃d(h∗∇̃, ∇̃′) ∈ ΩP−1(M ′)/im(d)

where we use the isomorphism (74) in order to compare the stabilization of h∗∇̃ with that
of ∇̃′ on the same bundle. For this transgression to be well-defined it is important that
the isomorphism (74) is fixed up to homotopy by the structure of a Spinc-map on h. The
transgression satisfies

dT̃d(h∗∇̃, ∇̃′) = h∗Td(∇̃)−Td(∇̃′) .

Let G be a geometrization of (M, f, g, ∇̃).

Lemma 4.5 If h : M ′ → M is a Spinc-map over X, then there exists a functorial
construction of a pulled-back geometrization G ′ := h∗G of (M ′, f ′, g′, ∇̃′).

Proof. By our assumptions the equivalence class

β := T̃d(h∗∇̃, ∇̃′)Td(∇̃′)−1 ∈ ΩP−1(M ′)/im(d) (75)

of forms is defined. It satisfies

dβ = h∗Td(∇̃)Td(∇̃′)−1 − 1 .

We define the pull-back G ′ := h∗G by

G ′(y) := h∗G(y) + a(β ∧ h∗R(G(y))) , y ∈ K0(B+ ∧X+) , (76)

where a and R belong to the structure maps of differential K-theory. We have by con-
struction

Td(∇̃′) ∧ R(G ′(y)) = h∗(Td(∇̃) ∧ R(G(y)))
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and hence the equality cG′ = h∗cG of cohomological characters. Since the cohomological
character cG preserves degree, so does the cohomological character of G ′.
We show that the pull-back is functorial. We consider a second tuple (M ′′, f ′′, g′′, ∇̃′′)
with a Spinc-map h′ : M ′′ → M ′ over X and the associated transgression form β ′. Then
we have for the iterated pull-back

G ′′(y) = h′∗(h∗(G(y))) + h′∗(a(β ∧ h∗R(G(y)))) + a(β ′ ∧ h′∗R(G ′(y)))

= (h ◦ h′∗)∗(G(y))

+a(h′∗β ∧ h′∗(h∗(R(G(y))) + β ′ ∧ h′∗(h∗R(G(y))) + β ′ ∧ h′∗dβ ∧ h′∗(h∗(R(G(y)))))

Let β̃ be the transgression form for the composition h ◦ h′ of Spinc-maps over X . Then
we must show that

β̃ − h′∗β + β ′ + h′∗β ′ ∧ dβ ∈ im(d)

This follows from

d(h′∗β + β ′ + h′∗β ′ ∧ dβ) = h′∗h∗Td(∇̃)−1Td(∇̃′′)− 1 = dβ̃

and the fact that all these forms are defined by transgressions. 2

The identity ofM refines to a Spinc-map over X in a natural way by choosing the identity
in (74). The pull-back of geometrizations for the identity of M can be used to transfer a
geometrization defined for one choice of the connection ∇̃ to a second choice. This allows
to define a notion of geometrization which is independent of the choice of the connection.
This could play a role of one wants to classify geometrizations. We will not pursue that
goal in the present paper.

4.4 Good geometrizations

Assume that (W,F,G) is a zero-bordism of the n-dimensional cycle (M, f, g). We choose
a Riemannian metric onM and extend it to W with product sructures. We fix tangential
representatives P (TW ) ∈ Spinc(TW ) and P (TM) ∈ Spinc(TM) of the normal Spinc-
structures on W and M , see Definition 3.2. As explained in Subsection 3.3 there is a
natural homotopy class of isomorphisms of Spinc-structures

P (TM)⊗Q(1) ∼= P (TW )|M (77)

which turns the inclusion
iM→W :M →W

into a Spinc-map. We fix a choice of such an isomorphism in this class.
We choose a Spinc-extension of the Levi-Civita connection ∇̃TW on W with product
structure and a Spinc-extension of the Levi-Civita connection ∇̃TM on M such that the
isomorphism (77) preserves the connections. This implies that the forms (75) are trivial
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in this situation. Assume now that we have a geometrization of (W,F,G, ∇̃TW ). Then
we can define the restriction G∂W := (GW )|∂W as in Lemma 4.5. It is given by

G∂W (φ) = GW (φ)|∂W , φ ∈ K0(B+ ∧X+) . (78)

This restriction can be compared with a given geometrization GM of (M, f, g, ∇̃TM). In
general we do not expect that a given GM extends to a geometrization GW of (W,F,G, ∇̃TW ).
In this respect geometrizations seem to be more rigid than connections.
Here is a very simple example of a geometrization which does not extend. We consider
the case B = X = ∗ and M = S3 with its standard metric. We choose a normal
framing of S3 which extends over D4 so that framed bordism class [S3] is trivial. We
let G0 be the good geometrization of (S3, ∇̃TS3

) defined in Subsection 5.1. We have
K0(B+ ∧ X+) ∼= K0(∗+) ∼= Z so that a geometrization is fixed by the image of 1 in
K̂0(S3). Let ω ∈ Ω3(S3) be some form. Then we can define a new geometrization Gω of
(S3, ∇̃TS3

) by
Gω(1) := G0(1) + a(ω) .

It is easy to check, using the fact that G0 does extend by Lemma 4.9, that Gω extends to
D4 if and only if

∫

S3 ω ∈ Z.
In order to deal with the problem of non-extendability of geometrizations appropriately
we introduce the notion of a good geometrization. If GM is good, then it will extend
to zero bordisms. We define the notion of good geometrizations constructively. The
rough idea is as follows. We choose a sufficiently high connected approximation (fu, gu) :
Mu → B+ ∧ X+ of B+ ∧ X+ by a smooth manifold Mu and a geometrization Gu. The
map (f, g) : M → B+ ∧ X+ then has a unique factorization up to homotopy through
h : M → Mu. The main observation is that there exists a natural refinement of h to a
Spinc-map. We declare a geometrization GM obtained as GM := h∗Gu as good. For a zero
bordism (W,F,G) of (M, f, g) we can extend the factorization h to H : W → Mu which
again naturally refines to a Spinc-map. The crucial point then is that

H ◦ iM→W = h . (79)

holds true as an equality of Spinc-maps. Then GW := H∗Gu is the desired extension of
GM over W .
In order to be able to approximate B+ ∧ X+ by compact manifolds we now make the
following assumption.

Assumption 4.6 The spaces X and B have the homotopy type of CW -complexes with
finite skeleta.

By the assumption we can find a compact manifold Mu with a pair of maps fu :M → B
and gu : Mu → X such that fu × gu : Mu → B × X is an n + 1-equivalence. We
choose a complement ηu → Mu of the bundle f̂ ∗

uξk → Mu and a complementary Spinc-
structure Pu ∈ Spinc(ηu) in the sense explained in Subsection 4.3. We further choose a
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connection ∇̃u on Pu. By Proposition 4.4 there exists a geometrization Gu of the triple
(Mu, fu, gu, ∇̃

u). Given (M, f, g) with dim(M) = n there exists a unique factorization

Mu

(fu,gu)

��
M

(f,g)//

h
;;

X × B

(80)

of the map (f, g) over the (n + 1)-equivalence (fu, gu) up to homotopy.
Note that fu has no relation with the tangent bundle ofMu, but the choice of the isomor-
phisms

ηu ⊕ f̂ ∗
uξk

∼=Mu × Rm+k

and
Pu ⊗ f̃ ∗

uQk
∼= Q(m+ k) (81)

models the relation between normal and tangential structures. First of all we can choose
a stable isomorphism

TM ⊕ (M × Rs) ∼= h∗ηu ⊕ (M × Rt) (82)

such that the induced trivialization (using f̂ ∗ξk ∼= h∗f̂ ∗
uξk )

TM ⊕ (M × Rs)⊕ f̂ ∗ξk ∼= M × Rn+s+t

is stably homotopic to the trivialization given by the representative of the normal B-
structure on M . Then we choose the isomorphism

P (TM)⊗Q(s) ∼= h∗Pu ⊗Q(t) . (83)

such that (81) induces the homotopy class of the isomorphism given by the tangential
representative of the normal Spinc-structure on M . This turns h into a Spinc-map so
that the pull-back h∗Gu is defined.

Definition 4.7 A geometrization GM of (M, f, g, ∇̃TM) obtained in this way is called
good.

Note that in this definition we do not fix the choices of Mu, fu, gu,Gu or the Spinc-
refinement of the map h. By varying these choices we define the subset of good among
all geometrizations of (M, f, g, ∇̃TM). At the moment we do not have a nice intrinsic
characterization of this subset. But by Lemma 4.9 non-extendability to zero bordisms
produces obstructions against goodness.
As a consequence of the above discussion we get the following Lemma.

Lemma 4.8 If we assume 4.6, then for every tuple (M, f, g, ∇̃TM) there exists a good
geometrization.

Lemma 4.9 Let GM be a good geometrization of (M, f, g, ∇̃TM). If (W,F,G) is a zero
bordism of (M, f, g) with connection ∇̃TW , then there exists a geometrization GW of
(W,F,G, ∇̃TW ) which restricts to GM .
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Proof. Since (fu, gu) :Mu → B ×X is an n+1-equivalence and dim(W ) = n+ 1 we can
extend the factorization (80) to a factorization

Mu

(fu,gu)

��
W

(F,G)//

H
;;

X ×B

(84)

up to homotopy such that H coincides with h on the boundary of W . The stable iso-
morphism (82) is chosen such that it extends to a stable isomorphism between TW and
H∗ηu satisfying a similar condition as (82). Similarly, if we define the stable isomorphism
between P (TW ) and H∗Pu by similar conditions as for (83), then we obtain a refinement
of H to a Spinc map which has the crucial property that the composition of the inclusion
iM→W :M → W with H coincides with h as Spinc-maps.
Then we can define the pull-back GW := H∗Gu. We get by (79) and the functoriality of
the pull-back shown in Lemma 4.5 that the restriction of GW to M is GM . 2

4.5 An intrinsic formula for ηan

The main goal of the present Subsection is to give an intrinsic formula for ηan(x) which
only involves structures on the cycle (M, f, g) for x ∈ πn(MB ∧X+)tors.
The geometric and analytic terms in the formula (54) for ηan(x) separately have values
in R/Z; only their sum belongs to Q/Z. In order to deal with these terms separately it is
useful to use a real version QR

n(B,X) of the group Qn(B,X). We start with introducing
this group. We further show that there is no loss information when going over the this
real version. We let (compare with 24)

UR ⊆ Homcont(K0(B+ ∧X+), πn+1(KR/Z)) (85)

be the subgroup given by evaluations against elements in πn+1(MBR ∧X+) and define

QR
n(B,X) :=

Homcont(K0(B+ ∧X+), πn+1(KR/Z))

UR
. (86)

The inclusion πn+1(KQ/Z) → πn+1(KR/Z) induces a map

iR : Qn(B,X) → QR
n(B,X) .

Lemma 4.10 The map iR : Qn(B,X) → QR
n(B,X) is injective.

Proof. Let κ ∈ Qn(B,X) be represented by κ̂ ∈ Homcont(K0(B+ ∧ X+), πn+1(KQ/Z)).
Since κ is continuous it factors over a finitely generated quotient of K0(B+ ∧X+). Hence
there exists N ∈ N such that Nκ̂ vanishes. Assume now that iR(κ) = 0. Then there exists
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w ∈ πn+1(MBR ∧ X+) such that κ̂(φ) = [〈w, φ〉] ∈ πn+1(KR/Z). Since πn+1(MBR ∧
X+) ∼= πn+1(MB ∧X+) ⊗ R (see (19)) there exists a finite subset I ⊂ πn+1(MB ∧ X+)
and a map λ : I → R such that w =

∑

v∈I λ(v)v. We have κ̂(φ) =
∑

v∈I [λ(v)〈φ, v〉],
where here 〈φ, v〉 ∈ πn+1(K). For v ∈ I we define v̂ ∈ Homcont(K0(B+ ∧X+), πn+1(K)) by
v̂(φ) := 〈φ, v〉. The set {v̂|v ∈ I} generates a free abelian subgroup A ⊆ Homcont(K0(B+∧
X+), πn+1(K)). We can choose a minimal subset J ⊆ I which generates a subgroup of A
of full rank. Then we can write κ̂(φ) =

∑

v∈J [µ(v)v̂(φ)] for a suitable map µ : J → R.
The image of K0(B+ ∧ X+) → Hom(A, πn+1(KZ)) has full rank. Hence for every v ∈ J
there exists φv ∈ K0(B+ ∧ X+) such that v̂(φv) 6= 0 and v̂′(φv) = 0 for all J ∋ v′ 6= v.
It follows that κ̂(φv) = [µ(v)v̂(φv)]. Since 0 = Nκ̂(φv) = [Nµ(v)v̂(φv)] it follows that
µ(v) ∈ Q. We set wQ :=

∑

v∈J µ(v)v ∈ πn+1(MB ∧X+)⊗Q ∼= πn+1(MBQ ∧X+). Then
we have κ̂(φ) = [〈φ, wQ〉] for all φ ∈ K0(B+ ∧X+). This shows that κ̂ ∈ U and κ = 0. 2

The standing assumption for the following is 4.6 which ensures the existence of good
geometrizations by Lemma 4.8. Let x ∈ πn(MB ∧X+)tors be an l-torsion element in the
B-bordism group of X and (M, f, g) be a cycle for x. We choose a Riemannian metric
and a Spinc-extension ∇̃TM of the Levi-Civita connection on M . We further choose a
good geometrization GM of (M, f, g, ∇̃TM) (see Definition 4.7).
For every φ inK0(B+∧X+) we choose a Z/2Z-graded vector bundle Vφ →M such that we
have the equality of K-theory classes [Vφ] = (f, g)∗φ ∈ K0(M+). We furthermore choose
a hermitean metric hVφ and a metric connection ∇Vφ so that we get the geometric bundle
Vφ = (Vφ, h

Vφ,∇Vφ). It represents a differential K-theory class [Vφ] ∈ K̂0(M) such that
I([Vφ]) = [Vφ] = (f, g)∗φ. This class can be compared with the differential refinement

GM (φ) ∈ K̂0(M) of (f, g)∗φ given by the good geometrization. By the exactness of (70)
the difference of these two classes uniquely determines an element

γφ ∈ ΩP−1(M)/im(ch)

such that
GM (φ)− [Vφ] = a(γφ) . (87)

Definition 4.11 We will refer to γφ as the correction form associated to φ.

Theorem 4.12 The element iR(η
an([M, f, g])) ∈ QR

n(B,X) is represented by the homo-
morphism

K0(B+ ∧X+) ∋ φ 7→ [−

∫

M

Td(∇̃TM) ∧ γφ]− ξ(D/M ⊗Vφ) ∈ R/Z . (88)

Proof. The integral in formula(88) belongs to R[b, b−1]−n−1 which will be identified with
R using the generator b−

n
2 . First note that, despite of the fact that γφ is only defined up

the image of ch : K−1(M+) → HPQ−1(M+), the class

[

∫

M

Td(∇̃TM) ∧ γφ] ∈ R/Z
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is well-defined. Indeed, we have 〈[M ],Td(TM) ∪ ch(ψ)〉 ∈ Z for all ψ ∈ K−1(M+) by
the odd version of Atiyah-Singer index theorem. We use (54) in order to express the
right-hand side of (56) as

[
1

l

∫

W

Td(∇̃TW ) ∧ ch(∇Uφ)]− ξ(D/M ⊗Vφ) .

The whole idea of is now to turn the integral over W into an integral over M . To this
end we assume by Lemma 4.9 that the good geometrization GM has an extension GW to
W . The K-theory class (f, g)∗φ extends acrossW as (F,G)∗φ. We can thus assume, after
adding a bundle of the form W ⊕ Wop, that the bundle Vφ has an extension Uφ as a
geometric bundle to W . Note that this sort of stabilization does not effect the correction
form γφ and the reduced η-invariant ξ(D/M ⊗ Vφ). From now on we assume that Vφ

extends. We let γWφ ∈ ΩP−1(W )/im(ch) be the correction form defined by

GW (φ)− [Uφ] = a(γWφ ) .

By (78) we conclude that (γWφ )|∂W coincides with γφ on all copies of M . We now use
Stokes’ theorem in order to rewrite

[
1

l

∫

W

Td(∇̃TW ) ∧ ch(∇Uφ)] = [
1

l

∫

W

Td(∇̃TW ) ∧R(GW (φ))−
1

l

∫

W

Td(∇̃TW ) ∧ dγWφ ]

= [
1

l

∫

W

Td(∇̃TW ) ∧R(GW (φ))]− [

∫

M

Td(∇̃TM) ∧ γφ]

The integrand of the integral over W is exactly the cohomological character of GW applied
to φ. Since it preserves degree it follows that the homomorphism

κ : φ 7→ [
1

l

∫

W

Td(∇̃TW ) ∧ R(GW (φ))] ∈ R/Z

factors over

K0(B+ ∧X+)
1
l
pn+1(Td

−1∪ch)
−→ HQn+1(B+ ∧X+)

(see 30). Assumption 4.6 implies that B+ ∧ X+ is rationally of finite type. In the proof
of Lemma 2.4 we have seen that then

πn+1(MBQ ∧X+) → Hom(HQn+1(B+ ∧X+),Q)

is surjective. Since dim(HQn+1(B+ ∧X+)) <∞ the tensor product of this map with R

πn+1(MBR ∧X+) → Hom(HQn+1(B+ ∧X+),R)

is still surjective. This implies that κ ∈ UR. Therefore iR(η
an([M, f, g])) is also repre-

sented by the map (88). 2
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Let us mention the following aspect of the intrinsic formula (88) which is not yet com-
pletely understood at the moment. For the intrinsic formula to make sense we do not
need to assume that [M, f, g] ∈ πn(MB ∧X+) is a torsion element. Hence it provides an
extension of the universal η-invariant to the whole bordism group, i.e. we get a homo-
morphism

ηintrinsic : πn(MB ∧X+) → QR
n(B,X)

which restricts to iR ◦ η
top = iR ◦ η

an on πn(MB ∧X+)tors. In general we do not know the
topological contents of this extension. For an example see the text after Corollary 5.20.

5 Examples

5.1 Adams’ e-invariant

In this Subsection we explain the relation between our universal η-invariant and the Adams
e-invariant. We consider the case of framed bordism, i.e. we set B := ∗ and X := ∗.
With this choice the product MB∧X+ is the sphere spectrum S whose homotopy groups
are called the stable homotopy groups (of the sphere) and will be denoted by

πSn := πn(S) .

The stable homotopy groups form a basic object of interest in stable homotopy theory.
Though they turn out to be quite resistive against a complete calculation a lot about their
of structure is known [52].
For n ≥ 1 the stable homotopy group πSn is finite by Serre’s theorem [55]. Therefore the
universal η-invariant is defined on all of πSn .
Concerning the target group Qn := Qn(∗, ∗) of the universal η-invariant defined in 2.1
note that with the choices of B and X as above we have an identification

K0(B+ ∧X+) = K0(S0) ∼= Z .

The finiteness of the stable homotopy groups in higher degree implies that their ratio-
nalizations are trivial. In the present situation the subgroup (24) thus vanishes. After
identifying π2m+2(KQ/Z) with Q/Z for all m ≥ 0 we obtain the identification

Q2m+1
∼= Hom(Z,Q/Z) ∼= Q/Z

given by evaluation against 1 ∈ Z. Our universal η-invariant is thus interpreted as a
homomorphism

eAdamsC = η : πS2m+1 → Q/Z , (89)

where η stands for ηtop, or equivalently ηan by Theorem 3.6. The notation indicates that
this is the complex version of Adams’ e-invariant which was introduced in order to detect
the image of the J-homomorphism

J : KO2m+2 → πS2m+1 (90)
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(see the series of papers by Adams culminating in [1]). Note that the relation between
Adams e-invariant and its complex version on πS4m−1 is given simply by

eAdamsC =

{

eAdams m even
2eAdams m odd

.

Our goal in this Subsection is to explain that the results of the present paper specialize
to classically well-known facts about the e-invariant. Let us first discuss the relation with
the Adams filtration and spectral sequence. We observe that Assumption 2.6 is satisfied.
Let

· · · ⊆ F 2πS∗ ⊆ F 1πS∗ ⊆ F 0πS∗ = πS∗

be the filtration of the stable homotopy groups associated to the K-theory based Adams
spectral sequence (see e.g. [2]). Then it follows from Corollary 2.10 that the complex
version of Adams e-invariant (89) induces an injection

F 1πS2m+1/F
2πS2m+1 →֒ Q/Z .

We now come to the second classical fact about the Adams e-invariant, namely that it is
related to spectral geometry. This has first been observed in [8]. The spectral geometric
calculation of Adams e-invariant is based on the Pontrjagin-Thom isomorphism which
allows to represent elements in the stable homotopy group by stably normally framed
manifolds. It has the favorable property that it provides an intrinsic formula, a fact which
has been successfully exploited e.g. in [29], [54]. The goal of the following discussion is
to derive, as an illustration, the well-known intrinsic formula [7, Thm 4.14] for eAdamsC

from Theorem 4.12. This is finally our argument that (89) is really the complex version
of Adams’ e-invariant.
We equip M with a Riemannian metric. As a normally stably framed manifold M it
comes with a trivialization TM ⊕ (M × Rk) ∼= M × Rn+k for some sufficiently large k.
A tangential representative of the associated normal Spinc-structure is now given by a
stable trivialization

P (TM)⊗Q(k) ∼=M × Spinc(n+ k) . (91)

We can in fact assume that P (TM) comes from a Spin-structure. In this case the Levi-
Civita connection induces a canonical Spinc-connection ∇̃TM .
In order to apply Theorem 4.12 we must first choose a good geometrization of (M, ∇̃TM).
In the notation of Subsection 4.4 we can choose the manifold Mu to be a point. It then
has a unique geometrization Gu. Let h :M → Mu be the constant map. Note that h∗Pu is
trivial. Hence the given trivialization (91) refines h to a Spinc-map. Using this refinement
we define the good geometrization G := h∗Gu. In view of the identification K0(B+∧X+) ∼=
Z the geometrization Gu associates to 1 ∈ Z the class Gu(1) = 1 ∈ K̂0(Mu). We now use
Lemma 4.5 in order to calculate G(1) ∈ K̂0(M). By equation (76) we have

G(1) = 1 + a

(

T̃d(∇̃triv, ∇̃TM)

Td(∇̃TM)

)

,
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where ∇triv is the connection on P (TM) ⊗ Q(k) induced by the trivialization (91). Let
V1 be the trivial one-dimensional geometric bundle on M . Then [V1] = 1 ∈ K̂0(M) and
in view of Equation (87) we must take the correction form

γ1 :=
T̃d(∇̃triv, ∇̃TM)

Td(∇̃TM)
.

We now specialize Theorem 4.12 to the present situation. Using the above formula for
the correction form and invoking the notational simplification coming from the fact that
we twist by a one-dimensional trivial bundle we obtain the intrinsic formula

iR(η
an([M ]))(1) = [−

∫

M

T̃d(∇̃triv, ∇̃TM)]− ξ(D/M) ∈ R/Z

This formula directly compares with the formula for iR(e
Adams
C ([M ])) ∈ R/Z derived by

specializing [7, Thm 4.14].

5.2 ρ-invariants and the index theorem for flat bundles

The reduced η-invariant ξ(D/M⊗V) of the Spinc-Dirac operator on a closed odd-dimensional
manifold M twisted by a geometric bundle V depends on the geometric structures of the
manifold and the bundle. A usual way to describe this dependence is in terms of varia-
tion formulas. Their main feature is that the variation of ξ(D/M ⊗V) with respect to the
geometric structures can be obtained by integrating a density over the manifold which
admits a local expression in terms of the variation of the geometry.
Let us rigidify the geometric bundle V by assuming that it is a flat hermitean vector
bundle of dimension k. Then locally D/M ⊗V is isomorphic to a direct sum of k copies of
D/M . This implies that the variation of the difference of reduced η-invariants

ρ(D/M ,V) := ξ(D/M ⊗V)− kξ(D/M) (92)

is invariant under variations of the geometry of M . The ρ-invariant is thus a differential
topological invariant of the Spinc-manifold with a flat hermitean bundle. This is the
classical case where the topological contents of the η-invariant has beed studied. The
ρ-invariants have successfully been applied for example in order to detect elements in
Spinc-bordism groups of classifying spaces of finite cyclic groups [12], [11]. We refer to
these reference for examples of explicit calculations of ρ-invariants.
As explained above it follows from an variation argument that ρ-invariants are of topo-
logical nature. The precise homotopy theoretic description of ρ-invariants is given by the
index theorem for flat bundles [8, Thm. 5.3]. The goal of the following discussion is to ex-
plain the relation of our theory, in particular of the relation ηan = ηtop shown in Theorem
3.6, with the index theorem for flat bundles. Roughly speaking, this goes as follows. The
index theorem for flat bundles is about the pairing of the K-homology class represented
by the Spinc-Dirac operator with the torsion K-cohomology classes obtained from the
flat bundle, while our index theorem considers the pairing of a torsion K-homology class
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with K-theory classes. Clearly the case of intersection is when both classes are torsion.
In this case the relation between both pairings is clarified in Lemma 2.5.
We first translate the data of the Spinc-manifold M of dimension n = 2m + 1 with a
flat hermitean bundle V into the bordism picture. Let U(k)δ denote the unitary group
equipped with the discrete topology. Its classifying space BU(k)δ is universal for flat
hermitean vector bundles of dimension k. We let f : M → BSpinc be a classifying map
of the stable normal bundle of the Spinc-manifold M as explained in Subsection 3.4.
Furthermore, we let g : M → BU(k)δ be a classifying map for V. The triple (M, f, g)
then represents a class

[M, f, g] ∈ πn(MBSpinc ∧ BU(k)δ+) .

We are thus forced to apply our theory in the case where B := BSpinc and X := BU(k)δ.
In order to be in the domain of the universal η-invariant we must assume that [M, f, g] is
a torsion class. Due to this restriction we can not rederive [8, Thm. 5.3] in full generality.
We do not try to control πn+1(MBSpinc ∧ BU(k)δ+) ⊗ Q or to calculate the group
Qn(BSpin

c, BU(k)δ). We rather observe that the K-theory class λk ∈ K0(BU(k)δ+)
of the universal Ck-bundle on BU(k)δ can be pulled back along the projection

q : BSpinc+ ∧ BU(k)δ+ → BU(k)δ+ (93)

to a class
q∗λk ∈ K0(BSpinc+ ∧ BU(k)δ+) ,

and that the evaluation against the difference q∗λk − k provides a well-defined homomor-
phism

evq∗λk−k : Qn(BSpin
c, BU(k)δ) → Q/Z .

It indeed follows from ch(λk − k) = 0 that the evaluation against q∗λk − k vanishes on
the subgroup (24).
In the following discussion we identify the representatives of the elements

evq∗λk−k(η
an([M, f, g])), evq∗λk−k(η

top([M, f, g])) ∈ Q/Z

explicitly in terms of the ρ-invariant, and homotopy theoretic data, respectively.
The equality ηan = ηtop of Theorem 3.6 has the form of an index theorem, here formulated
as Corollary 5.1, which is the announced special case of [8, Thm. 5.3].
We first explain that evq∗λk−k(η

an([M, f, g])) is exactly given by ρ(D/M ,V) defined in (92).
We are going to use the notation introduced in Subsection 3.4. As an intermediate step
we choose, for a suitable non-vanishing integer l, a zero bordism (W,F,G) of the union of
l copies of the cycle (M, f, g) with Spinc-geometry. The geometric bundle U is then the
flat hermitean bundle classified by F , and we have by Definition 3.5

evq∗λk−k(η
an([M, f, g])) = [

1

l
index(D/W ⊗U)]− [

k

l
index(D/W )] .
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If we use (54) instead, then we express this evaluation in terms of an integral over local
data on W and the reduced η-invariants. Because of ch(∇U) = k the local contributions
cancel out and we remain with

evq∗λk−k(η
an([M, f, g])) = ρ(D/M ,V)

as desired. This is also the analytic side of the index theorem for flat bundles in [8, Thm.
5.3].
We now discuss the topological side and calculate evq∗λk−k(η

top([M, f, g])) following the
prescription of Subsection 2.3. In order to shorten the notation we write x := [M, f, g].
According to this prescription we first must choose a lift x̂ ∈ πn+1(MBSpincQ/Z ∧
BU(k)δ+) such that ∂x̂ = x, where

∂ : πn+1(MBSpincQ/Z ∧ BU(k)δ+) → πn(MBSpinc ∧BU(k)δ+)

is a Bockstein operator. Such a lift exists since we assume that x is a torsion class. We
apply to this element the unit of K-theory and the Thom isomorphism

πn+1(MBSpincQ/Z . . . )
unit
→ πn+1(K∧MBSpincQ/Z . . . )

Thom
∼= πn+1(KQ/Z∧BSpinc+ . . . ) .

In this way we obtain a KQ/Z-homology class x̃ ∈ πn+1(KQ/Z ∧ BSpinc+ ∧ BU(k)δ+).
The element evq∗λk−k(η

top([M, f, g])) ∈ Q/Z is now given by the pairing between this and
the K-theory class q∗λk − k ∈ K0(BSpinc+ ∧ BU(k)δ+):

evq∗λk−k(η
top([M, f, g])) = 〈ThomK(q∗λk − k), x̃〉 ∈ πn+1(KQ/Z) ∼= Q/Z . (94)

As already mentioned above, the topological side of the index theorem for flat bundles [8,
Thm. 5.3] is not given as the pairing of a KQ/Z-homology class with a K-theory class,
but rather by a pairing between a K-homology class and a KR/Z-cohomology class. In
the following we rewrite the right-hand side of (94) in this way.
We use flat hermitean bundles give naturally rise to KR/Z-theory classes. This has
already been observed in [8]. For our present purpose we (see also [42, Sec. 2] for a
related construction) describe the corresponding universal class

Λk ∈ KR/Z−1(BU(k)δ+) (95)

such that ∂Λk = λk − k, where ∂ is again a Bockstein

∂ : KR/Z−1(BU(k)δ+) → K0(BU(k)δ+) .

For every map from a compact manifold h : N → BU(k)δ the class h∗(λk) is represented
by a unitary flat k-dimensional bundle U obtained by pull-back of the universal bundle.
The differentialK-theory class [U]−k ∈ K̂0(N) is flat in therefore belongs to the subgroup
KR/Z−1(N+) ∼= K̂0

flat(N), compare with (69). It further satisfies ∂([U]−k) = h∗(λk−k).
In this way we have constructed a homotopy invariant section of the restriction of the
functor KR/Z−1(. . . ) to the category of compact manifolds over BU(k)δ. This section is
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represented by a universal class Λk ∈ KR/Z−1(BU(k)δ+) which satisfies ∂Λk = λk − k as
required.
Recall that q denotes the projection (93). We now apply Lemma 2.5 to the right-hand
side of (94) in order to get the equality

evq∗λk−k(η
top(x)) = 〈ThomK(q∗Λk), ǫK(x)〉 .

Using further a variant of (17)

〈ThomK(q∗Λk), ǫK(x)〉 = 〈q∗Λk, ThomK(ǫK(x))〉 = 〈g∗Λk, [MK ]〉

we get the formula which expresses the topological side in terms of the data given by the
cycle:

evq∗λk−k(η
top(x)) = 〈g∗Λk, [MK ]〉 .

Finally note that by the construction of Λk the pull-back g
∗Λk has a geometric description

in terms of differential K-theory onM , namely that we have g∗Λk = [V]−k ∈ K̂0
flat(M) ∼=

KR/Z−1(M+). The formula

evq∗λk−k(η
top(x)) = 〈[V]− k, [M ]K〉

now identifies our topological side with the topological side of the index theorem for flat
bundles of [8, Thm. 5.3]. The following Corollary now immediately follows from the
equality ηtop = ηan.

Corollary 5.1 LetM be a closed n = 2m−1-dimensional Spinc-manifold with a flat her-
mitean k-dimensional vector bundle V. We assume in addition that the class [M, f, g] ∈
πn(MBSpinc ∧ BU(k)δ+) is torsion, where f classifies the normal Spinc-structure and g
is a classifying map of V. Then we have the following equality in R/Z:

ρ(D/M ,V) = 〈[V]− k, [M ]K〉 (96)

In this way Theorem 4.12 implies a special case of [8, Thm. 5.3]. Let us again remark,
that by [8, Thm. 5.3] the equality (96) holds true without the additional assumption that
[M, f, g] is a torsion class.

5.3 Algebraic K-theory

It is well-known that a k-dimensional flat complex vector bundle V on a manifold M
represents an algebraic K-theory class [V]alg ∈ K(C)0(M+). Let us describe this in
greater detail. There exists algebraic K-theory machines which associate to a ring R
an algebraic K-theory spectrum K(R) (see the two foundational papers [51], [58]). The
symbolK(C)0(M+) stands for the degree-zero group of the cohomology theory represented
by the spectrum K(C) and evaluated on M . In order to understand the class [V]alg we
need an explicit identification of the homotopy type of the underlying infinite loop space
Ω∞K(C) of the K-theory spectrum of C. We let Cδ be the complex numbers equipped
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with the discrete topology. Then we consider the homotopy colimit of classifying spaces
of discrete general linear groups

BGL(Cδ) = hocolimk BGL(k,C
δ) .

We let
p : BGL(Cδ) → BGL(Cδ)+ (97)

be Quillens +-construction (see [3, Ch. 3] for a detailed description). This map induces the
abelization on the level of fundamental groups and isomorphisms in arbitrary homology
and cohomology theories. We then have an equivalence

Ω∞K(C) ∼= Z× BGL(Cδ)+ .

This gives an identification

K(C)0(M+) ∼= [M+,Z× BGL(Cδ)+] .

A flat complex vector bundle V := (V,∇V ) of dimension k is classified by a homotopy
class of maps h :M → BGL(k,Cδ). The bundle V carries in addition a parallel hermitean
metric if and only if this map has a factorization up to homotopy over BU(k)δ. The class
[V]alg ∈ K(C)0(M+) is then represented by the homotopy class of the composition

g :M
h
→ BGL(k,Cδ)

i
→ BGL(Cδ)

p
→ BGL(Cδ)+

x 7→(k,x)
→ Z× BGL(Cδ)+ . (98)

We let g0 := p ◦ i ◦ h denote the composition of the first three of these maps.
In Subsection 5.2 we have seen that, at least in the case where V is hermitean and M is
closed and normally Spinc, we can define the analytical invariant ρ(D/M ,V) ∈ Q/Z and
understand it in terms of homotopy theory. The main objective of the present Subsection
is to explain in which way this construction provides an invariant of the algebraicK-theory
class represented by V.
As a first step we translate our geometric situation into the bordism theoretic language.
We will consider some bordism theory determined by a map σ : B → BSpinc, but already
the case where B is a point (the case of stable homotopy) is interesting. We assume that
the manifold M is closed and has a normal B-structure classified by a map f : M → B,
see Subsection 3.4 for details. Then we can consider the triple (M, f, g0) as a cycle for a
class

[M, f, g0] ∈ πn(MB ∧BGL(Cδ)++) .

Lemma 5.2 Every class in x ∈ πn(MB ∧BGL(Cδ)++) can be obtained in this way.

Proof. By the universal properties of the +-construction the map p in (97) induces
an isomorphism in B-bordism homology theory. Hence there exists a triple (M, f, g̃0),
where M is a closed n-dimensional manifold with a B-structure classified by f and
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g̃0 :M → BGL(Cδ) such that x = p∗([M, f, g̃0]). Since M is compact we can assume that
g̃0 has a factorization g0 over BGL(k,Cδ) for some k. 2

If we replace g0 by g, then we get a bordism class

[M, f, g] ∈ πn(MB ∧ Ω∞K(C)+) (99)

of the infinite loop space of algebraic K-theory. We will use this notation also in the more
general case where M has several connected components and the bundle V may have
different dimensions on these components. With this convention we have the following
generalization of Lemma 5.2.

Lemma 5.3 Every class in πn(MB ∧ Ω∞K(C)+) can be obtained in this way.

Proof. This is essentially the same proof as in Lemma 5.2 2

If a space Y has already a base point, then we have a natural map Y+ → Y of based
spaces which sends the new external base point to the base point in Y . For any spectrum
E it induces a map from the unreduced to the reduced E-homology theory

π∗(E ∧ Y+) → π∗(E ∧ Y ) .

Just to explain a further notation, we can identify

π∗(E ∧ Y ) ∼= π∗(E ∧ Σ∞Y )

by reinterpreting the meaning of the smash product. This will be applied to the based
space Ω∞K(C). When we write [M, f, g] ∈ πn(MB ∧ Σ∞Ω∞K(C)) we mean the im-
age of (99) under this projection and identification. We can use the counit (40) u :
Σ∞Ω∞K(C) → K(C) in order to obtain the bordism class

u∗([M, f, g]) ∈ πn(MB ∧K(C))

of the algebraic K-theory spectrum.
In the case of stable homotopy (i.e. where B is a point) we have the following assertion.

Lemma 5.4 Every class in x ∈ πn(K(C)) can be written in the form x = u∗([M, g]) for a
suitable normally stably framed closed n-manifold and a map g :M → Ω∞K(C)+ arising
from a flat complex vector bundle on M . If x is a torsion class, then we can in addition
assume that [M, g] ∈ πn(S ∧ Ω∞K(C)+) is a torsion class.

Proof. Let x ∈ πn(K(C)). This map is represented by a map g̃ : Sn → Ω∞K(C). On
Sn we choose the stable normal framing which extends to the disc Dn+1. In this way we
get a stable homotopy class [Sn, g̃] ∈ πn(S ∧ Ω∞K(C)+). If x was a torsion class, then
[Sn, g̃] is a torsion class, too. We now apply Lemma 5.3 which asserts that we can write
[S, g̃] = [M, g], where g has a factorization as in (98) with possibly different dimensions
k on different components of M . Then u∗([M, g]) = x. If x was torsion, then the class
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[M, g] is torsion, too. 2

We start with an unstable version

ηtop : πn(MB ∧BGL(Cδ)++) → Qn(B,BGL(C
δ)+) .

A calculation of the target of this map seems intractable, but we will construct an in-
teresting map out of this group with values in Q/Z. The identity map Cδ → C (where
C in the target has the usual euclidean topology) induces a map of topological groups
GL(Cδ) → GL(C). It induces the first map in the following chain

Θ̃0 : BGL(C
δ) → BGL(C)

x 7→(0,x)
→ Z×BGL(C) ∼= Ω∞K .

We can interpret this map as topological K-theory class Θ̃0 ∈ K0(BGL(Cδ)+). Again,
since p in (97) induces an isomorphism in complex K-theory there exists a unique class
Θ0 ∈ K0(BGL(Cδ)++) such that p∗Θ0 = Θ̃0. Let λk denote K-theory class of the universal
flat Ck -bundle on BGL(k,Cδ). Then the restriction of Θ0 to BGL(k,Cδ) is equal to
λk − k.
Let q : B+ ∧ BGL(Cδ)++ → BGL(Cδ)++ denote the projection. We have ch(Θ0) = 0 so
that by Lemma 2.4 evaluation against q∗Θ0 defines a well-defined map

evq∗Θ0 : Qn(B,BGL(C
δ)+) → Q/Z .

We can now consider the composition

ε0 : πn(MB ∧ BGL(Cδ)++)
ηtop

→ Qn(B,BGL(C
δ)+)

evq∗Θ0→ Q/Z .

Our first goal is to give a more or less analytic description of the element

ε0([M, f, g0]) ∈ Q/Z .

Our result is stated as Theorem 5.5. In order to formulate its statement we must generalize
the construction of the universal KR/Z−1-class of the space BU(k)δ given in Subsection
5.2 to the stable and non-unitary case. We will obtain an universal element

Λ0 ∈ KR/Z−1(BGL(Cδ)++)

such that ∂Λ0 = Θ0, where ∂ denotes the Bockstein. Its pull-back along the projection
Ω∞K(C)+ ∼= (Z×BGL(Cδ)+)+ → BGL(Cδ)++ is a class

Λ ∈ KR/Z−1(Ω∞K(C)+) .

By construction it will represent the real part of the natural transformation of functors

e : K(C)0(. . . ) → KC/Z−1(. . . ) (100)
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defined in [42, Sec. 2].
For every map from a compact manifold N → BGL(Cδ) there exists a factorization
h : N → BGL(k,Cδ) for some k. This map classifies a flat complex vector bundle
Vflat = (V,∇V,flat). We choose some not necessarily flat metric hV and form the unitary
connection

∇V :=
1

2

(

∇V,flat + (∇V,flat)∗hV
)

.

The Chern form of a connection on a complex vector bundle is a closed complex form
which is real if the connection is unitary. We thus have a complex transgression

c̃h(∇V ,∇V,flat) ∈ ΩP−1
C (M)/im(d)

such that
dc̃h(∇V ,∇V,flat) = ch(∇V )− k .

Since the connection ∇V is unitary its Chern form is real and we also have the equality

dℜ(c̃h(∇V ,∇V,flat)) = ch(∇V )− k . (101)

As a side remark, the imaginary part ℑ(c̃h(∇V ,∇V,flat)) is a closed form and represents
a characteristic class of the flat bundle (V,∇V,flat) which played e.g. a prominent role in
[16]. We let V := (V, hV ,∇V ) be the induced geometric bundle over N . We get a flat
class

[V]− k − a(ℜ(c̃h(∇V ,∇V,flat))) ∈ K̂0
flat(N) ∼= KR/Z−1(N+) .

Since any two choice of metrics on V can be connected by a path it follows from the
homotopy invariance of the functor KR/Z−1(. . . ) that this class does not depend on the
choice of the metric hV . By similar reasoning we see that we have constructed a homotopy
invariant section of the restriction of the functor KR/Z−1(. . . ) to the category of compact
smooth manifolds over BGL(k,Cδ). This section is thus represented by an universal class
Λ̃k ∈ KR/Z−1(BGL(k,Cδ)+). The restriction of Λ̃k to BU(k)δ+ ⊂ BGL(k,Cδ)+ is equal
to the class Λk in (95). We further observe that the collection of these classes is compatible
with stabilization in k. We therefore get a universal class Λ̃ ∈ KR/Z−1(BGL(Cδ)+).
Finally we use that the +-construction map (97) induces an isomorphism in KR/Z-
cohomology theory so that we get a class Λ0 ∈ KR/Z−1(BGL(Cδ)++) such that p∗Λ0 = Λ̃.
It satisfies ∂Λ0 = Θ0.

Theorem 5.5 Let (M, f) be an n-dimensional closed B-manifold and g0 :M → BGL(Cδ)+

be a map induced by a flat bundle V as in (98). We assume that [M, f, g0] ∈ πn(MB ∧
BGL(C)++)tors. If V carries a flat hermitean metric, then

ε0([M, f, g0]) = ρ(D/M ,V) . (102)

In general we have
ε0([M, f, g0])) = 〈[M ]K , g

∗
0Λ0〉 . (103)

where [M ]K ∈ πn(K ∧M+) denotes the K-theory fundamental class of M .
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Proof. We first prove the general case (103) by the following chain of equalities

ε0([M, f, g0])
Lemma 2.5

= evq∗Θ0(η
top([M, f, g0]))

= 〈ThomKQ/Z(q∗Λ0), ǫK([M, f, g0])〉
variant of (18)

= 〈g∗0Λ0, [M ]K〉 .

In the unitary case we observe that g∗0Λ0 = [V]− k. The equality (102) now follows from
(96) and the chain

ε0([M, f, g0])
(103)
= 〈g∗0Λ0, [M ]K〉 = 〈[V]− k, [M ]K〉

(96)
= ρ(D/M ,V) .

Note that in the present paper we have shown (96) under the assumption that σ∗[M, f, gu0 ]
is a torsion class in πn(MBSpinc+∧BU(k)

δ
+), where g

u
0 :M → BU(k)δ denotes an unitary

factorization of g0 and σ∗ is induced by the mapMσ :MB →MBSpinc. Since this might
not be the case in general we have to appeal to the proof of this formula (96) without
such assumption given in [8, Thm. 5.3]. 2

We now come to the stable version of ηtop. We must choose a stable class Θ ∈ K0(K(C))
in order to define an evaluation on Qn(MB,K(C)). The class Θ0 ∈ K0(Ω∞K(C)+) used
in the unstable version does not come from a stable class. We rather use the natural map

Θ : K(C) → K

of spectra. The Chern character of this class does not vanish but is concentrated in
degree zero. Hence for a general bordism theory the class q∗Θ ∈ K0(B+ ∧ K(C)) may
evaluate non-trivially against elements coming from πn+1(MBQ ∧ K(C)). In order to
have a well-defined evaluation we restrict to the case of stable homotopy, i.e. to the case
B = ∗.
The domain of the stable version of ηtop is the torsion subgroup πn(K(C))tors which has
been determined by Suslin [57, Thm 4.9] as

πn(K(C))tors ∼=

{

Q/Z n odd
0 n even

(104)

Indeed [57, Thm 4.9] states a stronger assertion. In positive degrees the algebraic K-
theory of the complex numbers is given by its torsion part up to a uniquely divisible
group. In the stable homotopy case we have Td = 1 so Td∪ch(q∗Θ) vanishes in positive
degrees. It follows from Lemma 2.4 that the evaluation

evq∗Θ : Qn(K(C)) → Q/Z

is well-defined. We now consider the composition

ε : πn(K(C))tors
ηtop

→ Qn(K(C))
evq∗Θ
→ Q/Z .

62



Let (M, g) be an n-dimensional closed normally stably framed manifold with a map g :
M → Ω∞K(C) induced by a flat bundle V as in (98). It gives rise to the classes [M, g] ∈
πn(Ω

∞K(C)+) and hence u∗([M, g]) ∈ πn(K(C)). By Lemma 5.4 all classes in πn(KC)
can be represented in this way. This gives many examples to which the Theorem 5.6
applies. Note that g factors over the inclusion

ik : BGL(C
δ)+ ∼= {k} ×BGL(Cδ)+ →֒ Ω∞K(C) .

Therefore we can consider [M, g] as the image under this inclusion of a class [M, g0] ∈
πn(S ∧ BGL(Cδ)++). The closed normally stably framed n-manifold M also represents
the stable homotopy class [M ] ∈ πSn which has the Adams’ invariant eAdamsC ([M ]) ∈ Q/Z
defined in (89).
We can now state the stable version of Theorem 5.5.

Theorem 5.6 Let (M, g) be an n-dimensional closed normally stably framed manifold
with a map g : M → Ω∞K(C) induced by a flat bundle V as in (98). We assume that
[M, g] ∈ πn(S ∧ Ω∞K(C)+)tors. If V carries a flat hermitean metric, then

ε(u∗([M, g])) = ρ(D/M ,V) + keAdamsC ([M ]) . (105)

In general we have

ε(u∗([M, g])) = 〈g∗0Λ0, [M ]K〉+ keAdamsC ([M ]) . (106)

where [M ]K ∈ πn(K ∧M+) denotes the K-theory fundamental class of M .

Proof. We again start with the general case (106). Using Lemma 2.12 we calculate

ε(u∗([M, g])) = evΘ(η
top(u∗([M, g]))) = evΘ(u

∗(ηtop([M, g])))

= evu∗Θ(η
top([M, g])) = evi∗ku

∗Θ(η
top([M, g0]))

= evΘ0+k(η
top([M, g0])) .

Note that k ∈ K0(BGL(Cδ)++) is pulled-back from a point. We can now use the unstable
case (103) and (89) in order to deduce

ε(u∗([M, g])) = 〈g∗0, [M ]KΛ0〉+ keAdamsC ([M ]) .

The unitary case (105) now follows from (106) and (102). 2

We now show how one can deduce a special case of [42, Thm A] from (106). In [42]
an algebraic K-theory class is constructed from a homology sphere M of dimension n
and a representation α : π1(M) → GL(k,Cδ). One gets an induced map g̃ : M

α
→

BGL(k,Cδ) → BGL(Cδ) to which Quillens +-construction is applied. The fundamental
group of a homology sphere is perfect so that the +-construction M+ of M is homotopy
equivalent to a simply-connected homology sphere, hence to Sn. Thus we get a map
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g+ : Sn ≃ M+ g̃+

→ BGL(Cδ)+ which represents a class [Sn, g+] ∈ πn(K(C)). The homol-
ogy sphere M admits a stable normal framing (see e.g. [44] or [31, Lem. 1]) and the

composition g :M →M+ g̃+

→ BGL(Cδ)+ gives the class [M, g] ∈ πn(S ∧ Ω∞K(C)+) such
that u∗([M, g]) = [Sn, g+].
LetVflat denote the flat vector bundle determined by the representation α. The statement
of [42, Thm A] is the equality

e([Sn, g+]) = ρC(D/M ,V
flat) (107)

in C/Z, where on the left-hand side we consider [Sn, g+] ∈ K0(Sn), the map e is the
transformation (100), and we have identified KC/Z−1(Sn) ∼= C/Z. The subscript C on
the right-hand side indicates a complex version of the ρ-invariant defined for flat vector
bundles without requiring a flat hermitean metric. In the language of the present paper,
using Lemma 2.5, the left-hand side of (107) can be identified with

ε([Sn, g+])− keAdamsC ([M ]) ∈ R/Z

if [Sn, g+] is a torsion class.
The real part of the complex ρ-invariant for a (not necessarily unitarily) flat vector bundle
Vflat can be expressed as

〈g∗Λ0, [M ]K〉 .

Therefore, if [Sn, g+] ∈ πn(K(C)) is torsion, then (106) is equivalent to the real part of
(107).
Let us comment on the fact that Adams’ e-invariant appears on the right-hand sides
of (105) and (106). Note that K(C) is a ring spectrum with unit ǫK(C) : S → K(C).
The unit induces a homomorphism πS∗ → π∗(K(C)). Since the image im(J) of the J-
homomorphism (90) is a well-known summand of πS∗ it was an interesting question to
determine its image under the unit ǫK(C). Let us consider the case

Z
Bm

4m
Z

∼= im(J)4m−1 ⊆ πS4m−1 .

In [50] it has been shown that this piece goes injectively to algebraic K-theory. This was
deduced from the following two facts:

1. im(J)4m−1 is detected by (the real version of) Adams’ e-invariant e : πS4m−1 → Q/Z.

2. The e-invariant has a factorization over the analog

K(R)0(. . . ) → KOC/Z−1(. . . )

of the homomorphism (100).

The complex case of this factorization is easily seen from Theorem 5.6. In fact the elements
in im(J)4m−1 can be represented by cycles of the form u∗([S

4m−1
fr , g]), where fr is a normal

framing obtained from the standard framing by twisting with an element of π4m−1(O).
For V we take the trivial bundle of dimension 1. Then we get from Theorem 5.6

ε(u∗([S
4m−1
fr , g])) = eAdamsC ([S4m−1

fr ]) .
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5.4 String-bordism

In this Subsection we describe the connection of the present paper with constructions in
[21]. In this reference we constructed an invariant ban of elements of the String-bordism
group in dimension 4m − 1 using a formula which shares a lot of similarities with the
intrinsic formula (88) for ηan. For the evaluation of ban on the subset of string bordism
classes in the kernel of the natural map to Spin-bordism we in addition gave extrinsic
formulas involving the Spin zero bordisms explicitly. One of the interesting features of
the restriction of ban to this subset is that it has a factorization over the String orientation
of tmf, the spectrum of topological modular forms. Since ban is calculable in interesting
cases it can be used to detect the tmf-class represented by a closed String-manifold. This
will be the topic of another publication.
Our goal here is to give the precise relation between ban and the universal η-invariant
of the present paper. The result is formulated in Theorem 5.8. In the course of this
discussion we show one of the conjectures stated [21] asserting that the factorization of
ban over topological modular forms holds true on the whole String-bordism group, i.e.
we get rid of the restriction to the kernel to the Spin-bordism. This is formulated as
Corollary 5.11. Formally our proof is complete in dimensions 8m−1, while in dimensions
8m − 5 we lose some two-torsion since in the present paper we work with complex K-
theory instead of real K-theory. We strongly believe that the relevant part of the theory
has a real version which does prove the case in dimension 8m− 5 completely, too.
We designed the notion of a geometrization such that it allows to produce an intrinsic
formula for the universal η-invariant which specializes to the previously known intrinsic
formula for ban. In Proposition 5.13 we show how the Riemannian geometry on a String-
manifold together with a geometric string structure give rise to a geometrization, and we
derive the corresponding intrinsic formula.
We start with recalling the definition of String-bordism. The space BString is defined
as a stage in the Postnikov tower of BO:

BString

p

��
BSpin

��

p1
2 // K(Z, 4)

BSO

��

w2 // K(Z/2Z, 2)

BO
w1 // K(Z/2Z, 1)

.

The space BString = BO〈8〉 is just a low instance of a whole tower of higher connected
coverings of the classifying space BO. Starting with BString these higher spaces are no
longer associated to classical families of compact Lie groups.
In the String-case the search for appropriate geometric models (see e.g. [34]) plays
an important role in the developments around the Stolz-Teichner program [56]. The
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naming BString is related to the fact that string structures on a manifold are related with
Spin-structures on its loop space. The principal idea of String-geometry is to translate
geometric structures on the infinite-dimensional Spin-principal bundle of the loop space
to finite-dimensional geometric objects on the manifold itself by a sort of transgression.
Geometrizations of String-manifolds can be considered as one aspect of String-geometry
though in the present paper we will not consider the connection with the loop space.
In Lemma 5.12 we demonstrate that a connection on a Spin-principal bundle gives rise to
a geometrization. While the connection on the principal bundle allows to define connec-
tions on all associated vector bundles, the geometrization partially keeps this information
in terms of the differential K-theory classes represented by these vector bundles with
connections. The geometrization associated to a geometric String structure in this sense
replaces the theory of connections on the non-existing principal bundle with structure
group String. We think that the methods used in the case of BString = BO〈8〉 can
easily be adapted to the higher stages BO〈n〉.
In order to comply with the notation of the present paper we write MBString for the
Thom spectrum which would usually be denoted by MString or MO〈8〉.
We apply our theory in the case where X = ∗ and B = BString with the map

σ : BString → BSpin → BSpinc .

The String-bordism spectrum MBString is rationally even (see [39], [41], [40] for more
calculations), so that for n = 4m− 1 we have

πn(MBString)tors = πn(MBString) .

We write Qn(BString) := Qn(BString, {∗}) and consider the analytic and topological
aspect of the universal η-invariant

ηtop = ηan : πn(MBString) → Qn(BString) .

We will show that we can obtain ban from the universal η-invariant by defining an inter-
esting homomorphism out of Qn(BString). It involves evaluations against a collection of
elements Rk(ξ

String
n ) ∈ K0(BString+) for all k ≥ 0. It is useful to organize this collection

in a formal power series

R(ξStringn ) :=
∑

k≥0

qkRk(ξ
String
n ) ∈ K[[q]]0(BString+)

which we will describe in the following. ByK[[q]] we denote the multiplicative cohomology
theory (resp. the corresponding spectrum) which associates to a space Y the ring

K[[q]]∗(Y+) := K∗(Y+)[[q]]

of formal power series with coefficients in K∗(Y+). The following constructions with real
vector bundles are standard in the theory of the Witten genus (111), compare e.g. with
[35], [21]. Given a real vector bundle V → Y we consider the element

R(V ) ∈ K[[q]]0(Y+)
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defined by

R(V ) :=

∞
∑

k=0

Rk(V )q
k , (108)

where Rk(V ) is the K-theory class of the virtual bundle given by the coefficient in front
of qk in the expansion of

∏

k≥1

(1− qk)2 dim(V )
⊗

k≥1

Symqk(V ⊗R C) ,

where
Symp(V ) :=

⊕

k≥0

pkSymk(V ) .

The transformation V 7→ R(V ) is exponential, i.e. it satisfies R(V ⊕W ) = R(V )∪R(W ).
Moreover, it has values in the group of multiplicative unitsK[[q]]0(Y+)

× because the power
series starts with 1, i.e. we have R(V ) = 1 + O(q). In view of the universal property of
KO0 it therefore extends to a natural transformation

R : KO0(Y+) → K[[q]]0(Y+)
× .

The composition

BString → BO
x 7→(0,x)
−→ Z× BO ∼= Ω∞KO

classifies the universal class θString ∈ KO0(BString+). We fix n = 4m− 1 and let

λStringn := n− θString ∈ KO0(BString+) . (109)

If (M, f) is a cycle for πn(MBString), where the map f : M → BString classifies the
String-structure on the stable normal bundle of M , then we obviously have the equality

[TM ] + 1 = f ∗λStringn+1 ∈ KO0(M+) (110)

We have well-defined classes Rk(λ
String
n+1 ) ∈ K0(BString+) for all k ≥ 0 and therefore

R(λStringn+1 ) ∈ K[[q]]0(BString+). With this notation the Witten genus

σC
Witten : πn+1(MBString) → πn+1(K[[q]])

is given by
σC
Witten(y) = 〈ThomK(R(λStringn+1 )), ǫK(x)〉 . (111)

We use the superscript C in order to indicate that we work with the image of the KO[[q]]-
valued Witten genus in complex K-theory K[[q]].
Motivated by the above constructions we organize the evaluations of Qn(BString) against
the family of classes Rk(λ

String
n+1 ) into a formal power series and define a homomorphism

W : Hom(K0(BString+), πn+1(KQ/Z)) → Q/Z[[q]] :=
∏

k≥0

Q/Z qk (112)
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by

W (φ) :=
∑

k≥0

evRk(λ
String
n+1 )(φ)q

k .

Here we identify πn+1(KQ/Z) ∼= Q/Z. The homomorphism (112) does not yet factorize
over the quotient Qn(BString) since it does not vanish on the subgroup U defined in
(24). In order to get such a factorization we must replace the target Q/Z[[q]] of W by
the quotient by a subgroup which contains W (U). This subgroup will be defined using
modular forms. We let MR

2m denote the space of modular forms for SL(2,Z) of weight
2m whose q-expansion has coefficients in the subring R ⊆ C (see [35] for an introduction).
In particular, we let

MQ
2m[[q]] ⊆ Q[[q]]

be the finite-dimensional vector space of q-expansions of rational modular forms MQ
2m of

weight 2m. Its image in Q/Z[[q]] will be denoted by MQ
2m[[q]]. We define

T2m :=
Q/Z[[q]]

MQ
2m[[q]]

. (113)

Up to the replacement of Q by R this is exactly the group defined in [21, Def. 1.1].

Lemma 5.7 The composition of (112) with the projection to the quotient (113) induces
a well-defined map

W̄ : Q4m−1(BString) → T2m .

Proof. We must show that under this composition the subgroup U defined in (24) is

mapped to MQ
2m[[q]]. By (111) we have for y ∈ πn+1(MBString) that

〈ThomK(R(λStringn+1 )), ǫK(y)〉 = σC
Witten(y) ∈ πn+1(K[[q]]) .

If we identify πn+1(K[[q]]) ∼= Z[[q]], then the Witten genus has values in MZ
2m[[q]] ⊂ Z[[q]].

More generally, for y ∈ πn+1(MBStringQ) we get

〈ThomK(R(λStringn+1 )), ǫK(y)〉 ∈ MQ
2m[[q]] .

This shows that W̄ (U) ⊆ MQ
2m[[q]]. 2

In [21, Sec 3.3] we have constructed homomorphisms

ban : π4m−1(MBString) → T2m , btop : A4m−1 → T2m

where
A4m−1 = ker(π4m−1(MBString) → π4m−1(MBSpin)) .

Since in the present paper we work we complex K-theory as opposed to real K-theory in
[21, Sec 3.3] we define

b∗C :=

{

b∗ m even
2b∗ m odd

, ∗ ∈ {an, top, tmf} . (114)
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The following theorem clarifies the relation between banC , b
top
C and the universal η-invariant

of the present paper.

Theorem 5.8 We have the equalities

W̄ ◦ ηtop|A4m−1
= btopC

and
W̄ ◦ ηan = banC

Proof. We extend the map MBString → MBSpin to a fibre sequence

Σ−1MBSpin → A →MBString →MBSpin

which defines the spectrumA. The smash product of the fibre sequence with the Bockstein
sequence

Σ−1MQ/Z → MZ → MQ → MQ/Z

yields the following quadratic diagram

Σ−2MBSpinQ

��

// Σ−1AQ

��

// Σ−1MBStringQ

��

// ŵ Σ−1MBSpinQ

��
Σ−2MBSpinQ/Z

��

// Σ−1AQ/Z

��

// x̂ Σ−1MBStringQ/Z

��

// ŷ Σ−1MBSpinQ/Z

��
Σ−1MBSpin

��

// ẑ A

��

// xMBString

��

// 0 MBSpin

��
−ŵ Σ−1MBSpinQ // z̃AQ // 0 MBStringQ // MBSpinQ

We start with x ∈ A4m−1 ⊆ π4m−1(MBString). This element goes to zero if it is mapped
to the right or down. The class W̄ (ηtop(x)) is represented by the power series

∑

k≥0

〈ThomK(Rk(ξ
String
4m )), ǫK(x̂)〉q

k ∈ Q/Z[[q]] . (115)

Note that we can define classes θSpin and λSpinn := n− θSpin ∈ KO0(BSpin+) analogously
to (109). Then we have equalities of the evaluations

〈ThomK(Rk(λ
String
4m )), ǫK(x̂)〉 = 〈ThomK(Rk(λ

Spin
4m )), ǫK(ŷ)〉 (116)

= [〈ThomK(Rk(λ
Spin
4m )), ǫK(ŵ)〉] ∈ Q/Z ,

where the elements ŷ and ŵ are images and lifts as indicated in the above diagram, and
where we use the compatibility of the K-theory Thom isomorphisms for MBString and
MBSpin. In the construction of btop in [21, Sec 4.1] we go the other way. We first lift
x to ẑ which maps to z̃ which is then again lifted to Σ−1MBSpin. Modulo the obvious
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ambiguities this element in the lower left corner is the negative of ŵ from the upper right
corner. By the definition of btop in [21, Sec 4.1] we see that btopC (x) is represented by

∑

k≥0

[〈ThomK(Rk(λ
Spin
4m )), ǫK(ŵ)〉]q

k ∈ Q/Z[[q]] .

Combining this with (115) and (116) we see that

W̄ ◦ ηtop|A4m−1
= btopC .

This proves the first assertion of Theorem 5.8.
We now show the second. Let x = [M, f ] ∈ πn(MBString) be an l-torsion element repre-
sented by the cycle (M, f) and (W,F ) be a zero-bordism of the union of l copies of (M, f).
We choose the geometry on M and W as in Subsection 3.4. The Spinc-structures come
from Spin-structures so hat the Levi-Civita connections have canonical Spinc-extensions
∇̃TM and ∇̃TW . In view of Equation (110) the K[[q]]-theory class R(λString4m ) can be rep-
resented by a formal power series of Z/2Z-graded bundles R(TM ⊕ 1) associated to the
tangent bundle. The Riemannian metric and the Levi-Civita connection turn TM into
a geometric bundle. The construction of R(TM ⊕ 1) therefore produces a formal power
series of geometric bundles R(TM ⊕ 1).
The construction of ban involves the choice of a geometric String-structure α on M . This
notion has been introduced in [59]. As a main feature it produces a form Hα ∈ Ω3(M)
with the property that

2dHα = p1(∇
TM,LC) . (117)

In the following we use characteristic forms associated to certain power series

Φ̃ , Φ , Θ ∈ Q[[q]][b, b−1][[p1, p2, . . . ]] .

We refer to [21, Sec 3.3] for an explicit definition. In the present paper distribute the
powers of b such that Φ and Θ have total degree zero, and Φ̃ has total degree −4. In the
the notation of (126) we have

Φ = ΦR(λSpin
4m ) , Φ̃ = Φ̃R(λSpin

4m ) , Θ = Φ− p1Φ̃ .

The notation Φ̃(∇TM) is as in (127). We start with the representative of banC (x) given in
[21, Def 4.1]

[2

∫

M

Hα ∧ Φ̃(∇TM)]− ξ(D/M ⊗R(TM ⊕ 1))] ∈ R/Z[[q]] , (118)

where here and below we ignore the power b−2m. We use the APS index formula (52) in
order to express the reduced η-invariants (51). Using the equality

Φ(∇TW ) = Td(∇̃TM) ∧ ch(∇R(TM⊕1))
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we get

(118) = [2

∫

M

Hα ∧ Φ̃(∇TM)−
1

l

∫

W

Φ(∇TW )] + [
1

l
index(D/W ⊗R(TW ))APS] .

We now use Stokes’ theorem and the relation (117) in order to calculate

2

∫

M

Hα ∧ Φ̃(∇TM)−
1

l

∫

W

Φ(∇TW )

=
1

l

∫

W

(

p1(∇̃
TW ) ∧ Φ̃(∇TM)− Φ(∇̃TW )

)

=
1

l

∫

W

Θ(∇̃TW ) ∈ MR
2m[[q]] .

For the last inclusion we use the crucial fact that

p4m(Θ) ∈ MQ
2m[[q]][p1, p2, . . . ] ⊂ Q[[q]][[p1, p2, . . . ]] ,

see [21, Sec. 3.3]. Therefore

[
1

l
index(D/W ⊗R(TW ))APS] ∈ R/Z[[q]]

is a representative of banC (x) ∈ T2m, too. But in view of Definition 3.5 and the construction
of W̄ this is also a representative of W̄ (ηan(x)) ∈ T2m. This shows

W̄ ◦ ηan = banC .

2

As a consequence of the equality ηan = ηtop shown in Theorem 3.6 we get another proof
of [21, Thm. 2.2].

Corollary 5.9 We have the equality

banC|A4m−1
= btopC .

The spectrum of topological modular forms tmf has been constructed by Miller, Goerss
and Hopkins, and in an alternative way by Lurie, see the survey [47]. It is related to
K-theory and String-bordism by a factorization of the Witten genus

MBString

σCWitten

��

σWitten

##
σAHR // tmf

WC

;;
W //// KO[[q]] // K[[q]] ,
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where σAHR is the String-orientation of tmf constructed by Ando, Hopkins and Rezk.
We now recall from [21, Sec.4.3] the construction of the homomorphism

btmf : π4m−1(tmf) → T2m

which is very similar to that of ηtop. Note that π4m−1(tmf) is a torsion group (see [37],
[13] for more calculations of π∗(tmf)). Therefore an element y ∈ π4m−1(tmf) can be lifted
to an element ŷ ∈ π4m(tmfQ/Z). Then

btmf(y) := [W (ŷ)] ∈ T2m ,

where [W (ŷ)] denotes the class in T2m of the element W (ŷ) ∈ π4m(KO[[q]]Q/Z) ∼=
Q/Z[[q]]. The complex version btmfC of btmf is defined similarly by

btmfC (y) := [WC(ŷ)] ∈ T2m ,

or alternatively, by (114).

Proposition 5.10 We have the equality

btmfC ◦ σAHR = W̄ ◦ ηtop : π4m−1(MString) → T2m .

Proof. If x ∈ π4m−1(MString) and x̂ ∈: π4m(MStringQ/Z) is a lift, then

〈ThomK(R(λString4m )), ǫK(x̂)〉 ∈ Q/Z[[q]]

represents W̄ ◦ηtop(x). We have already seen in the proof of Lemma 5.7 that this expression
is equal to the Witten genus (extended to Q/Z-theory)

〈ThomK(R(λString4m )), ǫK(x̂)〉 = σC
Witten(x̂) .

The Witten genus can now be decomposed as

σC
Witten(x̂) =WC(σAHR(x̂)) .

We can take σAHR(x̂) ∈ π4m(tmfQ/Z) as the lift of σAHR(x) ∈ π4m(tmf) so thatWC(σAHR(x̂))
represents btmfC (σAHR(x)). Hence we can conclude that

btmfC ◦ σAHR(x) = W̄ ◦ ηtop(x) .

2

Using ηan = ηtop and W̄ ◦ ηan = banC (Theorem 5.8) we get

Corollary 5.11 We have
banC = btmfC ◦ σAHR .
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This proves the complex version of the conjecture 3 in [21, Sec 1.5]. In fact, for even m
there is no difference between the real and complex case, but in the case of odd m the
complex version implies the real version up to two-torsion which was known before. We
believe that a real version of the present theory would prove the conjecture completely.
The formula for ban given in [21, Sec 3.3] and reproduced here as (118) is an intrinsic
formula which uses the notion of a geometric String-structure [59]. In the following we
show that a geometric String-structure gives rise to a good geometrization GString such
that the intrinsic formula 4.12 specializes to the one for ban. Since String-structures refine
Spin-structures we start with the construction of a geometrization for a Spin-structure.
Let (M, f) with f : M → BSpin be an n-dimensional manifold with a normal Spin-
structure. We are going to use a version of Subsection 3.3 for Spin-structures. If V →M
is a real euclidean oriented vector bundle, then the Spin-gerbe Spin(V ) of V associates
to each open subset A ⊆M the groupoid Spin(V|A) of Spin-structures on the restriction
of V to A. This gerbe has the band Z/2Z, and its isomorphism class is classified by the
Dixmier-Douady class

DD(Spin(V )) = w2(V ) ∈ H2(M ;Z/2Z) ,

the second Stiefel-Whitney class of V .
We choose a Riemannian metric onM and a tangential representative of the normal Spin-
structure on TM . It is given by a geometric Spin-structure P ∈ Spin(TM) together with
a trivialization

P ⊗ f̃ ∗QSpin
k

∼= Q(n + k) , (119)

where f̃ :M → BSpin(k) is some factorization of f , andQSpin
k → BSpin this time denotes

the universal Spin-bundle. It naturally induces a tangential representative of the induced
normal Spinc-structure by extension of structure groups along Spin(l) → Spinc(l) (see
[46, Example D.5]).
The Levi-Civita connection gives rise to a connection ∇TM on P which in turn has a

natural Spinc-extension ∇̃TM . We furthermore choose a connection ∇k := ∇f̃∗QSpin
k on

f̃ ∗QSpin
k .

Proposition 5.12 There exists a good geometrization GSpin of (M, f, ∇̃TM).

Proof. The connections ∇TM and ∇k together induce a connection ∇TM ⊗ ∇k on P ⊗
f̃ ∗QSpin

k which can be compared with a trivial connection using the isomorphism (119).
Therefore the transgression form T̃d(∇TM⊗∇k,∇triv) ∈ ΩP−1(M) is defined and satisfies

dT̃d(∇TM ⊗∇k,∇triv) = Td(∇TM) ∧Td(∇k)− 1 .

We let
µ := Td(∇k)−1 ∧ T̃d(∇TM ⊗∇k,∇triv) . (120)

For any pointed space or spectrum Y we let K̄∗(Y ) denote the completion the topological
group K∗(Y ) equipped with the profinite topology (see [18, Def. 4.9] and Subsection 2.2).
We have BSpin+ := hocoliml BSpin(l)+ and therefore

K̄∗(BSpin+) ∼= liml K̄
∗(BSpin(l)+) .
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The completion theorem [9] gives

K∗(BSpin(k)+) = K̄∗(BSpin(k)+) ∼= R(Spin(k))ˆISpin(k)
.

We therefore get the following description of the completion of the K-theory of BSpin:

K̄∗(BSpin+) ∼= liml K
∗(BSpin(k + l)+) ∼= liml R(Spin(k + l))ˆISpin(k+l)

.

Given l ≥ 0 and a representation ρ of Spin(k + l) we obtain a geometric bundle Vρ

associated to the stabilization f̃ ∗QSpin
k ⊗Q(l) of f̃ ∗QSpin

k with the connection ∇k ⊗∇Q(l)

induced by ∇k. We define

G(ρ) := [Vρ]− a(µ ∧ ch(∇Vρ)) ∈ K̂0(M) .

We have chosen the form µ in (120) such that the following equality holds true in ΩP 0
cl(M):

Td(∇̃TM) ∧R(G(ρ)) = Td(∇k)−1 ∧ ch(∇Vρ) . (121)

The map ρ 7→ G(ρ) extends to a map G : R(Spin(k + l)) → K̂0(M) by linearity. This
extension annihilates the power I2n+1

Spin(k+l) ⊆ R(Spin(k + l)) of the dimension ideal. In

order to see this note that if ρ ∈ IpSpin(k+l) and 2p > n, then we have ch(∇Vρ) = 0. For

those ρ we have G(ρ) = [Vρ], and this class is flat. If p > n, then we have [Vρ] = 0 so
that G(ρ) = a(ω) for some ω ∈ HPR−1(M+). The product of a flat class with a class of
this form vanishes. Hence G(ρ) = 0 if e.g. p > 2n (this is not optimal). The map G thus
further extends be continuity to a map

G : K0(BSpin(k + l)+) → K̂0(M) .

One now checks that for l ≥ 1 we have

G(ρ) = G(ρ|Spin(k+l−1) .

In this way the maps G for the various l are compatible and define a continuous map

GSpin : K̄0(BSpin+) → K̂0(M) .

It follows from (121) that Td(∇̃TM) ∧ R(G(ρ)) is the Chern-Weyl representative of the
class Td−1 ∪ ch([ρ]) ∈ HPQ0(BSpin(k + l)+) associated to the connection ∇k ⊗ ∇Q(l),
where [ρ] ∈ K0(BSpin(k + l)+) is the class represented by ρ. Note that

H∗(BSpin;Q) ∼= Q[p1, p2, . . . ] (122)

is the polynomial ring generated by the universal Pontrjagin classes. The cohomological
character

cGSpin : HPQ0(BSpin+) → ΩP 0
cl(M)
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of GSpin maps the class b−2ipi ∈ HPQ0(BSpin+) to the corresponding characteristic form
b−2ipi(∇

k) ∈ ΩP 0
cl(M). This map clearly preserves degrees.

We now show that the geometrization GSpin is good. By an inspection of the construction
of GSpin we observe that the connection of the map f : M → B with the normal bundle
has not been used. This map can be arbitrary if we replace TM by some complement
η → M of f̂ ∗ξk as in Subsection 4.3 and choose some connection ∇η of the associated
complementary Spin-principal bundle P Spin ∈ Spin(η) in the place of ∇TM . We obtain
the Spinc-bundle P with connection ∇̃η which replaces ∇̃TM by extension of the structure
group.
We choose an n + 1-connected approximation fu : Mu → BSpin such that there is a
factorization of f over a closed embedding h : M → Mu. As in Subsection 4.4 we ob-
tain a natural refinement of h to a Spinc-map. Since h is a closed embedding we can
choose the connections ∇̃u on Pu and ∇k,u on f̃ ∗

uQ
Spin
k such that h∗∇̃u = ∇̃TM stably and

h∗∇k,u = ∇k. We now define GSpinu as above. Then by construction GSpin = h∗GSpinu since
the correction forms (75) vanishes. Hence GSpin is good. 2

Let p : BString → BSpin be the natural map. We now consider a manifold (M, f) where
f : M → BString represents a normal String-structure. We have an induced normal
Spin-structure represented by p ◦ f , and we adopt the geometric choices made before the
statement of Proposition 5.12.

Proposition 5.13 A choice of a geometric string structure α on (f̃ ∗QSpin
k ,∇k) naturally

determines a good geometrization GString of (M, f, ∇̃TM). For φ ∈ K̄0(BSpin+) it is given
by

GString(p∗φ) = GSpin(φ)− a(νφ)

with
νφ := Td(∇̃TM)−1 ∧ 2Hα ∧ Φ̃φ(∇

k) ∈ ΩP−1(M) .

Here GSpin is as in Lemma 5.12, Φ̃φ(∇
k) is defined below in (127), and Hα ∈ Ω3(M) is

the three-form given by the geometric string structure.

Proof. We have a fibre sequence

K(Z, 3) → BString
p
→ BSpin→ K(Z, 4) .

By [4] the group K∗(K(Z, 3)) (note that this is reduced K-theory) is divisible and consists
of phantom classes, i.e. classes which vanish when pulled-back to finite CW -complexes.
This suggests the following proposition which is probably well-known, but we could not
find a reference for it.

Proposition 5.14 The projection p : BString → BSpin induces a continuous injective
map

p∗ : K̄∗(BSpin+) → K̄∗(BString+) . (123)

with a dense image.
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Proof. It follows immediately from the definition of the profinite topology that maps
between spaces or spectra induce continuous maps on the cohomology groups. In order
to show the remaining two assertions we need some preparations about divisible groups.
Let A be some abelian group. Then we define its subgroup

Adiv := {a ∈ A | ∀n ∈ N ∃a′ ∈ A s.t. a = na′}

of divisible elements. We consider the exact sequence

0 → Adiv → A→ Ā→ 0 .

Since a divisible group is injective this sequence is split. Hence

A ∼= Adiv ⊕ Ā .

This implies that Ādiv = 0. We now consider a short exact sequence of groups

0 → A→ B → C → 0

together with a map B → X , where X is finitely generated.

Lemma 5.15 If c ∈ Cdiv, then we can find a lift b ∈ B of c whose image in X vanishes.

Proof. We consider the diagram

0

��

0

��

0

��
Adiv

��

// Bdiv
//

��

Cdiv

��
A //

��

B //

��

C

��
Ā //

��

B̄ //

��

C̄

��
0 0 0

with vertical exact sequences. The Snake Lemma gives an isomorphism

Cdiv
im(Bdiv → Cdiv)

∼=
ker(B̄ → C̄)

im(Ā→ B̄)
.

This shows that the group on the right-hand side is divisible. Since any map from a
divisible group to a finitely generated group is trivial we have a factorization B̄ → X of
the map B → X . We thus get a homomorphism

ker(B̄ → C̄)

im(Ā→ B̄)
→

X

Y
,
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where Y ⊆ X is the image of Ā→ B̄ → X . The quotient X/Y is still finitely generated,
and this implies that this map is trivial since its domain is divisible.
We now choose a preimage b0 ∈ B. Its image in b̄0 ∈ B̄ then vanishes when mapped to

C̄ so that it represents a class in ker(B̄→C̄)

im(Ā→B̄)
. The image of this class in X/Y vanishes so

that there exists ā ∈ Ā such that the image of b̄0 − ā in X vanishes. We choose some lift
a ∈ A of ā. Then the image of b := b0 − a in X vanishes. Moreover, b can be taken as a
lift of c, too. 2

We now turn to the actual proof of the Proposition 5.14. We consider the map of maps

BSpin //

id

��

BString

p

��
BSpin // BSpin

which induces a morphism of Serre spectral sequences

p∗ : E(id) → E(p) .

The Serre spectral sequence E(id) is of course the Atiyah-Hirzebruch spectral sequence
of BSpin which converges to K̄∗(BSpin+). After choosing a cellular structure on BSpin
the first page of E(p) is given by the cellular cochain complex

Es,t
1 (p) = Cs(BSpin,Kt(K(Z, 3)+))

of BSpin with coefficients in K∗(K(Z, 3)+). We have an exact sequence

0 → Es,t
1 (p)div → Es,t

1 (p) → E
s,t

1 (p) → 0 .

Since K∗(K(Z, 3)) is divisible by [4] the composition

Es,t
1 (id)

p∗

→ Es,t
1 (p) → E

s,t

1 (p)

is an isomorphism. Moreover, since p∗ is a chain map and there are no non-trivial maps
from a divisible group to a finitely generated group we have a decomposition of chain
complexes

E∗,∗
1 (p) ∼= E∗,∗

1 (p)div ⊕ p∗E∗,∗
1 (id) .

The same reasoning applies to the higher pages and we get a decomposition of the whole
spectral sequence as

E(p) ∼= E(p)div ⊕ p∗E(id) .

We conclude that (123) is injective.
We now show that it has a dense range. Let φ ∈ K∗(BString+). We must approximate φ
by elements in the image of p∗. Let t : T → BString be a map from a finite CW -complex
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so that ker(t∗) ⊆ K∗(BString+) is some neighborhood of zero. We must show that we
can find ψ ∈ K∗(BSpin+) such that

φ− p∗ψ ∈ ker(t∗) . (124)

The cellular structure of BSpin induces a filtration

· · · ⊆ BSpink ⊆ BSpink+1 ⊆ . . . .

We let
· · · ⊆ BStringk ⊆ BStringk+1 ⊆ . . .

be the induced filtration by preimages under p. We let

F kK∗(BString+) := ker(K∗(BString+) → K∗(BStringk−1)+) .

Then we have
Ek,∗

∞ (p) ∼= F kK∗(BString+)/F
k+1K∗(BString+) .

Since T is compact there exists a number k∞ ∈ N such that there is a factorization
t : T → BStringk∞−1 → BString. We then have F k∞K∗(BString+) ⊆ ker(t∗). Assume
that k is maximal such that φ ∈ F kK∗(BString+). It suffices to find ψ̂ ∈ K∗(BSpin+)
and ρ ∈ ker(t∗) such that φ − p∗ψ̂ − ρ ∈ F k+1K∗(BString+). Then a finite iteration
produces the required ψ ∈ K∗(BSpin+) such that (124) holds true.
The element φ gives rise to an element in u ∈ Ek,∗

∞ (p) which we can decompose as u =
v⊕ p∗u0 with v ∈ Ek,∗

∞ (p)div. We let ψ̂ ∈ K∗(BSpin+) be an element with ψ̂|BSpink−1 = 0,
and which is represented by u0 ∈ Ek,∗

∞ (id). We apply Lemma 5.15 to the exact sequence

0 → F k+1K∗(BString+) → F kK∗(BString+) → Ek,∗
∞ (p) → 0

and the map t∗ : F kK∗(BString+) → K∗(X+). By Lemma 5.15 we can find an element
ρ ∈ F kK∗(BString+) ∩ ker(t∗) which represents v. Then we have

φ− p∗ψ̂ − ρ ∈ F k+1K∗(BString+) .

2

We now come to the construction of the good geometrization GString. We choose an
n + 1-connected approximation fu : Mu → BString such that we can factorize f :
M → BString over the closed embedding h : M → Mu. As in Subsection 4.4 we
obtain a natural refinement of h to a Spinc-map. Since h is a closed embedding we can
choose the connections ∇̃u on Pu and ∇k,u on f ∗

uQ
Spin
k such that h∗∇̃u = ∇̃TM stably

and h∗∇k,u = ∇k. Geometric string structure behave as flexible as connections and
metrics [59]. We can therefore assume that there is a geometric string structure αu on
(f ∗
uQ

Spin
k ,∇k,u) which restricts to the geometric string structure α onM . Let GSpinu denote

the geometrization of (Mu, p◦fu, ∇̃
u) constructed in Lemma 5.12. As a first approximation

we define
GStringu,0 : im

(

p∗ : K̄0(BSpin+) → K̄0(BString+)
)

→ K̂0(Mu)
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by
GStringu,0 (p∗(φ)) := GSpinu (φ) , φ ∈ K̄0(BSpin+) .

We can do this since p∗ is injective by Proposition 5.14. The map GStringu,0 is defined on a
dense subset of K̄0(BString+), but is not continuous in general. The idea is now to add
a correction term in order to improve the continuity, and then extend by continuity.
Note that via p∗ we can identify

H∗(BString;Q) ∼= Q[p2, . . . ]

with the quotient ring ofH∗(BSpin;Q) given in (122) by setting p1 = 0. The problem with
continuity comes from the contribution of p1(∇̃

u) to the curvature of GStringu,0 . The idea is
now to kill this contribution by a correction term given by a geometric string structure
αu on (f̃ ∗

uQ
Spin
k ,∇k,u). The geometric string structure provides the form Hαu ∈ Ω3(Mu)

with the property that 2dHαu = p1(∇
k,u) (see 117).

For a formal power series
Λ ∈ Q[b, b−1][[p1, p2, . . . ]]

we define a new formal power series

Λ̃ :=
Λ− ip1=0Λ

p1
∈ Q[b, b−1][[p1, p2, . . . ]] . (125)

In other words, the power series Λ̃ is p−1
1 times the sum of those monomials of Λ which

contain p1. Since the periodic rational cohomology of any pointed space Y is complete,
i.e. we have HPQ∗(Y ) ∼= HPQ

∗
(Y ), the Chern character factorizes over the completion

of K-theory as ch : K̄0(BSpin+) → HPQ0(BSpin+). Let φ ∈ K̄0(BSpin+). Then we
define

Φφ := Td−1 ∪ ch(φ) ∈ HPQ0(BSpin+) ∼= Q[b, b−1][[p1, p2, . . . ]] (126)

and obtain Φ′
φ as described above. We define the form

νu,φ := Td(∇̃u)−1 ∧ 2Hαu ∧ Φ̃φ(∇
k,u) ∈ ΩP−1(Mu) ,

where we use the abbreviation

Φ̃φ(∇
k,u) := Φ̃φ(p1(∇

k,u), p2(∇
k,u), . . . ) . (127)

We can now define the map

GStringu : im(p∗) → K̂0(M)

by the following prescription:

GStringu (p∗(φ)) := GStringu,0 (p∗(φ))− a(νu,φ) .

We further define
GString := h∗GStringu .

Unfortunately we can not verify directly that GStringu is continuous, but we have the
following Lemma.
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Lemma 5.16 The map

GString : im
(

p∗ : K̄0(BSpin+) → K̄0(BString+)
)

→ K̂0(M)

extends by continuity to all of K̄0(BString+) with cohomological character given by pi 7→
pi(∇

k) for all i ≥ 2. The continuous extension (for which we use the same symbol GString)
is therefore a geometrization of (M, f, ∇̃TM).

Proof. Let us consider a sequence (φk) in K̄
0(BSpin+) such that p∗φk → 0 in the profinite

topology of K̄0(BString+) as k → ∞. We must show that there exists a k0 ∈ N such that
for all k ≥ k0 we have GString(p∗φk) = 0. Since Mu is compact we can choose a k0 ∈ N

such that for all k ≥ k0 we have f ∗
up

∗φk = 0 and f ∗
up

∗(Td−1 ∧ ch(φk)) = 0. Since the
pull-back f ∗

u : H∗(BString+;Q) → H∗(Mu;Q) is injective in degrees ≤ n we conclude
that ip1=0Φφk is a polynomial in the generators pl with 4l ≥ n+1. We now calculate using
(121) and (125) that for φ ∈ K̄0(BSpin+)

Td(∇̃u) ∧R(GStringu (p∗(φ))) = Td(∇̃u) ∧ R(GSpinu (φ))− p1(∇̃
k,u) ∧ Φ̃φ(∇

k,u)

= Φφ(∇
k,u)− p1(∇̃

k,u) ∧ Φ̃φ(∇
k,u)

= (ip1=0Φφ)(∇
k,u) . (128)

We conclude that Td(∇̃u)∧R(GStringu (p∗(φk))) = 0 for k ≥ k0. It follows for those k ≥ k0
that the class GStringu (p∗(φk)) is flat and in the kernel of I : K̂0(Mu) → K0(Mu,+). We
conclude that

GStringu (p∗(φk)) ∈ HPR−1(Mu,+)/im(ch) .

An n + 1-connected map induces an isomorphism in ordinary cohomology in degrees
≤ n. Since BString+ is rationally even the odd-dimensional real cohomology of the
n + 1-connected approximation Mu is concentrated in degrees ≥ n + 1. Since M is n-
dimensional the restriction h∗ : HPR−1(Mu,+) → HPR−1(M+) is trivial. This implies
that GString(p∗(φk)) = h∗GStringu (p∗(φk)) = 0 for all k ≥ k0. The assertion about the
cohomological character follows from the relation

Td(∇̃TM) ∧R(GString(φ)) = (ip1=0Φ(p∗)−1(φ))(∇
k)

derived from (128). This finishes the proof of Lemma 5.16. 2

In order to show that the geometrization GString constructed in Lemma 5.16 is good we
must show that GStringu is continuous itself. To this end we argue similarly by represent-
ing this geometrization as a pull-back from a dim(Mu) + 1-connected approximation of
BString+. 2

We now specialize Theorem 4.12 in order to derive an intrinsic formula for

ban([M, f ]) = W̄ ◦ ηan([M, f ]) ∈ T2m .
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The connection ∇k on the Spin(k)-principal bundle f̃ ∗QSpin
k → M turns the real vector

bundle f̃ ∗ξStringk into a geometric bundle Nk. It is a geometric representative of the stable
normal bundle of M , hence the notation. We have

R([TM ] + 1) = R(n + 1 + k − [f̃ ∗ξStringk ]) ∈ K[[q]]0(M+) .

Therefore we get an interpretation ofR(n+1+k−Nk) as a virtual geometric representative
of R([TM ] + 1) (which differs from R(TM + 1) used in (118) since we work with the
geometry on the normal bundle). By construction we have

GString(λStringn+1 ) = [R(n+ 1 + k −Nk)] + a(νR(λSpin
n+1 )) ∈ K̂0(M)[[q]] .

In other words, the correction form for [λStringn+1 ] ∈ K[[q]]0(BString+) is given by

γR(λString
n+1 ) = νR(λSpin

n+1 ) = Td(∇̃TM)−1 ∧ 2Hα ∧ Φ̃R(λSpin
n+1 )(∇

k) ∈ ΩP−1(M)[[q]] .

By Theorem 4.12 the composition W̄ ◦ηtop([M, f ]) ∈ T2m is now represented by the formal
power series

[−

∫

M

2Hα ∧ Φ̃R(λSpin
n+1 )(∇

k)]− ξ(D/M ⊗R(n+ 1 + k −Nk)) ∈ R/Z[[q]] .

This is the version of (118) using the normal bundle geometry on the twisting bundles.

5.5 The Crowley-Goette invariants

In this subsection we show how one can derive the Crowley-Goette invariant introduced
in [27] for S3-principal bundles on certain n = 4m− 1-dimensional manifolds as a special
case of our universal η-invariant. We start with recalling the definitions from [27]. Since
in the present paper we decided to work with Spinc-bordism and complex Dirac operators
we will define the variant tCM which coincides with the Crowley-Goette invariant for odd
m and is its double for even m. Let S3 be the group of unit quaternions and BS3 be its
classifying space. The set of homotopy casses [M,BS3] is the set of isomorphism classes
of S3-principal bundles on M denoted in [27] by Bun(M).
LetM be a closed n-dimensional Spin-manifold such thatH3(M ;Q) = 0 andH4(M ;Q) =
0. Then the Crowley-Goette invariant is defined as a certain function

tM : Bun(M) → Q/Z .

In the following we recall the intrinsic formula [27, (1.9)]. We identify the quaternions with
C2 using the right-multiplication by I. The left multiplication of S3 on the quaternions
gives a representation ρ on C2. Note that

HPQ∗(BS3
+)

∼= Q[b, b−1][[c2]] ,
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and by the completion theorem [9] we have the isomorphism

K0(BS3
+)

∼= R(S3)ˆIS3
.

The representation ρ gives rise to a class [ρ] ∈ K0(BS3
+) and a power series ch([ρ]) ∈

Q[b, b−1][[c2]]
0 of total degree zero. There exists a unique power series Φ̃ ∈ Q[b, b−1][[c2]]

−4

of total degree −4 such that
2− ch([ρ]) = c2 Φ̃ .

Let g̃ ∈ Bun(M) and R → M be an S3-bundle classified by g̃. We choose a connection
∇R on R. For every unitary representation λ of S3 we let Eλ := P ×S3,λ C2 be the
vector bundle associated to R and λ. It comes with a natural hermitean metric hEλ .
The connection ∇R induces a connection ∇Eλ which preserves hEλ . In this way we get a
geometric bundle Eλ = (Eλ, h

Eλ ,∇Eλ). By our assumptions on the rational cohomology
the Chern-Weyl representative c2(∇

R) of c2 is exact, and there exists a unique element
ĉ2(∇

R) ∈ Ω3(M)/im(d) such that dĉ2(∇
R) = c2(∇

R). We define Φ̃ρ(∇
R) ∈ ΩP−4

cl (M) by
replacing c2 by c2(∇

R) in the power series Φ̃.
We choose a Riemannian metric on M which induces the Levi-Civita connection. Fur-
thermore we choose the Spinc-structure induced by the Spin-structure. We then get a
natural Spinc-extension ∇̃TM of the Levi-Civita connection. The complex version

tCM : Bun(M) → R/Z

of tM is now given by [27, (1.9)]

tCM(g̃) := [

∫

M

Td(∇̃TM) ∧ ĉ2(∇
R) ∧ Φ̃(∇R)]− 2ξ(D/M) + ξ(D/M ⊗ Eρ) ∈ R/Z . (129)

To be precise, the value of the integral belongs to R[b, b−1]−4 which will be identified
with R using the generator b−2. In order to relate the Crowley-Goette invariant with
our universal η-invariant we are led to consider a bordism theory of Spinc-manifolds with
S3-bundles with rationally trivial second Chern class. This bordism theory is set up as
follows. We have a fibration ∂

K(Q, 3) // K(Q/Z, 3)

∂
��

K(Z, 4) // K(Q, 4)

of Eilenberg-MacLane spaces. We define the space X by the following homotopy pull-back

X

q

��

// K(Q/Z, 3)

∂
��

BS3
c2 // K(Z, 4)

. (130)
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Since c2 is a rational isomorphism and K(Q/Z, 3) is rationally trivial we see that the
space X is rationally contractible. We conclude that for n = 4m− 1

πn(MSpinc ∧X+)⊗Q ∼= πn(MSpinc ∧XQ+) ∼= πn(MSpincQ) ∼= 0 .

It follows that
πn(MSpinc ∧X+)tors = πn(MSpinc ∧X+)

so that the universal η-invariant is defined on the whole Spinc-bordism group of X :

ηtop = ηan : πn(MSpinc ∧X+) → Qn(BSpin
c, X) .

Next we calculate the K-theory K∗(BSpinc+ ∧X+). We have a fibration

BSpinc+ ∧X+
(id,q)
→ BSpinc+ ∧BS3

+

with fibre K(Q, 3). Since K∗(K(Q, 3)) is divisible and consists of phantoms by [4] the
proof of Proposition 5.14 applies and shows that

(id, q)∗ : K̄∗(BSpinc+ ∧ BS3
+) → K̄∗(BSpinc+ ∧X+) (131)

is injective with dense image. The domain of this map can be calculated the using the
completion theorem [9]. At the moment we will only use this map in order to name specific
elements in its target. The element 2− ρ of the representation ring R(S3) generates the
dimension ideal IS3. If we let A := 2 − [ρ] ∈ K̄0(BS3

+), then we have K̄∗(BS3
+)

∼= Z[[A]]
and

K̄∗(BSpinc+ ∧BS3
+)

∼= K̄∗(BSpinc+)[[A]] .

Since X is rationally contractible we have

ch((id, q)∗A) = p∗q∗ch(A) = 0 ,

where p : BSpinc+ ∧X+ → X+ is the projection. Hence by Lemma 2.4 the evaluation

ev(id,q)∗A : Qn(BSpin
c, X) → Q/Z

is well-defined. We define

ε := ev(id,q)∗A ◦ ηtop : πn(MSpinc ∧X+) → Q/Z .

In order to be able to relate the universal η-invariant with the Crowley-Goette invariant
the following simple observation is crucial.

Lemma 5.17 A pair (M, g̃) of a compact oriented n-dimensional Spinc-manifold M
which satisfies the assumptions of Crowley-Goette that H3(M ;Q) = 0 and H4(M ;Q) = 0,
and a map g̃ ∈ Bun(M) gives naturally rise to a class [M, f, g] ∈ πn(MBSpinc ∧X+).
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Proof. The main point is to show that g̃ :M → BS3 has a natural lift to g :M → X in
the diagram (130). The rationalization of g̃∗c2 vanishes so that there exists a class ĉ2 ∈
H3(M ;Q/Z) such that ∂ĉ2 = g̃∗c2. This lift is unique up to the image of a rational class
of degree 3, hence unique by our assumption. The map g̃ and the lift ĉ2 :M → K(Q/Z, 3)
together determine the lift g : M → X . The map f : M → BSpinc of course classifies
the normal Spinc-structure on M . 2

If we fix the Spinc-manifold M , then we have defined a map

sM : Bun(M) → πn(MBSpinc ∧X+) , g̃ 7→ [M, f, g] .

The following proposition clarifies the relation between tCM and the universal η-invariant.

Proposition 5.18 Let M be a compact oriented n-dimensional Spinc-manifold M which
satisfies H3(M ;Q) = 0 and H4(M ;Q) = 0. Then we have the relation

tCM = ε ◦ sM : Bun(M) → Q/Z .

Proof. It is an instructive exercise in the use of geometrizations to derive an intrinsic
formula for the composition ε ◦ sM which compares with the formula (129) for tCM . In a
first step we must approximate the space X by spaces with finite skeleta. Note that we
can write (compare with (59) for the connecting maps)

K(Q/Z, 3) := hocoliml K(Z/lZ, 3) .

If we define Xl by the pull-back

Xl

ql

��

// K(Z/lZ, 3)

∂l
��

BS3
c2 // K(Z, 4)

l // K(Z, 4)

, (132)

then we get connecting maps Xl → Xl′ if l|l
′ and

X ∼= hocoliml Xl , πn(MSpinc ∧X+) = coliml πn(MBSpinc ∧Xl,+) .

The main advantage of Xl is that it has finite skeleta. We consider a closed n-dimensional
manifold with a normal Spinc-structure classified by a map f : M → BSpinc and an
auxiliary map g :M → X . We can assume that g has a factorization

g :M
gl→ Xl → X

for some l. We choose a Riemannian metric onM and a Spinc-extension ∇̃TM of the Levi-
Civita connection. We are going to construct a good geometrization for (M, f, gl, ∇̃

TM)
using similar ideas as in the String-bordism case Proposition 5.13. We choose a compact
max(n + 1, 4)-connected approximation (fu, gu) : Mu → BSpinc ×Xl such that the map
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(f, gl) factorizes over a closed embedding h : M → Mu. We choose the Spinc-connection
∇̃u as in Subsection 4.4. The map h has a refinement to a Spinc-map and we can assume
that h∗∇̃u = ∇̃TM stably.
The composition ql ◦ gu : Mu → BS3 classifies an S3-principal bundle Ru → Mu on
which we choose a connection ∇Ru . We can assume that R ∼= h∗Ru with connection
∇R = h∗∇Ru .
We let

G̃u : K
0(BSpinc+ ∧ BS3

+) → K̂0(Mu)

denote the geometrization of (Mu, fu, ql ◦ g, ∇̃
u) constructed in Lemma 4.3.

We have a fibration

BSpinc+ ∧Xl,+
(id,ql)
→ BSpinc+ ∧ BS3

+ (133)

with fibre K(Z, 3). Since K∗(K(Z, 3)) is divisible and consists of phantoms by [4] the
proof of Proposition 5.14 applies again and shows that

(id, ql)
∗ : K̄∗(BSpinc+ ∧BS3

+) → K̄∗(BSpinc+ ∧Xl,+) (134)

is injective with dense image. We define

Gu,0 : im((id, ql)
∗) → K̂0(Mu)

by
Gu,0((id, ql)

∗φ) := G̃u(φ) ∈ K̂0(Mu) .

This densely defined map again needs a correction in order to be continuous. We must
kill the contribution of c2(∇

Ru) to the curvature of Gu,0((id, ql)
∗φ). Note that q∗l c2 ∈

H4(Xl;Z) is l-torsion. Hence we can choose a form αu ∈ Ω3(Mu)/im(d) such that dαu =
c2(∇

Ru). By an easy application of Serres spectral sequence to the fibration (133) we see
that

p∗ : H∗(BSpinc+;Q) → H∗(BSpinc+ ∧Xl,+;Q)

is an isomorphism. SinceH∗(BSpinc+;Q) is concentrated in even degrees the odd-dimensional
cohomology ofMu is concentrated in degrees ≥ n+1. In particular we see that αu uniquely
determined. Moreover, the restriction h∗ : HPR−1(Mu,+) → HPR−1(M+) is trivial.
We have

HPQ∗(BSpinc+ ∧ BS3) ∼= Q[b, b−1][[c1, p1, p2 . . . , c2]] ,

HPQ∗(BSpinc+ ∧Xl,+) ∼= Q[b, b−1][[c1, p1, p2 . . . ]] ,

where c1 and the Pontrjagin classes come from BSpinc, and c2 is pulled back from
BS3. The pull-back (id, ql)

∗ is the quotient map defined by setting c2 = 0. For φ ∈
K0(BSpinc+ ∧ BS3) we define the formal power series

Φφ := Td−1 ∪ ch(φ) ∈ Q[b, b−1][[c1, p1, p2 . . . , c2]]
0
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and set

Φ̃φ :=
Φφ − ic2=0Φφ

c2
∈ Q[b, b−1][[c1, p1, p2 . . . , c2]]

−4 .

For φ ∈ K̄0(BSpinc+ ∧BS3
+) now define

Gu((id, ql)
∗(φ)) := Gu,0((id, ql)

∗(φ))− a(αu ∧Td(∇̃u)−1 ∧ Φ̃φ(∇
u,∇Ru)) ,

where Φ̃φ(∇
u,∇Ru) ∈ ΩP−4(M) is obtained from Φ̃φ by replacing the generators c1, pi

and c2 by their corresponding Chern-Weyl representatives c1(∇̃
u), pi(∇̃

u), and c2(∇
Ru).

We calculate similarly as in (128) that

Td(∇̃u) ∧ R(Gu(φ)) = ic2=0Φφ(∇
u,∇Ru) . (135)

We now define
G : im((id, q)∗) → K̂0(M)

by
G((id, ql)

∗(φ)) := h∗Gu((id, ql)
∗(φ)) .

We claim that G extends by continuity to a good geometrization of (M, f, gl, ∇̃
TM). The

argument is very similar to that of Lemma 5.16. We first show continuity. If (φk) is a
sequence in K̄0(BSpinc+ ∧ BS3

+) with (id, ql)
∗φk → 0 as k → ∞ in the profinite topol-

ogy of K̄0(BSpinc+ ∧ Xl,+), then we can find a k0 ∈ N such that for all k ≥ k0 have
(fu, gu)

∗(id, ql)
∗φk = 0 and (fu, gu)

∗(id, ql)
∗(Td−1 ∪ ch(φk)) = 0. This implies that

Gu(φk) ∈ HPR−1(Mu,+)/im(ch)

for all k ≥ k0. It follows h
∗Gu(φk) = 0.

Because of (135) cohomological character of G is given by

c1 7→ c1(∇̃
TM) , pi 7→ pi(∇̃

TM) .

Hence it preserves degree.
It follows that G is a geometrization. In order to see that it is good we show that Gu itself
is continuous using a similar argument based on a dim(Mu)+ 1-connected approximation
of BSpinc ×Xl.
We can now apply Theorem 4.12 in order to derive a formula for ε([M, f, gl]) ∈ R/Z. We
can take ĉ2(∇

R) := h∗αu and have Φ̃A = Td−1Φ̃. We have by construction

G((id, ql)
∗A) = [2−Eρ]− a(ĉ2(∇

R) ∧ Φ̃(∇R)) ,

hence the correction form (Definition 4.11) is given by

γ(id,ql)∗A = −ĉ2 ∧ Φ̃(∇R) .

It follows that

ev(id,ql)∗A(η
an([M, f, gl])) = [

∫

M

Td(∇̃TM) ∧ ĉ2(∇
R) ∧ Φ̃(∇R)]− 2ξ(D/M) + ξ(D/M ⊗E) .
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This is exactly the formula for tCM (g̃) ∈ R/Z. The Proposition 5.18 now follows from
Lemma 2.11 which gives the first equality in the chain

ev(id,ql)∗A(η
an([M, f, gl])) = ev(id,q)∗A(η

an([M, f, g])) = ε(sM(g̃)) .

2

The paper [27] provides a lot of interesting explicit calculations. Our general point of
view is probably not of much help here. But it is useful to understand structural results
like the relation with the Adams e-invariant [27, Prop 1.11]. This is what we are going to
explain now. We define the space Y by extending the diagram (130) by another cartesian
square as follows

Y
H //

r

��

X

q

��

// K(Q/Z, 3)

∂
��

S4 h // BS3
c2 // K(Z, 4)

, (136)

where h generates π4(BS
3) such that h∗c2 ∈ H4(S4;Z) is the positive orientation class.

We use the Serre spectral sequence in order to calculate the rational cohomology of Y :

Hk(Y ;Q) =

{

Q k = 0, 7
0 k 6∈ {0, 7}

.

This implies
π4m−1(S ∧ Y+)tors = π4m−1(S ∧ Y+) (137)

for m ≥ 3.
From now on we assume that m ≥ 2. By Lemma 2.11 we get the commutativity of
the squares (except of the lower right which will be explained below) of the following
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commutative diagram:

π4m−1(MBSpinc ∧X+)

ε

((ηtop // Q4m−1(BSpin
c, X)
evp∗q∗A // Q/Z

π4m−1(S ∧ Y+)tors

(id∧r)∗
��

(ǫMBSpinc∧H)∗

OO

ηtop // Q4m−1(∗, Y )

(id,r)

��

(i∗,H)

OO

evr∗h∗
+

A
// Q/Z

π4m−1(S ∧ S4
+)

w∗

��

ηtop // Q4m−1(∗, S
4)

w∗

��

evh∗+A
// Q/Z

π4m−1(S ∧ S4)

∼=
��

ηtop // Q4m−1(∗, S̄
4)

∼=
��

evh∗A // Q/Z

π4m−5(S)

eAdams
C

66
ηtop // Q4m−5(∗, ∗)

ev1 // Q/Z

. (138)

We need the condition m ≥ 2 in order to have well-defined evaluations evh∗+A, evh∗A and

ev1. The map w∗ is induced by the map w : S4
+ → S4 which is the identity on S4 and

maps the extra base point to the base point of S4. We have

K0(∗+ ∧ S4
+)

∼= K0(S4
+)

∼= K0(S4)⊕ Z ,

where the first summand (which is of course another copy of Z) is the image of w∗. This
map induces

w∗ : Q4m−1(∗, S
4) → Q4m−1(∗, S̄

4)

Sorry for the notational inconvenience caused by the abuse of notation for Qn of pointed
spaces adopted in Subsection 2.6. Here by S̄4 we denote S4 with the internal base point.
We use the symbol h+ : S4

+ → BS3 for the map induced by h which maps the extra base
point to a base point of BS3. In order to see that the (2, 3)-square commutes we also use
that dim(A) = 0. The lower left vertical map is the suspension isomorphism. The lower
middle vertical isomorphism is again induced by suspension and the Bott isomorphism

K0(S4) ∼= K−4(S0)
b2
→ K0(S0) .

In order to see that the lower left square commutes note that this isomorphism maps h∗A
to 1. This follows from

ch(2−A) = b−2c2 +O(b−3)

and the fact that c2 ∈ H4(S4;Z) is the suspension of 1 ∈ H0(∗;Z). The composition of the
lower two arrows is the definition (89) of the complex version of the Adams e-invariant.
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We conclude that
ε ◦ (ǫMBSpinc ∧H) = eAdamsC ◦ w∗ . (139)

The same argument as for Lemma 5.17 gives

Lemma 5.19 A pair (M, g̃) of a compact oriented 4m− 1-dimensional normally framed
manifold M which satisfies H3(M ;Q) = 0 and H4(M ;Q) = 0, and a map g̃ ∈ [M,S4]
gives naturally rise to a class [M, g] ∈ π4m−1(S ∧ Y+).

If M satisfies the assumption of the Lemma, then we have a map

s̃M : [M,S4] → π4m−1(S ∧ Y+)

and conclude from Proposition 5.18, (139) and (137) that for m ≥ 3 (or m = 2 and
[M, g] ∈ π7(Y+) is a torsion class)

tCM = eAdamsC ◦ w∗ ◦ s̃M : [M,S4] → Q/Z .

This is [27, Prop 1.11] if one takes the following geometric description of the composition
w∗◦ s̃M(g̃) into account. First of all we have s̃M(g̃) = [M, g], where g :M → Y is the lift of
g̃. Then w∗([M, g]) = [M, g̃]− [M, const] ∈ π4m−1(S ∧ S4). The geometric representative
of the 4-fold desuspension of this class is the stably normally framed manifold obtained
by taking the preimage Y := g̃−1(s) of a regular point s ∈ S4 of g̃.

Corollary 5.20 [27, Prop 1.11]4 We assume that m ≥ 2. Let (M, g̃) be a pair of
a compact oriented 4m − 1-dimensional normally framed manifold M which satisfies
H3(M ;Q) = 0 and H4(M ;Q) = 0, and a map g̃ ∈ [M,S4]. If m = 2, then in addi-
tion we assume that [M, g] ∈ π7(Y+) is a torsion class. Then we have

tCM (h ◦ g̃) = eAdamsC (Y ) ,

where Y is the preimage Y := g̃−1(s) of a regular point s ∈ S4 of g̃ with its induced normal
framing.

In the following we discuss an example which shows that the intrinsic extension of the
universal η-invariant mentioned at the end of Subsection 4.5 behaves quite unexpectedly.
We consider the Hopf fibration g̃ : S7 → S4. By Lemma 5.19 we get an element [S7, g] ∈
π7(S ∧ Y+). We claim that this element is not torsion. If it would be a torsion element,
then by Corollary 5.20 we would have tCS7(h◦ g̃) = eAdamsC (Y ), where Y is a Hopf fibre with
the induced framing. It has been shown in [27, Example 3.5] that tCS7(h ◦ g̃) = 0. On the
other hand, since the Hopf fibration generates the stable homotopy group πS3

∼= Z/24Z
which is detected completely by eAdams we know that eAdamsC (Y ) ∈ Q/Z has order 12, in
particular is non-trivial. Now (id ∧ r)∗([S

7, g]) is a torsion class. We conclude that

ηtop((id ∧ r)∗([S
7, g])) 6= (i∗, H)(ηintrinsic([S7, g])) .

In other words, the (2, 1)-square in (138) does not commute if one deletes the subscript
(. . . )tors in the second line and replaces the corresponding ηtop by ηintrinsic. We find this
surprising.

4The e-invariant used in the present paper is the negative of the e-invariant in the conventions of [27,
Prop 1.11]. This accounts for the different sign.
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