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Abstract. Given a family {L0(b), Ll(b)}bcB of pairs of transverse La- 
grangian subspaces of a hermitean symplectic vector space we define a fam- 
ily of Dirac operators on the unit interval and consider its ~/-form r/(L0, L1 ) C 
g?*(B). To a family {L0(b), Ll(b), L2(b)}b~B of pairwise transverse La- 
grangian subspaces we associate the cocycle r/(L0, L1) + r/(L1, L2) + 
zl(L2, L1) which is a closed form. We identify its cohomology class with a 
generalization to families of the triple Maslov index. 
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1. Introduction 

In this note we consider the r/-form of a family of Dirac operators 79(b), b c 
B, on the interval [0, 1] over a base space/3. The r/-form was introduced by 
Bismut-Cheeger [3] as the boundary contribution to the local index theorem 
for families of Dirac operators. It also appeared in the study of adiabatic 
limits of r/-invariants [2]. In our case the operator 79(b) depends on b E /3 
only through the boundary conditions. If/3 is a point, then the r/-form reduces 
to the usual r/-invariant of 79 which was explicitly calculated by Lesch- 
Wojciechowski [9]. In [5] we found a relation between the r/-invariant and 
the Maslov index. The Maslov index was first introduced in Wall [12] as a 
measure of the non-additivity under gluing of the signature of manifolds with 
boundary. This non-additivity was generalized to arbitrary Dirac operators 
in [5]. 

In the present note we relate the ~l-form with a family version of the 
Maslov index. The family version of the Maslov index conjecturally plays 
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the same role in the non-additivity of the family index of families of Dirac 
operators on manifolds with cylindrical ends (or APS-boundary conditions) 
as the usual Maslov index does for the usual index. 

Let V be a finite-dimensional Hilbert space equipped with a hermitean 
symplectic structure Y2 (this just means that zY2 is a non-degenerate her- 
mitean form of index (l,l), d ime(V)  = 2/). If {L0(b), Ll(b)}beB is a 
smooth family of pairs of transverse Lagrangian subspaces of V, then we 
define the rkform v(Lo, L1) E Ca(B ,  AeVT*13). Our main result is 

Theorem 1.1. If { Lo(b), Ll (b), L2(b) }bct3 is a smooth family of triples of 
pairwise transverse Lagrangian subspaces of V, then 
(l) d(~7(Lo, L1) + ~(L1, L2) + ~(L2, Lo)) = 0, 
(2) and if we define the cohomology class T(Lo, L1, L2) by 

r(Lo, L1, L2) := [r/(Lo, L1) + r/(L1, L2) + r/(L2, Lo)] E H¢Ve~(B, R ) ,  

then T(Lo, L1,L2) = ch(L +) - ch(Lo) ,  where Lo = L + + L o is the 
splitting of the bundle of Lagrangian subspaces Lo C t3 × V into the positive 
and negative eigenspaces of the quadratic form Q( xo) :-- ~2(xl, x2), where 
X i E L i ,  x o  = X l  -]- X2. 

The proof of the theorem is based on a local index theorem for families 
of Dirac operators on manifolds with cylindrical ends and boundaries with 
local boundary condition. Instead of saying how the existing proofs Bismut- 
Cheeger [3], Melrose-Piazza [ 11] should be modified in order to include the 
additional boundaries we prefer to work out again the essential arguments. 
Our approach is modelled on the b-calculus proof of [ 11 ], but is more direct 
and might be of independent interest. 

2. Definition of r/(Lo, L1) 

Our definition of the r/-form is modelled on the case of even-dimensional 
base space of [2]. Since the total spaces of the fibrations considered in [2] 
are odd-dimensional, this corresponds to the case of odd-dimensional fibres. 

Let V be a finite-dimensional complex Hilbert space with scalar product 
(., .). Let I E End(V) be a complex structure, i.e. 12 -- - 1 ,  1" = - I .  We 
assume that tr I = 0. Then Y2(x, y) := (Ix, y) is a hermitean symplectic 
structure on V. We consider the formally selfadjoint differential operator 
D := I~t acting on C~([0 ,  1], V). 

A complex subspace L C V is called Lagrangian, if L _1_ IL and 
L @ IL = V. We want to consider D as an unbounded operator on the 
Hilbert space L 2 ([0, 1], V). In order to define selfadjoint extensions 79 of D 
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we choose two Lagrangian subspaces Li C V, i = 0, 1. Then we define the 
domain dora(D) of D by 

dora(D) : = { f c C ° C ( [ O ,  1],V) l f ( i )  ELi ,  i = O ,  1}.  

Then D is essentially selfadjoint, and we denote its unique selfadjoint ex- 
tension by D, too. We have ker(D) = L0 N L1. In particular D is invertible 
iffLoNL1 =0.  

We now turn to families. Let B be some manifold. We consider a pair of 
smooth families of Lagrangian subspaces B ~ b H Li(b), i = 0, 1, and we 
assume that L0 (b) N L1 (b) = 0, Vb E B. We obtain a corresponding family 
{D(b)}b~B of invertible operators. We want to apply the superconnection 
formalism in order to define the 7/-form of that family. Since this formalism 
involves derivatives of the family with respect to b we prefer to work with 
an unitary equivalent family {7?(b)}bEB which has the advantage that its 
domain is independent of b E B. 

The 0-form is a local object with respect to the base space. In order 
to define it we only consider a germ of the family near a point b0 E B. 
Let UI(V) denote the group of unitary operators on V which commute 
with [. The group Ux(V) acts transitively on the space A of all Lagrangian 
subspaces of V. Thus we can find germs of smooth families of unitaries b 
Ui(b) E UI(V), i = 0, 1, with Ui(bo) = 1 and Ui(b)Li(b) = Li(bo). We 
can define germs of smooth families Ai (b) := log(Ui (b)) of anti-hermitean 
matrices using the standard branch of the logarithm. Let Xi E C c~ ([0, 1]) 
be cut-off functions with xo(t) = 1 for t < 1/5, xo(t) = 0 for t > 2/5, 
xl(t)  = 1 for t > 4/5, and Xl(t) = 0 for t < 3/5. We set W(t,b) := 
exp(xo(t)Ao(b) + xl(t)Al(b)).  Then b H W(.,  b) can be considered as a 
germ of a family of unitary multiplication operators on L2([0, 1], V). We 
set 

/)(b) := W(., b)DW*(., b) 

= D - X~olAo(b) - x~IAI(b) ,  

where "~" denotes the derivative with respect to t. We define the selfadjoint 
extension of 7)(b) using the Lagrangian subspaces L0(b0), L1 (b0). Then 
7)(b) is unitary equivalent to D(b) and its domain is independent of b. 

We now turn to the definition of the q-form of the family {D~(b)}beB 
following [2], Thm. 2.43. Let C1 denote the graded algebra over C generated 
by a satisfying a 2 = 1, ~r* = a,  and deg(a)  = 1. Let 7-I denote the germ at 
b0 of the trivial Hilbert space bundle with fibre L2([0, 1], V) ® C1 over B. 
We define the superconnection As, s > 0, on 7-/associated to 7~ by 

A~ = V - d(XoAo + x1A1)  d- V~O':/~ ~ 
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where d differentiates along B. Here V is the canonical connection of 7-/ 
and V - d(xoAo + x1A1) = W V W * .  For Re(u) > 1 we can define the 
holomorphic family of germs of smooth, even differential forms 

1 f0~ r/(u) := 2V ~ treVen(o'7)e-A~)su-UZds. (1) 

Here tr~,Ve'~(... ) stands for the even form part of t r ( a . . .  ). As usual the 
asymptotic expansion of the heat kernels for small times implies that rl(u) 
has a meromorphic continuation with respect to u to all of C having at most 
first order poles. Following [7] we define 

Definition 2.1. 

r/(D) := P.F. rl(O) , 

where "P.F." stands for the finite part of the Laurent expansion of rl(u) 
at u = 0. As defined above the form r/(Z3) may depend on the choices 
made for the definition of 7}. But the following lemma justifies the notation 
r/(Lo, L1) : :  ~/(7)). 

Lemma 2.2. r/(7}) does not depend on the choices of the families Ui and 
the cut-off functions Xi. 

% 

Proof Let Ui, 9(/be another choice and define I/V as above. Let D denote 
% 

the corresponding family of operators. We set V = WIY¢*. Then 79 = 

V*79V. I f / i s  is the superconnection associated to 7), then/is  = V*AsV.  
It now follows from the cyclicity of the trace that ~(u) = r/(u), where ~)(u) 
corresponds to/ is .  [] 

3. The Maslov cocycle 

Now we turn to the generalized Maslov index. Let {Li(b)}bcB, i = 0, 1, 2, 
be smooth families of Lagrangian subspaces of V such that Li (b) N Lj (b) = 
{0}, Vb E B, i ¢ j .  Let eh  : K ° ( B )  ~ Hey(B, R) be the Chern character. 
In the present section we prove 

Proposition 3.1. The form rl( Lo , L1) + r/(L1, L2 ) ÷ ~l( L2 , Lo ) is closed. 
Moreover 

r(Lo, L1, L2) := [r/(Lo, L1) + ~(L,,  L2) + ~(L2, Lo)] 

• ch (K° (B) )  C H~v~(B ,  R ) .  
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Remark.  The zero component ~-(L0, L1, L2) ° E Z is the Maslov index 
(in its hermitean symplectic generalization) of the triple (L0, L1, L2) (see 
[5]). For an exposition of the usual Maslov index we refer to [10]). In 
Proposition 4.1 below we explicitly compute the class 7-(Lo, L1,L2) E 
H ewn (/3, R)  in terms of the hermitean symplectic geometry of the family 
{L0(b), L1 (b), L2(b)}b B. 

Proof The idea of the proof is to formulate an index problem for a family 
of Dirac operators ~+ such that the form ~/(L0, L1 ) + r/(L1, L2) + T/(L2, Lo) 
represents the Chern character of the index bundle of ~+. 

We consider a compact oriented surface Mc with boundary and corners 
which is diffeomorphic to a rectangular convex 12-gon in the hyperbolic 
plane. We label the boundary pices OiM~, i = 0 , . . . ,  11, according to their 
cyclic order. 

We choose a Riemannian metric on Mc such that OiMc are isometric 
to the interval [0, 1], and such that the boundary pieces intersect in twelve 
rectangular corners. We assume that the metric is product in a neighbourhood 
of the interior of the pieces OiM, and that neighbourhoods of the corners 
are isometric to a neighbourhood of the vertex of the euclidean quadrant 
R + x R +. 

Let M be the oriented, non-compact Riemann surface with six boundary 
components OiM, i = 0 , . . . ,  5, isomorphic to R which is obtained by gluing 
infinite cylinders [0, cxD) x [0, 1] along the boundary pieces of Mr with odd 
label. The boundary components of M are again labelled according to their 
cyclic order. 

We consider the spinor bundle S = S + ® S -  of M and fix a finite- 
dimensional Hilbert space W of dimension dim(V)/2.  We consider the 
graded vector bundle E = S ® (W • W°P). By ~ we denote the cor- 
responding twisted Dirac operator. Let ~+ be the parts mapping sections 
of E + to those of E :~. We formulate an index problem for ~+ by putting 
boundary conditions at OjM depending on Li(b), i = O, 1, 2. 

The metric of M is flat near infinity and the boundaries (the flat region). 
We claim that the holonomy of the parallel transport in S along OM~ is 
trivial, where we consider Me as a submanifold of M. Note that M is 
topologically a disc. Thus we can choose a trivialization of the tangent bundle 
TM. Measured with respect to the trivialization the parallel transport in T M  
along OMe gives a rotation by -47r. The trivialization of T M  induces one 
of the Spin(2)-principal bundle of M. The parallel transport along OM~ in 
this bundle corresponds to a rotation by -27r in the structure group. This 
implies the claim. We fix some point in OM~ and identify the fibres of the 
bundle S near infinity and OM with the fibre over this point using the parallel 
transport inside the flat region. We denote this fibre by S, too. Analogously 
we denote the fibre of E over this point by E. 
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Let (s, t) be oriented euclidean orthonormal coordinates near a point in 
the flat region. Then we have 93 = ~rsOs + ~rtOt, where ~r.~,at 
E Hom°dd(E, E) depend on the choice of coordinates. Again we consider 
the components ~r~, a{  E Hom°dd(E+,Eq:). The operator I := cr;~r + E 
Au t (E  +) is invariantly defined. It satisfies I* = -1 ,  1 2 = -1 ,  tr/  = 0, 
and it defines a hermitean symplectic structure on E +. We fix an isometry 
V ~ E + which is compatible with the complex structures I on V and E +. 

Now we introduce the family of boundary conditions defining the family 
{93+ (b)}DEB. We let ~+ (b) be the differential operator 0+ mapping 

{¢ E Cc~(M,E+) I ¢(x ) E Li(b)Vx E OiM orx • O/+3M} 

to L2(M, E - ) .  
First we show that 93+(b) gives rise to a smooth family of Fredholm 

operators such that the index bundle is well-defined. Then we apply the 
superconnection formalism in order to compute the Chern character of the 
index bundle. 

First we conjugate the family {0+ (D)}bEB to  a family {~+ (b)}be, with 
constant domain. This will be done again on the level of germs at a point 
b0 • B. In the remainder of the present section we replace B by a sufficiently 
small neighbourhood of b0. We define a germ of a family of smooth U(V)- 
valued functions W+(b,m),  m • M,  such that near OiM, Oi+3M, i = 
0,1,2, 

W+ (b, (s, t) ) = exp(xo(s)Ai(b) ) , (2) 

where Ai, X0 were defined above. Here (s, t) are orthonormal euclidean 
coordinates, s being normal to the boundary given by s = 0. W + is deter- 
mined by (2) near OM and we continue W + to the interior of M by the 
constant 1 • U(V).  Similarly we set W -  = -cr+W+~r~- near OM and 
continue W -  to the interior of M by 1 • U ( E - ) .  

Let ~+ := W-93(W+) *. Then ~+(b) is a germ of a family of (now 
b-dependent) Dirac operators with domain (now independent of b) given as 
above by the Lagrangian subspaces Li(bo) at OiM, Oi+3M, i = O, 1, 2. 

Recall that M has 6 cylindrical ends isomorphic to [0, ec) x [0, 1]. We can 
consider [0, ~ )  x [0, 1] as a subset of the cylinder R x [0, 1]. For i = 0 , . . . ,  5 

- +  
the family ~+ (b) induces families of translation invariant operators 93i (b) 
on the infinite cylinder R x [0, 1] together with boundary conditions. Let 

0i (b) be the formal adjoint (with the adjoint boundary condition) of 93i (b) 
and let 

: =  _ +  

93, (b) 
Then ~i (b) acts on sections of a bundle which we also denote by E. 
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Lemma 3.2. 
(1) The symmetric operator ~i ( b ) defined on the space of smooth sections 
with compact support satisfying the boundary conditions is essentially self- 
adjoint. 
(2) It has a bounded inverse ~i(b) -1. 

Proof To prove the Lemma it is better to consider the original non gauge- 
transformed operator. We fix the point b E /3 and consider without loss of 
generality the case i = 0. Let (t, s) E R x [0, 1] be the coordinates of the 
cylinder. Then we put 0 := at0t + crs0s acting on C°°(R × [0, 1], E). We 
let dora(O) be the space of all f E C ~ ( R  x [0, 1], E) such that f ( t ,  k) E 
(Lk(b) + cr+Lk(b)), k = 0, 1. Then 0 becomes an symmetric operator on 
L2(R x [0, 1], E) which is unitary equivalent with ~)0(b). We show that 
is essentially selfadjoint. 

Let 79 := cr~-cr+Os be defined on {f E C~( [0 ,1 ] ,E+)  I f ( k )  E 
Lk(b), k = 0, 1}. Then 79 is essentially selfadjoint on L2([0, 1], E+).  Let 
a(79) be the spectrum of D with multiplicity. Moreover let ~b),, A E ~r(79), 
be an orthonormal base of L2 ([0, 1], E +) of eigenvectors of 79. Then we let 
~A C L2([0, 1], E) be the subspace spanned by CA, cr+4~),. We can write 

L2(R×[0'I]'E)= O 7-tA®L2(R)= O HA. 
AE~(D) AEo(Z~) 

Note that E = E + ® E -  induces a splitting HA = H + ® H~-. We define 

0 c r? )  
OA :=crtOt q- A --or + 0 " 

Let 0 := ®Ac~(~9)OA be defined on 

dom(~) := {f  E Cc~(R x [0, 1], E) I f = 
finite 

Z f)`,fA E HAt .  
)`co(v) 

Then ¢)is symmetric and ~) C 0. If we show that ~) is essentially self- 

adjoint, then we are done since ~ C ~ C 0* C /)* implies /) = ~*, 
where ~ denotes the closure of ~. Now q3 A is essentially selfadjoint on 
the domain dom(OA) := Cc~(R, 7-/),). Assume that f E dom(~*). Then 
I(f,O~b)[ < C(f)N~bl], V~b E dom(~). We write f = ~),E~(V)f)`" Then 
we can conclude that [(f)`, OAU)[ <_ C(A)IluI[, vu ~ dom(0A). Thus fA E 

dom(O~) = dora(i); O. Thus any finite sum of fx is in dom(~). We have 

l i m N ~  ~-]Ae,r(79),lAl< N fA = f ,  andlimN~oo ~ }-~,~(Z~),IAI_<N fA = O*f 
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exists. Hence f E dom(~). This proves that ~ is essentially selfadjoint and 
thus (1). 

We now show (2). Note that ~ >_ A 2. Since Lo(b)N L l(b) = { 0 } we have 
inf;~c~(v ) A 2 = c > 0. It follows that ~-1 is bounded and I1 ;111 _< e -1. 

Thus 8 -1 = ®Ac~(z~)~; 1 exists and is bounded by c -1. [] 

The distribution kernel of ~i(b) -1 gives parametrices for ~(b) at in- 
finity, in the interior, and also near the boundary of M. By patching we 
build a global parametrix Q(b) such that the smoothing remainders R(b) := 

~(b)Q(b) - 1, Rl(b) := Q(b)~(b) - 1 have compact support. 

Lemma 3.3. (1) The operator ~(b ) is essentially selfadjoint. 
(2) The domain 7-[ of ~(b) is independent of b. 
(3) {~+(b)} viewed as a .family of bounded operators from ~+ to 
L 2 (M, E- )  is a smooth family of Fredholm operators. 

Proof We start with (1). Let h E L2(M, E) be arbitrary. We claim that 

Q(b)h E dom(b(b)). We approximate h in L~(M,E) by a sequence tz~ E 
C ~  ( M, E ). Then Q ( b ) h~ E C~  ( M, E) satisfies the boundary conditions. 
L e t . . .  C KN C KN+I C "" C M be an exaustion of M by com- 
pact subsets admitting a sequence of smooth functions {XN }NEN such that 
supp(xN ) C KN+I, XIKN = 1, and such that sUPmEM IldXN(- )ll 0 as 

N ~ cx~. We have ha = ~(b)Q(b)h,~ - R(b)h,~. Note that XNQ(b)h,~ E 
dom(~). The existence of 

lira lira ~i(b)xNQ(b)hc~ 
Oz ----~ OO N----~ ~ 

= lim lira 1)h,~ + grad(xN)Q(b)h~] 

= (R(b) + 1)h 

implies the claim. 
Let now f E dom(~(b)*). We must show that f belongs to the domain of 

= - b * ~(b). We write f Q(b)~(b)*f - Rl(b)f .  By the above Q~i( ) f belongs 

to the domain of b(b). Moreover R1 (b) f is smooth and has compact support. 

Since ~(b)* f E L2(M, E) the trace flOM E L~o~(OM, E) is well-defined. 
It follows from 

I(f,~(b)~P)l _< c( f ) l l~ l l ,  v~ E dom(~(b)) 

that flOM satisfies the same boundary conditions used to define ~(b). We 

conclude that Rl(b) f  E dom(~(b)) and hence f E ~(b). This finishes the 
proof of (1). 
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Since 

O(b) = O(bo) + V(b), (3) 

where V(b) is a smooth family of bounded operators the domain 7-/of 0(b) 
does not depend on b E B. This proves (2). 

For (3) we employ the spectral comparison theorem for manifolds which 

coincide at infinity stating that cr~ss(0(b)) = t&cre~s(0i(b)), hence 

inf cr,.~(O(b)) > 0 for all b E B. From (3) it follows by perturbation theory 

that the family {0+(b)} is a smooth family of Fredholm operators when it 
is viewed as a family of bounded operators from 7-/+ to L 2 (M, E - ) .  [] 

We now apply the superconnection formalism in order to obtain a formula 

for the Chern character oh(index( 0 + ) ) of the index bundle of { ~) + (b) } bE B. 

As a first step we make 0+(b) surjective following [1], Ch.9.5. Let N E 
N be given. Then we consider the manifold M p := M U , .  We extend 
the bundle E + to a bundle (E')  + over M t such that the fibre over the 
point • is C N. If we are given a map ~ : C N ---+ C~(M, E-) ,  then we 

-+ ,}/+ -+  
define the operator ~ (b) : ® C N ---+ L 2 (M, E-)  byl)¢(b)(f® u) := 

~+ (b)f + g;(u). 
Assume tha t /3  is compact. Then as in [1], Lemma 9.30, there exists 

~ +  
an integer N and a linear map ~b : C N --+ Cc~(M, E- )  such that ~>(b) 

~ +  
is surjective for all b E /3. In this case we have a bundle ker(0¢) := 

k -+  { er(O~(b))}b6B. The index bundle index(0 +) E K°(/3)is represented 

k -+  C N. by er(q~)  - B x We fix ~ as above, and in addition we can assume 

that supp(~(u)) E Mo Vu E C N. 
In the remainder of the present section we replace M by M ~, E + by 

(U) +, and O + -+ ~+ by ~cO such that 0¢ is surjective. 
First we take e = 1. Let 2 7 denote the trivial connection on the bundle 

/3 x L2(M, E). We set W := W + ® W - .  Let ~' = W27W*. Then we 
define the superconnection 

The curvature Bt 2 has the form 

B? = t0 2 + M R ,  

where R is a one-form with values in the odd endomorphisms of E.  The heat 
- B  2 operator e * can be constructed using the Volterra series [1], Prop.9.46. 
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2 
Let Pt (x, y) denote the smooth integral kernel of e -s~ . In order to simplify 
the notation we omit the smooth dependence on b C/3. 

Note that M is a manifold with a cylindrical end N x [0, oc), where 
N is isometric to the disjoint union of six copies of the unit interval. Let 
(n, r) denote corresponding coordinates. Though e - s ?  is not of trace class 
we define 

I. io'i. m,±rse-S 7 := trsPt(x, x)dx + ulimoc trsPt((n, r), (n, r))dn dr" 
c 

We first argue that this limit exists. We claim that for some C < co, 
c > O ,  

ItrsPt( (n, r), (n,r)) l  < Ce -or2 " 

The constants C, c can be choosen uniformly for t varying in compact sub- 
sets of (0, oc). Consider the infinite cylinder Z := N x R.  Let E z be the 

bundle on Z induced by E. Let {~Z(b)}be B denote the family of transla- 

tion invariant operators on E z induced by {~(b)}bcS. The domain ~ z  of 

~(b) z is again independent of b E B. We then obtain a translation invariant 
superconnection B Z on the bundle B x L2(Z, Ez).  Let PtZ((n, r), (m, s)) 
denote the corresponding heat kernel. The Clifford multiplication by zar is 
unitary, odd, and commutes with (/3tz) ~. Thus 

trsPZ((n,r) ,(n,r))=O, V(n,r) • Z .  

A standard finite propagation speed estimate [6] gives for r > 0 

lPZ((n,r), (n,r)) - Pt((n,r), (n, r)) I < Ce -cr2 , 

and this proves the claim. 

Let 79 z be the family of operators on N x V induced by ~z. Then 79 z 
can be identified with the direct sum of two copies of the direct sum of three 
copies of 7) with boundary conditions given by the families of pairs (L0, L1), 
(L1, L2), (L2, Lo). By A z we denote the superconnection corresponding to 
~ z .  

Set 7 := err C End(E). It follows from Duhamel's formula that the 
integral kernel of e - s~  depends smoothly on t. The comparison with the 
cylinder Z shows that Tr'se-S~ can be differentiated with respect to t, and 
that one can commute Tr' s and d/dt. 

Lemma 3.4. 

---d qS"'~-s~ - d r  - - s  v ~ 1  Trs,y~rT)e_ (AZ)2 2 ~/t dTr's~e-B~ 
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Proof First we claim that 

dBt B %  d--~v' o - ' ~  = -T~ '~[B,  - - ~  , l . 
dt --sv dt 

Let Pu denote the characteristic function of McUN x [0, u]. Using Duhamel's 
formula we get 

d T r t e _ B 2  , ~ 1  _sB2dB2te_(l_s)B2td 8 
dt ~ = - T r ~  e ~ dt 

J U  

= - lira f l  Tr~p~ e-s82 dB2e_(l_s)B~d s 
u ~  do dt 

= - lira f l  Tr .dBt Bt]e_SB2pue_(l_s)B~ds 

fo 1 [ @  e-SB2pue-(1-s)B2 ds = -- lira lira Tr~pv , Bt] 
U---~  O O  V ---+ OO 

/o = - lim lim Tr~p~ , Bt]e -sB2t ~ds 
V ----+ O Q  U --'-~ 0(3  

/01 = - lim Trsp~ , Bt]e-BPds 
73 ---+ O 0  

= -Tr~s [Bt, dBt _B21 
V i - *  I .  

In order to justify that l i m . _ ~  and l i m ~ _ ~  can be interchanged one can 
again use the comparison with the infinite cylinder Z. We use 

dBt 1 - 

dt 2v/~ 0 

in order to write 

_ T r / [ B t  ' dBt B 2, ~ - e  ' l  - 
1 

_ 1 -_.-_.~Tr~s[~,qe_B? ] (4) Tr's[~', ~e-8~] 2v~ 

2 ! =dTr'~&e-~,/t - 1 ~ ,  - ~ [ ~ , b e - ~ ] .  (5) 

Before explaining the transition from (4) to (5) we consider the second term 
of (5). Let  z denote the Z2 grading operator. By integration by parts we 
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obtain 

1Tr's [~, ~e-B2] 
2 

- 

-- 2 l limu~ jofufNtrz(~2e-Bt)((n'u)'(n'u))dndu 

1 2 fMc trz(~2e-B2t)(m' m)dm 

2 u~oodo 

_1  fM trz(~e-g~)(m'm)dm 2 

= 1 lim f tr(Tz~e-Bt)((n,u),(n,u)) 
2 u~eo JN 

= -21 ~-,o~lim fN trs(78e-~)((,~, ~), (n, u)) 

In order to evaluate this limit we can replace the kernel Pt by Pt z.  We use 
the Volterra series [ 1 ], Prop.9.46, in order to compute pZ .  Note that on Z 

e-(r-s)2/4t 
, (6) 

and 

o o  

p? -_ _,(oz)~ + Z ( _ l ) ~ t ~  n f ,~  _,~o(~)~ R~ . . " R~ _,~,~)~ d~ , 
k=l 

where Ak denotes the standard k-simplex. Inserting (6) we obtain 

PZ((n, r), (~, s)) 
e_(r_s)2/4 t ( oo 

-- + E ( - 1 ) k t  k/2 e-t(79z)2 k=l 

/Ak e-tao(bz)2 Rz . . . RZ e-tak(bZ)2 da) (n, rn) . 

We now apply 
0 

wz~" = -o-; ,.),~z + 
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and evaluate the result at r = s .  W e  then obtain 

1 )in~ f trs..f(Oe-B2)(n,u)dn 1_ lim iN -Z ,Bz,2 = trsT(q3 e - t  t J ) ( n , u ) d n  
9_ u O O j g  2 u - ~  

- 4 v ~ t  TrsTDze-(AZ)2.  

Now we consider the first term of (5). By a similar computation as above 
one can show that on the cylinder Z 

t r s [ ¢ z ,  (n ,  - 0 .  

Thus on M this quantity vanishes rapidly as r ~ oc. We can take Tr's and 

1 Tr,s[~7, ~)e_B~ ] _ 2~tdTr,s~e_B~ 
2¢/ 

is an exact form. This finishes the proof of the lemma. [] 

Let V ° denote the induced connection on the bundle ker(~+),  and let 
c h ( V  °) := tr~e -(v°)2 be the corresponding Chern form. 

L e m m a  3.5. Let I.I be any continuous seminorm on the space of  smooth 
forms on t3. For t ---+ c~ we have 

ITr'se-U~ _ ch(V°)[  = O ( t - U  2) 

I~--~Tr's~e B21 = 0 ( t - 3 / 2 ) .  

Proof. The proof is the same as that of [1], and Theorem 9.19, Corollary 
9.22, Theorem 9.23. Since M is non-compact we better replace/C(g) defined 
in [1], p.279, by smooth families offinite-dimensional operators. [] 

W e  conclude that 

f ~ 1 Trs77~Ze_(AZ)~dt =: ~)(s) 

exists and that 

where 

ch(VO) ~,~, -B~ = ~rse + ~(s) + d a ( s ) ,  

v7 
(7) 
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Recall that we have included a parameter e in our definition of Bs, and we 
will write B~ (e) for a moment. Since ~ Bs (e) is finite-dimensional operator, 
[1], Theorem 9.25 applies, and we have 

If we put 

dTr 'se-B~(()  2 : - d T r s d  Bs(e)e-Bs(() 2 " 

9(*)  : = -  Trs 

then 
Tr'~e -Bs0)2 - Tr'~e -B~(°)2 : d/3(s). 

We thus have 

c h ( V  °) = Tr'~e -B~(°F + ~)(s) + da(s) + d3(s ) .  (8) 

We now want to take the limit s --+ 0. Since d B s ( c )  is finite-dimen- 
sional, the limit/3(0) := lims-~O/9(s) exists in C ~ ( B ,  A*T*B).  

L e m m a  3.6. Let [.[ be any continuous seminorm on the space of  smooth 
forms on B. For t ~ 0 we have 

ITr' e - NI = o(1) (9) 

[ + T r ' s ~ e  Be(0)2[ = O ( t - U 2 ) .  (10) 

Proof. We first show (9). We employ finite propagation speed estimates and 
the comparison with the cylinder in order to show that on the end of M 

ItrsPt(n,r)] < C e - ~ / t  " 

The local index theorem [1], Ch.10, gives [trsPt(x)[ = o(1) for x E M 
since S is twisted with a bundle of  the form W ® W °p. The contribution of 
the point { .}  is just trsPt(*) = N.  This together yields (9). 

~ Z  B z 2 
Now we consider (10). On the cylinder Z we have trs0 e - (  t ) (n, r)  - 

- / 7 2  
0. We conclude that on N x [0, oc) c M we have ]trs~e- ~(n,r)]  < 
Ce -r2/t. Moreover, for x in a small neighbourhood of  the boundary of  Mc 
we have ] t r~e  -Bt2 (x)[ < Ce -c/t. If x is in the interior of Mc we can employ 
the method of [1], Ch. 10.5, in order to show that 

1 - _S2 [ ~ t r ~ O  e t (x)[ = 0 ( t - 1 / 2 ) .  

The estimate (10) follows. [] 
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Now we can take the limit s ~ 0 in (7). From (8) we obtain 

ch (V  °) - N = ~)(0) + da(O) + d/3(O). 

If~7(u, Li, Lj) denotes the form (1) which is defined using the boundary con- 
dition given by family of pairs (Li, Lj), then 9(0) = limu-~o (~/(u, Lo, L1 ) + 
~l(u, LI, L2) + ~7(u, L2, Lo)) (in particular this shows that the combination 
~l(u, L0, L1)+~/(u, L1, L2)+~l(u, L2, Lo) is regular at u = 0). We conclude 
that 

~-(Lo, L1, L2) = [ch(V °) - N] = ch(index(~+)) . 

This proves Proposition 3.1. [] 

4. Computation of r(Lo, L1, L2) 

Let L0, L1, L2 C V be pairwise transverse Lagrangian subspaces. Then 
V = L l ® L 2 a n d w e c a n w r i t e x o  = : q + x 2 ,  xi C Li, i = 0,1,2. We 
define a hermitean quadratic form Q on Lo by 

Q(xo) := (Ixl,  x2), 

where (I., .) is the symplectic form on V associated to I and the Hilbert 
space structure of V. It is easy to see that Q is nondegenerate. Thus we 
can split L0 = L0 + ® L o into the positive and negative eigenspace of Q. 
Returning now to the family case we obtain a decomposition Lo = L + ® L o 
of the bundle of Lagrangian subspaces L0 C B × V which is induced by 
the two other subbundles L1, L2. 

Proposition 4.1. We have 

~-(L0, L1, L2) = ch(L +) - ch(L o) E H*(B,  R ) .  

Proof. The proof of the proposition consists of two steps. 

1. Using the K-theoretic relative index theorem [4] we reduce to an index 
problem for a family of Dirac operators on the disc. The parameter de- 
pendence of this family is again built in through the boundary conditions. 

2. We then consider the "universal" family of such operators which is 
parametrized by a space which is homotopy equivalent to the space of 
all triples of pairwise transverse Lagrangian subspaces of V. It suffices 
to verify the assertion of the proposition in this special case. 

First we want to compactify M by cutting offthe cylindrical ends and gluing 

in half discs. The resulting manifold/~/is then topologically a disc. Let ~+ 
be the corresponding Dirac operator. We want to find a family of boundary 

conditions parametrized by B such that ch(index(~ +)) = ch(index(~ +)). 
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Let Y c R 2 denote the subset 

Y := {(s,t) E R 2 l s  > 0, t E [ -1 /2 ,1 /2 ]or s  <_ O,t 2 + s  2 <_ 1/4}.  

Then Y is a Riemannian surface with C 1-boundary and one cylindrical end. 
Let Sy  be the spinor bundle of Y. Let Ey := Sy  ® (W ® W °p) and 8y  
be the Dirac operator on Ey. We trivialize Sy  and By using the flat Levi 
Civita connection and denote the typical fibre of Ey by E. Then 

0 ~:0 

The space V := E + is a symplectic vector space with symplectic structure 
induced by I = ~7~-c~ +. 

Let now L0, L1 be transversal Lagrangian subspaces of V. We want to 
construct a family ofLagrangian subspaces L( s, t) = L( s, t) ( Lo, L1) which 
is parametrized by (s, t) c OY, and which depends smoothly on L0, L1, 
such that L(s , t )  = Lo for s > 0, t -- 1/2 and L(s , t )  = L1 for s >_ 1, t = 
-1/2. If B S b --~ (L0(b), L1 (b)) is a smooth family of pairs of transverse 
Lagrangian subspaces, then we require that the index of the Dirac operator 
8 + subject to the family of boundary conditions L(., .)(Lo(b), Ll(b)) is 
trivial. 

We first set 

Lo (s, t) C OY, t > 0 
L(s , t ) (Lo)  := ILo (s,t) c OY, s _> 0, t = - 1 / 2  , 

cr-jn(s,t)Lo (s, t)  EOI1, s<_0, t<_0 

where n(s, t) := 2(s~r + + tcr +) is the Clifford multiplication by the normal 
vector. It is easy to see that L(s, t)(Lo) is C 1 with respect to (s, t). If B 
b ~ Lo(b) is a smooth family ofLagrangian subspaces, then we consider the 

^ +  
family {Sy(b)}bCB given by 8 + subject to the boundary conditions given 

by L(., .)(Lo(b)). Since L0 and 1Lo are transverse, we see as in Section 3 

that {~+(b)}bob gives rise to a family of Fredholm operators. 

^ +  
Lemma 4.2. In K ° ( B )  we have 2 index(~v) = 0. 

Proof We claim that ~ is equivalent with its adjoint (0+)*. Thus 
^ +  ^ +  ^ +  , 

index(St)  index(By) = 2 index(0v) = - 0. 

We now show the claim. First we describe the adjoint (~+)*. Note that 
E -  is a hermitean symplectic vector space with symplectic structure induced 

by a + a~-. Then the adjoint of ~ ,  is the operator ~,z subject to the boundary 
conditions given by the family of Lagrangian subspaces of E -  

B ~ b ~ {(s,t)  c OV H-r ( s , t )L ( s , t ) (Lo (b ) ) } ,  
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where 7-(s, t) is the Clifford multiplication by the tangent vector at (s, t) C 
OY. If ~ + ( s , t )  is a section of E +, then we set (U+¢+)(s, t)  := o "+ 
~+(s ,  - t ) .  Then U + is unitary, and U + ~  + is a section of E l .  It is easy to 
check that the equality of differential operators 

v+0;v+ 
is compatible with the boundary conditions. This shows the claim. [] 

Let Q(x, y) = (Ix, y) be the (hermitean) symplectic form on V. Let A 
denote the manifold of all Lagrangian subspaces of  V. For L E A let EL 
denote the subset of  all Lagrangian subspaces L ~ E A which are transverse 
to L. The following discussion is parallel to that in [8] p. 117/118. Let PL' 
denote the projection from V to U with kernel L. It is easy to check that 
ff2( P u x  , y) + ffl(x, PL'Y) = ff2(x, y). We define the hermitean quadratic 
form 

1 
QL,(x,y) := ~2(PL, x ,y)  - ~ n ( x , y )  . (11) 

Indeed 

We have 

=  (PL, x , y )  - 1 

1 
= -S~(x, PL, y) + - ~ ( x ,  y) 

= O(PL, y, x) -- ~ (y, x) 

= QL,(y, x ) .  

1 
O L , ( x , y )  = w Z , y  v .  (12) 

Any hermitean quadratic form Q satisfying (12) determines a Lagrangian 
subspace L t such that Q --- QL'. In fact let Pt  be determined by Q and (11), 
then L / is just the 1-eigenspace of PI. Thus we can identify EL with the 
space of hermitean quadratic forms satisfying (12). In particular, £L is an 
affine space where the affine structure only depends on L. 

We now can construct the desired family L(s, t)(L0, L1). Note that 
[Lo, L1 C £Lo, and there is a natural affine path L(r) = L(r)(Lo, L1) 
with L(0) = 1Lo, L(1) = L1. We choose a smooth cut-off function 

E C ~ ( [ 0 ,  1]) with x(t)  E [0, 1], x(t)  = 0 near t = 0 and x(t)  = 1 near 
t = 1. We set L(s , t )  = L(s,t) for all ( s , t )  E OY except for t = - 1 / 2 ,  
where we set L(s, t) := L(X(S))(Lo, L1) for s E [0, 1] and L(s, t) := Zx 
for s _> 1. Then L(s, t) is C 1 with respect to (s, t) and depends smoothly on 
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L0, L1. Let {0+(b)}bCB denote the family of Dirac operators given by 0 + 
subject to the boundary conditions defined by {L(., .)(Lo(b), L1 (b))}bCB. 
Then ) +  and 0 + are homotopic families and thus 2 index(0 +) = 0 in 
K°(B). The upshot of the construction above is that we associated to a 
pair L0, L1 of transversal Lagrangian subspaces a canonical path 7(L0, L1) 
from L0 to L1 which is parametrized by cOY. The path 7(L0, L1) depends 
smoothly on the pair (Lo, L1) and has (in a certain sense that will become 
clear below) the minimal winding number. 

Now we can cut-off the six cylindrical ends of M and glue in the pieces 
t/i = {(s, t)  C Y I s _> 1}, i = 0 , . . . , 5 .  The resulting manifold M is 
topologically a two-dimensional disc. 

To be more precise let Zi = [0, ec) x [ -1 /2 ,  1/2], i = 0 , . . . ,  5, denote 
the cylindrical ends of M. Then we cut at {1} x [ -1 /2 ,  1/2]. We identify 
(s,t)  C Zi with ( 1 -  s , t )  E Y/, s E (0,1). Moreover, we use ors in 
order to glue the bundles. Then 0 + glues with ~,~. Assume that on the 
component [0, ec) x { -  1/2} of OZi we have the boundary condition given 
by Li (resp. Li-a) and on [0, oc) x {1/2} we have the one given by Li+l 
(resp. Li-2), where La = L0. Then on the boundary part of ~ /which  comes 
from Y/we choose the path ~sr"/(Li, Li+I ) (resp. crsr'y(Li_a, Li-2)), where 
~- again denotes the Clifford multiplication with the unit vector tangent to 
the boundary. This path indeed connects Li with Li+l. 

Thus we have constructed a closed path "~(L0, L1, L2) of Lagrangian 
subspaces of V which is parametrized by 02~/, and which depends smoothly 
on the triple (L0, L1, L2). We use this path in order to define the boundary 

condition for the W ® W°P-twisted Dirac operator ~+ on 2~/. Recall that 
we identify V with the fibres of the bundle E ; ~  t using the parallel transport 

along 0-g/. 
It follows from the K-theoretic relative index theorem [4] that 

index(0 +) = index(~ +) c K°(B)[1/2]. Indeed, the relative index the- 
orem states that 

5 5 

index(0+) + E index(0~-, ) = index(~ +) + Z index(0+~ ) '  
i=0  i=0 

where Zi = [ -1 /2 ,  1/2] x R and 0 +  is the W • W°P-twisted Dirac 
operator subject to the boundary conditions given by Li at { - 1 / 2 }  x R, 
Li+l at { - 1 / 2 }  x R (resp. Li-a at { - 1 / 2 }  x R,  Li-2 at { - 1 / 2 }  x R). But 
index(0+ ) = 0 in K ° (B)[1/2] for symmetry reasons and index(0+ ) = 0 
by Lemma 4.2. 

To be precise, the relative index theorem in [4] is stated for manifolds 
without boundary. But argument given there carries over to the present case 
without any essential modification. 
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Deforming the metric of .~/to the standard metric of the two disc we do 
not change the index. Below we will assume that 2~/is isometric to the two 
disc. The parallel transport in E + along 0~/wi th  respect to the globally flat 
metric gives an identification of V with the fibres of E + near OM which is 
topologically different from the one used above. This fact has to be taken 
into account below. We have now finished the first part of the proof of the 
proposition. 

We start with the second part. Let A 3 be the space of triples (L0, L1, L2) 
of pairwise transverse Lagrangian subspaces of V. Let Sp(V) denote the 
group of symplectic automorphisms of V. Note that i~2 is a non-degenerate 
hermitean form of signature (l, 1), where l = d ime(V) /2 .  Thus Sp(V) TM 

U(l, 1). The group Sp(V) acts on A 3. We claim that A 3 is the disjoint union 
of orbits of Sp(V). 

First it is easy to see that Sp(V) acts transitively on the space A. Let 
L0 E A. Then any L1 E £Lo can be written as {Bx + x I x E ILo} for 
some/3 E End(IL0, L0). The condition that L1 is Lagrangian translates 
to £2(Bx, y) + f2(x, By) = 0 for all x, y C ILo. This is equivalent to 
(BI)* = BI,  w h e r e ,  is defined with respect to the hermitean metric of 
V. Thus we can parametrize £Lo by the symmetric endomorphisms of L0. 
Writing V = Lo ® ILo it is easy to check that 

ALo = Lo and AILo = L1. Thus Sp(V) acts transitively on the set A 2 of 
pairs (L0, La) of transverse Lagrangian subspaces. 

Let G denote the stabilizer of the pair (L0, ILo). Let j : Gl(Lo) 
Gl(ILo) denote the unique isomorphism such that 

Cl(Lo) ~ A H 0 j (A)  c C .  (13) 

Then j (A)  = - I (A-1)*I .  If L2 C A is transverse to Lo and ILo, then we 
write 

( 1 B 1 )  IL0 L ~ =  0 

for some invertible B as above. If 9 C G is represented by A ~ Gl(Lo) 
according to (13), then 

9 L 2 : ( I o - A B I I A * I ) I L o  . 

The action of G on 12Lo is hence given by action of Gl(Lo) on the symmetric 
endomorphisms of L0 by conjugation. Thus the signature of the symmetric 
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B I  is the only invariant of the orbit of G generated by L2 inside the space 
of Lagrangian subspaces which are transverse to Lo and ILo. We conclude 
that A 3 is the disjoint union of orbits of Sp(V) of points (Lo, ILo, L2), 
which are distinguished by the signature of a matrix B I  defined by L2. 

We now consider the orbit generated by a triple (Lo, ILo, L2) E A 3. 
The stabilizer U of (Lo, ILo, L2) can be identified with the subgroup of 
Gl(Lo) fixing the hermitean form on Lo defined by BI.  Let K C U denote 
a maximal compact subgroup. We can choose K such that it fixes the metric 
(., .), hence K is a subgroup of the unitary group of V. But then it fixes I, too. 
Using the explicit formulas given above one checks that +(Lo, ILo, L2) = 
k~/(Lo, ILo, L2) for all k E K. 

We now globally trivialize S, E using the paralle! transport given by the 
globally flat metric of/~/.  Along the boundary OM the old and the new 
trivialization of S are related by a twist of -27r in the structure group of 
S. Note that S + are the +z eigenspaces of the Clifford multiplication by 
the volume form of/~/.  The image of the path "~(L0, L1, L2) in the new 
trivialization can be obtained (up to homotopy) by 7(L0, L1, L2)(z) :-- 
z-*I~(Lo, L1, L2)(z), z E S 1 = O]U/. We see that 7(L0, L1, L2) is K-  
invariant, too. 

Let (x, y) be oriented, fiat orthonormal coordinates on ~/  and write 

= axOx + crvO v. If we let K act on E -  by, say, K 9 k ~ -~+kcr~- E 

End(E- ) ,  then ~+ is K-equivariant. We now consider the family of Dirac 

operators parametrized by Sp(V), given by ~+ subject to the boundary 
conditions Sp(V) ~ 9 ~ 7(9L0, 91Lo, 9L2). This family is K-equivariant 
and we go over to the quotient family parametrized by S p ( V ) / K  which we 

denote by ~+. 

Let X := index(~ +) E R(K)  be the K-equivariant index of ~+ sub- 
ject to the boundary conditions given by 7(L0, ILo, L2), where R(K)  de- 

notes the representation ring of K. Then index(~) +) = [Sp(V) xK X] E 
K°(Sp(V) /K) .  The following Lemma implies the proposition for the fam- 

ily ~)+. 

Lemma 4.3. Let (n, m) be the signature of the quadratic form defined 
by B I on Lo. Then X = C n - C m, where C n , C  m are the m- and 
n-dimensional standard representations of the corresponding factors of 
K U(n) × U(m). 

Proof Let T C K be a maximal toms. If Y E R(K),  then YT denotes the 
restriction to T. It is sufficient to show that XT = C~ - C~. 
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We first consider the case that W ~ C. Then 0 + can be expressed in 
terms of complex geometry. Indeed we have 

Writing c9 = Ox + zOy, 0 = Oz - zOy we obtain 

+ (o101) + ( , 0 )  O" x ~ ~ O'y ~-- 0 

and hence 

I =  0 z " 

A one-dimensional subspace C(a,b) C V, a,b E C, is Lagrangian iff 
[a[ = Ib]. We parametrize the Lagrangian subspaces of V by S 1 associating 
to 0 E S 1 the space C(¢, 1). 

The space of pairwise transverse triples A 3 consists of two components 
which are distinguished by the cyclic order of the parameters ¢i E S 1 of 
Li. Let A 3 be the component with order ¢0 < 01 < 02 and A3_l be the 

component with order 00 < 02 < 01. The T-equivariant index of ~+ only 
depends on the homotopy class of the path 7(Lo, L1, L2). 

We fix an identification 7rl(S l) = Z, 7 H [,y], such that the path 
mapped to 1 has positive orientation. We leave to the reader to compute 
['y(Lo, L1, L2)] E Z for (Lo, L1, L2) E A31. The result is [7(Lo, L1, L2)] = 
0 on A 3 and [7(Lo, L1, L2)] = 2 on A3_l . 

Lemma 4.4. Let W -~ C, and let the boundary condition of O + be given 

by a closed path "y of Lagrangian subspaces. Then index(0 +) = -[7] + 1. 

Proof. Let n E Z be represented by the path "/n(0) = C(0  n, 1), 0 E S 1. 

The kernel of 0 + with boundary condition given by "Yn can be identified 
with the space of pairs (f ,  9) of functions on _1~/, where egg = 0, Of = 0 and 
z•g(z) = f (z )  at S 1. This space is non-trivial for n _< 0, and it is spanned 

by (~-n, 1), (5 -n-1 , z ) , . . . ,  (1, z-n). One can check that (0+) * is given by 

and that the boundary condition is given by the path ")'n+2. The kernel of 

(0+) * can be identified with the space of pairs (f,  g) of functions on 2~/with 

0 f  = 0, 09 = 0, and zn-29(z ) = f (z) .  The kernel of (0+) * is non-trivial 
for n > 2, and it is spanned by by (z n-2, 1), (z n-3, 2) , . . . ,  (1, 5n-2). It 

follows that index(0 +) = - n  + 1. [] 
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We now finish the proof of Lemma 4.3 in the case W = C. We must 
show that the signature of the quadratic form given by B I  is (1, 0) on A a 
and (0, 1) o n  A3_1 . Let l0 = (1, 1), la = ( - 1 ,  1), and 12 = ( - i ,  1) generate 
the Lagrangian subspaces Lo, ILo, L2. Then (L0, ILo, L2) E A~. We have 
12 ~ l0 + 1~_~11+~1 and Ilo = - i l l .  It follows that B I  = 1. The other case is 
similar. 

In order to complete the proof of  Lemma 4.3 in the general case one 
reduces to the special case W = C by considering the direct sums. [] 

We now finish the proof of  the proposition. Let ~ 3 IA i } denote the set 
of  components of  A 3 and choose xi E A/a for all i. Let U/ be the sta- 
bilizer of  xi in Sp(V).  Then [..Ji Sp(V)/Ui  TM A 3 parametrizes the uni- 

versal family of  boundary conditions for 8 + given by a family of  path' 
B ~ b ~ 7(Lo(b),  Ll(b) ,  L2(b)). Indeed, any such family can be pulled 
back from the universal one using the canonical map 13 --, Ui Sp(V)/Ui .  
Since the fibres of  7ri : S p ( V ) / K  ~ Sp(V) /Ui  are symmetric spaces of  
non-compact type, 7ri is a homotopy equivalence. Since the proposition is 

proved for ~+ (for each component separately) it is also true for the universal 
family, and hence in general. [] 

Remark .  We sketch another proof of Proposition 4.1 which avoids the use 
of  the universal family and the equivariant index. 

We first consider a model case where Vmodd :=  C 2 and I := diag(~, -~).  
Let li, i = 0, 1, 2, be the Lagrangian subspaces of Vmodd parametrized by 
q~0 : =  0, ~)1 : =  4 - a r g ( ~ ) ,  ¢2 := - ¢ 1 ,  i.e., li = {(e*¢'x, x) E C2I  x E 

C}.  Let 0 + be the Dirac operator on M with boundary conditions given by 

the triple 10, ll, 12. We have index(0  +) = +1.  This can be proved in the 
same way as Proposition 4.1, but the proof simplifies due to the facts that 
dim(Vmoaez) = 2, and that B is a point. 

We now turn to the general case. Let V be any finite-dimensional Hilbert 
space with hermitean symplectic structure, and let {L0, L1, L2}bcB be a 
family ofpairwise transverse Lagrangian subspaces of  V. Then we can write 
Li = {x + A i l x  I x E ILo}, i = 1, 2, where Ai are smooth symmetric 
bundle endomorphisms of the subbundle L0 C 13 x V such that A1 - A2  

is invertible. 
We show that this family of  triples is homotopic to a family in some 

1 standard form. Consider the family A(t)i := ~ ((1 - t) (Ai - A3-i) + tAi), 
t E [0, 1]. Then A(t) l  - A(t)2 = A1 --  A2 is invertible for all t. Moreover, 
A(1)i = Ai and A(0)I  = A1 - A2 = -A(0 )~ .  Thus up to homotopy we 
can assume that A1 = - A 2  = A, where A is invertible. There is a further 
index bundle preserving homotopy of  A to A/IAI. Thus we can assume that 
A 2 = 1. 
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Let 93 + be the family of  operators on M defined by the family 
{L0, L1, L~ }boB associated with A. Let L0 ~ be the J: ]-eigenspaces of  A. We 
will define isomorphisms ¢ :  ker(93 +) ® L + ® ker(93 +) ® L o ~ ker(93+), 

if': coker(93 +) ® L + • coker(93 +) • L o ~ coker(93+). 

First we fix a basis vector Vmodd E lw Then any v E L0 i defines an 
unique symplectic embedding v, : V,~oad ~ V such that v, (Vmodd) = v. 
If v , w  C L0 i and # E C, then we have (#v + w). = #v. + w.. One 
can check that v.(ker(93+)) C ker(93+), v.(eoker(93+)) C coker(93+). We 
define q~(f ® v ® f '  ® v') :=  v , ( f )  + v',(f'), ~P(9 ® w q3 9' ® w') := 
w, (g) + w', (g'). In follows that 

index(93 +) = index(93+) [L +] + index(93_+) [Lo] = [L +] - [Lo] e K ° ( B ) .  

This finishes our sketch of an alternative proof of  Proposition 4.1. 

Example. For the purpose of illustration let us consider an example. Let 
V := C 4 equipped with some complex structure I such that Lo = C 2 c 
C 4 is Lagrangian. Let B := P 2 C .  If T ~ B denotes the tautological 
bundle of B,  then we have an orthogonal splitting of  the trivial bundle 
B x Lo as T ® T ±. For b c B let Qb be the quadratic form on Lo given 
by the matrix d i a g ( 1 , - 1 )  with respect to the splitting Lo = TD ® T~-. 
The family of  quadratic forms {Qb}V~B induces a family of Lagrangian 
subspaces {L2 (b)}b6B such that L2 (b) is transverse to Lo, ILo for all b E B. 
Thus 7-(L0, ILo, L2) is defined, and we have 

T(Lo, ILo, L2) : c h ( T )  - ch(T*)  : 2c1(T) . 

This class is non-trivial. 

Remark. It would be desirable to have an explicit formula for the T/-form 
generalizing the result of  [9]. 
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