ORIENTED MANIFOLDS FIBERED OVER THE CIRCLE

R. O. BURDICK

This note is concerned with the following problem: Which classes in the oriented cobordism ring Ω_* can be represented by a manifold fibered differentiably over the circle, and can one give a constructive method for obtaining such representatives? (For the unoriented case see [2]). Many examples are known of classes which can be represented by manifolds fibered over the 2-sphere. In §1 a construction is shown which enables one, if given an oriented manifold E fibered over the *n*-sphere where n is positive with fiber N, to obtain an oriented manifold fibered over the circle with fiber $S^{n-1} \times N$ representing the same oriented cobordism class as E. In §2 a homomorphism is defined from Diff_+ (M), the group of orientation preserving diffeomorphisms of a closed oriented n-manifold M onto itself, into Ω_{n+1} , the (n+1)-dimensional oriented cobordism group. This is used to show that if a closed oriented manifold is fibered over the circle with a compact Lie group as the group of the fibration, then the manifold represents a torsion element in Ω_* . These results rely on a geometric construction described in §1 by which two manifolds with diffeomorphic boundaries are fitted together to form a closed manifold.

Geometric constructions. Throughout this note all manifolds will be compact C^{∞} -differentiable, but not necessarily connected; all diffeomorphisms will be C[∞]-diffeomorphisms. Given an oriented manifold whose boundary is the disjoint union ("+") of closed manifolds N_1 and N_2 , there are the induced orientation classes $\iota_1 \in H_{n-1}(N_1; Z)$ and $\iota_2 \in H_{n-1}(N_2; Z)$. Let f be a diffeomorphism of N_1 onto N_2 with $f_*(\iota_1) = -\iota_2$ (denote this by $f: N_1 \rightarrow -N_2$, and in general let -M be the manifold M with opposite orientation). The identification space M(f) formed from M by identifying x with f(x) for $x \in N_1$ can be made into a closed oriented n-manifold. The differentiable structure on M(f) is as follows (see [4]): First the identification map $i = M \rightarrow M(f)$ is to be a diffeomorphism on the interior of M. There is a neighborhood U_1 of N_1 in M and a diffeomorphism p_1 of U_1 onto $N_1 \times [0, 1)$. Likewise there is a neighborhood U_2 of N_2 in M, and a diffeomorphism p_2 of U_2 onto $N_2 \times [0, 1)$. U_1 and U_2 can be chosen disjoint. Let $U=i(U_1)\cup i(U_2)$ in M(f), and let $p: U \rightarrow N_2 \times (-1, 1)$ be the homeomorphism induced by p_1 , f, and p_2 . The differentiable structure is

Received by the editors April 5, 1965.

then obtained by requiring p to be a diffeomorphism. In this building of manifolds from pieces with diffeomorphic boundaries, the diffeomorphism f is of course important, but it is independent of the choice of U_1 , p_1 and U_2 , p_2 (see [4], p. 63).

For a closed oriented *n*-manifold *B*, let [B] be the cobordism class containing *B* in Ω_n .

THEOREM (1.1). If M is an oriented n-manifold whose boundary is N_1+N_2 , and f, g: $N_1 \rightarrow -N_2$ are diffeomorphisms onto, then in Ω_n

$$[M(g)] = [M(f)] + [(N_1 \times I)(f^{-1}g)].$$

The last term on the right is the class of the manifold obtained from $N_1 \times I$, I the unit interval, by identifying (x, 0) with $(f^{-1}g(x), 1)$.

PROOF. By "straightening the angle" [1], $M \times I$ can be made into an oriented (n+1)-manifold whose boundary is $-M \times \{0\} \cup$ $\partial M \times I \cup M \times \{1\}$. In $M \times I$ identify (x, t) with (g(x), t) for $x \in N_1$ and $0 \leq t \leq 1/4$, and (x, t) with (f(x), t) for $x \in N_1$ and $3/4 \leq t \leq 1$. The resulting space can be made into an oriented (n+1)-manifold whose boundary is -M(g) on the bottom, M(f) on the top, and on the side the following manifold: It is formed from $N_1 \times [1/4, 3/4] +$ $N_2 \times [1/4, 3/4]$ by joining (x, 1/4) to (g(x), 1/4) and (x, 3/4) with (f(x), 3/4) for $x \in N_1$. But this is diffeomorphic to $N_1 \times I$ with (x, 0)identified with $(f^{-1}g(x), 1)$ via the diffeomorphism $(x, t) \rightarrow (x, t-1/4)$ for $x \in N_1$ and $(y, t) \rightarrow (f^{-1}(y), 5/4 - t)$ for $y \in N_2$. Thus the conclusion of the theorem follows. Observe that $(N_1 \times I)(f^{-1}g)$ is a bundle over the circle whose fiber is N_1 and whose group is the cyclic subgroup generated by f^{-1} g in Diff₊ (N₁), the group of orientation preserving diffeomorphisms of N_1 onto itself. In fact it can be described as follows: Let R be the reals and Z the integers. Let Z act on $N_1 \times R$ by $(x, t) \cdot n = ((f^{-1}g)^n(x), t+n)$, then $(N_1 \times I)(f^{-1}g)$ is the bundle space of the Z-bundle $N_1 \times R/Z \rightarrow R/Z \approx S^1$.

The above construction is used to show the following:

THEOREM (1.2). If a class in Ω_* can be represented by a manifold fibered differentiably over the n-sphere where n is positive, then it can be represented by a manifold fibered differentiably over the circle.

PROOF. Let $\{E, S^n, N, \pi, G\}$ be a fiber bundle over the *n*-sphere S^n with total space the oriented (n+m)-manifold E, fiber the closed oriented *m*-manifold N, projection map $\pi: E \to S^n$ and group G a subgroup of Diff₊ (N). Represent E in the following manner: Split S^n into two hemispheres D_+ and D_- which intersect in S^{n-1} . These being *n*-cells the bundle is trivial over each. Thus there is a map $x \to g_x$ of S^{n-1} into G, so that E will be the space obtained from the disjoint

union of two copies of $I^n \times N$ with opposite orientation by identifying (x, y) in one with $(x, g_x(y))$ in the other for $x \in \partial I^n \approx S^{n-1}$. Let $(I^n \times N \times I)_1 + (-I^n \times N \times I)_2$ be two disjoint copies of $I^n \times N \times I$ with opposite orientation. Identify $(x, y, t)_1$ with $(x, y, t)_2$ for $x \in \partial I^n$, $y \in N$, and $0 \le t \le 1/4$. This will give $S^n \times N$ on the bottom. Join $(x, y, t)_1$ with $(x, g_x(y), t)_2$ for $x \in \partial I^n$, $y \in N$, and $3/4 \le t \le 1$. This will give E on the top. Since $[S^n \times N] = 0$ in Ω_{n+m} , E is cobordant to the remaining part of the boundary. But as before this is $(S^{n-1} \times N \times I)(F)$ where $F(x, y) = (x, g_x(y))$ is in Diff₊ $(S^{n-1} \times N)$. This is a bundle over the circle whose fiber is $S^{n-1} \times N$ and whose group is the cyclic subgroup generated by F in Diff₊ $(S^{n-1} \times N)$.

The homomorphism β . As before if M is a closed oriented *n*-manifold and $f \in \text{Diff}_+(M)$, let $(M \times I)(f)$ be the manifold obtained by identifying (x, 0) with (f(x), 1). Define the function

$$\beta: \operatorname{Diff}_+(M) \to \Omega_{n+1} \operatorname{by} \beta(f) = [(M \times I)(f)].$$

THEOREM (2.1). β is a homomorphism.

PROOF. Let $id \in \text{Diff}_+$ (M) be the identity diffeomorphism. If $f \in \text{Diff}_+$ (M), then by (1.1)

$$\left[(M \times I)(id) \right] = \left[(M \times I)(f) \right] + \left[(M \times I)(f^{-1}) \right]$$

but

$$\left[(M \times I)(id)\right] = \left[M \times S^{1}\right] = 0$$

so

(1)
$$\beta(f) = -\beta(f^{-1}).$$

If f and g are in Diff₊ (M)

$$\left[(M \times I)(g) \right] = \left[(M \times I)(f^{-1}) \right] + \left[(M \times I)(fg) \right]$$

so

$$\beta(g) = \beta(f^{-1}) + \beta(fg)$$

or by (1)

 $\beta(f) + \beta(g) = \beta(fg).$

Therefore β is a homomorphism.

As an example where β is nontrivial, let M = CP(2), 2-dimensional complex projective space, four real dimensions. A point $z \in CP(2)$ is expressed in homogeneous coordinates $z = [z_1, z_2, z_3]$ where the z_i 's are complex numbers. Let f be conjugation $f(z) = [\bar{z}_1, \bar{z}_2, \bar{z}_3]$. Then Thom has shown [3, p. 82] that $\beta(f)$ is the generator of $\Omega_5 \cong Z_2$.

1966]

THEOREM (2.2). If f, $g \in Diff_+$ (M) are differentiably isotopic, then $\beta(f) = \beta(g)$.

PROOF. f and g being isotopic, there exists a differentiable function $F: M \times I \rightarrow M$ with F(x, 0) = g(x), F(x, 1) = f(x) and $F(x, t) = f_t(x)$ a diffeomorphism for each t. $M \times I \times I$ is an (n+2)-manifold whose boundary is

 $M \times I \times \{0\} \cup M \times \{0\} \times I \cup M \times \{1\} \times I \cup M \times I \times \{1\}.$

In this boundary identify (x, 0, t) with $(f_t(x), 1, t)$.

THEOREM (2.3). If $\{E, S^1, N, \pi, G\}$ is a fiber bundle over the circle with E an oriented n-manifold, N an oriented (n-1)-manifold and G a compact Lie group acting on N as a group of orientation preserving diffeomorphisms, then E represents a torsion element in Ω_* .

PROOF. The bundle is equivalent to $(N \times I)(g)$ for some diffeomorphism $g \in G$. Since G is compact, for some n, g^n is in the identity component of G. So there exists a one parameter subgroup of G through g^n . This gives a differentiable map $F: I \rightarrow G$ with F(0) the identity of G and $F(1) = g^n$. Then the composite map $I \times N \rightarrow G \times N$ $\rightarrow N$ is an isotopy connecting g^n with the identity. So by (2.2)

$$0 = \beta(id) = \beta(f^n) = n\beta(f).$$

But $\beta(f) = [E]$ so n[E] = 0 which proves the theorem.

Given an oriented manifold N on which S^1 acts as a group of orientation preserving diffeomorphisms, there is the bundle over the 2-sphere with fiber N obtained by joining two copies of $I \times N$ by means of $(x, y)_1 \sim (x, x \cdot y)_2$ for $x \in \partial I \approx S^1$ and $y \in N$. By (1.2) this is cobordant to the bundle over the circle $(S^1 \times N \times R)/Z \rightarrow R/Z$ where the action of Z is $(x, y, t) \cdot n = (x, x^n \cdot y, t+n)$. In [1, p. 120] examples are constructed of oriented manifolds fibered over the 2-sphere whose classes are of infinite order in Ω_* . Thus these classes can be represented by manifolds fibered over the circle.

References

1. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer, Berlin, 1964.

2. -----, Fibring within a cobordism class, Michigan Math. J. 12 (1965), 33-47.

3. René Thom, Quelques propriétés globales des variétés differentiables, Comment. Math. Helv. 28 (1954), 17-86.

4. James R. Munkres, *Elementary differential topology*, Princeton Univ. Press, Princeton, N. J., 1963.

UNIVERSITY OF VIRGINIA