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Preface to the First Edition

The phenomenon of a knot is a fundamental experience in our perception of three
dimensional space. What is special about knots is that they represent a truly intrinsic
and essential quality of 3-space accessible to intuitive understanding. No arbitrariness
like the choice of a metric mars the nature of a knot – a trefoil knot will be universally
recognizable wherever the basic geometric conditions of our world exist. (One is
tempted to propose it as an emblem of our universe.)

There is no doubt that knots hold an important – if not crucial – position in the
theory of 3-dimensional manifolds. As a subject for a mathematical textbook they
serve a double purpose. They are excellent introductory material to geometric and
algebraic topology, helping to understand problems and to recognize obstructions in
this field. On the other hand they present themselves as ready and copious test material
for the application of various concepts and theorems in topology.

The first nine chapters (excepting the sixth) treat standard material of classical knot
theory. The remaining chapters are devoted to more or less special topics depending
on the interest and taste of the authors and what they believed to be essential and alive.
The subjects might, of course, have been selected quite differently from the abundant
wealth of publications in knot theory during the last decades.

We have stuck throughout this book mainly to traditional topics of classical knot
theory. Links have been included where they come in naturally. Higher-dimensional
knot theory has been completely left out – even where it has a bearing on 3-dimensional
knots such as slice knots. The theme of surgery has been rather neglected – excepting
Chapter 15. Wild knots and Algebraic knots are merely mentioned.

This book may be read by students with a basic knowledge in algebraic topology
– at least the first four chapters will present no serious difficulties to them. As the
book proceeds certain fundamental results on 3-manifolds are used – such as the
Papakyriakopoulos theorems. The theorems are stated in Appendix B and references
are given where proofs may be found. There seemed to be no point in adding another
presentation of these things. The reader who is not familiar with these theorems is,
however, well advised to interrupt the reading to study them. At some places the
theory of surfaces is needed – several results of Nielsen are applied. Proofs of these
may be read in [ZVC 1980], but taking them for granted will not seriously impair
the understanding of this book. Whenever possible we have given complete and self-
contained proofs at the most elementary level possible. To do this we occasionally
refrained from applying a general theorem but gave a simpler proof for the special
case in hand.

There are, of course, many pertinent and interesting facts in knot theory – especially
in its recent development – that were definitely beyond the scope of such a textbook.
To be complete – even in a special field such as knots – is impossible today and was
not aimed at. We tried to keep up with important contributions in our bibliography.



vi Preface to the First Edition

There are not many textbooks on knots. Reidemeister’s “Knotentheorie” was con-
ceived for a different purpose and level; Neuwirth’s book “Knot Groups” and Hillman’s
monograph “Alexander Ideals of Links” have a more specialised and algebraic interest
in mind. In writing this book we had, however, to take into consideration Rolfsen’s
remarkable book “Knots and Links”. We tried to avoid overlappings in the contents
and the manner of presentation. In particular, we thought it futile to produce another
set of drawings of knots and links up to ten crossings – or even more. They can – in
perfect beauty – be viewed in Rolfsen’s book. Knots with less than ten crossings have
been added in Appendix D as a minimum of ready illustrative material. The tables of
knot invariants have also been devised in a way which offers at least something new.
Figures are plentiful because we think them necessary and hope them to be helpful.

Finally we wish to express our gratitude to Colin Maclachlan who read the manu-
script and expurgated it from the grosser lapsus linguae (this sentence was composed
without his supervision). We are indebted to U. Lüdicke and G. Wenzel who wrote
the computer programs and carried out the computations of a major part of the knot
invariants listed in the tables. We are grateful to U. Dederek-Breuer who wrote the
program for filing and sorting the bibliography. We also want to thank Mrs. A. Huck
and Mrs. M. Schwarz for patiently typing, re-typing, correcting and re-correcting
abominable manuscripts.

Frankfurt (Main)/Bochum, Summer 1985 Gerhard Burde
Heiner Zieschang



Preface to the Second Edition

The text has been revised, some mistakes have been eliminated and Chapter 15 has
been brought up to date, especially taking into account the Gordon–Luecke Theorem
on knot complements, although we have not included a proof. Chapter 16 was added,
presenting an introduction to the HOMFLY polynomial, and including a self-contained
account of the fundamental facts about Hecke algebras. A proof of Markov’s theorem
was added in Chapter 10 on braids. We also tried to bring the bibliography up to date.
In view of the vast amount of recent and pertinent contributions even approximate
completeness was out of the question.

We have decided not to deal with Vassiliev invariants, quantum group invariants
and hyperbolic structures on knot complements, since a thorough treatment of these
topics would go far beyond the space at our disposal. Adequate introductory surveys
on these topics are available elsewhere.

Since the first edition of this book in 1985, a series of books on knots and related
topics have appeared. We mention especially: [Kauffman 1987, 1991], [Kawauchi
1996], [Murasugi 1996], [Turaev 1994], [Vassiliev 1999].

Our heartfelt thanks go to Marlene Schwarz and Jörg Stümke for producing the
LATEX-file and to Richard Weidmann for proof-reading. We also thank the editors for
their patience and pleasant cooperation, and Irene Zimmermann for her careful work
on the final layout.

Frankfurt (Main)/Bochum, 2002 Gerhard Burde
Heiner Zieschang
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Chapter 1

Knots and Isotopies

The chapter contains an elementary foundation of knot theory. Sections A and B
define and discuss knots and their equivalence classes, and Section C deals with the
regular projections of knots. Section D contains a short review of [Pannwitz 1933]
and [Milnor 1950] intended to further an intuitive geometric understanding for the
global quality of knotting in a simple closed curve in 3-space.

A Knots

A knot, in the language of mathematics, is an embedding of a circle S1 into Euclidean
3-space, R3, or the 3-sphere, S3. More generally embeddings ofSk intoSn+k have been
studied in “higher dimensional knot theory”, but this book will be strictly concerned
with “classical” knots S1 ⊂ S3. (On occasion we digress to consider “links” or “knots
of multiplicity µ > 1” which are embeddings of a disjoint union of 1-spheres S1

i ,
1 ≤ i ≤ µ, into S3 or R3.)

A single embedding i : S1 → S3, is, of course, of little interest, and does not
give rise to fruitful questions. The essential problem with a knot is whether it can be
disentangled by certain moves that can be carried out in 3-space without damaging
the knot. The topological object will therefore rather be a class of embeddings which
are related by these moves (isotopic embeddings).

There will be a certain abuse of language in this book to avoid complicating the
notation. A knot k will be an embedding, a class of embeddings, the image i(S1) = k

(a simple closed curve), or a class of such curves. There are different notions of
isotopy, and we start by investigating which one of them is best suited to our purposes.

Let X and Y be Hausdorff spaces. A mapping f : X→ Y is called an embedding
if f : X→ f (X) is a homeomorphism.

1.1 Definition (Isotopy). Two embeddings, f0, f1 : X → Y are isotopic if there is
an embedding

F : X × I → Y × I
such that F(x, t) = (f (x, t), t), x ∈ X, t ∈ I = [0, 1], with f (x, 0) = f0(x),
f (x, 1) = f1(x).

F is called a level-preserving isotopy connecting f0 and f1.

We frequently use the notation ft (x) = f (x, t) which automatically takes care of
the boundary conditions. The general notion of isotopy as defined above is not good
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as far as knots are concerned. Any two embeddings S1 → S3 can be shown to be
isotopic although they evidently are different with regard to their knottedness. The
idea of the proof is sufficiently illustrated by the sequence of pictures of Figure 1.1.
Any area where knotting occurs can be contracted continuously to a point.

Figure 1.1

1.2 Definition (Ambient isotopy). Two embeddings f0, f1 : X → Y are ambient
isotopic if there is a level preserving isotopy

H : Y × I → Y × I, H(y, t) = (ht (y), t),
with f1 = h1f0 and h0 = idY . The mapping H is called an ambient isotopy.

An ambient isotopy defines an isotopy F connecting f0 and f1 by F(x, t) =
(htf0(x), t). The difference between the two definitions is the following: An iso-
topy moves the set f0(X) continuously over to f1(X) in Y , but takes no heed of the
neighbouring points of Y outside f1(X). An ambient isotopy requires Y to move
continuously along with ft (X) such as a liquid filling Y will do if an object (ft (X))
is transported through it.

The restriction
h1| : (Y − f0(X))→ (Y − f1(X))

of the homeomorphism h1 : Y → Y is itself a homeomorphism of the complements of
f0(X) resp. f1(X) in Y , if f0 and f1 are ambient isotopic. This is not necessarily true
in the case of mere isotopy and marks the crucial difference. We shall see in Chapter 3
that the complement of the trefoil knot – see the first picture of Figure 1.1 – and the
complement of the unknotted circle, the trivial knot or unknot, are not homeomorphic.

We are going to narrow further the scope of our interest. Topological embeddings
S1 → S3 may have a bizarre appearance as Figure 1.2 shows. There is an infinite
sequence of similar meshes converging to a limit point L at which this knot is called
wild. This example of a wild knot, invented by R.H. Fox, has indeed remarkable
properties which show that at such a point of wildness something extraordinary may
happen. In [Fox-Artin 1948] it is proved that the complement of the curve depicted in
Figure 1.2 is different from that of a trivial knot. Nevertheless the knot can obviously
be unravelled from the right – at least finitely many stitches can.
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L

Figure 1.2

1.3 Definition (Tame knots). A knot k is called tame if it is ambient isotopic to a
simple closed polygon in R3 resp. S3. A knot is wild if it is not tame.

If a knot is tame, any connected proper part α of it is ambient isotopic to a straight
segment and therefore the complement S3 – α is simply connected. Any proper
subarc of the knot of Figure 1.2 which contains the limit point L can be shown
[Fox-Artin 1948] to have a non-simply connected complement. From this it appears
reasonable to call L a point at which the knot is wild. Wild knots are no exceptions
– quite the contrary. Milnor proved: “Most” knots are wild [Milnor 1964]. One can
even show that almost all knots are wild at every point [Brode 1981]. Henceforth we
shall be concerned only with tame knots. Consequently we shall work always in the
p.l.-category (p.l. = piecewise linear). All spaces will be compact polyhedra with a
finite simplicial structure, unless otherwise stated. Maps will be piecewise linear. We
repeat Definitions 1.1 and 1.2 in an adjusted version:

1.4 Definition (p.l. isotopy and p.l.-ambient isotopy). Let X, Y be polyhedra and
f0, f1 : X → Y p.l.-embeddings, f0 and f1 are p.l. isotopic if there is a level-
preserving p.l.-embedding

F : X × I → Y × I, F (x, t) = (ft (x), t), 0 ≤ t ≤ 1.

f0 and f1 are p.l.-ambient isotopic if there is a level-preserving p.l.-isotopy

H : Y × I → Y × I, H(y, t) = (ht (y), t),
with f1 = h1f0 and h0 = idY .

In future we shall usually omit the prefix “p.l.”.
We are now in a position to give the fundamental definition of a knot as a class of

embeddings S1 → S3 resp. S1 → R3:

1.5 Definition (Equivalence). Two (p.l.)-knots are equivalent if they are (p.l.)-ambient
isotopic.
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As mentioned before we use our terminology loosely in connection with this def-
inition. A knot k may be a representative of a class of equivalent knots or the class
itself. If the knots k and k′ are equivalent, we shall say they are the same, k = k′ and
use the sign of equality. k may mean a simple closed finite polygonal curve or a class
of such curves.

The main topic of classical knot theory is the classification of knots with regard to
equivalence.

Dropping “p.l.” defines, of course, a broader field and a more general classifi-
cation problem. The definition of tame knots (Definition 1.3) suggests applying the
Definition 1.2 of “topological” ambient isotopy to define a topological equivalence
for this class of knots. At first view one might think that the restriction to the p.l.-
category will introduce equivalence classes of a different kind. We shall take up the
subject in Chapter 3 to show that this is not true. In fact two tame knots are topolog-
ically equivalent if and only if the p.l.-representatives of their topological classes are
p.l.-equivalent.

We have defined knots up to now without bestowing orientations either on S1 or
S3. If S1 is oriented (oriented knot) the notion of equivalence has to be adjusted: Two
oriented knots are equivalent, if there is an ambient isotopy connecting them which
respects the orientation of the knots. Occasionally we shall choose a fixed orientation
in S3 (for instance in order to define linking numbers). Ambient isotopies obviously
respect the orientation of S3.

B Equivalence of Knots

We defined equivalence of knots by ambient isotopy in the last paragraph. There are
different notions of equivalence to be found in the literature which we propose to
investigate and compare in this paragraph.

Reidemeister [Reidemeister 1926′] gave an elementary introduction into knot the-
ory stressing the combinatorial aspect, which is also the underlying concept of his book
“Knotentheorie” [Reidemeister 1932], the first monograph written on the subject. He
introduced an isotopy by moves.

1.6 Definition (�-move). Let u be a straight segment of a polygonal knot k in R3 (or
S3), and D a triangle in R3, ∂D = u ∪ v ∪ w; u, v,w 1-faces of D. If D ∩ k = u,
then k′ = (k − u) ∪ v ∪ w defines another polygonal knot. We say k′ results from k

by a �-process or �-move. If k is oriented, k′ has to carry the orientation induced by
that of k− u. The inverse process is denoted by �−1. (See Figure 1.3.)
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v

u

D w

Figure 1.3

Remark. We allow � to degenerate as long as k′ remains simple. This means that �
resp. �−1 may be a bisection resp. a reduction in dimension one.

1.7 Definition (Combinatorial equivalence). Two knots are combinatorially equiva-
lent or isotopic by moves, if there is a finite sequence of �- and �−1-moves which
transforms one knot to the other.

There is a third way of defining equivalence of knots which takes advantage of
special properties of the embedding space, R3 or S3. Fisher [Fisher 1960] proved
that an orientation preserving homeomorphism h : S3 → S3 is isotopic to the identity.
(A homeomorphism with this property is called a deformation.) We shall prove the
special case of Fisher’s theorem that comes into our province with the help of the
following theorem which is well known, and will not be proved here.

1.8 Theorem of Alexander–Schoenflies. Let i : S2 → S3 be a (p.l.) embedding.
Then

S3 = B1 ∪ B2, i(S2) = B1 ∩ B2 = ∂B1 = ∂B2,

whereBi , i = 1, 2, is a combinatorial 3-ball (Bi is p.l.-homeomorphic to a 3-simplex).

The theorem corresponds to the Jordan curve theorem in dimension two where it
holds for topological embeddings. In dimension three it is not true in this generality
[Alexander 1924], [Brown 1962].

We start by proving

1.9 Proposition (Alexander–Tietze). Any (p.l.) homeomorphism f of a (combina-
torial) n-ballB keeping the boundaryfixed is isotopic to the identity by a (p.l.)-ambient
isotopy keeping the boundary fixed.

Proof. Define for (x, t) ∈ ∂(B × I )

H(x, t) =


x for t = 0

x for x ∈ ∂B
f (x) for t = 1.
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Every point (x, t) ∈ B × I , t > 0, lies on a straight segment in B × I joining a fixed
interior pointP ofB×0 and a variable pointX on ∂(B×I ). ExtendH |∂(B×I ) linearly
on these segments to obtain a p.l. level-preserving mapping H : B × I → B × I , in
fact, the desired ambient isotopy (Alexander trick, [Alexander 1923], Figure 1.4.) 	


x

P

x = f (x)

f (x)
t = 1

t = 0

Figure 1.4

We are now ready to prove the main theorem of the paragraph:

1.10 Proposition (Equivalence of equivalences). Let k0 and k1 be p.l.-knots in S3.
The following assertions are equivalent.

(1)There is an orientation preserving homeomorphism f : S3 → S3 which carries
k0 onto k1, f (k0) = k1.

(2) k0 and k1 are equivalent (ambient isotopic).

(3) k0 and k1 are combinatorially equivalent (isotopic by moves).

Proof. (1) �⇒ (2): We begin by showing that there is an ambient isotopy H(x, t) =
(ht (x), t) of S3 such that h1f leaves fixed a 3-simplex [P0, P1, P2, P3]. If f : S3 →
S3 has a fixed point, choose it as P0; if not, let P0 be any interior point of a 3-simplex
[s3] of S3. There is an ambient isotopy of S3 which leaves S3 − [s3] fixed and carries
P0 over to any other interior point of [s3]. If [s3] and [s′3] have a common 2-face,
one can easily construct an ambient isotopy moving an interior point P0 of [s3] to an
interior point P ′0 of [s′3] which is the identity outside [s3] ∪ [s′3] (Figure 1.5).

So there is an ambient isotopyH 0 with h0
1f (P0) = P0, since any two 3-simplices

can be connected by a chain of adjoining ones. Next we choose a point P1 = P0 in
the simplex star of P0, and by similar arguments we construct an ambient isotopyH 1

with h1
1h

0
1f leaving fixed the 1-simplex [P0, P1]. A further step leads to h2

1h
1
1h

0
1f

with a fixed 2-simplex [P0, P1, P2]. At this juncture the assumption comes in that
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.
.

P0

[s3]

[s′3]

P ′0

Figure 1.5

f is required to preserve the orientation. A point P3 ∈ [P0, P1, P2], but in the
star of [P0, P1, P2], will be mapped by h2

1h
1
1h

0
1f onto a point P ′3 in the same half-

space with regard to the plane spanned by P0, P1, P2. This ensures the existence
of the final ambient isotopy H 3 such that h3

1h
2
1h

1
1h

0
1f leaves fixed [P0, P1, P2, P3].

The assertion follows from the fact that H = H 3H 2H 1H 0 is an ambient isotopy,
H(x, t) = (ht (x), t).

By Theorem 1.8 the complement of [P0, P1, P2, P3] is a combinatorial 3-ball and
by Theorem 1.9 there is an ambient isotopy which connects h1f with the identity
of S3.

(2) �⇒ (1) follows from the definition of an ambient isotopy.
Next we prove (1) �⇒ (3): Let h : S3 → S3 be an orientation preserving home-

omorphism and k1 = h(k0). The preceding argument shows that there is another
orientation preserving homeomorphism g : S3 → S3, g(k0) = k0, such that hg leaves
fixed some 3-simplex [s3] which will have to be chosen outside a regular neighbour-
hood of k0 and k1. For an interior point P of [s3] consider S3 − {P } as Euclidean
3-space R3. There is a translation τ of R3, which moves k0 into [s3] − {P }. It is
easy to prove that k0 and τ(k0) are isotopic by moves (see Figure 1.6). We claim that
k1 = hg(k0) and hgτ(k0) = τ(k0) are isotopic by moves also, which would complete
the proof. Choose a subdivision of the triangulation of S3 such that the triangles used
in the isotopy by moves between k0 and τ(k0) form a subcomplex of S3. There is an
isotopy by moves k0 → τ(k0) which is defined on the triangles of the subdivision.
hg : S3 → S3 maps the subcomplex onto another one carrying over the isotopy by
moves, (see [Graeub 1949]).

(3) �⇒ (1). It is not difficult to construct a homeomorphism of S3 onto itself
which realizes a �±1-move and leaves fixed the rest of the knot. Choose a regular
neighbourhood U of the 2-simplex which defines the �±1-move whose boundary
meets the knot in two points. By linear extension one can obtain a homeomorphism
producing the �±1-move in U and leaving S3 − U fixed. 	


Isotopy by �-moves provides a means to formulate the knot problem on an ele-
mentary level. It is also useful as a method in proofs of invariance.
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k0

τ

�

Figure 1.6

C Knot Projections

Geometric description in 3-spaces is complicated. The data that determine a knot
are usually given by a projection of k onto a plane E (projection plane) in R3. (In
this paragraph we prefer R3 with its Euclidean metric to S3; a knot k will always be
thought of as a simple closed polygon in R3.) A point P ∈ p(k) ⊂ E whose preimage
p−1(P ) under the projection p : R3 → E contains more than one points of k is called
a multiple point.

1.11 Definition (Regular projection). A projection p of a knot k is called regular if
(1) there are only finitely many multiple points {Pi | 1 ≤ i ≤ n}, and all multiple

points are double points, that is, p−1(Pi) contains two points of k,
(2) no vertex of k is mapped onto a double point.
The minimal number of double points or crossings n in a regular projection of

a knot is called the order of the knot. A regular projection avoids occurrences as
depicted in Figure 1.7.

Figure 1.7

There are sufficiently many regular projections.
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1.12 Proposition. The set of regular projections is open and dense in the space of all
projections.

Proof. Think of directed projections as points on a unit sphere S2 ⊂ R3 with the
induced topology. A standard argument (general position) shows that singular (non-
regular) projections are represented on S2 by a finite number of curves. (The reader
is referred to [Reidemeister 1926′] or [Burde 1978] for a more detailed treatment.) 	


The projection of a knot does not determine the knot, but if at every double point
in a regular projection the overcrossing line is marked, the knot can be reconstructed
from the projection (Figure 1.8).

Figure 1.8

If the knot is oriented, the projection inherits the orientation. The projection of a
knot with this additional information is called a knot projection or knot diagram. Two
knot diagrams will be regarded as equal if they are isotopic in E as graphs, where the
isotopy is required to respect overcrossing resp. undercrossing. Equivalent knots can
be described by many different diagrams, but they are connected by simple operations.

1.13 Definition (Reidemeister moves). Two knot diagrams are called equivalent, if
they are connected by a finite sequence of Reidemeister moves�i , i = 1, 2, 3 or their
inverses �−1

i . The moves are described in Figure 1.9.

The operations�±1
i effect local changes in the diagram. Evidently all these oper-

ations can be realized by ambient isotopies of the knot; equivalent diagrams therefore
define equivalent knots. The converse is also true:

1.14 Proposition. Two knots are equivalent if and only if all their diagrams are
equivalent.

Proof. The first step in the proof will be to verify that any two regular projections
p1, p2 of the same simple closed polygon k are connected by�±1

i -moves. Let p1, p2

again be represented by points on S2, and choose on S2 a polygonal path s from p1
to p2 in general position with respect to the lines of singular projections on S2. When
such a line is crossed the diagram will be changed by an operation �±1

i , the actual
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�1

�−1
1

�2

�−1
2

�3 = �−1
3

Figure 1.9

type depending on the type of singularity, see Figure 1.7, corresponding to the line
that is crossed.

It remains to show that for a fixed projection equivalent knots possess equivalent
diagrams. According to Proposition 1.10 it suffices to show that a�±1-move induces
�±1
i -operations on the projection. This again is easily verified (Figure 1.10). 	


Figure 1.10

Proposition 1.14 allows an elementary approach to knot theory. It is possible to
continue on this level and define invariants for diagrams with respect to equivalence
[Burde 1978]. One might be tempted to look for a finite algorithm to decide equiv-
alence of diagrams by establishing an a priori bound for the number of crossings.
Such a bound is not known, and a simple counterexample shows that it can at least
not be the maximum of the crossings that occur in the diagrams to be compared. The
diagram of Figure 1.11 is that of a trivial knot, however, on the way to a simple closed
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projection via moves �±1
i the number of crossings will increase. This follows from

the fact, that the diagram only allows operations�+1
1 ,�+1

2 which increase the number
of crossings. Figure 1.11 demonstrates one thing more: The operations�i , i = 1, 2, 3
are “independent” – one cannot dispense with any of them (Exercise E 1.5), [Trace
1984].

Figure 1.11

D Global Geometric Properties

In this section we will discuss two theorems (without giving proofs) which connect
the property of “knottedness” and “linking” with other geometric properties of the
curves in R3. The first is [Pannwitz 1933]:

1.15 Theorem (Pannwitz). If k is a non-trivial knot inR3, then there is a straight line
which meets k in four points.

If a link of two components ki , i = 1, 2 is not splittable, then there is a straight
line which meets k1 and k2 in two points A1, B1 resp. A2, B2 each, with an ordering
A1, A2, B1, B2 on the line. (Such a line is called a four-fold chord of k).

It is easy to see that the theorem does not hold for the trivial knot or a splittable
linkage. (A link is splittable or split if it can be separated in R3 by a 2-sphere.)

What Pannwitz proved was actually something more general. For any knot k ⊂ R3

there is a singular disk D ⊂ R3 spanning k. For example one such disk can be
constructed by erecting a cone over a regular projection of k (Figure 1.12). IfD ⊂ R3

is immersed in general position, there will be a finite number of singular points on k

(boundary singularities).

1.16 Definition (Knottedness). The minimal number of boundary singularities of a
disk spanning a knot k is called the knottedness k of k.

1.17 Theorem (Pannwitz). The knottedness k of a non-trivial knot is an even number.
A knot of knottedness k possesses k

2

2 four-fold chords.
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Figure 1.12

The proof of this theorem – which generalizes the first part of 1.15 – is achieved
by cut-and-paste techniques as used in the proof of Dehn’s Lemma. 	


Figure 1.12 shows the trefoil spanned by a cone with 3 boundary singularities and
by another disk with the minimal number of 2 boundary singularities. (The apex of
the cone is not in general position, but a slight deformation will correct that.)

Another global theorem on of a knotted curve is due to J. Milnor [Milnor 1950].
If k is smooth (k ∈ C(2)), the integral

κ(k) =
∫

k
|x′′(s)|ds

is called the total curvature of k. (Here s �→ x(s) describes k : S1 → R3 with s =
arclength.) κ(k) is not an invariant of the knot type. Milnor generalized the notion
of the total curvature so as to define it for arbitrary closed curves. In the case of a
polygon this yields κ(k) = ∑r

i=1 αi , where the αi are the angles of successive line
segments (Figure 1.13).

α6

α2

α3

α5

α1

α4

Figure 1.13
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1.18 Theorem (Milnor). The total curvature κ(k) of a non-trivial knot k ⊂ R3 exceeds
4π . 	


We do not intend to copy Milnor’s proof here. As an example, however, we give a
realization of the trefoil in R3 with total curvature equal to 4π + δ(ε), where δ(ε) > 0
can be made arbitrarily small. This shows that the lower bound, 4π , is sharp.

In Figure 1.14 a diagram of the trefoil is given in the (x, y)-plane, the symbol at
each vertex denotes the z-coordinate of the respective point on k. Six of eight angles
αi are equal to π

2 , two of them, α and β, are larger, but tend to π
2 as ε→ 0.

y

x

0

0

0

0

2ε α

−ε

−ε

ε

β

Figure 1.14

E History and Sources

A systematic and scientific theory of knots developed only in the last century when
combinatorial topology came under way. The first contributions [Dehn 1910, 1914],
[Alexander 1920, 1928] excited quite an interest, and a remarkable amount of work in
this field was done which was reflected in the first monograph on knots, Reidemeister’s
Knotentheorie, [Reidemeister 1932]. The elementary approach to knots presented in
this chapter stems from this source.

F Exercises

E 1.1. Let k be a smooth oriented simple closed curve in R2, and let −k denote the
same curve with the opposite orientation. Show that k and −k are not isotopic in R2

whereas they are in R3.
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E 1.2. Construct explicitly a p.l.-map of a complex K composed of two 3-simplices
with a common 2-face onto itself which moves an interior point of one of the 3-
simplices to an interior point of the other while keeping fixed the boundary ∂K of K
(see Figure 1.5).

E 1.3. The suspension point P over a closed curve with n double points is called
a branch point of order n + 1. Show that there is an ambient isotopy in R3 which
transforms the suspension into a singular disk with n branch points of order two
[Papakyriakopoulos 1957′].

E 1.4. Let p(t), 0 ≤ t ≤ 1, be a continuous family of projections of a fixed knot
k ⊂ R3 onto R2, which are singular at finitely many isolated points 0 < t1 < t2 <

· · · < 1. Discuss by which of the operations �i the two regular projections p(tk − ε)
and p(tk + ε), tk−1 < tk − ε < tk < tk + ε < tk+1, are related according to the type
of the singularity at tk .

E 1.5. Prove that any projection obtained from a simple closed curve in R3 by using
�±1

1 , �±1
2 can also be obtained by using only �+1

1 , �+1
2 .

E 1.6. Letp(k)be a regular projection withndouble points. By changing overcrossing
arcs into undercrossing arcs at k ≤ n−1

2 double points, p(k) can be transformed into
a projection of the trivial knot.



Chapter 2

Geometric Concepts

Some of the charm of knot theory arises from the fact that there is an intuitive geometric
approach to it. We shall discuss in this chapter some standard constructions and
presentations of knots and various geometric devices connected with them.

A Geometric Properties of Projections

Let k be an oriented knot in oriented 3-space R3.

2.1 Definition (Symmetries). The knot obtained from k by inverting its orientation is
called the inverted knot and denoted by −k. The mirror-image of k or mirrored knot
is denoted by k∗; it is obtained by a reflection of k in a plane.

A knot k is called invertible if k = −k, and amphicheiral if k = k∗.

The existence of non-invertible knots was proved by H. Trotter [Trotter 1964]. The
trefoil was shown to be non-amphicheiral in [Dehn 1914]; the trefoil is invertible. The
four-knot 41 is both invertible and amphicheiral. The knot 817 is amphicheiral but it
is non-invertible [Kawauchi 1979], [Bonahon-Siebenmann 1979]. For more refined
notions of symmetries in knot theory, see [Hartley 1983′].

2.2 Definition (Alternating knot). A knot projection is called alternating, if upper-
crossings and undercrossings alternate while running along the knot. A knot is called
alternating, if it possesses an alternating projection; otherwise it is non-alternating.

The existence of non-alternating knots was first proved by [Bankwitz 1930], see
Proposition 13.30.

Alternating projections are frequently printed in knot tables without marking un-
dercrossings. It is an easy exercise to prove that any such projection can be furnished
in exactly two ways with undercrossings to become alternating; the two possibilities
belong to mirrored knots. Without indicating undercrossings a closed plane curve does
not hold much information about the knot whose projection it might be. Given such
a curve there is always a trivial knot that projects onto it. To prove this assertion just
choose a curve k which ascends monotonically in R3 as one runs along the projection,
and close it by a segment in the direction of the projection.

A finite set of closed plane curves defines a tessellation of the plane by simply
connected regions bounded by arcs of the curves, and a single infinite region. (This
can be avoided by substituting a 2-sphere for the plane.) The regions can be coloured
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by two colours like a chess-board such that regions of the same colour meet only at
double points (Figure 2.1, E 2.2). The proof is easy. If the curve is simple, the fact is
well known; if not, omit a simply closed partial curve s and colour the regions by an
induction hypothesis. Replace s and exchange the colouring for all points inside s.

α

α
α

β

β

β

Figure 2.1

2.3 Definition (Graph of a knot). Let a regular knot diagram be chess-board coloured
with colours α and β. Assign to every double point A of the projection an index
θ(A) = ±1 with respect to the colouring as defined by Figure 2.2. Denote by αi ,
1 � i � m, the α-coloured regions of a knot diagram. Define a graph � whose
vertices Pi correspond to the αi , and whose edges akij correspond to the double points

Ak ⊂ ∂αi ∩ ∂αj , where akij joins Pi and Pj and carries the index θ(akij ) = θ(Ak).

αααα

β

ββ

β

AA

θ(A) = +1 θ(A) = −1

Figure 2.2

If β-regions are used instead of α-regions, a different graph is obtained from the
regular projection. The Reidemeister moves�i correspond to moves on graphs which
can be used to define an equivalence of graphs. (Compare 1.13 and 1.14.) It is easy
to prove (E 2.5) that the two graphs of a projection belonging to α- and β-regions are
equivalent [Yajima-Kinoshita 1957]. Another Exercise (E 2.3) shows that a projection
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is alternating if and only if the index function θ(A) on the double points is a constant
(Figure 2.3).

+1

+1

+1

+1
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+1

+1
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−1−1

α1

α1

α2

α2

α3

α4

α0

α0

P0

P0

P1

P1

P2

P2

P3

P4

Figure 2.3

Graphs of knots have been repeatedly employed in knot theory [Aumann 1956],
[Crowell 1959], [Kinoshita-Terasaka 1957]. We shall take up the subject again in
Chapter 13 in connection with the quadratic form of a knot.

B Seifert Surfaces and Genus

A geometric fact of some consequence is the following:

2.4 Proposition (Seifert surface). A simple closed curve k ⊂ R3 is the boundary of
an orientable surface S, embedded in R3. It is called a Seifert surface.

Proof. Let p(k) be a regular projection of k equipped with an orientation. By altering
p(k) in the neighbourhood of double points as shown in Figure 2.4, p(k) dissolves
into a number of disjoint oriented simple closed curves which are called Seifert cycles.
Choose an oriented 2-cell for each Seifert cycle, and embed the 2-cells in R3 as a
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disjoint union such that their boundaries are projected onto the Seifert cycles. The
orientation of a Seifert cycle is to coincide with the orientation induced by the oriented
2-cell. We may place the 2-cells into planes z = const parallel to the projection plane
(z = 0), and choose planes z = a1, z = a2 for corresponding Seifert cycles c1, c2
with a1 < a2 if c1 contains c2. Now we can undo the cut-and-paste-process described
in Figure 2.4 by joining the 2-cells at each double point by twisted bands such as to
obtain a connected surface S with ∂S = k (see Figure 2.5).

Since the oriented 2-cells (including the bands) induce the orientation of k, they
are coherently oriented, and hence, S is orientable. 	


Figure 2.4

Figure 2.5

2.5 Definition (Genus). The minimal genus g of a Seifert surface spanning a knot k

is called the genus of the knot k.

Evidently the genus does not depend on the choice of a curve k in its equivalence
class: If k and k′ are equivalent and S spans k, then there is a homeomorphism h : S3 →
S3, h(k) = k′ (Proposition 1.5), and h(S) = S′ spans k′. So the genus g(k) is a knot
invariant, g(k) = 0 characterizes the trivial knot, because, if k bounds a diskD which
is embedded in R3 (or S3), one can use �-moves over 2-simplices of D and reduce k

to the boundary of a single 2-simplex.
The notion of the genus was first introduced by H. Seifert in [Seifert 1934], it holds

a central position in knot theory.
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The method to construct a Seifert surface by Seifert cycles assigns a surface S′
of genus g′ to a given regular projection of a knot. We call g′ the canonical genus
associated with the projection. It is remarkable that in many cases the canonical genus
coincides with the (minimal) genus g of the knot. It is always true for alternating
projections (13.26(a)). In our table of knot projections up to nine crossings only the
projections 820, 821, 942, 944 and 945 fail to yield g′ = g: in these cases g′ = g + 1.

This was already observed by H. Seifert; the fact that he lists 946 instead of 944 in
[Seifert 1934] is due to the choice of different projections in Rolfsen’s (and our table)
and Reidemeister’s.

There is a general algorithm to determine the genus of a knot [Schubert 1961], but
its application is complicated. For other methods see E 4.10.

2.6 Definition and simple properties (Meridian and longitude). A tubular neighbour-
hood V (k) of a knot k ⊂ S3 is homeomorphic to a solid torus. There is a simple closed
curve m on ∂V (k) which is nullhomologous in V (k) but not on ∂V (k); we call m
meridian of k. It is easy to see that any two meridians (if suitably oriented) in ∂V (k)
are isotopic. A Seifert surface S will meet ∂V (k) in a simple closed curve l, if V (k)
is suitably chosen: l is called a longitude of k. We shall see later on (Proposition 3.1)
that l, too, is unique up to isotopy on ∂V (k). If k and S3 are oriented, we may assign
orientations to m and l: The longitude l is isotopic to k in V (k) and will be oriented
as k. The meridian will be oriented in such a way that its linking number lk(m, k)with
k in S3 is +1 or equivalently, its intersection number int(m, l) with l is +1. From
this it follows that l is not nullhomologous on ∂V (k).

C Companion Knots and Product Knots

Another important idea was added by H. Schubert [1949]: the product of knots.

2.7 Definition (Product of knots). Let an oriented knot k ⊂ R3 meet a plane E in
two points P and Q. The arc of k from P to Q is closed by an arc in E to obtain a
knot k1; the other arc (from Q to P ) is closed in the same way and so defines a knot
k2. The knot k is called the product or composition of k1 and k2, and it is denoted by
k = k1 # k2; see Figure 2.6. k is also called a composite knot when both knots k1 and
k2 are non-trivial. k1 and k2 are called factors of k.

It is easy to see that for any given knots k1, k2 the product k = k1 # k2 can be
constructed; the product will not depend on the choice of representatives or on the
plane E. A thorough treatment of the subject will be given in Chapter 7.

There are other procedures to construct more complicated knots from simpler ones.

2.8 Definition (Companion knot, satellite knot). Let k̃ be a knot in a 3-sphere S̃3 and
Ṽ an unknotted solid torus in S̃3 with k̃ ⊂ Ṽ ⊂ S̃3. Assume that k̃ is not contained
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E

k1 k2

Figure 2.6

in a 3-ball of Ṽ . A homeomorphism h : Ṽ → V̂ ⊂ S3 onto a tubular neighbourhood
V̂ of a non-trivial knot k̂ ⊂ S3 which maps a meridian of S̃3 − Ṽ onto a longitude of
k̂ maps k̃ onto a knot k = h(k̃) ⊂ S3. The knot k is called a satellite of k̂, and k̂ is its
companion (Begleitknoten). The pair (Ṽ , k̃) is the pattern of k.

2.9 Remarks. The companion is the simpler knot, it forgets some of the tangles of
its satellite. Each factor ki of a product k = k1 # k2, for instance, is a companion of
k. There are some special cases of companion knots: If k̃ is ambient isotopic in Ṽ to
a simple closed curve on ∂Ṽ , then k = h(k̃) is called a cable knot on k̂. As another
example consider k̃ ⊂ Ṽ as in Figure 2.7. Here the companion k̂ is a trefoil, the satellite
is called the doubled knot of k̂. Doubled knots were introduced by J.H.C. Whitehead

h

k̃

Ṽ

k

V̂

Figure 2.7

in [Whitehead 1937] and form an interesting class of knots with respect to certain
algebraic invariants.

There is a relation between the genera of a knot and its companion.
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2.10 Proposition (Schubert). Let k̂ be a companion of a satellite k and k̃ = h−1(k) its
preimage (as in 2.8). Denote by ĝ, g, g̃, the genera of k̂, k, k̃, and by n ≥ 0 the linking
number of k and a meridian m̂ of a tubular neighbourhood V̂ of k̂ which contains k.
Then

g ≥ ng̃ + ĝ.

This result is due to H. Schubert [1953]. We start by proving the following lemma:

2.11 Lemma. There is a Seifert surface S of minimal genus g spanning the satellite
k such that S ∩ ∂V̂ consists of n homologous (on ∂V̂ ) longitudes of the companion k̂.
The intersection S ∩ (S3 − V̂ ) consists of n components.

Proof. Let S be a oriented Seifert surface of minimal genus spanning k. We assume
that S is in general position with respect to ∂V̂ : that is, S ∩ ∂V̂ consists of a system of
simple closed curves which are pairwise disjoint. If one of them, γ , is nullhomologous
on ∂V̂ , it bounds a disk δ on ∂V̂ . We may assume that δ does not contain another simple
closed curve with this property, δ ∩ S = γ . Cut S along γ and glue two disks δ1, δ2
(parallel to δ) to the curves obtained from γ . Since S was of minimal genus the new
surface cannot be connected. Substituting the component containing k for S reduces
the number of curves. So we may assume that the curves {γ1, . . . , γr} = S∩∂V̂ are not
nullhomologous on the torus ∂V̂ ; hence, they are parallel. The curves are supposed
to follow each other on ∂V̂ in the natural ordering γ1, γ2, . . . , γr , and to carry the
orientation induced by S. If for some index γi ∼ −γi+1 on ∂V̂ we may cut S along γi
and γi+1 and glue to the cuts two annuli parallel to one of the annuli on ∂V̂ bounded by
γi and γi+1. The resulting surface S′ may not be connected but the Euler characteristic
will remain invariant. Replace S by the component of S′ that contains k. The genus
g of S′ can only be larger than that of S, if the other component is a sphere. In this

case γi spans a disk in S3 − V̂ , and this means that the companion k̂ is trivial which
contradicts its definition. By the cut-and-paste process the pair γi ∼ −γi+1 vanishes;

so we may assume γi ∼ γi+1 for all i. It is k ∼ rγ1 in V̂ , and rγ1 ∼ 0 in S3 − V̂ .

We show that S ∩ (S3 − V̂ ) consists of r components. If there is a component Ŝ of
S ∩ S3 − V̂ with r̂ > 1 boundary components then there are two curves γi, γj ⊂ ∂Ŝ
such that γk ∩ Ŝ = ∅ for i > k > j . Connect γi and γj by a simple arc α in the
annulus on ∂V̂ bounded by γi and γj , and join its boundary points by a simple arc λ
on Ŝ. A curve u parallel to α ∪ λ in S3 − V̂ will intersect Ŝ in one point (Figure 2.8),
int(u, Ŝ) = ±1. Since u does not meet V̂ , we get±1 = int(u, Ŝ) = lk(u, ∂Ŝ) = k · r̂ ,
k ∈ Z; hence r̂ = 1, a contradiction.

This implies that the γi are longitudes of k̂ ; moreover

n = lk(m̂, k̂) = lk(m̂, rγi) = r · lk(m̂, γi) = r. 	
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Proof of Proposition 2.10. Let S be a Seifert surface of k according to Lemma 2.11.
Each component Ŝi of S ∩ (S3 − V̂ ) is a surface of genus ĥ which spans a longitude
γi of k̂, hence k̂ itself. The curves l̂i = h−1(γi) are longitudes of the unknotted solid
torus Ṽ ⊂ S̃3 bounding disjoint disks δ̃i ⊂ S̃3 − Ṽ . Thus h−1(S ∩ V̂ ) ∪ (⋃i δ̃i )

is a Seifert surface spanning k̃ = h−1(k). Its genus h̃ is the genus of S ∩ V̂ . As
S = (S ∩ V̂ ) ∪⋃n

i=1 Ŝi we get

g = nĥ+ h̃ ≥ nĝ + g̃. 	


D Braids, Bridges, Plats

There is a second theme to our main theme of knots, which has developed some weight
of its own: the theory of braids. E. Artin invented braids in [Artin 1925], and at the
same time solved the problem of their classification. (The proof there is somewhat
intuitive, Artin revised it to meet rigorous standards in a later paper [Artin 1947].)
We shall occupy ourselves with braids in a special chapter but will introduce here the
geometric idea of a braid, because it offers another possibility of representing knots
(or links).

2.12. Place on opposite sides of a rectangle R in 3-space equidistant points Pi , Qi ,
1 ≤ i ≤ n, (Figure 2.9). Let fi , 1 ≤ i ≤ n, be n simple disjoint polygonal arcs
in R3, fi starting in Pi and ending in Qπ(i), where i �→ π(i) is a permutation on
{1, 2, . . . , n}. The fi are required to run “strictly downwards”, that is, each fi meets
any plane perpendicular to the lateral edges of the rectangle at most once. The strings
fi constitute a braid z (sometimes called an n-braid). The rectangle is called the
frame of z, and i �→ π(i) the permutation of the braid. In R3, equivalent or isotopic
braids will be defined by “level preserving” isotopies of R3 relative to the endpoints
{Pi}, {Qi}, which will be kept fixed, but we defer a treatment of these questions to
Chapter 10.
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P1 P2 P3

Q1Q2 Q3

Figure 2.9

A braid can be closed with respect to an axis h (Figure 2.10). In this way every
braid z defines a closed braid ẑ which represents a link of µ components, where µ

h

Figure 2.10

is the number of cycles of the permutation of z. We shall prove that every link can
be presented as a closed braid. This mode of presentations is connected with another
notion introduced by Schubert: the bridge-number of a knot (resp. link):

2.13 Definition (Bridge-number). Let k be a knot (or link) in R3 which meets a plane
E ⊂ R3 in 2m points such that the arcs of k contained in each halfspace relative to E
possess orthogonal projections onto E which are simple and disjoint. (k, E) is called
an m-bridge presentation of k; the minimal number m possible for a knot k is called
its bridge-number.

A regular projection p(k) of order n (see 1.11) admits an n-bridge presentation
relative to the plane of projection (Figure 2.11 (a)). (If p(k) is not alternating, the
number of bridges will even be smaller than n). The trivial knot is the only 1-bridge
knot. The 2-bridge knots are an important class of knots which were classified by
H. Schubert [1956]. Even 3-bridge knots defy classification up to this day.
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2.14 Proposition (J.W. Alexander [1923′]). A link k can be represented by a closed
braid.

Proof. Choose 2m points Pi in a regular projection p(k), one on each arc between
undercrossing and overcrossing (or vice versa). This defines anm-bridge presentation,
m ≤ n, with arcs si , 1 ≤ i ≤ m, between P2i−1 and P2i in the upper halfspace and
arcs ti , 1 ≤ i ≤ m, joining P2i and P2i+1(P2m+1 = P1) in the lower halfspace of the
projection plane (see Figure 2.11 (a)).

P2

P2
P7

P7
t3

P6

P6

s3

P9

P9

P5

P5

t4

t2
s1 P4

P4

P1

P1

t1

s5

P3

P3

s2

P8

P8

s4

P10

P10

t5

h

Figure 2.11 (a) Figure 2.11 (b)

By an ambient isotopy of k we arrange thep(ti) to formm parallel straight segments
bisected by a common perpendicular line h such that all Pi with odd index are on
one side of h (Figure 2.11 (b)). The arc p(si) meets h in an odd number of points
Pi1, Pi2, . . . .

In the neighbourhood of a point Pi2 we introduce a new bridge – we push the arc
si in this neighbourhood from the upper halfspace into the lower one. Thus we obtain
a bridge presentation where every arc p(si), p(ti) meets h in exactly one point. Now
choose si monotonically ascending over p(si) from P2i−1 until h is reached, then
descending to P2i . Equivalently, the ti begin by descending and ascend afterwards.
The result is a closed braid with axis h. 	


A 2m-braid completed by 2m simple arcs to make a link as depicted in Figure 2.12
is called a plat or a 2m-plat. A closed m-braid obviously is a special 2m-plat, hence
every link can be represented as a plat. The construction used in the proof of Propo-
sition 2.14 can be modified to show that an m-bridge representation of a knot k can
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be used to construct a 2m-plat representing it. In Lemma 10.4 we prove the converse:
Every 2m-plat allows anm-bridge presentation. The 2-bridge knots (and links) hence
are the 4-plats (Viergeflechte).

Figure 2.12

E Slice Knots and Algebraic Knots

R.H. Fox and J. Milnor introduced the notion of a slice knot. It arises from the study
of embeddings S2 ⊂ S4 [Fox 1962].

2.15 Definition (Slice knot). A knot k ⊂ R3 is called a slice knot if it can be obtained
as a cross section of a locally flat 2-sphere S2 in R4 by a hyperplane R3. (S2 ⊂ R4 is
embedded locally flat, if it is locally a Cartesian factor.) The local flatness is essential:
Any knot k ⊂ R3 ⊂ R4 is a cross section of a 2-sphere S2 embedded in R4. Choose
the double suspension of k with suspension points P+ and P− respectively in the
halfspace R4+ and R4− defined by R3. The suspension S2 is not locally flat at P+ and
P−, (Figure 2.13).

There is a disk D2 = S2 ∩ R4+ spanning the knot k = ∂D2 which will be locally
flat if and only if S2 can be chosen locally flat. This leads to an equivalent definition
of slice knots:

2.16 Definition. A knot k in the boundary of a 4-cell, k ⊂ S3 = ∂D4, is a slice knot,
if there is a locally flat 2-disk D2 ⊂ D4, ∂D2 = k, whose tubular neighbourhood
intersects S3 in a tubular neighbourhood of k.
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P+

P−

Figure 2.13

The last condition ensures that the intersection of R3 andD2 resp. S2 is transversal.
We shall give some examples of knots that are slice and of some that are not.

Let f : D2 → S3 be an immersion, and ∂(f (D)) = k a knot. If the singularities of
f (D) are all double lines σ , f−1(σ ) = σ1∪σ2, such that at least one of the preimages
σi , 1 ≤ i ≤ 2, is contained in D̊, then k is called a ribbon knot.

2.17 Proposition. Ribbon knots are slice knots.

Proof. Double lines with boundary singularities come in two types: The type required
in a ribbon knot is shown in Figure 2.14 while the second type is depicted in Figure 1.12.
In the case of a ribbon knot the hatched regions of f (D) can be pushed into the fourth
dimension without changing the knot k. 	


It is not known whether all slice knots are ribbon knots. There are several criteria
which allow to decide that a certain knot cannot be a slice knot [Fox-Milnor 1966],
[Murasugi 1965]. The trefoil, for instance, is not a slice knot. In fact, of all knots of
order ≤ 7 the knot 61 of Figure 2.14 is the only one which is a slice knot.

Knots turn up in connection with another higher-dimensional setting: a polynomial
equation f (z1, z2) = 0 in two complex variables defines a complex curveC in C2. At
a singular point z0 = (z̊1, z̊2), where

(∂f
∂zi

)
z0
= 0, i = 1, 2, consider a small 3-sphere

S3
ε with centre z0. Then k = C ∩ S3

ε may be a knot or link. (If z0 is a regular point of
C, the knot k is always trivial.)
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Figure 2.14

2.18 Proposition. The algebraic surface f (z1, z2) = za1 + zb2 = 0 with a, b ∈ Z,
a, b ≥ 2, intersects the boundary S3

ε of a spherical neighbourhood of (0, 0) in a torus
knot (or link) t(a, b), see 3.26.

Proof. The equations

ra1 e
iaϕ1 = rb2 eibϕ2+iπ , r2

1 + r2
2 = ε2, zj = rj eiϕj

define the intersection S3
ε ∩C. Since r2

1 + r
2a
b

1 is monotone, there are unique solutions
ri = �i > 0, i = 1, 2. Thus the points of the intersection lie on {(z1, z2) | |z1| =
�1, |z2| = �2}, which is an unknotted torus in S3

ε . Furthermore aϕ1 ≡ bϕ2 + π

mod 2π so that S3
ε ∩ C = {(�1e

ibϕ, �2e
iaϕ+ πi

b ) | 0 ≤ ϕ ≤ 2π} = t(a, b). 	


Knots that arise in this way at isolated singular points of algebraic curves are called
algebraic knots. They are known to be iterated torus knots, that is, knots or links that
are obtained by a repeated cabling process starting from the trivial knot. See [Milnor
1968], [Hacon 1976].

F History and Sources

To regard and treat a knot as an object of elementary geometry in 3-space was a natural
attitude in the beginning, but proved to be very limited in its success. Nevertheless
direct geometric approaches occasionally were quite fruitful and inspiring. H. Brunn
[1897] prepared a link in a way which practically resulted in J.W. Alexander’s theorem
[Alexander 1923′] that every link can be deformed into a closed braid. The braids
themselves were only invented by E. Artin in [Artin 1925] after closed braids were
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already in existence. H. Seifert then brought into knot theory the fundamental concept
of the genus of a knot [Seifert 1934]. Another simple geometric idea led to the
product of knots [Schubert 1949], and H. Schubert afterwards introduced and studied
the theory of companions [Schubert 1953], and the notion of the bridge number of
a knot [Schubert 1954]. Finally R.H. Fox and J. Milnor suggested looking at a knot
from a 4-dimensional point of view which led to the slice knot [Fox 1962].

During the last decades geometric methods have gained importance in knot theory
– but they are, as a rule, no longer elementary.

G Exercises

E 2.1. Show that the trefoil is symmetric, and that the four-knot is both symmetric
and amphicheiral.

E 2.2. Let p(k) ⊂ E2 be a regular projection of a link k. The plane E2 can be
coloured with two colours in such a way that regions with a common arc of p(k) in
their boundary obtain different colours (chess-board colouring).

E 2.3. A knot projection is alternating if and only if θ(A) (see 2.3) is constant.

E 2.4. Describe the operations on graphs associated to knot projections which corre-
spond to the Reidemeister operations �i , i = 1, 2, 3.

E 2.5. Show that the two graphs associated to the regular projection of a knot by
distinguishing either α-regions or β-regions are equivalent. (See Definition 2.3 and
E 2.4.)

E 2.6. A regular projectionp(k) (onto S2) of a knot k defines two surfacesF1,F2 ⊂ S3

spanning k = ∂F1 = ∂F2 where p(F1) and p(F2) respectively cover the regions
coloured by the same colour of a chess-board colouring of p(k) (see E 2.2). Prove
that at least one of the surfaces F1, F2 is non-orientable.

E 2.7. Construct an orientable surface of genus one spanning the four-knot 41.

E 2.8. Give a presentation of the knot 63 as a 3-braid.

E 2.9. In Definition 2.7 the following condition was imposed on the knot k̃ embedded
in the solid torus Ṽ :

(1) There is no ball B̃ such that k̃ ⊂ B̃ ⊂ Ṽ .

Show that (1) is equivalent to each of the following two conditions.
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(2) k̃ intersects every disk δ ⊂ Ṽ , ∂δ = δ ∩ ∂Ṽ , ∂δ not contractible in ∂Ṽ .

(3) π1(∂Ṽ )→ π1(Ṽ − k̃), induced by the inclusion, is injective.



Chapter 3

Knot Groups

The investigation of the complement of a knot in R3 or S3 has been of special interest
since the beginnings of knot theory. Tietze [Tietze 1908] was the first to prove the
existence of non-trivial knots by computing the fundamental group of the comple-
ment of the trefoil. He conjectured that two knot types are equal if and only if their
complements are homeomorphic. In 1988 Gordon and Luecke finally proved this
conjecture – this proof is beyond the scope of this book. In the attempt to classify knot
complements homological methods prove not very helpful. The fundamental group,
however, is very effective and we will develop methods to present and study it. In
particular, we will use it to show that there are non-trivial knots.

A Homology

V = V (k) denotes a tubular neighbourhood of the knot k and C = S3 − V is called
the complement of the knot. Hj will denote the (singular) homology with coefficients
in Z.

3.1 Theorem (Homological properties).

(a) H0(C) ∼= H1(C) ∼= Z, Hn(C) = 0 for n ≥ 2.

(b) There are two simple closed curvesm and l on ∂V with the following properties:

(1) m and l intersect in one point,

(2) m ∼ 0, l ∼ k in V (k),

(3) l ∼ 0 in C = S3 − V (k),
(4) lk(m, k) = 1 and lk(l, k) = 0 in S3.

These properties determinem and l up to isotopy on ∂V (k). We callm a meridian
and l a longitude of the knot k. The knot k and the longitude l bound an annulus
A ⊂ V .
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Proof. For (a) there are several proofs. Here we present one based on homological
methods. We use the following well-known results:

Hn(S
3) =

{
Z for n = 0, 3,

0 otherwise,

Hn(∂V ) =


Z for n = 0, 2,

Z⊕ Z for n = 1,

0 otherwise,

Hn(V ) = Hn(S1) =
{

Z for n = 0, 1,

0 otherwise;
they can be found in standard books on algebraic topology, see [Spanier 1966],
[Stöcker-Zieschang 1994].

Since C is connected, H0(X) = Z. For further calculations we use the Mayer–
Vietoris sequence of the pair (V , C), where V ∪ C = S3, V ∩ C = ∂V :

H3(∂V ) −→ H3(V ) ⊕ H3(C) −→ H3(S
3) −→ H2(∂V )

‖ ‖ ‖� ‖�
0 0 Z Z

−→ H2(V ) ⊕ H2(C) −→ H2(S
3) −→ H1(∂V )

‖ ‖ ‖�
0 0 Z⊕ Z

−→ H1(V ) ⊕ H1(C) −→ H1(S
3)

‖� ‖
Z 0

It follows that H1(C) = Z. Since ∂V is the boundary of the orientable compact
3-manifold C, the groupH2(∂V ) is mapped by the inclusion ∂V ↪→ C to 0 ∈ H2(C).
This implies that H2(C) = 0 and that H3(S

3) → H2(∂V ) is surjective; hence,
H3(C) = 0.

Since C is a 3-manifold it follows that Hn(C) = 0 for n > 3; this is also a
consequence of the Mayer–Vietoris sequence.

Consider the isomorphism

Z⊕ Z ∼= H1(∂V )→ H1(V )⊕H1(C)
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in the Mayer–Vietoris sequence. The generators of H1(V ) ∼= Z and H1(C) ∼= Z are
determined up to their inverses. Choose the homology class of k as a generator of
H1(V ) and represent it by a simple closed curve l on ∂V which is homologous to 0 in
H1(C). These conditions determine the homology class of l in ∂V ; hence, l is unique
up to isotopy on ∂V . A generator of H1(C) can be represented by a curve m on ∂V
that is homologous to 0 in V . The curves l and m determine a system of generators
of H1(∂V ) ∼= Z⊕ Z. By a well-known result, we may assume that m is simple and
intersects l in one point, see e.g. [Stillwell 1980, 6.4.3], [ZVC 1980, E 3.22]. As m
is homologous to 0 in V it is nullhomotopic in V , bounds a disk, and is a meridian of
the solid torus V . The linking number of m and k is 1 or −1. If necessary we reverse
the direction of m to get (4). These properties determine m up to an isotopy of ∂V .
A consequence is that l and k bound an annulus A ⊂ V .

Since l ∼ 0 in C, l bounds a surface, possibly with singularities, in C. (As we
already know, see Proposition 2.4, l even spans a surface without singularities: a
Seifert surface.) 	


Theorem 3.1 can be generalized to links (E 3.2). The negative aspect of the theorem
is that complements of knots cannot be distinguished by their homological properties.

3.2 On the characterization of longitudes and meridians by the complement of
a knot. With respect to the complement C of a knot the longitude l and the meridian
m have quite different properties: The longitude l is determined up to isotopy and
orientation byC; this follows from the fact that l is a simple closed curve on ∂C which
is not homologous to 0 on ∂C but homologous to 0 in C. The meridian m is a simple
closed curve on ∂C that intersects l in one point; hence, l and m represent generators
ofH1(C) ∼= Z2. The meridian is not determined byC because simple closed curves on
∂C which are homologous to m±1lr , r ∈ Z, have the same properties (see E 3.3(a)).

B Wirtinger Presentation

The most important and effective invariant of a knot k (or link) is its group: the
fundamental group of its complement G = π1(S

3− k). Frequently S3− k is replaced
by R3 − k or by S3 − V (k) or R3 − V (k), respectively. The fundamental groups of
these various spaces are obviously isomorphic, the isomorphisms being induced by
inclusion. There is a simple procedure, due to Wirtinger, to obtain a presentation of a
knot group.

3.3. Embed the knot k into R3 such that its projection onto the plane R2 is regular.
The projecting cylinder Z has self-intersections in n projecting rays ai corresponding
to the n double points of the regular projection. The ai decompose Z into n 2-cells
Zi (see Figure 3.1), where Zi is bounded by ai−1, ai and the overcrossing arc σi of k.
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Choose the orientation of Zi to induce on σi the direction of k. The complement
of Z can be retracted parallel to the rays onto a halfspace above the knot; thus it is
contractible.

To computeπ1C for some basepointP ∈ C observe that there is (up to a homotopy
fixing P ) exactly one polygonal closed path in general position relative to Z which
intersects a givenZi with intersection number εi and which does not intersect the other
Zj . Paths of this type, taken for i = 1, 2, . . . , n and εi = 1, represent generators
si ∈ π1C. To see this, let a path in general position with respect to Z represent an
arbitrary element of π1C. Move its intersection points with Zi into the intersection of
the curves si . Now the assertion follows from the contractibility of the complement of
Z. Running through an arbitrary closed polygonal path ω yields the homotopy class
as a word w(si) = s

ε1
i1
. . . s

εr
ir

if in turn each intersection with Zij and intersection

number εj is put down by writing s
εj
ij

.

Z

aP

Z
Za

s

Z

a

2

1

3

2

3

1

2
2R

Figure 3.1

To obtain relators, consider a small path �j in C encircling aj and join it with
P by an arc λj . Then λj�jλ

−1
j is contractible and the corresponding word lj rj l

−1
j

in the generators si is a relator. The word rj (sj ) can easily be read off from the
knot projection. According to the characteristic η ∈ {1,−1} of a double point, see
Figure 3.2, we get the relator

rj = sj s−ηji s−1
k s

ηj
i .

3.4 Theorem (Wirtinger presentation). Let σi , i = 1, 2, . . . , n, be the overcrossing
arcs of a regular projection of a knot (or link) k. Then the knot group admits the
following so-called Wirtinger presentation:

G = π1(S3 − V (k)) = 〈 s1, . . . , sn | r1, . . . , rn 〉.
The arc σi corresponds to the generator si; a crossing of characteristic ηj as in
Figure 3.2 gives rise to the defining relator

rj = sj s−ηji s−1
k s

ηj
i .
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σjσj

ηj = +1, rj = sj s−1
i
s−1
k
si ηj = −1, rj = sj sis−1

k
s−1
i

Figure 3.2

Proof. It remains to check that r1, . . . , rn are defining relations. Consider R3 as
a simplicial complex � containing Z as a subcomplex, and denote by �∗ the dual
complex. Letω be a contractible curve inC, starting at a vertexP of�∗. By simplicial
approximationω can be replaced by a path in the 1-skeleton of�∗ and the contractible
homotopy by a series of homotopy moves which replace arcs on the boundary of 2-
cells σ 2 of �∗ by the inverse of the rest. If σ 2 ∩ Z = ∅ the deformation over σ 2

has no effect on the words ω(si). If σ 2 meets Z in an arc then the deformation over
σ 2 either cancels or inserts a word sεi s

−ε
i , ε ∈ {1,−1}, in ω(si); hence, it does not

effect the element of π1C represented by ω. If σ 2 intersects a double line aj then the
deformation over σ 2 omits or inserts a relator: a conjugate of rj or r−1

j for some j . 	


In the case of a link k of µ components the relations ensure that generators si and
sj are conjugate if the corresponding arcs σi and σj belong to the same component.
By abelianizing G = π1(S

3 − k) we obtain from 3.4, see also E 3.2:

3.5 Proposition. H1(S
3 − k) ∼= Zµ where µ is the number of components of k. 	


Using 3.5 and duality theorems for homology and cohomology one can calculate
the other homology groups of S3 − k, see E 3.2.
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3.6 Corollary. Let k be a knot or link and 〈 s1, . . . , sn | r1, . . . , rn 〉 a Wirtinger
presentation of G. Then each defining relation rj is a consequence of the other
defining relations ri, i = j .

P

Pj

δ

λj

Figure 3.3

Proof. Choose the curves λj�jλ
−1
j (see the paragraph before Theorem 3.4) in a plane

E parallel to the projection plane and “far down” such that E intersects all ai . Let
δ be a disk in E such that k is projected into δ, and let γ be the boundary of δ. We
assume that P is on γ and that the λj have only the basepoint P in common. Then,
see Figure 3.3,

γ �
n∏
j=1

λj�jλ
−1
j in E −

(⋃
j

aj ∩ E
)
.

This implies the equation

1 ≡
n∏
j=1

lj rj l
−1
j

in the free group generated by the si , where lj is the word which corresponds to λj .
Thus each relator rj is a consequence of the other relators. 	


3.7 Example (Trefoil knot = clover leaf knot). From Figure 3.4 we obtain Wirtinger
generators s1, s2, s3 and defining relators

s1s2s
−1
3 s−1

2 at the vertex A,

s2s3s
−1
1 s−1

3 at the vertex B,

s3s1s
−1
2 s−1

1 at the vertex C.
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C

B

A

Figure 3.4 Figure 3.5

s1

s1

s2

s2

s3

s3
s4

Since by 3.6 one relation is a consequence of the other two the knot group has the
presentation

〈 s1, s2, s3 | s1s2s−1
3 s−1

2 , s3s1s
−1
2 s−1

1 〉 = 〈 s1, s2 | s1s2s1s−1
2 s−1

1 s−1
2 〉

= 〈 x, y | x3y2 〉
where y = s−1

2 s−1
1 s−1

2 and x = s1s2. This group is not isomorphic to Z, since the
last presentation shows that it is a free product with amalgamated subgroup A1 ∗B A2
where Ai

∼= Z and B = 〈 x3 〉 = 〈 y−2 〉 with B � Ai . Hence, it is not commutative.
This can also be shown directly using the representation

G→ SL2(Z), x �→
(

0 1

−1 1

)
, y �→

(
0 1

−1 0

)
since (

0 1

−1 1

)
·
(

0 1

−1 0

)
=
(
−1 0

−1 −1

)

=
(
−1 1

0 −1

)

=
(

0 1

−1 0

)
·
(

0 1

−1 1

)
.

The reader should note that there for the first time in this book the existence of
non-trivial knots has been proved, since the group of the trivial knot is cyclic.

We can approach the analysis of the group of the trefoil knot in a different manner
by calculating its commutator subgroup using the Reidemeister–Schreier method. It
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turns out that G′ is a free group of rank 2, see E 4.2. We will use this method in the
next example.

3.8 Example (Four-knot or figure eight knot, Figure 3.5).

G = 〈 s1, s2, s3, s4 | s3s−1
4 s−1

3 s1, s1s
−1
2 s−1

1 s3, s4s
−1
2 s−1

3 s2 〉
= 〈 s1, s3 | s−1

3 s1s3s
−1
1 s−1

3 s1s
−1
3 s−1

1 s3s1 〉
= 〈 s, u | u−1sus−1u−2s−1us 〉,

where s = s1 and u = s−1
1 s3.

The abelianizing homomorphismG→ Zmaps s onto a generator ofZ anduonto 0.
Hence, {sn | n ∈ Z} is a system of coset representatives and {xn = snus−n | n ∈ Z}
the corresponding system of Schreier generators for the commutator subgroup G′ (see
[ZVC 1980, 2.2]). The defining relations are

rn = sn(u−1sus−1u−2s−1us)s−n = x−1
n xn+1x

−2
n xn−1, n ∈ Z.

Using r1, we obtain
x2 = x1x

−1
0 x+2

1 ;
hence, we may drop the generator x2 and the relation r1. Next we consider r2 and
obtain

x3 = x2x
−1
1 x+2

2

and replace x2 by the word in x0, x1 from above. Now we drop x3 and r2. By induction,
we get rid of the relations r1, r2, r3, . . . and the generators x2, x3, x4, . . . . Now, using
the relation r0 we obtain

x−1 = x+2
0 x−1

1 x0;
thus we may drop the generator x−1 and the relation r0. By induction we eliminate
x−1, x−2, x−3, . . . and the relation r0, r−1, r−2, . . . . Finally we are left with the
generators x0, x1 and no relation, i.e. G′ = 〈 x0, x1| 〉 is a free group of rank 2. This
proves that the figure eight knot is non-trivial. 	


The fact that the commutator subgroup is finitely generated has a strong geometric
consequence, namely that the complement can be fibered locally trivial over S1 and
the fibre is an orientable surface with one boundary component. In the case of a trefoil
knot and the figure eight knot the fibre is a punctured torus. It turns out that these are
the only knots that have a fibred complement with a torus as fibre, see Proposition 5.14.
We will develop the theory of fibred knots in Chapter 5.

3.9 Example (2-bridge knot b(7, 3)). From Figure 3.6 we determine generators for
G as before. It suffices to use the Wirtinger generators v, w which correspond to the
bridges. One obtains the presentation

G = 〈 v,w | vwvw−1v−1wvw−1v−1w−1vwv−1w−1 〉
= 〈 s, u | susu−1s−1usu−1s−1u−1sus−1u−1 〉
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Figure 3.6

where s = v and u = wv−1. A system of coset representatives is {sn | n ∈ Z} and
they lead to the generators xn = snus−n, n ∈ Z, of G′ and the defining relations

xn+1x
−1
n+2xn+1x

−1
n+2x

−1
n xn+1x

−1
n , n ∈ Z.

By abelianizing we obtain the relations −2xn + 3xn+1 − 2xn+2 = 0, and now it is
clear that this group is not finitely generated (E 3.4(a)).

From the above relations it follows that

G
′ = · · · ∗B−2 A−1 ∗B−1 A0 ∗B0 A1∗B1...,

where An = 〈 xn, xn+1, xn+2 〉 and Bn = 〈 xn+1, xn+2 〉 are free groups of rank 2 and
An = Bn = An+1 = 〈 xn+1, xn+2 〉. Proof as E 3.4(b).

A consequence is that the complement of this knot cannot be fibred over S1 with
a surface as fibre, see Theorem 5.1. This knot also has genus 1, i.e. it bounds a torus
with one hole.

The background to the calculations in 3.8, 9 is discussed in Chapter 4.

3.10 Groups of satellites and companions. Recall the notation of 2.8: Ṽ is an
unknotted solid torus in a 3-sphere S̃3 and k̃ ⊂ Ṽ a knot such that a meridian of
Ṽ is not contractible in Ṽ − k̃. As, by definition, a companion k̂ is non-trivial the

homomorphisms i# : π1∂V̂ → π1(V̂ − k), j# : π1∂V̂ → π1(S3 − V̂ ) are injective,
see 3.17. By the Seifert–van Kampen Theorem we get

3.11 Proposition. With the above notation:

G = π1(S
3 − k) = π1(Ṽ − k) ∗

π1∂V̂
π1(S

3 − k̂) = H ∗〈 t̂ ,λ̂ 〉 Ĝ,
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where t̂ and λ̂ represent meridian and longitude of the companion knot,H = π1(Ṽ − k̃)

and Ĝ the knot group of k̂. 	


Remark. A satellite is never trivial.

3.12 Proposition (Longitude). The longitude l of a knot k represents an element of
the second commutator group of the knot group G:

l ∈ G
(2).

Proof. Consider a Seifert surface S spanning the knot k such that for some regular
neighbourhood V of k the intersection S ∩ V is an annulus A with ∂A = k ∪ l. Thus
l = ∂(S − A) implies that l ∼ 0 in C = S3 − V . A 1-cycle z of C and S have
intersection number r if z ∼ r ·m in C where m is a meridian of k. Hence, a curve
ζ represents an element of the commutator subgroup G′ if and only if its intersection
number with S vanishes. Since S is two-sided each curve on S can be pushed into
C − S, and thus has intersection number 0 with S and consequently represents an
element of G′. If α1, β1, . . . , αg, βg is a canonical system of curves on S then

l �
g∏
n=1

[αn, βn],

hence l ∈ G(2). 	


3.13 Remark. The longitude l of a knot k can be read off a regular projection as a
word in the Wirtinger generators as follows: run through the knot projection starting
on the arc assigned to the generator sk . Write down si (or s−1

i ) when undercrossing
the arc from right to left (or from left to right) corresponding to si . Add sαk such that
the sum of all exponents equals 0. See Figure 3.7, k = 52, k = 1, α = 5.

Figure 3.7

s1

s2

s3

s4

s5

l = s−1
4 s−1

5 s−1
2 s−1

1 s−1
3 · s5

1
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C Peripheral System

In Definition 3.2 we assigned meridian and longitude to a given knot k. They define
homotopy classes in the knot group. These elements are, however, not uniquely
determined, but only up to a common conjugating factor. Meridian and longitude can
be chosen as free abelian generators of π1∂V . (In this section C always stands for the
compact manifold C = S3 − V .)

3.14 Definition and Proposition (Peripheral system). The peripheral system of a
knot k is a triple (G,m, l) consisting of the knot group G and the homotopy classes
m, l of a meridian and a longitude. These elements commute: m · l = l ·m. The
pair (m, l) is uniquely determined up to a common conjugating element of G.

The peripheral group system (G,P) consists ofG and the subgroupP generated
by m and l, P = π1∂V . As before, the inclusion ∂V ⊂ C only defines a class of
conjugate subgroups P of G. 	


The following theorem shows the strength of the peripheral system; unfortunately,
its proof depends on a fundamental theorem of F. Waldhausen on 3-manifolds which
we cannot prove here.

3.15 Theorem (Waldhausen). Two knots k1, k2 in S3 with the peripheral systems
(Gi ,mi , li ), i = 1, 2, are equal if there is an isomorphism ϕ : G1 → G2 with
the property that ϕ(m1) =m2 and ϕ(l1) = l2.

Proof. By the theorem of Waldhausen on sufficiently large irreducible 3-manifolds,
see Appendix B.7, [Waldhausen 1968], [Hempel 1976, 13.6], the isomorphism ϕ is
induced by a homeomorphism h′ : C1 → C2 mapping representative curves µ1, λ1
of m1, l1 onto representatives µ2, λ2 of m2, l2. The representatives can be taken on
the boundaries ∂Ci . Waldhausen’s theorem can be applied because H1(Ci) = Z and
π2(Ci) = 0; the second condition is proved in Theorem 3.27. As h′ maps the meridian
of V1 onto a meridian of V2 it can be extended to a homeomorphism h′′ : V1 → V2
mapping the ‘core’ k1 onto k2, see E 3.14. Together h′ and h′′ define the required
homeomorphism h : S3 → S3 which maps the (directed) knot k1 onto the (directed) k2.
The orientation on S3 defines orientations on V1 and V2, hence on the boundaries ∂V 1
and ∂V 2. Since h(µ1) = µ2 and h(λ1) = λ2 it follows that h|∂V 1 : ∂V1 → ∂V 2 is an
orientation-preserving mapping. This implies that h|V1 : V1 → V2 is also orientation-
preserving; hence h : S3 → S3 is orientation preserving. Thus k1 and k2 are the ’same’
knots. 	


As direct consequence is the assertion 1.10, namely:

3.16 Corollary. If two tame knots are topologically equivalent then they are p.l.-
equivalent. 	




C Peripheral System 41

3.17 Proposition. If k is a non-trivial knot the inclusion i : ∂V → C = S3 − V
induces an injective homomorphism i# : π1∂V → π1C.

In particular, if π1C ∼= Z then the knot k is trivial.

Proof. Suppose i# is not injective. Then the Loop Theorem of Papakyriakopoulos
[1957], see Appendix B.5, [Hempel 1976, 4.2], guarantees the existence of a simple
closed curve κ on ∂V and a disk δ in C such that

κ = ∂δ (hence κ � 0 in C); δ ∩ V = κ and κ � 0 in ∂V .

Since κ is simple and κ ∼ 0 in C it is a longitude, see 3.2. So there is an annulus
A ⊂ V such that A ∩ ∂V = κ , ∂A = κ ∪ k, as has been shown in Theorem 3.1. This
proves that k bounds a disk in S3 and, hence, is the trivial knot. 	


The two trefoil knots can be distinguished by using the peripheral system. We will
give a proof of this fact in a more general context in 3.29, but we suggest carrying out
the calculations for the trefoil as an exercise.

The peripheral group system (G, 〈m, l 〉) has not – at first glance – the same
strength as the peripheral system (G,m, l) since it classifies only the complement
of the knot [Waldhausen 1968]. The question whether different knots may have
homomorphic complements was first posed by Tietze in 1908. In [Gordon-Luecke
1989] it is proved that a knot complement determines the knot. We cannot give the
proof here which starts as follows: LetC be the complement of a knot, m the meridian
and l the longitude. Attach a solid torus W to C by identifying ∂W and ∂C in such
a way that a meridian of W is identified with a simple closed curve κ ∼ mla on
∂C, a ∈ Z. This yields a closed orientable 3-manifold M , its fundamental group is
isomorphic to G/N, where N is the normal closure of mla in G. Gordon and Luecke
show: M = S3 implies a = 0.

A necessary condition is G/N = 1. However, as long as the Poincaré conjecture is
not positively decided, this condition is not sufficient. The following definition avoids
the Poincaré conjecture.

3.18 Definition (Property P). A knot k with the peripheral system

(〈 s1, . . . , sn | r1, . . . , rn 〉,m, l)

has Property P if 〈 s1, . . . sn | r1, . . . , rn,mla 〉 = 1 for every integer a = 0.

Whether all knots have Property P is an open question. For this problem see E 3.12
and Chapter 15.

An immediate consequence of the proof of 3.15 is the following statement 3.19 (a);
the assertion 3.19 (b) is obtained in the same way taking into account that h|∂V 1 is
orientation reversing.
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3.19 Proposition (Invertible or amphicheiral knots). Let (G,m, l) be the peripheral
system of the knot k.

(a) k is invertible if and only if there is an automorphism ϕ : G → G such that
ϕ(m) =m−1 and ϕ(l) = l−1.

(b) k is amphicheiral if and only if there is an automorphismψ : G→ G such that
ψ(m) =m−1 and ψ(l) = l. 	


The only knot with the minimal number 4 of crossings, the four-knot is invertible
and amphicheiral. The latter property is shown in Figure 3.8.

Figure 3.8

D Knots on Handlebodies

The Wirtinger presentation of a knot group is easily obtained and is most frequently
applied in the study of examples. It depends, however, strongly on the knot projection
and, in general, it does not reflect geometric symmetries of the knot nor does it afford
much insight into the structure of the knot group as we have seen in the preceding
Sections B and C. In this section, we describe another method. In the simplest case,
for solid tori, a detailed treatment will be given in Section E.

3.20 Definition (Handlebody, Heegaard splitting).
(a) A handlebody V of genus g is obtained from a 3-ball B3 by attaching g handles

D2 × I such that the boundary ∂V is an orientable closed surface of genus g, see
Figure 3.9:

V = B3 ∪H1 ∪ · · · ∪Hg, Hi ∩Hj = ∅ (i = j),
Hi ∩ B3 = Di1 ∪Di2, Di1 ∩Di2 = ∅, Dij ∼= D2,

and (∂B3 −⋃i,j Dij ) ∪
⋃
i (∂Hi − (Di1 ∪Di2)) is a closed orientable surface of

genus g.
Another often-used picture of a handlebody is shown in Figure 3.10.
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(b) The decomposition of a closed orientable 3-manifoldM3 into two handlebodies
V , W : M3 = V ∪ W , V ∩ W = ∂V = ∂W , is called a Heegaard splitting or
decomposition of M3 of genus g.

Figure 3.9 Figure 3.10

Di2

Hi

Di1

B3

A convenient characterization of handlebodies is

3.21 Proposition. Let W be an orientable 3-manifolds. If W contains a system
D1, . . . , Dg of mutually disjoint disks such that ∂W ∩Di = ∂Di andW − ∪iU(Di)
is a closed 3-ball then W is a handlebody of genus g. (By U(Di) we denote closed
regular neighbourhoods of Di with U(Di) ∩ U(Dj ) = ∅ for i = j .)
Proof as Exercise E 3.9. 	


Each orientable closed 3-manifoldM3 admits Heegaard splittings; one of them can
be constructed as follows: Consider the 1-skeleton of a triangulation ofM3, defineV as
a regular neighbourhood of it and putW = M3 − V . Then V andW are handlebodies
and form a Heegaard decomposition of M . (Proof as Exercise E 3.10; that V is a
handlebody is obvious, that W is also can be proved using Proposition 3.21.) The
classification problem of 3-manifolds can be reformulated as a problem on Heegaard
decompositions, see [Reidemeister 1933], [Singer 1933]. F. Waldhausen has shown in
[Waldhausen 1968′] that Heegaard splittings of S3 are unique. We quote his theorem
without proof.

3.22 Theorem (Heegaard splittings of S3). Any two Heegaard decompositions of S3

of genus g are homeomorphic; more precisely: If (V ,W) and (V ′,W ′) are Heegaard
splittings of this kind then there exists an orientation preserving homeomorphism
h : S3 → S3 such that h(V ) = V ′ and h(W) = W ′. 	


Next a direct application to knot theory.
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3.23 Proposition. Every knot in S3 can be embedded in the boundary of the handle-
bodies of a Heegaard splitting of S3.

k

�

Figure 3.11 Figure 3.12

Proof. A (tame) knot k can be represented by a regular projection onto S2 which does
not contain loops (see Figure 3.11). Let � be a graph of k with vertices in the α-
coloured regions of the projection (comp. 2.3), and letW be a regular neighbourhood
of �. Obviously the knot k can be realized by a curve on ∂W , see Figure 3.12. k can
serve as a canonical curve on ∂W – if necessary add a handle to ensure k � 0 on ∂W

W is a handlebody. To see this choose a tree T in � that contains all the vertices of
�. It follows by induction on the number of edges of T that a regular neighbourhood
of T is a 3-ball B. A regular neighbourhood W of � is obtained from B by attaching
handles; for each of the segments of � − T attach one handle.

S3 −W also is a handlebody: The finite β-regions represent disks Di such that
Di ∩ W = ∂Di . If one dissects S3 −W along the disks Di one obtains a ball, see
Figure 3.13. 	


We can now obtain a new presentation of the group of the knot k:

3.24 Proposition. LetW , W ′ be a Heegaard splitting of S3 of genus g. Assume that
the knot k is represented by a curve on the surface F = ∂W = ∂W ′. Choose free
generators si, s′i , 1 � i � g, π1W = 〈 s1, . . . , sg | − 〉, π1W

′ = 〈 s′i , . . . , s′g | − 〉,
and a canonical system of curves κl, 1 � l � 2g, on F = W ∩W ′ with a common
base point P , such that κ2 = k. If κi is represented by a word wi(sj ) ∈ π1W and by
w′i (s′j ) ∈ π1W

′, then

(a) G = π1(S
3 − V (k)) = 〈 s1, . . . , sg, s′1, . . . , s′g | wi(w′i )−1, 2 � i � 2g 〉,
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Figure 3.13

(b) w1(sj )(w
′
1(s

′
j ))
−1 can be represented by a meridian, and, for some (well-

defined) integer r , w2(sj )(w1(w
′
1)
−1)r can be represented by a longitude, if the base

point is suitably chosen.

Proof. Assertion (a) is an immediate consequence of van Kampen’s theorem (see
Figure 3.14). For the proof of (b) let D be a disk in the tubular neighbourhood V (k),
spanning a meridian m of k, and letD meet κ1 in a subarc κ ′1 which contains the base
point P .

.

W

D
Pσ

W ′

ν

κ ′1
ν′

κ2 = k

κ1

Figure 3.14

The boundary ∂D is composed of two arcs ν = ∂D ∩W , ν′ = ∂D ∩W ′, ∂D =
ν−1ν′, such that σν−1ν′σ−1 is a Wirtinger generator. For κ ′′1 = κ1 − κ ′1, the paths
σν−1κ ′′1 σ−1 resp. σν′−1κ ′′1 σ−1 represent w1(sj ) resp. w′1(sj ); hence w1(w

′
1)
−1 =

σν−1ν′σ−1. A longitude l is represented by a simple closed curve λ on ∂V , λ ∼ κ2

in V , which is nullhomologous in C = S3 − V . Hence σλσ−1 represents w2(sj ) ·
(w1(w

′
1)
−1)r for some (uniquely determined) integer r (see Remark 3.13). If the

endpoint of σ is chosen as a base point assertion (b) is valid. 	
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3.25 Corollary. Assume S3 = W ∪ W ′, W ∩ W ′ = F ⊃ k as in 3.24. If the
inclusions i : F − V → W , i′ : F − V → W ′ induce injective homomorphisms of
the corresponding fundamental groups, then

G = π1(S3 − V (k)) = π1W ∗π1(F−V ) π1W
′ = Fg ∗F2g−1 Fg.

There is a finite algorithm by which one can decide whether the assumption of the
corollary is valid. In this case the knot group G has a non-trivial centre if and only if
g = 1.

Proof. Since F − V is connected, it is an orientable surface of genus g − 1 with two
boundary components. π1(F − V ) is a free group of rank 2(g − 1)+ 1.

There is an algorithm due to Nielsen [1921], see [ZVC 1980, 1.7], by which the
rank of the finitely generated subgroup i#π1(F − V ) in the free group π1W = Fg can
be determined. The remark about the centre follows from the fact that the centre of a
proper product with amalgamation is contained in the amalgamating subgroup. 	


We propose to study the case g = 1, the torus knots, in the following paragraph.
They form the simplest class of knots and can be classified. For an intrinsic charac-
terization of torus knots see Theorem 6.1.

E Torus Knots

Let S3 = R3 ∪ {∞} = W ∪ W ′ be a ‘standard’ Heegaard splitting of genus 1 of
the oriented 3-sphere S3. We may assume W to be an unknotted solid torus in R3

and F = W ∩ W ′ a torus carrying the orientation induced by that of W . There
are meridians µ and ν of W and W ′ on F which intersect in the basepoint P with
intersection number 1 on F , see Figure 3.15.

.

Figure 3.15

W

P

µ ν

W ′
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Any closed curve κ on F is homotopic to a curve µa · νb, a, b ∈ Z. Its homotopy
class on F contains a (non-trivial) simple closed curve iff a and b are relatively prime.
Such a simple curve intersects µ resp. ν exactly b resp. a times with intersection
number +1 or −1 according to the signs of a and b. Two simple closed curves
κ = µaνb, λ = µcνd on F intersect, eventually after an isotopy, in a single point if
and only if

∣∣ a b
c d

∣∣ = ±1, where the exact value of the determinant is the intersection
number of κ with λ.

3.26 Definition (Torus knots). Let (W,W ′) be the Heegaard splitting of genus 1 of
S3 described above. If k is a simple closed curve on F with the intersection numbers
a, b with ν and µ, respectively, and if |a|, |b| ≥ 2 then k is called a torus knot, more
precisely, the torus knot t(a, b).

3.27 Proposition.
(a) t(−a,−b) = −t(a, b), t(a,−b) = t∗(a, b) (see Definition 2.1).

(b) t(a, b) = t(−a,−b) = t(b, a): torus knots are invertible.

Proof. The first assertion of (a) is obvious. A reflection in a plane and a rotation
through π illustrate the other equations, see Figure 3.15 	


3.28 Proposition. (a) The group G of the torus knot t(a, b) can be presented as
follows:

G = 〈 u, v | uav−b 〉 = 〈 u| 〉 ∗〈 ua 〉=〈 vb 〉 〈 v| 〉, µ, ν representing u, v.

The amalgamating subgroup 〈 ua 〉 is an infinite cyclic group; it represents the
centre Z = 〈 ua 〉 ∼= Z of G and G/Z ∼= Z|a| ∗ Z|b|.

(b) The elementsm = ucvd, l = uam−ab, where ad+bc = 1, describe meridian
and longitude of t(a, b) for a suitable chosen basepoint.

(c) t(a, b) and t(a′, b′) have isomorphic groups if and only if |a| = |a′| and
|b| = |b′| or |a| = |b′| and |b| = |a′|.

Proof. The curve t(a, b) belongs to the homotopy class ua ofW and to vb ofW ′. This
implies the first assertion of (a) by 3.24 (a). From 3.24 (b) it follows that the meridian
of t(a, b) belongs to the homotopy class ucvd with

∣∣ a −b
c d

∣∣ = 1. Since the classes ua

and ucvd can be represented by two simple closed curves on ∂V intersecting in one
point the class (ua)1(ucvd)−ab can be represented by a simple closed curve on ∂V .
Since it becomes trivial by abelianizing it is the class of a longitude. This implies (b).

It is clear that ua belongs to the centre of the knot group G. If we introduce the
relation ua = 1 we obtain the free product

〈 u, v | ua, vb 〉 = 〈 u | ua 〉 ∗ 〈 v | vb 〉.
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Since this group has a trivial centre, see [ZVC 1980, 2.3.9], it follows that ua generates
the centre. Moreover, G = 〈 u| 〉 ∗〈 ua 〉 〈 v| 〉 implies that each of the factor subgroups
is free.

(c) is a consequence of the fact that u and v generate non-conjugate maximal finite
cyclic subgroups in the free product Z|a| ∗ Z|b|, comp. [ZVC 1980, 2.3.10]. 	

3.29 Theorem (Classification of torus knots). (a) t(a, b) = t(a′, b′) if and only if
(a′, b′) is equal to one of the following pairs: (a, b), (b, a), (−a,−b), (−b,−a).

(b) Torus knots are invertible, but not amphicheiral.

Proof. Sufficiency follows from 3.27. Suppose t(a, b) = t(a′, b′). Since the centre
Z is a characteristic subgroup, G/Z is a knot invariant. The integers |a| and |b| are
in turn invariants of Z|a| ∗ Z|b|; they are characterized by the property that they are
the orders of maximal finite subgroups of Z|a| ∗Z|b| which are not conjugate. Hence,
t(a, b) = t(a′, b′) implies that |a| = |a′|, |b| = |b′| or |a| = |b′|, |b| = |a′|.

By 3.27 (b) it remains to prove that torus knots are not amphicheiral. Let us assume
a, b > 0 and t(a, b) = t(a,−b). By 3.14 there is an isomorphism

ϕ : G = 〈 u, v | uav−b 〉 → 〈 u′, v′ | u′av′b 〉 = G
∗

mapping the peripheral system (G,m, l) onto (G∗,m′, l′):

m′ = ϕ(ucvd) = u′c′v′d ′ , l′ = ϕ(ua(ucvd)−ab) = u′a(u′c′v′d ′)+ab
with ad + bc = ad ′ − bc′ = 1.

It follows that

d ′ = d + jb and c′ = −c + ja for some j ∈ Z.

The isomorphism ϕ maps the centre Z of G onto the centre Z∗ of G∗. This implies
that ϕ(ua) = (u′a)ε for ε ∈ {1,−1}. Now,

u′a(u′c′v′d ′)ab = ϕ(ua(ucvd)−ab) = ϕ(ua)ϕ(ucvd))−ab
= (u′a)ε(u′c′v′d ′)−ab;

hence, (u′a)1−ε = (u′c′ t ′d ′)−2ab. This equation is impossible: the homomorphism
G∗ → G∗/Z∗ ∼= Za ∗Zb maps the term on the left onto unity, whereas the term on the
right represents a non-trivial element of Za ∗Zb because a � c′ and b � d ′. This follows
from the solution of the word problem in free products, see [ZVC 1980, 2.3.3]. 	


F Asphericity of the Knot Complement

In this section we use some notions and deeper results from algebraic topology, in
particular, the notion of a K(π, 1)-space, π a group: X is called a K(π, 1)-space if
π1X = π and πnX = 0 for n = 1. X is also called aspherical.
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3.30 Theorem. Let k ⊂ S3 be a knot, C the complement of an open regular neigh-
bourhood V of k. Then

(a) πnC = 0 for n = 1; in other words, C is a K(π1C, 1)-space.

(b) π1C is torsionfree.

Proof. π0C = 0 since C is connected. Assume that π2C = 0. By the Sphere
Theorem [Papakyriakopoulos 1957′], see Appendix B.6, [Hempel 1976, 4.3], there
is an embedded p.l.-2-sphere S ⊂ C which is not nullhomotopic. By the theorem
of Schoenflies, see [Moise 1977, p. 117], S divides S3 into two 3-balls B1 and B2.
Since k is connected it follows that one of the balls, say B2, contains V and B1 ⊂ C.
Therefore S is nullhomotopic, contradicting the assumption. This proves π2C = 0.

To calculateπ3C we consider the universal covering C̃ ofC. Asπ1C is infinite C̃ is
not compact, and this impliesH3(C̃) = 0. Asπ1C̃ = 0 andπ2C̃ = π2C = 0 it follows
from the Hurewicz Theorem, see [Spanier 1966, 7.5.2], [Stöcker-Zieschang 1994,
16.8.4], that π3C̃ = π3C = 0. By the same argument πnC = πnC̃ = Hn(C̃) = 0 for
n � 4.

This proves (a). To prove (b) assume that π1C contains a non-trivial element x of
finite order m > 1. The cyclic group generated by x defines a covering p : C̄ → C

with π1C̄ = Zm. As πnC̄ = 0 for n > 1 it follows that C̄ is a K(Zm, 1)-space hence,
Hn(C̄) = Zm for n odd, see [Maclane 1963, IV Theorem 7.1]. This contradicts the
fact that C̄ is a 3-manifold. 	


G History and Sources

The knot groups became very early an important tool in knot theory. The method
presenting groups by generators and defining relations has been developed by W. Dyck
[1882], pursuing a suggestion of A. Cayley [1878]. The best known knot group
presentations were introduced by W. Wirtinger; however, in the literature only the
title “Über die Verzweigung bei Funktionen von zwei Veränderlichen” of this talk at
the Jahresversammlung der Deutschen Mathematiker Vereinigung in Meran 1905 in
Jahresber. DMV 14, 517 (1905) is mentioned. His student K. Brauner later used the
Wirtinger presentations again in the study of singularities of algebraic surfaces in R4

and mentioned that these presentations were introduced by Wirtinger, see [Brauner
1928]. M. Dehn [1910] introduced the notion of a knot group and implicitly used
the peripheral system to show that the two trefoils are inequivalent in [Dehn 1914].
(He used a different presentation for the knot group, see E 3.15.) O. Schreier [1924]
classified the groups 〈A,B | AaBb = 1 〉 and determined their automorphism groups;
this permitted to classify the torus knots. R.H. Fox [1952] introduced the peripheral
system and showed its importance by distinguishing the square and the granny knot.
These knots have isomorphic groups: there is, however, no isomorphism preserving
the peripheral system.
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Dehn’s Lemma, the Loop and the Sphere Theorem, proved in [Papakyriakopoulos
1957, 1957′], opened new ways to knot theory, in particular, C.D. Papakyriakopoulos
showed that knot complements are aspherical. F. Waldhausen [1968] found the full
strength of the peripheral system, showing that it determines the knot complement
and, hence, the knot type (see 15.5 and [Gordon-Luecke 1989]). New tools for the
study and use of knot groups have been made available by R. Riley and W. Thurston
discovering a hyperbolic structure in many knot complements.

H Exercises

E 3.1. Compute the relative homology Hi(S3, k) for a knot k and give a geometric
interpretation of the generator of H2(S

3, k) ∼= Z.

E 3.2. Calculate the homology Hi(S3 − k) of the complement of a link k with µ
components.

E 3.3. Let k be a knot with meridian m and longitude l. Show:
(a) Attaching a solid torus with meridian m′ to the complement of k defines a

homology sphere if and only if m′ is mapped to m±1lr .
(b) If k is a torus knot then the fundamental group of the space obtained above is

non-trivial if r = 0. (Hint: Use Proposition 3.28.)

E 3.4. Let G′ = 〈 {xn, n ∈ Z} | {xn+1x
−1
n+2xn+1x

−1
n+2x

−1
n xn+1x

−1
n , n ∈ Z} 〉. Prove:

(a) G′ is not finitely generated.
(b) The subgroups An = 〈 xn, xn+1, xn+2 〉, Bn = 〈 xn+1, xn+2 〉 of G′ are free

groups of rank 2, and

G
′ = · · · ∗B−2 A−1 ∗B−1 A0 ∗B0 A1 ∗B1 . . . .

(For this exercise compare 3.9 and 4.6.)

E 3.5. Calculate the groups and peripheral systems of the knots in Figure 3.16.

...
n twists

Figure 3.16
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E 3.6. Express the peripheral system of a product knot in terms of those of the factor
knots.

E 3.7. Let G be a knot group and ϕ : G→ Z a non-trivial homomorphism. Then ker
ϕ = G′.

E 3.8. Show that the two trefoil knots can be distinguished by their peripheral systems.

E 3.9. Prove Proposition 3.21.

E 3.10. Show that a regular neighbourhood V of the 1-skeleton of a triangulation of
S3 (or any closed orientable 3-manifold M) and S3 − V (M − V , respectively) form
a Heegaard splitting of S3 (or M).

E 3.11. Prove that Fg ∗F2g−1 Fg has a trivial centre for g > 1. (Here Fg is the free
group of rank g.)

E 3.12. Show Property P for torus knots.

E 3.13. Let h : S3 → S3 be an orientation preserving homeomorphism with h(k) = k

for a knot k ⊂ S3. Show thath induces an automorphism h∗ : G′/G′′ → G′/G′′which
commutes with α : G′/G′′ → G′/G′′, x �→ t−1xt , where t represents a meridian of k.

E 3.14. Let V1 and V2 be solid tori with meridians m1 and m2. A homeomorphism
h : ∂V 1 → ∂V 2 can be extended to a homeomorphism H : V1 → V2 if and only if
h(m1) ∼m2 on ∂V 2.

E 3.15. (Dehn presentation) Derive from a regular knot projection a presentation of
the knot group of the following kind: Assign a generator to each of the finite regions
of the projection, and a defining relator to each double point.



Chapter 4

Commutator Subgroup of a Knot Group

There is no practicable procedure to decide whether two knot groups, given, say
by Wirtinger presentations, are isomorphic. It has proved successful to investigate
instead certain homomorphic images of a knot group G or distinguished subgroups.
The abelianized group G/G′ ∼= H1(C), though, is not helpful, since it is infinite cyclic
for all knots, see 3.1. However, the commutator subgroup G′ together with the action
of Z = G/G′ is a strong invariant which nicely corresponds to geometric properties
of the knot complement; this is studied in Chapter 4. Another fruitful invariant is the
metabelian group G/G′′ which is investigated in the Chapters 8–9. All these groups
are closely related to cyclic coverings of the complement.

A Construction of Cyclic Coverings

For the group G of a knot k the property G/G′ ∼= Z implies that there are epimorphisms
G → Z and G → Zn, n ≥ 2, such that their kernels G′ and Gn are characteristic
subgroups of G, hence, invariants of k. Moreover, G and Gn are semidirect products
of Z and G′:

G = Z � G
′ and Gn = nZ � G

′,

where nZ denotes the subgroup of index n in Z and the operation of nZ on G′ is the
induced one.

The following Proposition 4.1 is a consequence of the general theory of coverings.
However, in 4.4 we give an explicit construction and reprove most of 4.1.

4.1 Proposition and Definition (Cyclic coverings). Let C denote the complement of
a knot k in S3. Then there are regular coverings

pn : Cn→ C, 2 ≤ n ≤ ∞,
such that pn#(π1Cn) = Gn and p∞#(π1C∞) = G′. The n-fold covering is uniquely
determined.

The group of covering transformations is Z for p∞ : C∞ → C and Zn for
pn : Cn→ C, 2 ≤ n <∞.

The covering p∞ : C∞ → C is called the infinite cyclic covering, the coverings
pn : Cn → C, 2 ≤ n < ∞, are called the finite cyclic coverings of the knot comple-
ment (or, inexactly, of the knot k). 	
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The main tool for the announced construction is the cutting of the complement
along a surface; this process is inverse to pasting parts together.

4.2 Cutting along a surface. Let M be a 3-manifold and S a two-sided surface in
M with ∂S = S ∩ ∂M . Let U be a regular neighbourhood of S; then U − S =
U1 ∪ U2 with U1 ∩ U2 = ∅ and Ui ∼= S × (0, 1]. Let M ′

0, U ′1, U ′2 be homeomorphic
copies of M − U,U1, U2, respectively, and let f0 : M − U → M ′

0, fi : Ui → U ′i
be homeomorphisms. Let M ′ be obtained from the disjoint union U ′1 ∪M ′

0 ∪ U ′2 by
identifying f0(x) and fi(x) when x ∈ M − U ∩ Ui = ∂(M − U) ∩ ∂Ui , i ∈ {1, 2}.
The result M ′ is a 3-manifold and we say that M ′ is obtained by cutting M along S.
There is a natural mapping j : M ′ → M .

Cutting along a one-sided surface can be described in a slightly more complicated
way (Exercise E 4.1). The same construction can be done in other dimensions; in
fact, the classification of surfaces is usually based on cuts of surfaces along curves,
see Figure 4.1. A direct consequence of the definition is the following proposition.

. .

..

Figure 4.1

4.3 Proposition.
(a) M ′ is a 3-manifold homeomorphic toM − U = M ′

0.

(b) There is an identification map j : M ′ → M which induces a homeomorphism
M ′ − j−1(S)→ M − S.

(c) The restriction j : j−1(S) → S is a two-fold covering. When S is two-sided
j−1(S) consists of two copies of S; when S is one-sided j−1(S) is connected.

(d) When S is two-sided an orientation of M ′ induces orientations on both com-
ponents of j−1(S). They are projected by j onto opposite orientations of S, if M ′ is
connected. 	


4.4 Construction of the cyclic coverings. The notion of cutting now permits a
convenient description of the cyclic coverings pn : Cn → C: Let V be a regular
neighbourhood of the knot k and S′ a Seifert surface. Assume that V ∩S′ is an annulus
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and that λ = ∂V ∩ S′ is a simple closed curve, that is a longitude of k. Define
C = S3 − V and S = S′ ∩ C. Cutting C along S defines a 3-manifold C∗. The
boundary of C∗ is a connected surface and consists of two disjoint parts S+ and S−,
both homeomorphic to S, and an annulusR which is obtained from the torus ∂V = ∂C
by cutting along λ:

∂C∗ = S+ ∪ R ∪ S−, S+ ∩ R = λ+, S− ∩ R = λ−, ∂R = λ+ ∪ λ−,

see Figure 4.2. (C∗ is homeomorphic to the complement of a regular neighbourhood of
the Seifert surface S.) Let r : S+ → S− be the homeomorphism mapping a point from
S+ to the point of S− which corresponds to the same point of S. Let i+ : S+ → C∗
and i− : S− → C∗ denote the inclusions.

C∗0 = C∗

λ+

k

V (k)

λ−

S+

S−

Figure 4.2

Take homeomorphic copies C∗j of C∗ (j ∈ Z) with homeomorphisms hj : C∗ →
C∗j . The topological space C∞ is obtained from the disjoint union

⋃∞
j=−∞ C∗j by

identifying hj (x) and hj+1(r(x)) when x ∈ S+, j ∈ Z; see Figure 4.3. The space
Cn is defined by starting with

⋃n−1
j=0 C

∗
j and identifying hj (x) with hj+1(r(x)) and

hn(x) with h1(r(x)) when x ∈ S+, 1 ≤ j ≤ n − 1. For 2 ≤ n ≤ ∞ define
pn(x) = ι(h−1

i (x)) if x ∈ C∗ι ; here ι denotes the identification mapping C∗ → C, see
4.3 (b). It easily follows that pn : Cn→ C is an n-fold covering.

By t |C∗j = hj+1h
−1
j , j ∈ Z, a covering transformation t : C∞ → C∞ of the

covering p∞ : C∞ → C is defined. For any two points x1, x2 ∈ C∞ with the same
p∞-image in C there is an exponent m such that tm(x1) = x2. Thus the covering
p∞ : C∞ → C is regular, the group of covering transformations is infinite cyclic and
t generates it. Hence, p∞ : C∞ → C is the infinite cyclic covering of 4.1. In the
same way it follows that pn : Cn → C (2 ≤ n < ∞) is the n-fold cyclic covering.
The generating covering transformation tn is defined by

tn|Cj = hj+1h
−1
j for 1 ≤ j ≤ n− 1,

tn|Cn = h1h
−1
n .
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∂V

h1

h−2

h2

C∗2

C∗2

C∗1

C∗1
C∗0

C∗0

C∗−1

C∗−2

h2(S
−) h1(S

+)
h1(S

+)

h1(S
−)

h1(S
−)

C∞

S+

S−

C∗n−1

Cn

Figure 4.3

B Structure of the Commutator Subgroup

Using the Seifert–van Kampen Theorem the groups G′ = π1C∞ and Gn = π1Cn can
be calculated from π1(C

∗) and the homomorphisms i±# : π1S
± → π1C

∗.

4.5 Lemma (Neuwirth). When S is a Seifert surface of minimal genus spanning the
knot k the inclusions i± : S± → C∗ induce monomorphisms i±# : π1S

± → π1C
∗.

Proof. If, e.g., i+# is not injective, then, by the Loop Theorem (see Appendix B.5)
there is a simple closed curve ω on S+, ω � 0 in S+, and a disk δ ⊂ C such that
∂δ = ω = δ ∩ ∂C = δ ∩ S+. Replace S+ by S+1 = (S+ − U(δ)) ∪ δ1 ∪ δ−1, where

Figure 4.4

U(δ) = [−1,+1]× δ is a regular neighbourhood of δ in C with δi = i× δ, 0× δ = δ.
Then g(S+1 ) + 1 = g(S+), g the genus, contradicting the minimality of g(S), if S+1
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is connected. If not, the component of S+1 containing ∂S+ has smaller genus than
S+, since ω � 0 in S+; again this leads to a contradiction to the assumption on S.
Compare Figure 4.4. 	


Next we prove the main theorem of this chapter:

4.6 Theorem (Structure of the commutator subgroups). (a) If the commutator sub-
group G′ of a knot group G is finitely generated, then G′ is a free group of rank 2g
where g is the genus of the knot. In fact, G′ = π1S, S a Seifert surface of genus g.

(b) If G′ cannot be finitely generated, then

G
′ = · · ·A−1 ∗B−1 A0 ∗B0 A1 ∗B1 A2 · · ·

and the generator t of the group of covering transformations ofp∞ : C∞ → C induces
an automorphism τ ofG′ such that τ(Aj ) = Aj+1, τ(Bj ) = Bj+1. HereAj

∼= π1C
∗,

Bj
∼= π1S ∼= F2g and Bj is a proper subgroup of Aj and Aj+1. (The subgroups Bj

and Bj+1 do not coincide.)

Proof. We apply the construction of 4.4, for a Seifert surface of minimal genus. By 4.5,
the inclusions i± : S± → C∞ induce monomorphisms i±# : π1S

± → π1C∞. By the
Seifert–van Kampen Theorem (Appendix B.3), G′ = π1C∞ is the direct limn→∞Pn

of the following free products with amalgamation:

Pn = A−n ∗B−n A−n+1 ∗B−n+1 · · · ∗B0 A1 ∗B1 A2 · · · ∗Bn−1 An;
here Aj corresponds to the sheet C∗j and Bj to hj (S+) if considered as a subgroup of
Aj and to hj+1(S

−) as a subgroup of Aj+1. Thus for different j the pairs (Aj ,Bj )

are isomorphic and the same is true for the pairs (Aj+1,Bj ).
When G′ is finitely generated there is an n such that the generators of G′ are in

Pn. This implies that Bn = An+1 and B−n−1 = A−n−1; hence, π1S
+ ∼= π1C

∗ ∼=
π1S

− ∼= F2g where g is the genus of S (and k). Now it follows that π1C∞ ∼= π1C
∗ ∼=

π1S ∼= F2g .
There remain the cases where i+# (π1S

+) = π1C
∗ or i−# (π1S

−) = π1C
∗. Then

G′ cannot be generated by a finite system of generators. Lemma 4.7, due to [Brown-
Crowell 1965], shows that these two inequalities are equivalent; hence, i+# (π1S

+) =
π1C

∗ = i−# (π1S
−), and now the situation is as described in (b). (That Bj and Bj+1

do not coincide can be deduced using facts from the proof of Theorem 5.1). 	


Section C is devoted to the proof of the Lemma 4.7 of [Brown-Crowell 1965] and
can be neglected at first reading.
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C A Lemma of Brown and Crowell

The following lemma is a special case of a result in [Brown-Crowell 1965]:

4.7 Lemma (Brown–Crowell). Let M be an orientable compact 3-manifold where
∂M consists of two surfaces S+ and S− of genus g with common boundary

∂S+ = ∂S− = S+ ∩ S− =
r⋃
i=1

κi = ∅, κi ∩ κj = ∅ for i = j.

If the inclusion i+ : S+ → M induces an isomorphism i+# : π1S
+ → π1M so does

i− : S− → M .

Proof by induction on the Euler characteristic of the surface S+. As ∂S+ = ∅ the
Euler characteristic χ(S+) is maximal for r = 1 and g = 0; in this case χ(S+) = 1
and S+ and S− are disks, π1S

− and π1S
+ are trivial; hence, π1M is trivial too, and

nothing has to be proved.
Ifχ(S+) = χ(S−) < 1 there is a simple arcα on S− with ∂α = {A,B} = α∩∂S−

which does not separate S−, see Figure 4.5. We want to prove that there is an arc β
on S+ with the same properties such that α−1β bounds a disk δ in M .

κl

κi
S−

α

A

δ B

β S+

Figure 4.5

i+# : π1S
+ → π1M is an isomorphism by assumption, thus there is an arc β ′ in S+

connecting A and B such that (α,A,B) � (β ′, A, B) in M . In general, the arc β ′ is
not simple. The existence of a simple arc is proved using the following doubling trick:
Let M1 be a homeomorphic copy of M with ∂M1 = S+1 ∪ S−1 . Let M ′ be obtained
from the disjoint unionM ∪M1 by identifying S+ and S+1 and let α1 ⊂ M1 be the arc
corresponding to α. InM ′, αα−1

1 � β ′β ′−1 � 1. By Dehn’s Lemma (Appendix B.4),
there is a disk δ′ in M ′ with boundary αα−1

1 . We may assume that δ′ is in general
position with respect to S+ = S+1 and that δ′ ∩ ∂M ′ = ∂δ′ = αα−1

1 . The disk δ′
intersects S+ in a simple arc β connecting A and B and, perhaps, in a number of
closed curves. The simple closed curve αβ−1 is nullhomotopic in δ′, hence inM ′. By
the Seifert–van Kampen Theorem,

π1M
′ = π1M ∗π1S+ π1M1 ∼= π1M;
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thus the inclusion M ↪→ M ′ induces an isomorphism π1M → π1M
′. Since αβ−1 is

contained in M it follows that αβ−1 � 0 in M . By Dehn’s Lemma, there is a disk
δ ⊂ M with δ ∩ ∂M = ∂δ = α ∪ β, see Figure 4.6.

κl

κi

α

A
α1

δ β

B
S−

β ′

S−1

S+ = S+1

Figure 4.6

The arc β does not separate S+. To prove this letC andD be points of S+ close to
β on different sides. There is an arc λ in M connecting C and D without intersecting
δ; this is a consequence of the assumption that α does not separate S−. Now deform λ

into S+ by a homotopy that leaves fixed C and D. The resulting path λ′ ⊂ S+ again
connects C and D and has intersection number 0 with δ, the intersection number
calculated inM; hence, also 0 with β when the calculation is done in S+. This proves
that β does not separate S+.

Cut M along δ, see Figure 4.7. The result is a 3-manifold M∗. We prove that the
boundary of M∗ fulfils the assumptions of the lemma and that χ(∂M∗) > χ(∂M).
Then induction can be applied.

κl

κl

κi
κi

S+∗
S+∗

A′

γ ′
δ′

α′
B ′

β ′

α′′

A′′

β ′′

γ ′′
δ′′ B ′′

S−∗S−∗

Figure 4.7

Assume that A ∈ κi , B ∈ κl . Let γ be a simple arc in δ such that γ ∩ ∂δ =
∂γ = {A,B}. By cutting M along δ, γ is cut into two arcs γ ′, γ ′′ which join the
points A′, B ′ and A′′, B ′′ corresponding to A and B. The curves κi and κl of ∂S+ are
replaced by one new curve κ ′i if i = l or by two new curves κi,1, κi,2 if i = l. These
new curves together with those κm that do not intersect δ decompose ∂M∗ into two
homeomorphic surfaces. They contain homeomorphic subsets S+∗ , S−∗ which result
from removing the two copies of δ in ∂M∗. The surfaces S+∗ , S−∗ are obtained from
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S+ and S− by cutting along ∂δ. It follows that

χ(S+∗ ) = χ(S+)+ 1,

since for i = l the number r of boundary components increases by 1 and the genus
decreases by 1: r∗ = r+1, g∗ = g−1, and for i = l one has r∗ = r−1 and g∗ = g.

The inclusions and identification mappings form the following commutative dia-
grams:

S+∗
j+ ��

� �

i+∗
��

S+
��

i+

��

S−∗
j− ��

� �

i−∗
��

S−
��

i−

��
M∗

j �� M M∗
j �� M

From the second version of the Seifert–van Kampen Theorem, see Appendix B.3
(b), [ZVC 1980, 2.8.3], [Stöcker-Zieschang 1994, 5.3.11], it follows that

π1M = j#(π1M∗) ∗ Z,

π1S
+ = j+# (π1S

+∗ ) ∗ Z, π1S
− = j−# (π1S

−∗ ) ∗ Z,

where Z is the infinite cyclic group generated by κi . By assumption the inclusion
i+ : S+ → M induces an isomorphism i+# which maps j+# (π1S

+∗ ) to j#i
+
∗#(π1S

+) ⊂
j#(π1M∗) and Z onto Z. From the solution of the word problem in free products, see
[ZVC 1980, 2.3], it follows that i+∗ bijectively maps j+# (π1S

+∗ ) onto j#(π1M∗); hence,
i+∗# is an isomorphism.

As induction hypothesis we may assume that i−∗# is an isomorphism. By arguments
similar to those above, it follows that i−# can be described by the following commutative
diagram:

j−# (π1S
−∗ ) ∗ Z

i−∗#∗(i−# |Z) ∼=
��

= π1S
−

i−#
��

j#(π1M∗) ∗ Z = π1M.

Since the mapping on the left side is bijective, i−# is an isomorphism. 	


D Examples and Applications

Theorem 4.6 now throws some light on the results in 3.7–3.9: the trefoil (E 4.2) and
the figure eight knot (Figure 3.8) have finitely generated commutator subgroups. The
2-bridge knot b(7,3) has a commutator subgroup of infinite rank; in 3.9 we have already
calculated G′ in the form of 4.6 (b) using the Reidemeister–Schreier method.

We will prove that all torus knots have finitely generated commutator subgroups.
Let us begin with some consequences of Theorem 4.6.
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4.8 Corollary. Let the knot k have a finitely generated commutator subgroup and let S
be an orientable surface spanning k. IfS is incompressible in the knot complement (this
means that the inclusion i : S ↪→ C induces a monomorphism i# : π1S → π1C = G)

then S and k have the same genus. 	


In the following G always denotes a knot group.

4.9 Corollary. The centre of G′ is trivial.

Proof. If G′ cannot be finitely generated, by 4.6 there are groups A and B with
G′ = A ∗F2g B where g is the genus of k and A = F2g = B. From the solution of
the word problem it follows that the centre is contained in the amalgamated subgroup
and is central in both factors, see [ZVC 1980, 2.3.9]. But F2g has trivial centre ([ZVC
1980, E1.5]). The last argument also applies to finitely generated G′ because they are
free groups. 	


4.10 Proposition. (a) If the centre C of G is non-trivial then G′ is finitely generated.
(b) The centre C of G is trivial or infinite cyclic. When C = 1, C is generated by

an element tn · u, n > 1, u ∈ G′. (The coset tG′ generates the first homology group
G/G′ ∼= Z.)

Proof. (a) Assume that G′ cannot be generated by finitely many elements. Then, by
Theorem 4.6, G′ = · · ·∗A−1∗B−1A0∗B0A1∗· · · where Aj ⊇ Bj ⊆ Aj+1. Denote by
Hr the subgroup of G′ which is generated by {Aj | j � r}. Then Hr+1 = Hr ∗Br

Ar+1
and Hr = Br = Ar+1; hence Hr  = Hr+1 and

Hr = Hs if r < s. (1)

Let t ∈ G be an element which is mapped onto a generator of G/G′ = Z. Assume
that t−1Ar t = Ar+1; hence, t−1Hr t = Hr+1.

Consider z ∈ C, 1 = z. Then z = utm where u ∈ G′. By 4.9, m = 0; without
loss of generality: m > 0. Choose s such that u ∈ Hs . Then

Hs = z−1
Hsz

since z ∈ C, and

z−1
Hsz = t−mu−1

Hsut
m = t−mHs t

m = Hs+m.

This implies Hs = Hs+m, contradicting (1).
(b) By (a), a non-trivial centre C contains an element tn · u, n > 0, u ∈ G′ and n

minimal. By 4.9,

CG
′ ∼= nZ×G

′,
CG

′/G′ ∼= C/C ∩G
′ ∼= C ∼= nZ.
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If n = 1 then G = C × G′ which contradicts the fact that G collapses if the relator
t = 1 is introduced. 	


Since the group of a torus knot has non-trivial centre we have proved the first
statement of the following theorem:

4.11 Corollary (Genus of torus knots). (a) The group Ga,b = 〈 x, y | xay−b 〉 of the
torus knot t(a, b), a, b ∈ N, (a, b) = 1 has a finitely generated commutator subgroup.
It is, following 4.6 (a), a free group of rank 2g where g is the genus of t(a, b).

(b) g = (a−1)·(b−1)
2 .

Proof. It remains to prove (b). Consider the commutative diagram

Ga,b

ϕ ��

λ

��

〈t | 〉
κ

��
Za ∗ Zb

ψ �� 〈t | tab〉

t = ϕ(xrys), as + br = 1

where ϕ,ψ are the abelianizing homomorphisms, λ and κ the natural projections. The
centre C of Ga,b is generated by xa = yb, and it is C = ker λ. Now

ker(ψλ) = λ−1(kerψ) ∼= C× kerψ

‖
ker(κϕ) = ϕ−1(〈 tab 〉) ∼= C× ker ϕ;

the last isomorphism is a consequence of

tab = ϕ((xrys)ab) = ϕ(xrab · xa2s) = ϕ(xa).
Hence, ker ϕ ∼= kerψ .

We prove next that (Za ∗ Zb)
′ = ker ϕ ∼= F(a−1)(b−1). Consider the 2-complex

C2 consisting of one vertex, two edges ξ , η and two disks δ1, δ2 with the boundaries
ξa and ηb, respectively. Then π1C

2 ∼= Za ∗ Zb. Let C̃2 be the covering space of
C2 with fundamental group the commutator subgroup of Za ∗ Zb. Each edge of C̃2

over η (or ξ ) belongs to the boundaries of exactly b (resp. a) disks of C̃2 which have
the same boundary. It suffices to choose one to get a system of defining relations of
π1C̃

2 ∼= (Za ∗ Zb)
′. Then there are ab

b
disks over δ2 and ab

a
disks over δ1. The new

complex Ĉ2 contains

ab vertices, 2ab edges, a + b disks,

and each edge is in the boundary of exactly one disk of Ĉ2. Thus π1Ĉ
2 is a free group

of rank
2ab − (ab − 1)− (a + b) = (a − 1)(b − 1).
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Theorem 4.6 implies that the genus of t(a, b) is 1
2 (a − 1)(b − 1). 	


The isomorphism (Za ∗ Zb)
′ ∼= F(a−1)(b−1) can also be proved using the (modi-

fied) Reidemeister–Schreier method, see [ZVC 1980, 2.2.8]; in the proof above the
geometric background of the algebraic method has directly been used.

E Commutator Subgroups of Satellites

According to 3.11, the groups of a satellite k, its companion k̂ and the pattern k̃ ⊂ Ṽ are
related by G = Ĝ∗Aπ1(V̂−k) ∼= Ĝ∗Aπ1(Ṽ−k̃) = Ĝ∗AH, where A = π1(∂V̂ ) ∼= Z2

and H = π1(Ṽ − k̃). For the calculation of G′ we need a refined presentation, which
we will also use in Chapter 9 for the calculation ofAlexander polynomials of satellites.

4.12 Presentation of the commutator subgroup of a satellite. Let m̃ and l̃ be

meridian and longitude of Ṽ where l̃ is a meridian ofS3 − Ṽ . Starting with aWirtinger
presentation for the link k̃∪m̃ and after replacing all meridional generators of k̃ except
t by elements of H′ one obtains a presentation

H = π1(Ṽ − k̃) = 〈 t, ũi , λ̂ | R̃j (ũtvi , λ̂) 〉 (1)

= 〈 t, t̂ , ũi , λ̂ | R̃j (ũtνi , λ̂), t̂−1 · tnṽ(ũtνi , λ̂), [t̂ , λ̂] 〉

where ũi ∈ H′, ũtνi = tν ũi t−ν , ν ∈ Z, i ∈ I , j ∈ J ; I, J finite sets. The t̂ represents

a meridian of V̂ on ∂V̂ , t̂ = tn · ṽ(ũtνi , λ̂) with ṽ(ũt
ν

i , λ̂) ∈ G′ and n = lk(t̂ , k̂).

The generator λ̂ represents the longitude l̂, hence λ̂ ∈ Ĝ′′. The relation [t̂ , λ̂] is a
consequence of the remaining relations. The group of the knot k̃ is:

G̃ = π1(S̃
3 − k̃) = 〈 t, ũi | R̃j (ũtνi , 1) 〉 (2)

= 〈 t, ũi , λ̃ | Rj (ũtνi , λ̂), λ̂ 〉.
The group of the companion has a presentation

Ĝ = π1(S
3 − k̂) = 〈 t̂ , ûk, λ̂ | R̂ι(ût̂νk ), λ̂−1 · ŵ(ût̂νk ), [t̂ , λ̂] 〉 (3)

for ûk ∈ Ĝ′ and some ŵ. By assumption t̂ , λ̂ generate a subgroup isomorphic to Z⊕Z
in H as well as in Ĝ since k̂ is not trivial. By the Seifert–van Kampen theorem

G = π1(S
3 − k) = Ĝ ∗

π1(∂V̂ )
π1(V̂ − k̂) = Ĝ ∗〈 t̂ ,λ̂ 〉 H (4)

∼= 〈 t, ũi , t̂ , ûk, λ̂ | R̃j (ũtνi , λ̂), t̂−1 · tnṽ(ũtνi , λ̂), R̂ι(ût̃
ν

k ), λ̂
−1 · ŵ(ût̂νk ), [t̂ , λ̂] 〉,

a result already obtained in 3.11.
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To determine G′ we drop the generator t̂ using the relation t̂ = tnṽ(ũtνi , λ̂); how-
ever, we will still write t̂ for the expression on the right side. Now

G
′ = 〈 ũt�i , ût

�

k , λ̂
t� | R̃t�j (ũt

ν

i · λ̂), R̂t
�

ι (û
tν

k ), (λ̂
t� )−1 · ŵt� (ûtνk ), [t̂ t

�

, λ̂t
� ] 〉

where � ranges over Z, ũt
�

i = t�ũi t−�, R̃t
�

j (ũ
tν

i , λ̂) = t�R̃j (ũt
ν

i , λ̂)t
−� etc. For n > 0

write
� = µ+ σ · n, 0 � µ < n,

and
t� = tσntµ = ṽσ (ũtνi , λ̂)t̂σ tµ.

Define ûµ,k = tµûkt−µ, λ̂µ = tµλ̂t−µ. Now

G
′ = 〈 ũt�i , ût̂

σ

µ,k, λ̂
t̂σ

µ | R̃t
�

j (ũ
tν

i , λ̂), R̂
t̂σ

ι (û
t̂ν

µ,k), (5)

(λ̂t̂
σ

µ )
−1ŵt̂

σ

(ût̂
ν

µ,k), t̂
σ [t̂ tµ , λ̂µ]t̂−σ 〉;

here σ ∈ Z and 0 � µ < n.
On the other hand,

Ĝ
′ = 〈 ût̂σk , λ̂t̂

σ | R̂t̂σι (ût̂
ν

k ), (λ̂
t̂σ )−1 · ŵt̂σ (ût̂νk ), [t̂ , λ̂t̂

σ ] 〉 (6)

= 〈 ût̂σk , λ̂ | R̂t̂
σ

ι (û
t̂ν

k ), (λ̂
t̂σ )−1 · ŵt̂σ (ût̂νk ) 〉

since the relation [t̂ , λ̂t̂σ ] implies that λ̂t̂
σ = λ̂t̂σ+1

. By conjugation with tµ we obtain

Ĝ
′tµ = tµĜ

′t−µ = 〈 ût̂σµ,k, λ̂µ | R̂t̂
σ

ι (û
t̂ν

µ,k), (λ̂
t̂σ

µ )
−1 · ŵt̂σ (ût̂νµ,k) 〉. (6µ)

Define

K = 〈 ũt�i , λ̂t
µ | R̃t�j (ũt

ν

i , λ̂) 〉 = 〈 ũt
�

i , λ̂µ | R̃t
�

j (ũ
tν

i , λ̂µ) 〉. (7)

Since the presentations of Ĝ′, Ĝ′t , . . . , Ĝ′tn−1
have disjoint sets of generators, it fol-

lows from (6) that

〈 ûtσk , λ̂µ | R̂t̂
σ

ι (û
t̂ν

µ,k), (λ̂
t̂σ

µ )
−1 · ŵt̂σ (ût̂νµ,k) 〉 = Ĝ

′ ∗ Ĝ
′t ∗ · · · ∗ Ĝ

′tn−1
(8)

and that λ̂0, . . . , λ̂n−1 generate a free group of rank n. Moreover,

〈 λ̂t� | � ∈ Z 〉 = 〈 λ̂0, . . . , λ̂n−1 〉, (9)

as follows from the commutator relations [t̂ , λ̂]t� . If n = 0 then 〈 λ̂t� 〉 is of infinite
rank. Now (5), (7) and (8) imply that

G
′ = K ∗〈 λ̂t� 〉 (Ĝ′ ∗ Ĝ

′t ∗ · · · ∗ Ĝ
′tn−1

). (10)
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4.13 Lemma. For n = 0, G′ is finitely generated if and only if K and Ĝ′ are finitely
generated.

Proof. This is a consequence of

rank
(
Ĝ
′ ∗ · · · ∗ Ĝ

′tn−1) = n · rank Ĝ
′

and the following Lemma 4.14. 	


4.14 Lemma. Let G = G1 ∗S G2 where S is finitely generated. Then G is finitely
generated if and only if G1 and G2 are finitely generated.

Proof (R. Bieri). When G is finitely generated there are finite subsets Xi ⊂ Gi

(i = 1, 2) with 〈X1, X2 〉 = G. Since S is finitely generated we may assume that
bothX1 andX2 contain generators forS. LetHi = 〈Xi 〉 ⊂ Gi . ThenS = G1∩G2 ⊃
H1 ∩ H2, but on the other hand H1 ∩ H2 ⊃ S, so that S = G1 ∩ G2 = H1 ∩ H2. It
follows that the map H1 ∗S H2 → G1 ∗S G2 induced by the embeddings Hi → Gi

is an isomorphism. Now the solution of the word problem implies that Hi = Gi . 	


4.15 Corollary. If G′ is finitely generated, then n = 0 and G̃′ and Ĝ′ are finitely
generated. If n = 0 and K , see (7), and Ĝ′ are finitely generated, so is G′.

Proof. If n = 0, then G′ contains the subgroup 〈 t̂ , λ̂ 〉 ∼= Z ⊕ Z, so G′ cannot be
finitely generated, because this would, by 4.6 (a), imply that G′ is free, a contradiction.
For the remaining assertions see Lemma 4.13 and look at the presentation (1) of H.
The relators R̃j (ũt

ν

i ) can be split into a set Q̃j (ũt
ν

i ) not containing λ̂, and a relator of
the form [λ̂, ṽs(ũtνi )]:

H = 〈 t, ũi , λ̃ | Q̃r (ũ
tν

i ), [λ̃, ṽs(ũt
ν

i ] 〉.
The augmentation ϕ : G→ Z induces a homomorphism

ϕ : H→ Z with t �→ 1, ũi , λ̃ �→ 0

and
ker ϕ = 〈 ũt�i , λ̃t

� | Q̃t�

r (ũ
tν

i ), [λ̃, ṽs(ũt
ν

i )]t
� 〉 = K.

Moreover,
G̃ = 〈 t, ũi , λ̃ | Q̃r (ũ

tν

i ), λ̃ 〉
and

G̃
′ = 〈 ũt�i , λ̃t

� | Q̃t�

r (ũ
tν

i ), λ̃
t� 〉.

Consider the canonical homomorphism ψ : H→ G̃ with ker ψ the normal closure of
λ̂ in H. One has kerψ ⊂ K, and

1 → kerψ → K→ G̃
′ → 1
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is exact. For n = 0, kerψ is the normal closure of 〈 λ̂0, . . . , λ̂n−1 〉, see (9). Hence
G′ is finitely generated, if G̃′ and kerψ are. 	


Remark. In the first edition of this book it was wrongly assumed that kerψ was
always finitely generated. D. Silver pointed out the mistake and he supplied the fol-
lowing counterexample: No satellite with pattern k̃ (Figure 4.8) has afinitely generated
commutator subgroup G′ since K is not finitely generated even if G̃′ and Ĝ′ are.

k̃

Figure 4.8

F History and Sources

The study of the commutator subgroup G′ concentrated on G′/G′′ in the early years
of knot theory. This will be the object of Chapters 8, 9. In [Reidemeister 1932, § 6]
there is a group presentation of G′. But the structure of G′ eluded the purely algebraic
approach.

Neuwirth made the first important step by investigating the infinite cyclic covering
spaceC∞, π1C∞ = G′, using the then (relatively) new toolsDehn’s Lemma and Loop
Theorem [Neuwirth 1960]: Lemma 4.6. The analysis of G′ resulted in splitting off
a special class of knots, whose commutator subgroups are finitely generated. In this
case G′ proves to be a free group of rank 2g, g the genus of the knot. These knots will
be treated separately in the next chapter. There remained two different possible types
of infinitely generated commutator groups in Neuwirth’s analysis, and it took some
years till one of them could be excluded [Brown-Crowell 1965]: Lemma 4.7. The
remaining one, an infinite free product with amalgamations does occur. This group is
rather complicated and its structure surely could do with some further investigation.
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G Exercises

E 4.1. Describe the process of cutting along a one-sided surface.

E 4.2. Prove that the commutator subgroup of the group of the trefoil is free of rank 2.

E 4.3. Prove that the commutator subgroup of the group of the knot 61 cannot be
finitely generated.

If the bands of a Seifert surface spanning k form a plat (Figure 4.9), we call k a
braid-like knot (compare 8.2).

E 4.4. Show that for a braid-like knot the group A = π1C
∗ is always free. (For the

notation see 4.4–4.6).

Figure 4.9

E 4.5. Doubled knots are not braid-like. (See 2.9.)

E 4.6. If k is braid-like with respect to a Seifert surface of minimal genus, then there
is an algorithm by which one can decide whether G′ is finitely generated or not. Apply
this to E 4.2.

E 4.7. Let Za and Zb be cyclic groups of order a resp. b. Use the Reidemeister–
Schreier method to prove that the commutator subgroup (Za ∗Zb)

′ of the free product
is a free group of rank (a − 1)(b − 1).

E 4.8. Let C∗ be the space obtained by cutting a knot complement along a Seifert
surface of minimal genus. Prove that in the case of a trefoil or 4-knotC∗ is a handlebody
of genus two.
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E 4.9. If G is the group of a link of multiplicity µ, G
κ ��G/G′ ∼= Zµ

� ��Z.

Generalize the construction of C∞ to links by replacing G′ by ker(� � κ). (� is
the diagonal map.)

E 4.10. Let p(2p + 1, 2q + 1, 2r + 1) = k be a pretzel-knot, p, q, r ∈ Z, Figure
8.9. Compute i±# : π1S → π1C

∗ and i±∗ : H1(S)→ H1(C
∗) for a Seifert surface S of

minimal genus spanning k and decide which of these knots have a finitely generated
commutator subgroup.

E 4.11. Consider the (generalized) “pretzel-knot p(3, 1, 3,−1,−3)”, and show that
it spans a Seifert surface F which is not of minimal genus such that the inclusions
i± : F → C∗ induce injections i±# . (The homomorphisms i±∗ are necessarily not
injective, compare E 8.1.)



Chapter 5

Fibred Knots

By the theorem of Brown, Crowell and Neuwirth, knots fall into two different classes
according to the structure of their commutator subgroups. The first of them comprises
the knots whose commutator subgroups are finitely generated, and hence free, the
second one those whose commutator subgroups cannot be finitely generated. We have
seen that all torus-knots belong to thefirst category and we have given an example – the
2-bridge knot b(7,3) – of the second variety. The aim of this chapter is to demonstrate
that the algebraic distinction of the two classes reflects an essential difference in the
geometric structure of the knot complements.

A Fibration Theorem

5.1 Theorem (Stallings). The complement C = S3 − V (k) of a knot k fibres locally
trivially over S1 with Seifert surfaces of genus g as fibres if the commutator subgroup
G′ of the knot group is finitely generated,G′ ∼= F2g . Incidentally g is the genus of the
knot.

Theorem 5.1 is a special version of the more general Theorem 5.6 of [Stallings
1961]. The following proof of 5.1 is based on Stalling’s original argument but takes
advantage of the special situation, thus reducing its length and difficulty.

�2

�1

D1

C∗

�1

D1

�2

�k−1

S × 1

�k

�k−1

�k

S × 0

Figure 5.1
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5.2. To prepare the setting imagine C fibred as described in 5.1. Cut along a Seifert
surface S of k. The resulting space C∗ is a fibre space with base-space the interval I ,
hence C∗ ∼= S × I . The space C is reobtained from C∗ by an identification of S × 0
and S × 1 : (x, 0) = (h(x), 1), x ∈ S, where h : S → S is an orientation preserving
homeomorphism. We write in short:

C = S × I/h.
Choose a base point P on ∂S and let σ = P × I denote the path leading from (P, 1)
to (P, 0). For w0 = (w, 0), w1 = (w, 1) and w ∈ π1(S, P ) there is an equation

w1 = σw0σ−1 in π1(C
∗, (P, 1)).

Let κ1, . . . , κ2g be simple closed curves representing canonical generators of S.
Then obviously

σκ0
i σ
−1(κ1

i )
−1 = �′i � 0 in C∗.

The curves {�′i | 1 � i � 2g} coincide in σ ; they can be replaced by a system of simple
closed curves {�i} on ∂C∗ which are pairwise disjoint, where each �i is obtained from
�′i by an isotopic deformation near σ , see Figure 5.1. There are disksDi embedded in
C∗, such that ∂Di = �i . CutC∗ along the disksDi to obtain a 3-ballC∗∗ (Figure 5.2).

�2

�2

�1�1

D1,2
D2,1

D1,1
C∗∗

S∗∗

Figure 5.2

5.3. Proof of 5.1. We cut C along a Seifert surface S of minimal genus and get C∗
with S± = S×1, 0 in its boundary as in Chapter 4. Our aim is to produce a 3-ballC∗∗
by cutting C∗ along disks. The inclusions i+ : S+ → C∗ and i− : S− → C∗ induce
isomorphisms i±# of the fundamental groups. Let m ⊂ ∂C be a meridian through the
base point P on ∂S. Then, by the cutting process C → C∗ m will become a path σ
leading fromP+ = (P, 1) toP− = (P, 0). Assign toσw−σ−1 forw− ∈ π1(S

−, P−)
the element w+ ∈ π1(S

+, P+), w+ = σw−σ−1 in π1(C
∗, P+). We know the

map f#(w
−) = w+ to be an isomorphism f# : π1(S

−, P−) → π1(S
+, P+). So

by Nielsen’s theorem [Nielsen 1927], [ZVC 1980, 5.7] there is a homeomorphism
f : S− → S+ inducing f#. There are canonical curves κ+i , κ−i on S+ and S− with
f (κ−i ) = κ+i and σκ−i σ−1 � κ+i in C∗. Again the system {σκ−i σ−1(κ+i )−1 | 1 �
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i � 2g} is replaced by an homotopic system {�i | 1 � i � 2g} of disjoint simple
curves, which by Dehn’s Lemma [Papakyriakopoulos 1957] (see Appendix B.4) span
non-singular disks Di , ∂Di = �i = Di ∩ ∂C∗ which can be chosen disjoint.

CutC∗ along theDi . The resulting spaceC∗∗ is a 3-ball (Figure 5.2) byAlexander’s
Theorem (see [Graeub 1950]), because its boundary is a 2-sphere in S3 composed of
an annulus ∂S × I and two 2-cells (S+)∗ and (S−)∗ where S∗, (S+)∗ and (S−)∗
are, respectively, obtained from S, S+, S− by the cutting of C∗. So C∗∗ can be
fibred over I , C∗∗ = S∗ × I , (S∗)+ = S∗ × 1, (S∗)− = S∗ × 0. It remains to
show that the identification C∗∗ → C∗ inverse to the cutting-process can be changed
by an isotopy such as to be compatible with the fibration. Let g′i be the identifying
homeomorphisms, g′i (Di1) = Di2 = Di , i = 1, 2, . . . , 2g. The fibration of C∗∗
induces a fibration on Dij , the fibres being parallel to Dij ∩ (S∗)±. There are fibre
preserving homeomorphisms gi : Di1 → Di2 which coincide with g′i on the top (S∗)+
and the bottom (S∗)−. Since the Di1,Di2 are 2-cells, the gi are isotopic to the g′i ;
hence, C∗ ∼= S × I and C = S × I/h (compare Lemma 5.7). 	


5.4 Corollary. The complementC of afibred knot of genusg is obtained fromS×I , S a
compact surface of genus g with a connected nonempty boundary, by the identification

(x, 0) = (h(x), 1), x ∈ S,
where h : S → S is an orientation preserving homeomorphism:

C = S × I/h.
Now G = π1C is a semidirect product G = Z �α G′, where G′ = π1S � F2g . The
automorphism α = α(t) : G′ → G′, a �→ t−1 at, and h−1

# belong to the same class
of automorphisms, in other words, α(t) · h−1

# or α(t) · h# is an inner automorphism
of G′.

The proof follows from the construction used in proving 5.1. 	


Observe that σ after identification by h becomes a generator of Z. If t is replaced
by another coset representative t∗ mod G′, α(t∗) and α(t)will be in the same class of
automorphisms. Furthermore α(t−1) = α−1(t). The ambiguity h±1

# can be avoided
if σ as well as t are chosen to represent a meridian of k. (h# is called the monodromy
map of C.)

There is an addendum to Theorem 5.1.

5.5 Proposition. If the complement C of a knot k of genus g fibres locally trivially
over S1 then the fibre is a compact orientable surface S of genus g with one boundary
component, and G′ = π1S ∼= F2g .
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Proof. Since the fibration C → S1 is locally trivial the fibre is a compact 2-manifold
S. There is an induced fibration ∂C → S1 with fibre ∂S. Consider the exact fibre
sequences

1 −→ π1(∂S) −→ π1(∂C) −→ π1S
1 −→ π0(∂S) −→ 1� � ∥∥ �

1 −→ π1S −→ π1C −→ π1S
1 −→ π0S −→ 1.

The diagram commutes, and π1(∂C) → π1S
1 is surjective. Hence π1C → π1S

1 is
surjective and π0(∂S) = π0S = 1, that is, S and ∂S are connected. (See E 5.1.)

Now the second sequence pins down π1S as (π1C)
′. 	


We conclude this paragraph by stating the general theorem of Stallings without
proof:

5.6 Theorem (Stallings). LetM be a compact irreducible 3-manifold (this means that
inM every 2-sphere bounds a 3-ball). Assume that ϕ : π1M → Z is an epimorphism
with a finitely generated kernel. Then:

(a) ker ϕ is isomorphic to the fundamental group of a compact surface S.

(b) M can be fibred locally trivially over S1 with fibre S if ker ϕ ∼= Z2. 	


B Fibred Knots

The knots of the first class whose commutator subgroups are finitely generated – in
fact are free groups of rank 2g – are called fibred knots by virtue of Theorem 5.1. The
fibration of their complements affords additional mathematical tools for the treatment
of these knots. They are in a way the simpler knots and in their case the original
3-dimensional problem can to some extent be played down to two dimensions. This
is a phenomenon also known in the theory of braids (see Chapter 10) or Seifert fibre
spaces.

We shall study the question: How much information on the fibred knot k do we
get by looking at h : S → S in the formula S × I/h = S3 − V (k)?

5.7 Lemma (Neuwirth). If h0, h1 : S → S are isotopic homeomorphisms then there
is a fibre preserving homeomorphism

H : S × I/h0 → S × I/h1.

Proof. Let ht be the isotopy connecting h0 and h1. Put gt = hth
−1
0 and define a

homeomorphism
H ′ : S × I → S × I
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by H ′(x, t) = (gt (x), t), x ∈ S, t ∈ I . Since H ′(x, 0) = (x, 0) and

H ′(h0(x), 1) = (g1h0(x), 1) = (h1(x), 1),

H ′ induces a homeomorphism H as desired. 	


5.8 Lemma. Let f : S → S be a homeomorphism. Then there is a fibre preserving
homeomorphism F : S × I/h → S × I/f hf−1. If f is orientation preserving then
there is a homeomorphism F which also preserves the orientation.

Proof. Take F(x, t) = (f (x), t). 	


5.9 Definition (Similarity). Homeomorphisms h1 : S1 → S1, h2 : S2 → S2 of home-
omorphic oriented compact surfaces S1 and S2 are called similar, if there is a homeo-
morphism f : S1 → S2 respecting orientations, such that f h1f

−1 and h2 are isotopic.

The notion of similarity enables us to characterize homeomorphic complements
C1 and C2 of fibred knots k1 and k2 of equal genus g by properties of the gluing
homeomorphisms.

5.10 Proposition. Let k1, k2 be two (oriented) fibred knots of genus g with (orien-
ted) complements C1 and C2. There is an orientation preserving homeomorphism
H : C1 = S1 × I/h1 → C2 = S2 × I/h2, λ1 = ∂S1 � k1, H(∂S1) = ∂S2 = λ2 �
k2, if and only if there is a homeomorphism h : S1 → S2, respecting orientations,
h(λ1) = λ2, such that hh1h

−1 and h2 are isotopic, that is, h1 and h2 are similar.

Proof. If h exists and hh1h
−1 and h2 are isotopic then by Lemma 5.7 there is a

homeomorphism which preserves orientation and fibration:

F : S2 × I/hh1h
−1 → S2 × I/h2.

Now F ′ : S1 × I/h1 → S2 × I/hh1h
−1, (x, t) �→ (h(x), t), gives H = FF ′ as

desired.
To show the converse letH : C1 = S1×I/h1 → S2×I/h2 = C2 be an orientation

preserving homeomorphism, H(λ1) = λ2. There is an isomorphism

H# : π1C1 = G1 → G2 = π1C2

which induces an isomorphism

h# : π1S1 = G
′
1 → G

′
2 = π1S2.

By Nielsen ([ZVC 1970, Satz V.9], [ZVC 1980, 5.7.2]), there is a homeomorphism
h : S1 → S2 respecting the orientations induced on ∂S1 and ∂S2. We can choose
representatives m1 and m2 of meridians of k1, k2, such that

hi# : π1Si → π1Si, x �→m−1
i xmi , i = 1, 2.
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Since H preserves the orientation, H#(m2) =m2. Now

h#h1#(x) = h#(m
−1
1 xm1) = H#(m

−1
1 )h#(x)(H#(m1))

=m−1
2 h#(x)m2 = (h2#h#(x)).

By Baer’s Theorem ([ZVC 1970, Satz V.15], [ZVC 1980, 5.13.1]), hh1 and h2h are
isotopic; hence h1 and h2 are similar. 	


Proposition 5.10 shows that the classification of fibred knot complements can be
formulated in terms of the fibring surfaces and maps of such surfaces. The proof also
shows that if fibred complements are homeomorphic then there is a fibre preserving
homeomorphism. This means: different fibrations of a complement C admit a fibre
preserving autohomeomorphism. Indeed, by [Waldhausen 1968], there is even an
isotopy connecting both fibrations.

In the case of fibred knots invertibility and amphicheirality can be excluded by
properties of surface mappings.

5.11 Proposition. Let C = S × I/h be the complement of a fibred knot k.
(a) k is amphicheiral only if h and h−1 are similar.

(b) k is invertible only if there is a homeomorphism f : S → S, reversing orienta-
tion, such that h and f h−1f−1 are similar.

Proof [Burde-Zieschang 1967].
(a) The map (x, t) �→ (x, 1− t), x ∈ S, t ∈ I induces a mapping

C = S × I/h→ S × I/h−1 = C′

onto the mirror image C′ of C satisfying the conditions of Proposition 5.10.
(b) If f : S → S is any homeomorphism inverting the orientation of S, then

(x, t) �→ (f (x), 1− t) induces a homeomorphism

S × I/h→ S × I/f h−1f−1

which maps ∂S onto its inverse. Again apply Proposition 5.10. 	


C Applications and Examples

The fibration of a non-trivial knot complement is not easily visualized, even in the
simplest cases. (If k is trivial, C is a solid torus, hence trivially fibred by disks D2,
C = S1 ×D2.)
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5.12 Fibring the complement of the trefoil. Let C be the complement of a trefoil k

sitting symmetrically on the boundary of an unknotted solid torusT1 ⊂ S3 (Figure 5.3).
T2 = S3 − T1 is another unknotted solid torus in S3. A Seifert surface S (hatched
regions in Figure 5.3) is composed of two disks D1 and D2 in T2 and three twisted
2-cells in T1. (Figure 5.4 shows T1 and the twisted 2-cells in a straightened position.)
A rotation about the core of T1 through ϕ and, at the same time, a rotation about the
core of T2 through 2ϕ/3 combine to a mapping fϕ : S3 → S3. Now C is fibred by
{fϕ(S) | 0 � ϕ � π} (see [Rolfson 1976, p. 329]).

Figure 5.3 Figure 5.4

D2 D1

D

D

5.13 Fibring the complement of the four-knot The above construction of a fibration
takes advantage of the symmetries of the trefoil as a torus knot. It is not so easy to
convince oneself of the existence of a fibration of the complement of the figure-eight
knot k by geometric arguments. The following sequence of figures (5.5(a)–(g)) tries
to do it: (a) depicts a Seifert surface S spanning the four-knot in a tolerably symmetric
fashion. (b) shows S thickened up to a handlebody V of genus 2. The knot k is a curve
on its boundary. (c) presents V ′ = S3 − V . In order to find k on ∂V ′ express k on ∂V
by canonical generators α, β, γ, δ of π1(∂V ), k = βα−1γ−1δ−1αβ−1γ δ. Replace
every generator by its inverse to get k = β−1αγ δα−1βγ−1δ−1 on ∂V ′. The knot k

divides ∂V ′ into two surfaces S+ and S− of genus one, Figure (d). (e) just simplifies
(d); the knot is pushed on the outline of the figure as far as possible. By way of (f) we
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Figure 5.5

(a)
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(e) (f)
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S+

S+

ε
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finally reach (g), where the fibres of V ′ − k are Seifert surfaces parallel to S+ and S−.
The fibration extends to V − k by the definition of V .

The following proposition shows that the trefoil and the four-knot are not only the
two knots with the fewest crossings, but constitute a class that can be algebraically
characterized.

5.14 Proposition. The trefoil knot and the four-knot are the only fibred knots of genus
one.

At this stage we only prove a weaker result: A fibred knot of genus one has the
same complement as the trefoil or the four-knot.

Proof (see [Burde-Zieschang 1967]). Let C = S × I/h be the complement of a
knot k and assume that S is a torus with one boundary component. Then h induces
automorphisms h# : π1S → π1S and h∗ : H1(S) → H1(S) ∼= Z2. Let A denote the
2× 2-matrix corresponding to h∗ (after the choice of a basis).

detA = 1, (1)

since h preserves the orientation. The automorphism h# describes the effect of the
conjugation with a meridian of k and it follows that π1S becomes trivial by introducing
the relations h#(x) = x ∈ π1S. This implies:

det

(
A−

(
1 0

0 1

))
= ±1. (2)

From (1) and (2) it follows that

trace A ∈ {1, 3}. (3)

A matrix of trace +1 is conjugate in SL(2,Z) to

(
1 −1

1 0

)
or

(
1 1

−1 0

)
and a matrix

with trace 3 is conjugate to

(
0 −1

1 3

)
, [Zieschang 1981, 21.15]. Two automorphisms

of F2 which induce the same automorphism on Z⊕Z differ by an inner automorphism
([Nielsen 1918], [Lyndon-Schupp 1977, I.4.5]). The Baer Theorem now implies
that the gluing mappings are determined up to isotopy; hence, by Lemma 5.7, the
complement of the knot is determined up to homeomorphism by the matrix above.

The matrices

(
1 −1

1 0

)
and

(
1 1

−1 0

)
are obtained when the complements of the

trefoil knots are fibred, see 5.13. The matrix

(
0 −1

1 3

)
results in the case of the
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figure-eight knot as follows from the fact that in 3.8 the conjugation by s induces on
G′ the mapping x0 �→ x1, x1 �→ x1x

−1
0 x2

1 .
Thus we have proved that the complement of a fibred knot k of genus 1 is home-

omorphic to the complement of a trefoil knot or the figure-eight knot. Later we shall
show that k is indeed a trefoil knot (Theorem 6.1) or a four-knot (Theorem 15.8). 	


5.15. We conclude this section with an application of Proposition 5.11 and reprove
the fact (see 3.29 (b)) that the trefoil knot is not amphicheiral. This was first proved
by M. Dehn [1914].

s1

a

b

s2

s3

S

Figure 5.6

Figure 5.6 shows a trefoil bounding a Seifert surface S of genus one. The Wirtinger
presentation of the knot group G is

G = 〈 s1, s2, s3 | s3s1s−1
3 s−1

2 , s1s2s
−1
1 s−1

3 , s2s3s
−1
2 s−1

1 〉.
The curves a and b in Figure 5.6 are free generators of π1S = F2 = 〈 a, b 〉. They can
be expressed by the Wirtinger generators si (see 3.7):

a = s−1
1 s2, b = s−1

2 s3.

Using the relations we get (with t = s1):

t−1at = s−1
1 s−1

1 s2s1 = s−1
1 s2s

−1
3 s1 = s−1

1 s2s
−1
3 s2s

−1
2 s1 = ab−1a−1,

t−1bt = s−1
1 s−1

2 s3s1 = s−1
1 s−1

2 s2s3 = s−1
1 s2 · s−1

2 s3 = ab.
Let C = S × I/h be the complement of the trefoil. Relative to the basis {a, b} of
H2(S) = Z ⊗ Z the homomorphism h∗ : H1(S) → H1(S) is given by the matrix(

0 −1

1 1

)
. (See Corollary 5.4). If the trefoil were amphicheiral then by Proposi-

tion 5.11 there would be a unimodular matrix(
α β

γ δ

)
, 1 = αδ − βγ,
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such that (
α β

γ δ

)(
1 1

−1 0

)
=
(

0 −1

1 1

)(
α β

γ δ

)
(
α − β α

γ − δ γ

)
=
(
−γ −δ
α + γ β + δ

)
.

This means: δ = −α, γ = β − α. However, 1 = αδ − βγ = −α2 − β(β − α) =
−(α2 − αβ + β2) has no integral solution.

D History and Sources

The material of this chapter is for the larger part based on J. Stallings’ theorem on
fibring 3-manifold [Stallings 1962]. The fibred complementC = S×I/f of a “fibred
knot” was further investigated in [Neuwirth 1961′] and [Burde-Zieschang 1967]. In
the first paper the complement was shown to be determined by the peripheral system
of the knot group while in the second one C was characterized by properties of the
identifying surface map f .

Neuwirth’s result is a special case of the general theorems of Waldhausen [1968].
In this fundamental paper manifolds with a Stallings fibration play an important role.

E Exercises

E 5.1. Construct a fibration of a compact orientable 3-manifold M over S1 such that
π1M → π1S

1 is not surjective. Observe that the fibre is not connected in this case.

E 5.2. Find a 2 × 2-matrix A representing f∗ : H1(S) → H1(S) in the case of the
complement C = S × I/f of the four-knot. Show that A and A−1 are conjugate.

E 5.3. Compute the powers of the automorphism f# : π1S → π1S

f#(a) = t−1at = b−1

f#(b) = t−1at = ba
induced by the identifying map of the trefoil (see 5.15). Describe the manifolds
S × I/f i, i ∈ Z.

E 5.4. Show that the knot 52 can be spanned by a Seifert surface S of minimal genus
such that the knot complement C cut along S is a handlebody C∗. Apply the method
used in 5.13 to show that nevertheless 52 is not fibred!

E 5.5. Show that the knot 820 is fibred.



Chapter 6

A Characterization of Torus Knots

Torus knots have been repeatedly considered as examples in the preceding chapters. If
knots are placed on the boundaries of handlebodies as in Chapter 3, the least possible
genus of a handlebody carrying a knot defines a hierarchy for knots where the torus
knots form the simplest class excepting the trivial knot. Torus knots admit a simple
algebraic characterization; see Theorem 6.1.

A Results and Sources

6.1 Theorem (Burde–Zieschang). A non-trivial knot whose groupG has a non-trivial
centre is a torus knot.

The theorem was first proved in [Burde-Zieschang 1966], and had been proved for
alternating knots in [Murasugi 1961] and [Neuwirth 1961]. Since torus knots have
Property P (Chapter 15), Theorem 6.1 together with Theorem 3.29 shows: any knot
group with a non-trivial centre determines its complement, and the complement in
turn admits just one torus knot t(a, b) and its mirror image t(a,−b).

F. Waldhausen later proved a more general theorem which includes Theorem 6.1
by the way of Seifert’s theory of fibred 3-manifolds, see [Waldhausen 1967]:

6.2 Theorem (Waldhausen). LetM be an orientable compact irreducible 3-manifold.
If eitherH1(M) is infinite or π1M a non-trivial free product with amalgamation, and
if π1M has a non-trivial centre, thenM is homeomorphic to a Seifert fibred manifold
with orientable orbit-manifold (Zerlegungsfläche). 	


Because of Theorem 3.30, Theorem 6.2 obviously applies to knot complements
C = M . A closer inspection of the Seifert fibration ofC shows that it can be extended
to S3 in such a way that the knot becomes a normal fibre. Theorem 6.1 now follows
from a result of [Seifert 1933] which contains a complete description of all fibrations
of S3.

6.3 Theorem (Seifert). A fibre of a Seifert fibration of S3 is a torus knot or the trivial
knot. Exceptional fibres are always unknotted. 	


We propose to give now a proof of Theorem 6.1 which makes use of a theorem by
Nielsen [1942] on mappings of surfaces. (This theorem is also used in Waldhausen’s
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proof.) We do not presuppose Waldhausen’s theory or Seifert’s work on fibred mani-
folds, though Seifert’s ideas are applied to the special case in hand. The proof is also
different from that given in the original paper [Burde-Zieschang 1966].

Proof of Theorem 6.1. Let k be a non-trivial knot whose group G has a centre C = 1.
Then by 4.10(a) its commutator subgroup G′ is finitely generated, and hence by 5.1
the complement C is a fibre space over S1 with a Seifert surface S of minimal genus
g as a fibre. Thus C = S × I/h as defined in 5.2. Let t and r = ∂(S × 0) represent
a meridian and a longitude on ∂C, and choose their point of intersection P as base
point for π1(C) = G. The homeomorphism h : S → S induces the automorphism:

h# : G′ → G
′ = π1(S × 0), x �→ t−1xt,

since by 5.7 we may assume that h(P ) = P . Again by 4.10, C ∼= Z. In the following
we use the notation of Proposition 4.10.

6.4 Proposition. Let z = tnu, n > 1, be a generator of the centre C of G. Then u
is a power of the longitude r , u = r−m, m = 0, and hn# is the inner automorphism
hn#(x) = rmxr−m. The exponent n is the smallest one with this property. The powers
of r are the only fixed elements of hi#, i = 0.

Proof. By assumption t−nxtn = uxu−1 for all x ∈ G′. From h#(r) = t−1rt = r it
follows that u commutes with r . The longitude r is a product of commutators of free
generators of G′ ∼= F2g and it is easily verified that r is not a proper power of any
other element of G′; hence, u = r−m, m ∈ Z (see [ZVC 1980, E 1.5]). We shall see
gcd(n,m) = 1 in 6.8 (2). Fixed elements of hi#, i = 0, are also fixed elements of hin# ,
hence they commute with r and are therefore powers of r .

Now assume that t−kxtk = vxv−1 for all x ∈ G′ and some k = 0 and v ∈ G′.
Then tkv ∈ C, thus tkv = (tnu)l = tnlul . This proves that n is the smallest positive
exponent such that hn# is an inner automorphism of G′. 	


We now state without proof two theorems on periodic mappings of surfaces due
to [Nielsen 1942, 1937]. A proof of a generalization of the first one can be found
in [Zieschang 1981]; it is a deep result which requires a considerable amount of
technicalities in its proof. A different approach was used by [Fenchel 1948, 1950],
a combinatorial proof of his theorem was given by [Zimmermann 1977], for a more
general result see also [Kerckhoff 1980, 1983].

6.5 Theorem (Nielsen). Let S be a compact surface different from the sphere with
less than three boundary components. If h : S → S is a homeomorphism such that
hn is isotopic to the identity, then there is a periodic homeomorphism f of order n
isotopic to h. 	


We need another theorem which provides additional geometric information on
periodic surface mappings:
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6.6 Theorem (Nielsen). Let f : S → S be an orientation preserving periodic home-
omorphism of order n, f n = id, of a compact orientable surface S. Let q ∈ S be
some point with f k(q) = q for some k with 0 < k < n, and let k be minimal with this
property. Then there is a neighbourhood U(q) of q in S, homeomorphic to an open
2-cell, such that f l(U(q)) ∩ U(q) = ∅ for 0 < l < k. Furthermore f k|U(q) is a
topological rotation of order n

k
with fixed point q. 	


For a proof of Theorem 6.6 see [Nielsen 1937] or [Nielsen 1984]. Points q of S
for which such a k exists are called exceptional points.

6.7 Corollary (Nielsen). A periodic mapping f : S → S as in Theorem 6.6 has at
most finitely many exceptional points, none of them on r = ∂S. 	


At this point the reader may take the short cut via Seifert manifolds to Theorem 6.1:
By Lemma 5.7,

C = S × I/h ∼= S × I/f.
The trivial fibration of S × I with fibre I defines a Seifert fibration of C. Exceptional
points in S correspond to exceptional fibres by Theorem 6.6. Since a fibre on ∂C is not
isotopic to a meridian, the Seifert fibration of C extended to give a Seifert fibration of
S3, where k is a fibre, normal or exceptional. By Theorem 6.3 normal fibres of Seifert
fibrations of S3 are torus knots or trivial knots, while exceptional fibres are always
unknotted. So k has to be a normal fibre, i.e. a torus knot.

B Proof of the Main Theorem

We shall now give a proof of 6.1 by making use only of the theory of regular coverings.

6.8. The orbit of an exceptional point of S relative to the cyclic group Zn generated by
f consists of kj points, 1 � kj � n, kj |n. We denote exceptional points accordingly
by Qjν , 1 � j � s, 0 � ν � kj − 1, where Qj,ν+1 = f (Qjν), ν + 1 mod kj . By
deleting the neighbourhoods U(Qjv) of 6.6 we obtain S0 = S −⋃U(Qjv), which
is a compact surface of genus g with 1 +∑s

j=1 kj boundary components, on which
Zn = 〈 f 〉 operates freely. So there is a regular cyclic n-fold covering p0 : S0 → S∗0
with 〈 f 〉 as its group of covering transformations. We define a covering

p : C0 = S0 × I/f → S∗0 × I/id ∼= S∗0 × S1 = C∗0
by

p(u, v) = (p0(u), v), u ∈ S0, v ∈ I.
This covering is also cyclic of order n, and f × id generates its group of covering
transformations. Let rjν represent the boundary of U(Qjν) in π1(S0) in such a way
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that

∂S = r =
g∏
i=1

[ai, bi] ·
s∏

j=1

kj−1∏
ν=0

rjν .

The induced homomorphism p# : π1(C0)→ π1(C
∗
0 ) then gives

p#(r) = r∗n, p#(rjν) = (r∗j )mj , mjkj = n, (1)

where r∗ and r∗j represent the boundaries of S∗0 in π1(S
∗
0 ) such that

r∗ =
g∗∏
i=1

[a∗i , b∗i ] ·
s∏

j=1

r∗j .

Let z∗ be a simple closed curve on r∗×S1 representing a generator ofπ1(S
1), such that

p−1
# (z∗n) = (tnv, v) ∈ π1(S0). Then tnv is a simple closed curve on the torus r×I/f

and it is central in π1(C0), since z∗ is central in π1(C
∗
0 ). Therefore tnv is central in

π1(C) ∼= G, too; hence, p−1
# (z∗n) = z = tn · r−m, see 6.4. Since tnv = tnr−m

represents a simple closed curve on the torus r × I/f it follows that

gcd(m, n) = 1. (2)

Furthermore, z∗n = p#(z) = (p#(t))
n · r∗−mn. Putting p#(t) = t∗, we obtain

z∗ = t∗r∗−m. (3)

For α, β ∈ Z, satisfying

αm+ βn = 1, (4)

q = tαrβ and p#(q) = q∗ = t∗αr∗nβ (5)

are simple closed curves on ∂C and r∗ × S1, respectively. From these formulas we
derive:

t∗ = z∗nβ · q∗m, (6)

r∗ = z∗−α · q∗. (7)

Since f |r is a rotation of order n (see 6.6), the powers {r∗µ | 0 � µ � n − 1} are
coset representatives in π1(C

∗
0 ) mod p#π1(C0). From (3) it follows that {z∗µ} also

represent these cosets. By (7),

z∗αr∗ = q∗ ∈ p#π1(C0). (8)

We shall show that there are similar formulas for the boundaries r∗j .
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6.9 Lemma. There are αj ∈ Z, gcd(αj ,mj ) = 1 such that

z∗αj kj r∗j = q∗j ∈ p#π1(C0).

The αj are determined mod mj .

Proof. For some ν ∈ Z : z∗νr∗j ∈ p#π1(C0). Now q∗j = z∗νr∗j and z∗ generate

π1(r
∗
j × S1), qj = p−1

# (q∗j ) and z = p−1
# (z∗n) are generators of π1(p

−1(r∗j × S1)).
Hence,

rj0 = z−aj qβjj , gcd(αj , βj ) = 1

and
z∗−nαj (q∗j )βj = p#(rj0) = (r∗j )mj = z∗−νmj (q∗j )mj ,

thus
kjαj = ν, mj = βj .

(Remember that mjkj = n, see 6.8 (1).) 	


6.10. Now let Ĉ∗0 = Ŝ∗0 × Ŝ1 be a homeomorphic copy of C∗0 = S∗0 × S1 with ẑ∗
generating π1(Ŝ

1) and â∗i , b̂∗i , r̂∗, r̂∗j representing canonical generators of π1(Ŝ
∗
0 ), and

r̂∗ =∏g∗
i=1[â∗i , b̂∗i ] ·

∏s
j=1 r̂

∗
j . Define an isomorphism

κ∗# : π1(C
∗
0 )→ π1(Ĉ

∗
0 )

by

κ∗# (z∗) = ẑ∗, κ∗# (r∗j ) = ẑ∗−αj kj · r̂∗j ,
κ∗# (a∗i ) = ẑ∗−�i · â∗i , κ∗# (b∗i ) = ẑ∗−σi · b̂∗i ,

where �i, σi are chosen in such a way that z∗�i a∗i , z∗σi b∗i ∈ π1(S
∗
0 ). (The �i, σi will

play no role in the following.)

6.11 Lemma. κ∗#p#π1(C0) = π1(Ŝ
∗
0 )× 〈 z∗n 〉.

Proof. By construction we have κ∗−1
# (â∗i ) = z∗�i a∗i ∈ p#π1(C0), and likewise

κ∗−1
# (b∗i ), κ

∗−1
# (r̂∗j ) ∈ p#π1(C0). Since κ∗# is an isomorphism, κ∗#p#π1(C0) is a

normal subgroup of index n in π1(Ŝ
∗
0 ) × 〈 ẑ∗ 〉, which contains π1(Ŝ

∗
0 ), because it

contains its generators. This proves Lemma 6.11. 	


We shall now see that κ∗# can be realized by a homeomorphism κ∗ : S∗0 × S1 →
Ŝ∗0 × Ŝ1, and that there is a homeomorphism κ : C0 → Ĉ0 = Ŝ0 × ˆ̂S1 covering κ∗
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such that the following diagram is commutative

C0 = S0 × I/f κ ��

p

��

Ŝ0 × ˆ̂S1 = Ĉ0

p̂

��
S∗0 × S1 κ∗ �� Ŝ∗0 × Ŝ1.

(9)

Here p̂ is the n-fold cyclic covering defined by p̂(x, ζ ) = (x, ζ n), if the 1-spheres

Ŝ1, ˆ̂S1 are described by complex numbers ζ of absolute value one.

6.12 Lemma. There exists a homeomorphism κ∗ : S∗0 × S1 → Ŝ∗0 × Ŝ1 inducing the

isomorphim κ∗# : π1(S
∗
0 × S1)→ π1(Ŝ

∗
0 × Ŝ1), and a homeomorphism κ : C0 → Ĉ0

covering κ∗.

Proof. First observe that S∗0 is not a disk because in this case the Seifert surface S
would be a covering space of S∗0 and therefore a disk. The 2g∗+s simple closed curves
{a∗i , b∗i , r∗j | 1 ≤ i ≤ g∗, 1 ≤ j ≤ s} joined at the base point P ∗ = p(P ) represent a

deformation retract R∗ of S0 as well as the respective generators {â∗i , b̂∗i , r̂∗j } = R̂∗ in

Ŝ∗0 . It is now easy to see that there is a homeomorphism

κ∗| : R∗ × S1 → R̂∗ × Ŝ1

inducing κ∗# (Figure 6.1), because the homeomorphism obviously exists on each of

a∗
i

z∗
κ∗

â∗
i

ẑ∗

κ∗# (a∗i )

Figure 6.1

the tori a∗i × S1, b∗i × S1 and r∗j × S1. The extension of κ∗|R∗ to

κ∗ : S∗0 × S1 → Ŝ∗0 × Ŝ1

presents no difficulty. Lemma 6.11 ensures the existence of a covering homeomor-
phism κ . 	
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We obtain by κ# : π1(C0)→ π1(Ĉ0) a new presentation of π1(C0) ∼= π1(Ĉ0) =
〈 {r̂j , âi , b̂i | 1 ≤ i ≤ g∗, 1 ≤ j ≤ s} | 〉 × 〈 ẑ 〉 such that

p̂#(r̂j ) = r̂∗j , p̂#(âi) = â∗i , p̂#(b̂i) = b̂∗i , p̂#(ẑ) = ẑ∗n. (10)

From this presentation we can derive a presentation of G ∼= π1(C) by introducing the
defining relators κ#(rjν) = 1. It suffices to choose ν = 0 for all j = 1, . . . , s.

We get from 6.8 (1), 6.10, (9):

κ#(rj0) = p̂−1
# κ∗# (r

∗mj
j ) = ẑ−aj r̂mjj . (11)

Furthermore (see 6.8 (1), 6.10):

κ∗# (r∗) = ẑ∗−
∑s
j=1 kj αj · r̂∗.

(8) and 6.10 imply
κ∗# (r∗) = ẑ∗−ακ∗# (q∗).

By (5) and (9), κ∗# (q∗) ∈ p̂#π1(Ĉ0), and by (1) and (10), r̂∗ ∈ p̂#π1(Ĉ0). Now the
definition of p̂# (see (9)) yields

α ≡
s∑

j=1

kjαj mod n.

By 6.9 we may replace α1 by an element of the same coset mod m1, such that the
equation

α =
s∑

j=1

kjαj (12)

is satisfied. By (8), κ∗# (q∗) = r̂∗, and, since p#(t) = t∗, it follows from (6), (9) that

κ#(t) = ẑβ · r̂m. (13)

6.13 Lemma. S∗0 is a sphere with two boundary components: g∗ = 0, s = 2. More-
over m1 ·m1 = n, gcd(m1,m2) = 1. It is possible to choose m = 1, α = 1, β = 0.

There is a presentation

G = 〈 ẑ, r̂1, r̂2 | ẑ−α1 r̂
m1
1 , ẑ−α2 r̂

m2
2 , [ẑ, r̂1], [ẑ, r̂2] 〉

of the knot group G.

Proof. We have to introduce the relators ẑ−αj r̂mjj (see (11)) in

π1(Ĉ0) = 〈 {r̂j , âi , b̂i | 1 ≤ i ≤ g∗, 1 ≤ j ≤ s} | 〉 × 〈 ẑ 〉.



86 6 A Characterization of Torus Knots

The additional relator κ#(t) = ẑβ · r̂m = 1 must trivialize the group. This remains
true, if we put ẑ = 1.

Now g∗ = 0 follows. For s ≥ 3 the resulting groups〈 {r̂ , r̂j | 1 ≤ j ≤ s} | r̂−m, r̂mjj , r̂−1 ∏s
j=1 r̂j

〉
(14)

are known to be non-trivial [ZVC 1980, 4.16.4] since by definitionmj > 1. For s = 2
by the same argument (14) describes the trivial group only if m = ±1. The cases
s < 2 cannot occur as k was assumed to be non-trivial. By a suitable choice of the
orientation of r = ∂S we get m = 1. Thus by α = 1, β = 0 equation (4) is satisfied.
Now (12) takes the form

α1k1 + α2k2 = 1. (15)

It follows that

〈 ẑ, r̂1, r̂2 | ẑ−α1 r̂
m1
1 , ẑ−α2 r̂

m2
2 , r̂1r̂2, [ẑ, r̂1], [ẑ, r̂2] 〉 = 1

is a presentation of the trivialized knot group. By abelianizing this presentation yields

α1m2 + α2m1 = ±1. (16)

The equations (15) and (16) are proportional sincem2k2−m1k1 = n−n = 0, by (1).
As mj , kj > 0, they are indeed identical, m2 = k1,m1 = k2. 	


It is a consequence of Lemma 6.13 that C0 is obtained from a 3-sphere S3 by
removing three disjoint solid tori. Equation (13) together with m = 1, β = 0 shows
κ#(t) = r̂ . We use this equation to extend κ : C0 → Ĉ0 to a homeomorphism κ̂

defined on C0 ∪ V (k), obtained from C0 by regluing the tubular neighbourhood V (k)
of k. We get

κ̂ : C0 ∪ V (k)→ B × ˆ̂S1

where B is a ribbon with boundary ∂B = r̂1∪ r̂2. The fundamental group π1(B× ˆ̂S1)

is a free abelian group generated by ẑ and r̂1 = r̂−1
2 . Define q̂1 and q̂2 by

κ̂#(r10) = ẑ−α1 r̂
m1
1 = q̂−1

1 ,

κ̂#(r20) = ẑ−α2 r̂
m2
1 = q̂−1

2 , α1m2 + α2m1 = 1.
(17)

(For the notation compare 6.8.) Now we glue two solid tori to B × ˆ̂S1 such that their

meridians are identified with q̂1, q̂2, respectively, and obtain a closed manifold ˆ̂S3.

Thus κ̂ can be extended to a homeomorphism ˆ̂κ : S3 → ˆ̂S3. From (17) we see that q̂1

and q̂2 are a pair of generators of π1(r̂1 × ˆ̂S1). Therefore the torus r̂1 × ˆ̂S1 defines a

Heegaard-splitting of ˆ̂S3 which is the same as the standard Heegaard-splitting of genus
one of the 3-sphere. The knot k is isotopic (in S3) to z ⊂ ∂C0. Its image k̂ = κ̂(k) can

be represented by any curve (Q × ˆ̂S1) ⊂ Ŝ∗0 × ˆ̂S1, where Q is a point of Ŝ∗0 . Take

Q ∈ r̂1 then k̂ is represented by a simple closed curve on the unknotted torus r̂1 × ˆ̂S1

in ˆ̂S3. This finishes the proof of Theorem 6.1. 	
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C Remarks on the Proof

In Lemma 6.13 we have obtained a presentation of the group of the torus knot which
differs from the usual one (see Proposition 3.28). The following substitution connects
both presentations:

u = r̂m2
1 · ẑα2

v = r̂m1
2 · ẑα1 .

First observe that r̂1 and r̂2 generate G:

r̂n1 · r̂n2 = r̂m1k1
1 · r̂m2k2

2 = ẑα1k1+α2k2 = ẑ,
as follows from (16), the presentation before (16), and (15). It follows that u and v
are also generators:

uα1 = r̂α1m2
1 · ẑα1α2 = r̂1 · r̂−α2m1

1 · ẑα1α2 = r̂1,
and similarly, vα2 = r̂2. The relation um1 = vm2 is easily verified:

um1 = r̂m1m2
1 ẑα2m1 = ẑα1m2+α2m1 = ẑ = vm2 .

Starting with the presentation

G = 〈 u, v | ua = vb 〉, a = m1, b = m2,

one can re-obtain the presentation of 6.13 by introducing

ẑ = ua = vb and r̂1 = ua1 , r̂2 = va2 .

The argument also identifies the k of 6.1 as the torus knot k(m1,m2): for the definition
of m1,m2 see 6.8 (1).

6.14. The construction used in the proof gives some additional information. The
Hurwitz-formula [ZVC 1980, 4.14.23] of the covering p0 : S0 → S∗0 gives

2g +
s∑

j=1

kj = n(2g∗ + s − 1)+ 1.

Since g∗ = 0, s = 2, k1 = b, k2 = a, ab = n it follows that 2g + a + b = ab + 1,
hence

g = (a − 1)(b − 1)

2
and, by 4.6, this reproves the genus formula from 4.11.
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6.15 On cyclic coverings of torus knots. The q-fold cyclic coverings Cqa,b of the
complement Ca,b of the knot t(a, b) obviously have a period n = ab:

C
q
a,b
∼= Cq+kna,b .

This is a consequence of the realization of Ca,b ∼= S × I/f by a mapping f of period
n. The covering transformation of Cqa,b → Ca,b can be interpreted geometrically as

a shift along the fibre z = tab · r−1 � t(a, b) such that a move from one sheet of the
covering to the adjoining one shifts t(a, b) through 1

ab
of its “length”. There is an

(ab + 1)-fold cyclic covering of Ca,b onto itself:

Ca,b ∼= Cab+1
a,b → Ca,b.

All its covering transformations = id map t(a, b) onto itself but no point of t(a, b)

is left fixed. There is no extension of the covering transformation to the (ab + 1)-
fold cyclic covering p̄ : S3 → S3 branched along t(a, b), in accordance with Smith’s
Theorem [Smith 1934], see also Appendix B.8, [Zieschang 1981, 36.4]. The covering
transformations can indeed only by extended to a manifold Ĉa,b which results from
gluing to Ca,b a solid torus whose meridian is tr−1 instead of t . The manifold Ĉa,b is
always different from S3 as long as t(a, b) is a non-trivial torus knot. In fact, one can
easily compute

π1(Ĉa,b) = 〈 ẑ, r̂1, r̂2, r̂ | r̂ r̂1r̂2, r̂ab+1, r̂a1 , r̂
b
2 , [ẑ, r̂1], [ẑ, r̂2] 〉

by using again the generators r̂1, r̂2 and ẑ. The groupπ1(Ĉa,b) is infinite since |a| > 1,
|b| > 1, |ab + 1| > 6, see [ZVC 1980, 6.4.7].

In the case of the trefoil t(3,2) the curves, surfaces and mappings constructed in
the proof can be made visible with the help of Figure 5.3. The mapping f of order
6 = 3 · 2, a = m1 = 3, b = m2 = 2 is the one given by fϕ (at the end of Chapter 5)
for ϕ = π . Its exceptional points Q10,Q11 are the centres of the disks D1 and D2
(Figure 5.3 and 6.2) whileQ20,Q21,Q22 are the points in which the core of T1 meets
the Seifert surface S.

Figure 6.2 shows a fundamental domain of S relative to Z6 = 〈 f 〉. If its edges are
identified as indicated in Figure 6.2, one obtains as orbit manifold (Zerlegungsfläche)
a 2-sphere or a twice punctured 2-sphere S∗0 , if exceptional points are removed.

Figure 6.3 finally represents the ribbon B embedded in S3. One of its boundaries
is placed on ∂T1. The ribbon B represents the orbit manifold minus two disks. The
orbit manifold itself can, of course, not be embedded in S3, since there is no 2-sphere
in S3 which intersects a fibre z in just one point. The impossibility of such embeddings
is also evident because B is twisted by 2π .
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Q20

Q10

Figure 6.2

t(3, 2)

B

Figure 6.3

D History and Sources

Torus knots and their groups have been studied in [Dehn 1914] and [Schreier 1924].
The question of whether torus knots are determined by their groups was treated in
[Murasugi 1961] and [Neuwirth 1961], and answered in the affirmative for alternating
torus knots. This was proved in the general case in [Burde-Zieschang 1967], where
torus knots were shown to be the only knots the groups of which have a non-trivial
centre. A generalization of this theorem to 3-manifolds with non-trivial centre is due
to Waldhausen [1967], and, as an application of it, the case of link groups with a centre
= 1 was investigated in [Burde-Murasugi 1970].
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E Exercises

E 6.1. Let a lens space L(p, q) be given by a Heegaard splitting of genus one,
L(p, q) = V1 ∪ V2. Define a torus knot in L(p, q) by a simple closed curve on
∂V1 = ∂V2. Determine the links in the universal covering S3 of L(p, q) which cover
a torus knot in L(p, q). (Remark: The links that occur in this way classify the genus
one Heegaard-splittings of lens spaces.)

E 6.2. Show that the q-fold cyclic coveringCqa,b of a torus knot t(a, b) is a Seifertfibre

space, and that the fibration can be extended to the branched covering Cqa,b without

adding another exceptional fibre. Compute Seifert’s invariants of fibre spaces forCqa,b.
(Remark: The 3-fold cyclic branched covering of a trefoil is a Seifert fibre space with
three exceptional fibres of order two.)



Chapter 7

Factorization of Knots

In Chapter 2 we have defined a composition of knots. The main result of this chapter
states that each tame knot is composed of finitely many indecomposable (prime) knots
and that these factors are uniquely determined.

A Composition of Knots

In the following we often consider parts of knots, arcs, embedded in balls, and it is
convenient to have the concept of knotted arcs:

7.1 Definition. Let B ⊂ S3 be a closed ball carrying the orientation induced by the
standard orientation of S3. A simple path α : I → B with α(∂I) ⊂ ∂B and α(I̊ ) ⊂ B̊
is called a knotted arc. Two knotted arcs α ⊂ B1, β ⊂ B2 are called equivalent if there
exists an orientation preserving homeomorphism f : B1 → B2 such that β = f α. An
arc equivalent to a line segment is called trivial.

If α is a knotted arc in B and γ some simple curve on ∂B which connects the
endpoints of α then αγ – with the orientation induced by α – represents the knot
corresponding to α. This knot does not depend on the choice of γ and it follows
easily that equivalent knotted arcs correspond to equivalent knots.

By a slight alteration in the definition of the composition of knots we get the
following two alternative versions of its description. Figures 7.1 and 7.2 show that
the different definitions are equivalent.

Figure 7.1

7.2 (a) Figure 7.1 describes the composition k # l of the knots k and l by joining
representing arcs.

(b) Let V (k) be the tubular neighbourhood of the knot k, and B ⊂ V (k) some ball
such that κ ′ = k∩B is a trivial arc in B, κ = k− κ ′. If κ ′ is replaced by a knotted arc
λ defining the knot l, then κ ∪ λ represents the product k # l = κ ∪ λ.
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B
B

l

V (k)

λ

κ

Figure 7.2

The following lemma is a direct consequence of the construction in 7.2 and is
proved by Figures 7.3 and 7.4.

7.3 Lemma. (a) l # k = k # l.

(b) k1 # (k2 # k3) = (k1 # k2) # k3.

(c) If i denotes the trivial knot then k # i = k.

Proof. (a) Figure 7.3. (b) Figure 7.4. 	


. . .. . .

Figure 7.3

=

Figure 7.4

Associativity now permits us to define k1 # · · · # kn for an arbitrary n ∈ N without
using brackets.
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7.4 Proposition (Genus of knot compositions). Let k, l be knots and let g(x) denote
the genus of the knot x. Then

g(k # l) = g(k)+ g(l).

Proof. Let B ⊂ S3 be a (p.l.-)ball. Since any two (p.l.-)balls in S3 are ambient
isotopic, see [Moise 1977, Chap. 17], we can describe k # l in the following way. Let
Sk and Sl be Seifert surfaces of minimal genus of k resp. l such that Sk is contained in
some ballB ⊂ S3, and Sl in S3−B. Furthermore we assume Sk∩∂B = Sl∩∂B = α
to be a simple arc. (See Figure 7.5.) Obviously Sk ∪ Sl is a Seifert surface spanning
k # l, hence:

g(k # l) � g(k)+ g(l). (1)

l

α

B
k

Figure 7.5

Let S be a Seifert surface of minimal genus spanning k # l. The 2-sphere S2 = ∂B
is supposed to be in general position with respect to S. Since k # l meets ∂B in two
points, ∂B ∩ S consists of a simple arc α joining these points, and, possibly, a set of
pairwise disjoint simple closed curves. An ‘innermost’ curve σ on ∂B bounds a disk
δ ⊂ ∂B such that δ ∩ S = σ . Let us assume that σ does not bound a disk on S. In the
case where σ separates S replace the component not containing k # l by δ. If σ does
not separate S, cut S along σ , and attach two copies of δ along their boundaries to the
cuts. (See proof of Lemma 4.5.) In both cases we obtain a Seifert surface for k # l of
a genus smaller than that of S, contradicting the assumption of minimality.

Thus σ bounds a disk on S as well as on ∂B, and there is an isotopy of S which
removes σ . So we may assume S ∩ ∂B = α, which means

g(k)+ g(l) � g(k # l). 	


7.5 Corollary. (a) k # l = k implies that l is the trivial knot.

(b) If k # l is the trivial knot then k and l are trivial 	
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Corollary 7.5 motivates the following definition.

7.6 Definition (Prime knot). A knot k which is the composition of two non-trivial
knots is called composite; a non-trivial knot which is not composite is called a prime
knot.

7.7 Corollary. Genus 1 knots are prime. 	


7.8 Proposition. Every 2-bridge knot b is prime.

Proof. Let δ1 and δ2 be disks spanning the arcs of b in the upper half-space, and
suppose that the other two arcs λ′i , i ∈ {1, 2}, of b are contained in the boundary E of
the half-space. The four “endpoints” of E ∩ b are joined pairwise by the simple arcs
λ′i and λi = E∩ δi . We suppose the separating sphere S to be in general position with
respect to E and δi . The intersections of S with b may be pushed into two endpoints.
Simple closed curves of δi ∩S and those ofE∩S which do not separate endpoints can
be removed by an isotopy of S. The remaining curves in E ∩ S must now be parallel,
separating the arcs λ′1 and λ′2. If there are more than one of these curves, there is a pair
of neighbouring curves bounding annuli on E and S which together form a torus T .
The torus T intersects δi in simple closed curves, not null-homotopic on T , bounding
disks δ in δi with δ ∩ T = ∂δ. So T bounds a solid torus which does not intersect b.
There is an isotopy which removes the pair of neighbouring curves. We may therefore
assume that E ∩ S consists of one simple closed curve separating λ′1 and λ′2. The ball
B bounded by S in R3 now intersects b in, say, λ′1, and λ′1 is isotopic in E ∩ B to an
arc of S ∩ E. Hence this factor is trivial. 	


A stronger result was proved in [Schubert 1954, Satz 7]:

7.9 Theorem (Schubert). The minimal bridge number b(k) minus 1 is additive with
respect to the product of knots:

b(k1 # k2) = b(k1)+ b(k2)− 1. 	

7.10 Proposition (Group of composite knots). Let k = k1 # k2 and denote by G, G1,
G2 the corresponding knot groups. ThenG = G1 ∗Z G2, where Z is an infinite cyclic
group generated by a meridian of k, and G′ = G′1 ∗G′2. Here Gi und G′i are – in the
natural way – considered as subgroups of G = G1 ∗Z G2, i = 1, 2.

Proof. Let S be a 2-sphere that defines the product k = k1 # k2. Assume that there is
a regular neighbourhood V of k such that S ∩ V consists of two disks. Then S ∩ C is
an annulus. The complement C = S3 − V is divided by S ∩ C into C1 and C2 with
C = C1 ∪C2 and S ∩C = C1 ∩C2. Since π1(S ∩C) ∼= Z is generated by a meridian
it is embedded into π1(Ci) and the Seifert–van Kampen Theorem implies that

π1(C) = π1(C1) ∗π1(C1∩C2) π1(C2) = G1 ∗Z G2.
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Applying Schreier’s normal form hg′1g′2 . . . , h ∈ Z, g′1 ∈ G′1, g′2 = G′2, the
equation G′ = G′1 ∗ G′2 follows from the fact that both groups are characterized by
h = 1. 	


7.11 Corollary. Torus knots are prime.

Proof. For this fact we give a geometric and a short algebraic proof.

1. Geometric proof. Let the torus knot t(a, b) lie on an unknotted torus T ⊂ S3 and
let the 2-sphere S define a decomposition of t(a, b). (By definition, |a|, |b| ≥ 2.) We
assume that S and T are in general position, that is, S ∩ T consists of finitely many
disjoint simple closed curves. Such a curve either meets t(a, b), is parallel to it or it
bounds a disk D on T with D ∩ t(a, b) = ∅. Choose γ as an innermost curve of the
last kind, i.e., D ∩ S = ∂D = γ . Then γ divides S into two disks D′, D′′ such that
D ∪ D′ and D ∪ D′′ are spheres, (D ∪ D′) ∩ (D ∪ D′′) = D; hence, D′ or D′′ can
be deformed intoD by an isotopy of S3 which leaves t(a, b) fixed. By a further small
deformation we get rid of one intersection of S with T .

Consider the curves of T ∩ S which intersect t(a, b). There are one or two curves
of this kind since t(a, b) intersects S in two points only. If there is one curve it has
intersection numbers +1 and −1 with t(a, b) and this implies that it is either isotopic
to t(a, b) or nullhomotopic on T . In the first case t(a, b) would be the trivial knot.
In the second case it bounds a disk D0 on T and D0 ∩ t(a, b), plus an arc on S,
represents one of the factor knots of t(a, b); this factor would be trivial, contradicting
the hypothesis.

The case remains where S ∩ T consists of two simple closed curves intersecting
t(a, b) exactly once. These curves are parallel and bound disks in one of the solid tori
bounded by T . But this contradicts |a|, |b| ≥ 2.

2. Algebraic proof. Let the torus knot t(a, b) be the product of two knots. By 7.10,

G = 〈 u, v | uav−b 〉 = G1 ∗Z G2,

where Z is generated by a meridian t . The centre of the free product of groups with
amalgamated subgroup is the intersection of the centres of the factors, see [ZVC 1980,
2.3.9]; hence, it is generated by a power of t . Since ua is the generator of the center
of G it follows from 3.28 (b) that

ua = (ucvd)m where

∣∣∣∣∣a −b
c d

∣∣∣∣∣ = 1, m ∈ Z.

From the solution of the word problem it follows that this equation is impossible. 	


Now we formulate the main theorem of this chapter which was first proved in
[Schubert 1949].
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7.12 Theorem (Unique prime decomposition of knots). Each non-trivial knot k is a
finite product of prime knots and these factors are uniquely determined. More pre-
cisely:

(a) k = k1 # · · · # kn where each ki is a prime knot.

(b) If k = k1 # · · ·#kn = k′1 # · · ·#k′m are two decompositions into prime factors ki or

k′j , respectively, then n = m and k′i = kj (i) for some permutation

(
1 . . . n

j (1) . . . j (n)

)
.

Assertion (a) is a consequence of 7.4; part (b) will be proved in Section B. The
results can be summarized as follows:

7.13 Corollary (Semigroup of knots). The knots in S3 with the operation # form a
commutative semigroup with a unit element such that the law of unique prime decom-
position is valid. 	


B Uniqueness of the Decomposition into Prime Knots: Proof

We will first describe a general concept for the construction of prime decompositions
of a given knot k. Then we show that any two decompositions can be connected by a
chain of ‘elementary processes’.

7.14 Definition (Decomposing spheres). Let Sj , 1 � j � m, be a system of disjoint
2-spheres embedded in S3, bounding 2m balls Bi , 1 � i � 2m, in S3, and denote by
Bj , Bc(j) the two balls bounded by Sj . If Bi contains the s balls Bl(1), . . . , Bl(s) as
proper subsets, Ri = (Bi −⋃s

q=1 B̊l(q)) is called the domain Ri . The spheres Sj are

said to be decomposing with respect to a knot k ⊂ S3 if the following conditions are
fulfilled:

(1) Each sphere Sj meets k in two points.

(2) The arc κi = k ∩ Ri , oriented as k, and completed by simple arcs on the
boundary of Ri to represent a knot ki ⊂ Ri ⊂ Bi , is prime. ki is called the factor of k
determined by Bi . By S = {(Sj , k) | 1 � j � m} we denote a decomposing sphere
system with respect to k; if k itself is prime we put S = ∅.

It is immediately clear that ki does not depend on the choice of the arcs on ∂Ri .
The following lemma connects this definition with our definition of the composition
of a knot.

7.15 Lemma. If S = {(Sj , k) | 1 � j � m} is a decomposing system of spheres,
then there are m+ 1 balls Bi determining prime knots ki , 1 � i � m+ 1, such that

k = kj (1) # · · · # kj (m+1), i �→ j (i) a permutation.
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Proof by induction on m. For m = 0 the assertion is obviously true and for m = 1
Definition 7.14 reverts to the original definition of the product of knots. For m > 1
let Bl be a ball not containing any other ball Bi and determining the prime knot kl .
Replacing the knotted arc κl = Bl∩k in k by a simple arc on ∂Bl defines a (non-trivial)
knot k′ ⊂ S3. The induction hypothesis applied to {(Sj , k′) | 1 � j � m, j = l} gives
k′ = kj (1) # · · · # kj (m). Now k = k′ # kl = kj (1) # · · · # kj (m+1), j (m+ 1) = l. 	


Figure 7.6 illustrates Definition 7.14 and Lemma 7.15.

ki

ki

Bi

Bl

Figure 7.6

7.16 Definition. Two decomposing systems of spheres S = {Sj , k}, S′ = {S′j , k},
1 � j � m, are called equivalent if they define the same (unordered) (m+ 1) factor
knots kl(j).

The following lemma is the crucial tool used in the proof of the Uniqueness The-
orem. It describes a process by which one can pass over from a decomposing system
to an equivalent one.

7.17 Lemma. Let S = {(Sj , k) | 1 � j � m} be a decomposing system of spheres,
and let S′ be another 2-sphere embedded in S3, disjoint from {Sj | 1 � j � m},
bounding the balls B ′ and B ′′ in S3. If Bi , ∂Bi = Si , is a maximal ball contained in
B ′, that is Bi ⊂ B ′ but there is no Bj such that Bi ⊂ Bj ⊂ B ′ for any j = i, and if
B ′ determines the knot ki relative to the spheres {Sj | 1 � j � m, j = i} ∪ {S′}, then
these spheres define a decomposing system of spheres with respect to k equivalent to
S = {(Sj , k) | 1 � j � m}.

Proof. Denote by kj the knot determined byBj relative to S, and assumeBj ⊂ B ′. For
i = j , Bj determines the same knot kj relative to S′ since no inclusionBi ⊂ Bj ⊂ B ′,
i = j , exists. If there is a ball Bl , Bj ⊂ Bl ⊂ Bi , then Bc(j) determines kl relative
to S and S′. If there is no such Bl we have kc(i) = kc(j) (see Figure 7.7). Now Bc(j)
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S′

Bj

Bi

Figure 7.7

determines ki and B ′′ the knot kc(j). So instead of ki , kc(i), kj , kc(j) = kc(i) determined
by Bi, Bc(i), Bj , Bc(j) in S, we get ki , kc(j), kj , ki determined by B ′, B ′′, Bj , Bc(j) in
S′. The case Bj ⊂ B ′′ is dealt with in a similar way. 	


7.18. Proof of the Uniqueness Theorem 7.12 (b). The proof consists in verifying the
assertion that any two decomposing systems S = {(Sj , k) | 1 � j � m}, S′ =
{(S′j , k) | 1 � j � m′} with respect to the same knot k are equivalent. We prove this
by induction on m + m′. For m + m′ = 0 nothing has to be proved. The spheres Sj
and S′j can be assumed to be in general position relative to each other.

To begin with, suppose there is a ball Bi ∩ S′ = ∅ not containing any other Bj
or B ′j . Then by 7.17 some S′j can be replaced by Si and induction can be applied to
k ∩ Bc(i).

If there is no such Bi (or B ′i), choose an innermost curve λ′ of S′j ∩S bounding a
disk δ′ ⊂ S′j = ∂B ′j such that B ′j contains no other ball Bk or B ′l . The knot k meets δ′

in at most two points. The disk δ′ divides Bi into two balls B1
i and B2

i , and in the first
two cases of Figure 7.8 one of them determines a trivial knot or does not meet k at all,
and the other one determines the prime knot ki with respect to S, because otherwise
δ′ would effect a decomposition of ki .

If B1
i determines ki , replace Si by ∂B1

i or rather by a sphere S′ obtained from ∂B1
i

by a small isotopy such that λ′ disappears and general position is restored. The new
decomposing system is equivalent to the old one by 7.17. If k meets δ′ in two points –
the third case of Figure 7.8 – one may choose δ′′ = Sj −δ′ instead of δ′ if λ′ is the only
intersection curve on S′j . If not, there will be another innermost curve λ′′ = S′j ∩ Sk
on S′j bounding a disk δ′′ ⊂ S′j . In both events the knot k will not meet δ′′ and we
are back to case one of Figure 7.8. Thus we obtain finally an innermost ball without
intersections. This proves the theorem. 	
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δ′δ′δ′

BiBiBi

Figure 7.8

The theorem on the existence and uniqueness of decomposition carries over to the
case of links without major difficulties [Hashizume 1958].

C Fibred Knots and Decompositions

It is easily seen that the product of two fibred knots is also fibred. It is also true
that factor knots of a fibred knot are fibred. We present two proofs of this assertion,
an algebraic one which is quite short, and a more complicated geometric one which
affords a piece of additional insight.

7.19 Proposition (Decomposition of fibred knots). A composite knot k = k1 # k2 is a
fibred knot if and only if k1 and k2 are fibred knots.

Proof. Let G,G1,G2 etc. denote the groups of k, k1 and k2, respectively. By Propo-
sition 7.10, G′ = G′1 ∗ G′2. From the Grushko Theorem, see [ZVC 1980, 2.9.2], it
follows that G′ is finitely generated if and only if G′1 and G′2 are finitely generated.
Now the assertion 7.19 is a consequence of Theorem 5.1 	


7.20 Theorem (Decomposition of fibred knots). Let k be a fibred knot, V a regular
neighbourhood of k, C = S3 − V its complement, and p : C → S1 a fibration of C.
Let a 2-sphere S ⊂ S3 decompose k into two non-trivial factors. Then there is an
isotopy of S3 deforming S into a sphere S′ with the property that S′ ∩ V consists of
two disks and S′ ∩ C intersects each fibre p−1(t), t ∈ S1, in a simple arc. Moreover,
the isotopy leaves the points of k fixed.

Proof. It follows by standard arguments that there is an isotopy of S3 that leaves the
knot pointwise fixed and maps S into a sphere that intersectsV in two disks. Moreover,
we may assume that p maps the boundary of each of these disks bijectively onto S1.
Suppose that S already has these properties. Consider the annulusA = C ∩ S and the
fibre F = p−1(∗)where ∗ ∈ S1. We may assume that S and F are in general position
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and that A ∩ ∂F consists of two points; otherwise S can be deformed by an ambient
isotopy to fulfil these conditions.

Now A ∩ F is composed of an arc joining the points of A ∩ ∂F (which are on
different components of ∂A) and, perhaps, further simple closed curves. Each of
them bounds a disk on A, hence also a disk on F , since π1(F )→ π1(C) is injective.
Starting with an innermost disk δ on F we find a 2-sphere δ ∪ δ′ consisting of disks
δ ⊂ F and δ′ ⊂ A such that δ ∩ δ′ is the curve ∂δ = ∂δ′ and δ ∩ A = ∂δ. Now δ′
can be deformed to a disk not intersecting A and the number of components of A∩F
becomes smaller. Thus we may assume that A ∩ F consists of an arc α joining the
boundary components of A, see Figure 7.9.

C

γ0

α

γ1

A ⊂ S

F

V

k

Figure 7.9

We cutC along F and obtain a space homeomorphic to F × I . The cut transforms
the annulus A into a disk D, ∂D = α0γ0α

−1
1 γ−1

1 , where the αi ⊂ F × {i}, i = 0, 1,
are obtained from α and the γi from the meridians ∂V ∩ S.

Let q : F × I → F be the projection. The restriction q|D defines a homotopy
q � α0 � q � α1. Since q � α0 and q � α1 are simple arcs with endpoints on ∂F it
follows that these arcs are ambient isotopic and the isotopy leaves the endpoints fixed.
(This can be proved in the same way as the refined Baer Theorem (see [ZVC 1980,
5.12.1]) which respects the basepoint; it can, in fact, be derived from that theorem
by considering ∂F as the boundary of a ‘small’ disk around the basepoint of a closed
surface F ′ containing F .) Thus there is a homeomorphism

H : (I × I, (∂I )× I )→ (F × I, (∂F )× I )

with

H(t, 0) = α0(t), H(t, 1) = α1(t)

which is level preserving:

H(x, t) = (q(H(x, t)), t) for (x, t) ∈ I × I.
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Therefore D′ = H(I × I ) is a disk and intersects each fibre F × {t} in a simple arc.
It is transformed by re-identifying F × {0} and F × {1} into an annulus A′ which
intersects each fiber p−1(t), t ∈ S1, in a simple closed curve. In addition ∂A′ = ∂A.

It remains to prove that A′ is ambient isotopic to A. An ambient isotopy takes D
into general position with respect to D′ while leaving its boundary ∂D fixed. Then
D̊ ∩ D̊′ consists of simple closed curves. Take an innermost (relative to D′) curve β.
It bounds disks δ ⊂ D and δ′ ⊂ D′. The sphere δ ∪ δ′ ⊂ F × I ⊂ S3 bounds a 3-ball
by the Theorem of Alexander. Thus there is an ambient isotopy of F × I which moves
δ to δ′ and a bit further to diminish the number of components in D ∩ D′; during
the deformation the boundary ∂(F × I ) remains fixed. After a finite number of such
deformations we may assume that D ∩D′ = ∂D = ∂D′. Now D ∪D′ bounds a ball
in F × I andD can be moved intoD′ by an isotopy which is the identity on ∂(F × I ).
Therefore the isotopy induces an isotopy of C that moves A to A′. (See Figure 7.10.)

	


I

F × {1}
γ0

F × {0}

D′

α0

α1

Dγ1

Figure 7.10

D History and Sources

The concept and the main theorem concerning products of knots are due to H. Schubert,
and they are contained in his thesis [Schubert 1949]. His theorem was shown to be
valid for links in [Hashizume 1958] where a new proof was given which in some parts
simplified the original one. A further simplification can be derived from Milnor’s
uniqueness theorem for the factorization of 3-manifolds [Milnor 1962]. The proof
given in this chapter takes advantage of it.

Compositions of knots of a more complicated nature have been investigated in
[Kinoshita-Terasaka 1957] and [Hashizume-Hosokawa 1958], see E 14.3 (b).

Schubert used Haken’s theory of incompressible surfaces to give an algorithm
which effects the decomposition into prime factors for a given link [Schubert 1961].
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In the case of a fibred knot primeness can be characterized algebraically: The sub-
group of fixed elements under the automorphism α(t) : G′ → G′, α(x) = t−1xt, x ∈
G′, t a meridian, consists of an infinite cyclic group generated by a longitude if and
only if the knot is prime [Whitten 1972′′′].

For higher dimensional knots the factorization is not unique: [Kearton 1979′],
[Bayer 1980′], see also [Bayer-Hillman-Kearton 1981].

E Exercises

E 7.1. Show that in general the product of two links l1#l2 (use an analogous definition)
will depend on the choice of the components which are joined.

E 7.2. Anm-tangle tm consists ofm disjoint simple arcs αi , 1 � i � m, in a (closed)
3-ball B, ∂B ∩⋃m

i=1 αi =
⋃m
i=1 ∂αi . Anm-tangle tm is calledm-rational, if there are

disjoint disks δi ⊂ B, αi = B̊ ∩ ∂δi . Show that tm ism-rational if and only if there is
an m-tangle tCm in the complement C = S3 − B such that tm ∪ tcm is the trivial knot.
(Observe that the complementary tangle tCm is rational.) 2-rational tangles are called
just rational.

E 7.3. Let S3 be composed of two balls B1, B2, S3 = B1 ∪ B2, B1 ∩ B2 = S2 ⊂ S3.
If a knot (or link) k intersects the Bi inm-rational tangles ti = k∩Bi , i = 1, 2, then k

has a bridge number � m.

E 7.4. Prove 7.5 (b) using 7.10 and 3.17.

E 7.5. Show that the groups of the product knots k1 # k2 and k1 # k∗2 are isomor-
phic, where k∗2 is the mirror image of k2. The knots are non-equivalent if k2 is not
amphicheiral.



Chapter 8

Cyclic Coverings and Alexander Invariants

One of the most important invariants of a knot (or link) is known as the Alexander
polynomial. Sections A and B introduce the Alexander module, which is closely
related to the homomorphic image G/G′′ of the knot group modulo its second com-
mutator subgroup G′′. The geometric background is the infinite cyclic covering C∞
of the knot complement and its homology (Section C). Section D is devoted to the
Alexander polynomials themselves. Finite cyclic coverings are investigated in 8 E –
they provide further invariants of knots.

Let k be a knot, U a regular neighbourhood of k, C = S3 − U the complement of
the knot.

A The Alexander Module

We saw in Chapter 3 that the knot group G is a powerful invariant of the knot, and
the peripheral group system was even shown (compare 3.15) to characterize a knot.
Torus knots could be classified by their groups (see 3.28). In general, however, knot
groups are difficult to treat algebraically, and one tries to simplify matters by looking
at homomorphic images of knot groups.

The knot group G is a semidirect product G = Z � G′, where Z ∼= G/G′ is
a free cyclic group, and we may choose t ∈ G (representing a meridian of k) as a
representative of a generating coset of Z. The knot group G can be described by
G′ and the operation of Z on G′ : a �→ at = t−1at , a ∈ G′. In Chapter 4 we
studied the group G′; it is a free group, if finitely generated, but if not, its structure is
rather complicated. We propose to study in this chapter the abelianized commutator
subgroup G′/G′′ together with the operation of Z on it. We write G′/G′′ additively
and the induced operation as a multiplication:

a �→ ta, a ∈ G
′/G′′.

(Note that the induced operation does not depend on the choice of the representative
t in the coset tG′.) The operation a �→ ta turns G′/G′′ into a module over the group
ring ZZ = Z(t) of Z ∼= 〈 t 〉 by

( +∞∑
i=−∞

nit
i
)
a =

+∞∑
i=−∞

ni(t
ia), a ∈ G

′/G′′, ni ∈ Z.
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8.1 Definition (Alexander module). The Z-module G′/G′′ is called the Alexander
module M(t) of the knot group where t denotes either a generator of Z = G/G′
or a representative of its coset in G.

M(t) is uniquely determined by G except for the change from t to t−1. We shall
see, however, that the operations t and t−1 are related by a duality in M(t), and that
the invariants of M(t) (see Appendix A.6) prove to be symmetric with respect to the
substitution t �→ t−1.

B Infinite Cyclic Coverings and Alexander Modules

The commutator subgroup G′ !G defines an infinite cyclic covering p∞ : C∞ → C

of the knot complement, G′ ∼= π1C∞. The Alexander module M(t) is the first
homology groupH1(C∞) ∼= G′/G′′, and the group of covering transformations which
is isomorphic to Z = G/G′ induces on H1(C∞) the module operation. Following
[Seifert 1934] we investigate M(t) ∼= H1(C∞) in a similar way as we did in the case
of the fundamental group π1C∞ ∼= G′, see 4.4.

Choose a Seifert surface S ⊂ S3, ∂S = k of genus h (not necessarily minimal),
and cut C along S to obtain a bounded manifold C∗. Let {ai | 1 � i � 2h} be a
canonical system of curves on S which intersect in a basepoint P . We may assume
that ai ∩ k = ∅, and that

∏h
i=1[a2i−1, a2i] � k on S, see 3.12. Retract S onto a regular

neighbourhood B of {ai | 1 � i � 2h} consisting of 2h bands that start and end in a
neighbourhood of P . Figure 8.1 shows two examples.

Choosing a suitable orientation we obtain ∂B � ∏h
i=1[a2i−1, a2i] in B, and ∂B

represents k in S3. The second assertion is proved as follows: by cutting S along
a1, . . . , a2h we obtain an annulus with boundaries k and

∏h
i=1[a2i−1, a2i]. This proves

the first two parts of the following proposition:

8.2 Proposition (Band projection of a knot). Every knot can be represented as the
boundary of an orientable surface S embedded in 3-space with the following proper-
ties:

(a) S = D2 ∪ B1 ∪ · · · ∪ B2h where D2 and each Bj is a disk.

(b) Bi ∩ Bj = ∅ for i = j , ∂Bi = αiγiβiγ
′−1
i , D2 ∩ Bi = αi ∪ βi , ∂D2 =

α1δ1β
−1
2 δ2β

−1
1 δ3α2δ4 . . . α2h−1δ4h−3β

−1
2h δ4h−2β

−1
2h−1δ4h−1α2hδ4h.

(c) There is a projection which is locally homeomorphic on S (there are no twists
in the bands Bi.)

A projection of this kind is called band projection of S or of k (see Figure 8.1 (b)).
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s1 s2

a2

a2 a1

a1 P

(a)

B

(b)

Figure 8.1

Proof. It remains to verify assertion (c). Since S is orientable every band is twisted
through multiples of 2π (full twists). A full twist can be changed into a loop of the
band (see Figure 8.2). 	


==

Figure 8.2

8.3 There is, obviously, a handlebody W of genus 2h contained in a regular neigh-
bourhood of S with the following properties:

(a) S ⊂ W ,
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(b) ∂W = S+ ∪ S−, S+ ∩ S− = ∂S+ = ∂S− = S ∩ ∂W = k, S+ ∼= S− ∼= S,

(c) S is a deformation retract of W .

We call S+ the upside and S− the downside ofW . The curves a1, . . . , a2h of S are
projected onto curves a+1 , . . . , a

+
2h on S+, and a−1 , . . . , a

−
2h on S−, respectively. After

connecting the basepoints of S+ and S− with an arc, they define together a canonical
system of curves on the closed orientable surface ∂W of genus 2h; in particular, they
define a basis of H1(∂W) ∼= Z4h. Clearly

a+i ∼ a−i in W.

Choose a curve si on the boundary of the neighbourhood of the band Bi such that si
bounds a disk in W . The orientations of the disk and of si are chosen such that the
intersection number is +1, int(ai, si) = 1 (right-hand-rule), see Figure 8.3.

ai

si

Figure 8.3

8.4 Lemma. (a) The sets {a+1 , . . . , a+2h, a−1 , . . . , a−2h} and {s1, . . . , s2h, aε1, . . . , aε2h}
with ε = + or ε = − are bases of H1(∂W) ∼= Z4h.

(b) {aε1, . . . , aε2h} (ε ∈ {+,−}) is a basis of H1(W), and {s1, . . . , s2h} is a basis
of H1(S3 −W) = Z2h.

Proof. The first statements in (a) and (b) follow immediately from the definition of
W . The second one of (a) is a consequence of the fact that either system of curves
{s1, . . . , s2h, aε1, . . . , aε2h}, ε = + or−, is canonical on ∂W , that is, cutting ∂W along

these curves transforms ∂W into a disk. Finally {s1, . . . , s2h} is a basis ofH1(S3 −W),
since W can be retracted to a 2h-bouquet in S3. The fundamental group and, hence,
the first homology group of its complement can be computed in the same way as for
the complement of a knot, see Appendix B.3. One may also apply the Mayer–Vietoris
sequence:

0 = H2(S
3)→ H1(∂W)

ϕ→ H1(W)⊕H1(S3 −W)→ H1(S
3) = 0.

Hereϕ(si) = (0, si). FromH1(∂W) ∼= Z4h andH1(W) ∼= Z2h we getH1(S3 −W) =
Z2h. Now it follows from (a) that {s1, . . . , s2h} is a basis of H1(S3 −W). 	
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8.5 Definition (Seifert matrix). (a) Let vjk = lk(a−j , ak) be the linking number of a−j
and ak . The (2h× 2h)-matrix V = (vjk) is called a Seifert matrix of k.

(b) Define fjk = lk(a−j − a+j , ak) and F = (fjk).
A Seifert matrix (vjk) can be read off a band projection in the following way:

Consider the j -th band Bj endowed with the direction of its core aj . Denote by ljk
(resp. rjk) the number of times when Bj overcrosses Bk from left to right (resp. from
right to left), then put vjk = ljk − rjk .

8.6 Lemma. (a) Let iε : Sε → S3 −W denote the inclusion. Then

i+∗ (a+j ) =
2h∑
k=1

vkj sk and i−∗ (a−j ) =
2h∑
k=1

vjk sk.

(b) F =



0 1

−1 0

0 1

−1 0
. . .

0 1

−1 0


.

Proof. (a) Let Z−j be a projecting cylinder of the curve a−j , and close Z−j by a point at

infinity. Z−j ∩ (S3−W) represents a 2-chain realizing a−j ∼
∑2h
k=1 vjksk , Figure 8.4.

The same construction applied to a+j , using a projecting cylinderZ+k directed upward,

si

a+
k

a−
k

sk

Z−
j

a+
j

a−
j

Figure 8.4
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yields

a+j ∼
∑
k

vkj sk.

(b) There is an annulus bounded by a−i − a+i . It follows from the definition of the
canonical system {aj } that

f2n−1,2n = lk(a−2n−1 − a+2n−1, a2n) = int(a2n−1, a2n) = +1,

f2n,2n−1 = lk(a−2n − a+2n, a2n−1) = int(a2n, a2n−1) = −1,

fik = 0 otherwise (Figure 8.5). (A compatible convention concerning the sign of the
intersection number is supposed to have been agreed on.) The matrix F = (fjk) is
the intersection matrix of the canonical curves {aj } (Figure 8.5). 	


a1

a1

a2a2 a3
a3

a4

a4

Figure 8.5

We write these equations frequently in matrix form, a− = V s, a+ = V T s, where
a+, a−, s denote the 2h-columns of the elements a+j , a−j , sj .

8.5 and 8.6 imply that Seifert matrices have certain properties. The following
proposition uses these properties to characterize Seifert matrices:

8.7 Proposition (Characterization of Seifert matrices). A Seifert matrix V of a knot k
satisfies the equation V − V T = F . (V T is the transposed matrix of V and F is the
intersection matrix defined in 8.6 (b)).

Every square matrix V of even order satisfying V − V T = F is a Seifert matrix
of a knot.
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Proof. Figure 8.5 shows a realization of the matrix

V0 =



0 1

0 0

0 1

0 0
. . .

0 1

0 0


.

Any 2h× 2hmatrix V satisfying V −V T = F is of the form V = V0+Q,Q = QT .
A realization of V is easily obtained by an inductive argument on h as shown in
Figure 8.6. (Here a (2h− 2)× (2h− 2)matrix V1 and a 2× 2 matrix V2 are assumed
to be already realized; the bands are represented just by lines.) The last two bands can
be given arbitrary linking numbers with the first 2h− 2 bands. 	


. . .

. . .

V1 V2

Figure 8.6

C Homological Properties of C∞

Let S be a Seifert surface, W its closed regular neighbourhood, C∗ = S3 −W , and
let C∗i (i ∈ Z) be copies of C∗. For the expressions a+, a−, s see 8.3.
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8.8 Theorem. Let V be a Seifert matrix of a knot. ThenA(t) = V T − tV is a presen-
tation matrix of the Alexander module H1(C∞) = M(t). More explicitly: H1(C∞) is
generated by the elements

t isj , i ∈ Z, 1 ≤ j ≤ 2h, and t ia+j =
2h∑
k=1

t ivkj sk =
2h∑
k=1

t i+1vjksk = t i+1a−j

are defining relations.

Proof. We use the notation of 4.4. By 8.4 (b) the elements {t isj | 1 � j � 2h}
represent a basis ofH1(C

∗
i ). The defining relations t ia+j = t i+1a−j are obtained from

the identification S+i = S−i+1 by abelianizing the Seifert–van Kampen theorem. 	


We call a presentation matrix of the Alexander module an Alexander matrix.

For further use we are interested in the other homology groups of C∞. (This
paragraph may be skipped at first reading.)

8.9 Proposition.
Hm(C∞) = 0 for m > 1,

H1(C∞, ∂C∞) ∼= H1(C∞),

H2(C∞, ∂C∞) ∼= Z,

Hm(C∞, ∂C∞) = 0 for m > 2.

Proof. C∞ is a 3-dimensional non-compact manifold, and ∂C∞ is an open 2-manifold.
Thus: Hm(C∞) = Hm(C∞, ∂C∞) = 0 for m � 3, and H2(∂C∞) = 0. In 3.1 (a) we
showed Hi(C) = 0 for i � 2. The exact homology sequence of the pair (C,C∗), for
C∗ see 4.4, then gives

0 = H3(C)→ H3(C,C
∗)→ H2(C

∗)→ H2(C) = 0,

or,H3(C,C
∗) ∼= H2(C

∗). Now (C,C∗)→ (W, ∂W) is an excision, and (W, ∂W)→
(S, ∂S) a homotopy equivalence. It follows that

0 = H3(S, ∂S) ∼= H2(C
∗).

We apply the Mayer–Vietoris sequence to the decomposition

E0 ∪ E1 = C∞, E0 =
⋃
i∈Z

C∗2i , E1 =
⋃
i∈Z

C∗2i+1 :

0 = H2(E0)⊕H2(E1)→ H2(C∞)→ H1(E0 ∩ E1)

j∗→ H1(E0)⊕H1(E1)→ H1(C∞)→ H0(E0 ∩ E1).
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(Observe that E0 ∩ E1 =⋃
i∈Z

Si .)
SinceE0 andE1 consist of disjoint copies ofC∗, we haveH2(E0) = H2(E1) = 0.

The homomorphismH0(
⋃
i Si)→ H0(E0)⊕H0(E1) is injective, since for i = j the

surfaces Si and Sj belong to different components of E0 or E1. This implies that

0 −→ H2(C∞) −→ H1(
⋃
i Si)

j∗−→ H1(E0)⊕H1(E1) −→ H1(C∞) −→ 0

‖ ‖⊕
i∈Z

H1(Si)
⊕

i∈Z
H1(Ci)

is exact. We prove that j∗ is an isomorphism. The inclusion i : S+ ∪ S− → C∗
induces a homomorphism i∗ : H1(S

+ ∪ S−) → H1(C
∗) which can be computed by

the equations
i+∗ (a+) = V T s, i−∗ (a−) = V s

of 8.6:
i∗(a−, a+) = i−∗ (a−)− i+∗ (a+) = (V − V T )s = Fs.

It follows that i∗, and hence, j∗ is an isomorphism, since det F = 1. (The sign in
−i+∗ (a+) is due to the convention that the orientation induced by the orientation of
C∗ on S− resp. S+ coincides with that of S− but is opposite to that of S+.)

We conclude: H2(C∞) = 0. The homology sequence then yields

0=H2(C∞)→ H2(C∞, ∂C∞)→ H1(∂C∞)→
e∗
H1(C∞)→ H1(C∞, ∂C∞)→0.

∂C∞ is an annulus: ∂S1 × R; this implies that e∗ is the null-homomorphism, thus

H2(C∞, ∂C∞) ∼= H1(∂C∞) ∼= Z,

H1(C∞, ∂C∞) ∼= H1(C∞). 	


D Alexander Polynomials

The Alexander moduleM(t) of a knot is a finitely presented Z-module. In the preced-
ing section we have described a method of obtaining a presentation matrix A(t) (an
Alexander matrix) of M(t). An algebraic classification of Alexander modules is not
known, since the group ring Z(t) is not a principal ideal domain. But the theory of
finitely generated modules over principal ideal domains can nevertheless be applied
to obtain algebraic invariants of M(t).

We call two Alexander matrices A(t), A′(t) equivalent, A(t) ∼ A′(t), if they
present isomorphic modules.
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Let R be a commutative ring with a unity element 1, and A an m× n-matrix over
R. We define elementary ideals Ek(A) ⊂ R for k ∈ Z by

Ek(A) =


0, if n− k > m or k < 0,

R, if n− k � 0,

ideal, generated by the (n− k)× (n− k) minors of A if 0 < n− k � m.

It follows from the Laplace expansion theorem that the elementary ideals form an
ascending chain

0 = E−1(A) ⊂ E0(A) ⊂ E1(A) ⊂ · · · ⊂ En(A) = En+1(A) = · · · = R.
Given a knot k, its Alexander module M(t) and an Alexander matrix A(t) we call
Ek(t) = Ek−1(A(t)) the k-th elementary ideal of k. The proper ideals Ek(t) are
invariants of M(t), and hence, of k. Compare Appendix A.6, [Crowell-Fox 1963,
Chapter VII].

8.10 Definition (Alexander polynomials). The greatest common divisor�k(t) of the
elements of Ek(t) is called the k-th Alexander polynomial ofM(t), resp. of the knot.
Usually the first Alexander polynomial �1(t) is simply called the Alexander polyno-
mial and is denoted by �(t) (without an index). If there are no proper elementary
ideals, we say that the Alexander polynomials are trivial, �k(t) = 1.

Remark. Z(t) is a unique factorization ring. So �k(t) exists, and it is determined
up to a factor ±tν , a unit of Z(t). It will be convenient to introduce the following
notation:

f (t)
.= g(t) for f (t), g(t) ∈ Z(t), f (t) = ±tνg(t), ν ∈ Z.

8.11 Proposition. The (first) Alexander polynomial�(t) is obtained from the Seifert
matrix V of a knot by

|V T − tV | = det(V T − tV ) = �(t).
The first elementary ideal E1(t) is a principal ideal.

Proof. V T − tV = A(t) is a 2h × 2h-matrix. |A(t)| generates the elementary ideal
E0(A(t)) = E1(t). Since det(A(1)) = 1, the ideal does not vanish, E1(t) = 0. 	


8.12 Proposition. The Alexander matrix A(t) of a knot k satisfies
(a) A(t) ∼ AT (t−1) (Duality).
The Alexander polynomials �k(t) are polynomials of even degree with integral

coefficients subject to the following conditions:

(b) �k(t)|�k−1(t),

(c) �k(t)
.=�k(t−1) (Symmetry),

(d) �k(1) = ±1.
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Remark. The symmetry (c) implies, together with deg�k(t) ≡ 0 mod 2, that�k(t)
is a symmetric polynomial:

�k(t) =
2r∑
i=0

ait
i , a2r−i = ai, a0 = a2r = 0

Proof. Duality follows from the fact that A(t) = V T − tV is an Alexander matrix
by 8.8, (V T − t−1V )T = −t−1(V T − tV ). This implies Ek(t) = Ek(t

−1) and (c).
For t = 1 we get: A(1) = FT , and since det F = 1, we have Ek(1) = Z(1) = Z,
which proves (d). The fact that �k(t) is of even degree is a consequence of (c) and
(d). Property (b) follows from the definition. 	


The symmetry of �(t) suggests a transformation of variables in order to describe
the function�(t) by an arbitrary polynomial in Z(t) of half the degree of�(t). Write

�(t)
.= ar + ar+1(t + t−1)+ · · · + a2r (t

r + t−r ),
and note that tk+t−k is a polynomial in (t+t−1)with coefficients in Z. The proof is by
induction on k, using the Bernoulli formula. For the sake of normalizing we introduce
u = t + t−1 − 2 as a new variable, and obtain �(t)

.= ∑r
i=0 ciu

i , c0 = 1, ci ∈ Z.
Starting from �(t) = |V T − tV | we may express the Alexander polynomial as a
characteristic polynomial: ByV T = V −F , we get�(t)

.= |FT V −λE|, λ−1 = 1−t .
Now (λ(λ− 1))−1 = u, hence,

|FT V − λE| .=
r∑
i=0

cr−i (λ(λ− 1))i .

Clearly, every polynomial
∑r
i=0 ciu

i yields a “symmetric polynomial” putting u =
t + t−1 − 2.

8.13 Theorem. The Alexander polynomial �(t) = ∑2r
i=0 ait

i , a2r−i = ai of a knot
can be written in the form

�(t)
.=

r∑
i=0

ciu
i = u2r

r∑
i=0

cr−i (λ(λ− 1))i = ±|FT V − λE| = χ(λ),

with u = t + t−2 − 2, λ−1 = 1 − t , c0 = 1 and ci ∈ Z. Given arbitrary integers
ci ∈ Z, 1 � i � r , there is a knot k with Alexander polynomial

�(t)
.=

r∑
i=0

ciu
i, c0 = 1.

Consequently, every symmetric polynomial�(t) =∑2r
i=0 ait

i with�(1) = ±1 is the
Alexander polynomial of some knot k ⊂ S3.
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Proof. The following (2r × 2r)-matrix

V =



c1 c1 0 1

c1 − 1 c1 0 1

0 0 c2 c2 0 1

1 1 c2 − 1 c2 − 1 0 1

0 0

1 1
. . .

0 1
. . . 0 1

0 0 cr cr

1 1 cr − 1 cr − 1


is a Seifert matrix (compare Theorem 8.7). We propose to show:

χ(λ) = |FT V − λE| =
r−1∑
i=0

cr−i (−1)r−i−1 · (λ(λ− 1))i + (λ(λ− 1))r

by induction on r .
Denote the determinant consisting of the first 2i rows and columns of (F T V −λE)

byD2i , and byD′2i resp.D′′2i the determinants that result fromD2i when the last column
– resp. the last but one – of D2i is replaced by (0, . . . ,−1, 1)T . Then, by expanding
D2r by the 2× 2-minors of the last two rows, we obtain:

D2r = D2(r−1) · λ(λ− 1)− cr(D′2(r−1) +D′′2(r−1)).

Again by expanding D′2(r−1) and D′′2(r−1) in the same way:

D′2(r−1) +D′′2(r−1) = −(D′2(r−2) +D′′2(r−2)).

By induction:

D′2(r−1) +D′′2(r−1) = (−1)r−2(D′2 +D′′2 ) = (−1)r−2.

Hence,
D2r = D2(r−1)λ(λ− 1)+ (−1)r−1 · cr .

By induction again:

D2r = (λ(λ− 1))r + λ(λ− 1) ·
r−2∑
i=0

cr−1−i (−1)r−2−i · (λ(λ− 1))i + (−1)r−1 · cr

= (λ(λ− 1))r +
r−1∑
i=0

cr−i (−1)r−i−1(λ(λ− 1))i . 	
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Remark. It is possible to construct a knot with given arbitrary polynomials �k(t)
subject to the conditions (b)–(d) of 8.12 [Levine 1965].

The presentation of the Alexander polynomial in the concise form

�(t)
.=

n∑
i=0

ciu
i

was first given in [Crowell-Fox 1963, Chapter IX, Exercise 4] and employed later in
[Burde 1966] where the coefficients ci represented twists in a special knot projection.
This connection between the algebraic invariant �(t) and the geometry of the knot
projection has come to light very clearly through Conway’s discovery [Conway 1970].
The Conway polynomial is closely connected to the form �ciu

i of the Alexander
polynomial. It is, however, necessary to include links in order to get a consistent
theory. This will be done in Chapter 13

8.14 Proposition. Let Vk and Vl be Seifert matrices for the knots k and l, and let
�(k)(t) and �(l)(t) denote their Alexander polynomials. Then(

Vk 0

0 Vl

)
= V

is a Seifert matrix of the product knot k # l , and

�(k#l)(t) = �(k)(t) ·�(l)(t).

Proof. The first assertion is an immediate consequence of the construction of a Seifert
surface of k # l in 7.4. The second one follows from

|V T − tV | = |V (k)T − tV (k)| · |V (l)T − tV (l)|. 	


8.15 Examples (a) The Alexander polynomials of a trivial knot are trivial: �k(t) = 1.
(In this case G = G/G′ ∼= Z, G′ = 1, M(t) = (0).)

(b) Figure 8.7 (a) and (b) show band projections of the trefoil 31 and the four-
knot 41. The Seifert matrices are:

V31 =
(
−1 −1

0 −1

)
, V41 =

(
1 −1

0 −1

)
,

|V T31
− tV31 | .= t2 − t + 1, |V T41

− tV41 | .= t2 − 3t + 1.

(For further examples see E 8.6.)
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(a) (b)

Figure 8.7

8.16 Proposition (Alexander polynomials of fibred knots). The Alexander polyno-
mial �(t) =∑2g

i=0 ait
i of a fibred knot k (see Chapter 5 B) satisfies the conditions

(a) �(0) = a0 = a2g = ±1,

(b) deg�(t) = 2g, g the genus of k.

Proof. If S is a Seifert surface of minimal genus g spanning k, the inclusion i± : S± →
C∗ induces isomorphisms i±∗ : π1S

± → π1C
∗ (by 4.6). Hence, i±∗ : H1(S

±) →
H1(C

∗) are also isomorphisms. This means (by 8.6) that the corresponding Seifert
matrix V is invertible. By 8.11: �(t)

.= |V T V −1 − tE|, �(t) is the characteristic
polynomial of a 2g × 2g regular matrix V T V −1. 	


Conditions (a) and (b) of 8.16 characterize Alexander polynomials of fibred knots:
There is a fibred knot with Alexander polynomial �(t), if �(t) is any polynomial
satisfying (a) and (b), [Burde 1966], [Quach 1981]. Moreover, it was proved in
[Burde-Zieschang 1967], [Bing-Martin 1971] that the trefoil and the four-knot are the
only fibred knots of genus one. The conjecture that fibred knots are classified by their
Alexander polynomials has proved to be false in the case of genus g > 1 [Morton
1978]. There are infinitely many different fibred knots to each Alexander polynomial
of degree > 2 satisfying 8.16 (a) [Morton 1983′]. The methods used in Morton’s
paper are beyond the scope of this book; results of [Johannson 1979], [Jaco-Shalen
1979] and Thurston are employed.

It has been checked that the knots up to ten crossings are fibred if (and only if)
�(0) = ±1 [Kanenobu 1979].
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E Finite Cyclic Coverings

Beyond the infinite cyclic covering C∞ of the knot complement C = S3 − V (k)
the finitely cyclic coverings of C are of considerable interest in knot theory. The
topological invariants of these covering spaces yield new and powerful knot invariants.

Let m be a meridian of a tubular neighbourhood V (k) of k representing the el-
ement t of the knot group G = Z � G′, Z = 〈 t 〉. For n � 0 there are surjective
homomorphisms:

ψn : G→ Zn, (Z0 = Z).

8.17 Proposition. kerψn = nZ � G′ = Gn, nZ = 〈 tn 〉.
If ϕn : G→ Zn

∼= Z/nZ is a surjective homomorphism, then ker ϕn = kerψn.

Proof. Since Zn is abelian, every homomorphism ϕn : G → Zn can be factorized,
ϕn = jnκ , ker κ = G′:

G
ϕn ��

κ ������������� Zn��

jn�����������

G/G′ = Z.

One has 〈 κ(t) 〉 = G/G′, ker jn = 〈 n · κ(t) 〉, and

kerψn = ker ϕn = nZ � G
′ = Gn. 	


It follows that for each n � 0 there is a (uniquely defined) regular covering
space Cn, (C0 = C∞), with π1Cn = Gn, and a group of covering transformations
isomorphic to Zn.

8.18 Branched coverings Ĉn. In Cn the n-th (n > 0) power mn of the meridian
is a simple closed curve on the torus ∂Cn. By attaching a solid torus Tn to Cn,
h : ∂Tn → ∂Cn, such that the meridian of Tn is mapped onto mn, we obtain a closed
manifold Ĉn = Cn∪h Tn which is called the n-fold branched covering of k. Obviously
pn : Cn → C can be extended to a continuous surjective map p̂n : Ĉ → S3 that fails
to be locally homeomorphic (that is, to be a covering map) only in the points of the
core p̂−1(k) = k̂ of Tn. The restriction p| : k̂ → k is a homeomorphism. k resp. k̂ is
called the branching set of S3 resp. Ĉn, and k̂ is said to have branch index n. As Ĉn
is also uniquely determined by k, the spaces Ĉn as well as Cn are knot invariants; we
shall be concerned especially with their homology groups H1(Ĉn).

8.19 Proposition.

(a) Gn
∼= π1Cn ∼= (nZ)� G′ with nZ = 〈 tn 〉.
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(b) H1(Cn) ∼= (nZ)⊕ (G′/G′n).
(c) H1(Ĉn) ∼= G′/G′n.

(d) H1(Cn) ∼= (nZ)⊕H1(Ĉn).

Proof. (a) by definition, (b) follows since G′n !G′. Assertion (c) is a consequence of
the Seifert–van Kampen theorem applied to Ĉn = Cn ∪h Tn. 	


8.20 Proposition (Homology of branched cyclic coverings Ĉn). Let V be a 2h× 2h
Seifert matrix of a knot k, V − V T = F , G = FT V , and Zn = 〈 t | tn 〉.

(a) Rn = (G−E)n−Gn is a presentation matrix ofH1(Ĉn) as an abelian group.
In the special case n = 2 one has R2 ∼ V + V t = A(−1).

(b) As a Zn-module H1(Ĉn) is annihilated by �n(t) = 1+ t + · · · + tn−1.

(c) (RnF )T = (−1)n(RnF ).

(d) (V T − tV ) is a presentation matrix of H1(Ĉn) as a Zn-module.

Proof. Denote by τ the covering transformation of the covering pn : Cn → C

corresponding to ψn(t) ∈ Zn, see 8.17. Select a sheet C∗0 of the covering, then
{C∗i = τ iC∗0 | 0 � i � n− 1} are then n sheets of Cn (see Figures 4.2 and 8.8). Let

S−1

S−0

X2

S+0

X1

C∗1

C∗0

C∗n−1
Tn(k̂)

Figure 8.8

sj , a±i be defined as in 8.3. Apply the Seifert–van Kampen theorem to

X1 = C̊∗0 ∪ C∗1 ∪ · · · ∪ C∗n−2 ∪ C̊∗n−1 and X2 = U(S−0 ∪ Tn)

a tubular neighbourhood of S−0 ∪ Tn. As in the proof of 4.6 one gets

π1X1 ∼= π1C
∗
0 ∗π1S

+
0
π1C

∗
1 ∗π1S

+
1
· · · ∗π1S

+
n−2

π1C
∗
n−1,

π1X2 ∼= π1S
−
0 , π1(X1 ∩X2) ∼= π1S

+
n−1 ∗〈 l̂〉 π1S

−
0 ,
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where l̂ = ∂S−0 is a longitude of k̂ in Tn. It follows by abelianizing π1(Ĉn) =
π1(X1 ∪ X2) that H1(Ĉn) ∼= π1(Ĉn)/π

′
1(Ĉn) is generated by {t isj | 1 � j � 2h,

0 � i � n− 1}, and its defining relations are

(t iV T − t i+1V )s = 0, 0 � i � n− 1, tn = 1, sT = (s1, s2, . . . , s2h),
see 8.8. (Observe that in H1(Ĉn) the longitude l̂ is 0-homologous.) This proves (d).

Multiply the relations by FT and introduce the abbreviation FT V = G (see 8.20).
One gets:

Gtis − t is −Gti+1s = 0, 0 � i � n− 1. (Ki)

Adding these equations gives

(1+ t + · · · + tn−1)s = 0,

and proves (b).
Add (K1) to (K0) to obtain

(G− E)s − ts −Gt2s = 0. (E1)

Multiply (E1) by G− E and add to (K1): The result is

(G− E)2s −G2t2s = 0. (R2)

The relations (K0), (K1) can be replaced by the relations (E1) and (R2), and (E1)

can be used to eliminate ts. This procedure can be continued. Assume that after
(i − 1) steps the generators ts, t2s, . . . , t i−1s are eliminated, and the equations (Kj ),
i � j � n− 1 together with

(G− E)is −Gitis = 0 (Ri)

form a set of defining relations. Now multiply (Ki) by
∑i−1
j=0G

j and add to (Ri).
One obtains

(G− E)is − t is −G
i−1∑
j=0

Gj ti+1s = 0. (Ei)

Multiply (Ei) by (G− E) and add to (Ki). The result is

(G− E)i+1s −Gi+1t i+1s = 0. (Ri+1)

The relations (Ri), (Ki) have thus been replaced by (Ei), (Ri+1). Eliminate t is by
(Ei) and omit (Ei).

The procedure stops when only the generators s = (sj ) are left, and the defining
relations

Gns − (G− E)ns = 0
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remain. This proves (a).
(c) is easily verified using the definition of Rn and F . 	


Remark. It follows from 8.20 (b) for n = 2 that 1 + t is the 0-endomorphism of
H1(Ĉ2). This means

a �→ ta = −a for a ∈ H1(Ĉ2).

8.21 Theorem. H1(Ĉn) is finite if and only if no root of the Alexander polynomial
�(t) of k is an n-th root of unity ζi , 1 � i � n. In this case

|H1(Ĉn)| =
∣∣∣ n∏
i=1

�(ζi)

∣∣∣.
In general, the Betti number ofH1(Ĉn) is even and equals the number of roots of the

Alexander polynomial which are also roots of unity; each such root is counted ν-times,
if it occurs in ν different elementary divisors εk(t) = �k(t)�−1

k+1(t), k = 1, 2, . . . .

Proof. Since the matrices G− E and G commute,

Rn = (G− E)n −Gn =
n∏
i=1

[(G− E)− ζiG].

By 8.8,
(G− E)− tG = FT (V T − tV ) = FT A(t)

is a presentation matrix of the Alexander module M(t); thus, by 8.11,

det((G− E)− tG) .=�(t).
This implies that detRn =∏n

i=1�(ζi). The order ofH1(Ĉn) is detRn, if detRn = 0.
In the general case the Betti number ofH1(Ĉn) is equal to 2h− rank Rn. To deter-

mine the rank of Rn we study the Jordan canonical form G0 = L−1GL of G, where
L is a non-singular matrix with coefficients in C. Then L−1RnL = (G0−E)n−Gn0.
The diagonal elements of G0 are the roots λi = (1− ti )−1 of the characteristic poly-
nomial χ(λ) = det(G− λE), where the ti are the roots of the Alexander polynomial,
see 8.13. The nullity of L−1RnL equals the number of λi which have the property
(λi − 1)n − λni = 0 ⇐⇒ tni = 1, ti = 1, once counted in each Jordan block of G0.

From �(1) = 1 and the symmetry of the Alexander polynomial it follows that
only non-real roots of unity may be roots of χ(λ) and those occur in pairs. 	


The following property of H1(Ĉn) is a consequence of 8.20 (c).

8.22 Proposition ([Plans 1953]). H1(Ĉn) ∼= A⊕ A if n ≡ 1 mod 2.
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Proof. Q = RnF is equivalent toRn, and hence a presentation matrix ofH1(Ĉn). For
odd n the matrix Q is skew symmetric, Q = −QT . Proposition 8.22 follows from
the fact that Q has a canonical form

LTQL =



0 a1

−a1 0

0 a2

−a2 0
. . .

0 as

−as 0

0

0
. . .

0



,

where L is unimodular (invertible over Z). A proof is given in Appendix A.1. 	


8.23 Proposition (Alexander modules of satellites). Let k be a satellite, k̂ its compan-
ion, and k̃ the preimage of k under the embedding h : Ṽ → V̂ as defined in 2.8. Denote
by M(t), M̂(t), M̃(t) resp. �(t), �̂(t), �̃(t) the Alexander modules resp. Alexander
polynomials of k, k̂ and k̃.

(a) M(t) = M̃(t)⊕ [Z(t)⊗Z(tn) M̂(t
n)] with n = lk(m̂, k), m̂ a meridian of k̂.

(b) �(t) = �̃(t) · �̂(tn).

Proof. The proposition is a consequence of 4.12, but a direct proof of 8.23 using
the trivialization of G′′ in M(t) shows that 8.23 is much simpler than 4.12. We use
the notation of 4.12. Let G, Ĝ, G̃ denote the knot groups of k, k̂ and k̃. There are
presentations:

Ĝ = 〈 t̂ , ûj | R̂k(û, t̂) 〉, ûj ∈ Ĝ
′,

H = h#π1(Ṽ − k̃) = 〈 t, λ̂, ũj | R̃l(ũj , λ̂, t) 〉,

with H/〈 λ̂ 〉 ∼= G̃, ũj ∈ G̃′. Here t resp. t̂ represent meridians of k and k̂, and λ̂ a
longitude of k̂. It follows that t̂ ∈ tnG̃′. The Seifert–van Kampen Theorem gives that

G = Ĝ ∗〈 t̂ ,λ̂ 〉 H, where 〈 t̂ , λ̂ 〉 = π1(∂V̂ )

is a free abelian group of rank 2. (The Definition 2.8 of a companion knot ensures that
〈 t̂ , λ̂ 〉 is embedded in both factors.) We apply the Reidemeister–Schreier method to
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G, Ĝ, H with respect to the commutator subgroups G′, Ĝ′, H′ and representatives tν ,
t̂µ. One obtains generators ũt

ν

i , ût̂
µ

j , ν, µ ∈ Z, and presentations

Ĝ
′/Ĝ′′ = 〈 ût̂µj | R̂k(ût̂µj ) 〉 and G̃

′/G̃′′ ∼= 〈 ũtνi | R̃l(ũt
ν

i , 1) 〉.

Since G′ ⊃ Ĝ′, G′′ ⊃ Ĝ′′ # λ̂, G′ ⊃ G̃′,

G
′/G′′ = 〈 ût̂µj , ũt

ν

i | R̂k(ût̂
µ

j ), R̃l(ũ
tν

i , 1) 〉 ∼= Ĝ
′/Ĝ′′ ⊕ G̃

′/G̃′′,

where the amalgamation is reduced to the fact that the operations t̂ resp. t on the first
resp. the second summand are connected by t̂ = tn. 	


F History and Sources

J.W. Alexander [1928] first introduced Alexander polynomials. H. Seifert [1934]
investigated the matter from the geometric point of view and was able to prove the
characterizing properties of the Alexander polynomial (Proposition 8.12, 8.13). The
presentation of the homology of the finite cyclic coverings in Proposition 8.20 is also
due to him [Seifert 1934].

G Exercises

E 8.1. Prove: deg�(t) � 2g, where g is the genus of a knot, and �(t) its Alexander
polynomial. (For knots up to ten crossings equality holds.)

E 8.2. Write�(t) = t4− 2t3+ t2− 2t − 1 in the reduced form
∑2
i=0 ciu

i (Proposi-
tion 8.13). Construct a knot with�(t) as its Alexander polynomial. Construct a fibred
knot with �(t) as its Alexander polynomial. (Hint: use braid-like knots as defined in
E 4.4.)

E 8.3. Show that H1(C∞) = 0 if and only if �(t) = 1. Prove that π1C∞ is of finite
rank, if it is free.

E 8.4. Prove: H1(Ĉn) = 0 for n � 2 if and only if H1(C∞) = 0.

E 8.5. Show |H1(Ĉ2)| ≡ 1 mod 2; further, for a knot of genus one with |H1(Ĉ2)| =
4a ± 1, show that H1(Ĉ3) ∼= Z3a±1 ⊕ Z3a±1, a ∈ N.
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E 8.6. By p(p, q, r), p, q, r odd integers, we denote a pretzel knot (Figure 8.9). (The
sign of the integers defines the direction of the twist.) Construct a band projection
of p(p, q, r), and compute its Seifert matrix V and its Alexander polynomial. (Fig-
ure 8.10 shows how a band projection may be obtained.)

p(3,−5,−7)

Figure 8.9

p = 2k + 2m+ 1 q = 2m+ 1 r = 2n− 2m− 1 k
...

2m+ 1

... n

.

.

.

.

.

.

.

.

.

Figure 8.10

E 8.7. Let k be a link of µ > 1, components. Show that there is a homomorphism
ϕ of its group G = π1(S

3 − k) onto a free cyclic group Z = 〈 t 〉 which maps every
Wirtinger generator of G onto t . Construct an infinite cyclic covering C∞ of the link
complement using a Seifert surface S of k, compute its Seifert matrix and define its
Alexander polynomial following the lines developed in this chapter in the case of a
knot. (See also E 9.5.)

E 8.8. Let Ĉ3 be the 3-fold cyclic branched covering of a knot. IfH1(Ĉ3) ∼= Zp⊕Zp
for some prime p, then there are generators a, b of Zp ⊕ Zp such that t : H1(Ĉ3)→
H1(Ĉ3) is given by ta = b, tb = −a − b. For all knots one has p = 3.

E 8.9. Construct a knot of genus one with the Alexander polynomials of the trefoil
but not fibred – and hence different from the trefoil.
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E 8.10. Show that �1(t)�
−1
2 (t) annihilates the Alexander module M(t) of a knot

[Crowell 1964].

E 8.11. Let k be a fibred knot of genus g, and let F × I/h denote its complement.
Describe h∗ : H1(F,Q)→ H1(F,Q) by a matrixA = ⊕Ai whereAi is a companion
matrix determined by the Alexander polynomials of k. (For the notion of a companion
matrix see, e.g. [van der Waerden 1955, §117].)

E 8.12. Prove that a satellite is never trivial. Show, that doubled knots (see 2.9) have
trivial Alexander modules, and therefore trivial Alexander polynomials.



Chapter 9

Free Differential Calculus and Alexander Matrices

In Chapter 8 we studied the homology of the cyclic coverings of the knot comple-
ment. Alexander polynomials were defined, and a general method of computing these
invariants via a band projection of the knot was developed. Everyone who actually
wants to carry out this task will soon find out that the calculations involved increase
rapidly with the genus of the knot. There are, however, knots of arbitrary genus with
groups of a relatively simple structure (for instance: torus knots). We shall present
in this chapter another method of computing Alexander’s knot invariants which will
prove to be considerably simpler in this case – and in many other cases. The method
is based on the theory of Fox derivations in the group ring of a free group. There is
a geometric background to the Fox calculus with which we intend to start. It is the
theory of homotopy chains [Reidemeister 1935′], or, to use the modern terminology,
equivariant homology.

A Regular Coverings and Homotopy Chains

The one-to-one correspondence between finitely presented groups and fundamental
groups of 2-complexes, and between (normal) subgroups and (regular) coverings of
such complexes has been exploited in combinatorial group theory to prove group
theoretical theorems (as for instance the Reidemeister–Schreier method or the Kurosh
subgroup theorem [ZVC 1980, 2.6]) by topological methods. In the case of homology
these relationships are less transparent, but some can be retained for the first homology
groups.

9.1 On the homology of a covering space. Let p : X̃→ X be a regular covering of
a connected 2-complex. We assume X to be a finite CW-complex with one 0-cell P .
Then a presentation

G = π1(X, P ) = 〈 s1, . . . sn | R1, . . . , Rm 〉
of the fundamental group ofX is obtained by assigning a generator si to each (oriented)
1-cell (also denoted by si), and a defining relation to (the boundary of) each 2-cell ej
ofX. Choose a base point P̃ ⊂ X̃ over P , p#(π1(X̃, P̃ )) = N!G, and let D ∼= G/N

denote the group of covering transformations.
Let ϕ: G→ D, w �→ wϕ be the canonical homomorphism. The linear extension

to the group ring is also denoted by ϕ : ZG→ ZD. Observe: (w1w2)
ϕ = wϕ1wϕ2 .
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Our aim is to presentH1(X̃, X̃
0) as a ZD-module. (We follow a common conven-

tion by writing merely D-module instead of ZD-module. X̃0 denotes the 0-skeleton
of X̃.)

The (oriented) edges si lift to edges s̃i with initial point P̃ . By w we denote a
closed path in the 1-skeletonX1 ofX, and, at the same time, the element it represents
in the free group F = π1(X

1, P ) = 〈 s1, . . . , sn | − 〉. There is a unique lift w̃ of w
starting at P̃ . Clearly w̃ is a special element of the relative cycles Z1(X̃, X̃

0) which
are called homotopy 1-chains. Every 1-chain can be written in the form

∑n
j=1 ξj s̃j ,

ξj ∈ ZD. (The expression gs̃j denotes the image of the edges s̃j under the covering
transformation g.) There is a rule

w̃1w2 = w̃1 + wϕ1 · w̃2. (1)

To understand it, first liftw1 to w̃1. Its endpoint iswϕ1 ·P̃ . The covering transformation
w
ϕ
1 maps w̃2 onto a chain wϕ1 w̃2 over w2 which starts at wϕ1 P̃ . If w̃k = ∑n

j=1 ξkj s̃j

with ξkj ∈ ZD, k = 1, 2, then w̃1w2 =∑n
j=1 ξj s̃j with

ξj = ξ1j + wϕ1 · ξ2j , 1 � j � n. (2)

(The coefficient ξkj is the algebraic intersection number of the path w̃k with the covers
of sj .) This defines mappings(

∂

∂sj

)ϕ
: G = π1(X, P )→ ZD, w �→ ξj , with w̃ =

n∑
j=1

ξj s̃j , (3)

satisfying the rule(
∂

∂sj
(w1w2)

)ϕ
=
(
∂

∂sj
w1

)ϕ
+ wϕ1 ·

(
∂

∂sj
w2

)ϕ
. (4)

There is a linear extension to the group ring ZG:(
∂

∂sj
(η + ξ)

)ϕ
=
(
∂

∂sj
η

)ϕ
+
(
∂

∂sj
ξ

)ϕ
for η, ξ ∈ ZG. (5)

From the definition it follows immediately that(
∂

∂sj
sk

)ϕ
= δjk, w̃ =

∑(
∂w

∂sj

)ϕ
s̃j , δjk =

{
1 j = k,
0 j = k. (6)

We may now use this terminology to presentH1(X̃, X̃
0) as a D-module: The 1-chains

s̃i , 1 � i � n, are generators, and the lifts R̃j of the boundariesRj = ∂ej of the 2-cells
are defining relations. (The boundary of an arbitrary 2-cell of X̃ is of the form δ(R̃j ),
δ ∈ D. Hence, in a presentation of H1(X̃, X̃

0) as a D-module is suffices to include
the R̃j , 1 � j � m, as defining relations.)
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9.2 Proposition.

H1(X̃, X̃
0) = 〈 s̃1, . . . , s̃n | R̃1, . . . , R̃m 〉, 0 = R̃j =

n∑
i=1

(
∂Rj

∂si

)ϕ
s̃i , 1 � j � m

is a presentation of H1(X̃, X̃
0) as a D-module. 	


B Fox Differential Calculus

In this section we describe a purely algebraic approach to the mapping
(
∂
∂sj

)ϕ [Fox

1953, 1954, 1956]. Let G be a group and ZG its group ring (with integral coefficients);
Z is identified with the multiples of the unit element 1 of G.

9.3 Definition (Derivation). (a) There is a homomorphism

ε : ZG→ Z, τ = �nigi �→ �ni = τ ε.
We call ε the augmentation homomorphism, and its kernel IG = ε−1(0) the augmen-
tation ideal.

(b) A mapping � : ZG→ ZG is called a derivation (of ZG) if

�(ξ + η) = �(ξ)+�(η) (linearity),

and

�(ξ · η) = �(ξ) · ηε + ξ ·�(η) (product rule),

for ξ , η ∈ ZG.

From the definition it follows by simple calculations:

9.4 Lemma. (a)The derivations of ZG form a (right)G-module under the operations
defined by

(�1 +�2)(τ ) = �1(τ )+�2(τ ), (�γ )(τ ) = �(τ) · γ.
(b) Let � be a derivation. Then:

�(m) = 0 for m ∈ Z,

�(g−1) = −g−1 ·�(g),
�(gn) = (1+ g + · · · + gn−1) ·�(g),
�(g−n) = −(g−1 + g−2 + · · · + g−n) ·�(g) for n � 1. 	




128 9 Free Differential Calculus and Alexander Matrices

9.5 Examples (a) �ε : ZG→ ZG, τ �→ τ − τ ε, is a derivation.

(b) If a, b ∈ G commute, ab = ba, then (a − 1)�b = (b− 1)�a. (We write �a
instead of�(a) when no confusion can arise.) It follows that a derivation� : ZZn→
ZZn of the group ring of a free abelian group Zn = 〈 S1 〉 × · · · × 〈 Sn 〉, n � 2, with
�Si = 0, 1 � i � n, is a multiple of �ε in the module of derivations.

Contrary to the situation in group rings of abelian groups the group ring of a free
group admits a great many derivations.

9.6 Proposition. Let F = 〈 {Si | i ∈ J }〉 be a free group. There exists a uniquely
determined derivation � : ZF → ZF with �Si = wi for arbitrary elements
wi ∈ ZF.

Proof. �(S−1
i ) = −S−1

i wi follows from �(1) = 0 and the product rule. Linearity
and product rule imply uniqueness. Define �(Sη1

i1
. . . S

ηk
ik
) using the product rule:

�(S
η1
i1
. . . S

ηk
ik
) = �Sη1

i1
+ Sη1

i1
�S

η2
i2
+ · · · + Sη1

i1
. . . S

ηk−1
ik−1

�S
ηk
ik
.

The product rule then follows for combined words w = uv, �w = �u+ u�v. The
equation

�(uS
η
i S
−η
i v) = �u+ u�Sηi + uSηi �S−ηi + u�v = �u+ u�v

= �(uv), η = ±1,

shows that � is well defined on F. 	


9.7 Definition (Partial derivations). The derivations

∂

∂Si
: ZF→ ZF, Sj �→

{
1 for i = j
0 for i = j,

of the group ring of a free group F = 〈 {Si | i ∈ J } | − 〉 are called partial derivations.

The partial derivations form a basis of the module of derivations:

9.8 Proposition. (a)� =∑
i∈J ∂

∂Si
·�(Si) for every derivation� : ZF→ ZF. (The

sum may be infinite, however, for any τ ∈ ZF there are only finitely many ∂τ
∂Si
= 0.)

(b)
∑
i∈J ∂

∂Si
· τi = 0 ⇐⇒ τi = 0, i ∈ J .

(c) �ε(τ) = τ − τ ε =∑
i∈J ∂τ

∂Si
(Si − 1) (Fundamental formula).

(d) τ − τ ε =∑
i∈J vi(Si − 1) ⇐⇒ vi = ∂τ

∂Si
, i ∈ J .
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Proof.
(∑

i
∂
∂Si
�Si

)
Sj =∑

i

∂Sj
∂Si
�Si = �Sj proves (a) by 9.6. For� = 0-map, and

� = �ε one gets (b) and (c). To prove (d) apply ∂
∂Sj

to the equation. 	


The theory of derivations in ZF (free derivations) has been successfully used to
study ZF and F itself [Zieschang 1962]. There are remarkable parallels to the usual
derivations used in analysis. For instance, the fundamental formula resembles a Taylor
expansion. If (S1, . . . , Sn), (S

′
1, . . . , S

′
n), (S

′′
1 , . . . , S

′′
n) are bases of a free group Fn,

there is a chain rule for the Jacobian matrices:

∂S′′k
∂Si

=
n∑
j=1

∂S′′k
∂S′j

· ∂S
′
j

∂Si
.

(Apply 9.8 (a) in the form � =∑n
j=1

∂
∂S′j
�S′j for � = ∂

∂Si
to S′′k .)

J. Birman [1973′] proves that (S′1, . . . , S′m) is a basis of F = 〈 S1, . . . , Sn | − 〉 if

and only if the Jacobian
( ∂S′j
∂Si

)
is invertible over ZF.

For further properties of derivations see E 9.7,8.

C Calculation of Alexander Polynomials

We return to the regular covering p : X̃→ X of 9.1. Let

ψ : F = 〈 S1, . . . , Sn | − 〉 → 〈 S1, . . . , Sn | R1, . . . , Rm 〉 = G

denote the canonical homomorphism of the groups and, at the same time, its extension
to the group rings:

ψ : ZF→ ZG,
(∑

nifi

)ψ =∑
nif

ψ
i for fi ∈ F, ni ∈ Z.

Combiningψ with the map ϕ : ZG→ ZD of 9.1 (we use the notation (ξ)ϕψ = (ξψ)ϕ ,
ξ ∈ ZF), we may state Proposition 9.2 in terms of the differential calculus.

9.9 Proposition.
((
∂Rk
∂Sj

)ϕψ)
, 1 � k � m, 1 � j � n, is a presentation matrix of

H1(X̃, X̃
0) as a D-module. (k = row index, j = column index.)

Proof. Comparing the linearity and the product rule of the Fox derivations 9.3 with
(4) and (5) of 9.1, we deduce from 9.6 that the mappings

(
∂
∂Si

)ϕ in (3) coincide with

those defined by
(
∂
∂Si

)ϕψ in 9.7 	
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Remark. The fact that the partial derivation of (5) and 9.7 are the same lends a
geometric interpretation also to the fundamental formula: For w ∈ G and w̃ its lift,

∂w̃ = (wϕψ − 1)P̃ =
∑
i

(
∂w

∂Si

)ϕψ
(S
ϕψ
i − 1)P̃ =

∑
i

(
∂w

∂Si

)ϕψ
∂s̃i .

To obtain information about H1(X̃) we consider the exact homology sequence

H1(X̃
0) −→ H1(X̃) −→ H1(X̃, X̃

0)
∂−→ H0(X̃

0)
i∗−→ H0(X̃) −→ 0.

‖ ‖� ‖�
0 ZD Z

(7)

H0(X̃
0) is generated by {wϕψ · P̃ | w ∈ F} as an abelian group. The kernel of i∗ is

the image (IF)ϕψ of the augmentation ideal IF ⊂ ZF (see 9.3 (a)). The fundamental
formula shows that ker i∗ is generated by {(Sϕψj − 1)P̃ | 1 � j � n} as a D-module.

Thus we obtain from (7) a short exact sequence:

0 −→ H1(X̃) −→ H1(X̃, X̃
0)

∂−→ ker i∗ −→ 0. (8)

In the case of a knot group G, and its infinite cyclic covering C∞ (N = G′) the group
of covering transformations is cyclic, D = Z = 〈 t 〉, and ker i∗ is a free Z-module
generated by (t − 1)P̃ . The sequence (8) splits, and

H1(X̃, X̃
0) ∼= H1(X̃)⊕ σ(ZZ · (t − 1)P̃ ), (9)

where σ is a homomorphism σ : ker i∗ → H1(X̃, X̃
0), ∂σ = id. This yields the

following

9.10 Theorem. For G = 〈 S1, . . . , Sn | R1, . . . , Rn 〉, its Jacobian
((

∂Rj
∂Si

)ϕψ)
and

ϕ : G → G/G′ = D = 〈 t 〉, a presentation matrix (Alexander matrix) of H1(X̃) ∼=
H1(C∞) as a D-module is obtained from the Jacobian by omitting its i-th column,
if Sϕψi = t±1. (In the case of a Jacobian derived from a Wirtinger presentation any
column may be omitted.)

Proof. It remains to show that the homomorphism σ : ker i∗ → H1(X̃, X̃
0) can be

chosen in such a way that σ(ker i∗) = ZDs̃i . Put σ(t − 1)P̃ = ±tµs̃i , Sϕψi = tν ,
∂σ = id. Then

(t − 1)P̃ = ∂σ(t − 1)P̃ = ∂(±tµs̃i) = ±tµ(Sϕψi − 1)P̃ = ±tµ(tν − 1)P̃ ,

that is, (t − 1) = ±tµ(tν − 1). It follows ν = ±1, and in these cases σ can be chosen
as desired. 	




C Calculation of Alexander Polynomials 131

If D is not free cyclic, the sequence (8) does not necessarily split, and H1(X̃)

cannot be identified as a direct summand of H1(X̃, X̃
0). We shall treat the cases

D ∼= Zn and D ∼= Zµ in Section D.
There is a useful corollary to Theorem 9.10:

9.11 Corollary. Every (n−1)×(n−1)minor�ij of the n×n Jacobian of aWirtinger
presentation 〈 Si | Rj 〉 of a knot group G is a presentation matrix of H1(C∞). Fur-
thermore, det�ij

.= �(t). The elementary ideals of the Jacobian are the elementary
ideals of the knot.

Proof. Every Wirtinger relator Rk is a consequence of the remaining ones (Corol-
lary 3.6). Thus, by 9.10 a presentation matrix of H1(C∞) = M(t) is obtained from
the Jacobian by leaving out an arbitrary row and arbitrary column. 	


Corollary 9.11 shows that a Jacobian of a Wirtinger presentation has nullity one.
The following lemma explicitly describes the linear dependence of the rows and
columns of the Jacobian of a Wirtinger presentation:

9.12 Lemma. (a)
∑n
i=1

(
∂Rj
∂Si

)ϕψ = 0.

(b)
∑n
j=1 ηj

(
∂Rj
∂Si

)ϕψ = 0, ηj = tνj for suitable νj ∈ Z for a Wirtinger presenta-

tion 〈 S1, . . . , Sn | R1, . . . , Rn 〉 of a knot group.

Proof. Equation (a) follows from the fundamental formula 9.8 (c) applied to Rj :

0 = (Rj − 1)ϕψ =
[ n∑
i=1

(
∂Rj
∂Si

)
(Si − 1)

]ϕψ = n∑
i=1

(
∂Rj
∂Si

)ϕψ
(t − 1).

Since ZZ has no divisors of zero (E 9.1) equation (a) is proved. To prove (b) we use
the identity of Corollary 3.6 which expresses the dependence of Wirtinger relators by
the equation

∏n
j=1 LjRjL

−1
j = 1 in the free group 〈 S1, . . . , Sn | − 〉. Now(

∂
∂Si
LjRjL

−1
j

)ϕψ = (
∂Lj
∂Si

)ϕψ + Lϕψj (
∂Rj
∂Si

)ϕψ − (LjRjL−1
j )ϕψ

(
∂Lj
∂Si

)ϕψ
= Lϕψj

(
∂Rj
∂Si

)ϕψ
,

as (LjRjL
−1
j )ϕψ = 1. By the product rule

0 = ∂
∂Si

( n∏
j=1

LjRjL
−1
j

)ϕψ = n∑
j=1

( j−1∏
k=1

(
LkRkL

−1
k

))ϕψ
L
ϕψ
j

(
∂Rj
∂Si

)ϕψ
=

n∑
j=1

L
ϕψ
j

(
∂Rj
∂Si

)ϕψ
,

which proves (b) with Lϕψj = tνj = ηj . 	
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9.13 Example. A Wirtinger presentation of the group of the trefoil is

〈 S1, S2, S3 | S1S2S
−1
3 S−1

2 , S2S3S
−1
1 S−1

3 , S3S1S
−1
2 S−1

1 〉,
see 3.7. If R = S1S2S

−1
3 S−1

2 then

∂R

∂S1
= 1,

∂R

∂S2
= S1 − S1S2S

−1
3 S−1

2 ,
∂R

∂S3
= −S1S2S

−1
3

and (
∂R

∂S1

)ϕψ
= 1,

(
∂R

∂S2

)ϕψ
= t − 1,

(
∂R

∂S3

)ϕψ
= −t.

By similar calculations we obtain the matrix of derivatives and apply ϕψ to get an
Alexander matrix  1 t − 1 −t

−t 1 t − 1

t − 1 −t 1

 .
It is easy to verify 9.12 (a) and (b). The 2 × 2 minor �11 =

(
1 t − 1

−t 1

)
, for

instance, is a presentation matrix; |�11| = 1− t + t2 = �(t), E1(t) = (1− t + t2).
For k > 1 : Ek(t) = (1) = Z(t), �k(t) = 1.

9.14 Proposition. Let

〈 S1, . . . , Sn | R1, . . . , Rm 〉 = G = 〈 S′1, . . . , S′n′ | R′1, . . . , R′m′ 〉
be two finite presentations of a knot group. The elementary ideals of the respective

Jacobians
((

∂Rj
∂Si

)ϕψ)
and

((
∂R′j
∂S′i

)ϕψ)
coincide, and are those of the knot.

Proof. This follows from 9.11, and from the fact (Appendix A.6) that the elementary
ideals are invariant under Tietze processes. 	


9.15 Example (Torus knots). G = 〈 x, y | xay−b 〉, a > 0, b > 0, gcd(a, b) = 1, is a
presentation of the group of the knot t(a, b) (see 3.28). The projection homomorphism
ϕ : G → G/G′ = Z = 〈 t 〉 is defined by: xϕ = tb, yϕ = ta (Exercise E 9.3). The
Jacobian of the presentation is:(

∂(xay−b)
∂x

,
∂(xay−b)

∂y

)ϕψ
=
(
tab − 1

tb − 1
,− t

ab − 1

ta − 1

)
.

The greatest common divisor

gcd

(
tab − 1

tb − 1
,
tab − 1

ta − 1

)
= (tab − 1)(t − 1)

(ta − 1)(tb − 1)
= �a,b(t)
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is the Alexander polynomial of t(a, b), deg�a,b(t) = (a − 1)(b − 1). One may
even prove something more: The Alexander moduleMa,b(t) of a torus knot t(a, b) is
cyclic: Ma,b(t) ∼= Z(t)/(�a,b(t)).

Proof. There are elements α(t), β(t) ∈ Z(t) such that

α(t)(ta−1 + ta−2 + · · · + t + 1)+ β(t)(tb−1 + tb−2 + · · · + t + 1) = 1. (10)

This is easily verified by applying the Euclidean algorithm. It follows that

α(t)
tab − 1

tb − 1
+ β(t) t

ab − 1

ta − 1
= �a,b(t).

Hence, the Jacobian can be replaced by an equivalent one:(
tab − 1

tb − 1
,− t

ab − 1

tb − 1

)(
α(t) tb−1 + · · · + 1

−β(t) ta−1 + · · · + 1

)
= (�a,b(t), 0).

We may interpret by 9.9 the Jacobian as a presentation matrix of H1(X̃, X̃
0):(

tab − 1

tb − 1
,− t

ab − 1

ta − 1

)(
x̃

ỹ

)
= 0,

where x̃, ỹ are the 1-chains that correspond to the generators x, y (see 9.1).
The transformation of the Jacobian implies a contragredient (dual) transformation

of the generating 1-chains:

ũ = (ta−1 + · · · + 1)x̃ − (tb−1 + · · · + 1)ỹ,

ṽ = β(t)x̃ + α(t)ỹ.
These 1-chains form a new basis with:

(�a,b(t), 0)

(
ũ

ṽ

)
= 0.

Since ∂x̃ = (tb − 1)P̃ , ∂ỹ = (ta − 1)P̃ , one has ∂ũ = 0 and

∂ṽ = (β(t)(tb − 1)+ α(t)(ta − 1))P̃ = (t − 1)P̃

by (10). Thus ṽ generates a free summand σ(ker i∗) (see (9)), and ũ generates M(t),
subject to the relation �a,b(t)ũ = 0. 	


Torus knots are fibred knots, by 4.10 and 5.1. We proved in 4.11 that the com-
mutator subgroup G′ of a torus knot t(a, b) is free of rank (a − 1)(b − 1). By
Theorem 4.6 the genus of t(a, b) is g = (a−1)(b−1)

2 , a fact which is reproved by 8.16,
and deg�a,b(t) = (a − 1)(b − 1).
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D Alexander Polynomials of Links

Let k be an oriented link of µ > 1 components, and G = π1(S3 − V (k)) its group.
ϕ : G→ G/G′ = Zµ = 〈 t1 〉 × · · · × 〈 tµ 〉 maps G onto a free abelian group of rank
µ. For each component we choose a meridian ti with lk(ki , ti ) = +1. We assume, as
in the case of a knot, that ti , 1 � i � µ, denotes at the same time a free generator of
Zµ or a representative in G mod G′, representing a meridian of the i-th component
ki of k with ϕ(ti) = ti . We may consider G′/G′′ as module over the group ring ZZµ

using the operation a �→ t−1
i ati , a ∈ G′, to define the operation of ZZµ on G′/G′′.

Proposition 9.2 applies to the situation with N = G′, D ∼= Zµ. Denote by ψ the
canonical homomorphism

ψ : F = 〈 S1, . . . , Sn | − 〉 → 〈 S1, . . . , Sn | R1, . . . , Rn 〉 = G

onto the link groupG, described by aWirtinger presentation. The Jacobian
((

∂Rj
∂Si

)ϕψ)
,

then is a presentation matrix of H1(X̃, X̃
0). The exact sequence (8) does not split,

so that a submodule isomorphic to H1(X̃) ∼= H1(C∞) cannot easily be identified.
Following [Fox 1954] we call H1(X̃, X̃

0) the Alexander module of k and denote it by
M(t1, . . . , tµ).

9.16 Proposition. The first elementary ideal E1(t1, . . . , tµ) of the Alexander module
M(t1, . . . , tµ) of a µ-component link k is of the form:

E1(t1, . . . , tµ) = J0 · (�(t1, . . . , tµ))
where J0 is the augmentation ideal of ZZµ (see 9.3), and the second factor is a
principal ideal generated by the greatest common divisor of E1(t1, . . . , tµ); it is
called the Alexander polynomial �(t1, . . . , tµ) of k, and it is an invariant of k – up to
multiplication by a unit of ZZµ.

Proof. Corollary 3.6 is valid in the case of a link. The (n − 1) × n-matrix R

resulting from the Jacobian
((

∂Rj
∂Si

)ϕψ)
by omitting its last row is, therefore, a

presentation matrix of H1(X̃, X̃
0), and defines its elementary ideals. Let �′i =

det(a1, . . . , ai−1, ai+1, . . . , an) be the determinant formed by the column-vectors
aj , i = j , of R. The fundamental formula Rk − 1 = ∑n

j=1
∂Rk
∂Sj
(Sj − 1) yields∑n

j=1 aj (S
ϕψ
j − 1) = 0. Hence,

�′j (S
ϕψ
i − 1) = det

(
a1, . . . , ai (S

ϕψ
i − 1), . . . , aj−1, aj+1, . . .

)
= det

(
a1, . . . ,−

∑
k =i

ak(S
ϕψ
k − 1), . . . , aj−1, aj+1, . . .

)
= det

(
a1, . . . ,−aj (S

ϕψ
j − 1), . . . , aj−1, aj+1, . . .

)
= ±�′i (Sϕψj − 1);
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thus

�′j (S
ϕψ
i − 1) = ±�′i (Sϕψj − 1). (11)

The Sϕψi , 1 � i � n take the value of all tk , 1 � k � µ. Now it follows that

(S
ϕψ
i − 1)|�′i . Define�i by (Sϕψi − 1)�i = �′i . Since ZZµ is a unique factorization

ring, (11) implies that�i = ±� for 1 � i � n. The first elementary ideal, therefore,
is a product J0 · (�), where J0 is generated by the elements (tk − 1), 1 � k � µ. It
is easy to prove (E 9.1) that J0 is the augmentation ideal IZµ of ZZµ.

The elementary ideal E1 is an invariant of G (Appendix A.6); hence, its greatest
common divisor is an invariant of G – up to multiplication by a unit ±t r11 . . . t r

µ

µ of
ZZµ. The polynomial �(t1, . . . , tµ) = �, though, depends on the choice of a basis

of Zµ. But it is possible to distinguish a basis of Zµ ∼= H1(S3 − V (k)) geometrically
by choosing a meridian for each component ki to represent ti . 	


For more information on Alexander modules of links see [Crowell-Strauss 1969],
[Hillman 1981′], [Levine 1975].

A link k is called splittable, if it can be separated by a 2-sphere embedded in S3.

9.17 Corollary. The Alexander polynomial of splittable link of multiplicity µ ≥ 2
vanishes, i.e. �(t1, . . . , tµ) = 0.

Proof. A splittable link k allows a Wirtinger presentation of the following form: There
are two disjoint finite sets of Wirtinger generators, {Si | i ∈ I }, {Tj | j ∈ J }, and
correspondingly, two sets of relators {Rk(Si)}, {Nl(Tj )}. For i ∈ I, j ∈ J consider

�′i (T
ϕψ
j − 1) = ±�′j (Sϕψi − 1).

The column ai (S
ϕψ
i − 1) in ±�′j (Sϕψi − 1) is by

∑
k∈I ak(S

ϕψ
i − 1) = 0 a linear

combination of other columns. It follows that �′i (T
ϕψ
j − 1) = 0, i.e. �′i = 0. 	


Alexander polynomials of links retain some properties of knot polynomials. In
[Torres-Fox 1954] they are shown to be symmetric. The conditions (Torres-conditions)
do not characterize Alexander polynomials of links (µ � 2), as J.A. Hillman [1981,
VII, Theorem 5] showed.

9.18 There is a simplified version of the Alexander polynomial of a link. Consider
the homomorphism χ : Zµ → Z = 〈 t 〉, ti �→ t . Put N = ker χϕ. The sequence
(9) now splits, and, as in the case of a knot, any (n − 1) × (n − 1) minor of the

Jacobian
((

∂Rj
∂Si

)χϕψ)
is a presentation matrix of H1(X̃) ∼= H1(C∞), where C∞

is the infinite cyclic covering of the complement of the link which corresponds to
the normal subgroup N = ker χϕ ! G. The first elementary ideal is generated by
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(t − 1) · �(t, . . . , t) (see 9.16) where �(t1, . . . , tµ) is the Alexander polynomial of
the link. The polynomial �(t, . . . , t) (the so-called reduced Alexander polynomial)
is of the form �(t, . . . , t) = (t − 1)µ−2. ∇(t), and ∇(t) is called the Hosokawa
polynomial of the link (E 9.5). In [Hosokawa 1958] it was shown that ∇(t) is of even
degree and symmetric. Furthermore, any such polynomial f (t) ∈ ZZ is the Hosokawa
polynomial of a link for any µ > 1.

9.19 Examples
(a) For the link of Figure 9.1:

S1 S2 G = 〈S1, S2 | S1S2S
−1
1 S−1

2 〉

Figure 9.1

R = ((1−S1S2S
−1
1 )ϕψ, (S1−S1S2S

−1
1 S−1

2 )ϕψ) = (1− t2, t1−1) and � = 1.

(b) Borromean link (Figure 9.2).

S3

T1
T3

T2

S2

S1

Generators: S1, S2, S3, T1, T2, T3

Relators: T−1
1 S−1

2 T1T2, T
−1
2 S3T2T

−1
3 ,

S−1
2 S3S2T

−1
3 , S−1

1 S3T1S
−1
3

S−1
1 S2S1T

−1
2

Figure 9.2

Eliminate T1 = S−1
3 S1S3, T2 = S−1

1 S2S1 and T3 = S−1
2 S3S2, and obtain the presen-

tation

G= 〈S1, S2, S3 | S−1
3 S−1

1 S3S
−1
2 S−1

3 S1S3S
−1
1 S2S1, S

−1
1 S−1

2 S1S3S
−1
1 S2S1S

−1
2 S−1

3 S2〉.
From this we get

R =
(
−t−1

1 t−1
3 + t−1

1 t−1
2 t−1

3 − t−1
1 t−1

2 + t−1
1 , 0 , −t−1

3 + t−1
1 t−1

3 − t−1
1 t−1

2 t−1
3 + t−1

2 t−1
3

−t−1
1 + t−1

1 t−1
2 − t−1

1 t−1
2 t3 + t−1

1 t3 ,−t−1
1 t−1

2 + t−1
1 t−1

2 t3 − t−1
2 t3 + t−1

2 , 0

)

=
−t−1

1 t−1
2 t−1

3 (t2 − 1)(t3 − 1) , 0 , −t−1
1 t−1

2 t−1
3 (t2 − 1)(t1 − 1)

t−1
1 t−1

2 (t2 − 1)(t3 − 1) , −t−1
1 t−1

2 (t1 − 1)(t3 − 1) , 0

 .
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Therefore

�′1 = −t−2
1 t−2

2 t−1
3 (t1 − 1)(t2 − 1)(t3 − 1)(t1 − 1)

.= −� · (t1 − 1)

�′2 = t−2
1 t−2

2 t−1
3 (t1 − 1)(t2 − 1)(t3 − 1)(t2 − 1)

.= � · (t2 − 1)

�′3 = t−2
1 t−2

2 t−1
3 (t1 − 1)(t2 − 1)(t3 − 1)(t3 − 1)

.= � · (t3 − 1),

where � = �(t1, t2, t3) = (t1 − 1)(t2 − 1)(t3 − 1).

E Finite Cyclic Coverings Again

The theory of Fox derivations may also be utilized to compute the homology of finite
branched cyclic coverings of knots. (For notations and results compare 8.17–22, 9.1.)

Let CN , 0 < N ∈ Z, be the N -fold cyclic (unbranched) covering of the com-
plement C. We know (see 8.20 (d)) that (V T − tV )s = 0 are defining relations of
H1(ĈN ) as a ZN -module, ZN = 〈 t | tN 〉.
9.20 Proposition. (a) Any Alexander matrix A(t) (that is a presentation matrix of
H1(C∞) as a Z-module, Z = 〈 t 〉) is a presentation matrix of H1(ĈN ) as a ZN -
module. ZN = 〈 t | tN 〉.

(b) The matrix

A(t)

�N 0 . . . 0

0 �N
...

...
. . . 0

0 . . . 0 �N


= BN(t), �N = 1+ t + · · · + tN−1,

is a presentation matrix of H1(ĈN ) as a Z-module.

Proof. The first assertion follows from the fact that, if two presentation matrices A(t)
and A′(t) are equivalent over ZZ, they are equivalent over ZZN . The second version
is a consequence of 8.20 (b). Observe that (tN − 1) = �N(t)(t − 1). 	


9.21 Corollary. The homology groups H1(ĈN ) of the N -fold cyclic branched cover-
ings of a torus knot t(a, b) are periodic with the period ab:

H1(ĈN+kab) ∼= H1(ĈN ), k ∈ N.

Moreover
H1(ĈN ) ∼= H1(ĈN ′) if N ′ ≡ −N mod ab.
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Proof. By 9.20 (b), BN(t) =
(
�(t)

�N(t)

)
is a presentation matrix for the Z(t)-module

H1(ĈN ). Since �(t)|�ab(t) and �N+kab = �N + tN · �k(tab) · �ab, the presentation
matrices BN(t) and BN+kab(t) are equivalent. The second assertion is a consequence
of

�ab − �N = tN · �ab−N for 0 < N < ab. 	


9.22 Example. For the trefoil t(3, 2) the homology groups of the cyclic branched
coverings are:

H1(ĈN ) ∼=


Z⊕ Z for N ≡ 0 mod 6

0 for N ≡ ± 1 mod 6

Z3 for N ≡ ± 2 mod 6

Z2 ⊕ Z2 for N ≡ 3 mod 6.

Proof.
N ≡ 0 mod 6 :

(
1− t + t2

0

)
∼ (1− t + t2).

N ≡ 1 mod 6 :
(

1− t + t2
1

)
∼ (1).

N ≡ 2 mod 6 :
(

1− t + t2
1+ t

)
∼
(

3

1+ t

)

N ≡ 3 mod 6 :
(

1− t + t2
1+ t + t2

)
∼
(

2

1+ t + t2
)
.

N ≡ 0 : H1(ĈN ) ∼= 〈 s 〉 ⊕ 〈 ts 〉 where s is the generator.

N ≡ 1 : H1(ĈN ) = 0.

N ≡ 2 : H1(ĈN ) ∼= 〈 s | 3s 〉.
N ≡ 3 : H1(ĈN ) ∼= 〈 s | 2s 〉 ⊕ 〈 ts | 2ts 〉. 	


9.23 Remark. In the case of a two-fold covering Ĉ2 we get a result obtained already
in 8.20 (a):

B2(t) =



A(t)

1+ t
1+ t

. . .

1+ t

 ∼ A(−1).
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Proposition 8.20 gives a presentation matrix forH1(ĈN ) as an abelian group (8.20 (a))
derived from the presentation matrixA(t) = (V T − tV ) forH1(ĈN ) as a ZN -module.
This can also be achieved by the following trick: Blow up A(t) by replacing every
matrix element rik(t) =∑

j c
(j)
ik t

j by an N ×N -matrix Rik =∑
j c

(j)
ik T

j
N ,

TN =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .

...
...

... 1

1 0 0 . . . 0


.

This means introducing N generators si, tsi , . . . , tN−1si for each generator si , ob-
serving t (tνsi) = tν+1si , tN = 1. The blown up matrix is a presentation matrix of
H1(ĈN ) as an abelian group. For practical calculations of H1(ĈN ) this procedure is
not very useful, because of the high order of the matrices. It may be used, though, to
give an alternative proof of 8.21, see [Neuwirth 1965, 5.3.1].

F History and Sources

Homotopy chains were first introduced by Reidemeister [1934], and they were used
to classify lens spaces [Reidemeister 1935], [Franz 1935]. R.H. Fox gave an algebraic
foundation and generalization of the theory in his free differential calculus [Fox 1953,
1954, 1956], and introduced it to knot theory. Most of the material of this chapter is
connected with the work of R.H. Fox. In connection with the Alexander polynomials
of links the contribution of [Crowell-Strauss 1969] and [Hillman 1981′] should be
mentioned.

G Exercises

E 9.1. Show
(a) that the augmentation ideal IZµ of ZZµ is generated by the elements (ti − 1),

1 � i � µ,
(b) ZZµ is a unique factorization ring with no divisors of zero,
(c) the units of ZZ are ±g, g ∈ Zµ.

E 9.2. The Alexander module of a 2-bridge knot b(a, b) is cyclic. Deduce from this
that �k(t) = 1 for k > 1.



140 9 Free Differential Calculus and Alexander Matrices

E 9.3. Let ϕ : G → G/G′ = 〈 t 〉 be the abelianizing homomorphism of the group
G = 〈 x, y|xay−b 〉 of a torus knot t(a, b). Show that xϕ = tb, yϕ = ta .

E 9.4. Compute theAlexander polynomial�(t1, t2) of the two component link k1∪k2,
where k1 is a torus knot, k1 = t(a, b), and k2 the core of the solid torus T on whose
boundary t(a, b) lies. Hint: Prove that 〈 x, y, z | [x, z], xay−bzb 〉 is a presentation of
the group of k1 ∪ k2.

Result: �(t1, t2) = (ta1 t2)
b−1

ta1 t2−1 .

E 9.5. Let C∞ be the infinite cyclic covering of a link k of µ components (see 9.18).
Show that H1(C∞) has a presentation matrix of the form (V t − tV ) with

V − V T = F ′ =
(
F 0

0 0

)
, F =



0 1

−1 0
. . .

0 1

−1 0

 .

F is a 2g×2gmatrix (g the genus of k), and the order ofF ′ is 2g+µ−1. Deduce from
this that the reduced Alexander polynomial of k is divisible by (t − 1)µ−2 (compare
9.18), and from this: H1(Ĉ2;Z2) =⊕µ−1

i=1 Z2.
Prove that |∇(1)| equals the absolute value of a (µ− 1)× (µ− 1) principal minor

of the linking matrix (lk(ki , kj )), 1 � i, j � µ. Show that ∇(t) is symmetric.

E 9.6. Compute the Alexander polynomial of the doubled knot with m half-twists
(Figure 9.3). (Result: �(t) = kt2−(2k+1)t+k form = 2k,�(t) = kt2−(2k−1)t+k
for m = 2k − 1, k = 1, 2, . . . )

m︷ ︸︸ ︷
. . .

Figure 9.3

E 9.7. For F = 〈 {si | i ∈ I } | − 〉 let l denote the usual length of words with respect to
the free generators {si | i ∈ I }. Extend it to ZF by l(n1x1+· · ·+nkxk) = max{l(xj ) |
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1 � j � k, nj = 0}; here nj ∈ Z and xj ∈ F with xj = xi for i = j . Introduce the
following derivations:

∂

∂s−1
i

: ZF→ ZF, sj �→
{
−si for j = i,
0 for j = i.

Prove:
(a) ∂

∂s−1
i

(s−1
i ) = 1, ∂

∂s−1
i

= − ∂
∂si
· si .

(b) l
(
∂τ
∂si

)
� l(τ ), l

(
∂τ

∂s−1
i

)
� l(τ ) for all i ∈ I, τ ∈ ZF.

(c) l

(
∂

∂s−1
i

∂
∂si
(τ )

)
< l(τ), l

(
∂
∂si

∂

∂s−1
i

(τ )

)
< l(τ).

(d) ∂
∂si
=
(

∂

∂s−1
i

∂
∂si

)
· s−1
i − ∂

∂si

∂

∂s−1
i

.

E 9.8. (a) With the notation of E 9.7 prove: Let τ, γ ∈ ZF, γ = 0 and l(τγ ) � l(τ ).
Then either γ ∈ Z or there is a sδi , i ∈ I , δ ∈ {1,−1} such that l(τ sδi ) � l(τ ). All
elements f ∈ F with l(f ) = l(τ ) that have a non-trivial coefficient in τ end with s−δi .

(b) If l(τγ ) < l(τ ) and γ = 0 then there is a sδi , i ∈ I , δ ∈ {1,−1} such that
l(τ sδi ) < l(τ ).

(c) If τ� ∈ Z then either τ or � is 0 or τ and � have the form af with f ∈ F,
a ∈ Z.
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Braids

In this chapter we will present the basic theorems of the theory of braids including their
classification or, equivalently, the solution of the word problem for braid groups, but
excluding a proof of the conjugation problem (see Makanin [1968], Garside [1969],
Birman [1974]). In Section C we shall consider the Fadell–Neuwirth configuration
spaces which present a different aspect of the matter. Geometric reasoning will prevail,
as seems appropriate in a subject of such simple beauty.

A The Classification of Braids

Braids were already defined in Chapter 2, Section D. We start by defining an isotopy
relation for braids, using combinatorial equivalence. We apply�- and�−1-moves to
the strings fi , 1 � i � n, of the braid (see Definition 1.6) assuming that each process
preserves the braid properties and keeps fixed the points Pi , Qi , 1 � i � n. (See
Figure 10.1.)

z
P1 P2 P3

. . .

. . . Pn

f2

f1

fn
f3

Q1 Q2 Q3 Qn

x
y

Figure 10.1

10.1 Definition (Isotopy of braids). Two braids z and z′ are called isotopic or equiva-
lent, if they can be transformed into each other by a finite sequence of�±1-processes.
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It is obvious that a theorem similar to Proposition 1.10 can be proved. Various
notions of isotopy have been introduced [Artin 1947] and shown to be equivalent. As
in the case of knots we shall use the term braid and the notation z also for a class
of equivalent braids. All braids in this section are supposed to be n-braids for some
fixed n > 1. There is an obvious composition of two braids z and z′ by identifying the
endpoints Qi of z with the initial points P ′i of z′ (Figure 10.2). The composition of

P1 P2 P3 P4 P5

z

Q1 Q2 Q3 Q4 Q5

P ′1 P ′2 P ′3 P ′4 P ′5

z′

Q′1 Q′2 Q′3 Q′4 Q′5

Figure 10.2

representatives defines a composition of equivalence classes. Since there is also a unit
with respect to this composition and an inverse z−1 obtained from z by a reflection in
a plane perpendicular to the braid, we obtain a group:

10.2 Proposition and Definition (Braid group Bn). The isotopy classes zofn-braids
form a group called the braid group Bn. 	


We now undertake tofind a presentation of Bn. It is easy to see that Bn is generated
by n− 1 generators σi (Figure 10.3).

For easier reference let us introduce cartesian coordinates (x, y, z) with respect
to the frames of the braids. The frames will be parallel to the plane y = 0 and those
of their sides which carry the points Pi and Qi will be parallel to the x-axis. Now
every class of braids contains a representative such that its y-projection (onto the
plane y = 0) has finitely many double points, all of them with different z-coordinates.
Choose planes z = const which bound slices of R3 containing parts of z with just one
double point in their y-projection. If the intersection points of z with each of those
planes z = const are moved into equidistant positions on the line in which the frame
meets z = c (without introducing new double points in the y-projection) the braid z

appears as a product of the elementary braids σi, σ
−1
i , compare Figure 10.3.
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. . . . . . . . . . . .

z

y

x

P1 P2 . . . Pi Pi+1 . . . Pn P1 P2 . . . Pi Pi+1. . . Pn

Q1 Q2 . . . Qi Qi+1. . . Qn Q1 Q2 . . . Qi Qi+1 . . . Qn

Figure 10.3

To obtain defining relations for Bn we proceed as we did in Chapter 3, Section B,
in the case of a knot group. Let z = σ

ε1
i1
. . . σ

εr
ir

, εi = ±1, be a braid and consider
its y-projection. We investigate how a �-process will effect the word σε1

i1
. . . σ

εr
ir

representing z. We may assume that the y-projection of the generating triangle of the
�-process contains one double point or no double points in its interior; in the second
case one can assume that the projection of at most one string intersects the interior.
Figure 10.4 demonstrates the possible configurations; in the first two positions it is
possible to choose the triangle in a slice which contains one (Figure 10.4 (a)), or no
double point (Figure 10.4 (b)) in the y-projection.

(a) (b) (c)

Figure 10.4

In Figure 10.4 (a), σi+1 is replaced by σiσi+1σiσ
−1
i+1σ

−1
i ; (b) describes an elemen-

tary expansion, and in (c) a double point is moved along a string which may lead to a
commutator relation σiσk = σkσi for |i − k| � 2. It is easy to verify that any process
of type (a) with differently chosen over- and undercrossings leads to the same relation
σiσi+1σiσ

−1
i+1σ

−1
i σ−1

i+1 = 1; (a) describes, in fact, an �3-process (see 1.13), and one
can always think of the uppermost string as the one being moved.
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10.3 Proposition (Presentation of the braid group). The braid group Bn can be pre-
sented as follows:

Bn = 〈 σ1, . . . , σn−1 | σjσj+1σjσ
−1
j+1σ

−1
j σ−1

j+1 for 1 � j � n− 2, (10.1)

[σj , σk] for 1 ≤ j < k − 1 � n− 2) 〉. 	

In the light of this theorem the classification problem of braids can be understood

as the word problem for Bn. We shall, however, solve the classification problem by
a direct geometric approach and thereby reach a solution of the word problem, rather
than vice versa.

As before, let (x, y, z) be the cartesian coordinates of a point in Euclidean 3-space.
We modify the geometric setting by placing the frame of the braid askew in a cuboid
K . The edges of K are supposed to be parallel to the coordinate axes; the upper side
of the frame which carries the points Pi coincides with an upper edge ofK parallel to
the x-axis, the opposite side which contains theQi is assumed to bisect the base-face
of K (see Figure 10.5).

z

K

P

Q1

P1

y

Q2

S′2

S2
P2

Q3

x

P3

Figure 10.5

10.4 Lemma. Every class of braids contains a representative the z-projectionofwhich
is simple (without double points).

Proof. The representative z of a class of braids can be chosen in such a way that its y-
projection and z-projection yield the same word σε1

i1
σ
ε2
i2
. . . σ

εr
ir

. This can be achieved
by placing the strings in a neighbourhood of the frame, compare 2.12.

Consider the double point in z = 0 corresponding to σεrir , push the overcrossing
along the undercrossing string over its endpointQj (Figure 10.6) while preserving the
z-level. Obviously this process is an isotopy of z which can be carried out without
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Figure 10.6

disturbing the upper part of the braid which is projected onto σε1
i1
. . . σ

εr−1
ir−1

. Proceed by

removing the double point in z = 0 corresponding to σεr−1
ir−1

. The procedure eventually
leads to a braid with a simple z-projection as claimed in the lemma. 	


Remark. Every 2m-plat has an m-bridge presentation.

Let us denote the base-face of K by D, and the z-projections of fi , Pi by f ′i ,
P ′i . The simple projection of a braid then consists of a set of simple and pairwise
disjoint arcs f ′i leading from P ′i to Q′π(i), 1 � i � n, where π is the permutation
associated with the braid z (see 2.12). We call {f ′i | 1 � i � n} a normal dissection
of the punctured rectangle D −⋃n

j=1Qj = Dn. By Lemma 10.4 every braid can
be represented by a set of strings which projects onto a normal dissection of Dn, and
obviously every normal dissection of Dn is a z-projection of some braid in K . Two
normal dissections are called isotopic if they can be transformed into each other by a
sequence of�±1-processes inDn. The defining triangle of such a�-process intersects
{f ′i } in one or two of its sides, line segments of some f ′k . Any two braids projecting
onto isotopic normal dissections evidently are isotopic. The groups π1(K− z) as well
as π1Dn are free of rank n. This is clear from the fact that the projecting cylinders of a
braid with a simple z-projection dissectK− z into a 3-cell. Every braid z inK defines
two sets of free generators {Si}, {S′i}, 1 � i � n, of π1(K − z): Choose a basepoint
P an the x-axis and let Si be represented by a loop on ∂K consisting of a small circle
around Pi and a (shortest) arc connecting it to P . Similarly define S′i by encircling
Qi instead of Pi (Figure 10.5).

Since every isotopy z �→ z′ can be extended to an ambient isotopy in K leaving
∂K pointwise fixed (Proposition 1.10), a class of braids defines an associated braid
automorphism of Fn

∼= π1(K − z), ζ : Fn→ Fn, Si �→ S′i . All information on ζ can
be obtained by looking at the normal dissection of Dn associated to z. Every normal
dissection defines a set of free generators of π1Dn. A loop in Dn which intersects
{f ′i } once positively in f ′k represents a free generator Sk ∈ π1Dn which is mapped
onto Sk ∈ π1(K − z) by the isomorphism induced by the inclusion. Hence, S′i (Sj ) as
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a word in the Sj is easily read off the normal dissection:

S′i = LiSπ−1(i)L
−1
i . (1)

To determine the word Li(Sj ), run through a straight line from P toQi , noting down
Sk or S−1

k if the line is crossed by f ′k from left to right or otherwise.
The braid automorphism (1) can also be interpreted as an automorphism of π1Dn

with {Si} associated to the normal dissection {f ′i }, and {S′i} associated to the standard
normal dissection consisting of the straight segments from P ′i to Qi .

The solution of the classification problem of n-braids is contained in the following

10.5 Proposition (E. Artin). Two n-braids are isotopic if and only if they define the
same braid automorphism.

Proof. Assigning a braid automorphism ζ to a braid z defines a homomorphism

Bn→ Aut Fn, z �→ ζ.

To prove Proposition 10.5 we must show that this homomorphism is injective. This
can be done with the help of

10.6 Lemma. Two normal dissections define the same braid automorphism if and
only if they are isotopic.

Proof. A �-process does not change the S′i = LiSπ−1(i)L
−1
i as elements in the free

group. This follows also from the fact that isotopic normal dissections are z-projections
of isotopic braids, and the braid automorphism is assigned to the braid class. Now let
{f ′i } be some normal dissection ofDn and S′i = LiSπ−1(i)L

−1
i read off it as described

before. IfL(Si) contains a part of the form Sεj S
−ε
j , the two points on f ′i corresponding

to Sεj and S−εj are connected by two simple arcs on f ′i and the loop inDn representing
S′i . These arcs bound a 2-cell in D which contains no point Qk , because otherwise
f ′
π−1(k)

would have to meet one of the arcs which is impossible. Hence the two arcs

bound a 2-cell inDn, and there is an isotopy movingf ′j across it causing the elementary

contraction in Li which deletes Sεj S
−ε
j . Thus we can replace the normal dissection by

an isotopic one such that the corresponding words Li(Sj ) are reduced. Similarly we
can assume LiSπ−1(i)L

−1
i to be reduced. If the last symbol of Li(Sj ) is Sε

π−1(i)
, there

is an isotopy of f ′i which deletes Sε
π−1(i)

in Li(Sj ) (Figure 10.7).

Suppose now that two normal dissections {f ′i }, {f ′′i } define the same braid auto-
morphism Si �→ S′j = LiSπ−1(i)L

−1
i . Assume theLiSπ−1(i)L

−1
i to be reduced, and let

the points of intersection of {f ′i } and {f ′′i }with the loops representing the S′j coincide.
It follows that two successive intersection points on some f ′k are also successive on
f ′′k , and, hence, the two connecting arcs on f ′k resp. f ′′k can be deformed into each
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. .
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S′
i

Qi

f ′
j

fπ−1(i)

Qi

S′
i

P

Figure 10.7

other by an isotopy of {f ′i }. This is clear if {f ′i } is the standard normal dissection and
this suffices to prove Lemma 10.6. 	


We return to the proof of Proposition 10.5. Let z and z′ be n-braids inducing the
same braid automorphism. By Lemma 10.4 we may assume that their z-projections
are simple. Lemma 10.6 ensures that the z-projections are isotopic; hence z and z′ are
isotopic. 	


Proposition 10.5 solves, of course, the word problem of the braid group Bn: Two
braids z, z′ are isotopic if and only if their automorphisms coincide – a matter which
can be checked easily, since Fn is free.

Propositions 10.5 and 10.6 moreover imply that there is a one-to-one correspon-
dence between braids, braid automorphisms and isotopy classes of normal dissections.
These classes represent elements of the mapping class group of Dn; its elements are
homeomorphisms ofDn which keep ∂Dn pointwisefixed, modulo deformations ofDn.

The injective image of Bn in the group Aut Fn of automorphisms of the free group
of rank n is called the group of braid automorphisms. We shall also denote it by Bn.
The injection Bn → Aut Fn depends on a set of distinguished free generators Si of
Fn. It is common use to stick to these distinguished generators or rather their class
modulo braid automorphisms, and braid automorphisms will always be understood in
this way. We propose to study these braid automorphisms more closely.

Figure 10.8 illustrates the computations of the braid automorphisms corresponding
to the elementary braids σ±1

i – we denote the automorphisms by the same symbols:

σi(Sj ) = S′j =


SiSi+1S

−1
i , j = i

Si, j = i + 1

Sj , j = i, i + 1

(2)

σ−1
i (Sj ) = S′j =


Si+1, j = i
S−1
i+1SiSi+1, j = i + 1

Sj , j = i, i + 1

(2′)
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..... . . .

. .

σi

Pi Pi+1 Pi Pi+1

Figure 10.8

From these formulas the identity in Fn

n∏
i=1

S′i =
n∏
i=1

Si (3)

follows for any braid automorphism ζ : Si → S′i , as well as

S′i = LiSπ−1(i)L
−1
i . (1)

This is also geometrically evident, since
∏
Si as well as

∏
S′i is represented by a

loop which girds the whole braid.
At this point it seems necessary to say a few words about the correct interpretation

of the symbols σi . If z = σ
ε1
i1
. . . σ

εr
ir

is understood as a braid, the composition is
defined from left to right. Denote by zk = σ

ε1
i1
. . . σ

εk
ik

, 0 � k � r , the k-th initial
section of z and by ζk the braid automorphism associated to zk (operating on the original
generators Si). The injective homomorphism Bn→ AutFn then maps a factor σ

εj
ij

of
z onto an automorphism of Fn defined by (2) where ζj−1(Si) takes the place of Si .

There is an identity in the free group generated by the {σi}:

z =
r∏
k=1

σ
εk
ik
=

r∏
k=1

zr−kσ εr−k+1
ir−k+1

z
−1
r−k, z0 = 1.

The automorphism ζr−kσ εr−k+1
ir−k+1

ζ−1
r−k (carried out from right to left!) is the automor-

phism σ
εr−k+1
ir−k+1

defined by (2) on the original generators Si (from the top of the braid).

We may therefore understand z = σε1
i1
. . . σ

εr
ir

either as a product (from right to left) of

automorphisms σ
εj
ij

in the usual sense, or, performed from left to right, as a successive
application of a rule for a substitution according to (2) with varying arguments. The
last one was originally employed by Artin, and it makes the mapping Bn→ AutFn a
homomorphism rather than an anti-homomorphism. The two interpretations are dual
descriptions of the same automorphism.
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Braid automorphisms of Fn(Si) can be characterized by (1) and (3). Artin [1925]
even proved a slightly stronger theorem where he does not presuppose that the given
substitution is an automorphism:

10.7 Proposition. Let Fn(Sj ) be a free group on a given set {Sj | 1 � j � n}
of free generators, and let π be a permutation on {1, 2, . . . , n}. Any set of words
S′i (Sj ), 1 � i � n, subject to the following conditions:

(1) S′i = LiSπ(i)L−1
i ,

(3)
∏n
i=1 S

′
i =

∏n
i=1 Si ,

generates Fn; the homomorphism defined by Si �→ S′i is a braid automorphism.

Proof. Assume S′i to be reduced and call λ(ζ ) =∑n
i=1 l(Li) the length of the substi-

tution ζ : Si → S′i , where l(Li) denotes the length of Li . If λ = 0, it follows from
(3) that ζ is the identity. We proceed by induction an λ. For λ > 0 there will be
reductions in

n∏
i=1

Si = L1Sπ(1)L
−1
1 . . . LnSπ(n)L

−1
n

such that some Sπ(i) is cancelled by S−1
π(i) contained in L−1

i−1 or Li+1. (If all Li cancel
out, they have to be all equal, and hence empty, since L1 and Ln have to be empty).
Suppose Li+1 cancels Sπ(i), then

l(LiSπ(i)L
−1
i Li+1) < l(Li+1).

Apply σi to S′j , σi(S′j ) = S′′j , to obtain λ(ζσi) < λ(ζ ) while ζσi still fulfils conditions
(1) and (3). Thus, by induction, ζσi is a braid automorphism and so is ζ . (If Sπ(i) is
cancelled by L−1

i−1, one has to use σ−1
i−1 instead of σi .) 	


B Normal Form and Group Structure

We have derived a presentation of the braid group Bn, and solved the word problem
by embedding Bn into the group of automorphisms of the free group of rank n. For
some additional information on the group structure of Bn first consider the surjective
homomorphism of the braid group onto the symmetric group:

Bn→ Sn, z �→ π,

which assigns to each braid z its permutation π . We propose to study the kernel
In � Bn of this homomorphism.



B Normal Form and Group Structure 151

Pi Pj Pi

a
(i)
j

Figure 10.9

10.8 Definition (Pure braids). A braid of In is called a pure i-braid if there is a
representative with the stringsfj , j = i, constant (straight lines), and if itsy-projection
only contains double points concerning fi and fj , j < i, see Figure 10.9.

10.9 Proposition. The pure i-braids of In form a free subgroup F(i) of In of rank
i − 1.

Proof. lt is evident that F(i) is a subgroup of In. Furthermore F(i) is obviously
generated by the braids a

(i)
j , 1 � j < i, as defined in Figure 10.9. Let z(i) ∈ F(i) be

an arbitrary pure i-braid. Note down (a(i)jk )
εk as you traverse fi at every double point

in the y-projection where fi overcrosses fjk , while choosing εk = +1 resp. εk = −1

according to the characteristic of the crossing. Then z(i) = a
(i)ε1
j1

a
(i)ε2
j2

. . . a
(i)εr
jr

.

It is easy to see that the a
(i)
j are free generators. It follows from the fact that the

loops formed by the strings fi of a
(i)
j combined with an arc on ∂Q can be considered

as free generators of π1(Q−⋃i−1
j=1 fj )

∼= F(i−1). 	


10.10 Proposition. The subgroup Bi−1 ⊂ Bn generated by {σr | 1 � r � i − 2}
operates on F(i) by conjugation.

σ−1
r a

(i)
j σr =


a
(i)
j , j = r, r + 1,

a
(i)
r a

(i)
r+1a

(i)−1
r , j = r,

a
(i)
r , j = r + 1.

The proof is given in Figure 10.10. 	


It is remarkable that σr induces on F(i) the braid automorphism σr with respect to
the free generators a

(i)
j .
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Pr Pr+1 Pi Pr Pr+1 Pi

=

σ−1
r a

(i)
r σr a

(i)
r a

(i)
r+1 (a

(i)
r )

−1

Figure 10.10

The following theorem describes the group structure of In to a certain extent.

10.11 Proposition. The braids z of Jn admit a unique decomposition:

z = z2 . . . zn, zi ∈ F
(i), F

(1) = 1.

This decomposition is called the normal form of z. There is a product rule for normal
forms: ( n∏

i=2

xi

)( n∏
i=2

yi

)
= (x2y2)(x

η2
3 y3) . . . (x

ηn−1...η3η2
n yn),

where ηi denotes the braid automorphism associated to the braid yi ∈ F(i).

Proof. The existence of a normal form for z ∈ Jn is an immediate consequence of
Lemma 10.4. One has to realize z ∈ Jn from a simple z-projection by letting first fn
ascend over its z-projection while representing the fj , j < n, by straight lines over
the endpoints Qj . This defines the factor zn. The remaining part of fn is projected
onto P ′n and therefore has no effect on the rest of the braid. Thus the existence of the
normal form follows by induction on n, Figure 10.11.

The product rule is a consequence of Proposition 10.10. Uniqueness follows

from the fact that, if x2 . . . xn · y−1
n . . . y−1

2 = 1, then (xn · y−1
n )η

−1
2 ...η−1

n−1 is its compo-
nent in F(n). Its string fn is homotopic to some arc on ∂Q in Q −⋃n−1

j=1 fj ; hence

(xn · y−1
n )η

−1
2 ...η−1

n−1 = 1, xn = yn. The rest follows by induction. 	

The normal form affords some insight into the structure of Jn. By definition

F(1) = 1; the group In is a repeated semidirect product of free groups with braid
automorphisms operating according to Proposition 10.10:

Jn = F
(1) � (F(2) � (· · · (F(n−1) � F

(n)) · · · )).



B Normal Form and Group Structure 153

Z2

Z3

Z4

Z5

Z = Z2Z3Z4Z5

Figure 10.11

There is some more information contained in the normal form:

10.12 Proposition. In contains no elements = 1 of finite order. The centre of Jn and
of Bn is an infinite cyclic group generated by (σ1σ2 . . . σn−1)

n for n > 2.

Proof. Suppose for the normal forms of z and zm

(x2 . . . xn)
m = y2 . . . yn = 1,m > 1.

By 10.11, y2 = (x2)
m = 1. Now x2 = 1 follows from Proposition 10.9. In the same

way we get xi = 1 successively for i = 3, 4, . . . , n. This proves the first assertion.
The braid z0 = (σ1σ2 . . . σn−1)

n of Figure 10.12 obviously is an element of the
centre Z(Bn). lt is obtained from the trivial braid by a full twist of the lower side of
the frame while keeping the upper one fixed. The normal form of z0 is given on the
right of Figure 10.12:

z
0 = z

0
2 . . . z

0
n, z

0
i = a

(i)
1 . . . a

(i)
i−1.

(For the definition of a
(i)
j see Figure 10.9.) It is easily verified that z0 determines

the braid automorphism

ζ 0 : Si �→
( n∏
j=1

Sj

)
Si

( n∏
j=1

Sj

)−1
,

and that by (3) Bn ∩ Tn = 〈 ζ 0 〉 ∼= Z, Tn the inner automorphisms of Fn.
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= z0 =

Figure 10.12

Note that Proposition 10.10 yields, for 1 � i � r < n

(σ1 . . . σr−1)
−r

a
(r+1)
i (σ1 . . . σr−1)

r = (a(r+1)
i )(σ1...σr−1)

r

(4)

= (a(r+1)
1 . . . a(r+1)

r )a
(r+1)
i (a

(r+1)
1 . . . a(r+1)

r )−1.

For n > 2 the symmetric group Sn has a trivial centre; hence,Z(Bn) < Z(Jn) for the
centres Z(Bn) and Z(Jn) of Bn and Jn. We may therefore write an arbitrary central
element z of Jn or Bn in normal form z = z2 . . . zn, zi ∈ F(i). (We denote by ζi , ξi , ηi
the braid automorphisms associated to the braids zi , xi , yi .)

For every x3 ∈ F(3):

z2x
ζ2
3 z3 . . . zn = x3z2 . . . zn = z2 . . . znx3 = z2z3x3z

ξ3
4 . . . z

ξ3
n .

It follows that x
ζ2
3 z3 = z3x3, or x

ζ2
3 = z3x3z

−1
3 . Now z2 = (a

(2)
1 )k = (z0

2)
k for some

k ∈ Z. Apply (4) for r = 2, ζ2 = σ 2k
1 : (a(3)i )σ

2k
1 = (a

(3)
1 a

(3)
2 )ka

(3)
i (a

(3)
1 a

(3)
2 )−k .

Hence, for x3 ∈ F(3):

z3x3z
−1
3 = x

σ 2k
1

3 = (a(3)1 a
(3)
2 )kx3(a

(3)
1 a

(3)
2 )−k.

Since F(3) is free, we get z3 = (a(3)1 a
(3)
2 )k = (z0

3)
k .

The next step determines z4 by the following property. For x4 ∈ F(4):

x4z2 . . . zn = z2z3x
ζ3ζ2
4 z4 . . . zn = z2 . . . znx4 = z2z3z4x4z

ξ4
5 . . . z

ξ4
n .

The uniqueness of the normal form gives

x
ζ3ζ2
4 = z4x4z

−1
4 .
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The braids z2 and z3 commute – draw a figure – and so do the corresponding automor-
phisms: ζ2ζ3 = ζ3ζ2.

We already know z2z3 = (a(2)1 )k(a
(3)
1 a

(3)
2 )k , ζ2ζ3 = (σ1σ2)

3k . By (4) we get

x
ξ1ξ2
4 = (σ1σ2)

−3k
x4(σ1σ2)

3k

= (a(4)1 a
(4)
2 a

(4)
3 )k x4(a

(4)
1 a

(4)
2 a

(4)
3 )−k

and hence, z4 = (a
(4)
1 a

(4)
2 a

(4)
3 )k = (z0

4)
k . The procedure yields zi = (z0

i )
k , z = (z0)k .

	


The braid group Bn itself is also torsion free. This was first proved in [Fadell-
Neuwirth 1962]. A different proof is contained in [Murasugi 1982]. We discuss these
proofs in Section C.

C Configuration Spaces and Braid Groups

In [Fadell-Neuwirth 1962] and [Fox-Neuwirth 1962] a different approach to braids
was developed. We shall prove some results of it here. For details the reader is referred
to the papers mentioned above.

A braid z meets a plane z = c in n points (p1, p2, . . . , pn) if 0 � c � 1,
and z = 1 (z = 0) contains the initial points Pi (endpoints Qi) of the strings fi .
One may therefore think of z as a simultaneous motion of n points in a plane E2,
{(p1(t), . . . , pn(t)) | 1 � t � 1}. We shall construct a 2n-dimensional manifold
where (p1, . . . , pn) represents a point and (p1(t), . . . , pn(t)) a loop such that the
braid group Bn becomes the fundamental group of the manifold.

Every n-tuple (p1, . . . , pn) represents a point P = (x1, y1, x2, y2, . . . , xn, yn) in
Euclidean 2n-space E2n, where (xi, yi) are the coordinates of pi ∈ E2. Let i ≺ j

stand for the inequality xi < xj , i =̂ j for xi = xj , yi < yj , and i = j for xi = xj ,
yi = yj . Any distribution of these symbols in a sequence, e.g. π(1) = π(2) =̂π(3) ≺
π(4) . . . π(n), π ∈ Sn, then describes a set of linear inequalities and, hence, a convex
subset of E2n. Obviously these cells form a cell division of E2n. There are n! cells of
dimension 2n, defined by (π(1) ≺ π(2) ≺ · · · ≺ π(n)).

The dimension of a cell defined by some sequence is easily calculated from the
number of times the different signs ≺, =̂, = are employed in the sequence. The
permutations π ∈ Sn under π(p1, . . . , pn) = (pπ(1), . . . pπ(n)) form a group of
cellular operations on E2n. The quotient space Ê2n = E2n/Sn inherits the cell
decomposition. The following example shows how we denote the projected cells:

(π(1) ≺ π(2) =̂ π(3) · · · = π(n)) �→ (≺ =̂ · · · =).
(Just omit the numbers π(i).) Sn operates freely onE2n−�, where� is the (2n−2)-
dimensional subcomplex consisting of cells defined by sequences in which the sign
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= occurs at least once. The projection q : E2n → Ê2n then maps � onto a (2n− 2)-
subcomplex �̂ of Ê2n and q : E2n −�→ Ê2n − �̂ describes a regular covering of
an open 2n-dimensional manifold with Sn as its group of covering transformations.
Ê2n is called a configuration space.

10.13 Proposition. π1(Ê
2n − �̂) ∼= Bn, π1(E

2n −�) ∼= Jn.

Proof. Choose a base point P̂ in the (one) 2n-cell of Ê2n−�̂ and some P , q(P ) = P̂ .
A braid z ∈ Bn then defines a loop in Ê2n−�̂, with base point P̂ = q(P1, . . . , Pn) =
q(Q1, . . . ,Qn). Two such loops zt = q(p1(t), . . . , pn(t)), z′t = q(p′1(t), . . . , p′n(t)),
0 � t � 1, are homotopic relative to P̂ , if these is a continuous family zt (s), 0 � s � 1,
with zt (0) = zt , zt (1) = z′t , z0(s) = z1(s) = P̂ . This homotopy relation zt ∼ z′t
coincides with Artin’s definition of s-isotopy for braids zt , z

′
t [Artin 1947].

It can be shown by using simplicial approximation arguments that s-isotopy is
equivalent to the notion of isotopy as defined in Definition 10.1, which would prove
10.13. We shall omit the proof, instead we show that π1(Ê

2n − �̂) can be computed
directly from its cell decomposition (see [Fox-Neuwirth 1962]).

We already chose the base point P̂ in the interior of the only 2n-cell λ̂ = (≺ · · · ≺).
There are n − 1 cells λ̂i of dimension 2n − 1 corresponding to sequences where the
sign =̂ occurs once (≺ . . . =̂ · · · ≺) at the i-th position.

Think of P̂ as a 0-cell dual to λ̂, and denote by σi , 1 � i � n− 1, the 1-cells dual
to λ̂i . By a suitable choice of the orientation σi will represent the elementary braid.
Figure 10.13 describes a loop σi which intersects λ̂i at t = 1

2 .

.

.

y

pi+1(1) = pi(0)
p1

t = 1
2
pi+1(

1
2 )

pi+1(0) = pi(1)

pi(
1
2 )

pn

x

i i + 1
t = 1

t = 1
2

σi
t = 0

Figure 10.13

It follows that the σi are generators of π1(Ê
2n−�̂). Defining relators are obtained

by looking at the 2-cells r̂ik dual to the (2n − 2)-cells λ̂ik of Ê2n − �̂ which are
characterized by sequences in which two signs =̂ occur: λ̂ik = (≺ · · · ≺ =̂ ≺ · · · ≺
=̂ ≺ . . . ) at position i and k, 1 � i < k � n − 1. The geometric situation will be
quite different in the two cases k = i + 1 and k > i + 1.
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Consider a plane γ transversal to λ̂i,i+1 in Ê2n − �̂. One may describe it as the
plane defined by the equations xi + xi+1 + xi+2 = 0, xj = 0, j = i, i + 1, i + 2.
Figure 10.14 shows γ as an (xi, xi+1)-plane with lines defined by xi = xi+1, xi =
xi+2, xi+1 = xi+2.

xi = xi+2

xi+1

xi = xi+1

xi

B

�i,i+1
A

xi+1 < xi < xi+2

X

xi < xi+1 < xi+2

xi+1 = xi+2

Figure 10.14

The origin of the (xi, xi+1)-plane is γ ∩ λ̂i,i+1 and the half rays of the lines are
γ ∩ λ̂j , i � j � i+2. We represent the points of γ ∩ λ̂ by ordered triples. We choose
some point X in xi < xi+1 < xi+2 to begin with, and let it run along a simple closed
curve �i,i+1 around the origin (Figure 10.14). Traversing xi = xi+1 corresponds to a
generator σi = (. . . =̂ ≺ . . . ), the point on �i,i+1 enters the 2n-cell xi+1 < xi < xi+2
after that. Figure 10.15 describes the whole circuit �i,i+1.

Thus we get: �i,i+1 = σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1. Whether to use σi or σ−1
i can

be decided in the following way. In the cross-section γ coordinates xj , yj different
from xi, xi+1, xi+2 are kept fixed. Thus we have always yi < yi+1 < yi+2. Now
Figure 10.16 shows the movement of the points pi, pi+1, pi+2 ∈ E2 at the points A
and B of Figure 10.14.

The same procedure applies to the case k > i + 1. Here the cross-section to λ̂i,k
can be described by the solutions of the equations xi+xi+1 = xk+xk+1 = 0. We use
an (xi, xk)-plane and again γ ∩ λ̂i,k is the origin and the coordinate half-rays represent
γ ∩ λ̂i , γ ∩ λ̂k (Figure 10.17).

It is left to the reader to verify for i + 1 < k that

�ik = σiσkσ−1
i σ−1

k .

The boundaries ∂r̂ik are homotopic to �ik , thus we have again obtained the standard
presentation Bn = 〈 σ1, . . . , σn−1 | �ik (1 � i < k � n− 1) 〉 of the braid group (see
10.3). By definition π1(E

2n −�) ∼= Jn. 	
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xi < xi+1 < xi+2

xi+1 < xi < xi+2

xi+1 < xi+2 < xi

xi+2 < xi+1 < xi

xi+2 < xi < xi+1

xi+1 < xi+2 < xi+1

xi < xi+1 < xi+2

(. . . =̂ ≺ . . . )⇔ σi

(· · · ≺ =̂ . . . )⇔ σi+1

(. . . =̂ ≺ . . . )⇔ σi

(· · · ≺ =̂ . . . )⇔ σ−1
i+1

(. . . =̂ ≺ . . . )⇔ σ−1
i

(· · · ≺ =̂ . . . )⇔ σ−1
i+1

Figure 10.15

.
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. .

.
.pi+1

pi

xi < xi+1

y
y

yi+2

yi+1

yi

<<

pi+2

A

xx

pi+2

B

xi+2

yi+2

yi+1

yi

xi+2 xi+1 < xi

pi+1

pi

Figure 10.16

A presentation of Jn might be obtained in the same way by studying the cell com-
plex E2n−�, but it is more easily derived from the normal form (Proposition 10.11).

Fadell and Neuwirth [1962] have shown that Ê2n−�̂ is aspherical; in fact, Ê2n−�̂
is a 2n-dimensional open manifold and aK(Bn, 1) space. From this it follows by the
argument used in 3.30 that Bn has no elements = 1 of finite order.

10.14 Proposition. The braid group Bn is torsion free.

We give a proof of this theorem using a result of Waldhausen [1967].
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xk

xi = xi+1

xi < xi+1

xk < xk+1

�ik

xk = xk+1
xi

Figure 10.17

Proof. Let V be a solid torus with meridian m and longitude l and ẑ ⊂ V a closed
braid derived from an n-braid z of finite order k, zk = 1. The embedding ẑ ⊂ V is
chosen in such a way that ẑ meets each meridional disk D in exactly n points. For
some open tubular neighbourhood U(ẑ),

π1(V − U(ẑ)) ∼= Z � π1Dn with Dn = D ∩ (V − U(ẑ)),
where Z(= 〈 t 〉) resp. π1Dn(= N) are free groups of rank 1 resp. n. The generator
t can be represented by the longitude l (compare Corollary 5.4). There is a k-fold
cyclic covering

p : (V̂ − Û (ẑk))→ (V − U(ẑ))
corresponding to the normal subgroup 〈 tk 〉 � N � 〈 t 〉 � N. Now 〈 tk〉 � N =
〈 tk 〉 ×N since zk is the trivial braid. From this it follows that π1(V − U(ẑ)) has a
non-trivial centre containing the infinite cyclic subgroup 〈 tk 〉 generated by tk which
is not contained in N ∼= π1Dn. (Dn is an incompressible surface in V − U(ẑ).)

By [Waldhausen 1967, Satz 4.1] V − U(ẑ) is a Seifert fibre space, 〈 tk 〉 is the
centre of π1(V − U(ẑ)) and tk represents a fibre � lk . The fibration of V − U(ẑ)
can be extended to a fibration of V [Burde-Murasugi 1970]. This means that ẑ is a
torus link t(a, b) = ẑ. It follows that ẑk = t(a, kb). Since zk is trivial, we get kb = 0,
b = 0, and z = 1. 	


The proof given above is a special version of an argument used in the proof of a
more general theorem in [Murasugi 1982].

D Braids and Links

In Chapter 2, Section D we have described the procedure of closing a braid z (see
Figure 2.10). The closed braid obtained from z is denoted by ẑ and its axis by h.
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10.15 Definition. Two closed braids ẑ, ẑ′ in R3 are called equivalent, if they possess
a common axis h, and if there is an orientation preserving homeomorphism f : R3 →
R3, f (ẑ) = ẑ′, which keeps the axis h pointwise fixed.

Of course, R3 may again be replaced by S3 and the axis by a trivial knot. Artin
[1925] already noticed the following:

10.16 Proposition. Two closed braids ẑ, ẑ′ are equivalent if and only if z and z′ are
conjugate in Bn.

Proof. If z and z′ are conjugate, the equivalence of ẑ and ẑ′ is evident. Observe that a
closed braid ẑ can be obtained from several braids which differ by a cyclic permutation
of their words in the generators σi , and hence are conjugate.

If ẑ and ẑ′ are equivalent, we may assume that the homeomorphism f : R3 → R3,
f (ẑ) = ẑ′, is constant outside a sufficiently large cube containing ẑ and ẑ′. Since
h is also kept fixed, we may choose an unknotted solid torus V containing ẑ, ẑ′
and restrict f to f : V → V with f (x) = x for x ∈ ∂V . (We already used this
construction at the end of the preceding section.) Let t again be a longitude of ∂V ,
and Fn

∼= π1Dn the free group of rank n where Dn is a disk with n holes. There is a
homeomorphism z : Dn → Dn, z|∂Dn = id, inducing the braid automorphism ζ of
z, and V −U(ẑ) = (Dn× I )/z, π1(V −U(ẑ)) ∼= 〈 t 〉� Fn, compare 5.2, 10.5, 10.6.
For the presentation

π1(V − U(ẑ)) = 〈 t, ui | tui t−1 = ζ(ui) 〉, 1 � i � n,

choose a base point on ∂V ∩Dn and define the generators {ui} of π1Dn by a normal
dissection of Dn (see 10.4).

The automorphism ζ is then defined with respect to these geometrically distin-
guished generators up to conjugation in the group of braid-automorphisms. The class
of braid automorphisms conjugate to ζ is then invariant under the mapping

f : (V − U(ẑ))→ (V − U(ẑ′)).
and, hence, the defining braids z, z′ must be conjugate. 	


The conjugacy problem in Bn is thus equivalent to the problem of classifying
closed braids. There have been, therefore, many attempts since Artin’s paper in 1925
to solve it, and some partial solutions had been attained [Fröhlich 1936], until in
[Makanin 1968], [Garside 1969] the problem was solved completely. Garside invented
an ingenious though rather complicated algorithm by which he can decide whether
two braids are conjugate or not. This solution implies a new solution of the word
problem by way of a new normal form. We do not intend to copy his proof which
does not seem to allow any essential simplification (see also [Birman 1974]).

Alexander’s theorem (Proposition 2.9) can be combined with Artin’s characteri-
zation of braid automorphisms (Proposition 10.7) to give a characterization of link
groups in terms of special presentations.
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10.17 Proposition. A groupG is the fundamental group π1(S
3− l) for some link l (a

link group) if and only if there is a presentation of the form

G = 〈 S1, . . . , Sn | S−1
i LiSπ(i)L

−1
i , 1 � i � n 〉,

with π a permutation and
∏n
i=1 Si =

∏n
i=1 LiSπ(i)L

−1
i in the free group generated by

{Si | 1 � i � n}. 	


A group theoretical characterization of knot groups π1(S
n−Sn−2) has been given

by Kervaire [1965] for n � 5 only. Kervaire’s characterization includes H1(S
n −

Sn−2) ∼= Z,H2(π1(S
n−Sn−2)) = 0, and that π1(S

n−Sn−2) is finitely generated and
is the normal closure of one element. All these conditions are fulfilled in dimensions
3 and 4 too. For n = 4 the characterization is correct modulo a Poincaré conjecture,
but for n = 3 it is definitely not sufficient. There is an example G = 〈 x, y |
x2yx−1y−1 〉 given in [Rolfson 1976] which satisfies all conditions, but its Jacobian
(see Proposition 9.10)

((
∂(x2yx−1y−1)

∂x

)ϕψ
,

(
∂(x2yx−1y−1)

∂y

)ϕψ)
= (2− t, 0),

xϕψ = 1. yϕψ = t , lacks symmetry. It seems to be a natural requirement to include a
symmetry condition in a characterization of classical knot groups π1(S

3−S1). An in-
finite series of Wirtinger presentations satisfying Kervaire’s conditions is constructed
in [Rosebrock 1994]. These presentations do not belong to knot groups although they
have symmetric Alexander polynomials.

We conclude this chapter by considering the relation between closed braids and
the links defined by them.

Let Bn be the group of braids resp. braid automorphisms ζ operating on the free
group Fn of rank n with free generators {Si}, {S′i}, S′i = ζ(Si), such that (1) and (3) in
10.7 are valid. There is a ring homomorphism

ϕ : ZFn→ ZZ, Z = 〈 t 〉,

defined by: ϕ(Si) = t , mapping the group ring ZFn onto the group ring ZZ of an
infinite cyclic group Z generated by t .

10.18 Proposition ([Burau 1936]). The mapping β : Bn → GL(n,ZZ) defined by

ζ �→
((

∂ζ(Sj )

∂Si

)ϕ)
is a homomorphism of the braid group Bn into the group of
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(n× n)-matrices over ZZ. Then

β(σi) =

i i + 1
E

1− t t

1 0

E


i , 1 ≤ i ≤ n.
i + 1

β is called the Burau representation.

The proof of 10.18 is a simple consequence of the chain rule for Jacobians:

ζ(Si) = S′i , ζ ′(S′k) = S′′k ,
∂S′′k
∂Si

=
n∑
j=1

∂S′′k
∂S′j

∂S′j
∂Si

.

The calculation of β(σi) (and β(σ−1
i )) is left to the reader. 	


10.19 Proposition.
∑n
j=1

(
∂ζ(Si )
∂Sj

)ϕ = 1,
∑n
i=1 t

i−1 ·
(
∂ζ(Si )
∂Sj

)ϕ = tj−1.

Again the proof becomes trivial by using the Fox calculus. The fundamental
formula yields

(ζ(Si)− 1)ϕ = t − 1 =
n∑
j=1

(
∂ζ(Si)

∂Sj

)ϕ
(t − 1).

For the second equation we exploit
∏n
i=1 ζ(Si) =

∏n
i=1 Si in Fn:

n∑
i=1

t i−1
(
∂ζ(Si)

∂Sj

)ϕ
=
(
∂

∂Sj

n∏
i=1

ζ(Si)

)ϕ
=
(
∂

∂Sj

n∏
i=1

Si

)ϕ
= tj−1.

	

The equations of 10.19 express a linear dependence between the rows and columns

of the representing matrices. This makes it possible to reduce the degree n of the
representation by one. If C(t) is a representing matrix, we get:

S−1C(t)S =


0

B(t)
0

∗ ∗ 1

 (5)
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S =


1 1 1

1 1

0 1

 , S−1 =



1 −1 0 0

0 1 −1

0

1 −1

0 0 1


.

This is easily verified and it follows that by setting β̂(ζ ) = B(t)we obtain a repre-
sentation of Bn in GL(n− 1,ZZ) which is called the reduced Burau representation.
Note that

β̂(σ1) =


−t 0

1 1

E



β̂(σi) =

i

E

1 t 0

0 −t 0

0 1 1

E


, 1 < i < n− 1

β̂(σn−1) =


E

1 t

0 −t


(β̂(σ1) = (t) for n = 2).

In addition to the advantage of reducing the degree from n to n − 1, the reduced
representation β̂ has the property of mapping the centre of Bn into the centre of
GL(n− 1,ZZ); thus

β̂(σ1 . . . σn−1)
n =


tn 0

tn

. . .

0 tn


The original β̂ maps the centre on non-diagonal matrices.
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The algebraic level of these representations is clearly that of the Alexander module
(Chapter 8 A). There should be a connection.

10.20 Proposition. For z ∈ Bn, β(z) = C(t), the matrix (C(t) − E) is a Jacobian
(see 9.10) of the link ẑ. Furthermore:

det(B(t)− E) .= �(t)(1+ t + · · · + tn−1)(1− t)µ−1,

where �(t) is the Hosokawa polynomial of ẑ (see 9.18), and µ the multiplicity of ẑ.

Proof. The first assertion is an immediate consequence of 10.17. The second part –
first proved in [Burau 1936] – is a bit harder:

The matrix (C(t) − E) S, see (5), is a matrix with the n-th column consisting of
zeroes – this is a consequence of the first identity in 10.19. If the vector ai denotes the
i-th row of (C(t)−E), then the second identity can be expressed by

∑n
i=1 t

i−1ai = 0.
Hence

n∑
i=1

t i−1
di = 0, (6)

where di denotes the vector composed of the first n− 1 components of aiS.
By multiplying the aiS by S−1 we obtain

det(B(t)− E) = det(d1 − d2, d2 − d3, . . . , dn−1 − dn)

(compare (5)). From this we get that

± det(B(t)− E) = det(d2 − d1, d3 − d1, . . . , dn − d1)

= det(d2, d3, . . . dn)+
n−1∑
i=1

det(d2, . . . , di , (−d1), di+2, . . . , dn)

= det(d2, . . . , dn)+
n−1∑
i=1

det(d2, . . . , t
i
di+1, . . . , dn)

= (1+ t + · · · + tn−1) · �(t) · (t − 1)µ−1.

The last equation follows from 9.18 since det(d2, . . . , dn) by (6) generates the first
elementary ideal of ẑ. 	


The question of the faithfulness of the Burau-presentation has received some
attention: In [Magnus-Peluso 1969] faithfulness was proved for n ≤ 3; only re-
cently this was shown to be wrong for n ≥ 5 in [Moody 1991], [Long-Paton 1993],
[Bigelow 2001].

It is evident that two non-equivalent closed braids may represent equivalent knots
or links. For instance, σ̂1 and σ̂−1

1 both represent the unknot, but σ1 and σ−1
1 are not
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conjugate in B2. Figure 10.18 shows two closed n-braids which are isotopic to ẑ as
links for any z ∈ Bn−1.

A.A. Markov proved in 1936 a theorem [Markoff 1936] which in the case of
oriented links controls the relationship between closed braids and links represented
by them. The orientation in a closed braid is always defined by assuming that the
strings of the braid run downward.

. . .

. . .

. . .

. . .

zn−1
zn−1

Figure 10.18

10.21 Definition (Markov move). The process which replaces z ∈ Bn−1 by zσ±1
n−1

(Figure 10.18) or vice versa is called aMarkov move. Two braids z and z′ areMarkov-
equivalent, if they are connected by a finite chain of braids:

z = z0 → z1 → z2 → · · · → zr = z
′,

where either two consecutive braids zi are conjugate or related by a Markov move.

10.22 Theorem (Markov). Two oriented links represented by the closed braids ẑ and
ẑ′ are isotopic, if and only if the braids z and z′ are Markov-equivalent.

Proof. We revert toAlexander’s theorem and its proof in 2.14. Starting with an oriented
link k the procedure automatically gives a closed braid with all strings oriented in the
same direction, assuming that the orientation of k goes along with increasing indices
of the intersection points Pi , 1 ≤ i ≤ 2m. We denote the oriented projections of the
overcrossing arcs from P2i−1 to P2i by si , and the undercrossing ones from P2i to
P2i+1 by ti ; we also give an orientation to the axis h from left to right, Figure 2.11
(b). Let S denote the set {P2i−1} of the starting point of the arcs si , and F = {P2i}
their finishing points.

We now consider different axes for a given fixed projection p(k). Choose any
simply closed oriented curve h′ in the projection plane R2 = p(R3) which separates
the sets S andF and meets the projectionp(k) transversely such that S is on the left and
F on the right side of h′. We arrange that overcrossing arcs always cross h′ from left to
right and undercrossing ones from right to left, Figure 10.19. This can be achieved by
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si
h′h′

ti

Figure 10.19

changing k while keeping p(k) fixed by introducing new pairs of intersection points.
But the new sets S′ ⊃ S, F ′ ⊃ F are still separated by h′ in the same way. The
original axis h of Figure 2.11 (b) can be replaced by an axis in the form h′ by using
an arc far off the projection, and, on the other hand, any axis h′ defines a closed braid
ẑ ∼= k in the same way as h.

We now study the effect of changing h′ while keeping p(k) fixed.
We first look at isotopies of h′ in R2−S ∪F by�-moves, see Definition 1.7. The

following cases may occur: In Figure 10.20 the fat line always is h′ while the others
belong to p(k). Intersection points are not marked.

(1) (2) (3) (4)

(5) (6)

(7) (8)

Figure 10.20

The moves (5), (6), (7) are isotopies of the closed braid. Move (8) is a sequence
of the remaining moves, Figure 10.21:
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(1) (5) (2)−1

Figure 10.21

Assume h′ to be in the position of the x-axis of R2 and S = {P2i−1} in the
upper half-plane H+. We investigate the effect of the moves (1)–(4). The arcs s′i =
H+ ∩ p(si) form a normal dissection of H+ − S and, hence, define a braid z+ (the
four braids corresponding to H± ∩ S, H± ∩ F form the closed braid ẑ determined
by h′).

In Figure 10.22 the move (4) is applied in a special position: we assume that on the
right side ofQm there are no intersections h′ ∩p(k), and that the�-move is executed
in the neighbourhood of Qm. This special position can always be produced by an
isotopy of ẑ.

h′

s′m

s′m

Qm

�

P2m+1

P2m+1

P2m+2

P2m+2

Q2m+1Q2m+1 QmQm

= s′m+1

tm+1

Figure 10.22

A comparison of Figure 10.22 with Figure 10.8 shows that z+ is replaced by z+σm
while the other three constituents of ẑ just obtain an additional trivial string. By similar
arguments we see that the moves of Figure 10.20 result in Markov moves.

In general the isotopy which moves an axis h′ into another axis h in R2 will not
be an isotopy of R2 − (S ∪ F). Figure 10.23 shows the general case:

Suppose that F is contained in the interior of the closed curve h′, and let the
dissection lines {l2i+1} start in the {P2i+1} and run upwards to infinity. Consider the
local process which pushes two segments of h′, oppositely oriented, simultaneously
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.

..

..

.
P1

P2

P3

P4

P5

P6

Figure 10.23

over an intersection point P2i+1, Figure 10.24:

P2i+1

h′
h′

P2i+1

Figure 10.24

This process again is an isotopy of ẑ. Applying it, we can deform h′ into h′′ with
h′′ ∩ (⋃ l2i+1) = ∅. Then h′′ is a simple closed curve containing F in its interior, S
in its exterior and isotopic to h in R2 − (S ∪ F). So we have proved the following:

10.23 Claim. Given a diagram p(k) of an oriented link which intersection points
(S, F ), and two axes h and h′ separating S and F , then the closed braids defined by
S, F , h and h′ are Markov-equivalent.

10.24 Remarks. Starting with p(k) and (S, F ), a separating axis h will in general
enforce additional intersection points S∗ ⊃ S, F ∗ ⊃ F , but the separating property
will be preserved.

If two closed braids for p(k) and axes h and h′ with different intersection points
(S, F ) and (S′, F ′) are given, they are still Markov-equivalent, because by the claim
those given by h, (S′′, F ′′) and h′, (S′′, F ′′) are, for a common refinement (S′′, F ′′)
of (S, F ) and (S′, F ′).
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To complete the proof of Markov’s theorem, we have to check the effect of the
Reidemeister moves �i , 1 ≤ i ≤ 3, see 1.13, on p(k). We take advantage of Claim
10.23 in choosing a suitable axis: for �1 and �2 the axis can be chosen away from
the local region where the move is applied. In a situation where �3 can be executed,
Figure 10.25, the line si will cross the axis h′. According to the orientations, two cases
arise which are shown in Figure 10.25.

h′

h′

h′

h′

P2k−1

P2k−1

P2k−1

P2k−1

si

si

si

si

P2k
P2k

P2k
P2k

�3

�3

Figure 10.25

It suffices to ascertain that we can in each case place the intersection points in the
region of the�3-move in such a way that S andF are separated by h′. The intersection
points outside the region are not changed. This completes the proof which is due to
H. Morton, [Morton 1986′′]. 	


A Markov-theorem for unoriented links was proved by Anja Simon [Simon 1998];
in addition to conjugation and Markov moves a further move (Markov∗) is necessary
which operates not on the braid group but on the monoid of pseudobraids.

E History and Sources

There are few theories in mathematics the origin and author of which can be named
so definitely as in the case of braids: Emil Artin invented them in his famous paper
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“Theorie der Zöpfe” in 1925. (O. Schreier, who was helpful with some proofs, should,
nevertheless be mentioned.) This paper already contains the fundamental isomorphism
between braids and braid automorphisms by which braids are classified. The proof,
though, is not satisfying. Artin published a new paper on braids in 1947 with rigorous
definitions and proofs including the normal form of a braid. The remaining prob-
lem was the conjugacy problem. The importance of the braid group in other fields
became evident in Magnus’ paper on the mapping class groups of surfaces [Magnus
1934]. Further contributions in that direction were made by J. Birman and H. Hilden.
There have been continual contributions to braid theory by several authors. For a
bibliography see [Birman 1974]. The outstanding work was doubtless Makanin’s and
Garside’s solution of the conjugacy problem [Makanin 1968], [Garside 1969]. Braid
theory from the point of view of configuration spaces [Fadell-Neuwirth 1962] assigns
braid groups to manifolds – the original braid group then is the braid group of the
plane R2. This approach has been successfully applied [Arnol’d 1969] to determine
the homology and cohomology groups of braid groups.

F Exercises

E 10.1. (Artin) Prove: Bn = 〈 σ, τ | σ−n(στ)n−1, [σ iτσ−i , τ ], 2 � i � n
2 〉,

σ = σ1σ2 . . . σn−1, τ = σ1. Derive from this presentation a presentation of the
symmetric groups Sn.

E 10.2. Bn/B
′
n
∼= Z, Jn/J

′
n
∼= Z(

n
2).

E 10.3. Let Z(Bn) be the centre of Bn. Prove that zm ∈ Z(Bn) and z ∈ Jn imply
z ∈ Z(Bn).

E 10.4. Interpret Jn as a group of automorphisms of Fn and denote by Tn the inner
automorphisms of Fn. Show that

TnJn/Tn = Tn−1In−1, Tn ∩ Jn = Z(Jn) = centre of Jn.

Derive from this that TnJn has no elements of finite order = 1.

E 10.5. (Garside) Show that every braid z can be written in the form

σ = σa1
i1
. . . σ

ar
ir
�k, ak � 1, with � = (σ1 . . . σn−1)(σ1 . . . σn−2) . . . (σ2σ2)σ1

the fundamental braid, k an integer.

E 10.6. Show that the Burau representation β and its reduced version β̂ are equivalent
under β(z) �→ β̂(z). The representations are faithful for n � 3.
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E 10.7. Show that the notion of isotopy of braids as defined in 10.1 is equivalent to
s-isotopy of braids as used in the proof of 10.13.



Chapter 11

Manifolds as Branched Coverings

The first section contains a treatment of Alexander’s theorem [Alexander 1920] (The-
orem 11.1). It makes use of the theory of braids and plats. The second part of
this chapter is devoted to the Hilden–Montesinos theorem (Theorem 11.11) which
improves Alexander’s result in the case of 3-manifolds. We give a proof following
H. Hilden [1976], but prefer to think of the links as plats. This affords a more transpar-
ent description of the geometric relations between the branch sets and the Heegaard
splittings of the covering manifolds. The Dehn–Lickorish theorem (Theorem 11.7) is
used but not proved here.

A Alexander’s Theorem

11.1 Theorem (Alexander [1920]). Every orientable closed 3-manifold is a branched
covering of S3, branched along a link with branching indices � 2. (Compare 8.18.)

Proof. Let M3 be an arbitrary closed oriented manifold with a finite simplicial struc-
ture. Define a map p on its vertices P̂i , 1 � i � N , p(P̂i) = Pi ∈ S3, such that the
Pi are in general position in S3. After choosing an orientation for S3 we extend p
to a map p : M3 → S3 by the following rule. For any positively oriented 3-simplex
[P̂i1 , P̂i2 , P̂i3 , P̂i4 ] of M3 we define p as the affine mapping

p : [P̂i1 , P̂i2 , P̂i3 , P̂i4 ] → [Pi1 , Pi2 , Pi3 , Pi4 ].
if [Pi1 , Pi2 , Pi3 , Pi4 ] is positively oriented in S3; if not, we choose the complement
C[Pi1 , Pi2 , Pi3 , Pi4 ] as image,

p : [P̂i1 , P̂i2 , P̂i3 , P̂i4 ] → C[Pi1 , Pi2 , Pi3 , Pi4 ].
We will show that p is a branched covering, the 1-skeleton M1 of M3 being mapped
by p onto the branching set p(M1) = T ⊂ S3. For every point P ∈ S3 − p(M2),
M2 the 2-skeleton of M3, there is a neighbourhood U ⊂ S3 − p(M2) containing P
such that p−1(U(P )) consists of n disjoint neighbourhoods Ûj of the points p−1(P ).
Suppose P̂ is contained in the interior of the 2-simplex [P̂1, P̂2, P̂3], in the boundary
of [P̂0, P̂1, P̂2, P̂3] and [P̂1, P̂2, P̂3, P̂4]. Let [P0, P1, P2, P3] be positively oriented
in S3. If P0 and P4 are separated by the plane defined by [P1, P2, P3], we get that

p[P̂0, P̂1, P̂2, P̂3] = [P0, P1, P2, P3], p[P̂1, P̂2, P̂3, P̂4] = [P1, P2, P3, P4];
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if not,

p[P̂0, P̂1, P̂2, P̂3] = [P0, P1, P2, P3], p[P̂1, P̂2, P̂3, P̂4] = C[P1, P2, P3, P4].
In both cases there is a neighbourhood Û of P̂ which is mapped onto a neighbourhood
U of P = p(P̂ ), see Figure 11.1.

P

P2

P4

P1

P0

(P4)

P3

U(P )

Figure 11.1

As a consequence p : M3 → S3 is surjective, otherwise the compact polyhedron
p(M3) ⊂ S3 would have boundary points on p(M2) − p(M1). It follows from the
construction that the restriction p|M2 : M2 → S3 is injective. The preimage p−1(Pi)

of a vertex Pi consists of P̂i and may-be several other points with branching index
one. The same holds for the images [Pi, Pj ] = p[P̂i , P̂j ] of edges. It remains to show
that p can be modified in such a way that the branching set T = p(M1) is transformed
into a link (without changing M3).

By U(T ) we denote a tubular neighbourhood of T ⊂ S3, consisting of (closed)
balls Bi with centres Pi and cylindrical segments Zij with axes on [Pi, Pj ]. The
intersection Zij ∩ Bk is a disk δk for k = i, j and empty otherwise. With I = [0, 1],
Zij = I×δ, and for Y ∈ I the disk Y ×δ is covered by a collection of disjoint disks in
M3, of which at most one may contain a branching point Ŷ ∈ M1 of index r > 1. The
branched covering p| : Ŷ × δ̂→ Y × δ (for short: p : δ̂→ δ) is cyclic (Figure 11.2).

A cycle of length r may be written as a product of r−1 transpositions, (1, 2, . . . , r)=
(1, 2)(2, 3) . . . (r − 1, r). Correspondingly there is a branched covering p′ : δ̂′ → δ

with r − 1 branchpoints Ŷi , 1 � i � r − 1, of index two. δ̂′ is a disk, and p′ | ∂δ̂′ =
p|∂δ̂. We substitute p′ for p on all cylindrical segments Ẑij ⊂ p−1Zij and obtain a
new branched covering

p′ : M3 −
⋃
p−1(Bi)→ S3 −

⋃
Bi.

We denote by B̂i the component of p−1(Bi) which contains P̂i . The branching
set consists of lines in the cylindrical segments parallel to the axis of the cylinder.
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Figure 11.2

p′|∂B̂i = Ŝ2 → S2 = ∂Bi is a branched covering with branching points Qj , 1 �
j � q, of index two where the sphere S2 meets the branching lines contained in
the adjoining cylinders. To describe this covering we use a normal dissection of
S2−⋃q

j=1Qj = �q joining theQj by simple arcs sj to someQ ∈ �q . (The arcs are
required to be disjoint save for their common endpoint Q, Figure 11.3.)

. .
.

Q

Q1
Q2

Q3

Qqs1
s2
s3

sq

Figure 11.3

We assign to each sj a transposition τj ∈ Sn, where n is the number of sheets of the
covering p′ : Ŝ2 → S2, and Sn is the symmetric group of order n!. Crossing an arc of
p−1(sj ) in Ŝ2 means changing from the k-th sheet to the τj (k)-th sheet of the covering.
Since Q is not a branch point,

∏q
j=1 τj = id, q = 2m. Computing χ(Ŝ2) = 2 gives

(n− 1) = m. On the other hand, any set of transpositions {τj | 1 � j � 2m} which
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generate a transitive subgroup of Sn, n = m + 1, defines a covering p′ : Ŝ2 → S2,
if
∏2m
j=1 τj = id. We may assign generators Sj ∈ π1(�2m) to the arcs sj (see the

text preceding 10.5),
∏2m
j=1 Sj = 1, and there is a homomorphism ϕ : π1�2m → Sn,

ϕ(Sj ) = τj . Given two normal dissections {si} and {s′j } of �2m with respect to
Qi , Qj there is a homeomorphism h : �2m → �2m, h(si) = s′j which induces a

braid automorphism ζ : Sj �→ ζ(Sj ) = S′j = LjSiL
−1
j , π(i) = j , where π is the

permutation of the braid. The generator S′j corresponds to the arc s′j . The commutative
diagram

π1�2m
ζ ��

ϕ

��

π1�2m

ϕ′
��

Sn

ζ ∗ �� Sn

defines a mapping ζ ∗ called the induced braid substitution in Sn. This can be used
to compute the transpositions τ ′j = ζ ∗(τj ) which have to be assigned to the arcs s′j
in order to define the covering p′ : Ŝ2 → S2. It follows that the homeomorphism
h : �2m→ �2m can be extended and lifted to a homeomorphism ĥ:

Ŝ2

p′
��

ĥ ��
Ŝ2

p′
��

S2 h �� S2

We interrupt our proof to show that there are homeomorphisms h, ĥ such that the τj
are replaced by τ ′j with a special property.

11.2 Lemma. If 2m transpositions τi ∈ Sn, 1 � i � 2m, satisfy
∏2m
i=1 τi = id, then

there is a braid substitution ζ ∗ : τi �→ τ ′i , such that

τ ′2j−1 = τ ′2j , 1 � j � m.

Proof. Denote by σ ∗±1
k the braid substitutions in Sn induced by the elementary braids

σ±1
k (Chapter 10A, (2) resp. (2)′). If τk = (a, b), τk+1 = (c, d), a, b, c, d all different,

the effect of σ ∗±1
k is to interchange the transpositions:

τ ′k = σ ∗±1
k (τk) = τk+1, τ

′
k+1 = σ ∗±1

k (τk+1) = τk.
If τk = (a, b), τk+1 = (b, c) then

σ ∗k (τk) = (a, c), σ ∗k (τk+1) = (a, b) and σ ∗−1
k (τk) = (b, c), σ ∗−1

k (τk+1) = (a, c).
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Assume τ1 = (1, 2). Let τj = (1, a) be the transposition containing the figure 1, with
minimal j > 1. (There is such a τj because

∏
τi = id.) If j > 2, τj−1 = (b, c),

b, c = 1, the braid substitution σ ∗±1
j−1 will interchange τj−1 and τj , if a, b, c are

different. A pair (a, b) = τj−1, (1, a) = τj is replaced by (1, b), (a, b) if σ ∗j−1 is

applied, and by (1, a), (1, b), if σ ∗−1
j−1 is used.

Thus the sequence τ1, τ2, . . . , τ2m can be transformed by a braid substitution into
(1,2), (1, i2) . . . (1, iν), τ ′′ν+1, . . . , τ

′′
2m, where the τ ′′j , j > ν, do not contain the figure

1. There is an ij = 2, 2 � j � ν. If j = 2, the lemma is proved by induction.
Otherwise we may replace (1, ij−1), (1, 2) by (1, 2), (2, ij−1) using σ ∗−1

j−1 . 	


We are now in a position to extend p′ : (M3 −⋃p−1(B̊i))→ (S3 −⋃ B̊i) to a
covering p̃ : M3 → S3 and complete the proof of Theorem 11.1.

We choose a homeomorphism

h : �2m→ �2m

which induces a braid automorphism ζ : π1�2m → π1�2m satisfying Lemma 11.2:
ζ ∗(τk) = τ ′k , τ ′2j−1 = τ ′2j , 1 � j � m. The homeomorphism h : S2 → S2 is
orientation preserving and hence there is an isotopy

H : S2 × I → S2, H(x, 0) = x, H(x, 1) = h(x).
Lift H to an isotopy

Ĥ : Ŝ2 × I → Ŝ2, Ĥ (x, 0) = x, Ĥ (x, 1) = ĥ(x).
Now identify S2 × 0 and Ŝ2 × 0 with ∂Bi and ∂B̂i and extend p′ to Ŝ2 × I by setting
p′(x, t) = (p′(x), t).

It is now easy to extendp′ to a pair of balls B̂ ′i ,B ′i with ∂B̂ ′i = Ŝ2×1, ∂B ′i = S2×1.
We replace the normal dissection {s′j } of (S2 × 1) − U{Q′j }, h(Qj ) = Q′

π−1(j)
, by

disjoint arcs tj , 1 � j � m, which connect Q′2j−1 and Q′2j (Figure 11.4).

There is a branched covering p′′ : B̂ ′i → B ′i with a branching set consisting of m
simple disjoint unknotted arcs t ′j , t ′j ∩ ∂B ′j = Q′2j−1 ∪Q′2j , and there are m disjoint
disks δj ⊂ B ′j with ∂δj = tj ∪ t ′j (Figure 11.4).

Passing through a disk of (p′′)−1(δj ) in B̂ ′i means changing from sheet number

k to sheet number τ ′j (k). Since p′′|∂B̂ ′i = p′ we may thus extend p′ to a covering

p̃ : M3 → S3. (There is no problem in extending p′ to the balls of p−1(Bi) different
from B̂i , since the covering is not branched in these.) 	


The branching set of p̃ in B ′i ∪ (S2 × I ) is described in Figure 11.5: The orbits
{(Qi, t) | 0 � t � 1} ⊂ S2× I form a braid to which in B ′i the arcs ∂δi − ti are added
as in the case of a plat.
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Q
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S2 × 1
Q′ Zij

S2 × 0

Figure 11.5

The braids that occur depend on the braid automorphisms required in Lemma 11.2.
They can be chosen in a rather special way. It is easy to verify from the operations
used in Lemma 11.2 that braids z2m of the type depicted in Figure 11.6 suffice. One
can see that the tangle in Bi then consists of m unknotted and unlinked arcs.

B Branched Coverings and Heegaard Diagrams

ByAlexander’s theorem every closed oriented 3-manifold is an n-fold branched cover-
ing p : M3 → S3 of the sphere. Suppose the branching set k is a link of multiplicityµ,
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. . .

. . .

z2m

z2m−2

Figure 11.6

k =⋃µ
i=1 ki , and it is presented as a 2m-plat (see Chapter 2 D), wherem is the bridge

number of k. A component ki is then presented as a 2λi-plat,
∑µ
i=1 λi = m. Think of

S3 as the union of two disjoint closed balls B0, B1, and I ×S2, {j}×S2 = ∂Bj = S2
j ,

j = 0, 1. Let the plat k intersect B̊0 and B̊1 in m unknotted arcs spanning disjoint
disks δji , 1 � i � m, in Bj , j = 0, 1, and denote by z = k∩ (I × S2) the braid part of
k (Figure 11.7). Every point of ki ∩ (S2

0 ∪ S2
1 ) is covered by the same number µi � n

of points in M3.

S2
0

δ0
1 δ0

2

B0

z
I × S2

S2
1

δ1
1 δ1

2
B1

Figure 11.7

11.3 Proposition. AmanifoldM3which is ann-fold branched coveringofS3 branched
along the plat k possesses a Heegaard splitting of genus

g = m · n− n+ 1−
µ∑
i=1

λiµi.
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Proof. The 2-spheres S2
j are covered by orientable closed surfaces F̂j = p−1(S2

j ),

j = 0, 1. The group π1(S
3 − k) can be generated by m Wirtinger generators si ,

1 � i � m, encircling the arcs k ∩ B0. Similarly one may choose generators s′i
assigned to k∩B1; the si can be represented by curves in S2

0 , the s′i by curves in S2
1 . It

follows that F̂0 and F̂1 are connected. p| : F̂j → S2
j , j = 0, 1, are branched coverings

with 2m branchpoints k∩ S2
j each. The genus g of F̂0 and F̂1 can easily be calculated

via the Euler characteristic as follows: p−1(S2
j ∩ ki ) consists of 2λiµi points. Hence,

χ(F̂0) = χ(F̂1) = n+ 2 ·
µ∑
j=1

λiµi − 2m · n+ n = 2− 2g.

The balls Bj are covered by handlebodies p−1(Bj ) = B̂j of genus g. This is easily

seen by cutting the Bj along the disk δji and piecing copies of the resulting space

together to obtain B̂j . The manifold M3 is homeomorphic to the Heegaard splitting
B̂0 ∪ĥ B̂1. 	


The homeomorphism ĥ : F̂0 → F̂1 can be described in the following way. The
braid z determines a braid automorphism ζ which is induced by a homeomorphism
h : [S2

0 − (k ∩ S2
0 )] → [S2

1 − (k ∩ S2
1 )]. One may extend h to a homeomorphism

h : S2
0 → S2

1 and lift it to obtain ĥ:

F̂0
ĥ ��

p

��

F̂1

p

��
S2

0
h �� S2

1

Proposition 11.3 gives an upper bound for the Heegaard genus (g minimal) of a
manifold M3 obtained as a branched covering.

11.4 Proposition. TheHeegaard genus g∗ of an n-fold branched covering of S3 along
the 2m-plat k satisfies the inequality

g∗ � m · n− n+ 1−
µ∑
i=1

λiµi � (m− 1)(n− 1).

Proof. The second part of the inequality is obtained by putting µi = 1. 	


The 2-fold covering of knots or links with two bridges (n = m = 2) have Heegaard
genus one – a well-known fact. (See Chapter 12, [Schubert 1956]). Of special interest
are coverings with g = 0. In this case the covering space M3 is a 3-sphere. There
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are many solutions of the equation 0 = mn − n + 1 −∑µ
i=1 λiµi ; for instance, the

3-sheeted irregular coverings of 2-bridge knots, m = 2, n = 3, µi = 2, [Fox 1962′],
[Burde 1971]. The braid z of the plat then lifts to the braid ẑ of the plat k̂. Since ẑ can
be determined via the lifted braid automorphism ζ̂ , pζ̂ = ζp, one can actually find k̂.
This was done for the trefoil [Kinoshita 1967] and the four-knot [Burde 1971].

A simple calculation shows that our construction never yields genus zero for regular
coverings – except in the trivial cases n = 1 or m = 1.

For fixed m and n the Heegaard genus of the covering space M3 is minimized by
choosing µi = n − 1, g = m + 1 − n. These coverings are of the type used in our
version of Alexander’s Theorem 11.1. From this we get

11.5 Proposition. An orientable closed 3-manifold M3 of Heegaard genus g∗ is an
n-fold branched covering with branching set a link k with at least g∗ + n− 1 bridges.

	


We propose to investigate the relation between the Heegaard splitting and the
branched-covering description of a manifoldM3 in the special case of a 2-fold cover-
ing, n = 2. Genus and bridge-number are then related by m = g + 1.

The covering p| : F̂0 → S2
0 is described in Figure 11.8.

F̂0

τ

P̂1

a1

P̂2

c1

P̂3

a2

P̂4

b2 c2

P̂5 P̂6

a3

P̂2g+1

cg

ag+1
P̂2g+2

p

P1
S2

0
t1 P2 u1 P3 t2 P4 u2 P5 t3 P6 u3 ug tg+1

P2g+1 P2g+2

c3

Figure 11.8

ConnectP2j andP2j+1, 1 ≤ j ≤ g, by simple arcsuj , such that t1u1t2u2 . . . ugtg+1

is a simple arc, ti = S2
0∩δ0

i . A rotation throughπ about an axis which pierces F̂0 in the

branch points P̂j = p−1(Pj ), 1 � j � 2g + 2 is easily seen to be the covering trans-
formation. The preimages ai = p−1(ti), cj = p−1(uj ), 1 � i � g+1, 1 � j � g are
simple closed curves on F̂0. We consider homeomorphisms of the punctured sphere
S2

0 −
⋃2g+2
j=1 Pj which induce braid automorphisms, especially the homeomorphisms
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that induce the elementary braid automorphisms σk , 1 � k � 2g+1. We extend them
to S2

0 and still denote them by σk . We are going to show that σk : S2
0 → S2

0 lifts to a
homeomorphism of F̂0, a so-called Dehn-twist.

11.6 Definition (Dehn twist). Let a be a simple closed (unoriented) curve on a closed
oriented surface F , and U(a) a closed tubular neighbourhood of a in F . A right-
handed 2π -twist of U(a) (Figure 11.9), extended by the identity map to F is called a
Dehn twist α about a.

a
U(a)

Figure 11.9

Up to isotopy a Dehn twist is well defined by the simple closed curve a and a
given orientation of F . Dehn twists are important because a certain finite set of Dehn
twists generates the mapping class group of F – the group of autohomeomorphisms of
F modulo the deformations (the homeomorphisms homotopic to the identity) [Dehn
1938].

11.7 Theorem (Dehn, Lickorish). The mapping class group of a closed orientable
surface F of genus g is generated by the Dehn twists αi, βk, γj , 1 � i � g + 1,
2 � k � g − 1, 1 � j � g, about the curves ai, bk, cj as depicted in Figure 11.8.

For a proof see [Lickorish 1962, 1964, 1966]. We remark that a left-handed twist
about a is the inverse α−1 of the right-handed Dehn twist α about the same simple
closed curve a. 	


11.8 Lemma. The homeomorphisms σ2i−1, 1 � i � g+1 lift to Dehn twists αi about
ai = p−1(ti) and the homeomorphisms σ2j , 1 � j � g, lift to Dehn twists γj about
cj = p−1(uj ).

Proof. We may realize σ2i−1 by a half twist of a disk δi containing ti (Figure 11.10),
keeping the boundary ∂δi fixed.

The preimagep−1(δi) consists of two annuliAi and τ(Ai), Ai∩τ(Ai) = p−1(ti) =
ai . The half twist of δi lifts to a half twist of Ai , and to a half twist of τ(Ai) in the
opposite direction. SinceAi ∩ τ(Ai) = ai , these two half twists add up to a full Dehn
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τA1
c1

c1
a1

A1

P1
t1

σ1

P2P2
u1

σ2

P3

Figure 11.10

twist αi along ai . A similar construction shows that σ2j is covered by a Dehn twist γj
along cj = p−1(uj ). 	


There is an immediate corollary to 11.5, 11.7 and 11.8.

11.9 Corollary. A closed oriented 3-manifoldM3 of Heegaard genus g � 2 is a two-
fold branched covering of S3 with branching set a link k ⊂ S3 with g + 1 bridges.

	


There are, of course, closed oriented 3-manifolds which are not 2-fold coverings,
if their Heegaard genus is at least three. S1 × S1 × S1 is a well-known example [Fox
1972].

11.10 Proposition (R.H. Fox). The manifold S1×S1×S1 is not a two-fold branched
covering of S3; its Heegaard genus is three.

Proof. We have seen earlier that for any n-fold branched cyclic covering Ĉn of a knot
the endomorphism 1+ t +· · ·+ tn−1 annihilatesH1(Ĉn) (Proposition 8.20 (b)). This
holds equally for the second homology group, even if the branching set is merely
a 1-complex. (It is even true for higher dimensions, see [Fox 1972].) Let M3 be
a closed oriented manifold which is an n-fold cyclic branched covering of S3. Let
ĉq = ∑n−1

i=0
∑
k nikt

νik ĉ
q
k , ∂ĉq = 0, be a q-cycle of Hq(M3), q ∈ {1, 2}, with ĉqk a

simplex over cqk , pĉqk = c
q
k , 〈 t 〉 the covering transformations. For a (q + 1)-chain
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cq+1 of S3

( n−1∑
j=0

tj
)
ĉq =

∑
i,j,k

nikt
νik+j ĉqk =

∑
i,k

nikĉ
q
k

∑
j

tνik+j

=
(∑

j

tj
)(∑

i,k

nikĉ
q
k

)
= p−1

(∑
i,k

nikc
q
k

)
= p−1∂cq+1

= ∂p−1cq+1 ∼ 0.

Suppose M = S1
1 × S1

2 × S1
3 is a 2-fold covering of S3. One has

π1(S
1
1 × S1

2 × S1
3)
∼= H1(S

1
1 × S1

2 × S1
3) = Z⊕ Z⊕ Z,

and t can be described by the (3× 3)-matrix−E with respect to the basis represented
by the three factors. As S1

1×S1
2×S1

3 is aspherical the covering transformation τ which
induces t in the homology is homotopic to a map which inverts each of the 1-spheres
S1
i [Spanier 1966, Chapter 8, Theorem 11]. Poincaré duality assigns to each S1

i a torus
S1
j × S1

k , i, j, k all different, which represents a free generator of H2(S
1
1 × S1

2 × S1
3).

Thus t operates on H2(S
1
1 × S1

2 × S1
3) as the identity which contradicts 1+ t = 0.

It is easy to see that S1 × S1 × S1 can be presented by a Heegaard splitting of
genus three – identify opposite faces of a cube K (Figure 11.11). After two pairs are
identified one gets a thickened torus. Identifying its two boundary tori obviously gives
S1 × S1 × S1. On the other hand K1 and K2 = K −K1 become handlebodies of
genus three under the identifying map. 	


K2 K1

K

Figure 11.11

The method developed in this section can be used to study knots with two bridges
by looking at their 2-fold branched covering spaces – a tool already used by H. Seifert
[Schubert 1956]. It was further developed by Montesinos who was able to classify a
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set of knots comprising knots with two bridges and bretzel knots by similar means.
We shall take up the matter in Chapter 12.

We conclude this section by proving the following

11.11 Theorem (Hilden–Montesinos). Every closed orientable 3-manifold M is an
irregular3-fold branched covering ofS3. The branching set k can be chosen in different
ways, for instance as a knot or a link with unknotted components. If g is the Heegaard
genus ofM , it suffices to use a (g + 2)-bridged branching set k.

. .

. . . . . ... ........ .. .

F̂ (1)

F̂ (2)

F̂ (3)
F̂

p

P1
t1 t2

S2

tg+2
P2g+4

��� P2 σσσ τττ
P2g+3

Figure 11.12

Before starting on the actual proof in 11.14 we study irregular 3-fold branched
coverings p : F̂ → S2 of S2 with branch indices � 2. If F̂ is an orientable closed
surface of genus g, a calculation of χ(F̂ ) shows that the branching set in S2 consists
of 2(g + 2) points Pi , 1 � i � 2(g + 2). Let us denote by �, σ , τ the transpositions
(1, 2), (2, 3), (1, 3). Then by choosing g + 2 disjoint simple arcs ti , 1 � i � g + 2
in S2, ti connecting P2i−1 and P2i (Figure 11.12), and assigning to each ti one of the
transpositions �, σ, τ , we may construct a 3-fold branched covering p : F̂ → S2 (see
Figure 11.12). The sheets F̂ (j), 1 � j � 3, of the covering are homeomorphic to
a 2-sphere with g + 2 boundary components obtained from S2 by cutting along the
ti , 1 � i � g + 2. Traversing an arc of p−1(ti) in F̂ means changing from F̂ (j) to
F̂ (σ (j)), if σ is assigned to ti . (For F̂ to be connected it is necessary and sufficient that
at least two of the three transpositions are used in the construction.)

It will be convenient to use a very special version of such a covering. We assign
� to ti , 1 � i � g + 1, and σ to tg+2 (Figure 11.13).



B Branched Coverings and Heegaard Diagrams 185
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(1)
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2
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F̂ (3) ê
(3)
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p
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t1 u1 t2 u2 tg ug tg+1 ug+1 tg+2
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δg+1 P2g+4l2
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Figure 11.13

As in Figure 11.8 we introduce arcs uj , 1 � j � g+1, connecting P2j and P2j+1.
We direct the ti ,uj coherently (Figure 11.13) and lift these orientations. p−1(ti),
1 � i � g + 2, consists of a closed curve ai which will be regarded as unoriented,
since its two parts carry opposite orientations, and an arc in F̂3 for 1 � i � g + 1,
resp. in F̂1 for i = g + 2. By the Dehn–Lickorish Theorem 11.7 the mapping class
group of F̂ is generated by the Dehn twists αi, βk, γj , 1 � i � g+ 1, 2 � k � g− 1,
1 � j � g about the curves ai, bk, cj . Lemma 11.8 can be applied to the situation
in hand: σ2i−1 in S2 lifts to αi , 1 � i � g + 1 and σ2j lifts to γj , 1 � j � 2g,
because the effect of the lifting in F̂3 is isotopic to the identity. (Observe that σ2g+3
lifts to a deformation.) The only difficulty to overcome is to find homeomorphisms
of S2 −⋃2g+4

i=1 Pi that lift to homeomorphisms of F̂ isotopic to the Dehn twists βk ,
2 � k � g − 1. These are provided by the following

11.12 Lemma. Let p : F̂ → S2 be the 3-fold branched covering described in Fig-
ure 11.13.
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(a) σ2i−1 lifts to αi , 1 � i � g + 1; σ2j lifts to γj , 1 � j � g.

(b) ωk = (σ2g+2σ2g+1 . . . σ2k+2σ
2
2k+1σ2k+2 . . . σ2g+2)

2 lifts to βk for 2 � k �
g − 1.

(c) The lifts of ω1 resp. ωg are isotopic to α1 resp. αg+1.

(d) σ 3
2g+2 and σ2g+3 lift to mappings isotopic to the identity.

Proof. (a) was proved in 11.8 (b): consider simple closed curves ei, li , 1 � i �
g + 1, in S2 (Figure 11.13). The curve ei lifts to three simple closed curves ê(j)i ∈
F̂ (j), 1 � j � 3, while l2i is covered by two curves (l̂(1)i )2, l̂(2,3)i (Figure 11.13).
This is easily checked by looking at the intersections of ei and li with ti and ui ,
resp. at those of ê(j)i and l̂(1)i , l̂

(2,3)
i with ai and ci . Since ê(1)k � b′k � l̂

(1)
k , ê(2)k �

bk for 2 � k � g − 1, and ê(3)i � 1, 1 � i � g + 1, a Dehn twist εk in S2

along ek lifts to the composition of the Dehn twists βk and β ′k , while the square of
the Dehn twist λk along lk lifts to the composition of (β ′k)2 and βk . Thus ε2

kλ
−2
k

lifts to β2
k β
′
k

2
(β ′k)−2β−1

k = βk . εk induces a braid automorphism resp. a (2g + 4)-
braid with strings {fi | 1 � i � 2g + 4} represented by a full twist of the strings
f2k+1, f2k+2, . . . , f2g+4 (Figure 11.13). ε2

k is then a double twist and λ−2
k a double

twist in the opposite direction leaving out the last string f2g+4. It follows that ε2
kλ
−2
k

defines a braid (σ2g+3σ2g+2 . . . σ
2
2k+1σ2k+2 . . . σ2g+3)

2 in which only the last string
f2g+4 is not constant, encircling its neighbours f2k+1, . . . , f2g+3 to the left, twice.
Since obviously σ2g+3 lifts to a deformation, (b) is proved.

Assertion (c) follows in the same way as (b). To prove (d) consider a disk δg+1
which is a regular neighbourhood of ug+1. The third power (∂δg+1)

3 of its boundary
lifts to a simple closed curve in F̂ bounding a disk δ̂g+1 = p−1(δg+1). The deformation
σ 3

2g+2 inS3 lifts to a “half-twist” of δ̂g+1, a deformation of F̂ which leaves the boundary

∂δ̂g+1 pointwise fixed, and thus is isotopic to the identity. 	


An easy consequence of Lemma 11.12 is the following

11.13 Corollary. For a given permutation π ∈ S2g+4 there is a braid automorphism

σ ∈ B2g+4 with permutation π induced by a homeomorphism of S2 − ⋃2g+4
i=1 Pi

which lifts to a deformation of F̂ .

Proof. Together with σ 3
2g+2 the conjugates

σiσi+1 . . . σ2g+1σ
3
2g+2σ

−1
2g+1 . . . σ

−1
i , 1 � i � 2g + 1,

lift to deformations. Hence, the transpositions (i, 2g + 3) ∈ S2g+4 can be realized
by deformations. Since σ2g+3 also lifts to a deformation, the lemma is proved. 	
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11.14. Proof of Theorem 11.11. Let M = B̂0 ∪ĥ B̂1 be a Heegaard splitting of genus

g, and pj : F̂j → S2
j , j ∈ {0, 1}, be 3-fold branched coverings of the type described

in Figure 11.13, ∂B̂j = F̂j . Extend pj to a covering pj : B̂j → Bj , ∂Bj = S2
j , Bj a

ball, in the same way as in the proof of Theorem 11.1. (Compare Figure 11.4). The
branching set of pj consists in Bj of g+ 2 disjoint unknotted arcs, each joining a pair
P2i−1, P2i of branch points.

By the Lemmas 11.8 and 11.12, there is a braid z with given permutation π
defining a homeomorphism h : S2

0 → S2
1 which lifts to a homeomorphism isotopic to

ĥ : F̂0 → F̂1. The plat k defined by z is the branching set of a 3-fold irregular covering
p : M → S3, and if π is suitably chosen, k is a knot. In the case π = id the branching
set k consists of g + 2 trivial components. 	


There are, of course, many plats k defined by braids z ∈ B2g+4 which by this
construction lead to equivalent Heegaard diagrams and, hence, to homeomorphic
manifolds. Replace k by k′ with a defining braid z′ = z1zz0 such that zi ⊂ Bi , and
k′ ∩Bi is a trivial half-plat (E 11.3). Then z′ lifts to a map ĥ′ = ĥ1ĥĥ0 : F̂0 → F̂1, and
there are homeomorphisms Ĥi : B̂i → B̂i extending the homeomorphisms ĥi : F̂i →
F̂i = ∂B̂i , i ∈ {0, 1}. Obviously B̂0 ∪ĥ′ B̂1 and B̂0 ∪ĥ B̂1 are homeomorphic. The
braids zi of this type form a finitely generated subgroup in B2g+4 (Exercise E 11.3).

Lemma 11.8 and 11.12 can be exploited to give some information on the mapping
class groupM(g) of an orientable closed surface of genus g. The groupM(1) is well
known [Goeritz 1932], and will play an important role in Chapter 12. By Lemma
11.8 and Corollary 11.9, M(2) is a homomorphic image of the braid group B6. A
presentation is know [Birman 1974]. Since one string of the braids of B6 can be kept
constant, M(2) is even a homomorphic image of B5. For g > 2 the group M(g) is a
homomorphic image of the subgroup J∗2g+3 of J2g+3 generated by J2g+2 ⊂ J2g+3 and
the pure (2g + 3)-braids ωk , 2 � k � g − 1, of Lemma 11.12 (b). There is, however,
a kernel = 1, which was determined in [Birman-Wajnryb 1985]. This leads to a
presentation of M(g), see also [McCool 1975], [Hatcher-Thurston 1980], [Wajnryb
1983].

C History and Sources

J.W. Alexander [1920] proved that every closed oriented n-manifoldM is a branched
covering of the n-sphere. The branching set is a (n − 2)-subcomplex. Alexander
claims in his paper (without giving a proof) that for n = 3 the branching set can be
assumed to be a closed submanifold – a link in S3. J.S. Birman and H.M. Hilden
[1975] gave a proof, and, at the same time, obtained some information on the relations
between the Heegaard genus ofM , the number of sheets of the covering and the bridge
number of the link. Finally Hilden [1976] and Montesinos [1976′] independently
showed that every orientable closed 3-manifold is a 3-fold irregular covering of S3
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over a link k. It suffices to confine oneself to rather special types of branching sets k

[Hilden-Montesinos-Thickstun 1976].

D Exercises

E 11.1. Show that a Dehn-twist α of an orientable surface F along a simple closed
(unoriented) curve a in F is well defined (up to a deformation) by a and an orientation
of F . Dehn-twists α and α′ represent the same element of the mapping class group
(α′ = δα, δ a deformation) if the corresponding curves are isotopic.

E 11.2. Apply the method of Lemma 11.2 to the following situation: Letp : S3 → S3

be the cyclic 3-fold covering branched along the triangle A,B,C (Figure 11.14).
Replace the branch set outside the balls around the vertices of the triangle as was done
in the proof of Theorem 11.1. It follows that the 3-fold irregular covering along a
trefoil is also a 3-sphere.

(1
 2

) (1 2 3)

(1 3)

(1 3)

(1
 2

 3
)

(1 2 3)

(1 2)

(2 3)

A B

C

(2
 3

)

Figure 11.14

E 11.3. Let k be a 2m-plat in 3-space R3 and (x, y, z) cartesian coordinates of R3.
Suppose z = 0 meets k transversally in the 2m points Pi = (i, 0, 0), 1 � i � 2m. We
call the intersection of k with the upper half-space R3

0 = {(x, y, z|z � 0} a half-plat
k0, and denote its defining braid by z0 ∈ B2m. The half-plat k0 is trivial if it is isotopic
in R3

0 to m straight lines αi in x = 0, ∂ai = {P2i−1, P2i}.
Show that the braids z0 ∈ B2m defining trivial half-plats form a subgroup of

B2m generated by the braids σ2i−1, 1 � i � m, �k = σ2kσ2k−1σ2k+1σ2k , τk =
σ2kσ2k−1σ

−1
2k+1σ

−1
2k , 1 � k � m− 1.

E 11.4. Construct S1×S1×S1 as a 3-fold irregular covering of S3 along a 5-bridged
knot.



Chapter 12

Montesinos Links

This chapter contains a study of a special class of knots. Section A deals with the
2-bridge knots which are classified by their twofold branched coverings – a method
due to H. Seifert.

Section B looks at 2-bridge knots as 4-plats (Viergeflechte). This yields interesting
geometric properties and new normal forms [Siebenmann 1975]. They are used in
Section C to derive some properties concerning the genus and the possibility of fibring
the complement, [Funcke 1978], [Hartley 1979′].

Section D is devoted to the classification of the Montesinos links which generalize
knots and links with two bridges with respect to the property that their twofold branched
coverings are Seifert fibre spaces. These knots have been introduced by Montesinos
[1973, 1979], and the classification, conjectured by him, was given in [Bonahon 1979].
Here we present the proof given in [Zieschang 1984]. The last part deals with results
of Bonahon–Siebenmann and Boileau from 1979 on the symmetries of Montesinos
links. We prove these results following the lines of [Boileau-Zimmermann 1987]
where a complete classification of all nonelliptic Montesinos links is given.

Montesinos knots include also the so-called pretzel knots which furnished the first
examples of non-invertible knots [Trotter 1964].

A Schubert’s Normal Form of Knots and Links with Two Bridges

H. Schubert [1956] classified knots and links with two bridges. His proof is a thorough
and quite involved geometric analysis of the problem, his result a complete classifi-
cation of these oriented knots and links. Each knot is presented in a normal form – a
distinguished projection.

If one considers these knots as unoriented, their classification can be shown to rest
on the classification of 3-dimensional lens spaces. This was already noticed by Seifert
[Schubert 1956].

12.1. We start with some geometric properties of a 2-bridge knot, using Schubert’s
terminology. The knot k meets a projection plane R2 ⊂ R3 in four points: A,B,C,D.
The plane R2 defines an upper and a lower halfspace, and each of them intersects k in
two arcs. Each pair of arcs can be projected onto R2 without double points (see 2.13).
We may assume that one pair of arcs is projected onto straight segments w1 = AB,
w2 = CD (Figure 12.1); the other pair is projected onto two disjoint simple curves
v1 (from B to C) and v2 (fromD to A). The diagram can be reduced in the following
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3 2 1 00 1 2 3
A B CD

∂ε(w1)

∂ε(BD)

v1

v2

Figure 12.1

way: v1 first meets w2. A first double point on w1 can be removed by an isotopy. In
the same way one can arrange for each arc vi to meet the wj alternately, and for each
wj to meet the vi alternately. The number of double points, hence, is even in a reduced
diagram with α − 1 (α ∈ N) double points on w1 and on w2. We attach numbers
to these double points, counting against the orientation of w1 and w2 (Figure 12.1).
Observe that for a knot α is odd; α even and ∂v1 = {A,B}, ∂v2 = {C,D} yields a
link.

12.2. We now add a point ∞ at infinity, S3 = R3 ∪ {∞}, S2 = R2 ∪ {∞}, and
consider the two-fold branched covering T of S2 with the branch set {A,B,C,D},
p̂ : T → S2, see Figure 12.2. The covering transformation τ : T → T is a rotation

3
2 1

0 0
1 2

3

T

Â

ŵ1
τ v̂1 ŵ2

ĈB̂
l̂0

τŵ1
v̂1

D̂

Figure 12.2

through π about an axis which pierces T in the points Â = p̂−1(A), B̂ = p̂−1(B),
Ĉ = p̂−1(C), D̂ = p̂−1(D).

w1 and w2 lift to {ŵ1, τ ŵ1}, {ŵ2, τ ŵ2} and in the notation of homotopy chains,
see 9.1, (1− τ)ŵ1 and (1− τ)ŵ2 are isotopic simple closed curves on T . Likewise,
(1 − τ)v̂1, (1 − τ)v̂2 are two isotopic simple closed curves on T , each mapped onto
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its inverse by τ . They intersect with the (1− τ)ŵi alternately:

int((1− τ)v̂i , (1− τ)ŵj ) = α.
Denote by ∂ε(c) the boundary of a small tubular neighbourhood of an arc c in R2.
We choose an orientation on R2, and let ∂ε(c) have the induced orientation. The
curve ∂ε(wi) lifts to two curves isotopic to ±(1 − τ)ŵi , 1 � i � 2. The preimage
p−1(∂ε(BD)) consists of two curves; one of them, l̂0 together with m̂0 = (1− τ)ŵ1

can be chosen as canonical generators of H1(T ) – we call m̂0 a meridian, and l̂0 a
longitude. Equally p−1(∂ε(vi)) consists of two curves isotopic to ±(1− τ)v̂i .

We assume for the moment α > 1. (This excludes the trivial knot and a splittable
link with two trivial components.) Then (1 − τ)v̂i = βm̂0 + αl̂0 where β ∈ Z
is positive, if at the first double point of v1 the arc w2 crosses from left to right in
the double point |β|, and negative otherwise. From the construction it follows that
|β| < α and that gcd(α, β) = 1.

12.3 Proposition. For any pair α, β of integers subject to the conditions

α > 0, −α < β < +α, gcd(α, β) = 1, β odd, (1)

there is a knot or link with two bridges k = b(α, β) with a reduced diagram with
numbers α, β. We call α the torsion, and β the crossing number of b(α, β). The
number of components of b(α, β) is µ ≡ α mod 2, 1 � µ � 2. The 2-fold covering
of S3 branched along b(α, β) is the lens space L(α, β).

Proof. We first prove the last assertion. Suppose k = b(α, β) is a knot with two
bridges whose reduced diagram determines the numbers α and β. We try to extend
the covering p : T → S2 to a covering of S3 branched along b(α, β). Denote by B0,
B1 the two balls bounded by S2 in S3 with k∩B0 = w1 ∪w2. The 2-fold covering B̂i
of Bi branched along Bi ∩ k can be constructed by cutting Bi along two disjoint disks
δi1, δi2 spanning the arcs Bi ∩ k, i = 0, 1.

This defines a sheet of the covering, and B̂i itself is obtained by identifying corre-
sponding cuts of two such sheets. B̂i , 0 � i � 1, is a solid torus, and (1−τ)ŵ1 = m̂0

represents a meridian of B̂0 while m̂1 = (1− τ)v̂1 represents a meridian of B̂1. This
follows from the definition of the curves ∂ε(vi), ∂ε(wi). Since

m̂1 = (1− τ)v̂1 � βm̂0 + αl̂0, (2)

the covering B̂0 ∪T B̂1 is the Heegaard splitting of the lens space L(α, β).
Further information is obtained by looking at the universal covering T̃ ∼= R2 of

T . The curve v̂1 is covered by ṽ1 which may be drawn as a straight line through a
lattice point over B̂ and another over Ĉ (resp. Â) for α odd (resp. α even). If cartesian
coordinates are introduced with B̃00 as the origin and D̃00 = (0, α), Ã00 = (α, 0),
see Figure 12.3, ṽ1 is a straight line through (0, 0) and (β, α), and ṽ2 is a parallel
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B̃01

D̃00 = (0, α)

C̃01

α = 3,
β = 1

ṽ1
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β = 1

Ã01

ṽ2

ṽ2

α = 3,
β = 1

α = 2,
β = 1

B̃00 Ã00 = (α, 0) B̃10

Figure 12.3

through (α, 0) and (α + β, α). The 2α × 2α square is a fundamental domain of
the covering p̃ : T̃ → T . Any pair of coprime integers (α, β) defines such curves
which are projected onto simple closed curves of the form (1 − τ)v̂i on T , and, by
p̂ : T → S2, onto a reduced diagram. 	


One may choose α > 0. If ṽ1 starts in B̃00, it ends in (βα, α2). Thus β ≡ 1
mod 2, since v1 ends in C or A.

We attached numbers γ to the double points of the reduced projection of b(α, β)

(Figure 12.1). To take into account also the characteristic of the double point we assign
a residue class modulo 2α to it, represented by γ (resp.−γ ) if wi crosses vj from left
to right (resp. from right to left). Running along vi one obtains the sequence:

0, β, 2β, . . . , (α − 1)β modulo 2α. (3)

This follows immediately by looking at the universal covering T̃ (Figure 12.3). Note
that ṽi is crossed from right to left in the strips where the attached numbers run from
right to left, and that −(α − δ) ≡ α + δ modulo 2α.

12.4 Remark. It is common use to normalize the invariants α, β of a lens space
in a different way. In this usual normalization, L(α, β) is given by L(α, β∗) where
0 < β∗ < α, β∗ ≡ β mod α.

12.5 Proposition. Knots and links with two bridges are invertible.
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Proof. A rotation throughπ about the core of the solid torus B̂0 (or B̂1) commutes with
the covering transformation τ . It induces therefore a homeomorphism of S2 = p(T )
– a rotation through π about the centres of w1 and w2 (resp. v1 and v2) if the reduced
diagram is placed symmetrically on S2. This rotation can be extended to an isotopy
of S3 which carries k onto −k. 	


12.6 Theorem (H. Schubert). (a) b(α, β) and b(α′, β ′) are equivalent as oriented
knots (or links), if and only if

α = α′, β±1 ≡ β ′ mod 2α.

(b) b(α, β) and b(α′, β ′) are equivalent as unoriented knots (or links), if and only
if

α = α′, β±1 ≡ β ′ mod α.

Here β−1 denotes the integer with the properties 0 < β−1 < 2α and ββ−1 ≡ 1
mod 2α. For the proof of (a) we refer to [Schubert 1956]. The weaker statement (b)
follows from the classification of lens spaces [Reidemeister 1935], [Brody 1960]. 	


12.7 Remark. In the case of knots (α odd) 12.6 (a) and (b) are equivalent – this
follows also from 12.5. For links Schubert gave examples which show that one can
obtain non-equivalent links (with linking number zero) by reversing the orientation of
one component. (A link b(α, β) is transformed into b(α, β ′), β ′ ≡ α + β mod 2α, if
one component is reoriented). The link b(32, 7) is an example. The sequence (3) can
be used to compute the linking number lk(b(α, β)) of the link:

lk(b(α, β)) =
α
2∑

ν=1

εν, εν = (−1)
[
(2ν−1)β

α

]
.

([a] denotes the integral part of a.) One obtains for α = 32, β = 7:

16∑
v=1

εv = 1+ 1− 1− 1− 1+ 1+ 1− 1− 1+ 1+ 1− 1− 1− 1+ 1+ 1 = 0.

12.8. Lastly, our construction has been unsymmetric with respect to B0 and B1. If
the balls are exchanged, (m̂0, l̂0) and (m̂1, l̂1) have to change places, where m̂1 is
defined by (2) and forms a canonical basis together with l̂1:

m̂1 = βm̂0 + αl̂0,

l̂1 = α′m̂0 + β ′l̂0,

∣∣∣∣∣β α

α′ β ′

∣∣∣∣∣ = 1.
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It follows m̂0 = β ′m̂1 − αl̂1. Since B0 and B1 induce on their common boundary
opposite orientations, we may choose (m̂1,−l̂1) as canonical curves on T . Thus
b(α, β) = b(α, β ′), ββ ′ − αα′ = 1, i.e. ββ ′ ≡ 1 mod α.

A reflection in a plane perpendicular to the projection plane and containing the
straight segments wi transforms a normal form b(α, β) into b(α,−β). Therefore
b∗(α, β) = b(α,−β).

B Viergeflechte (4-Plats)

Knots with two bridges were first studied in the form of 4-plats (see Chapter 2 D),
[Bankwitz-Schumann 1934], and certain advantages of this point of view will become
apparent in the following. We return to the situation described in 11 B (Figure 11.7).

12.9. S3 now is composed of two balls B0, B1 and I × S2 in between, containing a
4-braid z which defines a 2-bridge knot b(α, β). The 2-fold branched covering M3 is
by 12.3 a lens space L(α, β). (In this section we always choose 0 < β < α, β odd
or even.) Lemma 11.8 shows that the braid operations σ1, σ2 lift to Dehn twists δ1, δ2
such that

δ1(m̂0) = m̂0, δ2(m̂0) = m̂0 + l̂0

δ1(l̂0) = −m̂0 + l̂0, δ2(l̂0) = l̂0.

Thus we may assign to σ1, σ2 matrices

σ1 �→ A1 =
(

1 −1

0 1

)
, σ2 �→ A2 =

(
1 0

1 1

)

which describe the linear mappings induced on H1(F̂0) by δ1, δ2 with respect to the
basis m̂0, l̂0. A braid ζ = σa1

2 σ
−a2
1 σ

a3
2 . . . σ

am
2 induces the transformation

A =
(

1 0

a1 1

)(
1 a2

0 1

)
. . .

(
1 am−1

0 1

)(
1 0

am 1

)
. (1)

Suppose the 2-fold covering M3 of a 4-plat as in Figure 11.7 is given by a Heegaard
splitting M3 = T0 ∪ĥ T1, ∂Tj = F̂j . Relative to bases (m̂0, l̂0), (m̂1, l̂1) of H1(F̂0),

H1(F̂1), the isomorphism ĥ∗ : H1(F̂0) → H1(F̂1) is represented by a unimodular
matrix:

A =
(
β α′

α β ′

)
; α, α′, β, β ′ ∈ Z; ββ ′ − αα′ = 1.
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The integers α′ and β ′ are determined up to a change α′ �→ α′ + cβ, β ′ �→ β ′ + cα
which can be achieved by(

β α′

α β ′

)(
1 c

0 1

)
=
(
β α′ + cβ
α β ′ + cα

)
.

This corresponds to a substitution ζ �→ ζσ c1 which does not alter the plat. The product
(1) defines a sequence of equations (r0 = α, r1 = β):

r0 = a1r1 + r2 (2)

r1 = a2r2 + r3
...

rm−1 = amrm + 0, |rm| = 1,

following from(
1 0

−ai 1

)(
ri ∗
ri−1 ∗

)
=
(

ri ∗
ri−1 − airi ∗

)
=
(
ri ∗
ri+1 ∗

)
,

(
1 −ai+1

0 1

)(
ri ∗
ri+1 ∗

)
=
(
ri − ai+1ri+1 ∗

ri+1 ∗

)
=
(
ri+2 ∗
ri+1 ∗

)
.

If we postulate 0 � ri < ri−1, the equations (2) describe an euclidean algorithm
which is uniquely defined by α = r0 and β = r1.

12.10 Definition. We call a system of equations (2) with ri, aj ∈ Z, a generalized
euclidean algorithm of length m if 0 < |ri | < |ri−1|, 1 � i � m, and r0 � 0.

Such an algorithm can also be expressed by a continued fraction:

β

α
= r1
r0
= 1

a1 + 1

a2 + 1

a3 + · · · · · · + am−1 + 1
am

= [a1, a2, . . . , am].

The integers ai are called the quotients of the continued fraction. From 0 < |rm| <
|rm−1| it follows that |am| � 2. We allow the augmentation

[a1, a2, . . . , (am ± 1),∓1] = [a1, a2, . . . , am], (3)



196 12 Montesinos Links

since

(am ± 1)+ 1

∓1
= am.

Thus, by allowing |rm−1| = |rm| = 1, we may assume m to be odd.

12.11. To return to the 2-bridge knot b(α, β) we assume α > 0 and 0 � β < α,
gcd(α, β) = 1. For any integral solution of (2) with r0 = α, r1 = β, one obtains a
matrix equation:(

β α′

α β ′

)
=
(

1 0

a1 1

)(
1 a2

0 1

)
. . .

(
1 0

am 1

)(
±1 ∗
0 ±1

)
, m odd, (4)

(
β α′

α β ′

)
=
(

1 0

a1 1

)(
1 a2

0 1

)
. . .

(
1 am

0 1

)(
0 ±1

±1 ∗

)
, m even. (5)

The first equation (m odd) shows that a 4-plat defined by the braid

z = σa1
2 σ

−a2
1 σ

a3
2 . . . σ

am
2

is the knot b(α, β), since its 2-fold branched covering is the (oriented) lens space
L(α, β). The last factor on the right represents a power of σ1 which does not change
the knot, and which induces a homeomorphism of B̂1. In the case when m is even
observe that (

0 −1

1 b

)
=
(

1 0

−b 1

)(
0 −1

1 0

)
.

From this it follows (Figure 12.4) that b(α, β) is defined by z = σa1
2 σ

−a2
1 . . . σ

−am
2 but

that the plat has to be closed at the lower end in a different way, switching meridian
m̂1 and longitude l̂1 corresponding to the matrix(

0 −1

1 0

)
.

12.12 Remark. The case α = 1, β = 0, is described by the matrix(
0 −1

1 0

)
=
(
β α′

α β ′

)
.

The corresponding plat (Figure 12.5) is a trivial knot. The matrix(
1 0

0 1

)
=
(
β α′

α β ′

)
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Figure 12.4

Figure 12.5

is characterized by the pair (0, 1) = (α, β) (Figure 12.5). It is therefore reasonable to
denote by b(1, 0) resp. b(0, 1) the unknot resp. two split unknotted components, and
to put: L(1, 0) = S3, L(0, 1) = S1 × S2. The connection between the numbers ai
and the quotient βα−1 allows to invent many different normal forms of (unoriented)
knots with two bridges as 4-plats. All it requires is to make the algorithm (2) unique
and to take into account that the balls B0 and B1 are exchangeable.

12.13 Proposition. The (unoriented) knot (or link) b(α, β), 0 < β < α, has a
presentation as a 4-plat with a defining braid z = σ

a1
2 σ

−a2
1 . . . σ

am
2 , ai > 0, m

odd, where the ai are the quotients of the continued fraction [a1, . . . , am] = βα−1.
Sequences (a1, . . . , am) and (a′1, . . . , a′m′) define the same knot or link if and only if
m = m′, and ai = a′i or ai = a′m+1−i , 1 � i � m.
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Proof. The algorithm (2) is unique, since ai > 0 implies that ri > 0 for m � i � 1.
The expansion of βα−1 as a continued fraction of odd length m is unique [Perron
1954]. A rotation through π about an axis in the projection plane containing AB and
CD finally exchanges B0 and B1; its lift exchanges B̂0 and B̂1. 	


12.14 Remark. It is an easy exercise in continued fractions (E 12.3) to prove β ′α−1 =
[am . . . , a1] if βα−1 = [a1, . . . , am], and ββ ′ ≡ 1 mod α.

Note that the normal form of 4-plats described in 12.13 represents alternating plats,
hence:

12.15 Proposition (Bankwitz–Schumann). Knots and links with two bridges are al-
ternating. 	


12.16 Examples. Consider b(9, 5) = 61 as an example: 5/9 = [1, 1, 4]. The
corresponding plat is defined by σ2σ

−1
1 σ 4

2 (Figure 12.6). (Verify: 2/9 = [4, 1, 1],
2 ·5 ≡ 1 mod 9.) Figure 12.6 also shows the normal forms of the two trefoils: z = σ 3

2
resp. z′ = σ2σ

−1
1 σ2, according to 1/3 = [3], 2/3 = [1, 1, 1]. A generalized euclidean

6 3 31 11

Figure 12.6

algorithm is, of course, not unique. One may impose various conditions on it to make
it so, for instance, the quotients ai , 1 � i < m can obviously be chosen either even
or odd. Combining such conditions for the quotients with rj > 0 for some j gives
multifarious possibilities for normal forms of 4-plats.

We choose from each pair of mirror images the one with β > 0, β odd.

12.17 Proposition. There is a unique generalized euclidean algorithm

ri−1 = ciri + ri+1

of length m with

r0 = α > 0, r1 = β > 0, gcd(α, β) = 1, β odd,



C Alexander Polynomial and Genus of a Knot with Two Bridges 199

r2j > 0, c2j = 2bj for a suitable bj , 1 � 2j � m,

|ri−1| > |ri | for 0 � i < m, |rm−1| � |rm|.
If |rm−1| = |rm|, then cm−1cm > 0.

The lengthm of the algorithm is odd (rm+1 = 0), r2j−1 ≡ 1 mod 2, and ajbj > 0 for
aj = c2j−1, 1 � j � m+1

2 .

Proof. The algorithm is easily seen to be unique, and r2j−1 ≡ m ≡ 1 mod 2 is an
immediate consequence. From

r2j−2 = aj r2j−1 + r2j ,
r2j−1 = 2bj r2j + r2j+1

one derives
(r2j−1 − r2j+1)aj = 2ajbj r2j

and that the sign of the left hand expression is the same as the sign of

r2j−1aj = r2j−2 − r2j > 0,

since |r2j−1| > |r2j+1|. 	


12.18 Remark. The quotients ai obtained from the generalized algorithm of 12.17
may change if r1 = β is replaced by β ′ with ββ ′ ≡ ±1 mod α. We are, however, only
interested in the fact that there is always a presentation according to 12.17 of any knot
b(α, β) or b∗(α, β) = b(α,−β), and we shall exploit this to get information about
the Alexander polynomial and the genus of b(α, β).

C Alexander Polynomial and Genus of a Knot with Two Bridges

We have shown in 8.13 that the Alexander polynomial �(t) of a knot may be written
as a polynomial with integral coefficients in u = t + t−1 − 2, �(t) = f (u). Hence,
�(t2) is a polynomial in z = t − t−1. (It is even a polynomial in z2.) J.H. Conway
[1970] defined a polynomial∇k(z)with integral coefficients for (oriented) links which
can be inductively computed from a regular projection of a link k in the following way:

12.19 (Conway potential function).

(1) ∇k(z) = 1, if k is the trivial knot.

(2) ∇k(z) = 0, if k is a split link.
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k+ k−
k0

Figure 12.7

(3) ∇k+ − ∇k− = z · ∇k0 , if k+, k−, and k0 differ by a local operation of the kind
depicted in Figure 12.7.

Changing overcrossings into undercrossings eventually transforms any regular
projection into that of a trivial knot or splittable link, compare 2.2. Equation (3) may
therefore be used as an algorithm (Conway algorithm) to compute ∇k(z) with initial
conditions (1) and (2). Thus, if there is a function ∇k(z) satisfying conditions (1), (2),
(3) which is an invariant of the link, it must be unique.

12.20 Proposition. (a) There is a unique integral polynomial ∇k(z) satisfying (1),
(2), (3); it is called the Conway potential function and is an invariant of the link.

(b) ∇k(t− t−1)
.= �(t2) for µ = 1, ∇k(t− t−1)

.= (t2−1)µ−1∇(t2) for µ > 1.

(Hereµ is the number of components of k,�(t) denotes theAlexander polynomial,
and ∇(t) the Hosokawa polynomial of k, see 9.18.)

We shall prove 12.20 in 13.33 by defining an invariant function∇k(t). Observe that
the equations that relate∇k(t− t−1)with the Alexander polynomial and the Hosokawa
polynomial suffice to show the invariance of ∇k(z) in the case of knots, whereas for
µ > 1 there remains the ambiguity of the sign.

12.21 Definition. The polynomials fn(z), n ∈ Z, defined by

fn+1(z) = zfn(z)+ fn−1(z), f0(z) = 0, f1(z) = 1,

f−n(z) = (−1)n+1fn(z) for n � 0

are called Fibonacci polynomials.

12.22 Lemma. The Fibonacci polynomials are of the form:

f2n−1 = 1+ a1z
2 + a2z

4 + · · · + an−1z
2(n−1)

f2n = z · (b0 + b1z
2 + b2z

4 + · · · + bn−1z
2(n−1)),

ai, bi ∈ Z, n � 0, an−1 = bn−1 = 1.
Consequence: deg fn = deg f−n = n− 1.
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Proof. An easy Exercise E 12.6. 	


Let b(α, β), α > β > 0, α ≡ β ≡ 1 mod 2, be represented by the 4-plat defined
by the braid

z = σa1
2 σ

−2b1
1 σ

a2
2 σ

−2b2
1 . . . σ

−2bk−1
1 σ

ak
2 , k = m+ 1

2
,

with β/α = [a1, 2b1, a2, 2b2, . . . , ak] according to the algorithm of 12.17. By 12.17,
ajbj > 0, but bjaj+1 may be positive or negative. Assign a sequence (i1, i2, . . . , ir )
to the sequence of quotients noting down ij , if bij aij+1 < 0. The normalizations in
12.17 imply that b1 > 0.

12.23 Proposition. Let b(α, β) be defined as a 4-plat by the braid

z = σa1
2 σ

−2b1
1 . . . σ

−2bk−1
1 σ

ak
2 , m = 2k − 1,

and let i1, i2, . . . , ir denote the sequence of indices where a change of sign occurs in
the sequence of quotients.

(a) deg∇b(z) =
(∑k

j=1 |aj |
) − 1 where ∇b(z) is the Conway polynomial of

b(α, β) = b.

(b) The absolute value of the leading coefficient C(∇b) of ∇b(z) is

k−1∏
j=1

(|bj | + 1− ηj ) = |C(∇b)|, ηj =
{

1, j ∈ {i1, . . . , ir},
0 otherwise.

Figure 12.8

Proof. Orient the 4-plat defined by z as in Figure 12.8 – the fourth string downward.
By applying the Conway algorithm, it is easy to compute the Conway polynomial
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∇a(z) of the 4-plat defined by z = σa2 with a > 0 : ∇a = (−1)a+1fa , fa the a-th
Fibonacci polynomial. Equally ∇−a = (−1)a+1∇a . Now assume a > 0, b > 0,
z = σa2 σ−2b

1 σc2 . (The conditions of 12.17 exclude c = −1.) The Conway polynomial
of the 4-plat defined by z is denoted by ∇abc. Apply again the Conway algorithm to
the double points of σa2 , working downward from the top of the braid:

∇abc = (−1)afa−1∇c + (−1)a+1fa∇c+1 − b(−1)a+1z · fa∇c
= (

(−1)afa−1 + (−1)ab · zfa
)
(−1)c+1fc + (−1)a+1+cfafc+1

= ∇a−1∇c + ∇a∇c+1 − bz∇a∇c.
Using 12.22 one obtains

c > 0 : deg∇abc = a + c − 1, |C(∇abc)| = |b + 1|;
c < 0 : deg∇abc = 1+ a − 1− c − 1 = a − c − 1, |C(∇abc)| = |b|.

In the same way the case a < 0, b < 0, c = 1 can be treated:

∇abc = ∇a+1∇c + ∇a∇c−1 − bz∇a∇c.
Again

deg∇abc = |a| + |c| − 1,

C(∇abc) = |b| + 1− η, η =
{

1, c > 0

0, c < 0

Now suppose z = σa1
2 σ

−2b1
1 · z′, z′ = σa2

2 · σ−2b2
1 . . . , a1 > 0, a2 > 0. One has

∇z = ∇a1∇σ2z′ + ∇a1−1∇z′ − b1z∇a1∇z′ , deg∇z = deg∇a1∇σ2z′ .

(∇z is the polynomial of the 4-plat defined by z.)
It follows by induction that

deg∇z = |a1| − 1+
∑
j>1

|aj | =
( k∑
j=1

|aj |
)
− 1,

and

|C(∇z)| =
k−1∏
j=1

(|bj | + 1− ηj ).

Similarly, for a1 > 0, a2 < 0

deg∇z = deg∇a1∇z′ + 1 = (|a1| − 1)+
[( k∑

j>1

|aj |
)
− 1

]
+ 1 =

( k∑
j=1

|aj |
)
− 1.
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Since 2-bridge knots are alternating, deg∇b(z) = 2g+µ−1 where g is the genus
of b(α, β) [Crowell 1959]. Moreover, |C(∇b(z))| = |C(�(t))| = 1 characterizes
fibred knots [Murasugi 1960, 1963]. A proof of both results is given in 13.26. From
this it follows

12.24 Proposition. The genus of a 2-bridge knot b(α, β) of multiplicity µ is

g(α, β) = 1

2

[( k∑
j=1

|aj |
)
− µ

]
.

The knot b(α, β) is fibred if and only if its defining braid is of the form

z = σa1
2 σ

−2
1 σ

−a2
2 σ 2

1 σ
a3
2 σ

−2
1 . . . σ

±ak
2 , aj > 0, k > 0.

(The quotients aj , bj of βα−1 are determined by the algorithm of 12.17.)

Proof. It remains to prove the second assertion. It follows from 12.23 that |bj | = 1,
ηj = 1 for 1 � j < k. Since b1 = 1, one has bj = (−1)j−1. 	


Using 12.13 we obtain

12.25 Corollary. There are infinitelymany knotsb(α, β)of genusg > 0, and infinitely
manyfibred knotswith twobridges. However, for any given genus there are onlyfinitely
many knots with two bridges which are fibred. 	


12.26 Proposition. A knot with two bridges of genus one or its mirror image is of the
form b(α, β) with

β = 2n, α = 2mβ ± 1, m, n ∈ N.

The trefoil and the four-knot are the only fibred 2-bridge knots of genus one.

Proof. This is a special case of 12.24 and the proof involves only straight forward
computations. By 12.24, k < 4.

For k = 1 one obtains the sequence [3] which defines the trefoil (see Figure 12.6).
For k = 2 there are two types of sequences, see 12.24 and 12.17:

[2, 2b, 1], [1, 2b,±2], b ∈ N.

The sequence [1, 2,−2] defines a fibred knot – the four-knot.
For k = 3 the sequences are of the form:

[1, 2b, 1, 2c, 1] or [1, 2b,−1,−2c,−1], b, c ∈ N.
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Using 12.17 again, this leads to

α = 4(b + 1)(c + 1)− 1, β = 2(c + 1)(2b + 1)− 1, resp.

α = 4b(c + 1)+ 1, β = 2(c + 1)(2b − 1)+ 1.

The simpler formulae of Proposition 12.26 is obtained by replacing β by α − β what
corresponds to the replacement of the knot by its mirror image, see 12.8. 	


12.27 Remark. If b(α, β) is given in a normal form according to 12.17 the band
marked as a hatched region in Figure 12.8 is an orientable surface of minimal genus
spanning b(α, β).

Proposition 12.24 is a version of a theorem proved first in [Funcke 1978] and
[Hartley 1979]. R. Hartley also proves in this paper a monotony property of the
coefficients of the Alexander polynomial of b(α, β). See also [Burde 1984, 1985].

D Classification of Montesinos Links

The classification of knots and links with two bridges was achieved by classifying
their twofold branched coverings – the lens spaces. It is natural to use this tool in the
case of a larger class of manifolds which can be classified. Montesinos [1973, 1979]
defined a set of links whose twofold branched covering spaces are Seifert fibre spaces.
Their classification is a straight forward generalization of Seifert’s idea in the case of
2-bridge knots.

We start with a definition of Montesinos links, and formulate the classification
theorem of [Bonahon 1979]. Then we show that the twofold branched covering is
a Seifert fibre space. Those Seifert fibre spaces are classified by their fundamental
groups. By repeating the arguments for the classification of those groups we classify
the Seifert fibre space together with the covering transformation. This then gives the
classification of Montesinos links.

12.28 Definition (Montesinos link). A Montesinos link (or knot) has a projection as
shown in Figure 12.9. The numbers e, a′i , a′′i denote numbers of half-twists. A box

α, β stands for a so-called rational tangle as illustrated in Figure 12.9 (b), andα, β are

defined by the continued fraction β
α
= [a1,−a2, a3, . . . ,±am], aj = a′j+a′′j together

with the conditions that α and β are relatively prime and α > 0. A further assumption

is that β
α

is not an integer, that is α, β is not ; in this case the knot has a simpler
projection. The above Montesinos link is denoted by m(e;α1/β1, . . . , αr/βr).

In Figure 12.9 (a): e = 3; in Figure 12.9 (b): n = 5, a′1 = 2, a′′1 = 0 �⇒ a1 = 2;
a′2 = −1, a′′2 = −2 �⇒ a2 = −3; a3 = −1, a4 = 3, a5 = 5 and β/α = −43/105.

As before in the case of 2-bridge knots we think of m as unoriented. It follows
from Section B that the continued fractions β

α
= [a1, . . . ,±am] (including 1/0 = ∞)
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(a) (b)

α1, β1

α2, β2

αr , βr

a′2

a′4
a′1 a′3 a5 a′′3 a′′1

a′′4

a′′2

...

Figure 12.9

classify the rational tangles up to isotopies which leave the boundary of the box
pointwise fixed.

It is easily seen that a rational tangle (α, β) is the intersection of the box with a
4-plat: there is an isotopy which reduces all twists a′′j to 0-twists. A tangle in this
position may gradually be deformed into a 4-plat working from the outside towards
the inside. A rational tangle closed by two trivial bridges is a knot or link b(α, β), see
the definition in 12.1 and Proposition 12.13. (Note that we excluded the trivial cases
b(0, 1) and b(1, 0).)

12.29 Theorem (Classification of Montesinos links). Montesinos links with r ratio-
nal tangles, r � 3 and

∑r
j=1

1
αj

� r − 2, are classified by the ordered set of fractions(β1
α1

mod 1, . . . , βr
αr

mod 1
)
, up to cyclic permutations and reversal of order, together

with the rational number e0 = e +∑r
j=1

βj
αj
.

This result was obtained by Bonahon [1979]. Another proof was given by Boileau
and Siebenmann [1980]. The proof here follows the arguments of the latter, based



206 12 Montesinos Links

on the method Seifert used to classify 2-bridge knots. We give a self-contained proof
[Zieschang 1984] which does not use the classification of Seifert fibre spaces. We
prove a special case of the Isomorphiesatz 3.7 in [Zieschang-Zimmermann 1982].

The proof of Theorem 12.29 will be finished in 12.38.

12.30Another construction ofMontesinos links. For the following construction we
use Proposition 12.3. From S3 we remove r+1 disjoint ballsB0, B1, . . . , Br and con-
sider two disjoint disks δ1 and δ2 in S3 −⋃r

i=1 Bi = W where the boundary ∂δj inter-
sectsBi in an arc�ji = ∂Bi∩δj = Bi∩δj . Assume that ∂δj = �j0λj0�j1λj1 . . . �jrλjr .
InBi let κ1i and κ2i define a tangle of type (αi, βi). We assume that inB0 there is only
an e-twist, that is α0 = 1, β0 = e. Then⋃(λji ∪ κji) (j = 1, 2; i = 0, . . . , r) is the
Montesinos linkm(e; (α1, β1), . . . , (αr , βr)), see Figure 12.10 and Proposition 12.13.

λ1r

�10

λ10

δ1

�11

λ11

�1r

λ1r

B0

B1

...

Br

λ2r

�20

λ20 δ2

�21

λ21

�2r

λ2r

Figure 12.10

12.31 Proposition. (a) The twofold branched covering Ĉ2 of S3 branched over the
Montesinos linkm(e;α1/β1, . . . , αr/βr) is a Seifert fibre space with the fundamental
group

12.32 π1Ĉ2 = 〈h, s1, . . . , sr | sαii hβi , [si, h] (1 � i � r), s1 . . . srh−e 〉.
(b) The covering transformation � of the twofold covering induces the automor-

phism

12.33 ϕ : π1Ĉ2 → π1Ĉ2, h �→ h−1, si �→ s1 . . . si−1s
−1
i s−1

i−1 . . . s
−1
1 (1 � i � r).
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(c) The covering transformations of the universal cover of Ĉ2 together with the
lift c of � form a group H with the following presentations:

12.34 H = 〈h, s1, . . . , sr , c | chc−1h, csic
−1 · (s1 . . . si−1sis

−1
i−1 . . . s

−1
1 ),

[si, h], sαii hβi (1 � i � r), s1 . . . srh
−e, c2 〉

= 〈h, c0, . . . , cr | c2
i , cihc

−1
i h (0 � i � r),

(ci−1ci)
αi hβi (1 � i � r), c−1

0 crh
−e 〉.

Proof. We use the notation of 12.30 and repeat the arguments of the proof 12.3. Cutting
along δ1, δ2 turnsW into the cartesian product (D2 −⋃r

i=1Di))× I whereD2 is a 2-
disk and theDi are disjoint disks inD2. The twofold covering Tr ofW branched over
the λji is a solid torus with r parallel solid tori removed: Tr = (D2 −⋃r

i=1Di)×S1.
The product defines an S1-fibration of Tr . The covering transformation � is the
rotation through 1800 about the axis containing the arcs λji , compare Figure 12.11.

Tr

Figure 12.11

To calculate the fundamental group we choose the base point on the axis and on
∂B0. Generators of π1Tr are obtained from the curves shown in Figure 12.12, and

π1Tr = 〈h, s0, s1, . . . , sr | [h, si] (0 � i � r), s0s1 . . . sr 〉.
The covering transformation�maps the generators as described in Figure 12.12; hence
�∗ : π1Tr → π1Tr , h �→ h−1, s0 �→ s−1

0 , s1 �→ s−1
1 , s2 �→ s1s

−1
2 s−1

1 , . . . , sr �→
s1 . . . sr−1s

−1
r s−1

r−1 . . . s
−1
1 . The twofold covering ofBi (0 � i � r), branched over the

arcs κji , is a solid torus V̂i , see 12.3. Thus the twofold covering Ĉ2 of S3 branched over
m = m(e;α1/β1, . . . , αr/βr) is Tr ∪⋃r

i=0 V̂i = Ĉ2 with corresponding boundaries
identified. The fibration of Tr can be extended to the solid tori V̂i as we have excluded
the case (αi, βi) = (0, 1), and Ĉ2 obtains a Seifert fibration. Adding the solid tori V̂i
introduces the relations sαii h

βi for 1 � i � r and s0he. This finishes the proof of (a).
The proof of (b) follows from the effect of � on π1Tr . The first presentation of

12.34 follows from 12.32 and 12.33 by interpreting π1Ĉ2 as the group of covering
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h

s0

s1 s2 sr

�

Figure 12.12

transformations of the universal covering of Ĉ2. It remains to show c2 = 1. This
follows from the fact that � has order 2 and admits the base point as a fixed point.

Define ci = cs1 . . . si (1 � i � r) and c0 = c. Then si = c−1
i−1ci (1 � i � r) and

H = 〈h, c0, . . . , cr | c0hc
−1
0 h, c0(c

−1
i−1ci)c

−1
0 · c−1

0 (cic
−1
i−1)c0,

[c−1
i−1ci, h], (c−1

i−1ci)
αi hβi (1 � i � r), c−1

0 crh
−e, c2

0 〉
= 〈h, c0, . . . , cr | cihc−1

i h, c2
i (0 � i � r),

(ci−1ci)
αi hβi (1 � i � r), c−1

0 crh
−e 〉. 	


12.35 Remark. For later use we note a geometric property of the twofold branched
covering: The branch set m̂ in Ĉ2 is the preimage of the Montesinos link m. From the
construction of Ĉ2 it follows that m̂ intersects each exceptional fibre exactly twice, in
the “centres” of the pair of disks in Figure 12.11 belonging to one V̂i .

12.36 Lemma. For
∑r
i=1

1
αi

� r−2 the element h in the presentation 12.32 of π1Ĉ2

generates an infinite cyclic group 〈h 〉, the centre of π1Ĉ2.

Proof. π1Ĉ2/〈h 〉 is a discontinuous group with compact fundamental domain of
motions of the euclidean plane, if equality holds in the hypothesis, otherwise of the
non-euclidean plane, and all transformations preserve orientation; see [ZVC 1980,
4.5.6, 4.8.2]. In both cases the group is generated by rotations and there are r rotation
centres which are pairwise non-equivalent under the action of π1Ĉ2. A consequence
is that the centre of π1Ĉ2/〈h 〉 is trivial, see [ZVC 1980, 4.8.1 c)]; hence, 〈h 〉 is the
centre of π1Ĉ2.

The proof that h has infinite order is more complicated. It is simple for r > 3.
Then

π1Ĉ2 = 〈h, s1, s2 | sαii hβi , [h, si] (1 � i � 2) 〉
∗Z2 〈h, s3, . . . , sr | sαii hβi , [h, si] (3 � i � r) 〉
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where Z2 ∼= 〈h, s1s2 〉 ∼= 〈h, (s3 . . . sr )−1 〉. (It easily follows by arguments on free
products that the above subgroups are isomorphic to Z2.) In particular, 〈h 〉 ∼= Z.

To show the lemma for r = 3 we prove the following Theorem 12.37 by repeating
the arguments of the proof of Theorem 3.30.

12.37 Theorem. LetM be an orientable 3-manifold with no sphere in its boundary.
If π1M is infinite, non-cyclic, and not a free product then M is aspherical and π1M

is torsion-free.

Proof. If π2M = 0 there is, by the Sphere Theorem [Papakyriakopoulos 1957′],
Appendix B.6, [Hempel 1976, 4.3], anS2, embedded inM , which is not nullhomotopic
in M . If S2 does not separate M then there is a simple closed curve λ that properly
intersects S2 in exactly one point. The regular neighbourhoodU of S2 ∪λ is bounded
by a separating 2-sphere. One has

π1M = π1U ∗ π1(N − U) ∼= Z ∗ π1(N − U)
contradicting the assumptions that π1M is neither cyclic nor a free product. Thus
S2 separates M into two manifolds M ′,M ′′. Since π1M is not a free product we
may assume that π1M

′ = 1. It follows that ∂M ′ = S2, since by assumption every
other boundary component is a surface of genus � 1 and, therefore,H1(M

′) = 0, see
[Seifert–Threfall 1934, p. 223 Satz IV], contradicting π1M

′ = 1. This proves that
S2 is null-homologous in M ′. Since π1M

′ = 1, it follows by the Hurewicz theorem,
see [Spanier 1966, 7.5.2], that S2 is nullhomotopic – a contradiction. This proves
π2M = 0.

Now consider the universal cover M̃ of M . Since |π1M| = ∞, M̃ is not compact
and this implies that H3(M̃) = 0. Moreover

1 = π1M̃, H2(M̃) = π2M̃ = π2M = 0.

By the Hurewicz theorem, π3M̃ ∼= H3(M̃) = 0, and by inductionπjM̃ ∼= Hj(M̃) = 0
for j � 3. Since πjM ∼= πjM̃ , the manifoldM is aspherical and aK(π1M, 1)-space.

Assume that π1M contains an element of finite order r . Then there is a coverM+
ofM with π1M

+ ∼= Zr . Since [π1M : π1M
+] = ∞we can apply the same argument

as above to prove thatM+ is aK(Zr , 1)-space. This implies thatHj(Zr ) = Hj(M+)
for all j ∈ N. Since the sequence of homology groups of a cyclic group has period 2,
there are non-trivial homology groups in arbitrary high dimensions. (These results
can be found in [Spanier 1966, 9.5].) This contradicts the fact that Hj(M+) = 0 for
j � 3. 	


To complete the proof of Lemma 12.36 it remains to show that π1Ĉ2 is not a
proper free product. Otherwise it cannot have a non-trivial centre, that is, in that case
h = 1, π1Ĉ2 = 〈 s1, s2 | sα1

1 , s
α2
2 , (s1s2)

α3 〉. By the Grushko Theorem [ZVC 1980,
2.9.2, E 4.10] both factors of the free product have rank � 1, and π1Ĉ2 is one of the
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groups Zn ∗ Zm, Zn ∗ Z or Z ∗ Z. But in the group 〈 s1, s2 | sα1
1 , s

α2
2 , (s1s2)

α3 〉 there
are three non-conjugate maximal finite subgroups, namely those generated by s1, s2
and s1s2, respectively, (for a proof see [ZVC 1980, 4.8.1]), while there are at most 2 in
the above free products of cyclic groups. This proves also that h is non-trivial; hence,
by Theorem 12.37, h has infinite order. 	


12.38. Proof of the Classification Theorem 12.29. Let H′ and H be groups presented
in the form of 12.34, and let ψ : H′ → H be an isomorphism. By Lemma 12.36,
ψ(h′) = hε, ε ∈ {1,−1}, and ψ induces an isomorphism

ψ̄ : C′ = H
′/〈h′ 〉 → H/〈h 〉 = C.

The groups C′ and C are crystallographic groups of the euclidean or non-euclidean
planeE with compact fundamental region. Hence, ψ̄ is induced by a homeomorphism
χ : E/C′ → E/C, see [ZVC 1980, 6.6.11]. Both surfacesE/C′ andE/C are compact
and have one boundary component, on which the images of the centres of the rotations
c̄′1c̄′2, c̄′2c̄′3, . . . , c̄′r , c̄′1 and c̄1c̄2, c̄2c̄3, . . . , c̄r c̄1, respectively, follow in this order, see
[ZVC 1980, 4.6.3, 4]. (The induced mappings on the surfaces are denoted by a bar.)
Now χ preserves or reverses this order up to a cyclic permutation, and it follows that
(α′1, . . . , α′r ′) differs from (α1, . . . , αr) or (αr , . . . , α1) only by a cyclic permutation.
In the first case χ preserves the direction of the rotations, in the second case it reverses
it, and we obtain the following equations:

ψ̄(s̄′i ) = x̄i s̄ηj (i)x̄−1
i , η ∈ {1,−1},(

1 . . . r

j (1) . . . j (r)

)
a permutation with α′i = αj(i).

Moreover,
x̄1s̄

η

j (1)x̄
−1
1 . . . x̄r s̄

η

j (r)x̄
−1
r = x̄(s̄1 . . . s̄r )ηx̄−1

in the free group generated by the s̄i , see [ZVC 1980, 5.8.2]. Hence, ψ is of the
following form:

ψ(h′) = hε, ψ(s′i ) = xisηj (i)x−1
i hλi , λi ∈ Z,

where the xi are the same words in the si as the x̄i in the s̄i .

The orientation of S3 determines orientations on the twofold branched covering
spaces Ĉ′2 and Ĉ2. When the links m′ and m are isotopic then there is an orientation
preserving homeomorphism from Ĉ′2 to Ĉ2. This implies that εη = 1, since the
orientations of Ĉ′2 and Ĉ2 are defined by the orientations of the fibres and the bases
and ε = −1 corresponds to a change of the orientation in the fibres while η = −1
corresponds to a change of the bases. Therefore,

hεβ
′
i = ψ(h′β ′i ) = ψ(s′−α′ii ) = xi(sεj (i)hλi )−α

′
i x−1
i

= xis−εaj (i)j (i) x−1
i h−αj(i)λi = hεβj(i)−αj(i)λi ,
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that is,
β ′i = βj(i) − εαj(i)λi for 1 � i � r.

This proves the invariance of the βi/αi and their ordering.
From the last relation we obtain:

hεe
′ = ψ(h′e′) = ψ(s′1 . . . s′r ) = x1s

ε
j (1)x

−1
1 hλ1 . . . xr s

ε
j (r)x

−1
r hλr

= hλ1+···+λr x(s1 . . . sr )εx−1 = hλ1+···+λr+εe;
hence,

e′ = e + ε(λ1 + · · · + λr).
Now,

e′ +
r∑
i=1

β ′i
α′i
= e + ε(λ1 + · · · + λr)+

r∑
i=1

βj(i) − εαj(i)λi
αj (i)

= e +
r∑

j=1

βj

αj
.

	


12.39 Remark. The “orbifold” E/C of fibres is a disk with r marked vertices on the
boundary. A consequence of 12.35 is that the image of m̂ consists of the edges of the
boundary ofE/C. In other words, the fundamental domain of C is an r-gon, the edges
of which are the images of m̂. Each component k̂ of m̂ determines an element of C

which is fixed when conjugated with a suitable reflection of C. The reflections of C are
conjugate to the reflections in the (euclidean or non-euclidean) lines containing the
edges of the fundamental domain. From geometry we know that the reflection c̄ with
axis l fixes under conjugation the following orientation preserving mappings of E:

i) the rotations of order 2 with centres on l,

ii) the hyperbolic transformations with axis l.

Since the image of k̂ contains the centres of different non-conjugate rotations of C it
follows that k̂ determines, up to conjugacy, a hyperbolic transformation in C.

Improving slightly the proof of the Classification Theorem one obtains

12.40 Corollary. If
∑r
i=1

1
αi
< r−2, that is, C = H/〈h 〉 is a non-euclidean crystal-

lographic group, each automorphism of H is induced by a homeomorphism of E×R.

Proofs can be found in [Conner-Raymond 1970, 1977], [Kamishima-Lee-Ray-
mond 1983], [Lee-Raymond 1984], [Zieschang-Zimmermann 1982, 2.10]. 	


Moreover, the outer automorphism group of H can be realized by a group of home-
omorphisms. This can be seen directly by looking at the corresponding extensions
of H and realizing them by groups of mappings of E × R, see the papers mentioned
above.
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E Symmetries of Montesinos Links

Using the Classification Theorem 12.29 and 12.40 we can easily decide about am-
phicheirality and invertibility of Montesinos links.

12.41 Proposition (Amphicheiral Montesinos links). (a) The Montesinos link

m(e0;β1/α1, . . . , βr/αr), r � 3,

is amphicheiral if and only if

1. e0 = 0 and

2. there is a permutation π – an r-cycle or a reversal of the ordering – such that

βπ(i)/απ(i) ≡ −βi/αi mod 1 for 1 � i � r.

(b) For r � 3, r odd, Montesinos knots are never amphicheiral.

Proof. The reflection in the plane maps m to the Montesinos link

m(−e0;−β1/α1, . . . ,−βr/αr);
hence, (a) is a consequence of the Classification Theorem 12.29. Proof of (b) as
Exercise E 12.7 	


A link l is called invertible, see [Whitten 1969, 1969′], if there exists a homeomor-
phism f of S3 which maps each component of l into itself reversing the orientation.
Let us use this term also for the case where f maps each component of l into itself
and reverses the orientation of at least one of them. In the following proof we will see
that both concepts coincide for Montesinos links.

12.42 Theorem (Invertible Montesinos links). The Montesinos link

m = m(e0;β1/α1, . . . , βr/αr), r � 3,

is invertible if and only if, with an appropriate enumeration,

(a) at least one of the αi , 1 � i � r , is even, or

(b) all αi are odd and there are three possibilities:

m = m(e0;β1/α1, . . . , βp/αp, βp/αp, . . . , β1/α1) when r = 2p, or

m = m(e0;β1/α1, . . . , βp/αp, βp+1/αp+1, βp/αp, . . . , β1/α1) when r = 2p + 1;
m = m(e0;β1/α1, . . . , βp/αp, βp+1/αp+1, βp/αp, . . . , β2/α2) when r = 2p.
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(a) (b)

Figure 12.13

Proof. That the conditions (a) or (b) are sufficient follows easily from 12.40 (and the
corresponding result for the euclidean cases) or from Figure 12.13.

For case (a), the rotation through 180� about the dotted line maps the Montesinos
link onto an equivalent one. If αi is even, a component of m enters the i-th box from
above and leaves it in the same direction. The rotation inverts the components. In case
(b) the rotation through 180� shown in Figure 12.13 (b) gives the required symmetry.

For the proof that the conditions are necessary we may restrict ourselves to the
case where C operates on the hyperbolic plane H, since in the euclidean cases either an
exponent 2 occurs or all αi are equal to 3 and the links are invertible. Let f : S3 → S3

be an orientation preserving homeomorphism that maps m onto m and maps one
component k of m onto itself, but reverses the orientation on k. Then, after a suitable
choice of the base point, f induces an automorphism ϕ of C that maps the element
k ∈ C defined by k into its inverse. By 12.39, k is a hyperbolic transformation.

If ϕ is the inner automorphism x �→ g−1xg of C then g has a fixed point on the axis
A of k. Hence, g is either a rotation of order 2 with centre on A or g is the reflection
with an axis perpendicular to A. In both cases C contains an element of even order,
i.e. one of the αi is even.

If ϕ is not an inner automorphism then ϕ corresponds to a rotation or a reflection
of the disk H/C that preserves the fractions βi/αi . It must reverse the orientation since
the direction of one of the edges of H/C is reversed. Therefore ϕ corresponds to a
reflection of the disk and this implies (b). 	


Next we study the isotopy classes of symmetries of a Montesinos link m with r � 3
tangles, in other words, we study the group M(S3,m) of mapping classes of the pair
(S3,m). This group can be described as follows: using the compact-open topology
on the set of homeomorphisms or diffeomorphisms of (S3,m) we obtain topological
spaces Homeo(S3,m) and Diff(S3,m), respectively. Now M(S3,m) equals the set
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of path-components of the above spaces:

12.43 M(S3,m) ∼= π0 Homeo(S3,m) ∼= π0 Diff(S3,m).

Each symmetry induces an automorphism of the knot group G which maps the kernel
of the homomorphism G → Z2 onto itself, and maps meridians to meridians; hence,
symmetries and isotopies can be lifted to the twofold branched covering Ĉ2 such
that the liftings commute with the covering transformation of Ĉ2 → S3. Lifting a
symmetry to the universal cover H× R of Ĉ2 yields a homeomorphism

12.44 γ : M(S3,m)→ Out H = Aut H/Inn H,

where H has a presentation of the form 12.34. The fundamental assertion is:

12.45 Proposition. γ : M(S3,m)→ Out H is an isomorphism.

Unfortunately, we cannot give a self-contained proof here, but have to use results
of Thurston and others which are not common knowledge. But this proof shows the
influence of these theorems on knot theory. An explicit and simple description of
Out H is given afterwards in 12.47.

Proof ([Boileau-Zimmermann 1987]). Consider first the case
∑r
i=1

1
αi
< r−2. From

12.40 it follows that γ is surjective and it remains to show that γ is injective. By
Bonahon–Siebenmann, m is a simple knot, that means, m does not have a companion.
By [Thurston 1997], S3 – m has a complete hyperbolic structure with finite volume.
Mostow’s rigidity theorem [Mostow 1968] implies that M(S3,m) is finite and that
every element of M(S3,m) can be represented by an isometry of the same order as
its homotopy class. Now we represent a non-trivial element of the kernel of γ by a
homeomorphism f with the above properties. Let f̄ be the lift of f to H × R; then
f̄ m ∈ H for a suitable m > 0. Since the class of f is in the kernel of γ we may
assume that the conjugation by f̄ yields the identity in H. As the centre of H is trivial
it follows that f̄ m = idH×R and, thus, that f̄ is a periodic diffeomorphism commuting
with the operation of π1Ĉ2. Therefore f̄ is a rotation of the hyperbolic 3-space and its
fixed point set is a line. The elements of π1Ĉ2 commute with f̄ ; hence, they map the
axis of f̄ onto itself and it follows from the discontinuity that π1Ĉ2 is infinite cyclic
or dihedral. This is a contradiction. Therefore γ is injective.

The euclidean cases
(∑r

i=1
1
αi
= r − 2

)
are left. There are four cases: (3,3,3),

(2,3,6), (2,4,4) and (2,2,2,2). They can be handled using the results of Bonahon–
Siebenmann and [Zimmermann 1982]. The last paper depends strongly on Thurston’s
approach [1997] which we used above, and, furthermore, on [Jaco-Shalen 1979],
[Johannson 1979]. 	


Next we determine Out H for the knot m(e; (α1, β1), . . . , (αr , βr)). We assume
0 < βj < αj , 1 � j � r , for the sake of simplicity.
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12.46 Definition. Let Dr , denote the dihedral group of order 2r , realized as a group
of rotations and reflections of a regular polygon with vertices (1,2,. . . ,r). Define

D̃r = {� ∈ Dr | α�(i) = αi for 1 � i � r}.
Let D̆r ⊂ D̃r consist of

(i) the rotations � with α�(i) = αi and β�(i) = βi and the reflections � with
α�(i) = αi and β�(i) = αi − βi if e0 = 0,

(ii) the rotations � with (α�(i), β�(i)) = (αi, αi − βi) and the reflections � with
(α�(i), β�(i)) = (αi, βi) if e0 = 0.

12.47 Proposition. Out H is an extension of Z2 or Z2 ⊕ Z2 by the finite dihedral or
cyclic group D̆r .

Proposition 12.47 is a direct consequence of the following Lemmas 12.48 and
12.50.

Since 〈h 〉 is the centre of H, the projection H → H/〈h 〉 = C is compatible with
every automorphism of H and we obtain a homomorphism χ : Out H → Out C. It is
easy to determine the image of χ ; thus the main problem is to calculate the kernel.

Consider an automorphismψ of H which induces the identity on C. Thenψ(cj ) =
cjh

mj , ψ(h) = hε where ε ∈ {1,−1}, and

hεβ1 = ψ(hβ1) = ψ((c0c1)
−α1) = (c0h

m0c1h
m1)−α1 (1)

= (c0c1)
−α1h−α1(m1−m0) = hβ1−α1(m1−m0).

1. Case ε = 1. Since h has infinite order it follows thatm1 = m0 and, by copying
this argument, m0 = m1 = · · · = mr = 2l + η with η ∈ {0, 1}. Now multiply ψ by
the inner automorphism x �→ hlxh−l :

cj �→ hlcjh
−l �→ hlcjh

m0h−l = cjhη;
hence, these automorphisms define a subgroup of ker χ isomorphic to Z2.

2. Case ε = −1. Now 2β1 = −α1(m0 − m1) by (1). Since α1 and β1 are
relatively prime and 0 < β1 < α1 it follows that α1 = 2, β1 = 1 and m0 = m1 − 1.
By induction: α1 = · · · = αr = 2, β1 = · · · = βr = 1, mj = m0 + j for 1 � j � r .
Now

h−e = ψ(he) = ψ(c−1
0 cr) = h−m0c−1

0 crh
mr = he+mr−m0 = he+r .

It follows that e = − r
2 and that the Euler number e0 vanishes:

e0 = e +
r∑

j=1

βj

αj
= 0.

Thus we have proved
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12.48 Lemma. ker χ ∼= Z2 is generated by ψ0 : H → H, cj �→ cjh, h �→ h, except
in the case where (αj , βj ) = (2, 1) for 1 � j � r and e0 = 0; then ker χ ∼= Z2⊕Z2,
generated by ψ0 and ψ1 : H→ H, h �→ h−1, cj �→ cjh

r−j . 	


Using the generalized Nielsen theorem, see [ZVC 1980, 5.8.3, 6.6.9], Out C is
easily calculated:

12.49 Lemma. (a) An automorphism ϕ : C → C mapping each conjugacy class of
elliptic subgroups 〈 (cj cj+1) 〉 onto itself is an inner automorphism of C.

(b) The canonical mapping D̃r → Out C is an isomorphism.

Proof. By the generalized Nielsen theorem, see [ZVC 1980, 6.6.11], ϕ is induced by
a homeomorphism f of H/C ∼= D2 onto itself which fixes the rotation centres lying
on ∂D2. Now the Alexander trick [Alexander 1923] can be used to isotope f into the
identity. This implies that ϕ is an inner automorphism. 	


12.50 Lemma. The image of Out H in Out C is the subgroup D̆r of D̃r .

Proof. Let ϕ be an automorphism of H. By 12.49 (b), ϕ induces a ‘dihedral’ permu-
tation π of the cyclic set c̄1, . . . , c̄r−1, c̄r = c̄0. We discuss the cases with ϕ(h) = h.

1. π is a rotation. Then

hβ1 = ϕ(hβ1) = ϕ((c0c1)
−α1) = (ci−1h

m0cih
m1)−α1

= hβi−α1(m1−m0)

and αi = α1. Since, by assumption, 0 < βi < αi , it follows that m1 = m0 and
β1 = βi . Therefore ϕ preserves the pairs (αj , βj ) and maps cj to cjhm for a fixed m.
By multiplication with an inner automorphism and, if necessary, with ψ1 from 12.48
we obtain m = 0. The image of ϕ in Out C is in D̆r , and each rotation π ∈ D̆r is
obtained from a ϕ ∈ Out H.

2. π is a reflection. Then

hβ1 = ϕ(hβ1) = ϕ((c0c1)
−α1) = (cihm0ci−1h

m1)−α1

= h−βi−α1(m1−m0)

and α1 = αi . Thereforem1−m0 = −1, βi+β1 = α1, and ϕ assigns to a pair (αk, βk)
a pair (αj , βj ) = (αk, αk − βk). The generators ci are mapped as follows:

c0�

��
cih

m

c1�

��
ci−1h

m−1

. . .

. . .

ci�

��
c0h

m−1

crh
−e+m+i

ci+1�

��
cr−1h

−e+m−i−1

. . .

. . .

cr�

��
cih

−e+m−r
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and
cih

−e+m−r = ϕ(cr) = ϕ(c0h
e) = cihm+e.

This implies e = − r
2 and

e0 = e +
r∑

j=1

βj

αj
= e + 1

2

r∑
j=1

(
βj

αj
+ ai−j − βi−j

αj

)
= 0;

here i − j is considered mod r . By normalizing as before we obtain m = 0.
The cases for ϕ(h) = h−1 can be handled the same way; proof as E 12.8. 	


Lemmas 12.48 and 12.50 imply Proposition 12.47. As a corollary of Proposi-
tion 12.45 and 12.47 we obtain the following results of Bonahon and Siebenmann (for
r � 4) and Boileau (for r = 3).

12.51 Corollary. The symmetry group M(S3,m) is an extension of Z2 or Z2 ⊕ Z2,
by the finite dihedral or cyclic group D̆r . 	


F History and Sources

4-plats (Viergeflechte) were first investigated in [Bankwitz-Schumann 1934] where
they were shown to be alternating and invertible. They were classified by H. Schubert
[1956] as knots and links with two bridges. A different proof using linking numbers
of covering spaces was given in [Burde 1975]. Special properties of 2-bridge knots
(genus, Alexander polynomial, fibring, group structure) were studied in [Funcke 1975,
1978], [Hartley 1979′], [Mayland 1976].

J. Montesinos then introduced a more general class of knots and links which could
nevertheless be classified by essentially the same trick that H. Seifert had used to
classify (unoriented) knots with two bridges: Montesinos links are links with 2-fold
branched covering spaces which are Seifert fibre spaces, see [Montesinos 1973, 1979],
[Boileau-Siebenmann 1980], [Zieschang 1984]. In other papers on Montesinos links
their group of symmetries was determined in most cases (Bonahon and Siebenmann,
[Boileau-Zimmermann 1987]).

G Exercises

E 12.1. Show that a reduced diagram of b(α, β) leads to the following Wirtinger
presentations:

G(α, β) = 〈 S1, S2 | S−1
2 L−1

1 S1L1 〉,
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with
L1 = Sε1

2 S
ε2
1 . . . S

εα−2
2 S

εα−1
1 , α ≡ 1 mod 2,

G(α, β) = 〈 S1, S2 | S−1
1 L−1

1 S1L1 〉,
with

L1 = Sε1
2 S

ε2
1 . . . S

εα−2
1 S

εα−1
2 , α ≡ 1 mod 2,

here εi = (−1)

[
iβ
α

]
, [α] = integral part of α.

E 12.2. The matrices

A1 =
(

1 −1

0 1

)
, A2 =

(
1 0

1 1

)
generate the mapping class group of the torus (Section B). Show that 〈A1, A2 |
A1A2A1 = A2A1A2, (A1A2)

6 〉 is a presentation of the group SL(2,Z) and connect
it with the classical presentation

SL(2,Z) = 〈 S, T , Z | S2 = T 3 = Z, Z2 = 1 〉.
E 12.3. Let α, β, β ′ be positive integers, gcd(α, β) = gcd(α, β ′) = 1 and ββ ′ ≡ 1
mod α. If β · α−1 = [a1, . . . , am], are the quotients of the continued fraction β · α−1

of odd length m, then β ′ · α−1 = [am, . . . , a1]. (Find an algebraic proof.)

E 12.4. Let α, β, β ′ (α odd) be integers as in E 12.3, and let β · α−1 = [a1, . . . , ak]
be the quotients obtained from the generalized algorithm 12.17. Prove: If b(α, β) is
a fibred knot, then for ε = (−1)k+1:

β ′α−1 = [εak − 1, εak−1, . . . , εa2, εa1 + 1].
E 12.5. Compute a Seifert matrix V (α, β) for b(α, β) using a Seifert surface as de-
scribed in 12.27. Prove

(a) | det V (α, β)| =∏k−1
i=1

[
bi + 1

2

(
ai|ai | +

ai+1
|ai+1|

)]
,

(b) σ [V (α, β)+ V T (α, β)] = (∑k
i=1 ai

)− ak|ak | .
(σ denotes the signature of a matrix, see Appendix A.2.) Deduce 12.24 from (a).

E 12.6. Prove 12.22.

E 12.7. Prove 12.41 (b).

E 12.8. Finish the proof of 12.50 for the case ϕ(h) = h−1.

E 12.9. Prove that Montesinos knots are prime. (Use the Smith conjecture for invo-
lutions.)



Chapter 13

Quadratic Forms of a Knot

In this chapter we propose to reinvestigate the infinite cyclic covering C∞ of a knot
and to extract another knot invariant from it: the quadratic form of the knot. The first
section gives a cohomological definition of the quadratic form q(x) of a knot. The
main properties of q(x) and its signature are derived. The second part is devoted to
the description of a method of computation of q(x) from a special knot projection.
Part C then compares the different quadratic forms of Goeritz [1933], Trotter [1962],
Murasugi [1965], and Milnor–Erle [1969]. Some examples are discussed.

A The Quadratic Form of a Knot

In Proposition 8.9 we have determined the integral homology groups Hi(C∞),
Hi(C∞, ∂C∞) of the infinite cyclic covering C∞ of a knot k. It will become nec-
essary to consider these homology groups with more general coefficients. Let A be
an integral domain with identity. Then:

Hi(X, Y ;A) = Hi(X, Y )⊗Z A

for a pair Y ⊂ X. So we have:

13.1 Proposition. LetA be an integral domain with identity andC∞ the infinite cyclic
covering of a knot k, Then

H1(C∞;A) ∼= H1(C∞, ∂C∞;A),
H2(C∞, ∂C∞;A) ∼= A. 	


As we use throughout this chapter homology (and cohomology) with coefficients
in A, this will be omitted in our notation.

Again, as in Chapter 8, we start by cutting the knot complement C along a Seifert
surface S. Let {ai | 1 � i � 2g} (see Chapter B) be a canonical set of generators
of H1(S), where g denotes the genus of S. The cutting produces the surfaces S+ and
S− contained in ∂C∗. We assume S3, and hence, C and C∗ oriented; the induced
orientation on S− is supposed to induce on ∂S− an orientation which coincides with
that of k. The orientation of S+ then induces the orientation of −k. The canonical
curves {ai} become canonical curves {a+i }, {a−i } on S+, S−. The space C∗ is the
complement of a handlebody of genus 2g in S3 and there are 2g free generators
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{sk} of H1(C
∗) associated to {ai} by linking numbers in S3 (as usual δik denotes the

Kronecker symbol):

lk(ai, sk) = δik, i, k = 1, . . . , 2g.

One sees easily that the sk are determined by the ai , if the above condition is imposed
on their linking matrix: For s′j =

∑
k αkj sk and δij = lk(ai, s′j ), we get δij =

lk(ai,
∑
k αkj sk) =

∑
k αkj δik = αij .

We are now going to free ourselves from the geometrically defined canonical bases
{ai} of S and introduce a more general concept of a Seifert matrix V = (vik) (see
Chapter 8).

13.2 Definition. Let {ai | 1 � i � 2g} be a basis ofH1(S). A basis {si | 1 � i � 2g}
of H1(C

∗) is called an associated basis with respect to {ai}, if lk(ai, sk) = δik . The
matrix V = (vik) defined by the inclusion

i− : S− → C∗, i−∗ (a−i ) =
∑

viksk

is called a Seifert matrix.

To abbreviate notations we use vectors s = (sk), a = (ai), a± = (a±i ) etc.
In Chapter 8 we have used special associated bases a and s derived from a band
projection. For these we deduced i+∗ (a+) = V T s from i−∗ (a−) = V s. Moreover, in
this case V −V T = F represents the intersection matrix of the canonical basis {ai}, if
a suitable convention concerning the sign of the intersection numbers is agreed upon.
The following proposition shows that these assertions remain true in the general case.

13.3 Proposition. Let a, s be associated bases of H1(S), H1(C
∗), respectively. If

i−∗ (a−) = V s then i+∗ (a+) = V T s. Moreover V − V T is the intersection matrix of
the basis a = (ai).

Proof. Let ã, s̃ be the special bases of a band projection with i−∗ (ã−) = Ṽ s̃, and a, s
another pair of associated bases, a = Cã, s = Ds̃,C,D unimodular 2g×2g-matrices.
From lk(ai, sk) = lk(ãi , s̃k) = δik we get D = (C−1)T . We have a± = Cã±;
i−∗ (a−) = V s implies CṼ CT s = i−∗ (a−) = V s, and hence V = CṼ CT . Now
i+∗ (a+) = CṼ T CT s = V T s follows. From this we get the transformation rule

C(V − V T )CT = Ṽ − Ṽ T = F
which reveals V − V T as intersection matrix relative to the basis a. 	


We shall use the following

13.4 Definition. Two symmetric n×n-matricesM ,M ′ overA are calledA-equivalent
if there is an A-unimodular matrix P – a matrix over A with det P a unit of A – with
M ′ = PMPT .
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We use the term equivalent instead of Z-equivalent.

13.5 Lemma (Trotter, Erle). LetA be an integral domain with identity in which�(0)
is a unity. (�(t) denotes the Alexander polynomial of a knot k). Every Seifert matrix
V is A-equivalent to a matrix (

U 0

0 W

)
whereW is a 2m× 2m integral matrix, |W | = detW = 0, and U is of the form

U =



0

0
−1 0

0 ∗ 0

−1 0

0 ∗
0

0 ∗ 0 ∗ −1 0


.

(W is called a “reduced” Seifert matrix and may be empty.)

Proof. If |V | = 0, V itself is reduced and nothing has to be proved. Let us assume
|V | = 0. There are unimodular matrices Q and R such that QVR will have a first
row of zeroes. The same holds for QVQT = QVRR−1QT . Since F = V − V T is
unimodular and skew-symmetric, so ist QVQT − (QVQT )T = QFQT . Therefore
its first column has a zero at the top and the remaining entries are relatively prime.
But the first column of QFQT coincides with that of QVQT , because (QVQT )T

has zero entries in its first column. So there is a unimodular R such that

RQVQT =



0 0 0

−1 ∗ ∗
0

0 ∗ ∗


, R =



1 0 0

0 ∗ ∗

0 ∗ ∗


.

To find R look for the element of smallest absolute value in the first column of
QVQT . Subtract its row from other rows until a smaller element turns up in the first
column. Since the elements of the first column are relatively prime one ends up with
an element ±1; the desired form is then easily reached. The operations on the rows
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can be realized by premultiplication by R. The matrix RQVQT RT has the same first
row and column as RQVQT .

Similarly, for a suitable unimodular R̃,

RQVQT RT R̃T =



0 0 0 0

−1 0 0 0

0 ∗ ∗ ∗

0 ∗ ∗ ∗


, R̃T =



1 ∗ ∗
1

∗
1



and R̃RQVQT RT R̃T is of the same form.

By repeating this process we obtain a matrix

Ṽ =



0

0
−1 0

0 ∗ 0

−1 0

0 ∗

0 ∗ 0 ∗
W



equivalent to V (over Z), |W | = 0. For further simplification of Ṽ we now make
use of the assumption that �(0) is in A a unit. |V T − tV | = �(t), |Ṽ T − t Ṽ | and
|WT − tW | all represent the Alexander polynomial up to a factor±tν . So |W | = �(0)
is a unit of A. There is a unimodular P1 over A with

Ṽ P1 =



0

−1 0

0 0

0 0
W


, P1 =



1

1

∗ 1

∗ 1
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where the column adjoining W has been replaced by zeroes, because it is a linear
combination of the columns of W . Now

PT1 Ṽ P1 =



0 0 0

−1 0 ∗ ∗
0 0

W

0 0


Since the row over W contains −1, there is a unimodular P2 with

PT1 Ṽ P1P2 =



0 0 0 0

−1 0 0 0

0 0

W

0 0


.

and PT2 P
T
1 Ṽ P1P2 is of the same type. The process can be repeated until the desired

form is reached. 	


13.6 Corollary. If A is an integral domain in which�(0) is a unit, then (WT − tW)
is a presentation matrix ofH1(C∞) as anA(t)-module, and |WT − tW | = �(t). The
A-module H1(C∞) is finitely generated and free and there is an A-basis of H1(C∞)
such that the generating covering transformation t = hj+1h

−1
j (see 4.4) induces an

isomorphism t∗ : H1(C∞)→ H1(C∞) which is represented by the matrixW−1WT .

Proof. We may assume that as an A(t)-module H1(C∞) has a presentation ma-
trix (V T − tV ) where V is of the special form which can be achieved according to
Lemma 13.5:

V T − tV =
 UT − tU

�
�
�
�

WT − tW

 (1)
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UT − tU =



0 −1 0 · · · · 0

t 0 0 ∗ · · · ∗
0 ∗ 0 −1 0 · · 0

t 0 0 ∗ ·
0 ∗

0 ∗ · ·


.

There is an equivalent presentation matrix in whose second column all entries but
the first are zero, the first remaining −1. So the first row and second column can
be omitted. In the remaining matrix the first row and the first column again may be
omitted. This procedure can be continued until the presentation matrix takes the form
(WT − tW), or, (WTW−1 − tE), since |W | = �(0) is a unit of A. This means
that defining relations of H1(C∞) as an A(t)-module take the form: WTW−1s = ts,
where s = (si) are generators of H1(C∞). This proves the corollary. 	


There is a distinguished generator z ∈ H2(S, ∂S) ∼= Z represented by an orienta-
tion of S which induces on ∂S the orientation of k. We shall now make use of cohomol-
ogy to define a bilinear form. Since all homology groups Hi(C∞), Hi(C∞, ∂C∞),
are torsion free, we have

Hi ∼= HomA(Hi, A) ∼= Hi
for these spaces ([Franz 1965, Satz 17.6], [Spanier 1966, 5.5.3]). For every free basis
{bj } of a group Hi there is a dual free basis {bk} of Hi defined by 〈 bk, bj 〉 = δkj ,
where the brackets denote the Kronecker product, that is 〈 bk, bj 〉 = bk(bj ) ∈ A

for bk ∈ HomA(Hi, A). We use the cup-product [Hilton-Wylie 1960], [Stöcker-
Zieschang 1985] to define

β : H 1(C∞, ∂C∞)×H 1(C∞, ∂C∞)→ A, (x, y) �→ 〈 x ∪ y, j∗(z) 〉, (2)

where j : S → C∞ is the inclusion. (Here we write S instead of S0 ⊂ p−1(S).) Now
let {aj | 1 � j � 2g} and {si | 1 � i � 2g} denote associated bases of H1(S) and
H1(C∞, ∂C∞), respectively, lk(aj , si) = δji , such that j∗ according to these bases is
represented by a Seifert matrix

V =
(
W 0

0 U

)
, W = (wji)

where the reduced Seifert matrix W is 2m× 2m, m � g. (See Lemma 13.5; observe
that U andW are interchanged for technical reasons). From Corollary 13.6 it follows
thatH1(C∞, ∂C∞) ∼= H1(C∞) is already generated by {si | 1 � i � 2m}. It therefore
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suffices to consider the matrix

(
W

0

)
to describe the homomorphism j∗ : H1(S) →

H1(C∞, ∂C∞) with respect to the bases {aj | 1 � j � 2g} and {si | 1 � i � 2m}.
The transpose (wij ) = (WT 0) then describes the homomorphism

j∗ : H 1(C∞, ∂C∞)→ H 1(S)

for the dual bases {sj }, {ai}, and we get from (2)

B = (β(si, sk)) = (〈 si ∪ sk, j∗(z) 〉) = (〈 j∗(si) ∪ j∗(sk), z 〉). (3)

We define another free basis {bi | 1 � i � 2g} ofH 1(S) by the Lefschetz-duality-
isomorphism:

H 1(S)
∩z−→ H1(S, ∂S), b

i �→ bi ∩ z = ai.
The bi connect z with the intersection matrix

V − V T = (int(ai, ak)) = (〈 bi ∪ bk, z 〉) = �.
On the other hand

〈 ai ∪ bk, z 〉 = 〈 ai, bk ∩ z 〉 = 〈 ai, ak 〉 = δik.
(See [Hilton-Wylie 1960, Theorem 4.4.13], [Stöcker-Zieschang 1985, Satz 15.4.1].)

The matrix L effecting the transformation (ai) = L(bi) is

(〈 ai ∪ ak, z 〉) = L · (〈 ai ∪ bk, z 〉) = L · E = L.
Now L = L�LT or (�T )−1 = L, and, by (1),

(WT 0) L

(
W

0

)
= (WT 0)(�T )−1

(
W

0

)
.

From

� =
 W −WT 0

0 U − UT


and (3) it follows that

B = −WT (W −WT )−1W. (4)

13.7 Proposition. The bilinear form β : H 1(C∞, ∂C∞) × H 1(C∞, ∂C∞) → A,
(x, y) �→ 〈 x ∪ y, j∗(z) 〉 can be represented by the matrix −(W − WT )−1, W is
a reduced Seifert matrix, and β is non-degenerate.
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Proof. It remains to show that β is non-degenerate. But, see Lemma 13.5 and (1),
|V − V T | = 1 and |U − UT | = 1; hence |W −WT | = 1. 	


We are now in a position to define an invariant quadratic form associated to a knot k.
Let t : C∞ → C∞ denote the generator of the group of covering transformations which
corresponds to a meridian linking the knot positively in the oriented S3.

13.8 Proposition. The bilinear form

q : H 1(C∞, ∂C∞)×H 1(C∞, ∂C∞)→ A, q(x, y) = 〈 x ∪ t∗y + y ∪ t∗x, j∗(z) 〉
defines a quadratic form q(x, x), which can be represented by the matrix W +WT ,
where W , see 13.5, is a reduced Seifert matrix of k. The quadratic form is non-
degenerate. �(0) is required to be a unit in A.

Proof. Remember that t∗ is represented by W−1WT with respect to the basis {si}, so
t∗ will be represented by W(WT )−1 relative to the dual basis {si}.

To calculate the matrix

Q = (q(si, sk)) = (〈 j∗(si) ∪ j∗t∗(sk)+ j∗(sk) ∪ j∗t∗(si), z 〉)
we use B = (〈 j∗(si) ∪ j∗(sk), z 〉) = −WT (W − WT )−1W , see (3) and (4). We
obtain

Q = BW−1WT +W(WT )−1BT

= −WT (W −WT )−1WT +W((W −WT )−1)T W.

Since |W−WT | = 1, the matrices (W−WT )−1 andW−WT are equivalent, because
there is only one skew symmetric form over Z with determinant +1; its normal form
is F (see Appendix A.1). Let M be unimodular over Z with

(W −WT )−1 = M(W −WT )MT , or (5)

(W −WT )M(W −WT )MT = E.
Now, Q = −WTM(W −WT )MTWT +WM(W −WT )MTW .

Using (5), we get

Q = (E −WM(W −WT )MT )WT +WM(W −WT )MTW

= WT +WM(W −WT )MT (W −WT ) = WT +W.
The quadratic form is non-degenerate, since |W +WT | ≡ |W −WT | ≡ 1 mod 2 	


Let us summarize the results of this section: Given a knot, we have proved, that
H1(C∞, ∂C∞) is a free A-module, if �(0) is invertible in the integral domain A. By
using the cup product, we defined a quadratic form q on

H 1(C∞, ∂C∞) ∼= H1(C∞, ∂C∞),
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invariantly associated to the knot. The form can be computed from a Seifert matrix.
q is known as Trotter’s quadratic form.

In the course of our argument we used both, an orientation of S3 and of the
knot. Nevertheless, the quadratic form proves to be independent of the orientation
of k. Clearly j∗(z) = t∗j∗(z) in H1(C∞, ∂C∞), by the construction of C∞, so
that q(x, y) = 〈 x ∪ (t∗ − t∗−1)y, j∗(z) 〉 is a equivalent definition of q(x, y). Re-
placing z by −z and t by t−1 does not change q(x, y) (see Proposition 3.15). A
reflection σ of S3 which carries k into its mirror image k∗ induces an isomorphism
σ ∗ : H 1(C∞, ∂C∞) → H 1(C∞, ∂C∞). If qk und qk∗ are the quadratic forms of k

and k∗, respectively, then qk∗ = −qk, because σ ∗t∗ = t∗−1σ ∗.

13.9 Proposition. The quadratic form of a knot is the same as that of its inverse. The
quadratic forms of k and its mirror image k∗ are related by qk∗ = −qk. 	


The quadratic form is easily seen to behave naturally with respect to the com-
position of knots (see 2.7). Let us assume that in A the leading coefficients of the
Alexander polynomials of k1 and k2 are invertible such that qk1 and qk2 are defined.

13.10 Proposition. q(k1#k2) = qk1 ⊕ qk2

Proof. Obviously the Seifert matrix of k1 # k2 has the form

V =
 V1 0

0 V2


with Vi Seifert matrix of ki , i = 1, 2. The same holds for the reduced Seifert matrices.

	


Invariants of the quadratic form are, of course, invariants of the knot.

13.11 Definition (Signature). The signature σ of the quadratic form of a knot k is
called the signature σ(k) of k.

The signature of the quadratic form – the number of its positive eigenvalues minus
the number of its negative eigenvalues – can be computed without much difficulty
[Jones 1950, Theorem 4], see Appendix A.2. Obviously the signature of a quadratic
form is an additive function with respect to the direct sum. Moreover the signature of(

0 1

1 0

)
is zero.

13.12 Proposition. (a) For any Seifert matrix V for k, σ(k) = σ(V + V T ).
(b) σ(k1 # k2) = σ(k1)+ σ(k2).

(c) If k is amphicheiral, σ(k) = 0.
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Proof. We can replace V by an equivalent matrix of the form as obtained in Lemma
13.5. Then

V+V T ∼



0 −1 ∗ ∗
−1 0 0 0

∗ 0
W +WT

∗ 0


∼



0 −1

−1 0 0

W +WT0


.

	


B Computation of the Quadratic Form of a Knot

The computation of the quadratic form q of a given knot k was based in the last
paragraph on a Seifert matrix V which in turn relied on Seifert’s band projection (see
8.2). Such a projection might not be easily obtainable from some given regular knot
projection. Murasugi [1965] defined a knot matrix M over Z, which can be read
off any regular projection of a link. A link defines a class of s-equivalent matrices
{M} (see 13.34), and by symmetrizing, one obtains a class of S-equivalent matrices
{M +MT } which can be described in the following way:

13.13 Definition. Two symmetric integral matricesM andM ′ are calledS-equivalent,
if there is a matrix 

0 1

0
1 0

0 1

1 0

M

0


A-equivalent (see 13.4) to M ′. (Or, vice versa, exchanging M and M ′.)

Murasugi [1965] proved that the class {M +MT } of S-equivalent symmetrized
knot matrices is an invariant of the knot (or link). He thereby attaches a class of
quadratic forms to a link.
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Obviously, S-equivalent matrices have the same signature (see proof of 13.12),
so the signature σ {M +MT } is defined and is a knot invariant. We shall prove: If
W is a reduced Seifert matrix of k, then W + WT ∈ {M + MT }. This means that
the quadratic form qk as defined in the first section of this chapter is a member of the
class of quadratic forms represented byM+MT , whereM is Murasugi’s knot matrix.
Since the rule given by Murasugi to read offM from an arbitrary regular projection is
rather complicated, we shall confine ourselves to so-called special projections, which
hold a position between arbitrary projections and band projections. Any projection
can be converted into a special one without much difficulty. We give a simple rule in
(6) to read off the matrix M from a special projection.

13.14 Definition (Special projection). Let p(k) be a regular projection of a knot k on
R2. Choose a chessboard colouring (colours α and β) of the regions of R2 defined
by p(k) such that the infinite region is an α-region (see 2.1). p(k) is called a special
projection or special diagram, if the union of the β-regions is the image of a Seifert
surface of k under the projection p.

13.15 Proposition. Every knot k possesses a special projection.

Proof. Starting from an arbitrary regular projection of k we use Seifert’s procedure
(see 2.4) to construct an orientable surface S spanning k. We obtain S as a union of
several disks spanning the Seifert circuits, and a couple of bands twisted by π , joining
the disks, which may occur in layers over each other. There is an isotopy which places
the disks separately into the projection plane R2, so that they do not meet each other
or any bands, save those which are attached to them (Figure 13.1 (a)). By giving the

(a) (b)

Figure 13.1

overcrossing section at a band crossing a half-twist (Figure 13.1 (b)) it can be arranged,
that only the type of crossing as shown in Figure 13.1 (b) occurs.
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Now apply again Seifert’s method. All Seifert circuits bound disjoint regions
(β-regions) in R2. So they define a Seifert surface which – except in the neighbourhood
of double points – consists of β-regions. 	


It follows that the number of edges (arcs of p(k) joining double points) of every
α-region in a special projection must be even. This also suffices to characterize a
special projection, if the boundaries of β-regions are simple closed curves, that is, if at
double points always different β-regions meet. It is easy to arrange that the boundaries
of β- and α-regions are simple: in case they are not, a twist through π removes the
double point which occurs twice in the boundary (Figure 13.2).

αα
α

α

ββ

Figure 13.2

We now use a special projection to define associated bases {ai}, {sk} of H1(S)

and H1(C
∗), respectively, and compute their Seifert matrix V . (It turns out that

V is Murasugi’s knot matrix M of the special diagram; see [Murasugi 1965, 3.3].)
Let S be the Seifert surface of k which projects onto the β-regions {βj } of a special
projection. The special projection suggests a geometric free basis of H1(S). Choose
simple closed curves ai on S whose projections are the boundaries ∂αi of the finite
α-regions {αi | 1 � i � 2h}, oriented counterclockwise in the projection plane. (See
Figure 13.3.) The number of finite α-regions is 2h, where h is the genus of S. (We
denote the infinite α-region by α0.)

α3

α1

S

α2

α4

s4

α0
−
−

−
−

++
+

Figure 13.3



B Computation of the Quadratic Form of a Knot 231

Now cut the knot complement C along S to obtain C∗. There is again a geomet-
rically defined free basis {sk | 1 � k � 2h} of H1(C

∗) associated to {ai} by linking
numbers: lk(ai, sk) = δik . The curve representing sk pierces the projection plane
once (from below) in a point belonging to αk and once in α0.

ai splits up into a+i and a−i . We move i+∗ (a+i ) by a small deformation away from
S+ and use the following convention to distinguish between i+∗ (a+i ) and i−∗ (a−i ). If
in the neighbourhood of a double point P the curve i+∗ (a+i ) is directed as the parallel
undercrossing edge of ∂αi , then i+∗ (a+i ) is supposed to run above the projection plane;
otherwise it will run below. This arrangement is easily seen to be consistent in a
special diagram.

In 2.3 we have defined the index θ(P ) of a double point P . We need another
function which takes care of the geometric situation at a double point with respect to
the adjoining α-regions.

13.16 Definition (Index εi(p)). Let P be a double point in a special projection, P ∈
∂αi . Then

εi(P ) =
{

1 if αi is on the left of the underpassing arc at P,

0 if αi is on the right,

is called ε-index of P . (See Figure 13.4.)

αi
αi

PP

αkαk

θ(P ) = +1 εi(P ) = 1 θ(P ) = −1

Figure 13.4

From this definition it follows that εi(P )+εk(P ) = 1 forP ∈ ∂αi∩∂αk . Because
of this symmetry it suffices to consider the two cases described in Figure 13.4.

We compute the Seifert matrix V = (vik), i+(a+i ) = �viksk:

vii =∑
P∈∂αi θ(P )εi(P ), vik =∑

P∈∂αi∩∂αk θ(P )εk(P ) (6)

This can be verified from our geometric construction using Figure 13.4. The formulas
(6) coincide with Murasugi’s definition of his knot matrix M [Murasugi 1965, Defi-
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nition 3.3] in the case of a special projection. (A difference in sign is due to another
choice of θ(P ).)

The formulas (6) may be regarded as the definition ofM; we do not give a definition
of Murasug’s knot matrix for arbitrary projections because it is rather intricate. The
result of the consideration above can be formulated in the following way.

13.17 Proposition. Let p(k) be a special diagram of k with α-regions αi , index func-
tions θ(P ) and εi(P ) according to 2.3 and 13.16. Then a Seifert matrix (vik) of k is
defined by (6). (The Seifert matrix coincides with Murasugi’s knot matrix of p(k).) 	


13.18 Proposition. IfW is a reduced Seifert matrix then (W +WT ) is contained in
the class {M +MT } of S-equivalent matrices. The signature σ(k) coincides with the
signature σ(M +MT ) of [Murasugi 1965].

Proof. If S is a Seifert surface which admits a special diagram as a projection the
assertion follows from 13.13 and 13.17. Any Seifert surface S allows a band projec-
tion. By twists through π it can be arranged that the bands only cross as shown in
Figure 13.1 (b). At each crossing we change S, as we did in the proof of 13.17, in order
to get a spanning surface S′ which projects onto the β-region of a special diagram.
We then compare the band projections of S and S′ and their Seifert matrices V and
V ′. It suffices to consider the case shown in Figure 13.5 (a).

It is not difficult to perform the local isotopy which carries Figure 13.5 (c) over to
Figure 13.5 (d). The genus of the new surface is g(S′) = g(S)+ 2. Let {ak}, {sl} be
associated bases of H1(S), (see 13.2) and H1(C

∗), and let V be their Seifert matrix.
Substitute ã, a′j , a′′j for aj ∈ {ak} and s̃, s′j , s′′j for sj ∈ {sl} to obtain associated bases
relative to S′. The corresponding Seifert matrix V ′ is of the form

s̃ s′j s′′j
ã

a′j
a′′j


0 1 −1 0 . . .

0 ∗ ∗ . . . .

0 ∗ ∗ . . . .

0
...

... (vkl)

 .
Adding the s′j -column to the s′′j -column and then the a′j -row to the a′′j -row we get

s̃ s′j − s′′j s′′j
ã

a′j
aj = a′j + a′′j



0 1 0 0 . . .

0 ∗ ∗ ∗ . . .

0 ∗
0 ∗ V

...
...

 .
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(a) (b) (c)

(d)

αi

αj

a′
j

a′
j

s′
j

ai

ã

a′′
j

a′′
j

S′
j
− s′′

j

s̃

s′′
j

Figure 13.5

This follows from Figure 13.5 (d), because the overcrossings of s′j and s′′j add up to
those of sj , and aj = a′j + a′′j . Evidently, by adding multiples of the first row to
the other rows the second column can be replaced by zeroes excepting the 1 on top.
After these changes the bases remain associated. We have proved: (V ′ + V ′T ) and
(V + V T ) are S-equivalent (see Definition 13.13). The procedure can be repeated
until a Seifert surface is reached which allows a special projection. (Observe: Twists
in the bands do not hamper the process.) 	
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C Alternating Knots and Links

The concepts which have been developed in the preceding section provide a means
to obtain certain results on alternating knots and links first proved in [Crowell 1959],
[Murasugi 1958, 1958′, 1960, 1963]. R.H. Crowell’s paper rests on a striking ap-
plication of a graph theoretical result, the Bott–Mayberry matrix tree theorem [Bott-
Mayberry 1954].

In 2.3 we defined the graph of a regular projection p(k) of a knot (or link) by
assigning a vertex Pi to each α-region αi and an edge to each double point; we
call this graph the α-graph of p(k) and denote it by �α . Its dual �β is obtained by
considering β-regions instead of α-regions.

We always assume the infinite region to be the α-region α0. The following defini-
tion endows �α and �β with orientations and valuations.

13.19 Definition. Let �α be the α-graph of p(k). The edge joining Pi ∈ αi and
Pk ∈ αk assigned to the crossing Qλ of p(k) is denoted by uλik . The orientation of
uλik is determined by the characteristic η(Qλ) (see 3.4): The initial point of uλik is Pi
resp. Pk for η(Qλ) = +1 resp. = −1. (Loops (Pi = Pk) are oriented arbitrarily.)
The oriented edge uλik obtains the valuation f (uλik) = θ(P ). The edges vµjl of the

dual graph �β are oriented in such a way that int(uλik, v
µ
jl) = +1 for every pair of

dual edges with respect to a fixed orientation of the plane containing p(k). Now the
valuation of �β is defined by f (vµjl) = −f (uλik). Denote the graphs with orientation
and valuation by �∗α , �∗β respectively.

13.20. A Seifert matrix of a Seifert surface of k which is composed of the β-regions
of a special projection may now be interpreted in terms of �∗α . Define a square matrix
H(�∗α) = (hik) by

hii =∑
j,λ f (u

λ
ji), hik = −∑λ f (u

λ
ik), i = k. (7)

Denote by Hii the submatrix of H obtained by omitting the i-th row and column of
H . From equations (6) and (7) we obtain (recall that the subscript 0 corresponds to
the infinite region α0)

13.21 Proposition. Let p(k) be a special projection of a knot or link, �∗α its α-graph,
and H the graph matrix of �∗α . Then H00 is a Seifert matrix of k with respect to a
Seifert surface which is projected onto the β-regions of p(k). 	


By a theorem in [Bott-Mayberry 1954], the principal minors det(Hii) of a graph
matrix are connected with the number of rooted trees in a graph �; for definitions and
the proof see Appendix A.3–A.5.
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13.22 Theorem (Matrix tree theorem of Bott–Mayberry). Let �∗α be an oriented
graph with vertices Pi , edges uλik , and a valuation f : {uλik} �→ {1,−1}. Then

det(Hii) =
∑

f (Tr(i)), (8)

where the sum is taken over the rooted trees Tr(i) ⊂ �∗α with root Pi , and f (Tr(i)) =∏
f (uλjk), the product taken over all u

λ
jk ∈ Tr(i). 	


13.23 Proposition. The graphs �∗α and �∗β of a special alternating projection have
the following properties (see Figure 13.6).

(a) Every region of �∗α can be oriented such that the induced orientation on every
edge in its boundary coincides with the orientation of the edge.

(b) No vertex of �∗β is at the same time initial point and endpoint.
(c) The valuation is constant (we always choose f (uλik) = +1).

α

Figure 13.6

The proof of the assertion is left to the reader. It relies on geometric properties
of special projections, see Figure 13.6, and the definitions 2.3 and 13.19. Note that
the edges of �∗α with Pi in their boundary, cyclically ordered, have Pi alternatingly as
initial point and endpoint, and that the edges in the boundary of a region of �∗β also
alternate with respect to their orientation. 	


13.24 Proposition. Let S be the Seifert surface determined by the β-regions of a
special alternating projection p(k), and V a Seifert matrix of S. Then det V = 0 and
S is ofminimal genus. Furthermore, det V = ±1, if andonly if degPi =∑

k |hik| = 2
for i = 0.

Proof. It follows from 13.23 (a) that every two vertices of �∗α can be joined by a
path in �∗α . So there is at least one rooted tree for any root Pi . Since f (uλik) = +1,
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the number of Pi-rooted trees is by 13.22 equal to det(Hii) > 0. If V = H00 is a
(m×m)-matrix then deg�(t) = m in the case of a knot, and deg∇(t) = m− µ+ 1
in the case of a µ-component link. It follows that 2h = m where h is the genus of S.
Since deg�(t) � 2g resp. deg∇(t)+µ− 1 � 2g for the genus g of k, we get g = h,
see 8.11, 9.18 and E 9.5.

To prove the last assertion we characterize the graphs �∗α which admit only one
P0-rooted tree. We claim that for i = 0 one must have degPi = 2. Suppose
degPk � 4 for some k = 0, with uλik = uλ

′
jk , and uλik contained in a P0-rooted tree T0.

Then uλ
′
jk ∈ T0, and there are two simple paths wi , wj in T0 which intersect only in

their common initial point Pl with endpoints Pi and Pj respectively, see Figure 13.7.
Substitute uλ

′
jk for uλik to obtain a different P0-rooted tree.

Obviously every graph �∗α with degPi = 2 for all i = 0 has exactly one P0-rooted
tree. 	


Pi

Pk

Pj

wj

Pl

P0

wi

Figure 13.7

As an easy consequence one gets:

13.25 Proposition. A knot or link k with a special alternating projection is fibred, if
and only if it is the product of torus knots or links ki = t(ai, 2), k = k1 # · · · # kr .

Proof. See Figure 13.8. It follows from 13.24 that k is of this form. By 4.11 and 7.19
we know that knots of this type are fibred. 	


Proposition 13.25 was first proved in [Murasugi 1960].

13.26 Proposition. Let k be an alternating knot or link of multiplicity µ, and p(k) an
alternating regular projection.

(a) The genus of the Seifert surface S obtained from the Seifert construction 2.4 is
the genus g(k) of k (genus and canonical genus coincide).
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P0

�∗α �∗β

=

Figure 13.8

(b) deg�(t) = 2g, resp. deg∇(t) = 2g.

(c) k is fibred if and only if |�(0)| = 1 resp. |∇(0)| = 1.

Proof. Consider the Seifert cycles of the alternating projection p(k). If a Seifert cycle
contains another Seifert cycle in the projection of the disk it spans, it is called a cycle
of the second kind, otherwise it is of the first kind [Murasugi 1960]. If there are no
cycles of the second kind, the projection is special, see 2.4 and 13.14. Suppose there
are cycles of the second kind; choose a cycle c bounding a disk D ⊂ S3 such that
p(D) contains only cycles of the first kind. Place S in R3 in such a way that the part
of k which is projected on p(D) is above a plane E ⊃ D, while the rest of k is in the
lower halfspace (Figure 13.9).

Cut S along D such that S splits into two surfaces S1, S2, contained in the upper
resp. lower halfspace defined by E such thatD is replaced by two disksD1, D2. The
knots (or links) k1 = ∂S1, k2 = ∂S2 then possess alternating projections p(k1), p(k2),
and p(k1) is special. One may obtain S back from S1 and S2 by identifying the disks
D1 andD2. If k results in this way from the components k1 and k2, we write k = k1 ∗k2
and call it ∗-product [Murasugi 1960]. (The reader is warned that the ∗-product does
not depend merely on its factors k1 and k2.)

LetC∗, C∗i , 1 � i � 2, be obtained from the complements of k, ki by cutting along
S, Si , see 4.4. Choose a base point P on ∂D (Figure 13.9), then

π1C
∗ ∼= π1C

∗
1 ∗ π1C

∗
2 , π1S ∼= π1S1 ∗ π1S2, resp.

H1(C
∗) ∼= H1(C

∗
1 )⊕H1(C

∗
2 ), H1(S) ∼= H1(S1)⊕H1(S2).

(9)

It is evident that every alternating projection may be obtained by forming ∗-products
of special alternating projections. We shall prove 13.26 by induction on the number
of ∗-products needed to build up a given alternating projection p(k).
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Tj

P

D

k

S−

S+
D2

D1

a+
j

k1

k2

a+
i

Figure 13.9

Proposition 13.25 proves the assertion if p(k) is special alternating. Suppose
k = k1 ∗ k2, p(k1) special alternating.

Let i±1 : S±1 → C∗1 , i±2 : S±2 → C∗2 , i± : S → C∗ denote the inclusions. If S+ and
S− are chosen as indicated in Figure 13.9, the Seifert matrix V + associated with i+∗
can be written in the form

V + =


V +1

∗ ∗
∗ ∗

0 0
V +2

0 0


where V +1 and V +2 are Seifert matrices belonging to i+1∗, i

+
2∗. Assume (a) for k2, S2 as

an induction hypothesis. By |V +| = |V +1 | · |V +2 | property (a) follows for k, and (b) is
a consequence of (a). To prove (c) let

w
(1)
1 w

(2)
1 w

(1)
2 w

(2)
2 . . . w

(1)
i w

(2)
i , w

(k)
j ∈ π1(C

∗
k ), 1 � k � 2,

be an element of π1(C
∗
1 ) ∗ π1(C

∗
2 )
∼= π1(C

∗). If k2 is fibred, i+2# is an isomorphism.

A closed curve ω(2)j in C∗ representing w(2)j is, therefore, homotopic rel P in C∗ to

a curve on S+. Since k1 is also fibred, a curve ω(1)j corresponding to a factor w(1)j is

homotopic to a closed curve composed of factors a+j on S+ and T ±1
j , see Figure 13.9.
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But the Tj can be treated as the curves ω(2)j and are homotopic to curves on S+. Thus

i+# is surjective; it is also injective, since S is of minimal genus [Neuwirth 1960]. 	


This shows, together with Proposition 13.25, that a fibred alternating knot or link
must be a ∗-product composed of factors

ki = t(a1, 2) # t(a2, 2) # t(a2, 2) # · · · # t(ar , 2).

There is a

13.27 Corollary. The commutator subgroup of an alternating knot is either

G
′ = F2g or G

′ = · · · ∗ F2g ∗F2g F2g ∗ · · ·
where g is the genus of the knot. C∗ is a handlebody of genus 2g for a suitable Seifert
surface.

Proof. The space C∗1 is a handlebody of genus 2g1, g1 the genus of k1. This follows
by thickening the β-regions of p(k1). By the same inductive argument as used in the
proof of 13.26 (see (9)) one can see that C∗ is a handlebody of genus 2g obtained by
identifying two disks D1 and D2 on the boundary of the handlebodies C∗1 and C∗2 . 	


D Comparison of Different Concepts and Examples

In the SectionsA and B we defined the quadratic form of a knot according to Trotter and
Erle, and pointed out the connection to Murasugi’s class of forms [Murasugi 1965].
Let us add now a few remarks on Goeritz’s form. We shall give an example which
shows that Goeritz’s invariant is weaker than that of Trotter–Murasugi. Nevertheless,
Goertiz’s form is still of interest because it can be more easily computed than the other
ones, and C.McA. Gordon and R.A. Litherland [Gordon-Litherland 1978] have shown
that it can be used to compute the Trotter–Murasugi signature.

A regular knot projection is coloured as in 13.14. θ(P ) is defined as in 2.3, see
Figure 13.10. (Here we may assume again that at no point P the two α-regions
coincide; if they do, define θ(P ) = 0 for such points.)

gij =


∑

P∈∂αi
θ(P ), i = j

− ∑
P∈∂αi∩∂αj

θ(P ), i = j (10)

then determines a symmetric (n × n)-matrix G = (gij ), where {αi | 1 � i � n} are
the finite α-regions. G is called Goeritz matrix and the quadratic form, defined byG,
is calledGoeritz form. (Observe that the orientation of the arcs of the projection do not
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αα

ββ

PP

θ(P ) = 1 θ(P ) = −1

Figure 13.10

enter into the definition of the index θ(P ), but thatG changes its sign if k is mirrored.)
TransformationsG �→ LGLT with unimodular L and the following matrix operation
(and its inverse)

G �→


G

0

0

0 0 ±1


define a class of quadratic forms associated to the knot k which Goeritz showed to be
a knot invariant [Goeritz 1933]. A Goeritz matrix representing the quadratic form of
a knot k is denoted by G(k).

13.28 Proposition. Let p(k) be a special diagram and V a Seifert matrix defined by
(6) (see 13.17). Then V + V T = G(k) is the Goeritz matrix of p(k).

Proof. This is clear for elementsgij , i = j , since εi(P )+εj (P ) = 1 forP ∈ ∂αi∩∂αj .
For i = j it follows from the equality

vii =
∑
P∈∂αi

θ(P )εi(P ) =
∑

θ(P )(1− εi(P ));

the first sum describes the linking number of i+∗ (a+i ) with ∂αi , the second the linking
number of i−∗ (a−i ) with ∂αi which are the same for geometric reasons. (There is a
ribbon S1 × I ⊂ S3, S1 × 0 = a−i , S1 × 1 = a+i , S1 × 1

2 = ∂αi .) 	


From this it follows that each Goeritz matrixG can be interpreted as presentation
matrix of H1(Ĉ2) (see 8.21). H. Seifert [1936], M. Kneser and D. Puppe [1953] have
investigated this connection and were able to show that the Goeritz matrix defines the
linking pairing H1(Ĉ2)×H1(Ĉ2)→ Z.
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Figure 13.11 (a) shows the trefoil’s usual (minimal) diagram and 13.11 (b) a special
diagram of it. The sign at a crossing point P denotes the sign of θ(P ), a dot at P
in an α-region αi indicates εi(P ) = 1 for P ∈ ∂α. Thus we get Ga = (−3) from
Figure 13.11 (a) and

M +MT = Gb =
(

2 −1

−1 2

)
.

(a) (b)

β

α1

α2 +

+

+

−

−−
α1

Figure 13.11

Ga andGb can be transformed into each other by Goeritz moves which are described
before 13.28. (It is necessary to use an extension by 3×3 matrices.) Figures 13.12 (a)
and 13.12 (b) show a minimal and a special projection of the knot 819. Figure 13.12 (a)

(a)

(b)

+

+

++
+

++

+

+

+

++

+ −

−

− −
β

α1

α6

α4

α2

α5

α3

Figure 13.12
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yields a Goeritz matrix

G =


0 −1 −1 0

−1 1 0 −1

−1 0 2 −1

0 −1 −1 1

 ∼ (−3)

which is equivalent to that of a trefoil of Figure 13.11 (a). A Seifert matrix V can be
read off Figure 13.12 (b):

V =



2 0 0 0 0 −1

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 1 −1 1 0

−1 0 0 0 −1 1


Since |V | = 1, V is already reduced, so its quadratic form qk is of rank 6, different to
that of a trefoil which is of rank 2.

We finally demonstrate the advantage of using a suitable integral domainA instead
of Z. Figure 13.3 shows a special diagram of 820. Its Seifert matrix is

V =


−1 0 1 0

1 0 0 0

0 1 −2 1

0 −1 1 0

, |V | = 1,

V + V T =


−2 1 1 0

1 0 1 −1

1 1 −4 2

0 −1 2 0

 ∼


0 1
01 0

0
−2 3

3 0


V + V T is S-equivalent (see 13.13) to(

−2 3

3 0

)
= V ′ + V ′T , V ′ =

(
−1 2

1 0

)
.

Using the construction of 8.7 one obtains a knot k′ with Seifert matrix V ′. Thus over
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Z2 there are different Trotter forms represented by

(
−2 3

3 0

)
resp.


0 1

1 0

−2 3

3 0


associated to 820 resp. k′, while their Murasugi matrices are equivalent. Moreover both
knots have zero-signature, but over Z3 their forms prove that they are not amphicheiral.

13.29 Corollary. The absolute value of the determinant of the quadratic form is an
invariant of the knot. It is called the determinant of the knot. It can be expressed in
several forms:

| det(M +MT )| = | det(W +WT )| = | detG| = |H1(Ĉ2)| = |�(−1)|.

Proof. See 8.11 and 8.20 	


In the case of alternating knots the determinant is a strong invariant; in fact, it can
be used to classify alternating knots in a certain sense:

13.30 Proposition ([Bankwitz 1930], [Crowell 1989]). The order (minimal number
of crossings) with respect to regular alternating projections of a knot does not exceed
its determinant.

Proof. Let p(k) be a regular alternating projection of minimal order n. Consider the
(unoriented) graph �α of p(k). Since n is minimal, �α does not contain any loops,
and every edge of �α is contained in a circuit, compare Figure 13.2. It follows from
the Corollary to the Bott–Mayberry Theorem (Appendix A.4) that the determinant
detG(k) of k is equal to the number of spanning trees of �α . It remains to show that in
a planar graph �α with the aforesaid properties the number n of edges never exceeds
the number of trees. One may reduce �α by omitting points of order two and loops.
If then �α defines more than two regions on S2 there exists an edge b in the boundary
of two regions such that these two regions have no other edge in common. (�α − b)
then is a connected planar graph with no loops where every edge is in a circuit. Every
tree of (�α−b) is a tree of �α . There is at least one tree more in �α which contains b.

	


The inequality n � detG(k) can be improved [Crowell 1959], see E 13.4.

Since there are only finitely many alternating knots with �(−1) = d, there are
a forteriori only finitely many such knots with the same Alexander polynomial. If
�(−1) = ±1 (in particular, if �(t) = 1), the knot is either non-alternating or any
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alternating projection of it can be trivialized by twists of the type of Figure 13.2.
Consider as an example the knot 61, see Figure 13.13. The Goeritz matrix is

(gij ) =
 5 −3 −2

−3 4 −1

−2 −1 3


One checks easily in Figure 13.13 that the graph has 11 = �(−1) =

∣∣∣∣∣ 4 −1

−1 3

∣∣∣∣∣maximal trees.

.
.

.
α0

α2

α1

P0

P2

P1

Figure 13.13

Proposition 13.30 of Bankwitz can also be used to show that certain knots are
non-alternating, that is, do not possess any alternating projection. This is true for all
non-trivial knots with trivial Alexander polynomial. Crowell was able to prove that
most of the knots with less than ten crossings which are depicted in Reidemeister’s table
as non-alternating, really are non-alternating. If, for instance, 819 were alternating,
it would have a projection of order �(−1) = 3 or less. But 819 is non-trivial and
different from 31 by its Alexander polynomial.

We now give a description of a result of Gordon and Litherland. In a special
diagram the β-regions are bounded by Seifert circuits. If in a chessboard colouring
of an arbitrary projection the Seifert circuits follow the boundaries of α-regions in
the neighbourhood of a crossing P we call P exceptional, and by ν we denote the
number ν = ∑

θ(P ), where the sum is taken over the exceptional points of the
projection. (The β-regions form an orientable Seifert surface if and only if there
are no exceptional points.) Obviously the signature σ(G) of a Goeritz matrix is no
invariant in the class of equivalent Goeritz matrices. But in [Gordon-Litherland 1978]
the following proposition is proved.

13.31 Proposition. σ(qk) = σ(G)− ν, where ν is defined above. 	


The fact that σ(G)−ν is a knot invariant can be proved by the use of Reidemeister
moves �i (Exercise E 13.3).
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Since the order ofGwill in most cases be considerably smaller than that ofM+MT ,
Proposition 13.29 affords a useful practical method for calculating σ(qk). To compute
the signature of any symmetric matrix over Z one can take one’s choice from a varied
spectrum of methods in numerics. The following proposition was used in [Murasugi
1965] and can be found in [Jones 1950]; we give a proof in Appendix A.2.

13.32 Proposition. Let Q be a symmetric matrix of rank r over a field. There exists
a chain of principal minors Di , i = 0, 1, . . . , r such that Di is a principal minor of
Di+1 and that no two consecutive determinants Di , Di+1 vanish (D0 = 1). For any
such sequence of minors, σ(Q) =∑r−1

i=0 signDiDi+1. 	


As an application consider the two projections of the trefoil 31 in Figure 13.11. The
signature of the Goeritz matrixGa of Figure 13.11 (a) is−1 and ν = 3, Figure 13.11 (b)
yields σ(31) = 2, hence σ(Ga)− ν = σ(q31).

13.33. Proof of Proposition 12.20. Let k be a link of multiplicity µ, and S any Seifert
surface spanning it. As in the case of a knot one may use S to construct the infinite
cyclic covering C∞ of k corresponding to the normal subgroup N = ker χϕ of 9.18.
There is a band projection of k (see 8.2), andH1(C∞) – as aZ(t)-module – is defined by
a presentation matrix (V T − tV ) where V is the Seifert matrix of the band projection.
We show in 13.35 the result of [Kauffman 1981] that the (unique) Conway potential
function ∇k(t − t−1) is equal to det(tV − t−1V T ) for any Seifert matrix V . 	


To prove that det(tV − t−1V T ) is a link invariant, we use a result of [Murasugi
1965].

13.34 Definition (s-equivalence). Two square integral matrices are s-equivalent if
they are related by a finite chain of the following operations and their inverses:

�1 : V �→ LT VL, L unimodular,

�2 : V �→



0 1 0 0

0 0 ∗ ∗

V

0 0


,

�3 : V �→


0 0 0

1 0 0

0 ∗
V

0 ∗

 .



246 13 Quadratic Forms of a Knot

It is proved in [Murasugi 1965] that any two Murasugi knot matrices of isotopic links
are s-equivalent. (This can be done by checking their invariance under Reidemeister
moves �i , see 1.13.) We showed in the proof of 13.18 that every Seifert matrix is
s-equivalent to a Murasugi knot matrix. Hence, any two Seifert matrices of a link are
s-equivalent.

13.35 Proposition. The function �k(t) = det(tV − t−1V T ) is the (unique) Conway
potential function for any Seifert matrix V .

Proof. By 8.11 and E 9.5,

�k(t)
.= �(t2) for a knot,

�k(t)
.= (t2 − 1)µ−1∇(t2) for a link.

Moreover �k(1) = |V − V T | = 1. This proves 12.19 (1). For a split link �(t) = 0
(see 9.17, 9.18). It remains to prove 12.19 (3). If k+ is split so is k− and k0, and
all functions are zero. Figure 13.14 demonstrates the position of the Seifert surfaces
S+, S−, S0 in the region where a change occurs. (An orientation of a Seifert surface
induces the orientation of the knot).

We may assume that the projection of k0 is not split, because otherwise �k0 = 0,
and k+, k− are isotopic. If the projection of k+, k−, k0 are all not split, then the change
from k0 to k+ or k− adds a free generator a to H1(S0): H1(S+) ∼= 〈 a 〉 ⊕ H1(S0) ∼=
H1(S−). Likewise H1(S

3 − S±) ∼= H1(S
3 − S0)⊕ 〈 s 〉, see Figure 13.14.

a+

s

S+

k+

a− a+ = a− + s

S−

k−

S0

S0

k0

Figure 13.14

We denote by V+, V−, V0 the Seifert matrices of k+, k−, k0 which correspond to
the connected Seifert surfaces obtained from the projections as described in 2.4. It
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follows that

V+ = V− +


1 0 0

0

0 0

 , V− =


∗ ∗

V0

∗


where the first column and first row correspond to the generators s and a±. The rest
is a simple calculation:

�k+(t)−�k−(t) =
∣∣ tV+ − t−1V T+

∣∣− ∣∣ tV− − t−1V T−
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

t − t−1 ∗ ∗
0

... tV0 − t−1V T0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (t − t−1) �k0(t).

	


Remark. It is possible to introduce a Conway potential function in µ variables
corresponding to the Alexander polynomials of links rather than to the Hosokawa
polynomial [Hartley 1982]. The function is defined as a certain normalized Alexander
polynomial �(t21 , . . . , t

2
n) · tµ1

1 . . . t
µn
n where the µi are determined by curvature and

linking numbers. Invariance is checked by considering Reidemeister moves.

E History and Sources

An invariant consisting of a class of quadratic forms was first defined by L. Goeritz
[1933]. They yielded the Minkowski units, new knot invariants [Reidemeister 1932].
Further contributions were made by H. Seifert [1936], M. Kneser and D. Puppe [1953],
K. Murasugi [1965], H.F. Trotter [1962], J. Milnor, D. Erle and others. Our exposition
is based on [Erle 1969] and [Murasugi 1965], the quadratic form is that of Trotter
[1962].

In [Gordon-Litherland 1978] a new quadratic form ws introduced which simulta-
neously generalized the forms of Trotter and Goeritz. As a by-product a simple way
to compute the signature of a knot from a regular projection was obtained.
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F Exercises

E 13.1. Compute the quadratic forms of Goeritz and Trotter and the signature of the
knot 61, and the torus knots or links t(2, b).

E 13.2. Characterize the 2× 2 matrices which represent quadratic forms of knots.

E 13.3. Prove the invariance of σ(G)− ν (see 13.31) under Reidemeister moves.

E 13.4. [Crowell 1959] An alternating prime knot k has a graph �α with m vertices
and k regions in S2 such that the number of trees Tr(�α) satisfies the inequality
detG(k) = Tr(�α) � 1 + (m − 1)(k − 1). Show that 820, 942, 943 and 946 are
non-alternating knots.



Chapter 14

Representations of Knot Groups

Knot groups as abstract groups are rather complicated. Invariants which can be ef-
fectively calculated will, in general, be extracted from homomorphic images of knot
groups.

We use the term representation in this chapter as a synonym for homomorphism,
and we call two representations ϕ,ψ : G→ H equivalent, if there is an automorphism
α : H → H with ψ = αϕ. There have been many contributions to the field of
representations of knot groups in the past decades, and the material of this chapter
comprises a selection from a special point of view – the simpler and more generally
applicable types of representations.

The first section deals with metabelian (2-step metabelian) representations, the
second with a class of 3-step metabelian representations which means that the third
commutator group of the homomorphic image of the knot group vanishes. These
representations yield an invariant derived from the peripheral system of the knot which
is closely connected to linking numbers in coverings defined by the homomorphisms.
These relations are studied in Section C. Section D contains some theorems on periodic
knots, and its presence in this chapter is, perhaps, justified by the fact that a special
metabelian representation in Section A of a geometric type helps to prove one of the
theorems and makes it clearer.

A Metabelian Representations

14.1. Throughout this chapter we consider only knots of multiplicity µ = 1. A
knot group G may then be written as a semidirect product G = Z � G′, where
Z is a free cyclic group generated by a distinguished generator t represented by a
meridian of the knot k. An abelian homomorphic image of G is always cyclic, and
an abelian representation of G will, hence, be called trivial. A group G is called k-
step metabelian, if its k-th commutator subgroup G(k) vanishes. (G(k) is inductively
defined by G(k) = commutator subgroup of G(k−1), G = G(0).) The 1-step metabelian
groups are the abelian groups, and 2-step metabelian groups are also calledmetabelian.
It seems reasonable, therefore, to try to find metabelian representations as a first step.
They turn out to be plentiful and useful.

Let ϕ : G → H be a surjective homomorphism onto a metabelian group H. Then
ϕ(G) = H = ϕ(Z)� ϕ(G′) is a semidirect product and can be considered as a ϕ(Z)-
module. Since G is trivialized by putting t = 1, the same holds for ϕ(G), if the
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ϕ-image of t (also denoted by t) is made a relator. For the normal closure 〈 t 〉 one has
〈 t 〉 = G and 〈 t 〉 = ϕ(Z) � H′. The relations ta = a, a ∈ G′ trivialize G′; hence
elements of the form (t − 1)a, a ∈ H′ generate H′ as a Z(Z)-module: H′ = (t − 1)H′.
This module is finitely generated and has an annulating polynomial of minimal degree
coprime to the isomorphism (t − 1) : H′ → H′.

14.2 Proposition. Let ϕ : G → H be any nontrivial surjective metabelian represen-
tation of a knot group G = Z � G′, Z = 〈 t 〉, t a meridian. Then H = ϕ(Z)� H′ and
t − id : H′ → H′ is an isomorphism. 	


Since ϕ(G′) = H′ is abelian the homomorphism ϕ factors through Z � G′/G′′. If
ϕ(Z) = Zn is finite, it factors through Zn � G′/G′n,Gn = nZ � G′, compare 8.19.
The group G′/G′′ is the first homology group of the infinite cyclic covering C∞ of k,
G′/G′′ = H1(C∞) and may be regarded as a Z-module (Alexander module) where
the operation is defined by that of the semidirect product. Likewise G′/G′n = H1(Ĉn)

is the homology group of the n-fold cyclic branched covering of k, see 8.19 (c). The
following proposition summarizes our result.

14.3 Proposition. A metabelian representation of a knot group

ϕ : G→ Z � A, respectively ϕn : G→ Zn � A, A abelian,

factors through

β : G→ Z �H1(C∞), respectively βn : G→ Zn �H1(Ĉn),

mapping a meridian of k onto a generator of Z resp. Zn. The group A may be
considered as a Z-module resp. Zn-module. One has ker β = G′′, ker βn = nZ � G′n.

	


We give a simple example with a geometric background.

14.4 The groups of similarities. The replacing of the Alexander module H1(C∞) =
G/G′′ by H1(C∞) ⊗Z C suggests a metabelian representation of G by linear map-
pings C → C of the complex plane. Starting from a Wirtinger presentation G =
〈 S1, . . . , Sn | R1, . . . , Rn 〉, a relation

S−1
k SiSkS

−1
i+1 = 1 (1)

takes the form

−tuk + tui + uk − ui+1 = 0 (2)

for uj = β(SjS
−1
1 ), 1 � j � n. (u �→ tu, u ∈ H1(C∞) denotes the operation of a

meridian.) The equations (2) form a system of linear equations with coefficients in
Z(t). We may omit one equation (Corollary 3.6) and the variable u1 = 0.
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The determinant of the remaining (n − 1) × (n − 1) linear system equals the
Alexander polynomial�1(t), see 8.10, 9.11. Thus, by interpreting (2) as linear equa-
tions over C, one obtains non-trivial solutions if and only if t takes the value of a root
α of �1(t). For suitable zi ∈ C (z a complex variable)

Si �→ δα(Si) : z �→ α(z− zi)+ zi (3)

maps G into the group C+ of orientation preserving similarities of the planeC, since a
Wirtinger relator (1) results in an equation (2) for t = α, ui = zi . The representation
δα is non-trivial (non-cyclic) if and only if �1(α) = 0; it is metabelian because G′ is
mapped into the group of translations. The class K of elements in G conjugate to a
meridian (K =Wirtinger class) is mapped into the class Kα of conjugate similarities
of C+ characterized by α. (Note that α = 1.)

14.5 Proposition. There exists a non-trivial representation δα : (G,K)→ (C+,Kα)
if and only if α is a root of the Alexander polynomial�1(t). When α and α′ are roots
of an (over Z) irreducible factor of �1(t) which does not occur in �2(t), then any
two representations δα, δ′α′ are equivalent. In particular, any two such maps δα , δ

′
α

differ by an inner automorphism of C+.

Proof. The first assertion has been proved above. For α satisfying �1(α) = 0,
�2(α) = 0 – that means that the system of linear equations has rank n− 2 – there are
indices i and k such that there is a unique non-trivial representation δα of the form (3)
for any choice of a pair (zi, zk) of distinct complex numbers. Since C+ is 2-transitive
on C it follows that δα and δ′α differ by an inner automorphism of C+. Finally there
is a Galois automorphism τ : Q(α) → Q(α′), if α and α′ are roots of an irreducible
factor of �1(t). Put δα′(Si) : z �→ α′(z − τ(zi)) + τ(zi) to obtain a representation
equivalent to δα(Si) : z �→ α(z − zi) + zi . (In the special case α′ = ᾱ a reflection
may be used.) 	


Remark. The complex numbers α for which there are non-trivial representations

δα : (G, k)→ (C+,Kα)

are invariants of G in their own right. The Alexander polynomial �1(t), though, is
a stronger invariant, because it includes also the powers of its prime factors. This
is, of course, exactly what is lost when the operation of t is replaced by complex
multiplication by α : (p(α))ν · a = 0, a = 0 implies p(α) · a = 0, but (p(t))ν · a = 0
does not imply (p(t))ν−1 · a = 0. (Compare [Burde 1967].)

Example. Figure 14.1 shows a class of knots (compare Figure 9.3, E 9.6) with
Alexander polynomials of degree two. They necessarily have trivial second Alexander
polynomials. Figure 14.2 shows the configuration of the fixed points zi of δα(Si) for
m = 5, k = 3. Then δα(Si) are rotations through α, cosα = 2k−1

2k = 5
6 .
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S1

S2
S3

S4

. . .

m S2k(S2k+1)

S2k+1(S2k+2)

Figure 14.1

α α

α α

α αα

z2 z4 z6

z1 z3 z5 z7

Figure 14.2

14.6 Metacyclic representations. A representation β∗ of G is called metacyclic, if
β∗(G′) = H′ is a cyclic group 〈 a 〉 = 1:

β∗(G) = 〈 t 〉� 〈 a 〉.
The operation of t is denoted by a �→ ta. Putting

β∗(Si) = (t, νia), νi ∈ Z,

transforms a set of Wirtinger relators (1) into a system of n equations in n variables
νj :

−νi+1 + tνi + (1− t)νk = 0. (4)

These equations are to be understood over Z if 〈 a 〉 is infinite, and as congruences
modulo m if 〈 a 〉 ∼= Zm.

In the first case β∗ is trivial when t = 1. If t = −1, β∗ must also be trivial,
because the rank of (4) is n − 1: Every (n − 1) × (n − 1) minor of its matrix is
±�1(−1) = ±|H1(Ĉ2)| which is an odd integer by 8.21, 13.19.

We may, therefore, confine ourselves to the finite case 〈 a 〉 = Zm.
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14.7 Proposition (Fox). A non-trivial metacyclic representation of a knot group is of
the form

β∗m : G→ Z � Zm, m > 1,

mapping a meridian onto a generator t of the cyclic group Z. The existence of a
surjective homomorphism β∗m implies m|�1(k) for k ∈ Z with ka = ta, a ∈ Zm.

For a prime p, p|�1(k), gcd(k, p) = 1, there exists a surjective representation
β∗p . If the rank of the system (4) of congruences modulo p is n−2, all representations
β∗p are equivalent.

Proof. If a surjective representation β∗m exists, the system (4) admits a solution with
ν1 = 0, gcd(ν2, . . . , νn) = 1. Let Ax ≡ 0 mod m denote the system of congruences
in matrix form obtained from (4) by omitting one equation and putting ν1 = 0. By
multiplying Ax with the adjoint matrix A∗ one obtains

A∗A · x = (detA) · E · x ≡ 0 mod m.

This means m|�1(k) since �1(k) = ± detA, see 9.11.
The rest of Proposition 14.7 follows from standard arguments of linear algebra,

since (4) is a system of linear equations over a field Zp if m = p. 	


Remark. If m is not a prime, the existence of a surjective representation β∗m does
not follow from m|�1(k). We shall give a counterexample in the case of a dihedral
representation. By a chinese remainder argument, however, one can construct β∗m
for composite m, if m is square-free. One may obtain from β∗m a homomorphism
onto a finite group by mapping Z onto Zr , where r is a multiple of the order of the
automorphism t : a �→ ka. As a special case we note

14.8 Dihedral representations. There is a surjective homomorphism

γ ∗p : G→ Z2 � Zp

onto the dihedral group Z2 �Zp if and only if the prime p divides the order ofH1(Ĉ2).
If p does not divide the second torsion coefficient of H1(Ĉ2), then all representations
γ ∗p are equivalent. (See AppendixA.6.) 	


Since any such homomorphism γ ∗p must factor through Z2 � H1(Ĉ2), see 14.3,

the existence of dihedral representations G→ Z2 � Zm, m||H1(Ĉ2)|, depends on the
cyclic factors of H1(Ĉ2). If H1(Ĉ2) is not cyclic – for instance H1(Ĉ2) ∼= Z15 ⊕ Z3
for 818 – there is no homomorphism onto Z2 � Z45, though 45|�1(−1).

The group γ ∗p (G) can be interpreted as the symmetry group of a regular p-gon
in the euclidean plane. A meridian of the knot is mapped onto a reflection of the
euclidean plane.
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14.9 Example. Consider a Wirtinger presentation of the four-knot:

G = 〈 S1, S2, S3, S4 | S3S1S
−1
3 S−1

2 , S−1
4 S2S4S

−1
3 , S1S3S

−1
1 S−1

4 , S−1
2 S4S2S

−1
1 〉,

S4

S2

S1

S3

γ ∗5 (S4)
γ ∗5 (S2)

γ ∗5 (S1)

γ ∗5 (S3)

Figure 14.3

see Figure 14.3. One has �1(−1) = 5 = p, see 8.15 (b). The system (4) of
congruences mod p takes the form

− ν1 − ν2 + 2ν3 ≡ 0

− ν2 − ν3 + 2ν4 ≡ 0

+ 2ν1 − ν3 − ν4 ≡ 0

− ν1 + 2ν2 − ν4 ≡ 0

 mod 5.

Putting ν1 ≡ 0, ν2 ≡ 1, one obtains ν3 ≡ 3, ν4 ≡ 2 mod 5. The relations of G are
easily verified in Figure 14.3.

Remark. Since �1(−1) is always odd, only odd primes p occur.

B Homomorphisms ofG into the Group of Motions
of the Euclidean Plane

We have interpreted the dihedral representations γ ∗p as homomorphisms of G into
the group B of motions of E2, and we studied a class of maps δα : G → C into
the group of similarities C of the plane E2. It seems rather obvious to choose any
other suitable conjugacy class in one of these well-known geometric groups as a
candidate to map a Wirtinger classK onto. It would be especially interesting to obtain
new non-metabelian representations, because metabelian representations necessarily
map a longitude, see 3.12, onto units, and are, therefore, not adequate to exploit



B Homomorphisms of G into the Group of Motions of the Euclidean Plane 255

the peripheral system of the knot. We propose to “lift” the representation γ ∗p to a
homomorphism γp : G→ B which maps the Wirtinger class K into a class of glide-
reflections. The representation γp will not be metabelian and will yield a useful tool
in proving non-amphicheirality of knots. As above, p is a prime.

Let γ ∗p be a homomorphism of the knot group G onto the dihedral group Z2 � Zp.
There is a regular covering q : Rp → C corresponding to the normal subgroup ker γ ∗p .
One has 2Z � G′ = G2 ⊃ ker γ ∗p ⊃ G′′ and G2/ ker γ ∗p ∼= Zp. The space Rp is a
p-fold cyclic covering of the 2-fold coveringC2 ofC. For a meridian m and longitude
l of the knot k we have: m2 ∈ ker γ ∗p , l ∈ G′′ ⊂ ker γ ∗p . The torus ∂C is covered by

p tori Ti , 0 � i � p − 1, in Rp. There are distinguished canonical curves m̂i , l̂i on

Ti with q(m̂i ) = m2, q(l̂i ) = l. By a theorem of H. Seifert [1932], the set {m̂i , l̂i}
of 2p curves contains a subset of p (> 2) linearly independent representatives of the
Betti group of H1(Rp). From this it follows that the cyclic subgroup Zp ! Z2 � Zp of
covering transformations operates non-trivially on the Betti group of H1(Rp). Now
abelianize ker β∗p and trivialize the torsion subgroup ofH1(Rp) = ker γ ∗p /(ker γ ∗p )′ to
obtain a homomorphism of the knot group G onto an extension [Dp,Zq ] of the Betti
group Zq of H1(Rp), q � p, with factor group Dp = Z2 � Zp. The operation of Dp

on Zq is the one induced by the covering transformations. We embed Zq in a vector
space Cq over the complex numbers and use a result of the theory of representations
of finite groups: The dihedral group Dp admits only irreducible representations of
degree 1 and degree 2 over C.

This follows from Burnside’s formula and the fact that the degree must divide the
order 2p of Dp. (See [van der Waerden 1955, §133].) Since Zp !Dp operates non-
trivially on Zq , the operation of Dp on Cq contains at least one summand of degree 2.
Such a representation has the form

τ �→
(

0 1

1 0

)
, a �→

(
ζ 0

0 ζ−1

)
(5)

with Z2 = 〈 τ 〉, Zp = 〈 a 〉 and ζ a primitive p-th root of unity. (The representation is
faithful, hence irreducible.)

This representation is equivalent to the following when C2 is replaced by R4:

τ �→


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , α �→


ξ −η 0 0

η ξ 0 0

0 0 ξ −η
0 0 η ξ

 , ζ = ξ + iη.

It splits into two identical summands. Introduce again a complex structure on each of
the invariant subspaces R2; the operation of Dp on each of them may then be described
by:

τ(z) = z, a(z) = ζz. (6)
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By this construction the knot group G is mapped onto an extension of a finitely
generated (additive) subgroup T ⊂ C, T = 0, with factor group Dp operating on T

according to (6). First consider the extension [Zp,T] and denote its elements by pairs
(aν, z).

One has

(a, 0)
(
(ap−1, 0)(a, 0)

) = (a, 0)(1, w) = (a,w), for w = ap ∈ T,

and (
(a, 0)(ap−1, 0)

)
(a, 0) = (1, w)(a, 0) = (a, ζw).

It follows that w = ζw, ζ = 1; hence, w = 0, and [Zp,T] = Zp � T. Similarly
one may denote the elements of [Dp,T] = [Z2,Zp � T] by triples (τ ν, aµ, z). Put
(τ, 1, 0)2 = (1, 1, v), v ∈ C. Then

(τ, 1, 2v̄) = (τ, 1, 0)2(τ, 1, 0) = (τ, 1, 0)(τ, 1, 0)2 = (τ, 1, 2v).

This proves v = v̄ ∈ R.
We obtain a homomorphism γp : G→ [Dp,T ] ⊂ B. Put

(1, a, b) : z �→ ζz+ b, ζ a primitive p-th root of unity,

(τ, 1, 0) : z �→ z̄+ v. (7)

There are two distinct cases: v = 0 and v = 0. In the first case a Wirtinger generator
is mapped onto a glide reflection whereas in the second case its image is a reflection.
We may in the first case choose v = 1 by replacing a representation by an equivalent
one.

14.10 Proposition. For any dihedral representation γ ∗p : G → Z2 � Zp ⊂ B of a
knot group G into the group B of motions of the plane there is a lifted representation
γp : G → B such that γ ∗p = κ · γp, κ : γp(G) → γp(G)/T, where T = 0 is the
subgroup of translations in γp(G) ⊂ B (p is a prime).

An element of theWirtinger classK is eithermapped onto a glide reflection (v = 1)
or a reflection (v = 0).

If γ ∗p is unique up to equivalence, that is, if p divides the first but not the second

torsion coefficient ofH1(Ĉ2), see 14.8, the first case takes place and γp is determined
up to equivalence.

Proof. The existence of a lifted mapping γp has already been proved. We prove
uniqueness by describing γp with the help of a system of linear equations which at the
same time serves to carry out an effective calculation of the representation. Denote
by Q(ζ ) the cyclotomic field over the rationals and by ζj a p-th root of unity. Put

γ ∗p (Sj ) : z �→ ζ 2
j z̄ (8)

γp(Sj ) : z �→ ζ 2
j z̄+ bj (9)
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for Wirtinger generators Sj of G = 〈 S1, . . . Sn | R1, . . . , Rn 〉. Equation (9) describes
a reflection followed by the translation through

2ζj v = ζ 2
j b̄
′
j + b′j (10)

in the direction of the fixed line. There are two cases: v = 0 or v = 0; in the
latter case we normalize to v = 1. We prove that v = 0 cannot occur if the dihedral
representation γ ∗p is unique up to equivalence, see 14.8. A Wirtinger relator

Rj = SjS−ηji S−1
k S

ηj
i , ηj = ±1, (11)

yields

ζ 2
i = ζj ζk (12)

under (8), and

−ζ̄kb′k − ζ̄j b′j + (ζ̄kζi + ζ̄j ζi)ζ̄ib′i = 0 (13)

under (9), if v = 0. Here we introduce the convention that on the right hand side
of γp(W1W2) = γp(W1)γp(W2), W1,W2 ∈ G, the combination is carried out from
right to left, as is usual in a group of motions, whereas in the fundamental group the
combination W1W2 is understood from left to right.

The linear equations (13) form a system over Q(ζ ) with real variables xj = ζ̄j b
′
j

(use (10)). The rank of (13) is at least n−2, because the homomorphismψ : Q(ζ )→
Zp, defined by ψ(ζ ) = 1, transforms (13) into the system of congruences mod p:

−νk − νj + 2νi ≡ 0 mod p (14)

which has rank = n − 2 as γ ∗p is unique up to equivalence. (Compare 14.7 and (4),
p. 252.) If there is a proper lift γp – that is T = 0 – the fixed lines gi of γp(Si) cannot
pass through one point or be parallel. But then there is a 3-dimensional manifold
of such representations, obtained by conjugation with C+, the orientation preserving
group of similarities. This contradicts rank � n− 2.

Remark. The non-existence of γp under our assumption v = 0 is a property of the
Euclidean plane. In a hyperbolic plane where there are no similarities such lifts γp
may exist.

We may assume that there is a lift γp of γ ∗p which maps Wirtinger generators on
glide reflections with v = 1. Substitute

b′j = ζj bj + ζj . (15)

Instead of (13) we get the following system of inhomogeneous linear equations

−bk − bj + (ζ̄j ζi + ζ̄iζj )bj = ηj (ζ̄j ζi − ζ̄iζj ). (16)
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(Observe that the equations (12) are valid.) We may again employ the homomorphism
ψ : Q(ζ )→ Zp to see that the rank of the homogeneous part of (16) is n− 2. Since
conjugation by translations gives a 2-dimensional manifold of solutions, the rank of
(16) is exactly equal to n− 2. 	


For a given primitive p-th root of unity ζ and a suitable enumeration of the
Wirtinger generators we may assume

γp(S1) : z �→ z̄+ 1, γp(S2) : z �→ ζ 2z̄+ ζ.

This corresponds to putting b1 = b2 = 0. The fixed lines g1 and g2 of γp(S1) and
γp(S2) meet in the origin and pass through 1 and ζ (Figure 14.4). A representation
normalized in this way is completely determined up to the choice of ζ .

0 1

ζ

g2

g1

Figure 14.4

The main application of Proposition 14.10 is the exploitation of the peripheral
system (G,m, l) by a normalized representation γp. Let m be represented by S1,
then γp maps the longitude l onto a translation by λ(ζ ):

γp(l) : z �→ z+ λ(ζ ),

since l ∈ G′′ ⊂ ker γ ∗p . The solutions bj of (16) are elements of Q(ζ ). From
m · l = l ·m it follows that λ(ζ ) ∈ Q(ζ ) ∩ R.

14.11 Definition and Proposition. Let G(Q(ζ )|Q) be the Galois group of the ex-
tension Q(ζ ) ⊃ Q. The set [λ(ζ )] = { λ(τ(ζ )) | τ ∈ G(Q(ζ )|Q) } is called the
longitudinal invariant with respect to γp. It is an invariant of the knot. 	


14.12 Example. We want to lift the homomorphism γ ∗5 of the group of the four-knot
which we computed in 14.9. We had obtained ζ1 = 1, ζ2 = ζ , ζ3 = ζ 3, ζ4 = ζ 2 for



B Homomorphisms of G into the Group of Motions of the Euclidean Plane 259

γ ∗5 (Sj ) = ζj , and we may put ζ = e2πi/5. The equations (16) are then

−b2 − b1 + (ζ 3 + ζ 2)b3 = ζ 3 − ζ 2,

−b3 − b2 + (ζ + ζ 4)b4 = −(ζ − ζ 4),

−b4 − b3 + (ζ 2 + ζ 3)b1 = (ζ 2 − ζ 3),

−b1 − b4 + (ζ 4 + ζ )b2 = −(ζ 4 − ζ ).
Putting b1 = b2 = 0 yields

b3 = 1+ 2ζ + 2ζ 3, b4 = ζ 4 − ζ
and, using (15)

b′1 = 1, b′2 = ζ, b′3 = −2(1+ ζ 2), b′4 = ζ + ζ 2 − ζ 3;
γ5(S1) : z �→ z̄+ 1,

γ5(S2) : z �→ ζ 2z̄+ ζ,
γ5(S3) : z �→ ζ z̄− 2− 2ζ 2,

γ5(S4) : z �→ ζ 4z̄+ ζ + ζ 2 − ζ 3.

g1

ζ

g2

g3

g4

Figure 14.5

Figure 14.5 shows the configuration of the fixed lines gj of the glide reflections
γ5(Sj ). One may verify the Wirtinger relations by well-known geometric properties
of the regular pentagon. The longitude l of (G,m, l) with m = S1 may be read off
the projection drawn in Figure 14.3:

l = S−1
3 S4S

−1
1 S2.
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One obtains

γ5(l) : z �→ z+ λ(ζ ), λ(ζ ) = 2
(
ζ + ζ−1 − (ζ 2 + ζ−2)

)
.

The class [λ(ζ )] contains only two different elements, λ(ζ ) and−λ(ζ ) which reflects
the amphicheirality of the four-knot.

14.13 Proposition. The invariant class [λ(ζ )] of an amphicheiral knot always con-
tains – λ(ζ ) if it contains λ(ζ ).

Proof. A conjugation by a rotation through π maps (γp(m), γp(l)) onto (−γp(m),
−γp(l)). Hence, 3.19 implies that the group of an amphicheiral knot admits normal-
ized representations γp and γ ′p with γp(l−1) = −γp(l) = γ ′p(l). 	


Remark. The argument shows at the same time that the invariant [λ(ζ )] is no good at
detecting that a knot is non-invertible. Similarly, γp is not strong enough to prove that
a knot has Property P: a relation γp(la) = γp(m), a = 0, would abelianize γp(G),
and, hence, trivialize it.

The invariant has been computed and a table is contained in Appendix C, Table III.
Representations of the type γp have been defined for links [Hafer 1974], [Hen-

ninger 1978]. In [Hartley-Murasugi 1977] linking numbers in covering spaces were
investigated in a more general setting which yielded the invariant [λ(ζ )] as a special
case.

C Linkage in Coverings

The coveringq : Rp → C of the complementC of a knot kdefined by ker γ ∗p ∼= π1Rp is
an invariant of k as long as there is only one class of equivalent dihedral representations

γ ∗p : π1(C) = G→ Dp = Z2 � Zp.

The same holds for the branched covering q̂ : R̂p → S3, obtained from Rp, with
branching set k. In the following p is a prime.

The linking numbers lk(k̂i , k̂j ) of the link k̂ = ⋃p−1
i=0 k̂i = q̂−1(k) have been used

since the beginning of knot theory to distinguish knots which could not be distinguished
by their Alexander polynomials. ker γ ∗p is of the form 〈 t2 〉� R, t a meridian, and is
contained in the subgroup 〈 t 〉 � R = U ⊂ G with [G : U] = p. The subgroup U

defines an irregular covering Ip, π1(Ip) ∼= U, and an associated branched covering Îp
which was, in fact, used in [Reidemeister 1929, 1932] to study linking numbers. The
regular covering R̂p is a two-fold branched covering of Îp, and its linking numbers
lk(k̂i , k̂j ) determine those in Îp [Hartley 1979]. We shall, therefore, confine ourselves
mainly to R̂p.
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Linking numbers exist for pairs of disjoint closed curves in R̂p which represent
elements of finite order inH1(R̂p) [Seifert-Threlfall 1934], [Stöcker-Zieschang 1985,
15.6].

In the preceding section we made use of a theorem in [Seifert 1932] which guaran-
tees that there are at least p linearly independent free elements ofH1(Rp) represented

in the set {m̂0, . . . , m̂p−1, l̂0, . . . , l̂p−1}. To obtain more precise information, we
now have to employ a certain amount of algebraic topology [Hartley-Murasugi 1977].
Consider a section of the exact homology sequence

· · · → H2(R̂p, V ;Q) ∂∗−→ H1(V ;Q) i∗−→ H1(R̂p;Q)→ · · ·

of the pair (R̂p, V ), where V is the union V = ⋃p−1
i=0 Vi , ∂Vi = Ti , of the tubu-

lar neighbourhoods Vi of k̂i in R̂p. As indicated, we use rational coefficients. The
Lefschetz Duality Theorem [Stöcker-Zieschang 1985, 14.8.5] and excision yield iso-
morphisms

H 1(Rp;Q) ∼= H2(Rp, ∂Rp;Q) ∼= H2(R̂p, V ;Q).
One has [Stöcker-Zieschang 1985, 14.6.4 (b)]

�∗ : H 1(Rp;Q)→ H2(R̂p, V ;Q),
〈 z1, z1 〉 = int(z2, z1), z2 = �∗(z1), z1 ∈ H 1(Rp;Q)

where 〈 , 〉denotes the Kronecker product. We claim that the surjective homomorphism

∂∗�∗ : H 1(Rp;Q)→ ker i∗

is described by

z1 �→
p−1∑
i=0

〈 z1, m̂i 〉l̂i . (1)

To prove (1) put

∂∗�∗z1 = ∂∗z2 =
p−1∑
j=0

aj l̂j , aj ∈ Q.

Let δi be a disk in Ti bounded by m̂i = ∂δi . Then

〈 z1, m̂i 〉 = int(z2, ∂δi) = int(∂∗z2, δi) = int
( p−1∑
j=0

aj l̂j , δi
)
= ai.

Since j∗ : H1(Rp;Q) → H1(R̂p;Q), induced by the inclusion j , is surjective,
j∗ : H 1(R̂p;Q) → H 1(Rp;Q) is injective. j∗(H 1(R̂p)) consists exactly of the
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homomorphisms ϕ : H1(Rp)→ Q which factor through H1(R̂p;Q). But these con-
stitute ker ∂∗�∗ by (1). Thus, one has

dim ker ∂∗�∗ = dimH 1(R̂p) = dimH1(R̂p) and

dim ∂∗�∗(H 1(Rp;Q)) = dim ker i∗.

14.14 Proposition (Hartley-Murasugi).

dimH1(Rp;Q) = dimH1(R̂p;Q)+ dim ker i∗

where i : V → R̂p is the inclusion. 	

It is now easy to prove that only two alternatives occur:

14.15 Proposition. Either (case 1) all longitudes l̂i , 0 � i � p − 1 represent in
H1(R̂p;Z) elements of finite order (linking numbers are defined) and the meridians
m̂i , 0 � i � p − 1, generate a free abelian group of rank p in H1(Rp;Z), or
(case 2) the longitudes li generate a free abelian group of rank p − 1 presented
by 〈 l̂0, . . . , l̂p−1 | l̂0 + l̂1 + · · · + l̂p−1 〉, and the meridians m̂i generate a free
group of rank one in H1(Rp;Z); more precisely, m̂i ∼ m̂j in H1(Rp;Q) for any two
meridians.

Proof. A Seifert surface S of k = ∂S lifts to a surface Ŝ with ∂Ŝ = ∑p−1
i=0 l̂i ∼ 0 in

Rp or R̂p: the construction of C2 (see 4.4) shows that S can be lifted to S2 in C2 resp.
Ĉ2. The inclusion i : S2 → Ĉ2 induces an epimorphism i∗ : H1(S2)→ H1(Ĉ2). This
follows from (a− + a+) = Fs (see 8.6) and a+ = ta− = −a− in the case of the
twofold covering where t = −1 (see Remark on p. 120). Thus S2 is covered in Rp
by a connected surface Ŝ bounded by the longitudes l̂i . If the longitudes l̂i satisfy in
H1(R̂p) only relations c · �l̂i ∼ 0, c ∈ Z, which are consequences of �l̂i ∼ 0, we
have dim(ker i∗) = 1 in Proposition 14.14. Hence the meridians m̂i generate a free
group of rank one in H1(Rp). There is a covering transformation of Rp → C2 which
maps m̂i onto m̂j ∼ rm̂i , i = j , r ∈ Q. From this one gets rp = 1, thus r = 1. This

disposes of case 2. If the longitudes l̂i are subject to a relation that is not a consequence
of �l̂i ∼ 0, then one may assume �ai l̂i ∼ 0, �ai = 0. (If necessary, replace ai
by ai + 1.) Applying the cyclic group Zp of covering transformation to this relation
yields a set ofp relations forming a cyclic relation matrix. Such a cyclic determinant is
always different from zero [Neiss 1962, §19.6]. Hence, the longitudes generate a finite
group. In fact, since the l̂i are permuted by the covering transformations their orders
coincide; we denote it by |l| = order of l̂i in H1(R̂p). It follows that dim ker i∗ = p,
and by 14.14 that the meridians m̂i generate a free group of rank p. 	


14.16 Proposition. If there is exactly one class of equivalent dihedral homomor-
phisms γ ∗p : G → Dp, (p divides the first torsion coefficient of H1(Ĉ2) but not the
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second), then the dihedral linking numbers νij = lk(k̂i , k̂j ) are defined (case 1). The
invariant [λ(ζ )] (see 14.11) associated to the lift γp of γ ∗p (14.10) then takes the form

λj (ζ ) = 2
p−1∑
i=0

νij ζ
i withνii = −

∑
j =i

νij . (2)

(Here we have put [λ(ζ )] = {λj (ζ ) | 1 � j < p}. Case 1 and case 2 refer to 14.15.)

Proof. The occurrence of case 2 implies γp(m̂i ) = γp(m̂j ) for all meridians m̂i , m̂j .
But in the case of a representation γp, mapping Wirtinger generators on glide re-
flections, γp(m̂i ) and γp(m̂j ) will be translations in different directions for some
i, j . Thus the Wirtinger class is mapped onto reflections, that is, γp(m̂i ) = 0. This
contradicts 14.10.

In case 1 the longitudes l̂j are of finite order in H1(R̂p;Z). Since the covering

transformations permute the l̂j , they all have the same order |l̂j | = |l|. Consider a
section of the Mayer–Vietoris sequence:

· · · −→ H1(∂V )
ψ∗−→ H1(Rp)⊕H1(V )

ϕ∗−→ H1(R̂p) −→ · · · .
Since ϕ∗(|l|l̂j , 0) = 0, one has, for suitable bk, ck ∈ Z,

(|l|l̂j , 0) = ψ∗
( p−1∑
k=0

bkm̂k +
p−1∑
k=0

ck l̂k
)
=
(∑

bkm̂k +
∑

ck l̂k,−
∑

ck l̂k
)
.

This gives

|l|l̂j =
p−1∑
k=0

bkm̂k and |l| · lk(l̂i , l̂j ) = lk(l̂i ,
∑

bkm̂k) = bi.

Since lk(l̂i , l̂j ) = lk(k̂i , k̂j ), one has

l̂j = �νijm̂i . (3)

The relation
∑p−1
j=0 l̂j ∼ 0 yields 0 = lk(l̂i , �l̂j ) = ∑

j νij . Formula (2) of 14.16

follows from γp(m̂j ) : z �→ z + 2ζ j for a suitable indexing after the choice of a
primitive p-th root of unity ζ . 	


Remark. Evidently any term
∑p−1
i=0 aiζ

i , ai ∈ Q, can be uniquely normalized such
that �ai = 0 holds. In Table III the invariant [λ(ζ )] is listed, but a different normal-
ization was chosen: a0 = 0. One obtains from a sequence {a1, . . . , ap−1} in this table
a set of linking numbers ν0j , 0 < j � p − 1, by the formula

2ν0j = aj − 1

p

p−1∑
k=1

ak. (4)
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14.17. Linking numbers associated with the dihedral representations γ ∗α : G →
Z2 � Zα for two bridge knots b(α, β) have been computed explicitly. In this case
a unique lift γα always exists even if α is not a prime. The linking matrix is

−∑ εj ε1 . . . εα−1

εα−1 −∑ εj . . . εα−2
...

...
...

ε1 ε2 . . . −∑ εj

 (5)

with εk = (−1)
[
kβ
α

]
, [x] = integral part of x and

∑ =∑α−1
i=1 [Burde 1975].

The property |εk| = 1 affords a good test for two-bridged knots. “Most” of the
knots with more than 2 bridges (see Table I) can be detected by this method, compare
[Perko 1976].

A further property of dihedral linking numbers follows from the fact that λi(ζ ) is
a real number, λi(ζ ) = λi(ζ ). This gives.

νi,i−j = νij , i = j, (6)

where i − j is to be taken mod p. Furthermore,

νij = νji = νi+k,j+k. (7)

The first equation expresses a general symmetry of linking numbers, and the second
one the cyclic p-symmetry of R̂p.

As mentioned at the beginning of this section, R̂p is a two-fold branched covering
of the irregular covering space Îp with one component k̂j of k̂ = q−1(k) as branching
set in R̂p. (There are, indeed, p equivalent covering spaces Îp corresponding to p
conjugate subgroups Uj = 〈 tj 〉 � K, depending on the choice of the meridian tj
resp. the component k̂j .) We choose j = 0. Let q̂ : R̂p → Îp be the covering map.
The link k′ = q̂(k̂) consists of p+1

2 components k̂′0 = q̂(k̂0), k′j = q̂(k̂j ) = q̂(k̂−j ),
0 < j � p−1

2 . (Indices are read mod p.) Going back to the geometric definition of
linking numbers by intersection numbers one gets for µij = lk(k′i , k′j ),

µ0j = 2ν0j , µij = νij + νi,−j , i = j. (8)

This yields by (6) and (7) Perko’s identities [Perko 1976]:

2µij = µ0,i−j + µ0,i+j , or µij = ν0,i−j + ν0,i+j . (9)

As νij = ±1 for two bridge knots, µij = ±2 or 0 for these.
It follows from (7), (8) and 14.16 that the linking numbers νij , the linking numbers

µij , and the invariant [λ(ζ )] determine each other. All information is already contained
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in the ordered set
{
ν0j | 1 � j � p−1

2

}
. Equation (8) shows that [Hartley-Murasugi

1977, Theorem 6.3] is a consequence of 14.16.

The theory developed in this section has been generalized in [Hartley 1983]. Many
results carry over to metacyclic homomorphisms β∗r,p : G → Zr � Zp, see 14.7 and
[Burde 1970]. The homomorphism β∗r,p can be lifted and the invariant [λ(ζ )] can be
generalized to the metacyclic case. This invariant has a new quality, in that it can
identify non-invertible knots which [λ(ζ )] cannot, as we pointed out at the end of
Section B, [Hartley 1983′].

14.18 Examples (a) The four-knot is a two-bridge knot, 41 = b(5, 3). Thus

ν0j = (−1)

[
3j
5

]
, (νij ) =


0 1 −1 −1 1

1 0 1 −1 −1

−1 1 0 1 −1

−1 −1 1 0 1

1 −1 −1 1 0

 ,

and

(µij ) =
 ∗ 2 −2

2 ∗ 0

−2 0 ∗

 .
The link k′ = q̂−1(41) in Î5 ∼= S3 has been determined (Figure 14.6) in [Burde 1971].
(For the definition of Îp see the beginning of Section C.)

k′0

k′1

k′2

Figure 14.6

(b) As a second example consider the knot 74 = b(15, 11) and the irregular
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covering Î15. Its linking matrix (µij ) is

(µij ) =



∗ 2 −2 2 2 −2 2 −2

2 ∗ 2 0 0 2 −2 0

−2 2 ∗ 0 0 0 0 0

2 0 0 ∗ 0 −2 2 0

2 0 0 0 ∗ 2 −2 2

−2 2 0 −2 2 ∗ 2 0

2 −2 0 2 −2 2 ∗ 0

−2 0 0 0 2 0 0 ∗


by (9) and ν0j = (−1)

[
11j
15

]
, 0 < j < 15.

The numbers 1
2

∑
j =i |µij | = vi , 0 � i � 7, are 7, 4, 2, 3, 4, 5, 5, 2. (Compare

[Reidemeister 1932, p. 69].)

In general an effective computation of linking numbers can be carried out in various
ways. One may solve equations (14) and (16) in the proof of 14.10 and thereby
determine γ ∗p , γp and [λ(ζ )]. A more direct way is described in [Hartley-Murasugi
1977] using the Reidemeister–Schreier algorithm. See also [Perko 1974].

D Periodic Knots

Some knots show geometric symmetries – for instance torus knots. The term “geo-
metric” implies “metric”, a category into which topologists usually do not enter. Nev-
ertheless, symmetries have been defined and considered in various ways [Fox 1962′′′].
We shall, however, occupy ourselves with only one of the different versions of symme-
try, the one most frequently investigated. It serves in this chapter as an application of
the metabelian representation δα of the knot group introduced in 14.5 – in this section
k will always have one component.

A knot will be said to have period q > 1, if it can be represented by a curve in
euclidean 3-space E3 which is mapped onto itself by a rotation r of E3 of order q.
The axis h must not meet the knot. The positive solution of the Smith conjecture (see
Appendix B.8) allows a topological definition of periodicity.

14.19 Definition. A knot k ⊂ S3 has period q > 1, if there is an orientation preserving
homeomorphism S3 → S3 of order q with a set of fixed points h ∼= S1 disjoint from
k and mapping k into itself.

Remark. The orientation of k is not essential in this definition. A period of an
unoriented knot automatically respects an orientation of the knot (E 14.7).
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Suppose a knot k has period q. We assume that a regular projection of k onto a
plane perpendicular to the axis of the rotation has period q with respect to a rotation
of the plane (Figure 14.7). Denote by E3

q = E3/Zq the Euclidean 3-space which is
the quotient space of E3 under the action of Zq = 〈 r 〉. There is a cyclic branched
covering f (q) : E3 → E3

q with branching set h in E3 and f (q)(k) = k(q) a knot in E3
q .

We call k(q) the factor knot of k. It is obtained from k in Figure 14.8 by identifying xi
and zi .

One has λ = lk(k, h) = lk(k(q), h(q)) = 0, h(q) = f (q)(h). The equality of the
linking numbers follows by looking at the intersection of k resp. k(q) with half-planes
in E3 resp. E3

q spanning h resp. h(q). If λ = lk(k(q), h(q)) = 0, then k(q) � 1 in

π1(E
3
q − h(q)), and k ⊂ E3 would consist of q components. By choosing a suitable

direction of h we may assume λ > 0. Moreover, gcd(λ, q) = 1, see E 14.8.
The symmetric projection (Figure 14.7) yields a symmetric Wirtinger presentation

of the knot group of k (see 3.4):

G = 〈 x(0)i , y
(0)
k , z

(0)
i , x

(1)
i , y

(1)
k , z

(1)
i , · · · | R(0)j , R

(1)
j , . . . , x

(l)
i = z(l−1)

i , . . . 〉,
1 � i � n, 1 � k � m, 1 � j � m+ n.

(1)

z
(q−1)
3

z
(q−1)
2
z
(q−1)
1

Fq−1

x
(0)
3

x
(0)
2

x
(0)
1

y
(0)
k

k(q)

F0

2π
q

h

z0
3

z0
2

z0
1

x
(1)
3

x
(1)
2

x
(1)
1

F1

Figure 14.7

The arcs entering a fundamental domain F0 of Zq , a 2π/q-sector, from the left

side, correspond to generators x(0)i and its images under the rotation r to generators

z
(0)
i = r#(x(0)i ). The remaining arcs in F0 give rise to generators y(0)k . Double points

in F0 define relators Rj . The generators x(l)i , y
(l)
k , z

(l)
i , 0 � l � q − 1, correspond
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to the images of the arcs of x(0)i , y
(0)
k , z

(0)
i under the rotation through 2πl/q, and

R
(l)
j = R(0)j (x

(l)
i , y

(l)
k , z

(l)
i ).

The Jacobian of the Wirtinger presentation(
∂R

(l)
j

∂(x
(l)
i , y

(l)
k , z

(l)
i )

)ϕψ
= A(t), ϕ(x

(l)
i ) = ϕ(y(l)k ) = ϕ(z(l)i ) = t,

see 9.9, is of the following form:

−En ��������������������������

�
�
�
�
�
�
�
�
�
�

En

�
�
�
�
�
�
�
�
�
�

A(t) ��������������������������

��������������������������
−En En

�������������������������� A(t)

��������������������������
�
�
�
�
�
�

En ��������������������������
−En
A(t)



= A(t).

ε3 = 1

ε2 = 1
x3

x2

ε1 = −1

x1

γ

R4

R1

R2 R3

L1

L2 L3 L4

L5

R5
z3

z2

z1

Figure 14.8

HereEn is an n×n identity matrix, and Ā(t) is a (n+m)×(2n+m)matrix over Z(t).
We rearrange rows and columns of A(t) in such a way that the columns correspond to
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generators ordered in this way:

x
(0)
1 , x

(1)
1 , . . . , x

(q−1)
1 , x

(0)
2 , x

(1)
2 , . . . , x

(q−1)
n , y

(0)
1 , . . . , y

(q−1)
m , z

(0)
1 , . . . , z

(q−1)
n .

The relators and rows have the following order:

x
(1)
1 (z

(0)
1 )−1, x

(2)
1 (z

(1)
1 )−1, . . . , x

(0)
1 (z

(q−1)
1 )−1, . . . , R

(0)
1 , R

(1)
1 , . . . .

This gives a matrix

A∗(t) =



Zq −Eq
Zq

Zq

−Eq

�����������������������������
Zq −Eq

A
∗
(t)


.

Here Ā∗(t) is obtained from Ā(t) by replacing every element aik(t) of Ā(t) by the
q × q diagonal matrix

a
(q)
ik (t) =


aik(t)

0
aik(t)

0
aik(t)

 .
The q × q-matrix

Zq =



0 1 0

0 0 1

1

1 0


is equivalent to the diagonal matrix

Z(ζ ) = WZqW−1 =



1
0

ζ

ζ 2

0
ζ q−1
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over C where ζ is a primitive q-th root of unity (Exercise E 14.9). The matrix
W̃A∗(t)W̃−1 with

W̃ =



W
���������

�
�
�
�
�

�
�
�
�
�

��������
W

�
�
�
�

�����
W


may be obtained from A∗(t) by replacing the submatrices Zq by Z(ζ ). Returning to
the original ordering of rows and columns as in A(t), the matrix W̃A∗(t)W̃−1 takes
the form

A(t, ζ ) =



A(q)(t, 1)
�������������

�
�
�
�
�

0

��������������
A(q)(t, ζ )

�
�
�
�

0
�
�
�
�

A(q)(t, ζ q−1)

���������


(2)

where

A(q)(t, ζ ν) =



ζ ν −1

ζ ν −1
������������������

A(t)


A(t, ζ ) is equivalent to A(t) over C, and A(q)(t, 1) is a Jacobian of the factor knot
k(q). We replace ζ ν by a variable τ and prove:

14.20 Proposition. det(A(q)(t, τ )) = (τ − 1)D(t, τ ) with

D(t, 1)
.= �λ(t)�

(q)
1 (t) where �λ(t) = 1+ t + · · · + tλ−1, λ = lk(h, k).

�
(q)
1 (t) is the Alexander polynomial of the factor knot k(q).

Proof. Replace the first column of A(q)(t, τ ) by the sum of all columns and expand
according to the first column:

det(A(q)(t, τ )) = (τ − 1) ·
n∑
i=1

Di(t, τ )
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where (−1)i+1Di(t, τ ) denotes the minor obtained from A(q)(t, τ ) by omitting the
first column and i-th row. This proves the first assertion forD(t, τ ) =∑n

i=1Di(t, τ ).
To prove the second one we show that the rows al of the Jacobian

A(q)(t, 1) =



1 −1

1 −1
������������������

A(t)


of k(q) satisfies a special linear dependence

2n+m∑
l=1

αlal = 0 with
n∑
l=1

αl = �λ(t).

(Compare 9.12 (b).) Denote by F the free group generated by {Xi, Yk, Zi | 1 � i � n,
1 � k � m}, ψ(Xi) = x(0)i , ψ(Yk) = y(0)k , ψ(Zi) = z(0)i . There is an identity

( n∏
i=1

X
εi
i

)( n∏
i=1

Z
εi
i

)−1 =
n+m∏
j=1

LjRjL
−1
j (3)

for Lj ∈ F, εi = ±1, and Rj = R(0)j (Xi, Zk, Zi). This follows by the argument used
in the proof of 3.6: The closed path γ in Figure 14.8 can be expressed by both sides
of equation (3). From this we define:

αl = ∂

Xl

( n∏
i=1

X
εi
i

)ϕψ = n+m∑
j=1

(Lj )
ϕψ

(
∂Rj

∂Xl

)ϕψ
,

hence

−αl =
n+m∑
j=1

(Lj )
ϕψ

(
∂Rj

∂Zl

)ϕψ
, 1 � l � n,

0 =
n+m∑
j=1

(Lj )
ϕψ

(
∂Rj

∂Yk

)ϕψ
, 1 � k � m.

Putting αn+j = −(Lj )ϕψ , 1 � j � n+m, gives
∑2n+m
i=1 αiai = 0. The fundamental

formula 9.8 (c) yields

(t − 1)
n∑
l=1

αl =
n∑
l=1

∂

∂Xl

( n∏
i=1

X
εi
i

)ϕψ
(t − 1) =

( n∏
i=1

X
εi
i

)ϕψ − 1 = tλ − 1,
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hence
n∑
l=1
αl = �λ(t). Now D1(t, 1)

.= �
(q)
1 (t), and αiD1(t, 1) = Di(t, 1). The last

equation is a consequence of �αiai = 0, compare 10.20. 	


14.21 Proposition (Murasugi). The Alexander polynomial�1(t) of a knot k with pe-
riod q satisfies the equation

�1(t)
.= �

(q)
1 (t) ·

q−1∏
i=1

D(t, ζ i). (4)

Here D(t, ζ ) is an integral polynomial in two variables with

D(t, 1)
.= �λ(t)�

(q)
1 (t),

and ζ is a primitive q-th root of unity. 0 < λ = lk(h, k) is the linking number of k

with the axis h of rotation.

Proof. To determine the first elementary ideal ofA(t, ζ ), see (2), it suffices to consider
the minors obtained fromA(t, ζ ) by omitting an i-th row and a j -th column, 1 � i, j �
n, because det(A(q)(t, 1)) = 0. Proposition 14.21 follows from the fact thatA(q)(t, 1)
is a Jacobian of k(q). 	


14.22 Corollary (Murasugi’s congruence).

�1(t) ≡̇ (�(p
a)

1 (t))p
a · (�λ(t))pa−1 mod p for pa|q, p a prime.

Proof. A knot k with period q also has period pa , pa|q. Let O(pa) denote the
cyclotomic integers in Q(ζ ), ζ a pa-th root of unity. There is a homomorphism

�p : O(pa)→ Zp,
pa∑
i=1

niζ
i �→

pa∑
i=1

[ni] mod p.

Extending�p to the rings of polynomials over O(pa) resp. Zp yields the corollary. 	


14.23 Proposition. Let k be a knot of periodpa and�1(t) ≡ 1 mod p. ThenD(t, ζi)
is not a monomial for some pa-th root of unity ζi = 1. Any common root of �(p

a)
1 (t)

and D(t, ζi) is also a root of�2(t). If all roots ofD(t, ζi) are roots of�
(pa)
1 (t), then

λ ≡ ±1 mod p.

Proof. IfD(t, ζi) is monomial, 1 � i � pa , then (4) yields�1(t) = �(p
a)

1 (t). Apply

�p to this equation and use 14.22 to obtain�(p
a)

1 ≡̇ 1 mod p and λ = 1. From this it
follows that �1(t) ≡ 1 mod p.
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Suppose now thatD(t, ζi) and�(p
r )

1 (t) have a common root η. TransformA(t, ζ )

over Q(ζ )[t] into a diagonal matrix by replacing each block A(q)(t, ζi), 0 � i � pa ,
see (2), by an equivalent diagonal block. Since det(Aq(t, 1)) = 0, it follows that the
second elementary ideal E2(t) vanishes for t = η; hence, �2(η) = 0.

If all roots of D(t, ζi) are roots of �(p
a)

1 (t), every prime factor f (t) of D(t, ζi) is

a prime factor of �(p
a)

1 (t) in Q(ζ )[t].
Since�(p

a)
1 (1) = ±1, it follows that�p(f (1)) ≡ ±1 mod p. But |D(1, 1)| = λ.

To prove this consider A(q)(1, τ ). This matrix is associated to the knot projection,
but it treats overcrossings in the same way as undercrossings. By a suitable choice
of undercrossings and overcrossings one may replace k by a closed braid of a simple

Figure 14.9

type (Figure 14.9) while preserving its symmetry. The elimination of variables does
not alter | detA(q)(1, τ )|. Finally A(q)(1, τ ) takes the form:(

τEλ −Eλ
−Eλ Pλ

)
where Eλ is the λ × λ-identity matrix and Pλ the representing matrix of a cyclic
permutation of order λ. It follows that

det(A(q)(1, τ )) = ± det(Eλ − τPλ) = ±(1− τλ),
because the characteristic polynomial of Pλ is ±(1 − τλ). Proposition 14.20 then
shows

D(1, τ ) = ±(1+ τ + · · · + τλ−1) = ±�λ(τ) and |D(1, 1)| = λ. 	

14.24 Proposition. Let k be a knot of period pa , a � 1, p a prime. If �1(t) ≡ 1
mod p and�2(t) = 1, the splitting fieldQ(�1) of�1(t) over the rationalsQ contains
the pa-th roots of unity.

Proof. By 14.20 and 14.21 (4) there is a root α ∈ C of �1(t) which is not a root of
�
(pa)
1 (t). Thus, there exists a uniquely determined equivalence class of representations

δα : G → C+ of the knot group G of k into the group of similarities C+ of the plane,
see 14.5. If D(α, ζi) = 0, the fixed points bj (Sj ) of

δα(Sj ) : z �→ α(z− bj )+ bj
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assigned to Wirtinger generators Sj are solutions of a linear system of equations with
coefficient matrix Ā(α), satisfying bj (zj ) = ζibj (xj ); for the notation see (1) on p. 267.
Thus the configuration of fixed points bj associated to the symmetric projection of
Figure 14.7 also shows a cyclic symmetry; its order is that of ζi . All representations
are equivalent under similarities, and all configurations of fixed points are, therefore,
similar. Since the bj are solutions of the system of linear equations (2) in 14.4 for
t = α, uj = bj , they may be assumed to be elements of Q(α). It follows that

bj (zj )b
−1
j (xj ) = ζi ∈ Q(α).

We claim that there exists a representation δα such that the automorphism

r∗(α) : δα(G)→ δα(G)

induced by the rotation r has orderpa . Ifpb, b < a, were the maximal order occurring
for any δα , all (non-trivial) representations δα would induce non-trivial representations
of the knot group G(pa−b) of the factor knot k(p

a−b). Then α would be a root of �2(t)

by 14.23, contradicting �2(t) = 1. 	


y(0)

x
(1)
1 = z(0)1

z
(1)
2 = x(2)2

y3

x
(0)
1 = z(2)1

z
(0)
2 = x(1)2

y1
z
(1)
1 = x(2)1

z
(2)
2 = x(0)2

2π
3

π
9

Figure 14.10

Figure 14.10 shows the fixed point configuration of the knot 91 as a knot of period
three. One finds: D(t, τ ) = t3 + τ , D(t, 1) = �2(t) ·�(3)1 (t), �(3)1 (t) = t2 − t + 1.
For τ = e2πi/3, and D(α, τ) = 0, we get α = e−πi/9.
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14.25 Corollary. Let k be a knot of period q > 1 with �1(t) = 1, �2(t) = 1. Then
the splitting field of �1(t) contains the q-th roots of unity or �1(t) ≡ 1 mod p for
some p|q.

If k is a non-trivial fibred knot of period q with �2(t) = 1, the splitting field of
�1(t) contains the q-th roots of unity [Trotter 1961]. 	


The preceding proof contains additional information in the case of a prime period.

14.26 Corollary. If k is a knot of period p and �1(α) = 0, �(p)1 (α) = 0, then the
p-th roots of unity are contained in Q(α).

Proof. There is a non-trivial representation δα of the knot group of k with bj (zj ) =
ζbj (xj ), ζ a primitive p-th root of unity. 	


As an application we prove

14.27 Proposition. The periods of a torus knot t(a, b) are the divisors of a and b.

Proof. By 9.15

�1(t) = (tab − 1)(t − 1)

(ta − 1)(tb − 1)
, �2(t) = 1.

From Corollary 14.25 we know that a period q of t(a, b) must be a divisor of ab.
Suppose p1p2|q, p1|a, p2|b for two prime numbers p1, p2, then t(a, b) has periods
p1, p2, and Corollary 14.22 gives

(t − 1)λ(ta
′b − 1)p

c
1 ≡̇ (ta − 1)(tb − 1)[�λ(t)�(p

c
1)

1 (t)]pc1 mod p1

with a = pc1a
′, gcd(p1, a

′) = 1. Let ζ0 be a primitive b-th root of unity. We have
gcd(b, p1) = 1 and gcd(λ, p1p2) = 1, hence p2  | λ. (See E 14.8.) The root ζ0 has
multiplicity s with s ≡ 1 mod p1 according to the right-hand side of the congruence,
but since ζ0 is not a λ-th root of unity, its multiplicity on the left-hand side ought to
be s ≡ 0 mod p1. So there is no period q containing primes from both a and b.

It is evident that the divisors of a and b are actually periods of t(a, b). 	


There have been further contributions to this topic. In [Lüdicke 1978] the dihe-
dral representations γp have been exploited. The periodicity of a knot is reflected in
its invariant [λ(ζ )]. In [Murasugi 1980] these results were generalized, completed
and formulated in terms of linking numbers of coverings. In addition to that, certain
conditions involving the Alexander polynomial and the signature of a knot have been
proved when a knot is periodic [Gordon-Litherland-Murasugi 1981]. Together all
these criteria suffice to determine the periods of knots with less than ten crossings, see
Table I. In [Kodama-Sakuma 1992] and [Shawn-Weeks 1992] the complete informa-
tion on periods and symmetry groups can be found up to 10 crossings. Many results
on periodic knots carry over to links [Knigge 1981], [Sakuma 1981′, 1981′′].
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It follows from Murasugi’s congruence in 14.22 that a knot of period pa either has
Alexander polynomial �1(t) ≡ 1 mod p or deg�1(t) � pa − 1. Thus a knot with
�1(t) ≡ 1 can have only finitely many prime periods. No limit could be obtained for
periods pa , if �1(t) ≡ 1 mod p. A fibred knot has only finitely many periods, since
its Alexander polynomial is of degree 2g with a leading coefficient ±1. It has been
proved in [Flapan 1983] that only the trivial knot admits infinitely many periods. A
new proof of this theorem and a generalization to links was proved in [Hillman 1984].
The generalization reads: A link with infinitely many periods consists of µ trivial
components spanned by disjoint disks.

14.28 Knots with deg�1(t) = 2. Murasugi’s congruence 14.22 shows that a knot
with a quadratic Alexander polynomial can only have period three. Furthermore it
follows from 14.22 that

�1(t) ≡ t2 − t + 1 mod 3.

Corollary 14.25 yields a further information: If k has period three, its Alexander
polynomial has the form

�1(t) = nt2 + (1− 2n)t + n, n = 3m(m+ 1)+ 1, m = 0, 1, . . . ,

see E 14.11.

Figure 14.11 Figure 14.12

2m
+ 1

935 940
947

941 949

There are, in fact, symmetric knots which have these Alexander polynomials, the
pretzel knots p(2m+1, 2m+1, 2m+1), Figure 14.11. Their factor knot p(3) is trivial.
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One obtains

D(t, τ ) = (τ + n(τ − 1))t + n(1− τ)+ 1,

D(t, 1) = 1+ t, D(t, τ ) = 1+ τ, hence λ = 2,

D(t, ζ )D(t, ζ−1) = �1(t), ζ a primitive third root of unity.

(We omit the calculations.) p(1, 1, 1) is the trefoil, p(3, 3, 3) = 935.

14.29. The different criteria or a combination of them can be applied to exclude
periods of given knots. As an example consider k = 811. Its polynomials are�1(t) =
(t2 − t + 1)(2t2 − 5t + 2), �2(t) = 1. Murasugi’s congruence excludes all periods
different from three, but�1(t) ≡̇ t4+ t3+ t + 1 ≡ (1+ t)4 mod 3, hence, λ = 2 and
�
(3)
1 ≡ 1 mod 3 would satisfy the congruence. The splitting field of�1(t) obviously

contains the third roots of unity. The second factor 2t2 − 5t + 2, though, has a
splitting field contained in R. By 14.25 and 14.26 this excludes a period three, since
2t2 − 5t + 2 ≡ 1 mod 3.

Figure 14.12 shows symmetric versions of the knots of period three with less than
ten crossings, 935, 940, 941, 947, 949. (The torus knots are omitted, t(4, 3) = 819,
t(5, 3) = 10124 and t(2m+ 1, 2), 1 � m � 4.)

We conclude this section by showing that the condition �2(t) = 1 cannot be
omitted. The ‘rosette’-knot 818 evidently has period four. The Alexander polynomials
are �1(t) = (1 − t + t2)2(1 − 3t + t2), �2(t) = (1 − t + t2). One has D(t, τ ) =
τ t2 + (τ 2 − τ + 1)t + τ . It follows that D(t, 1) = 1+ t + t2 = �3(t), �

(4)
1 (t) = 1,

D(t,−1) = 1 − 3t + t2, D(t,±i) = ±i(1 − t + t2). The representations δα ,
D(α, i) = �2(α) = 0, are not unique. 1−3β+β2 = 0 yields unique representations
with period 2. In fact, the splitting fields Q(�1(t)) does not contain i. (See also
[Trotter 1961].) Nevertheless, the condition �2(t) = 1 can be replaced by a more
general one involving higher Alexander polynomials [Hillman 1983].

Remark. It is not clear whether the second condition �1(t) ≡ 1 mod p in 14.23,
14.24 is necessary. The Alexander polynomials of the knots 941 and 949 (which have
period three) satisfy �1(t) ≡ 1 mod 3, their splitting fields nevertheless contain the
third roots of unity.

When looking at the material one may venture a conjecture: LetM(k) andM(k(q))
denote the minimal numbers of crossings of a knot k of period q and of its factor knot
k(q). Then

M(k) � q ·M(k(q)).

E History and Sources

It seems to have been J.W. Alexander who first used homomorphic images of knot
groups to obtain effectively calculable invariants, [Alexander 1928]. The groups
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G/G′′ resp. G′/G′′, ancestral to all metabelian representations, have remained the
most important source of knot invariants.

In [Reidemeister 1932] a representation of the group of alternating pretzel knots
onto Fuchsian groups is used to classify these knots. This representation is not
metabelian but, of course, is restricted to a rather special class of groups. It was
repeatedly employed in the years to follow to produce counterexamples concerning
properties which escape Alexander’s invariants. By it, in [Seifert 1934], a pretzel knot
with the same Alexander invariants as the trivial knot could be proved to be non-trivial
– shattering all hopes of classifying knot types by these invariants. Trotter [1964]
used it to show that non-invertible knots (pretzel knots) exist. The natural class of
knots to which the method developed for pretzel knots can be extended is the class of
Montesinos knots (Chapter 12).

R.H. Fox drew the attention to a special case of metabelian representations – the
metacyclic ones. Here the image group could be chosenfinite. (Compare also [Hartley
1979].) A lifting process of these representations obtained by abelianizing its kernel
yielded a further class of non-metabelian representations [Burde 1967, 1970], [Hartley
1983].

A class of representations of fundamental importance in the theory of 3-manifolds
was introduced by R. Riley. The image groups are discrete subgroups of PSL(2,C),
and they can be understood as groups of orientation preserving motions of hyperbolic
3-space. The theory of these representations (Riley-reps), [Riley 1973, 1975, 1975′]
has not been considered in this book – the same holds for homomorphisms onto the
finite groups PSL(2, p) over afinitefield Zp, see [Magnus-Peluso 1967], [Riley 1971],
[Hartley-Murasugi 1978].

F Exercises

E 14.1. Show that the group of symmetries of a regular a-gon is the image of a dihedral
representation γ ∗a of the knot group of the torus knot t(a, 2). Give an example of a
torus knot that does not allow a dihedral representation.

E 14.2. Let δα : G→ C+ be a representation into the group of similarities (see 14.4) of
the group G of a knot k, and {bj } the configuration of fixed points in C corresponding
to Wirtinger generators Sj of a regular projection p(k). Show that one obtains a
representation δ∗α of k∗ with a fixed point configuration {b′j } resulting from {bj } by
reflection in a line.

E 14.3. (a) Let k = k1 # k2 be a product knot and �(1)1 (t) = 1, �(2)1 (t) = 1 be
the Alexander polynomials of its summands. Show that there are non-equivalent
representations δα for �(1)1 (α) = �(2)1 (α) = 0. Derive from this that �2(α) = 0.

(b) Consider a regular knot projection p(k) and a second projection p∗(k) in the
same planeE obtained from a mirror image k∗ reflected in a plane perpendicular toE.
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n

Figure 14.13

Join two corresponding arcs of p(k) and p∗(k) as shown in Figure 14.13 one with an
n-twist and one without a twist – the resulting projection is that of a symmetric union
k∪ k∗ of k [Kinoshita-Terasaka 1957]. Show that a representation δα for k can always
be extended to a representation δα for the symmetric union, hence, that every root of
the Alexander polynomial of k is a root of that of k ∪ k∗. (Use E 14.2.)

E 14.4. Compute the representations γa for torus knots t(a, 2) that lift the dihedral
representations γ ∗a of E 14.1, see 14.10. Show that [λ(ζ )] = {2a}. Derive from this
that t(a, 2) # t(a, 2) and t(a, 2) # t∗(a, 2) have non-homeomorphic complements but
isomorphic groups.

E 14.5. (Henninger) Let γp : G → B be a normalized representation according to
14.10, γp(S1) : z �→ z̄ + 1, γp(S2) : z �→ ζ 2z̄ + ζ , with ζ a primitive p-th root of
unity. Show that γp(G) ∼= Dp � Zp−1. (Hint: use a translation of the plane by

2 ·∑ p−3
2

j=0 ζ
2j+1 +∑ p−1

2
j=1 ζ

2j .)

E 14.6. Compute the matrix (µij ) of linking numbers (see 14.10 (b)) of the irregular
covering Î15 of 92. Compare the invariants 1

2

∑
j =i |µij | = νi , 0 � i � 7 with those

of 74.
(Result: 7, 6, 5, 4, 4, 3, 2, 1, [Reidemeister 1932].)

E 14.7. If a knot has period q as an unoriented knot, it has period q as an oriented
knot. Show that the axis of a rotation through π which maps k onto – k must meet k.

E 14.8. Let k be a knot of period q and h the axis of the rotation. Prove that
gcd(lk(h, k), q) = 1.
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E 14.9. Produce a matrix W over C such that WZqW−1 = Z(ζ ),

Zq =



0 1 .

0 1

1

1 0


, Z(ζ ) =



1

ζ

ζ q−1


,

ζ a primitive q-th root of unity.

E 14.10. We call an oriented tangle Tn circular, if its arcs have an even number of
boundary pointsX1, . . . , Xn, Z1, . . . , Zn which can be joined pairwise (Figure 14.14)
to give an oriented knot k(Tn), inducing on Tn the original orientation. A q-periodic
knot k may be obtained by joining q circular tangles Tn; the knot k(Tn) is then the
factor knot k(q) = k(Tn), see Figure 14.7. A circular tangle defines a polynomial
D(t, τ ), see 14.20.

X1

X2

X3

X4

Z1

Z2

Z3

Z4

Figure 14.14

(a) Show D(t + τ) = t + τ for the circular tangle T2 with one crossing and
compute �1(t) =∏q−1

i=1 (t + ζ i), ζ a primitive q-th root of unity, q odd. �1(t) is the
Alexander polynomial of t(q, 2).

(b) Find all circular tangles with less than four crossings. Construct knots of period
� 4 by them.

E 14.11. If the Alexander polynomial �1(t) of a periodic knot of period three is
quadratic, it has the form

�1(t) = nt2 + (1− 2n)t + n, n = 3m(m+ 1)+ 1, m = 0, 1, . . . .

Prove that the pretzel knot p(2m+ 1, 2m+ 1, 2m+ 1) has this polynomial as �1(t).
Hint: Compute D(τ, t).
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E 14.12. [Lüdicke 1979]. Let k be a knot with prime period q. Suppose there is a
unique dihedral presentation γ ∗p : G→ Z2 � Zp of its group, and p  |�(q)1 (−1).

Then either q = p or q|p − 1.



Chapter 15

Knots, Knot Manifolds, and Knot Groups

The long-standing problem concerning the correspondence between knots and their
complements was solved in [Gordon-Luecke 1989]: “Knots are determined by their
complements”. The proof of the theorem is beyond the scope of this volume.

The main object of this chapter will be the relation between knot complements
and their fundamental groups.

A consequence of the famous theorem of Waldhausen [1968] (see Appendix B.7)
on sufficiently large irreducible 3-manifolds is that the complements of two knots are
homeomorphic if there is an isomorphism between the fundamental groups preserving
the peripheral group system. We study to what extent the assumption concerning the
boundary is necessary.

In Part A we describe examples which show that there are links of two com-
ponents which do not have Property P, see Definition 3.18, and that there are non-
homeomorphic knot complements with isomorphic groups. In Part B we investigate
Property P for knots. In Part C we discuss the relation between the complement and
its fundamental group for prime knots and in Part D for composite knots.

A Examples

The following example of [Whitehead 1937] shows that, in general, the complement
of a link does not characterize the link.

15.1 Proposition (Whitehead). Let ln, n ∈ Z denote the link consisting of a trivial
knot k and the n-twist knot dn, see Figure 15.1. Then:

(a) The links l2n and l2m are not isotopic if n = m.
(b) S3 − l2n ∼= S3 − l0 for all n ∈ Z.

dn

· · · n · · ·

k
ln

Figure 15.1
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Proof. By E 9.6, the Alexander polynomial of d2n is nt2 + (1 − 2n)t + n; hence,
d2n = d2m only if n = m.

To prove (b) take an unknotted solid torus V and the trivial doubled knot d0 ⊂ V
“parallel” to the core of V . W = S3 − V is a solid torus with core k and W − k ∼=
∂W × [0, 1) = ∂V × [0, 1). Consider the following homeomorphism V → V : cut
V along a meridional disk, turn it |n| times through 2π in the positive sense if n > 0,
in the negative sense if n < 0 and glue the disks together again. This twist maps d0

to d2n. The map can be extended to W − k ∼= ∂V × [0, 1) = (S3 − V )− k to get the
desired homeomorphism. 	


For later use we determine from Figure 15.2 and 15.3 the group and peripheral
system of the twist knots dn, following [Bing-Martin 1971]. (See E 3.5.)

Figure 15.2 Figure 15.3

. . .. . .

a1

a1a1 a2a2

am+1

∗

∗
b2b2 b3b3 bm+1bm+1

b1

a1

am

b1 b1

15.2 Lemma. The twist knot dn has the following group Tn and peripheral system.

15.3 (a)T2m = 〈 a, b | b−1(a−1b)ma(a−1b)−ma(a−1b)ma−1(a−1b)−m 〉, meridiana,
longitude (a−1b)ma−1(a−1b)−mbm(a−1b)−1−ma−1(a−1b)ma2−m;

(b) T2m−1 = 〈 a, b | b−1(a−1b)mb−1(a−1b)−ma(a−1b)mb(a−1b)−m 〉, meri-
dian b, longitude (a−1b)−mb(a−1b)2m−1b(a−1b)−mb−2.

Proof. In Figure 15.2 we have drawn the Wirtinger generators and we obtain the
defining relations (here a = a1, b = b1)

b2 = a−1
1 b1a1 = a−1ba

a2 = b2a1b
−1
2 = (a−1b)a(a−1b)−1

b3 = a−1
2 b2a2 = (a−1b)2b(a−1b)−2

...

bm+1 = a−1
m bmam = (a−1b)mb(a−1b)−m
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am+1 = bm+1amb
−1
m+1 = (a−1b)ma(a−1b)−m

b1 = b = am+1a1a
−1
m+1 = (a−1b)ma(a−1b)−ma(a−1b)ma−1(a−1b)−m

for n = 2m. For n = 2m − 1 the last two relations from above must be replaced by
one relation

b = b−1
m+1abm+1 = (a−1b)mb−1(a−1b)−ma(a−1b)mb(a−1b)−m

(see Figure 15.3).
For the calculation of the longitude we use the formulas

a1 . . . am = bm(a−1b)−m and bm . . . b2 = (a−1b)m−1am−1.

A longitude of d2m associated to the meridian a is given by

a−1
m+1a1a2 . . . amb

−1
1 bm+1 . . . b2a

2−2m

= (a−1b)ma−1(a−1b)−mbm(a−1b)−mb−1(a−1b)mama2−2m

= am(a−1b)ma−1(a−1b)−2m−1a−1(a−1b)ma2−m;
for the last step we applied the defining relation from 15.2 (a) and replaced b by
a conjugate of a. Since the longitude commutes with the meridian a we get the
expression in 15.3 (a).

For d2m−1 a longitude is given by

a1a2 . . . amb1bmbm−1 . . . b2bm+1b
−1−2m
1

= bm(a−1b)−mb(a−1b)m−1am−1(a−1b)mb(a−1b)−mb−1−2m

= bm(a−1b)−mb(a−1b)2m−1b(a−1b)−mb−2−m;
here we used the relation from 15.3 (b). 	


As we have pointed out in 3.15, the results of [Waldhausen 1968] imply that the
peripheral system determines the knot up to isotopy and the complement up to orien-
tation preserving homeomorphisms. A knot and its mirror image have homeomorphic
complements; however, if the knot is not amphicheiral every homeomorphism of S3

taking the knot onto its mirror image is orientation reversing. Using this, one can
construct non-homeomorphic knot complements which have isomorphic groups:

15.4Example ([Fox 1952]). The knots k#k∗ and k#k where k is a trefoil are known as the
square and the granny knot (see Figure 15.4). They are different knots by Schubert’s
theorem on the uniqueness of the prime decomposition of knots, see Theorem 7.12, and
their complements are not homeomorphic. This is a consequence of Theorem 15.11.
Thefirst proof of this fact was given by R.H. Fox [1952] who showed that the peripheral
systems of the square and granny knots are different. We derive it from E 14.4:
the longitudes l and l′ are mapped by a normalized presentation γp, p = 3, onto
12 = 6+ 6 resp. 0 = 6− 6, compare E 14.4 ([Fox 1952]). Their groups, though, are
isomorphic by E 7.5.
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Figure 15.4

B Property P for Special Knots

For torus and twist knots suitable presentations of the groups provide a means to prove
Property P. This method, however, reflects no geometric background. For product
knots and satellite knots a nice geometric approach gives Property P. The results and
methods of this section are mainly from [Bing-Martin 1971].

15.5 Definition. (a) The unoriented knots k1, k2 are of the same knot type if there is a
homeomorphism h : S3 → S3 with h(k1) = k2.

(b) Let k be a non-trivial knot, V a neighbourhood of k, C(k) = S3 − V the knot
complement and m, l meridian and longitude of k on ∂V = ∂C(k). ThenC(k) is called
a knot manifold. For gcd(r, n) = 1 let M denote the closed 3-manifold C(k) ∪f V ′
where V ′ is a solid torus with meridian m′ and f an identifying homeomorphism
f : ∂V ′ → ∂C(k), f (m′) ∼ rm+ nl on ∂C(k). We say that M is obtained from S3

by (Dehn)-surgery on k and write M = srg(S3, k, r/n).

Thus H1(srg(S3, k, r/n)) = Z|r|. The knot k has Property P, (compare Defini-
tion 3.18), if and only if π1(srg(S3, k, 1/n)) = 1 implies n = 0.

15.6 Proposition. Torus knots have Property P.

Proof. By 3.28,

π1(srg(S3, t(a, b), 1/n)) = 〈 u, v | uav−b, ucvd(ua(ucvd)−ab)n 〉,
|a|, |b| > 1, ad + bc = 1,

and we have to show that this group is trivial only for n = 0. By adding the relation
ua we obtain the factor group

〈 u, v | ua, vb, (ucvd)1−nab 〉 = 〈 ũ, ṽ | ũa, ṽb, (ũṽ)1−nab 〉
with ũ = uc, ṽ = vd . For n = 0 this is a non-trivial triangle group, see [ZVC 1980,
p. 124], since |1− nab| > 1. 	


In the proof of Property P for twist knots we construct homeomorphisms onto
the so-called Coxeter groups, and in the next lemma we convince ourselves that the
Coxeter groups are non-trivial.
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15.7 Lemma ([Coxeter 1962]). The Coxeter group

A = 〈 x, y | x3, ys, (xy)3, (x−1y)r 〉

is not trivial when s, r � 3.

Proof. We assume that 3 � s � r; otherwise replace x by x−1. Introducing t = xy

and eliminating y gives A = 〈 t, x | x3, t3, (x−1t)s, (xt)r 〉. We choose a complex
number c such that

cc̄ = 4 cos2 π

r
and c + c̄ = 4 cos2 π

s
− 4 cos2 π

r
− 1.

0 1ε

c

2 cos πr

ε = 4 cos2 π
r − 4 cos2 π

s

Figure 15.5

This choice is always possible if r � s � 3, see Figure 15.5. LetX, T be the following
3× 3 matrices:

X =
1 c c + 1

0 −1 −1

0 1 0

 , T =
 0 0 1

1+ c̄ 1 1

−1 0 −1

 .
Then

XT =
cc̄ − 1 c 0

−c̄ −1 0

1+ c̄ 1 1

 , X−1T =
c + c̄ + cc̄ c + 1 c + 1

−1 0 −1

−c̄ −1 0

 .
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The characteristic polynomials are

pX = 1− λ3, pT = 1− λ3,

pXT = 1− (cc̄ − 1)λ+ (cc̄ − 1)λ2 − λ3 = −(λ− 1)(λ2 − 2λ cos2 π

r
+ 1),

pX−1T = 1− (c + c̄ + cc̄)λ+ (c + c̄ + cc̄)λ2 − λ3

= −(λ− 1)(λ2 − 2λ cos
2π

s
+ 1).

The roots of the last two polynomials are 1, e±2πi/r and 1, e±2πi/s , respectively. This
proves that pXT | λr − 1 and pX−1T | λs − 1. Since a matrix annihilates its charac-
teristic polynomial, see [van der Waerden 1955, § 118], it follows thatX3, T 3, (XT )r

and (X−1T )s are unit matrices. So X, T generate a non-trivial homomorphic image
of A. 	


15.8 Theorem (Bing–Martin). The twist knot dn, n = 0, −1, has Property P. In
particular, the figure-eight knot 41 = d2 has Property P.

Proof. We use the presentation 15.3 (a). Definew = a−1b and replace b by aw. Then

T2m = 〈 a,w | (aw)−1wmaw−mawma−1w−m 〉 (1)

and, introducing k = aw−m instead of a = kwm,

T2m = 〈 k,w | w−2m−1k−1wmk2wmk−1 〉. (2)

The longitude is

l = (a−1b)ma−1(a−1b)−mbm(a−1b)−1−ma−1(a−1b)ma2−m

= wma−1w−m(aw)mw−1−ma−1wma2−m.

By the relation in the presentation (1),

aw = wmaw−m · a · (wmaw−m)−1;
hence, (aw)m = wmaw−m · am · wma−1w−m and

l = amwma−1w−1−2ma−1wma2−m.

Since l commutes with the meridian a, the surgery on d2m gives an additional relation

(wma−1w−1−2ma−1wma2)na = 1,

or,
(k−1w−1−3mk−1wmkwmkwm)nkwm = 1.
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Therefore

H2m,n = π1(srg(S3, d2m, 1/n)) (3)

= 〈 k,w | kw2m+1k · (wmk2wm)−1, (k−1w−1−3mk−1wmkwmkwm)nkwm 〉.
We introduce in H2m,n the additional relationsw3m+1 = 1, k3 = 1. Then the relations
of (3) turn into (kw−m)3 = 1, (kwm)3n+1 = 1 and, with v = k and u = wm, the
factor group has the presentation

〈 u, v | u3m+1, v3, (uv−1)3, (uv)3n+1 〉.
By Lemma 15.7 this Coxeter group is not trivial ifm = 0 and |3n+1| > 2. The latter
condition is violated only if n = 0,−1.

For n = −1 the group is

H2m,−1 = 〈 k,w | kw2m+1k(wmk2wm)−1, w−mk−1w−mkw3m+1k 〉.
By w �→ y−6, k �→ yx−1, we obtain an epimorphism of H2m,−1 to the triangle group
〈 x, y | y6m+1, x3, (xy)2 〉 since

yx−1y−12m−6yx−1y6mxy−1xy−1y6m = yx−1y−3x−1y−1xy−1xy−1y−1

= yx−1y−2x2y−1xy−2 = yx−1y−1x2y−2 = yx−1y−1x−1y−2 = yy−1 = 1,

and

y6mxy−1y6myx−1y−18m−6yx−1 = y−1xy−1x−1y−2x−1 = y−1x2y−1x−1 = 1.

The triangle group is not trivial, see [ZVC 1980, p. 124].
Next we consider d2m−1. To achieve a more convenient presentation we define

w = a−1b and replace a by bw−1. Further we substitute k = bw−m and eliminate b
by kwm. Then we obtain from 15.3 (b)

T2m−1 = 〈 b,w | b−1wmb−1w−mbw−1+mbw−m 〉
= 〈 k,w | w−1k−2w−mkw−1+2mk 〉.

The longitude is

l = w−mbw2m−1bw−mb−2 = w−mkw3m−1kw−mk−1w−mk−1.

Thus

H2m−1,n = π1(srg(S3, d2m−1, 1/n)) (4)

= 〈 k,w | w−mk−2w−mkw2m−1k, (w−mkw3m−1kw−mk−1w−mk−1)nkwm 〉.
Adding the relations w2m−1, k3 we obtain the group

〈 k,w | k3, w3m−1, (kw−m)3, (k−1w−1)3n−1 〉
= 〈 x, y | x3m−1, y3, (xy−1)3, (xy)3n−1 〉

with x = w−m, y = k−1.
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By Lemma 15.7 this group is not trivial unless |3m − 1| � 2 or |3n − 1| � 2,
that is, unless m or n is 0 or 1. For m = 0 we get the trivial knot and this case was
excluded. In the case m = 1 the knot d1 is the trefoil which has Property P by 15.6.
So we may assume that |3m− 1| � 3. For n = 1

H2m−1,1 = 〈 k,w | w−mk−2w−mkw2m−1k, w−mkw3m−1kw−mk−1 〉.
The relations are the equations

kw2m−1k = wmk2wm, wmkwm = kw3m−1k.

We rewrite the first as

(wmkwm)w−2m(wmkwm) = kw2m−1k

and substitute the second in this expression to obtain

kw−2mk = w1−4m, kw3m−1k = wmkwm.
Put k = xwm. Now the defining equations are

xw−mxw−m = w1−6m, w1−6m = w−mxw−mx−1w−mxw−m.

Substituting the first in the second we obtain

w1−6m = (xw−m)2, x3 = (xw−m)2.
Hence the non-trivial triangle group 〈 x,w | x3, w6m−1, (xw)2 〉 is a homomorphic
image of H2m−1,1. 	


Next we establish Property P for product knots. It is convenient to use a new view of
the knot complement: one looks at the complement C(k) of a regular neighbourhood

C(k) k

Figure 15.6
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of the knot k from the centre of a ball in the regular neighbourhood. Now C(k)

looks like a ball with a knotted hole. Following [Bing-Martin 1971] we say that the
complement of k is a cube with a k-knotted hole or, simply, a cube with a (knotted)
hole, see Figure 15.6. A cube with an unknotted hole is a solid torus. Suppose that
W is a regular neighbourhood of a knot h and C(k) a knotted hole, associated to the
knot k, such that C(k) ⊂ W and C(k) ∩ ∂W = ∂C(k) ∩ ∂W is an annulus, then
(S3 −W)∪C(k) is the complement of k # h, if the annulus is meridional with respect
to h and k, Figure 15.8.

Figure 15.7 Figure 15.8

15.9 Lemma. Let V be a homotopy solid torus, that is a 3-manifold with boundary a
torus and infinite cyclic fundamental group. Suppose that K is a cube with a knotted
hole in the interior of V . Then there is a homotopy 3-ball B ⊂ V such that K ⊂ B.
(B is a compact 3-manifold bounded by a sphere with trivial fundamental group).

Proof. π1V ∼= Z implies, as follows from the loop theorem (Appendix B.5), that there
is a diskD ⊂ V withD∩∂V = ∂D and ∂D is not null-homologous on ∂V . By general
position arguments we may assume thatD ∩ ∂K consists of mutually disjoint simple
closed curves and that, after suitable simplifications, each component of D ∩ ∂K is
not homotopic to 0 on ∂K . Let γ be an innermost curve of the intersection on D and
let D0 be the subdisk of D bounded by γ . As K is a knotted cube, π1∂K → π1K

is injective; hence, D0 ⊂ V −K . By adding a regular neighbourhood of D0 to K
we obtain B ⊃ K , ∂B = S2. So we may assume D ∩ ∂K = ∅. Let U be a regular
neighbourhood of D in V . Now V − U is a homotopy 3-ball containing K . 	


15.10 Lemma. Let V1, V2 be solid tori, V2 ⊂ V̊1 such that

(a) there is a meridional disk of V1 whose intersection with V2 is a meridional disk
of V2 and

(b) V2 is not parallel to V1, see Figure 15.7.

Then the result of removing V2 from V1 and sewing it back differently is not a
homotopy solid torus.



B Property P for Special Knots 291

Proof. Let F be a meridional disk of V1, that is F ∩ ∂V1 = ∂F � 0 on ∂V1, which
intersects V2 in a meridional disk of V2. Let N be a regular neighbourhood of F in
V1. Then K1 = V1 − (N ∪ V2) is a cube with a knotted hole since V2 is not parallel
to V1. Now K1 ∩ ∂V1 is an annulus. We push this annulus slightly into the interior of
V1 and call the resulting cube with a knotted hole K̃1.

Suppose that V2 is removed from V1 and a solid torus V ′2 is sewn back differently;
denote the resulting manifold by V ′1. Assume that V ′1 is a homotopy solid torus. Then
there is a diskD ⊂ V ′1 such thatD∩∂V ′1 = D∩∂V1 = ∂D and ∂D � 0 on ∂V ′1. Since,
by Lemma 15.9, K̃1 lies in a homotopy 3-ball contained in V ′1 we may assume that
D∩ K̃1 = ∅ and, hence, that alsoD∩K1 = ∅. This implies thatD∩ ∂V1 = D∩ ∂V ′1
is parallel to F ∩ ∂V1. Moreover, suppose that D and ∂V ′2 = ∂V2 are in general
position so that D ∩ ∂V ′2 = D ∩ ∂V2 is a finite collection of mutually disjoint simple
closed curves, none of which is contractible on ∂V2. Now the complement of K1
in V1 − V2 is the Cartesian product of an annulus and an interval, and the boundary
contains an annulus on ∂V1 and another on ∂V2 = ∂V ′2. Therefore each curve of
D∩ ∂V ′2 is homotopic on ∂V ′2 to the simple closed curve F ∩ ∂V2 which is meridional
in V2. Let γ be an innermost curve of D ∩ ∂V ′2 and D0 ⊂ D the disk bounded by
γ , D0 ∩ ∂V ′2 = γ . Since γ is a meridian of V2 it is not a meridian of V ′2; hence,

D0 ⊂ V ′1 − V ′2 = V1 − V2, in fact D0 ⊂ V1 − (V2 −K1) ∼= (S1 × I ) × I which
contradicts the fact that γ represents the generator of the annulusS1×I . Consequently,
D ∩ ∂V2 = ∅ and ∂D � 0 in V1 − (V2 ∪K1), contradicting the fact that ∂D also
represents the generator of π1(S

1 × I ). This shows that V ′1 is not a homotopy solid
torus. 	


15.11 Theorem (Bing–Martin, Noga). Product knots have Property P.

Proof. Let k = k1 # k2 be a product knot in S3. We use the construction shown in
Figure 7.2 and 15.8. Let V be a regular neighbourhood of k2. Replace a segment
of k2 by k1 such that k1 ⊂ V , see Figure 15.8. Notice that S3 − V is a cube with a
k2-knotted hole and, hence, it is not a homotopy solid torus.

Now let N be a regular neighbourhood of k, N ⊂ V̊ , and let M result from S3

by removing N and sewing it back differently. Lemma 15.10 implies that ∂V does
not bound a homotopy solid torus in M . Thus π1M is the free product of two groups
amalgamated over π1(∂V ) ∼= Z⊕ Z and therefore π1M is not trivial. 	


15.12 Theorem (Bing–Martin). Let k ⊂ S3 be a satellite, k̂ its companion and (Ṽ , k̃)
its pattern. Denote by m, l; m̂, l̂; m̃, l̃ the meridian and longitude of k, k̂, k̃ and by
mV , lV those of Ṽ . Then k has Property P if

(a) k̃ has Property P, or

(b) k̂ has Property P and q = lk(mV , k̃) = 0.

Proof of 15.12 (a). (The proof for (b) will be given in 15.15.)
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There is a homeomorphism h : Ṽ → V̂ , h(k̃) = k. Let Ũ be a regular neigh-
bourhood of k̃ in Ṽ . We remove h(Ũ) from S3 and sew it back differently to obtain
a manifold M . If k̂ is the trivial knot then h can be extended to a homeomorphism
S3 → S3 and it follows from assumption (a) that M is not simply connected.

So we may assume that k̂ is a non-trivial knot. If the result W of a surgery on k̃ in
Ṽ does not yield a homotopy solid torus, then h(∂Ṽ ) divides M into two manifolds
which are not homotopy solid tori. Since k̂ is a knot, π1(h(∂Ṽ )) → π1(M −W) =
π1(S3 − h(Ṽ )) is injective. When π1(h(∂Ṽ )) → π1W has non-trivial kernel, there
is a disk D ⊂ W , ∂D ⊂ ∂W , ∂D � 0 in ∂W such that X = W − U(D) is bounded
by a sphere, U(D) being a regular neighbourhood of D in W . Now X cannot be a
homotopy ball because W is not a homotopy solid torus. Therefore π1M = 1. If
π1(h(∂Ṽ )) → π1W is injective, π1M is a free product with an amalgamation over
π1(h(∂Ṽ )) ∼= Z2, hence non-trivial.

Finally, suppose that k̂ is non-trivial and the sewing back of h(Ũ) in h(Ṽ ) yields
a homotopy solid torus W . Then a meridian of W can be presented in the form
ph(mV ) + qh(lV ) where p, q are relatively prime integers. From h(lV ) ∼ 0 in

S3 − h(Ṽ ) it follows that H1(M) is isomorphic to Z|p| or Z (for p = 0). To see
that |p| = 1, we perform the surgery on k̃ in Ṽ which transforms Ṽ into the manifold
Ṽ ′ = h−1(W). (The new meridian defining the surgery represents m

p
V l

q
V ∈ π1(∂Ṽ ).)

Now Ṽ ′ ∪ S3 − Ṽ is obtained from S3 by surgery on k̃. Since lV � 1 in S3 − Ṽ the

relation m
p
V l

q
V � 1 is equivalent to m

p
V � 1, and |p| = 1 implies that Ṽ ′ ∪ S3 − Ṽ

is a homotopy sphere. Thus |p| = 1 because k̃ has Property P. 	


15.13 Remark. The knot h(k̃) is a satellite and (Ṽ , k̃) is the pattern of h(k̃). The
condition h(lV ) ∼ 0 in C(k̂) ensures that the mapping h does not unknot k̃; this could
be done, for instance, with the twist knots dn, n = 0,−1 whenh removes the twists. As
an example, using the definition of twisted doubled knots in E 9.6 and Theorem 15.8,
we obtain

15.14 Corollary. Doubled knots with q twists, q = 0, −1 have Property P. 	


15.15. Proof of 15.12 (b). We consider surgery along the knot h(k̃); for the definition
of h see p. 291. Replace a tubular neighbourhood Ũ ⊂ Ṽ on k̃ by another solid torus
T̃ using a gluing map f : ∂T̃ → ∂Ũ . The manifold obtained is

M = (S3 − V̂ ) ∪h ((Ṽ − Ũ ) ∪f T̃ ).

Define Ĉ = C(k̂) = S3 − V̂ and X = (Ṽ − Ũ ) ∪f T̃ . Since k̂ is non-trivial the
inclusion ∂Ĉ → Ĉ defines a monomorphism π1(∂Ĉ)→ π1Ĉ. If ∂X → X induces
also a monomorphism π1(∂X)→ π1X, then π1M is a free product with amalgamated
subgroup π1(∂Ĉ) = π1(∂X) ∼= Z2.
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Therefore, if M is a homotopy sphere, ker(π1(∂X) → π1X) = 1. By the loop
theorem (Appendix B.5), there is a simple closed curve ν ⊂ ∂X, ν not contractible on
∂X, which bounds a disk D in X, ∂D ∩ ∂X = ∂D = ν. Then ν � m̂a l̂b on ∂Xwith
gcd(a, b) = 1; we may assume a � 0.

If W is a regular neighbourhood of D in X, the boundary of X −W is a 2-sphere
S2 and

M = (C ∪W) ∪ (X −W), S2 = (C ∪W) ∩ (X −W).
Therefore π1M = π1(C ∪ W) ∗ π1(X −W). Thus π1(C ∪ W) = 1. Since by
assumption 15.12 (b) k̂ has Property P, it follows that ν must be the meridian m̂ of k̂

and b = 0 and a = 1; moreover, m̂ = h(mV ) if mV is a meridian of Ṽ .
Let m̃ be a meridian of the tubular neighbourhood Ũ of k̃. Then, for the meridian

mV of Ṽ

mV ∼ qm̃ in Ṽ − Ũ with q = lk(mV , k̃). (5)

Moreover, there is a longitude l̃ of Ũ such that

l̃ ∼ qlV in Ṽ − Ũ . (6)

l̃ can be obtained from an arbitrary longitude l̃0 as follows. There is a 2-chain c2 in

Ṽ − Ũ – the intersection of Ṽ − Ũ with a projecting cylinder of l̃0 – such that

∂c2 = l̃0 + αm̃+ βmV + γ lV .

Now

q = lk(mV , k̃) = lk(mV , l̃0) = lk(mV ,−αm̃− βmV − γ lV ) = −γ,
and

l̃ = l̃0 + (α + βq)m̃ = l̃0 + αm̃+ βmV ∼ qlV
in Ṽ − Ũ . (See E 15.1.)

For a meridian mT of T̃ one has

mT ∼ �m̃+ σ l̃ on ∂T̃ = ∂Ũ, gcd(�, σ ) = 1. (7)

Here � = ±1 since we assume that the surgery along k gives a homotopy sphere. The
disk D is bounded by mV . We assume that D is in general position with respect to
∂T̃ and that D ∩ ∂T̃ does not contain curves that are contractible on ∂T̃ ; otherwise
D can be altered to get fewer components of ∂T̃ ∩D. This implies that ∂T̃ ∩D is a
collection of disjoint meridians of T̃ and that ∂T̃ ∩D consists of parallel meridional
disks, and, thus, for a suitable p

mV ∼ pmT in Ṽ − Ũ . (8)
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lV and m̃ are a basis of H1(Ṽ − Ũ ) ∼= Z2. The formulas (5) - (8) imply

q m̃ ∼mV ∼ pmT ∼ p � m̃+ p σ l̃;

thus

p σ = 0, p � = q, that is, since q = 0, σ = 0, � = ±1, p = ±q.

So we may assume that � = 1 and p = 1. But then mT = m̃. 	


15.16 Proposition. (a) (p, q)-cable knots with 2 � |p|, |q| have Property P.
(b) Let k be a (±1, q)-cable knot about the non-trivial knot k̂. If |q| � 3 then k

has Property P. (For the notation see 15.20.)

Proof. The first statement is a consequence of 15.6 and 15.12 (a). For the proof of the
second assertion, we consider the pattern (Ṽ , k̃). It can be constructed as follows. Let
� denote the rotation of the unit disk B̃ through the angle 2π/q. Choose in B̃ a small
disk D̃1 with centre x̃1 such that D̃1 is disjoint to all its images �j D̃1, 1 � j � q − 1.
Then the pattern consists of the solid torus B̃ × I/�, that is, the points (x̃, 1) and
(�(x̃), 0) are identified, and the knot k̃ consists of the arcs �j (x̃1)× I , 0 � j < q. A
regular neighbourhood Ũ of k̃ is

⋃q−1
j=0 (�

j (D̃1)× I ), see Figure 15.9.

D̃2
m2

x̃1
D̃1 m1

m̂

D̃q mq

Figure 15.9

Then C(k) = C(k̂) ∪X, C(k̂) ∩X = ∂C(k) ⊂ ∂X, where X is homeomorphic to
the pattern described above. Let m̂ be a meridian of k̂ (m̂ is the image of ∂B̃) and
m1, . . . ,mq meridians of k corresponding to ∂D̃1, . . . , ∂D̃q . Let l̂ be the longitude
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of k̂. Then

π1X = 〈 m̂,m1, . . . ,mq, l̂ | m̂−1 ·m1 . . .mq, [m̂, l̂],
l̂−1mj l̂ ·m−1

j+1 (1 � j < q), l̂−1mq l̂ · (m̂−1m1m̂)
−1 〉

= 〈 m̂,m1, l̂ | m̂−1(m1l̂
−1)q l̂q, l̂−qm1l̂

q(m̂−1m1m̂)
−1, [m̂, l̂] 〉

= 〈m1, l̂ | [m1, (m1l̂
−1)q ], [(m1l̂

−1)q, l̂] 〉.

Note that m
−q
1 (m1l̂

−1)q is a longitude of k.
Next we attach a solid torus W to C(k) such that the result is a homotopy sphere.

The meridian of W has the form m1 · (m−q1 (m1l̂
−1)q)n = m

1−nq
1 (m1l̂

−1)nq . If we
show that n = 0 the assertion (b) is proved. We have

π1(X ∪W) = 〈m1, l̂ | [m1, (m1l̂
−1)q ], [(m1l̂

−1)q, l̂], m
1−nq
1 (m1l̂

−1)nq 〉

andπ1M =π1(C(k̂)∪X∪W) is obtained by adding the relation m̂= (m1l̂
−1)q l̂q = 1.

Put v =m1l̂
−1 and replace l̂ by v−1m1 to get

π1M = 〈m1, v | [m1, v
q ], [vq, v−1m1], m

1−nq
1 vnq, vq(v−1m1)

q 〉.
Adding the relator vq = 1 we obtain the group

〈m1, v |m1−nq
1 , vq, (v−1m1)

q 〉
which must be trivial. Since |q| � 3 this implies 1 − nq = ±1, see [ZVC 1980,
p. 122]; hence, n = 0. 	


C Prime Knots and their Manifolds and Groups

In this section we discuss to what extent the group of a prime knot determines the knot
manifold. For this we need some concepts from 3-dimensional topology.

15.17 Definition. (a) A submanifoldN ⊂ M is properly embedded if ∂N = N∩∂M .
(b) Let A be an annulus and a ⊂ A a non-separating properly embedded arc, a

so-called spanning arc. A mapping f : (A, ∂A) → (M, ∂M), M a 3-manifold, is
called essential if f# : π1A→ π1M is injective and if there is no relative homotopy
ft : (A, ∂A) → (M, ∂M) with f0 = f , f1(a) ⊂ ∂M . The annulus f (A) is also
called essential.

(c) The properly embedded surface F ⊂ M is boundary parallel if there is an
embedding g : F × I → M such that

g(F × {0}) = F and g((F × {1} ∪ (∂F × I )) ⊂ ∂M.
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An annulus A is boundary parallel if and only if there is a solid torus V ⊂ M

such that A ⊂ ∂V , ∂V − A ⊂ ∂M and the core of A is a longitude of V . (Proof as
Exercise E 15.2).

To illustrate the notion of an essential annulus we give another characterizing
condition and discuss two important examples.

15.18 Lemma. LetA be a properly embedded incompressible annulus in a knot mani-
fold C. Then A is boundary parallel if and only if the inclusion i : A → C is not
essential.

Proof. Clearly, if A is boundary parallel, then i is homotopic rel ∂A to a map into
∂C, thus not essential. If i is not essential then, since A is incompressible, that is
i# : π1A → π1C is injective, a spanning arc a of A is homotopic to an arc b ⊂ ∂C.
We may assume that b intersects ∂A transversally, intersects the two components of
∂A alternatingly and is simple; the last assumption is not restrictive since any arc on
a torus with different endpoints can be deformed into a simple arc by a homotopy
keeping the endpoints fixed. The annulus A decomposes C into two 3-manifolds
C1, C2 : C = C1 ∪ C2, A = C1 ∩ C2, such that ∂Cj = (∂Cj ∩ ∂C) ∪A (j = 1, 2) is
a torus. We have

π1C = π1C1 ∗π1A π1C2.

If b ⊂ ∂Cj for some j then b ∪ a ⊂ ∂Cj is nullhomotopic in Cj , thus bounds a disk
in Cj . This implies that Cj is a solid torus and ∂A consists of two longitudes of Cj .
By the remark above, A is boundary parallel.

If b intersects ∂A more than twice then b = b1 . . . bn where bj and bj+1 are
alternately contained in C1 and C2. The boundary points of each bj are on different
components of ∂A. By adding segments cj ⊂ A we obtain

b � (b1c1)(c
−1
1 b2c2)(c

−1
2 . . . (c−1

n−1bn)

such that ab1c1, c−1
1 b2c2, . . . , c

−1
n−1bn are closed and are contained in ∂C1 or ∂C2.

If in some Cj , ab1c1 is contractible or homotopic to a power cp of the core of A we
replace b by b1c1 or b1c1c

−p, respectively, and argue as above. If one of the c−1
k−1bkck

(cn is the trivial arc) is contractible or homotopic to a curve in A in some Cj it can be
eliminated and we obtain a simpler arc, taking the role of b. Thus we may assume that
none of ab1c1, c−1

1 b2c2, . . . , c
−1
n−1bn is homotopic to a curve in A. Then the above

product determines a word in π1C where consecutive factors are alternatingly in π1C1
and π1C2 and none is in the amalgamated subgroup; thus the word has length n and
represents a non-trivial element of π1C, see [ZVC 1980, 2.3.3], contradicting ab � 0
in C. 	


15.19 Proposition. Let C(k) = C(k1)∪C(k2) be the knot manifold of a product knot
k = k1 # k2 with A = C(k1) ∩ C(k2) an annulus. If k1 and k2 are non-trivial, then A
is essential in C(k).
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Proof. Otherwise, by 15.18, A and one of the annuli of ∂C(k), defined by ∂A bounds
a solid torus which must be one of the C(kj ). This is impossible since a knot with
complement a solid torus is trivial, see 3.17. 	


15.20 Example (Cable knots). Let W be a solid torus in S3 with core k, m and l

meridian and longitude ofW where l ∼ 0 in C(k) = S3 −W . A simple closed curve
c ⊂ ∂W , c ∼ pm + ql on ∂W , |q| � 2 is called a (p, q)-cable knot with core k.
(Compare 2.9.) Another description is the following: Let V be a solid torus with core
k in S3 and C(k) ∩ V = (∂C(k)) ∩ (∂V ) = A an annulus the core of which is of type
(p, q) on ∂C(k). Then ∂(C(k)∪V ) is a torus and U(c) = S3 − (C(k) ∪ V ) is a solid
torus the core of which is a (p, q)-cable knot c with core k, see Figure 15.10. This
follows from the fact that the core of S3 − (C(k) ∪ V )) is isotopic in W to the core
of A.

C(k)
c

c

c

U(c)

V = S3 − U(c)− C(k) A

Figure 15.10

We will see that the annuli of 15.19, 15.20 are the prototypes of essential annuli in
knot manifolds. To see this we need the following consequence of Feustel’s Theorem
[Feustel 1976, Theorem 10], which we cannot prove here.

15.21 Theorem (Feustel). LetM and N be compact, connected, irreducible, bound-
ary irreducible 3-manifolds. Suppose that ∂M is a torus and that M does not admit
an essential embedding of an annulus. If ϕ : π1M → π1N is an isomorphism then
there is a homeomorphism h : M → N with h# = ϕ. 	


We prove in 15.36 the following result of [Simon 1980′], without using Feustel’s
Theorem 15.21.
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15.22 Theorem (Simon). There are at most two cable knots with the same knot group.

A consequence of 15.21 and 15.22 is the following

15.23 Corollary ([Simon 1980′]). The complements of at most two prime knot types
can have the same group.

Proof. Suppose k0, k1, k2 are prime knots whose groups are isomorphic to π1(C(k0)).
If kj is not a cable knot then C(kj ) does not contain essential annuli, see 15.26. Now
Theorem 15.21 implies that the C(kj ), j = 0, 1 2 are homeomorphic. So we may
assume that k0, k1, k2 are cable knots and the assertion follows from Theorem 15.22.

	

It remains to prove 15.22 and 15.26.

15.24 Lemma ([Simon 1973, Lemma 2.1]). Let C, W0, W1 be knot manifolds. C =
W0∪(A×[0, 1])∪W1,W0∩((A×[0, 1])∪W1) = A×{0},W1∩(W0∪(A×[0, 1])) =
A × {1}, where A is an annulus, see Figure 15.11. Then either the components of
∂A bound disks in ∂C or the components bound meridional disks in S3 − C and the
groups π1C, π1W0, π1W1 are the normal closures of the images of π1A.

Figure 15.11

Proof. Since W0 is a knot manifold, S3 −W0 is a solid torus containing W1. By
Lemma 15.9, there is a 3-ball B such that W1 ⊂ B̊ ⊂ B ⊂ S3 −W0; so the 2-sphere
S2 = ∂B separates W0 and W1 and therefore must intersect A × (0, 1). We may
assume that S2 ∩ (∂A× (0, 1)) consists of a finite number of pairwise disjoint curves
σ1, . . . , σr . If σi is innermost in S2 then σi bounds a disk D ⊂ S2 such that either
D ⊂ S3 − C or D ⊂ A× (0, 1).

If σi also bounds a disk E ⊂ ∂A× (0, 1) – which it necessarily does in the latter
case – then the intersection line σi can be removed by an isotopy which replaces S2

by a sphere S2
1 still separating W0 and W1. It is impossible that all curves σj can be

eliminated in this way, as ∂A × {0} and ∂A × {1} are separated by S2. There exists
a curve γ ⊂ S2 ∩ (∂A × (0, 1)) bounding a disk in S3 − C which is not trivial on
∂A× (0, 1). So there are non-trivial curves γ1, γ2 on each component of ∂A× (0, 1)
bounding disks in S3 − C. They are isotopic on ∂A × [0, 1] to the components of
∂A× {0}, respectively, which, hence bound disks in S3 − C. 	
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15.25 Lemma. Let C be a knot manifold in S3, C = W0 ∪W1, where W0 is a cube
with a hole, W1 is a solid torus, and A = W0 ∩ W1 = ∂W0 ∩ ∂W1 is an annulus.
Denote by kC the core of the solid torus S3 − C. Assume that π1A → π1W1 is not
surjective. Then kC is a (p, q)-cable of the core k0 of S3 −W0, |q| � 2. If W0 is a
solid torus then kC is a torus knot.

Proof. We may writeC = W0∪f W1 where f is an attaching map onA. This mapping
f is uniquely determined up to isotopy by the choice of the core of A on ∂W1, since
S3 − C is a solid torus. Hence, the core kC of S3 − C is by 15.20 the (p, q)-cable of
k0. When |q| = 1 the homomorphism π1A → π1W1 is surjective. If q = 0, kC is
trivial and C is not a knot manifold. In the special case where W0 is a solid torus, k0
is trivial and kC a torus knot. 	


15.26 Lemma. Let C be a knot manifold in S3, and let A be an annulus in C, ∂A ⊂
∂C, with the following properties:

(a) the components of ∂A do not bound disks in ∂C;

(b) A is not boundary parallel in C.

Then a core of S3 − C is either a product knot or a cable knot isotopic to each of
the components of ∂A.

Proof. By (a), the components of ∂A bound annuli in ∂C. Hence, there are submani-
folds X1 and X2 bounded by tori such that C = X1 ∪ X2, X1 ∩ X2 = A, and, by
Alexander’s theorem (Appendix B.2) Xi is either a knot manifold or a solid torus.

If X1 and X2 are both knot manifolds then, by Lemma 15.24, each component of
∂A bounds a meridional disk in S3 − C, and a core of S3 − C is, by Definition 2.7, a
product knot.

Suppose now that X2 is a solid torus. There is a annulus B ⊂ ∂C satisfying
A ∪ B = ∂X2. If the homomorphism π1A → π1X2, induced by the inclusion, is
not surjective, then, by Lemma 15.25, a core of S3 − C is a cable knot. Now assume
that π1A → π1X2 is surjective. Then a simple arc β ⊂ B which leads from one
component of ∂B to the other can be extended by a simple arc α ⊂ A to a simple
closed curve µ ⊂ ∂X2 which is 0-homotopic in the solid torus X2 and, hence, a
meridian of X2. Since µ intersects each component of ∂A in exactly one point it
follows that A is boundary parallel, contradicting hypothesis (b). 	


15.27 Lemma. Let k1 and k be cable knots with complementsC(k1) andC(k). Assume
that k is not a torus knot and that

C(k) = X ∪ V, A = X ∩ V = ∂X ∩ ∂V,
whereX is a knot manifold, V a solid torus, andA an annulus. Let k be a (p, q)-curve
on a torus parallel to the boundary of S3 −X, |q| � 2.
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If π1C(k1) ∼= π1C(k) then there is a homotopy equivalence f : C(k1) → C(k)

such that f−1(A) is an annulus.

15.28 Remark. We do not use the fact that k1 and k are cable knots in the first part
of the proof including Claim 15.30. By Theorem 6.1 we know that k1 is not a torus
knot. The proof of Lemma 15.27 is quite long and of a technical nature. However,
some of the intermediate steps have already been done in Chapter 5. The proof of
Lemma 15.27 will be finished in 15.34.

Proof. Since C(k1) and C(k) are K(π, 1)-spaces any isomorphism π1C(k1)
∼=−→

π1C(k) is induced by a homotopy equivalence g : C(k1) → C(k), [Spanier 1966,
7.6.24], [Stöcker-Zieschang 1994, S. 459]. We may assume that g has the following
properties:

(1) g is transversal with respect to A, that is, there is a neighbourhood g−1(A)×
[−1, 1] ⊂ C(k1) of g−1(A) = g−1(A)× {0} and a neighbourhood A× [−1, 1] of A
such that g(x, t) = (g(x), t) for x ∈ g−1(A), t ∈ [−1, 1].

(2) g−1(A) is a compact 2-manifold, properly imbedded and two-sided in C(k1).
(3) If A′ is a component of g−1(A) then

ker
(
πj (A

′) g#−→ πj (C(k))
) = 0 for j = 1, 2, .

These properties can be obtained by arguments similar to those used in 5.3; see also
[Waldhausen 1968, p. 60].

Choose among all homotopy equivalences g that have the above properties one
with minimal number n of components Ai of g−1(A).

15.29 Claim. Each Ai is an annulus which separates C(k1) into a solid torus Vi and
a knot manifoldWi , and π1Ai → π1Vi is not surjective.

Proof. Since π2C(k1) = 0 it follows from (3) that π2Ai = 0; moreover, since
π1Ai → π1C(k1) is injective and g# : π1C(k1) → π1C(k) is an isomorphism,
(g|Ai)# : π1Ai → π1A is injective. This shows that π1Ai is a subgroup of Z, hence,
trivial or isomorphic to Z. Now Ai is an orientable compact connected surface and
therefore either a disk, a sphere or an annulus. We will show that Ai is an annulus.
π2Ai = 0 excludes spheres. If Ai is a disk then ∂Ai ⊂ ∂C(k1) is contractible in
C(k1). If ∂Ai is not nullhomotopic on ∂C(k1) then C(k1) is a solid torus and k1 is
the trivial knot. But then π1C(k1) ∼= Z and this implies that k is also unknotted,
contradicting the assumption that it is a (p, q)-cable knot. Therefore ∂Ai also bounds
a disk D ⊂ ∂C(k1) and D ∪ Ai is a 2-sphere that bounds a ball B in C(k1). Now
Q = C(k1)− B is homeomorphic to C(k1), g|Q : Q→ C(k) satisfies the conditions
(1)–(3), and (g|Q)−1(A) has at most (n − 1) components. This proves that there is
also a mapping g′ : C(k1)→ C(k) satisfying (1)–(3) with less components in g′−1(A)

than in g−1(A), contradicting the minimality of n.
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Thus we have proved that Ai is an annulus. Because of (3), ∂Ai is not nullhomo-
topic on ∂C(k1) and decomposes ∂C(k1) into two annuli, whileAi decomposes C(k1)

into two submanifolds Wi , Vi which are bounded by tori and, thus, are either knot
manifolds or solid tori.

If Vi and Wi are knot manifolds then, by 15.24, π1C(k1)/π1Ai = 1, where π1Ai
denotes the normal closure of π1Ai in π1C(k1), and so, since g is a homotopy equiv-
alence

π1C(k)/π1A = 1.

This implies that each 1-cycle ofC(k) is homologous to a cycle ofA, that isH1(A)→
H1(C(k)) is surjective and, hence, an isomorphism. From the exact sequence

· · · → H1(A)→H1(C(k))→ H1(C(k), A) = 0

‖� ‖�
Z Z
t �→ ±pqt

it follows that |pq| = 1, a contradiction. (Prove in Exercise E 15.4 that H1(A) →
H1(C(k)) is defined by t �→ ±pqt , where t denotes a generator of Z.)

So we may assume that Vi is a solid torus. If π1Ai → π1Vi is surjective, that
is |q| = 1, then g can be modified homotopically such that Ai disappears, i.e. we
can find a neighbourhood U of Vi in C(k1) such that U ∼= Ai × [−1, 1], Ai ×
{−1} = Vi ∩ ∂C(k1), Ai × {0} = Ai , Ai × [−1, 0] = Vi , U ∩ g−1(A) = Ai .
Then Q = C(k1)− U ∼= C(k1) and g|Q : Q → C(k) is a homotopy equivalence
satisfying (1)–(3) and having fewer than n components in g−1(A); this defines a
mapping C(k1) → C(k) with the same properties, contradicting the choice of g.
Therefore π1Ai → π1Vi is not surjective.

Wi is not a solid torus, since k1 is not a torus knot. 	


15.30 Claim. W1 ⊂ · · · ⊂ Wn, after a suitable enumeration of the annuli Ai .

Proof. It suffices to show that for any two components A1, A2 either W1 ⊂ W2 or
W2 ⊂ W1. Otherwise either (a) W2 ⊂ V1 or (b) V2 ⊂ W1.

Case (a). By 15.29, W2 is a knot manifold which can be contracted slightly in
order to be contained in the interior of the solid torus V1. By Lemma 15.9, there is
a 3-ball B such that W2 ⊂ B̊ ⊂ B ⊂ V1; hence A2 ⊂ ∂W2 is contractible in C(k1),
contradicting (3).

Case (b). Put Y = W1 ∩W2 and denote by kWi the core of S3 −Wi . Since ∂Y
consists of the two annuliA1, A2 and two parallel annuli on ∂C(k1) and since S3 does
not contain Klein bottles it follows that ∂Y is a torus, W2 = Y ∪ V1, A1 = Y ∩ V1 =
∂Y ∩ ∂V1 and π1A1 → π1V1 is not surjective. When Y is a solid torus then kW2

is a non-trivial torus knot. When Y is a knot manifold then, by Lemma 15.25, kW2

is a cable about the core kY of Y . The knot kW2 is non-trivial and parallel to each
component of ∂A1, see Lemma 15.26.



302 15 Knots, Knot Manifolds, and Knot Groups

Since A2 = V2 ∩W2 and π1A2 → π1V2 is not surjective, Lemma 15.25 implies
also thatC(k1) = V2∪W2 is the complement of an (iterated) cable knot of type (p′, q ′)
with |q ′| > 1 about kW2 . This implies for the genera that

g(k1) � (|q ′| − 1)(|p′| − 1)

2
+ |q ′| g(kW2), (4)

see 2.10. However, k1 is parallel to a component of ∂A2, by 15.26, which bounds,
together with a component of ∂A1, an annulus; hence, the knots k1 and kW2 are
equivalent, contradicting (4) since |q ′| � 2. 	


15.31 Claim. (Wn∩V1, A1, . . . , An) is homeomorphic to (A1×[1, n], A1×{1}, . . . ,
A1 × {n}).

Proof. Vi ∩ Wi+1 is bounded by four annuli, hence by a torus. This shows that
Vi ∩Wi+1 is either a knot manifold or a solid torus contained in the solid torus Vi . The
first case is impossible by Lemma 15.9, since Ai is incompressible in C(k1). Now

Vi = (Vi ∩Wi+1) ∪ Vi+1, (Vi ∩Wi+1) ∩ Vi+1 = Ai+1

where Vi , Vi+1, Vi ∩Wi+1 are solid tori and Ai+1 is incompressible. Therefore

Z ∼= π1Vi = π1(Vi ∩Wi+1) ∗π1Ai+1 π1Vi+1.

Since, by 15.29, π1Ai+1 is a proper subgroup of π1Vi+1 it follows that π1Ai+1 =
π1(Vi∩Wi+1). Since ∂Ai is parallel to ∂Ai+1 which contains the generator of π1Ai+1
it follows that π1Ai also generates π1(Vi ∩Wi+1). Moreover, Ai ∪ Ai+1 ⊂ ∂(Vi ∩
Wi+1) and Ai ∩ Ai+1 = ∅.

This means that

(Vi ∩Wi+1, Ai, Ai+1) ∼= (Ai × [i, i + 1], A1 × {i}, A1 × {i + 1}). 	


15.32 Claim. g|Ai is homotopic to a homeomorphism.

Proof. In the following commutative diagram all groups are isomorphic to Z.

H1(Ai)
ji∗ ��

(g|Ai)∗
��

H1(C(k1))

g∗∼=
��

H1(A)
j∗

�� H1(C(k))

where ji : Ai ↪→ C(k1) and j : A ↪→ C(k) are the inclusions. As g is a homotopy
equivalence, g∗ is an isomorphism.

By Claim 15.29, Ai decomposes C(k1) into a knot manifold Wi and a solid torus
Vi : C(k1) = Wi ∪ Vi , Ai = Wi ∩ Vi , and by Lemma 15.26 a component bi of ∂Ai is



C Prime Knots and their Manifolds and Groups 303

isotopic to k1. The component bi is, for suitable p′, q ′, |q ′| � 2, a (p′, q ′)-curve on
∂(S3 −Wi). For generators of the cyclic groups of the above diagram and for some
r ∈ Z we obtain

zi
� ji∗ ��

�

��

t�

g∗
��

′±|p′q ′|

zr
� �� t±r|pq|;

here we used the fact that a component of ∂A is a (p, q)-curve on ∂(S3 −X) (for the
notations, see 15.27). Sinceg∗ is an isomorphism, g∗(t ′) = t ; hence, |p′q ′| = ±r|pq|.
This implies that pq divides p′q ′.

By a deep theorem of Schubert [1953, p. 253, Satz 5], k1 determines the core kWi
and the numbers p′, q ′. Hence, since g is a homotopy equivalence, we may apply the
above argument with the roles of k1 and k interchanged and obtain that p′q ′ divides
pq; thus |r| = 1.

This implies that g|Ai : Ai → A can be deformed into a homeomorphism. Since
Ai and A are two-sided, g is homotopic to a mapping g′ such that g′|Ai : Ai → A

is a homeomorphism and g′ coincides with g outside a small regular neighbourhood
U(Ai) ∼= Ai × [0, 1] of Ai . 	


For the following, we assume that g has the property of 15.32 for all Ai .

15.33 Claim. g−1(A) = ∅. In fact, the number of components of g−1(A) is odd.

Proof. By 15.31, Vn contains a core v1 of V1. Let δ be a path in V1 from x1 ∈ A1
to v1. Then π1W1 and δv1δ

−1 generate the group π1(C(k1)) = π1(W1, x1) ∗π1(A1,x1)

π1(V1, x1). Since g is transversal with respect to A, it follows that V̊i ∩ W̊i+1 and
V̊i+1 ∩ W̊i+2 are mapped to different sides of A; hence, if the number of components
of g−1(A) is even, g maps W1 and Vn – and hence v1 – both into X or both into V .
Since g is a homotopy equivalence, hence g# an isomorphism, it follows that π1C(k) is
isomorphic to a subgroup of π1X or π1V , in fact, to π1X or π1V , respectively. In the
latter case π1C(k) is cyclic; hence, k is the trivial knot, contradicting the assumption
that k is a cable knot. In the first case π1C(k)/π1X = 1. This implies that H1(X)→
H1(C(k)) is isomorphic; hence H1(C(k),X) = 0 as follows from the exact sequence

H1(X) �� H1(C(k)) �� H1(C(k),X) �� H0(X)
∼= �� H0(C(k)).

0
��

�������

���������
0
��

�������

��������

On the other hand by the excision theorem,

Hi(C(k),X) ∼= Hi(V,A)
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and

H2(V ,A) �� H1(A) �� H1(V ) �� H1(V ,A) �� H0(A)
∼= �� H0(V );

z �−→ t±pq 0
��

�������

								

this implies H1(V ,A) ∼= Z|pq| = 0. Thus the assumption that the number of compo-
nents of g−1(A) is even was wrong. 	


15.34 Claim. The number n of components of g−1(A) is 1. (This finishes the proof
of Lemma 15.27.)

Proof. It will be shown that for n > 1 the mapping g can be homotopically deformed
to reduce the number of components of g−1(A) by 2, contradicting the minimality of
n; thus, by Claim 15.33, n = 1. The proof applies a variation of Stalling’s technique of
binding ties from [Stallings 1962] which was used in the original proof of Theorem 5.1,
but in a more general setting.

Choose x ∈ A, xi ∈ Ai for 1 � i � n such that g(xi) = x. There is a path α in
C(k1) from x1 to xn with the following properties:

(1) g(α) � 0 in C(k);

(2) i) α = α1 . . . αr where

ii) α̊j ⊂ C(k1)−
n⋃
i=1

Ai , ∂αj ∈
n⋃
i=1

Ai and

iii) αj is either a loop with some xi as basepoint or a path from xi to xi±1.

A path with these properties can be obtained as follows: Let β be a path from x1
to xn. Then [g � β] ∈ π1(C(k), x) and, since g∗ is an isomorphism, there is a loop
δ ⊂ C(k1) in the homotopy class g−1

# [g � β] ∈ π1(C(k1), xn). Then α = βδ−1 has
property (1). We can choose α transversal to g−1(A) and, since each Ai is connected,
intersecting an Ai in xi .

Assume that α is chosen such that the number r is minimal for all paths with the
properties (1) and (2). In π1C(k) = π1X ∗π1A π1V ,

1 = [g � α] = [g � α1] . . . [g � αr ].
Since g � αi and g � αi+1 are in different components X, V it follows that there is
at least one αj with [g � αj ] ∈ π1A. A loop αj from xi to xi in Vi ∩ Wi+1 with
[g � αj ] ∈ π1A can be pushed into Vi−1 ∩ Wi , contradicting the minimality of r .
Therefore αj connects xi and xi+1, for a suitable i.

By 15.31, Vi ∩Wi+1 ∼= A1 × [i, i + 1] and Ai = A1 × {i}, Ai+1 = A1 × {i + 1},
and therefore αj is homotopic to an arc β ⊂ ∂(Vi ∩Wi+1) connecting xi and xi+1. Let
γ be an arc in ∂(Vi ∩Wi+1) such that β ∪ γ is a meridian of the solid torus Vi ∩Wi+1
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D

xi+1

β

xi

γ

Ai+1

Vi ∩Wi+1

Ai

Figure 15.12

and bounds a diskD. We may assume that ∂D∩Ai and ∂D∩Ai+1 are arcs connecting
the boundary components, see Figure 15.12.

Let B3 be the closure of the complement of a regular neighbourhood of Ai ∪D ∪
Ai+1 in Vi ∩Wi+1; then B3 is a 3-ball.

In the following we keep g fixed outside of a regular neighbourhood of Vi ∩Wi+1.
Since [g � β] ∈ π1A and g � β � g � γ , g may be deformed such that g(β) ⊂ A and
g(γ ) ⊂ A. Since A is incompressible in C(k) and π2C(k) = 0, g can be altered such
thatgmapsD and also the small neighbourhood intoA, that is, g(Vi∩Wi+1−B3) ⊂ A.
Finally since π3C(k) = 0, we obtain g(B3) ⊂ A; thus g(Vi ∩ Wi+1) ⊂ A, and an
additional slight adjustment eliminates both components Ai , Ai+1 of g−1(A). 	


15.35 Lemma. Let k1 and k be (p1, q1)- and (p, q)-cable knots about the cores h1
and h where |q1|, |q| � 2, and let C(k) = C(h) ∪ V , C(h) ∩ V = ∂C(h) ∩ ∂V = A
an annulus. If π1C(k1) ∼= π1C(k) then

(a) there is a homeomorphism F : C(h1)→ C(h) such thatA1 = F−1(A) defines
a cable presentation of k1, that is

C(k1) = C(k1)− C(h1) ∪ C(h1),

C(k1)− C(h1) ∩ C(h1) = ∂C(k1)− C(h1) ∩ ∂C(h1) = A1,

and

(b) |p1| = |p| and |q1| = |q|.

Proof. We may assume that h1 and h are non-trivial, because otherwise k1 and k are
torus knots and 15.35 follows from 15.6. We have π1C(k) = π1C(h)∗π1A π1V. Since
π1A→ π1V1 is not surjective (as |q| � 2), the free product with amalgamation is not
trivial. By Lemma 15.27, there is a homotopy equivalence f : C(k1) → C(k) such
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that f−1(A) = A1 is an annulus. Then A1 decomposes C(k1) into a knot manifold
X1 and a solid torus V1:

C(k1) = X1 ∪ V1, X1 ∩ V1 = ∂X1 ∩ ∂V1 = A1.

For any basepoint a1 ∈ A1,

π1(C(k1), a1) = π1(X1, a1) ∗π1(A1,a1) π1(V1, a1).

Sincef−1(A) = A1 consists of one component only, one of the groupsf#(π1(X1, a1))

and f#(π1(V1, a1)) is contained in π1(C(h), f (a1)) and the other in π1(V , f (a1)). By
assumptionC(h) andX1 are knot manifolds,V ,V1 solid tori and f# is an isomorphism.
From the solution of the word problem in free products with amalgamated subgroups,
see [ZVC 1980, 2.3.3], it follows that

f#(π1(X1, a1)) = π1(C(h), f (a1)) and f#(π1(V1, a1)) = π1(V , f (a1)).

This implies

(1) f (X1) ⊂ C(h), f (V1) ⊂ V , and that (f |X1)# and (f |V1)# are isomorphisms
and f |X1 : X1 → C(h) and f |V1 : V1 → V are homotopy equivalences be-
cause all spaces are K(π, 1).

For the proof of (b) we note that (f |A1)# : π1A1 → π1A is also an isomorphism.
Assume thatf |X1 is homotopic to a mappingf0 : X1 → C(h) such thatf0(∂X1) ⊂

∂C(h) and f0|∂A1 = f |∂A1. Then, by [Waldhausen 1968, Theorem 6.1], see Ap-
pendix B.7, there is a homotopy ft : (X1, ∂X1) → (C(h), ∂C(h)), 0 � t � 1 such
that f1 is a homeomorphism; this proves (a).

To prove the above assumption on ∂X1 we consider B1 = ∂X1 ∩ ∂C(k1). Now
∂B1 = ∂A1. We have to show thatf |B1 : (B1, ∂B1)→ (C(h), ∂C(h)) is not essential.
Otherwise, by Lemma 15.18 there is a properly imbedded essential annulusA′ ⊂ C(h)
such that ∂A′ = ∂A. The components of ∂A are (p, q)-curves on ∂C(h) and (n,±1)-
curves on ∂C(k) for a suitable n; the last statement is a consequence of the fact that
the components of ∂A are isotopic to k.

SinceA′ is essential, C(h) is either the complement of a cable knot or of a product
knot, see Lemma 15.26. In the first case the components of ∂A′ are isotopic to the knot
h; hence they are (n′,±1)-curves on ∂C(h). In the latter case they are (±1, 0)-curves.
Both cases contradict the fact ∂A = ∂A′ and the assumption |q| � 2.

For the proof of (b), let m1 and m be meridians on the boundaries ∂V1, ∂V of
the regular neighbourhoods V1, V of h1, h. In the proof of (a) we saw that there is a
homotopy equivalence f : C(k1)→ C(k)with f (A1) = A. Let s1 be a component of
∂A1 and s = f (s1); consider s1 and s as oriented curves. Then s1 represents ±p1m1
inH1(X1) and s represents±pm inH1(C(h)). The homotopy equivalence f induces
an isomorphism f∗ : H1(X1)→ H1(C(h)) and f∗(p1m1) = pm; hence, |p1| = |p|.

By (1), (f |V1)# and (f |A1)# are isomorphisms, thusf∗ : H1(V1, A1)→ H1(V ,A)

is an isomorphism. Now H1(V1, A1) ∼= Z|q1| and H1(V ,A) ∼= Z|q| imply |q1| = |q|.
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15.36. Proof of Theorem 15.22. Assume that k0, k1, k2 are (p, q)-, (p1, q1)-, (p2, q2)-
cables about h0, h1, h2 with the same group. If hi is unknotted then ki is a torus knot
and the equivalence of k0, k1, k2 is a consequence of 15.6. Now we assume that h0, h1,
h2 are knotted. By Lemma 15.35, C(hi ) ∼= C(h0), |pi | = |p|, |qi | = |q| for i = 1, 2.

Let, for i = 0, 1, 2, an essential annulusAi decomposeC(ki ) into a knot manifold
C(hi ) and a solid torus Vi ; now the knot ki is parallel to each of the components of
∂Ai . Because of Lemma 15.35 there are homotopy equivalences

Fij : C(ki )→ C(kj ) (i = 0, 1; j = 1, 2)

such that
F̃ij = Fij |C(hi ) : (C(hi ), Ai)→ (C(hj ), Aj ))

are homeomorphisms.
It suffices to prove that F̃01, F̃12 or F̃02 = F̃12 � F̃01 can be extended to a home-

omorphism of S3, because by [Schubert 1953, p. 253] cable knots are determined by
their cores and winding numbers.

Let (mi , li )be meridian-longitude for hi , i = 0, 1, 2; assume that they are oriented
such that the components of ∂Ai are homologous to pmi + qli on ∂C(hi ). There are
numbers α, β, γ, δ, ε, η ∈ {1,−1} and x, y ∈ Z such the F̃ij |∂C(hi ) are given by the
following table.

F̃01 F̃12 F̃02

m0 �→mα
1 lx1 m1 �→m

γ
2 l

y
2 m0 �→m

αγ
2 l

αy+δx
2

l0 �→ l
β
1 l1 �→ lδ2 l0 �→ l

βδ
2

m
p
0 l

q
0 �→ (m

p
1 l

q
1 )
ε m

p
1 l

q
1 �→ (m

p
2 l

q
2 )
η m

p
0 l

q
0 �→ (m

p
2 l

q
2 )
εη;

The last row is a consequence of the fact that the F̃ij : Ai → Aj are homeomorphisms.
If some mi is mapped to m±1

j = m±1
j l0 then the homeomorphism F̃ij can be

extended to S3 and this finishes the proof. Hence, we will show that one of the
exponents x, y and αy + δx vanishes. Assume that x = 0 = y. Now

(m
p
1 l

q
1 )
ε = F̃01(m

p
0 l

q
0 ) =m

αp
1 l

βq+xp
1

�⇒ εp = αp, εq = βq + xp;
�⇒ ε = α, xp = (α − β)q.

Now p = 0 = x implies α = β, and |α| = |β| = 1 gives α = −β. Therefore
xp = 2αq and x = 2αq

p
. The same arguments for F̃12 imply that δ = −γ and

y = 2γ q
p

. Therefore

αy + δx = α 2γ q

p
− γ 2αq

p
= 0.
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D Groups of Product Knots

Next we consider problems for product knots similar to those in Part C. The situation
is in some sense simpler, as product knots have Property P, see 15.11; hence, product
knots with homeomorphic complements are of the same type. However, the groups of
two product knots of different type may be isomorphic as we have shown in 15.4. We
will prove that there are no other possibilities than those described in Example 15.4.

15.37 Lemma. Let k1 and k2 be knots with π1C(k1) ∼= π1C(k2). Then both knots are
prime or both are product knots.

Proof. Assume that k2 is a product knot. Then there is a properly embedded incom-
pressible annulus A ⊂ C(k2) such that C(k2) = X′ ∪X′′, A = X′ ∩X′′ whereX′ and
X′′ are knot manifolds. Since πnC(ki ) = 0 for i = 1, 2, n � 2 there is a homotopy
equivalence f : C(k1)→ C(k2). By Claim 15.29, see Remark 15.28, we may assume
that the components of f−1(A) are incompressible, properly embedded annuli which
are not boundary parallel in C(k1). Now f−1(A) = ∅ is impossible, since, other-
wise, f#(π1C(k1)) ⊂ π1X

′ or f#(π1C(k1)) ⊂ π1X
′′, contradicting the assumption

that π1X
′ and π1X

′′ are proper subgroups of π1C(k2) and that f# is an isomorphism.
By Lemma 15.26, C(k1) is the complement of a product knot or a cable knot. In the
first case the assertion is proved. In the latter case, π1C(k2) = π1C(k1) is the group
of a cable knot and, thus, applying the arguments of 15.29 to C(k2) and the inverse
homotopy equivalence, it follows that C(k2) is also the complement of a cable knot.
Since products knots have Property P (Theorem 15.11), we conclude that k2 is a cable
knot, contradicting the fact that cable knots are prime, see [Schubert 1953, p. 250,
Satz 4]. 	


15.38 Theorem ([Feustel-Whitten 1978]). Let k = k1 # · · · # km and h = h1 # · · · # hn

be knots in S3, where the ki and hj are prime and n > 1. If π1(S
3 − k) ∼= π1(S

3 − h)

then k is a product knot, m = n and there is a permutation σ such that kj and hσ(j)

are of the same type.

Proof. By Lemma 15.37, k is also a product knot, i.e. m > 1. Let A be a properly
embedded annulus in C(h) = X′ ∪ X′′, A = X′ ∩ X′′ where X′ and X′′ are knot
manifolds. As in the proof above we conclude that there is a homotopy equivalence
f : C(k) → C(h) such that f−1(A) consists of disjoint incompressible, properly
embedded essential annuli. Let A1 be a component of f−1(A). In the following
commutative diagram all groups are isomorphic to Z.

H1(A1)
j1∗ ��

(f |A1)∗
��

H1(C(k1))

f∗
��

H1(A)
j∗

�� H1(C(k));
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where j1 : A1 → C(k), j : A→ C(h) are the inclusions. As f is a homotopy equiva-
lence, f∗ is an isomorphism. Since C(k) and C(h) are complements of product knots
the components of ∂A1 and ∂A bound disks in S3 − C(k) and S3 − C(h), respec-
tively, see Lemma 15.24. The boundaries of these disks are generators of H1(C(k))

and H1(C(h)); hence, j1∗ and j∗ are isomorphisms. This proves that (f |A1)∗ is an
isomorphism and, consequently, that f |A1 : A1 → A is a homotopy equivalence ho-
motopic to a homeomorphism. Since f is transversal with respect to A, see (1) in the
proof of 15.27, there is a neighbourhood A × [0, 1) ⊂ C(h) such that the homotopy
f |A1 can be extended to a homotopic deformation of f which is constant outside
of A × [0, 1). By the same arguments as in the proof of 15.34 one concludes that
in addition f can be chosen such that A1 = f−1(A) is connected. The annulus A1
decomposesC(k) into two subspaces Y ′, Y ′′ of S3 bounded by tori, which are mapped
to X′ and X′′, respectively: f (Y ′) ⊂ X′, f (Y ′′) ⊂ X′′. It follows that (f |Y ′)# and
(f |Y ′′)# are isomorphisms. This proves that Y ′ and Y ′′ are knot manifolds. Therefore
k = k′ # k′′ and h = h′ # h′′ where k′ and h′ have isomorphic groups. This isomor-
phism maps meridional elements to meridional elements, since they are realized by
the components of ∂A1 and ∂A. The same is true for k′′ and h′′.

Assume that h′ and, hence, k′ are prime knots. Then ∂(C(k′)) = B1 ∪ A1 where
B1 is an annulus. If f (B1) is essential then there is a properly embedded essential
annulus inC(k′). One has ∂B1 = ∂A1 andf (∂B1) = ∂A. Now ∂A bounds meridional
disks in S3 − C(h) and therefore also in S3 − C(h′); this contradicts the assumption
that h′ is prime. Therefore f (B1) is not essential and thus f |B1 is homotopic to
a mapping with image in ∂C(h′) – by a homotopy constant on ∂B1 = ∂A1. This
homotopy can be extended to a homotopy of f which is constant on A1. Finally one
obtains a homotopy equivalence (Y ′, ∂Y ′) → (X′, ∂X′) which preserves meridians.
By Corollary 6.5 of [Waldhausen 1968], Y ′ ∼= X′, where the homeomorphism maps
meridians to meridians and, thus, can be extended to S3, see 3.15. This proves that k′
and h′ are of the same knot type.

Now the theorem follows from the uniqueness of the prime factor decomposition
of knots. 	


In fact, we have proved more than claimed in Theorem 15.38:

15.39 Proposition. Under the assumptions of Theorem 15.38, there is a system of
pairwise disjoint, properly embedded annuli A1, . . . , An−1 in C(k) and a homeo-
morphism f : C(k) → C(h) such that {A1, . . . , An−1} decomposes C(k) into the
knot manifolds C(k1), . . . , C(kn) and {f (A1), . . . , f (An−1)} decomposes C(h) into
C(hσ(1)), . . . , C(hσ(n)).

Since product knots have the Property P, the system of homologous meridians
(m(k1), . . . ,m(kn)) is mapped, for a fixed ε ∈ {1,−1}, onto the system of homologous
meridians (m(hσ(1))ε, . . . ,m(hσ(n))ε). 	
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15.40 Proposition ([Simon 1980′]). If G is the group of a knot with n prime factors
(n � 2), then G is the group of at most 2n−1 knots of mutually different knot types.
Moreover, when the n prime factors are of mutually different knot types and when each
of them is non-invertible and non-amphicheiral, then G is the group of exactly 2n−1

knots of mutually different types and of 2n−1 knot manifolds.

Proof. By Theorem 3.15, an oriented knot k is determined up to isotopy by the
peripheral system (G,m, l) and we use this system now to denote the knot. Clearly
(proof as E 15.5, see also 3.19),

−k = (G,m, l−1), k
∗ = (G,m−1, l), −k

∗ = (G,m−1, l−1),

and
k1 # k2 = (G1 ∗m1=m2 G2,m1, l1l2).

Let k = k1 # · · · # kn, n � 2. By 15.11, k has Property P; hence, on ∂C(k) the
meridian is uniquely determined up to isotopy and reversing the orientation. It is

(G,m, l) = (G1,m1, l1) # · · · # (Gn,mn, ln) = (G1 ∗ · · · ∗Gn,
m1=···=mn

m1, l1l2 . . . ln).

Suppose h is a knot whose group is isomorphic to G. Now the above remark and
15.39 imply that

h = (G1,m
ε
1, l

δ1
1 ) # · · · # (Gn,m

ε
n, l

δn
n ) = (G1 ∗ · · · ∗Gn

m1=···=mn

,mε
1, l

δ1
1 . . . lδnn ).

Corresponding to the choices of ε, δ1, . . . , δn there are 2n+1 choices for h. Therefore
h represents one of, possible, 2n+1 oriented isotopy types and 1

4 2n+1 knot types.
Clearly, this number is attained for knots with the properties mentioned in the

second assertion of the proposition. 	


If prime knots are indeed determined by their groups, then the hypothesis n � 2
in 15.40 is unnecessary.

E History and Sources

The theorem of F. Waldhausen [1967] on sufficiently large irreducible 3-manifolds,
see Appendix B.7, implies that the peripheral group system determines the knot com-
plement. Then the question arises to what extend the knot group characterizes the knot
type. The difficulty of this problem becomes obvious by the example of J.H.C. White-
head [1937] of different links with homeomorphic complements, see 15.1. First results
were obtained by D. Noga [1967] who proved Property P for product knots, and by
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R.H. Bing and J.M. Martin [1971] who showed it for the four-knot, twist knots, prod-
uct knots again and for satellites. The 2-bridge knots have Property P by [Takahaski
1981].

A first final answer was given by C. Gordon and J. Luecke [1989] proving that the
knot complement determines the knot type.

TheAnnulus and the Torus Theorem [1974] of C.D. Feustel [1972, 1976], [Cannon-
Feustel 1976] gave strong tools to approach the problem of to what extend the group
determines the complement. The results of J. Simon [1970, 1973, 1976′, 1980′],
W. Whitten [1974], [Feustel-Whitten 1978], K. Johannson [1979], Whitten [1985],
Culler-Shalen [1985], and C.McA. Gordon and J. Luecke combine to give a positive
answer to the question: Is the complement of a prime knot determined by its group?

The status of Property P is – according to [Culler-Gordon-Luecke-Shalen 1987] –
that there are at most two possibilities to obtain a homotopy sphere by Dehn-fillings
of a knot complement.

F Exercises

E 15.1. Use Lemma 2.11 to prove that h−1(l) = ±l̃ satisfies equation (6) in 15.15.

E 15.2. Let M be a 3-manifold, V ⊂ M a solid torus, ∂V ∩ M̊ = A an annulus such
that the core of A is a longitude of V . Then A is boundary parallel.

E 15.3. Show that both descriptions in 15.20 define the same knot.

E 15.4. Let k be a (p, q)-cable knot and letA be an annulus, defining k as cable. Then
Z ∼= H1(A)→ H1(C(k)) ∼= Z is defined by t �→ ±pqt , where t is the generator of
Z.

E 15.5. Let k = (G,m, l) and ki = (Gi ,mi , li ). Prove that −k = (G,m, l−1),
k∗ = (G,m−1, l),−k∗ = (G,m−1, l−1), and k1 # k2 = (G1 ∗m1=m2 G2,m1, l1l2).



Chapter 16

The 2-variable skein polynomial

In 12.18 we mentioned the Conway polynomial as an invariant closely connected
with the Alexander polynomial. It can be computed by using the skein relations,
Figure 12.19, and hence is called a skein invariant. Shortly after the discovery of the
famous Jones polynomial several authors independently contributed to a new invariant
for oriented knots and links, a Laurent polynomial P(z, v) in two variables which
also is a skein invariant and which comprises both, the Jones and the Alexander–
Conway polynomials. It has become known as the HOMFLY polynomial after its
main contributors: Hoste, Ocneano, Millet, Floyd, Lickorish, and Yetter.

A Construction of a trace function on a Hecke algebra

In the following the HOMFLY polynomial is established via representations of the
braid groups Bn into a Hecke algebra using Markov’s theorem, see 10.22. We follow
Jones [1987] and Morton [1988].

16.1 On the symmetric group. The symmetric group Sn admits a presentation

Sn = 〈 τ1, . . . , τn−1 | τ 2
i = 1 for 1 ≤ i ≤ n− 1,

τiτj = τj τi for 1 ≤ i < j − 1 ≤ n− 2,

τiτi+1τi = τi+1τiτi+1 for 1 ≤ i ≤ n− 2 〉,
where τi is the transposition (i, i + 1). We write the group operation in Sn from left
to right; for example, the product of the transpositions (1, 2) × (2, 3) = (1, 2)(2, 3)
is the cycle (1, 3, 2).

We identify Sn−1 with the subgroup of Sn of permutations leaving n fixed.

Every permutation π ∈ Sn can be written as a word in the generators τi in
many ways; we choose a unique representative bπ(τi) for each π in the following. If
π(n) = j we put

bπ(τi) = (j, j + 1)(j + 1, j + 2) . . . (n− 1, n) · bπ ′(τi) with π ′ ∈ Sn−1,

see Figure 16.1. The words Wn = {bπ(τi) | π ∈ Sn} satisfy the “Schreier” condition
which means that, if bπ(τi) = w(τi) τk , thenw(τi) = bπ ·τ−1

k
(τi), and bid is the empty

word. Furthermore the bπ(τi) are of minimal length, and the generator τn−1 occurs at
most once in each bπ(τi) ∈ Wn; both assertions are evident in Figure 16.1. Figure 16.2
shows for the cycle (1 3 2 5) the representative bπ(τi) = τ2τ3τ4τ3τ1τ2τ1.
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1 2 n

Figure 16.1 Figure 16.2

(n− 1)-braid

. . .. . .

π−1(n)

16.2 Definition. The following presentation

Ŝn = 〈 τ̂1, τ̂2, . . . , τ̂n−1 | τ̂i τ̂j = τ̂j τ̂i for 1 ≤ i < j − 1 ≤ n− 2,

τ̂i τ̂i+1τ̂i = τ̂i+1τ̂i τ̂i+1 for 1 ≤ i ≤ n− 2 〉

defines a semigroup Ŝn.

The elements of Ŝn are the classes of words defined by the following equivalence
relation =̂: two words w(τ̂i) and w′(τ̂i) are equivalent, w(τ̂i) =̂ w′(τ̂i), if and only if
they are connected by a chain of substitutions

τ̂i τ̂j �→ τ̂j τ̂i , τ̂i τ̂i+1τ̂i �→ τ̂i+1τ̂i τ̂i+1

employing the relations of 16.2. (The building of inverses is not permitted.)
There is a canonical homomorphism κ : Ŝn → Sn, κ(τ̂i) = τi ; we write b̂π =

bπ(τ̂i) and Ŵn = {b̂π | π ∈ Sn}.
Two cases occur in forming a product b̂π · τ̂k: either b̂π τ̂k =̂ b̂�, the class of b̂π τ̂k

contains a representative b̂� ∈ Ŵn (case α), or not (case β). Case α occurs when the
strings crossing at τk do not cross in bπ (Figure 16.3), � = πτk . In case β they do,
and Figure 16.4 shows

b̂π τ̂k =̂ b̂� τ̂ 2
k , � τk = π.

We note down the result in

16.3 Lemma.

b̂π · τ̂k =̂
{
b̂�, � = πτk, case α,

b̂�τ̂
2
k , � τk = π, case β.

(1)
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bπ

τk

(k − 1)-braid =̂ b�

Figure 16.3

bπ

τk

(k − 1)- =̂ b�

τ2
k

braid

Figure 16.4

16.4 Construction of a Hecke algebra. Next we construct a special algebra, a so-
called Hecke algebra. We define a free module Mn of rank n! over a unitary com-
mutative ring R # 1 using the n! words of Wn. We replace the generators τ̂i by ci ,
1 ≤ i ≤ n − 1 and write w(ci) = w′(ci) iff ŵ(τ̂i ) =̂ ŵ′(τ̂i). Let Mn be the free
R-module with basis Wn(ci) = {bπ(ci) | π ∈ Sn}. Note that Wn(ci) # cj = bτj (ci),
1 ≤ j ≤ n− 1. We introduce an associative product inMn which transformsMn into
an R-algebra Hn(z) of rank n!.

16.5 Definition. We put c2
k = zck + 1, 1 ≤ k ≤ n− 1 for some fixed element z ∈ R.

Then (1) takes the form

bπ(ci) · ck =
bπτk (ci), case α,

z bπ (ci)+ b�(ci), � τk = π, case β.
(2)

By iteration, (2) defines a product for the elements of the basis Wn(ci) and, thus,
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a product on Mn by distributivity. It remains to prove associativity for the product on
Wn(ci).

16.6 Lemma. The product defined in 16.5 is associative on Wn(ci).

Proof. Given a wordw(ci)we apply the rule (2) from left to right (product algorithm)
to obtain an element ∑

j

γj bπj (ci) = w(ci) ∈ Mn, γi ∈ R.

One has bπ(ci) = bπ(ci) by the Schreier property. We prove

(b1b2) b3 = b1(b2b3), bj ∈ Wn(ci),

by induction on |b1|+ |b2|+ |b3|where |bi | denotes the length of bi . We may assume
|bi | ≥ 1. Applying the product algorithm on the left side let case β occur for the first
time for some ck in b2. (It cannot happen in b1 since b1 = b1.) We have

b2 = b′2b′′2 and b1b
′
2 =

∑
γj bπj (ci), |bπj | < |b1| + |b′2|. (3)

We stop the product algorithm at this point and get:

(b1b2) b3 =
(∑

γj bπj (ci) · b′′2
)
b3.

On the right side we have

b1
(
(b′2b′′2)b3

) = b1
(
b′2(b′′2b3)

)
by induction. Applying the algorithm and stopping at the same ck we obtain:

b1(b2b3) =
(∑

γj bπj (ci)
)
(b′′2b3).

Using the distributivity and the induction hypothesis, compare (3), we get the desired
equality.

If the case β occurs for the first time in b3 at ck when applying the algorithm, then
we have b1b2 = b1b2. Since the strings meeting in τk have not met in b1(τi) · b2(τi),
they have not met in b2(τi). So case β cannot have occurred when the algorithm is
applied to b2b3 at an earlier time. Now the same argument applies as in the first case.
If case β does not occur at all, equality is trivial. 	


The module Mn has become an R-algebra of rank n!, a so called Hecke algebra;
we denote it by Hn(z).
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16.7 Proposition. Let R be a commutative unitary ring, and z ∈ R. An algebra
generated by elements {ci | 1 ≤ i ≤ n− 1} and defined by the relations

cici+1ci = ci+1ci ci+1, 1 ≤ i ≤ n− 2,

cicj = cj ci, 1 ≤ i < j − 1 ≤ n− 2,

c2
i = zci + 1, 1 ≤ i ≤ n− 1

is isomorphic to the Hecke algebra Hn(z).

The proof follows from the construction above. 	


16.8 Remark. One has (cj − z)cj = c2
j − zcj = 1; hence, c−1

j = cj − z.

We choose R = Z[z±1, v±1] to be the 2-variable ring of Laurent polynomials and
denote by Hn(z, v) = Hn the Hecke algebra with respect to R = Z[z±1, v±1]. Next
we define a representation of the braid group Bn:

�v : ,Bn→ Hn, �v(σj ) = vcj , 1 ≤ j ≤ n− 1,

see 10.3. There are natural inclusions

Hn−1 ↪→ Hn, Wn−1(ci) ↪→ Wn(ci),

and we define

H =
∞⋃
n=1

Hn, W(ci) =
∞⋃
n=1

Wn(ci), H1 = R.

For the following definition we use temporarily the ring R = Z[z±1, v±1, T ] adding
a further variable T .

16.9 Definition (Trace). A function tr : Hn→ Z[z±1, v±1, T ] is called a trace on H
if it satisfies the following conditions for all n ∈ N.

(α) tr
( ∑
π∈Sn

απbπ

)
=
∑
π∈Sn

απ tr(bπ ) where απ ∈ Z[z±1, v±1] (linearity);

(β) tr(ba) = tr(ab) for a, b ∈ Hn;
(γ ) tr(1) = 1;
(δ) tr(xcn−1) = T · tr(x) for x ∈ Hn−1.

16.10 Lemma. There is a unique trace on H .
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Proof. It suffices to show that a trace on Hn can be uniquely extended to a trace on
Hn+1. From (β) and (δ) we get

tr(xcny) = tr(yxcn) = T · tr(yx) = T · tr(xy) for x, y ∈ Hn.
The basic elements of Hn+1 which do not belong to Hn are of the form xcny with
x, y ∈ Hn; this follows from the remark in 16.1 that τn appears only once in bπ . So
we must define the extension of the trace by

tr(xcny) = T · tr(xy) for xcny ∈ Wn+1(ci) \Wn(ci).

We have to show that the linear extension of this definition to Hn+1 is in fact a
trace. Condition (α) is the linearity which is valid by definition. We first prove
tr(xcny) = T · tr(xy) for arbitrary x, y ∈ Hn. An element ξ ∈ Wn has the form
ξ = cj cj+1 . . . cn−1 · ξ ′, ξ ′ ∈ Wn−1(ci). Now

ξ cn y = cj cj+1 . . . cn−1 ξ
′ cny = cj cj+1 . . . cn−1cn ξ

′ y

by the braid relation ξ ′cn = cnξ ′. Put ξ ′y =∑
βjηj , ηj ∈ Wn; by the linearity (α):

tr(ξcny) =
∑

βj tr(c1 . . . cnηj ) =
∑

βj · T · tr(c1 . . . cn−1ηj )

since c1 . . . cnηj is in the basis of Hn+1. It follows

tr(ξcny) = T · tr(c1 . . . cn−1ξ
′y) = T · tr(ξy).

Since x is a linear combination of elements like ξ from above, we obtain by (α)

tr(xcny) = T · tr(xy) for x, y ∈ Hn.
This implies (δ).

It remains to prove property (β). A basis element bn+1 ∈ Wn+1(ci) is of the form
bn+1 = xcny, x = c1 . . . cn−1, y ∈ Hn. For k < n we have

tr(ck · x cn y) = T · tr(ck x y) = T · tr(x y ck) = tr(x cn y · ck)
by induction. To prove T (bn+1 · b′n+1) = T (b′n+1 · bn+1) – which implies (β) by (α)
– we now need only to prove T (bn+1 · cn) = T (cn · bn+1).

Case 1: If bn = x cn y with x, y ∈ Hn−1 then bncn = cnbn.

Case 2: If x = acn−1b with a, b, y ∈ Hn−1 then

tr(cn · acn−1bcny) = tr(acncn−1cnby) = tr(acn−1cncn−1by)

= T · tr(ac2
n−1by) = T · tr (a(zcn−1 + 1)by)

= z · T · tr(acn−1by)+ T · tr(aby) = (zT 2 + T )tr(aby);
tr(acn−1bcny · cn) = tr(acn−1bc

2
ny) = tr (acn−1b(zcn + 1)y)

= ztr(acn−1bcny)+ tr(acn−1by)

= z · T · tr(acn−1by)+ T · tr(aby) = (zT 2 + T )tr(aby).
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Case 3: The case x = ccn−1d with x, c, d ∈ Hn−1 can be dealt with analogously.

Case 4: Let x = acn−1b, y = dcn−1e with a, b, d, e ∈ Hn−1. Then

tr(cn · acn−1b · cn · dcn−1e) = T · tr(ac2
n−1b · dcn−1e)

= T · z · tr(acn−1b · dcn−1e)+ T 2 · tr(abde);
tr(acn−1b · cn · dcn−1e · cn) = T · tr(acn−1bdc

2
n−1e)

= T · z · tr(acn−1bdcn−1e)+ T 2 · tr(abde). 	

We deduce from c−1

n = cn − z

16.11 Remark. tr(xc−1
n ) = tr(xcn)− z · tr(x) = (T − z) · tr(x), ∀x ∈ Hn.

B The HOMFLY polynomial

Consider the representation

�v : ,Bn→ Hn, �v(σi) �→ v ci,

where the Hecke algebra Hn is understood over Z[z±1, v±1, T ]. We put

Pzn = kn · tr (�v(zn)) , zn ∈ Bn,

for some kn ∈ Z[z±1, v±1, T ] which is still to be determined. Property (β) in Defini-
tion 16.9 of the trace implies that Pzn ∈ Z[z±1, v±1, T ] is invariant under conjugation
of zn in Bn, and is, hence, a polynomial Pẑn assigned to the closed braid ẑn. To turn
Pzn ∈ Z[z±1, v±1, T ] to an invariant of the link represented by ẑn, we have to check
the effect of a Markov move zn �→ znσ

±1
n on ẑn, see 10.21, 10.22. We postulate:

kn · tr(�v(zn)) = kn+1tr(�v(znσn)).

It follows kn = kn+1 · v · T since

tr(�v(znσn)) = v · tr(�v(zn · cn)) = v · T · tr(�v(zn)).
Another condition follows in the second case:

kn+1tr(�v(znσ
−1
n )) = kn+1v

−1tr(�v(zn)c
−1
n ) = kn+1v

−1(T − z) · tr(�v(zn))
(see Remark 16.7); hence kn = kn+1 · v−1(T − z). We solve v−1(T − v) = vT in the
quotient field of Z[z±1, v±1, T ] by T = zv−1

v−1−v and define inductively

kn+1 = kn · 1

v · T = kn · z
−1(v−1 − v), k1 = 1 �⇒ kn = (v−1 − v)n−1

zn−1 .
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16.12 Remark. The extension Hn ⊂ Hn+1 introduces the factor T = zv−1

v−1−v , but the

denominator v−1 − v is eliminated by the factor kn+1k
−1
n = z−1(v−1 − v) such that

Pzn(z, v) is indeed a Laurent polynomial in z and v.

From the above considerations we obtain the first part of the following

16.13 Theorem and Definition. The Laurent polynomial

Pzn(z, v) =
(v−1 − v)n−1

zn−1 · tr(�(zn))

associated to a braid zn ∈ Zn is an invariant of the oriented link l represented by the
closed braid ẑn.

Pl(z, v) = Pzn(z, v) is called the 2-variable skein polynomial or HOMFLY poly-
nomial of the oriented link l.

The trivial braid with n strings represents the trivial link with n strings; its poly-

nomial is (v
−1−v)n−1

zn−1 .

To prove the last statement observe that �(zn) = 1 for the trivial braid zn, the
empty word in σi . As a special case we have Pzn(z, v) = 1 for ẑn the trivial knot. 	


16.14 Definition. For an oriented link k the smallest number n for which k is isotopic
to some ẑn is called the braid index β(k) = n of k.

The following proposition gives a lower bound for the braid index β(k) in terms
of the HOMFLY polynomial Pk(z, v) of k. Write

Pk(z, v) = am(z)vm + · · · + an(z)vn, aj (z) ∈ Z[z, z−1],
m ≤ n, m, n ∈ Z, and am = 0 = an.

By Spv(Pk(z, v)) = n−m we denote the “v-span” of Pk(z, v).

16.15 Proposition.

β(k) ≥ 1+ 1

2
Spv (Pk(z, v)) .

Proof. Suppose that k is isotopic to ẑn. From Definition 16.9 (δ) it follows by induction
that the trace of an element ofHn is a polynomial in T of degree at most n−1. Hence,
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for zn =∏n−1
j=0 σ

εij
ij

we obtain

�v(zn) = vk ·
n−1∑
j=0

c
εj
ij

with k =
∑

εj

�⇒ tr (�v(zn)) = vk ·
n−1∑
j=0

aj (z)T
j where T j = (v−1 − v)j−1

zj−1

�⇒ Pzn(z, v) =
(v−1 − v)n−1

zn−1 · tr (�v(zn))

= vk ·
n−1∑
j=0

aj (z) · z−n+j−1(v−1 − v)n−2j−1,

Spv(Pzn) ≤ 2(n− 1). 	

16.16 Example. 61, 72, 74 have braid index 4.

Let k+ be a diagram of an oriented link. We focus on a crossing and denote by k−
resp. k0 the projections which are altered in the way depicted in Figure 16.5, but are
unchanged otherwise.

16.17 Proposition. Let k+, k−, k0 be link projections related as in Figure 16.5. Then
there is the skein relation

v−1Pk+ − vPk− = zPk0 .

There exists an algorithm to calculate Pk for an arbitrary link k given by a projection.

k+ k− k0

Figure 16.5

Proof. The braiding process which turns an arbitrary link projection into that of a closed
braid as described in 2.14 can be executed in such a way that a neighbourhood of any
chosen crossing point of the projection is kept fixed. Furthermore, the representing
braid zn can suitably be chosen such that k+ = znσi , k− = znσ

−1
i and k0 = zn. Now,

v−1Pk+ − vPk− = v−1kntr
(
�v(znσi)

)− vkntr
(
�v(znσ

−1
i )

)
= knztr

(
�v(zn)

) = zPk0



B The HOMFLY polynomial 321

since

v−1�v(znσi)− v�v(znσ−1
i ) = �v(zn)(v−1�v(σi)− v�v(σ−1

i ))

and

�v(zn)(ci − c−1
i ) = �v(zn) · z. 	


16.18 Remark. The skein relation permits to calculate each of the polynomials Pk+ ,
Pk− , Pk0 from the remaining two. By changing overcrossings into undercrossings or
vice versa any link projection can be turned into the projection of an unlink. This
implies that the skein relation supplies an algorithm for the computation of Pk. The
process is illustrate in Figure 16.6: each vertex of the “skein-tree” (Figure 16.6 (b))
represents a projection; the root at the top represents the projection of k, the terminal
points represent unlinks. Starting with the polynomials of these one can work one’s
way upwards to compute Pk. The procedure is of exponential time complexity.

.

.
..

. ..
.

.

. .

.

. .

.

.
.

.(a)

(b)

. .k∓

k±

k0

k

Figure 16.6

16.19 Proposition. Let −k resp. k∗ denote the inverted resp. mirrored knot, and #
resp. 
 the product resp. the disjoint union. Then:

(a) Pk(z, v) = P−k(z, v);
(b) Pk(z, v) = Pk∗(z,−v−1)

(c) Pk1#k2(z, v) = Pk1(z, v) · Pk2(z, v);

(d) Pk1
k2(z, v) = z−1(v−1 − v)Pk1(z, v) · Pk2(z, v).
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Proof. (a) Changing k into −k allows to use the same skein-tree.
(b) If k is replaced by k∗, we can still use the same skein-tree, and at each vertex

the associated projection is also replaced by its mirror image. The skein relation

v−1Pk+(z, v)− v Pk−(z, v) = z Pk0(z, v)

remains valid if v is changed into −v−1:

−v Pk+(z,−v−1)+ v−1Pk−(z,−v−1) = z Pk0(z,−v−1),

but

Pk+(z,−v−1) = Pk∗−(z, v), Pk−(z,−v−1) = Pk∗+(z, v), Pk0(z,−v−1) = Pk∗0 (z, v),

and z−(n−1) · (v−1 − v)n−1 is invariant under the substitution v �→ −v−1.
The formulae (c) and (d) for the product knot and a split union easily follow by

similar arguments. 	


16.20 Example. We calculate the HOMFLY polynomials of the trefoil and its mirror
image; using this invariant they are shown to be different, a result first obtained in
[Dehn 1914]. Let us call b(3, 1) = 3+1 (see Figure 12.6) the right-handed trefoil and
b(3,−1) = 3−1 the left-handed one. Figure 16.7 describes the skein tree starting with

Figure 16.7

k = k+ = 3+1 . The crossing where the skein relation is applied is distinguished by a
circle. One has:

v−1Pk+ − v Pk− = v−1Pk − v = z Pk0

and
v−1Pk0+ − v Pk0− = v−1Pk0 − v = z Pk00;

hence
Pk0 = v2Pk�� + vz.
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Using Pk�� = z−1(v−1 − v) from 16.15 the first equation gives:

P3+1
(z, v) = −v4 + 2v2 + z2v2.

By Proposition 16.19 we have

P3−1
(z, v) = −v−4 + 2v−2 + z2v−2,

and, hence, 3+1 = 3−1 . (For an exercise do a calculation ofP3−1
(z, v) using a skein-tree.)

We give a second computation of P3+1
(z, v) using the definition in 16.13:

P3+1
(z, v) = z−1(v−1 − v) tr

(
�(σ 3

1 )
)
.

Here n = 2, and 3+1 = b(3, 1) = σ̂ 3
1 , see Figure 12.6. We have �(σ 3

1 ) = v3 · c3
1.

Applying c2
1 = vzc1 + 1 twice we get c3

1 = (z2 + 1)c1 + z. By 16.9 (α)

P3+1
(z, v) = z−1(v−1 − v) · v3((z2 + 1)tr(c1)+ z

) = v2z2 + 2v2 − v4,

using (δ): tr(c1) = T = zv−1(v−1 − v).

The HOMFLY polynomial P(z, v) contains as special cases the Alexander–Con-
way polynomial and the Jones polynomial.

16.21 Theorem.

P
(
t

1
2 − t− 1

2 , 1
) = �(t) = Alexander–Conway polynomial

P
(
t

1
2 − t− 1

2 , t
) = ∇(t) = Jones polynomial.

Proof. In the first case we obtain the skein relation of the Alexander–Conway poly-
nomial,

�k+(t)−�k−(t) = �k0(t)

for P
(
(t

1
2 − t− 1

2 ), 1
)
, and since both sides are equal to 1 for the trivial knot, equality

must hold. In the second case we obtain the skein relation

t−1∇k+
(
t

1
2
)+ t−1∇k−

(
t

1
2
) = (

t
1
2 − t− 1

2
)∇k0

(
t

1
2
)

of the Jones polynomial ∇(t).

16.22 Remark. For a one component link (knot), ∇(t 1
2
)

is in fact a polynomial in t .
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C History and Sources

The discovery of a new knot polynomial by V.F.R. Jones in 1985 ([Jones 1985, 1987])
which can distinguish mirror images of knots had the makings of a sensation. The
immediate success in proving long-standing conjectures of Tait as an application added
to its fame. In the following many authors (Hoste, Ocneano, Millet, Floyd, Lickorish,
Yetter, and Conway, Kauffman, Prytycki, Traczyk etc.) combined to study new and
old (Alexander-) polynomials under the view of skein theory; as a result the 2-variable
skein polynomial (HOMFLY) was established which comprises both, old and new
knot polynomials.

D Exercises

E 16.1. Prove Proposition 16.19 using the Definition 16.13 of P(z, v).

E 16.2. Compute the HOMFLY polynomial for the Borromean link, see Example 9.19
(b) and Figure 9.2.

E 16.3. Prove that 61, 72, 74, 76, 77 are the only knots with less than eight crossings
whose braid index exceeds 3.
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Algebraic Theorems

A.1 Theorem. LetQ be a n×n skew symmetric matrix (Q = −QT ) over the integers
Z. Then there is an integral unimodular matrix L such that

LTQL =



0 a1

−a1 0

0 a2

−a2 0
. . .

0 as

−as 0

0
. . .

0


with a1|a2| . . . |as .

Proof. Let M denote the module of 2n-columns with integral coefficients: M ∼= Z2n.
Every x1 ∈M defines a principal ideal

{xT1 Qy | y ∈M} = (a1) ⊂ Z.

We may choose a1 > 0 ifQ = 0. So there is a vector y1 ∈M such that xT1 Qy1 = a1;
hence, ηT1 Qx1 = −a1. If follows that a1 also generates the ideal defined by y1. Let
x1 be chosen in such a way that a1 > 0 is minimal.

Put
M1 = {u | xT1 Qu = y

T
1 Qu = 0}.

We prove that
M = Zx1 ⊕ Zy1 ⊕M1;

in particular, M1 ∼= Z2n−2.
Consider z ∈M and define α, β ∈ Z by

x
T
1 Qz = βa1, y

T
1 Qz = αa1.

Then

x
T
1 Q(z− βy1 − αx1) = βa1 − βa1 − 0 = 0

y
T
1 Q(z− βy1 − αx1) = αa1 − 0− αa1 = 0;
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note thatQT = −Q implies that xT Qx = 0. Now z− βy1− αx1 ∈M1 and x1 and y1
generate a module isomorphic to Z2. From

x
T
1 Q(ξx1 + ηy1) = ηa1, y

T
1 Q(ξx1 + ηy1) = −ξa1

it follows that ξx1+ ηy1 ∈M1 implies that ξ = η = 0. Thus M = Zx1⊕Zy1⊕M1.
The skew-symmetric form Q induces on M1 a skew-symmetric form Q′. As an

induction hypothesis we may assume that there is a basis x2, y2, . . . , xn, yn of M1
such that Q′ is represented by a matrix as desired.

To prove 1 � a1|a2| . . . |as , we may assume by induction 1 � a2|a3| . . . |as already
to be true. If 1 � d = gcd(a1, a2) and d = ba1 + ca2 then

(bx1 + cx2)
T Q(y1 + y2) = ba1 + ca2 = d.

Hence, by the minimality of a1: d = a1. 	


A.2 Theorem ([Jones 1950]). Let Qn = (qik) be a symmetric n × n matrix over R,
and p(Qn) the number of its positive, q(Qn) the number of its negative eigenvalues,
then σ(Qn) = p(Qn) − q(Qn) is called the signature of Qn. There is a sequence
of principal minors D0 = 1, D1,D2, . . . such that Di is a principal minor of Di+1
and no two consecutive Di,Di+1 are both singular for i < rank Qn. For any such
(admissible) sequence

σ(Qn) =
n−1∑
i=0

sign(DiDi+1). (1)

Proof. The rank r of Qn is the number of non-vanishing eigenvalues λi of Qn; it is,
at the same time, the maximal index i for which a non-singular principal minor exists
– this follows from the fact that Qn is equivalent to a diagonal matrix containing the
eigenvalues λi in its diagonal. We may, therefore, assume r = n and Di = λ1 . . . λi ,
Dn = 0.

The proof is by induction on n. Assume first that we have chosen a sequence
D0,D1, . . . with a non-singular minor Dn−1. (It will be admissible by induction.)
We may suppose thatDn−1 = detQn−1 whereQn−1 is the submatrix ofQn consisting
of its first n− 1 rows and columns. Now sign (Dn−1Dn) = sign λn, and (1) follows
by induction.

Suppose we choose a sequence with Dn−1 = 0. Then Dn−2 = 0, and, since we
have Dn = 0, we obtain an admissible sequence for Qn. There is a transformation
BTn QnBn = Q′n with

Bn =


�
�
�
�
�
�
�
�

0

Bn−1
0
�������

0 0 1

 , Bn−1 ∈ SO(n− 1,R)
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which takes Qn−1 into diagonal form

Q′n−1 =



λ1

. . .

λk

0
. . .

0


, λi = 0.

By a further transformation

CTn Q
′
nCn = Q′′n, Cn =


�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
t1

Ek

������������
tk

0

������������

Bn−k−1

0

1


,

ti ∈ R, Bn−k−1 ∈ SO(n− k − 1,R)

one can achieve the following form

Q′′n =



λ1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

0

����������
λk 0

0 0

����������
0 α

0 0 0 α β


.

Since Dn = 0 it follows that k = n − 2. Thus there exists an admissible sequence,
and we can use the induction hypothesis for n− 2. Now

σ

(
0 α

α β

)
= 0, and σ(Qn) = σ


λ1 0

. . .

0 λn−2

 .
The same result is obtained by (1) if Dn−1 = 0. 	
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Let � be a finite oriented graph with vertices {Pi | 1 � i � n} and oriented edges
{uλij }, such that Pi is the initial point and Pj the terminal point of uλij . (For the basic
terminology see [Berge 1970]). By a rooted tree (root P1) we mean a subgraph of
n− 1 edges such that every point Pk is terminal point of a path with initial point P1.

Let aij denote the number of edges with initial point Pi and terminal point Pj .

A.3 Theorem (Bott–Mayberry). Let � be a finite oriented graph without loops
(aii = 0). The principal minor Hii of the graph matrix

H(�) =



(
∑
k =1

ak1) −a12 −a13 −a1n

−a21 (
∑
k =2

ak2) −a23 −a2n

−an1 −an2 (
∑
k =n

akn)


is equal to the number of rooted trees with root Pi .

Proof. The principal (n− 1)× (n− 1)-minorHii is the determinant of the submatrix
obtained from H(�) by omitting the i-th row and column. We need a

Lemma. A graph C (without loops) with n vertices and n− 1 edges is a rooted tree,
root Pi , if Hii(C) = 1; otherwise Hii(C) = 0.

Proof of the lemma. Suppose C is a rooted tree with root P1. One has
∑
k =j akj = 1

for j = 1, because there is just one edge in C with terminal point Pj . If the indexing
of vertices is chosen in such a way that indices increase along any path in C, thenH11
has the form

H11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗ ∗
0 1

∗
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

To prove the converse it suffices to show thatC is connected, ifH11 = 0. Assuming
this, use the fact that every point Pj , j = 1, must be a terminal point of C, otherwise
the j -th column would consist of zeroes, contradicting H11 = 0. There is, therefore,
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an unoriented spanning tree in the (unoriented) graph C. The graph C coincides with
this tree, since a spanning tree has n−1 edges. It must be a tree, rooted in P1, because
every vertex Pj , j = 1, is a terminal point.

The rest is proved by induction on n. We assume that C is not connected. Then
we may arrange the indexing such that H11 is of the form:

H11 =
 B ′ 0

0 B ′′

 , detB ′ = 0, detB ′′ = 0.

By the induction hypothesis we know that the subgraphs �′ resp. �′′ each containing
P1 and the vertices associated with the rows of B ′ resp. B ′′ – together with all edges
of C joining these points – are P1-rooted trees. This contradicts the assumption that
C is not connected. 	


We return to the proof of the main theorem. One may considerH11 as a multilinear
function in the n− 1 column vectors aj , j = 2, . . . , n of the matrix (aij ), i = j . This
is true, since the diagonal elements

∑
k =j akj are themselves linear functions. Let ei

denote a column vector with an i-th coordinate equal to one, and the other coordinates
equal to zero. Then

H11(a2, . . . , an) =
∑

1�k2,...,kn�n
ak22 . . . aknn H11(ek2 , . . . , ekn) (1)

with

ai =
n∑

ki=1

akii eki .

By the lemmaH11(ek2 , . . . , ekn) = 1 if and only if the n−1 edges uk22, uk33, . . . , uknn
form a P1-rooted tree. Any such tree is to be counted ak22 . . . aknn times. 	


Two corollaries follow easily.

A.4 Corollary. Let � be an unoriented finite graph without loops, and let bij the
number of edges joining Pi and Pj . A principal minor Hii of

∑
k =1 bk1 −b12 −b13 . . .

−b21
∑
k =2 bk2 . . .

...
...

...
∑
k =n bkn


gives the number of spanning trees of �, independent of i.
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Proof. Replace every unoriented edge of� by a pair of edges with opposite directions,
and apply Theorem A.3. 	


A.5 Corollary. Let � be a finite oriented loopless graph with a valuation f : {uλij } →
{1,−1} on edges. Then the principal minor Hii of (f (aij )), f (aij ) = ∑

λ f (u
λ
ij ),

satisfies the following equation:

Hii =
∑

f (Tr(i))

where the sum is to be taken over all Pi-rooted trees Tr(i), and where

f (Tr(i)) =
∏

uλkj∈Tr(i)

f (uλkj ).

Proof. The proof of Theorem A.3 applies; it is only necessary to replace aij by f (aij ).
	


For other proofs and generalizations see [Bott-Mayberry 1954]. We add a well-
known theorem without giving a proof. For a proof see [Bourbaki, Algèbre Chap. 7].

A.6 Theorem. Let M be a finitely generated module over a principal ideal domain
R. Then

M ∼= Mε1 ⊕ · · · ⊕Mεr ⊕Mβ

whereMβ is a freemodule of rank β andMεi = 〈 a | εia 〉 is a cyclic module generated
by an element a and defined by εia = 0, εi ∈ R. The εi are not units of R, different
from zero, and form a chain of divisors εi | εi+1, 1 � i � r . They are called the
elementary divisors ofM; the rank β of the free part ofM is called the Betti number
ofM .

The Betti numbers β and β ′ of finitely generated modulesM andM ′ coincide and
their elementary divisors are pairwise associated, ε′i = αiεi , αi a unit of R, if and
only ifM andM ′ are isomorphic. 	


Remark. IfM is afinitely presented module over an abelian ringAwith unit element,
the theorem is not true. Nevertheless the elementary ideals of its presentation matrix
are invariants of M .

In the special caseR = Z the theorem applies to finitely generated abelian groups.
The elementary divisors form a chain T1|T2| . . . |Tr of positive integers > 1, the orders
of the cyclic summands. Tr is called the first, Tr−1 the second torsion number, etc. of
the abelian group.
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Theorems of 3-dimensional Topology

This section contains a collection of theorems in the field of 3-dimensional manifolds
which have been frequently used in this book. In each case a source is given where a
proof may be found.

B.1 Theorem (Alexander). Let S2 be a semilinearly embedded 2-sphere in S3. There
is a semilinear homeomorphism h : S3 → S3 mapping S2 onto the boundary ∂[σ 3] of
a 3-simplex σ 3. 	


[Alexander 1924′], [Graeub 1950].

B.2 Theorem (Alexander). Let T be a semilinearly embedded torus in S3. Then
S3 − T consists of two components X1 and X2, X̄1 ∪ X̄2 = S3, X̄1 ∩ X̄2 = T , and at
least one of the subcomplexes X̄1, X̄2 is a torus. 	


[Alexander 1924′], [Schubert 1953].

B.3 Theorem (Seifert–van Kampen). (a)LetX bea connectedpolyhedronandX1, X2
connected subpolyhedra with X = X1 ∪ X2 and X1 ∩ X2 a (non-empty) connected
subpolyhedron. Suppose

π1(X1, P ) = 〈 S1, . . . , Sn | R1, . . . , Rm 〉,
π1(X2, P ) = 〈 T1, . . . , Tk | N1, . . . , Nl 〉

with respect to a base point P ∈ X1 ∩X2. A set {vj | 1 � j � r} of generating loops
of π1(X2 ∩ X2, P ) determines sets {V1j (Si)} and {V2j (Ti)} respectively of elements
in π1(X1, P ) or π1(X2, P ) respectively. Then

π1(X, P )= 〈S1,. . ., Sn,T1,. . .,Tk | R1,. . . ,Rm,N1,. . ., Nl,V11V
−1
21 ,. . .,V1rV

−1
2r 〉.

(b) LetX1, X2 be disjoint connected homeomorphic subpolyhedra of a connected
polyhedronX, and denote by X̄ = X/h the polyhedron which results from identifying
X1 and X2 via the homeomorphism h : X1 → X2. For a base point P ∈ X1 and
its image P̄ under the identification a presentation of π1(X̄; P̄ ) is obtained from one
of π1(X;P) by adding a generator S and the defining relations STiS−1 = h#(Ti),
1 � i � r where {Ti | 1 � i � r} generate π1(X1;P). 	


For a proof see [ZVC 1980, 2.8.2]. A topological version of B.3 (a) is valid when
X, X1,, X2, X1 ∩X2, are path-connected and X1, X2 are open, [Crowell-Fox 1963],
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[Massay 1967], [Stöcker-Zieschang 1988, 5.3.11]. A topological version of B.3 (b)
may be obtained if X. X1, X2 are path-connected, X1, X2 are closed, and if the
identifying homeomorphism can be extended to a collaring.

B.4 Theorem (Generalized Dehn’s lemma). Let h : S(0, r)→ M be a simplicial im-
mersion of an orientable compact surface S(0, r) of genus 0 with r boundary com-
ponents into the 3-manifold M with no singularities on the boundary ∂h(S(0, r)) =
{C1, C2, . . . , Cr}, Ci a closed curve. Suppose that the normal closure 〈C1, . . . , Cr 〉
in π1(M) is contained in the subgroup π̂1(M) ⊂ π1(M) of orientation preserving
paths. Then there is a non-singular disk S(0, q) embedded in M with ∂S(0, q) a
non-vacuous subset of {C1, . . . , Cr}. 	


[Shapiro-Whitehead 1958], [Hempel 1976], [Rolfsen 1976], [Jaco 1977].

Remark. Theorem B.4 was proved by Shapiro and Whitehead. The original lemma
of Dehn with r = 1 (= q) was formulated by M. Dehn in 1910 but proved only in
1957 by Papakyriakopoulos [1957′].

B.5 Theorem (Generalized loop theorem). Let M be a 3-manifold and let B be a
component of its boundary. If there are elements in ker(π1B → π1M) which are not
contained in a given normal subgroupN of π1(B) then there is a simple loop C on B
such that C bounds a non-singular disk inM and [C] ∈ N. 	


[Papakyriakopoulos 1957], [Stallings 1959], [Rolfsen 1967], [Hempel 1976],
[Jaco 1977].

Remark. The proof is given in the second reference. The original version of the loop
theorem (N = 1) was first formulated and proved by Papakyriakopoulos. Another
generalization analogous to the Shapiro–Whitehead version of Dehn’s Lemma was
proved in [Waldhausen 1967].

B.6 Theorem (Sphere theorem). Let M be an orientable 3-manifold and N a π1M-
invariant subgroup of π2M . (N is π1M-invariant if the operation of π1M on π2M

maps N onto itself.) Then there is an embedding g : S2 → M such that [g] ∈ N. 	


[Papakyriakopoulos 1957], [Hempel 1976], [Jaco 1977].

This triad of Papakyriakopoulos theorems started a new era in 3-dimensional topol-
ogy. The next impulse came from W. Haken and F. Waldhausen:

A surface F is properly embedded in a 3-manifold M if ∂F = F ∩ ∂M . A 2-
sphere (F = S2) is called incompressible in M , if it does not bound a 3-ball in M ,
and a surface F = S2 is called incompressible, if there is no disk D ⊂ M with
D ∩ F = ∂D, and ∂D not contractible in F . A manifold is sufficiently large when it
contains a properly embedded 2-sided incompressible surface.
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B.7 Theorem (Waldhausen). Let M , N be sufficiently large irreducible 3-manifolds
not containing 2-sided projective planes. If there is an isomorphism

f# : (π1M,π1∂M)→ (π1N,π1∂N)

between the peripheral group systems, then there is a boundary preserving map
f : (M, ∂M)→ (N, ∂N) inducing f#. Either f is homotopic to a homeomorphism
ofM toN orM is a twisted I -bundle over a closed surface andN is a product bundle
over a homeomorphic surface. 	


[Waldhausen 1967], [Hempel 1976].

Remark. The Waldhausen theorem states for a large class of manifolds what has long
been known of surfaces: there is a natural isomorphism between the mapping class
group ofM and the group of automorphisms of π1(M)modulo inner automorphisms.

Evidently Theorem B.7 applies to knot complements C = M . A Seifert surface
of minimal genus is a properly embedded incompressible surface in C.

B.8 Theorem (Smith conjecture). A simplicial orientation preserving map h : S3 →
S3 of period q is conjugate to a rotation. 	


A conference on the Smith conjecture was held in 1979 at Columbia University in
New York, the proceedings of which are recorded in [Morgan-Bass 1984] and contain
a proof. The case q = 2 is due to Waldhausen, a proof is given in [Waldhausen 1969].
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Tables

The following Table I lists certain invariants of knots up to ten crossings. The iden-
tification (first column) follows [Rolfsen 1976] but takes into account that there is
a duplication (10161 = 10162) in his table which was detected by Perko. For each
crossing number alternating knots are grouped in front, a star indicates the first non-
alternating knot in each order.

The first column (�1(t),�2(t)) contains the Alexander polynomials , factorized
into irreducible polynomials. The polynomials �k(t), k > 2, are always trivial. (See
Chapter 8.) Alexander polynomials of links or of knots with eleven crossings are to
be found in [Rolfsen 1976], [Conway 1970] and [Perko 1980].

The second column (T ) gives the torsion numbers of the first homology group
H1(C̄2) of the two-fold branched covering of the knot. The numbers are Tr, Tr−1, . . .

where T1|T2| . . . |Tr is the chain of elementary divisors of H1(Ĉ2). (See Chapter 9.)
For torsion numbers of cyclic coverings of order n > 2, see [Metha 1980]. Torsion
numbers for n = 3 (knots with less than ten crossings) are listed in [Reidemeister
1932].

The column (σ ) records the signature of the knot. (See Chapter 13.)
The column (q) states the periods of the knot; a question-mark indicates that a

certain period is possible but has not been verified. (See Chapter 14 D.)
The column headed α, β contains Schubert’s notation of the knot as a two-bridged

knot. (The first number α always coincides with Tr .) Where no entry appears the
bridge number is three. (See Chapter 12.)

The column (s) contains complete information about symmetries in Conway’s
notation. (See Chapter 2.)

amphicheiral non-amphicheiral

invertible f r

non-invertible i n

It has been checked that up to ten crossings the genus of a knot always equals half
the degree of its Alexander polynomial.

Acknowledgement: The Alexander polynomials, the signature and most of the
periods have been computed by U. Lüdicke. Periods up to nine crossings were taken
from [Murasugi 1980]. Symmetries and 2-bridge numbers (α, β) were copied from
[Conway 1967] and compared with other results on amphicheirality and invertibility
[Hartley 1980]. Periods and symmetries have been corrected and brought up to date
using [Kawauchi 1996].
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Table I

k �1(t) �2(t) T σ q α, β s

31 t2 − t + 1 3 2 2, 3 3, 1 r

41 t2 − 3t + 1 5 0 2 5, 2 f

51 t4 − t3 + t2 − t + 1 5 4 2, 5 5, 1 r

52 2t2 − 3t + 2 7 2 2 7, 3 r

61 2t2 − 5t + 2 9 0 2 9, 4 r

62 t4 − 3t3 + 3t2 − 3t + 1 11 2 2 11, 4 r

63 t4 − 3t3 + 5t2 − 3t + 1 13 0 2 13, 5 f

71 t6 − t5 + t4 − t3 + t2 − t + 1 7 6 2, 7 7, 1 r

72 3t2 − 5t + 3 11 2 2 11, 5 r

73 2t4 − 3t3 + 3t2 − 3t + 2 13 4 2 13, 4 r

74 4t2 − 7t + 4 15 2 2 15, 4 r

75 2t4 − 4t3 + 5t2 − 4t + 2 17 4 2 17, 7 r

76 t4 − 5t3 + 7t2 − 5t + 1 19 2 2 19, 7 r

77 t4 − 5t3 + 9t2 − 5t + 1 21 0 2 21, 8 r

81 3t2 − 7t + 3 13 0 2 13, 6 r

82 t6 − 3t5 + 3t4 − 3t3 + 3t2 − 3t + 1 17 4 2 17, 6 r

83 4t2 − 9t + 4 17 0 2 17, 4 f

84 2t4 − 5t3 + 5t2 − 5t + 2 19 2 2 19, 5 r

85 (t2 − t + 1)(−t4 + 2t3 − t2 + 2t − 1) 21 4 2 r

86 2t4 − 6t3 + 7t2 − 6t + 2 23 2 2 23, 10 r

87 t6 − 3t5 + 5t4 − 5t3 + 5t2 − 3t + 1 23 2 2 23, 9 r

88 2t4 − 6t3 + 9t2 − 6t + 2 25 0 2 25, 9 r

89 t6 − 3t5 + 5t4 − 7t3 + 5t2 − 3t + 1 25 0 2 25, 7 f

810 (t2 − t + 1)3 27 2 r

811 (2t2 − 5t + 2)(t2 − t + 1) 27 2 2 27, 10 r

812 t4 − 7t3 + 13t2 − 7t + 1 29 0 2 29, 12 f

813 2t4 − 7t3 + 11t2 − 7t + 2 29 0 2 29, 11 r

814 2t4 − 8t3 + 11t2 − 8t + 2 31 2 2 31, 12 r

815 (t2 − t + 1)(3t2 − 5t + 3) 33 4 2 r

816 t6 − 4t5 + 8t4 − 9t3 + 8t2 − 4t + 1 35 2 r

817 t6 − 4t5 + 8t4 − 11t3 + 8t2 − 4t + 1 37 0 i

818 (t2 − t + 1)(t2 − 3t + 1), t2 − t + 1 15,3 0 2, 4 f

819 (t2 − t + 1)(t4 − t2 + 1) 3 6 2,3,4 r

820 (t2 − t + 1) 9 0 r

821 (t2 − t + 1)(t2 − 3t + 1) 15 2 2 r

91 (t2 − t + 1)(t6 − t3 + 1) 9 8 2,3,9 9, 1 r

92 4t2 − 7t + 4 15 2 2 15, 7 r

93 2t6 − 3t5 + 3t4 − 3t3 + 3t2 − 3t + 2 19 6 2 19, 6 r

94 3t4 − 5t3 + 5t2 − 5t + 3 21 4 2 21, 5 r

95 6t2 − 11t + 6 23 2 2 23, 6 r

96 (t2 − t + 1)(−2t4 + 2t3 − t2 + 2t − 2) 27 6 2 27, 5 r

97 3t4 − 7t3 + 9t2 − 7t + 3 29 4 2 29, 13 r
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k �1(t) �2(t) T σ q α, β s

98 2t4 − 8t3 + 11t2 − 8t + 2 31 2 2 31, 11 r

99 2t6 − 4t5 + 6t4 − 7t3 + 6t2 − 4t + 2 31 6 2 31, 9 r

910 4t4 − 8t3 + 9t2 − 8t + 4 33 4 2 33, 10 r

911 t6 − 5t5 + 7t4 − 7t3 + 7t2 − 5t + 1 33 4 2 33, 14 r

912 (t2 − 3t + 1)(2t2 − 3t + 2) 35 2 2 35, 13 r

913 4t4 − 9t3 + 11t2 − 9t + 4 37 4 2 37, 10 r

914 2t4 − 9t3 + 15t2 − 9t + 2 37 0 2 37, 14 r

915 2t4 − 10t3 + 15t2 − 10t + 2 39 2 2 39, 16 r

916 (t2 − t + 1)(−2t4 + 3t3 − 3t2 + 3t − 2) 39 6 2 r

917 t6 − 5t5 + 9t4 − 9t3 + 9t2 − 5t + 1 39 2 2 39, 14 r

918 4t4 − 10t3 + 13t2 − 10t + 4 41 4 2 41, 17 r

919 2t4 − 10t3 + 17t2 − 10t + 2 41 0 2 41, 16 r

920 t6 − 5t5 + 9t4 − 11t3 + 9t2 − 5t + 1 41 4 2 41, 15 r

921 2t4 − 11t3 + 17t2 − 11t + 2 43 2 2 43, 18 r

922 t6 − 5t5 + 10t4 − 11t3 + 10t2 − 5t + 1 43 2 r

923 (t2 − t + 1)(4t2 − 7t + 4) 47 2 2 47, 18 r

924 (t2 − t + 1)2(t2 − 3t + 1) 45 0 r

925 3t4 − 12t3 + 17t2 − 12t + 3 47 2 r

926 t6 − 5t5 + 11t4 − 13t3 + 11t2 − 5t + 1 45 4 2 45, 19 r

927 t6 − 5t5 + 11t4 − 15t3 + 11t2 − 5t + 1 49 0 2 49, 19 r

928 (t2 − t + 1)(−t4 + 4t3 − 7t2 + 4t − 1) 51 2 2 r

929 (t2 − t + 1)(−t4 + 4t3 − 7t2 + 4t − 1) 51 2 r

930 t6 − 5t5 + 12t4 − 17t3 + 12t2 − 5t + 1 53 0 r

931 t6 − 5t5 + 13t4 − 17t3 + 13t2 − 5t + 1 55 2 2 55, 21 r

932 t6 − 6t5 + 14t4 − 17t3 + 14t2 − 6t + 1 59 2 n

933 t6 − 6t5 + 14t4 − 19t3 + 14t2 − 6t + 1 61 0 n

934 t6 − 6t5 + 16t4 − 23t3 + 16t2 − 6t + 1 69 0 r

935 7t2 − 13t + 7 9,3 2 2, 3 r

936 t6 − 5t5 + 8t4 − 9t3 + 8t2 − 5t + 1 37 4 r

937 (t2 − 3t + 1)(2t2 − 5t + 2) 15,3 0 2 r

938 (t2 − t + 1)(5t2 − 9t + 5) 57 4 r

939 (t2 − 3t + 1)(3t2 − 5t + 3) 55 2 r

940 (t2 − t + 1)(t2 − 3t + 1)2 t2 − 3t + 1 15,5 2 2, 3 r

941 3t4 − 12t3 + 19t2 − 12t + 3 7,7 0 3 r

942 t4 − 2t3 + t2 − 2t + 1 7 2 r

943 t6 − 3t5 + 2t4 − t3 + 2t2 − 3t + 1 13 4 r

944 t4 − 4t3 + 7t2 − 4t + 1 17 0 r

945 t4 − 6t3 + 9t2 − 6t + 1 23 2 r

946 2t2 − 5t + 2 3,3 0 2 r

947 t6 − 4t5 + 6t4 − 5t3 + 6t2 − 4t + 1 9,3 2 3 r

948 t4 − 7t3 + 11t2 − 7t + 1 9,3 2 2 r

949 3t4 − 6t3 + 7t2 − 6t + 3 5,5 4 3 r

101 4t2 − 91+ 4 17 0 2 17, 8 r

102 t8 − 3t7 + 3t6 − 3t5 + 3t4 − 3t3 + 3t2 − 3t + 1 23 6 2 23, 8 r
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k �1(t) �2(t) T σ q α, β s

103 6t2 − 13t + 6 25 0 2, 3 25, 6 r

104 3t4 − 7t3 + 7t2 − 7t + 3 27 2 2 27, 7 r

105 (t2 − t + 1)(t6 − 2t5 + 2t4 − t3 + 2t2 − 2t + 1) 33 4 2 33, 13 r

106 2t6 − 6t5 + 7t4 − 7t3 + 7t2 − 6t + 2 37 4 2 37, 16 r

107 3t4 − 11t3 + 15t2 − 11t + 3 43 2 2 43, 16 r

108 2t6 − 5t5 + 5t4 − 5t3 + 5t2 − 5t + 2 29 4 2 29, 6 r

109 (t2 − t + 1)(t6 − 2t5 + 2t4 − 3t3 + 2t2 − 2t + 1) 39 2 2 39, 11 r

1010 3t4 − 11t3 + 17t2 − 11t + 3 45 0 2 45, 17 r

1011 4t4 − 11t3 + 13t2 − 11t + 4 43 2 2 43, 13 r

1012 2t6 − 6t5 + 10t4 − 11t3 + 10t2 − 6t + 2 47 2 2 47, 17 r

1013 2t4 − 13t3 + 23t2 − 13t + 2 53 0 2 53, 22 r

1014 2t6 − 8t5 + 12t4 − 13t3 + 12t2 − 8t + 2 57 4 2 57, 22 r

1015 2t6 − 6t5 + 9t4 − 9t3 + 9t2 − 6t + 2 43 2 2 43, 19 r

1016 4t4 − 12t3 + 15t2 − 12t + 4 47 2 2 47, 14 r

1017 t8 − 3t7 + 5t6 − 7t5 + 9t4 − 7t3 + 5t2 − 3t + 1 41 0 2 41, 9 f

1018 4t4 − 14t3 + 19t2 − 14t + 4 55 2 2 55, 23 r

1019 2t6 − 7t5 + 11t4 − 11t3 + 11t2 − 7t + 2 51 2 2 51, 14 r

1020 3t4 − 9t3 + 11t2 − 9t + 3 35 2 2, 35, 16 r

1021 (2t2 − 5t + 2)(−t4 + t3 − t2 + t − 1) 45 4 2 45, 16 r

1022 2t6 − 6t5 + 10t4 − 13t3 + 10t2 − 6t + 2 49 0 2 49, 13 r

1023 2t6 − 7t5 − 13t4 − 15t3 + 13t2 − 7t + 2 59 2 2 59, 23 r

1024 4t4 − 14t3 + 19t2 − 14t + 4 55 2 2 55, 24 r

1025 2t6 − 8t5 + 14t4 − 17t3 + 14t2 − 8t + 2 65 4 2 65, 24 r

1026 2t6 − 7t5 + 13t4 − 17t3 + 13t2 − 7t + 2 61 0 2 61, 17 r

1027 2t6 − 8t5 + 16t4 − 19t3 + 16t2 − 8t + 2 71 2 2 71, 27 r

1028 4t4 − 13t3 + 19t2 − 13t + 4 53 0 2 53, 19 r

1029 t6 − 7t5 + 15t4 − 17t3 + 15t2 − 7t + 1 63 2 2 63, 26 r

1030 4t4 − 17t3 + 25t2 − 17t + 4 67 2 2 67, 26 r

1031 4t4 − 14t3 + 21t2 − 14t + 4 57 0 2 57, 25 r

1032 (t2 − t + 1)(−2t4 + 6t3 − 7t2 + 6t − 2) 69 0 2 69, 29 r

1033 4t4 − 16t3 + 25t2 − 16t + 4 65 0 2 65, 18 f

1034 3t4 − 9t3 + 13t2 − 9t + 3 37 0 2 37, 13 r

1035 2t4 − 12t3 + 21t2 − 12t + 2 49 0 2 49, 20 r

1036 3t4 − 13t3 + 19t2 − 13t + 3 51 2 2 51, 20 r

1037 4t4 − 13t3 + 19t2 − 13t + 4 53 0 2 53, 23 f

1038 4t4 − 15t3 + 21t2 − 15t + 4 59 2 2 59, 25 r

1039 2t6 − 8t5 + 13t4 − 15t3 + 13t2 − 8t + 2 61 4 2 61, 22 r

1040 (t2 − t + 1)(−2t4 + 6t3 − 9t2 + 6t − 2) 75 2 2 75, 29 r

1041 t6 − 7t5 + 17t4 − 21t3 + 17t2 − 7t + 1 71 2 2 71, 26 r

1042 t6 − 7t5 + 19t4 − 27t3 + 19t2 − 7t + 1 81 0 2 81, 31 r

1043 t6 − 7t5 + 17t4 − 23t3 + 17t2 − 7t + 1 73 0 2 73, 27 f

1044 t6 − 7t5 + 19t4 − 25t3 + 19t2 − 7t + 1 79 2 2 79, 30 r

1045 t6 − 7t5 + 21t4 − 31t3 + 21t2 − 7t + 1 89 0 2 89, 34 f

1046 t8 − 3t7 + 46− 5t5 + 5t4 − 5t3 + 4t2 − 3t + 1 31 6 r
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k �1(t) �2(t) T σ q α, β s

1047 t8 − 3t7 + 6t6 − 7t5 + 7t4 − 7t3 + 6t2 − 3t + 1 41 4 r

1048 t8 − 3t7 + 6t6 − 9t5 + 11t4 − 9t3 + 6t2 − 3t + 1 49 0 r

1049 3t6 − 8t5 + 12t4 − 13t3 + 12t2 − 8t + 3 59 6 r

1050 2t6 − 7t5 + 11t4 − 13t3 + 11t2 − 7t + 2 53 4 r

1051 2t6 − 7t5 + 15t4 − 19t3 + 15t2 − 7t + 2 67 2 r

1052 2t6 − 7t5 + 13t4 − 15t3 + 13t2 − 7t + 2 59 2 r

1053 6t4 − 18t3 + 25t2 − 181+ 6 73 4 r

1054 2t6 − 6t5 + 10t4 − 11t3 + 10, 2− 6t + 2 47 2 r

1055 5t4 − 15t3 + 21t2 − 15t + 5 61 4 r

1056 2t6 − 8t5 + 14t4 − 17t3 + 14t2 − 8t + 2 65 4 r

1057 2t6 − 8t5 + 18t4 − 23t3 + 18t2 − 8t + 2 79 2 r

1058 (t2 − 3t + 1)(3t2 − 7t + 3) 65 0 2 r

1059 (t2 − t + 1)(12− 3t + 1)2 75 2 r

1060 (t2 − 3t + 1)(−t4 + 4t3 − 7t2 + 4t − 1) 85 0 2 r

1061 (t2 − t + 1)(−2t4 + 3t3 − t2 + 3t − 2) 33 4 2 r

1062 (t2 − t + 1)2(t4 − t3 + t2 − t + 1) 45 4 r

1063 (t2 − t + 1)(5t2 − 9t + 5) 57 4 2 r

1064 (t2 − t + 1)(t6 − 2t5 + 3t4 − 5t3 + 3t2 − 2t + 1) 51 2 2 r

1065 (t2 − t + 1)2(−2t2 + 3t − 2) 63 2 r

1066 (12− t + 1)(−3t4 + 6t3 − 7t2 + 6t − 3) 75 6 2 r

1067 (2t2 − 3t + 2)(2t2 − 5t + 2) 63 2 2 n

1068 4t4 − 14t3 + 21t2 − 14t + 4 57 0 2 r

1069 t6 − 7t5 + 21t4 − 29t3 + 21t2 − 7t + 1 87 2 2 r

1070 t6 − 7t5 + 16t4 − 19t3 + 16t2 − 7t + 1 67 2 r

1071 t6 − 7t5 + 18, 4− 25t3 + 18t2 − 7t + 1 77 0 r

1072 2t6 − 9t5 + 16t4 − 19t3 + 16t2 − 9t + 2 73 4 r

1073 t6 − 7t5 + 20t4 − 27t3 + 20t2 − 7t + 1 83 2 r

1074 (2t2 − 3t + 2)(2t2 − 5t + 2) 21,3 2 2 r

1075 t6 − 7t5 + 19, 4− 27t3 + 19t2 − 7t + 1 27,3 0 2 r

1076 (12− t + 1)(−2t4 + 5t3 − 5t2 + 5t − 2) 57 4 2 r

1077 (t2 − t + 1)2(−2t2 + 3t − 2) 63 2 r

1078 (t2 − t + 1)(−t4 + 6t3 − 9t2 + 6t − 1) 69 4 2 r

1079 t8 − 3t7 + 7t6 − 12t5 + 15t4 − 12t3 + 7t2 − 3t + 1 61 0 i

1080 3t6 − 9t5 + 15t4 − 17t3 + 15t2 − 9t + 3 71 6 n

1081 t6 − 8t5 + 20t4 − 27t3 + 20t2 − 8t + 1 85 0

1082 (t2 − t + 1)2(t4 − 2t3 + t2 − 2t + 1) 63 2 n

1083 2t6 − 9t5 + 19t4 − 25t3 + 19t2 − 9t + 2 83 2 n

1084 (t2 − t + 1)(−2t4 + 7t3 − 11t2 + 7t − 2) 87 2 n

1085 (t2 − t + 1)(t6 − 3t5 + 4t4 − 3t3 + 4t2 − 3t + 1) 57 4 n

1086 2t6 − 9t5 + 19t4 − 23t3 + 19t2 − 9t + 2 85 0 n

1087 (t2 − t + 1)2(−2t2 + 5t − 2) 81 0 n

1088 t6 − 8t5 + 24t4 − 35t3 + 24t2 − 8t + 1 101 0 i

1089 t6 − 8t5 + 24t4 − 33t3 + 24t2 − 8t + 1 99 2 r

1090 2t6 − 8t5 + 17t4 − 23t3 + 17t2 − 8t + 2 77 0 n
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k �1(t) �2(t) T σ q α, β s

1091 t8 − 4t7 + 9t6 − 14t5 + 17t4 − 14t3 + 9t2 − 4t + 1 73 0 n

1092 2t6 − 10t5 + 20t4 − 25t3 + 20t2 − 10t + 2 89 n

1093 2t6 − 8t5 + 15t4 − 17t3 + 15t2 − 8t + 2 67 n

1094 t8 − 4t7 + 9t6 − 14t5 + 15t4 − 14t3 + 9t2 − 4t + 1 71 n

1095 (2t2 − 3t + 2)(−t4 + 3t3 − 5t2 + 3t − 1) 91 n

1096 t6 − 7t5 + 22t4 − 33t3 + 22t2 − 7t + 1 93 0 r

1097 5t4 − 22t3 + 33t2 − 22t + 5 87 r

1098 (t2 − t + 1)2(−2t2 + 5t − 2), (t2 − t + 1) 27,3 4 2 n

1099 (t2 − t + 1)4 (t2 − t + 1)2 9,9 0 f

10100 (t4 − t3 + t2 − t + 1)(t4 − 3t3 + 5t2 − 3t + 1) 65 4 r

10101 7t2 − 21t3 + 29t2 − 21t + 7 85 4 r

10102 2t6 − 8t5 + 16t4 − 21t3 + 16t2 − 8t + 2 73 0 n

10103 (t2 − t + 1)(−2t4 + 6t3 − 9t2 + 6t − 2) 15,5 2 r

10104 t8 − 4t7 + 9t6 − 15t5 + 19t4 − 15t3 + 9t2 − 4t + 1 77 0 r

10105 t6 − 8t5 + 22t4 − 29t3 + 22t2 − 8t + 1 91 2 r

10106 (t2 − t + 1)(t6 − 3t5 + 5t4 − 7t3 + 5t2 − 3t + 1) 75 2 n

10107 t6 − 8t5 + 22t4 − 31t3 + 22t2 − 8t + 1 93 0 n

10108 2t6 − 8t5 + 14t4 − 15t3 + 14t2 − 8t + 2 63 2 r

10109 t8 − 4t7 + 10t6 − 17t5 + 21t4 − 17t3 + 10t2 − 4t + 1 85 0 i

10110 t6 − 8t5 + 20t4 − 25t3 + 20t2 − 81+ 1 83 2 n

10111 (2t2 − 3t + 2)(−t4 + 3t3 − 3t2 + 3t − 1) 77 4 r

10112 (t2 − t + 1)(16− 4t5 + 6t4 − 7t3 + 6t2 − 4t + 1) 87 2 r

10113 (t2 − t + 1)(−2t4 + 9t3 − 15t2 + 9t − 2) 111 2 r

10114 (t2 − t + 1)(−2t4 + 8t3 − 11t2 + 8t − 2) 93 0 r

10115 t6 − 9t5 + 26t4 − 37t3 + 26t2 − 9t + 1 109 0 i

10116 t8 − 5t7 + 12t6 − 19t5 + 21t4 − 19t3 + 12t2 − 5t + 1 95 2 r

10117 2t6 − 10t5 + 24t4 − 31t3 + 24t2 − 10t + 2 103 2 n

10118 t8 − 5t7 + 12t6 − 19t5 + 23t4 − 19t3 + 12t2 − 5t + 1 97 0 i

10119 2t6 − 10t5 + 23t4 − 31t3 + 23t2 − l0t + 2 101 0 n

10120 (2t2 − 3t + 2)(4t2 − 7t + 4) 105 4 2 r

10121 2t6 − 11t5 + 27t4 − 35t3 + 27t2 − 11t + 2 115 2 r

10122 (t2 − t + 1)(t2 − 3t + 1)(−2t2 + 3t − 2) 105 0 2 r

10123 (t4 − 3t3 + 3t2 − 3t + 1)2, t4 − 3t3 + 3t2 − 3t + 1 11,11 0 5 f

10124 t8 − t7 + t5 − t4 + t3 − t + 1 8 3, 5 r

10125 t6 − 2t5 + 2t4 − t3 + 2t2 − 2t + 1 11 2 r

10126 16− 2t5 + 4t4 − 5t3 + 4t2 − 2t + 1 19 2 r

10127 t6 − 4t5 + 6t4 − 7t3 + 6t2 − 4t + 1 29 4 r

10128 2t6 − 3t5 + t4 + t3 + t2 − 3t + 2 11 6 r

10129 2t4 − 6t3 + 9t2 − 6t + 2 25 0 r

10130 2t4 − 4t3 + 5t2 − 4t + 2 17 0 r

10131 2t4 − 8t3 + 11t2 − 8t + 2 31 2 r

10132 t4 − t3 + t2 − t + 1 5 0 r

10133 t4 − 5t3 + 7t2 − 5t + 1 19 2 r

10134 2t6 − 4t5 + 4t4 − 3t3 + 4t2 − 4t + 2 23 6 r
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k �1(t) �2(t) T σ q α, β s

10135 3t4 − 9t3 + 13t2 − 9t + 3 37 0 r

10136 (t2 − t + 1)(t2 − 3t + 1) 15 2 2 r

10137 (t2 − 3t + 1)2 25 0 r

10138 (t2 − 3t + 1)(−t4 + 2t3 − t2 + 2t − 1) 35 2 2 r

10139 (12− t + 1)(−t6 + t4 − t3 + t2 − 1) 3 6 2 r

10140 (t2 − t + 1)2 9 0 r

10141 (t2 − t + 1)(−t4 + 2t3 − t2 + 2t − 1 21 0 2

10142 (t2 − t + 1)(−2t4 + t3 + t2 + t − 2) 15 6 2

10143 (t2 − t + 1)3 27 2

10144 (t2 − t + 1)(3t2 − 7t + 3) 39 2 2

10145 t4 + t3 − 3t2 + t + 1 3 2 2

10146 2t4 − 8t3 + 13t2 − 8t + 2 33 0 2

10147 (t2 − t + 1)(2t2 − 5t + 2) 27 2 2

10148 t6 − 3t5 + 7t4 − 9t3 + 7t2 − 3t + 1 31 2

10149 t6 − 5t5 + 9t4 − 11t3 + 9t2 − 5t + 1 41 4

10150 t6 − 4t5 + 6t4 − 7t3 + 6t2 − 4t + 1 29 4

10151 t6 − 45+ 10t4 − 13t3 + 10t2 − 4t + 1 43 2

10152 t8 − t7 − t6 + 45− 5t4 + 4t3 − t2 − t + 1 11 6

10153 t6 − t5 − t4 + 3t3 − t2 − t + 1 0 2

10154 t6 − 4t4 + 7t3 − 4t2 + 1 13 4

10155 t6 − 3t5 + 5t4 − 7t3 + 5t2 − 3t + 1 5,5 0

10156 t6 − 45+ 8t4 − 9t3 + 8t2 − 4t + 1 35 2

10157 t6 − 6t5 + 11t4 − 13t3 + 11t2 − 6t + 1 7,7 4

10158 t6 − 4t5 + 10t4 − 15t3 + 10t2 − 4t + 1 45 0

10159 (t2 − t + 1)(−t4 + 3t3 − 5t2 + 3t − 1) 39 2

10160 t6 − 4t5 + 4t4 − 3t3 + 4t2 − 4t + 1 21 4

10161 t6 − 2t4 + 3t3 − 2t2 + 1 5 4

10162 3t4 − 9t3 + 11t2 − 9t + 3 35 2

10163 (t2 − t + 1)(−t4 + 4t3 − 7t2 + 4t − 1) 51 2

10164 3t4 − 11t3 + 17t2 − 11t + 3 45 0

10165 2t4 − 10t3 + 15t2 − 10t + 2 39 2

Table II gives non-singular Seifert matrices of knots up to ten crossings, computed
by U. Lüdicke. 2m is the number of rows; the entries run through successive rows,
x + y resp. x − y means that the entry+y resp.−y has to be repeated x times. As an
example 

1 0 −1 0

0 1 0 −1

0 0 1 0

−1 0 0 1


is the Seifert matrix of 51 according to the table. (See Chapter 13.)
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Table II

31 m = 1 1 −1 0 1

41 m = 1 −1 0 2+ 1

51 m = 2 1 0 −1 2+ 0 1 0 −1 2+ 0 1 0 −1 2+ 0 1

52 m = 1 2 −2 −1 2

61 m = 1 −1 0 1 2

62 m = 2 1 0 −1 2+ 0 1 3+ 0 −1 1 0 −1 0 1 −1

63 m = 2 1 1 −1 3+ 0 1 2+ 0 1 2−1 0 −1 2+ 1 −1

71 m = 3 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 12+ 0 −1 3+ 0 1

2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 1

72 m = 1 3 −3 −2 3

73 m = 2 −2 0 2+ 1 0 −1 2+ 0 2 0 −2 2+ 0 1 0 −1

74 m = 1 −2 0 1 −2

75 m = 2 2 0 2−1 0 1 4+ 0 1 3−1 0 2

76 m = 2 1 0 −1 2+ 0 1 −1 0 −1 0 2 0 1 −1 0 −1

77 m = 2 1 3+ 0 −1 1 2+ 0 1 2−1 2+ 0 1 0 −1

81 m = 1 −1 0 1 3

82 m = 3 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 1 5+ 0 −1 1 2+ 0 −1

3+ 0 1 0 −1 2+ 0 1 0 −1

83 m = 1 −2 0 1 2

84 m = 2 1 0 −1 2+ 0 1 3+ 0 −1 1 2+ 0 1 −1 −2

85 m = 3 −1 6+ 0 −1 0 1 4+ 0 −1 0 1 3+ 0 1 −1 2+ 0 1

3+ 0 −1 0 1 2+ 0 −1 0 1

86 m = 2 2 0 −2 2+ 0 1 2+ 0 2−1 2 0 −1 0 1 −1

87 m = 3 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 4+ 0 1 0 −1 6+ 0 1 −1

1 0 −1 2+ 0

88 m = 2 1 1 −1 3+ 0 1 2+ 0 −1 1 −2 2+ 1 −1 2 −2

89 m = 3 1 −1 6+ 0 −1 1 3+ 0 1 0 −1 3+ 0 1 0 −1 1 6+ 0 1 −1

3+ 0 −1 0 1

810 m = 3 1 −1 5+ 0 1 4+ 0 −1 0 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1

4+ 0 1 0 −1

811 m = 2 2 0 −2 0 −1 1 2+ 0 −1 0 2 0 1 −1 0 −1

812 m = 2 −2 1 2+ 0 1 −1 2+ 0 1 −1 1 2+ 0 1 0 1

813 m = 2 1 −1 3+ 0 1 4+ 0 −2 1 −1 0 2 −2

814 m = 2 −1 3+ 0 2+ 1 4+ 0 1 −1 0 −1 0 2

815 m = 2 2 2−1 2+ 0 2 −1 0 −1 0 2 −1 0 −1 0 1

816 m = 3 −1 1 5+ 0 −1 4+ 0 1 −1 1 0 −1 2+ 0 1 0 1 2+ 0 −1

3+ 0 −1 3+ 0 −1 0 1

817 m = 3 −1 1 5+ 0 −1 4+ 0 1 0 −1 3+ 0 1 −1 0 1 3+ 0 1 −1 0 1

−1 3+ 0 −1 0 1

818 m = 3 1 0 −1 4+ 0 1 5+ 0 −1 1 3+ 0 −1 0 1 −1 3+ 0 1 −1 1

−1 2+ 0 −1 2+ 0 1 −1
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819 m = 3 −1 6+ 0 −1 1 3+ 0 1 0 −1 3+ 0 −1 0 1 −1 0 2+ 1 −1

2+ 0 −1 5+ 0 1 −1

820 m = 2 1 3+ 0 1 0 1 0 −1 0 4−1 2+ 0

821 m = 2 1 2+ 0 −1 0 1 −1 0 2−1 1 0 −2 −1 2+ 0

91 m = 4 3+ 0 −1 4+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1

4+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1 4+ 0 1

92 m = 1 4 −4 −3 4

93 m = 3 −1 3+ 0 1 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 7 2+ 0 −2 3+ 0

1 2+ 0 −1 3+ 0 1 2+ 0 −1

94 m = 2 3 0 −1 −2 0 1 0 −1 2+ 0 1 0 −3 2+ 0 3

95 m = 1 −2 0 1 −3

96 m = 3 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 2 −1 0 −1 2+ 0 −1 2

2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 1

97 m = 2 3 0 −1 −2 0 1 4+ 0 1 −1 −2 −1 0 3

98 m = 2 −2 4+ 0 2 3−1 0 1 0 1 −1 0 1

99 m = 3 2 0 2−1 3+ 0 1 2+ 0 −1 0 −1 0 2 2+ 0 −1 3+ 0 1 2+ 0

−1 3+ 0 1 2+ 0 −1 3+ 0

910 m = 2 −2 2+ 0 2 0 −2 0 2+ 1 0 −1 0 1 2 0 −3

911 m = 3 −1 2+ 0 1 3+ 0 −1 2+ 0 1 3+ 0 −1 3+ 0 2+ 1 0 −2 4+ 0

1 0 −1 0 1 −1 3+ 0 1

912 m = 2 2 0 −2 2+ 0 1 −1 0 −2 0 3 0 1 −1 0 −1

913 m = 2 −1 2+ 0 1 0 −2 0 1 0 1 −2 1 0 1 2 −3

914 m = 2 1 3+ 0 −1 1 2+ 0 1 −1 −2 2+ 0 1 0 −1

915 m = 2 −1 3+ 0 2+ 1 4+ 0 −1 2+ 0 −1 1 −2

916 m = 3 −2 0 1 2+ 0 1 0 −1 0 1 3+ 0 1 −2 3+ 0 1 2+ 0 −1 2+ 0

1 3+ 0 −1 3+ 0 1 2+ 0 −1

917 m = 3 −2 1 4+ 0 1 −1 6+ 0 1 2+ 0 −1 1 −1 0 1 3+ 0 1 0 −1 1

0 −1 3+ 0 −1 1

918 m = 2 2 2+ 0 −1 0 2 2−1 2+ 0 1 −1 −2 −1 0 3

919 m = 2 2 −2 2+ 0 −1 2 2+ 0 1 0 −2 1 0 −1 1 −1

920 m = 3 1 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 1 −1 3+ 0 −1 0 2 4+ 0

−1 0 1 0 1 −1 3+ 0 −1

921 m = 2 1 −2 2+ 1 0 2 −3 3+ 0 1 −1 3+ 0 2+ 1

922 m = 3 −1 2+ 0 1 3+ 0 −1 1 3+ 0 1 0 −1 6+ 0 −1 2+ 0 1 −1

2+ 0 1 −1 0 1 −1 0 −1 2

923 m = 2 1 −1 3+ 0 3 2−1 0 −1 2 3−1 0 2

924 m = 3 1 5+ 0 1 −1 0 1 4+ 0 −1 5+ 0 1 −1 6+ 0 1 −1 0 −1

3+ 0 1

925 m = 2 2 −1 2+ 0 −1 2 −1 3+ 0 1 0 −1 1 0 −1

926 m = 3 −1 6+ 0 −1 0 1 4+ 0 −1 1 2+ 0 1 0 1 −2 2+ 0 1 0 −1 0

1 3+ 0 1 2−1 1

927 m = 3 1 −1 5+ 0 2 −1 3+ 0 −1 0 1 3+ 0 −1 1 0 −1 0 1 3+ 0 1

−1 0 1 4+ 0 −1
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928 m = 3 1 −1 5+ 0 1 6+ 0 −1 3+ 0 −1 0 1 −1 6+ 0 1 −1 3+ 0 −1

0 1

929 m = 3 −1 6+ 0 1 0 −1 4+ 0 1 0 −1 4+ 0 1 2+ 0 1 −1 2+ 0 1

2+ 0 1 −1 2+ 0 −1

930 m = 3 1 −1 5+ 0 2 −1 4+ 0 −1 1 6+ 0 −1 0 1 −1 1 0 1 −1 0

1 0 −1 2+ 0 −1

931 m = 3 1 −1 5+ 0 1 6+ 0 1 −1 5+ 0 1 3+ 0 1 −1 0 −1

2+ 0 −1 2+ 0 1 −1

932 m = 3 −1 6+ 0 −1 0 1 4+ 0 −1 5+ 0 1 −1 2+ 0 1 −1 2+ 0 1

2+ 0 0 2−1 1

933 m = 3 1 −1 5+ 0 1 −1 3+ 0 −1 0 2 3+ 0 −1 1 0 −1 0 1 3+ 0 1

−1 0 1 4+ 0 −1

934 m = 3 1 −1 5+ 0 1 4+ 0 1 0 −1 0 1 4+ 0 −1 3+ 0 −1 0 1 −1

3+ 0 1 −1 0 1

935 m = 1 3 −2 −1 3

936 m = 3 −1 6+ 0 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 4+ 0 1 0 −1 0

1 −1 3+ 0 1

937 m = 2 2 3+ 0 −1 1 2+ 0 1 2−1 2+ 0 1 0 −1

938 m = 2 2 0 2−1 0 2 −1 2+ 0 −1 2 3−1 0 2

939 m = 2 1 4+ 0 −2 0 1 0 1 −2 1 −1 2+ 1 −2

940 m = 3 1 −1 5+ 0 1 4+ 0 1 0 −1 1 3+ 0 −1 0 −1 4+ 0 1 −1 1

4+ 0 1 −1 1

941 m = 2 1 −1 3+ 0 1 −1 2+ 0 1 0 2 −1 0 2−1 2

942 m = 2 3+ 0 −1 0 −1 2+ 0 −1 3+ 0 −1 2+ 1 0

943 m = 3 −1 5+ 0 1 0 −1 4+ 0 −1 1 6+ 0 −1 0 1 −1 1 0 1 −1 0

1 0 −1 2+ 0 −1

944 m = 2 1 1 6+ 0 2+ 1 2−1 0 −1 1 2+ 0

945 m = 2 1 2 −1 1 0 −1 3+ 0 2+ 1 2+ 0 −1 1 −2 1

946 m = 1 3 −2 −1 0

947 m = 3 −1 6+ 0 1 0 1 −1 2+ 0 −1 1 0 1 −1 3+ 0 −1 6+ 0 −1 1

−1 2+ 0 1 0 −1

948 m = 2 1 −1 4+ 0 −1 0 1 0 1 −1 1 −1 2+ 1 −2

949 m = 2 1 −1 4+ 0 −2 0 1 0 1 −2 1 −1 2+ 1 −2

101 m = 1 1 4 0 1 −1

102 m = 4 −1 8+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1 4+ 0 1 3+ 0 −1 1

3+ 0 1 3+ 0 −1 3+ 0 −1 1 3+ 0 −1 4+ 0 1 3+ 0 −1

4+ 0 1

103 m = 1 1 −2 0 1 3

104 m = 2 1 −1 3+ 0 1 2+ 0 −1 0 1 0 1 −1 0 −3

105 m = 4 −1 3+ 0 1 4+ 0 −1 3+ 0 1 4+ 0 −1 5+ 0 1 2+ 0 −1 5+ 0

1 2+ 0 −1 5+ 0 1 2+ 0 −1 8+ 0 1 −1 1 2+ 0 −1 3+ 0 1

106 m = 3 2 2+ 0 −2 3+ 0 1 2+ 0 −1 3+ 0 1 3+ 0 −1 0 −1 2 2+ 0

−1 3+ 0 1 0 −1 2+ 0 1 0 −1
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107 m = 2 1 3 0 −3 2+ 0 1 2+ 0 −2 −1 3 2+ 0 1 2−1

108 m = 3 −2 5+ 0 2+ 1 6+ 0 1 0 −1 4+ 0 1 0 −1 0 −1 2+ 0 1

3+ 0 −1 2+ 0 1

109 m = 4 −1 3+ 0 1 4+ 0 −1 8+ 0 −1 1 4+ 0 1 2+ 0 −1 5+ 0 1

2+ 0 −1 3+ 0 1 2+ 0 −1 0 1 8+ 0 1 −1 5+ 0 −1 0 1

1010 m = 2 1 −1 3+ 0 1 4+ 0 −3 2 −1 0 3 −3

1011 m = 2 2 2−1 0 −2 2 4+ 0 1 0 1 −1 0 −2

1012 m = 3 −2 0 2+ 1 3+ 0 −1 4+ 0 2 0 −2 4+ 0 1 0 −1 6+ 0 1 −1

1 0 1 2+ 0 1

1013 m = 2 1 −1 1 2+ 0 1 −2 2+ 0 1 −1 2 −2 0 1 −2 3

1014 m = 3 2 0 2−1 3+ 0 1 2+ 0 −1 0 −1 0 2 5+ 0 −1 1 2+ 0 −1

3+ 0 1 0 −1 2+ 0 1 0 −1

1015 m = 3 1 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 4+ 0 1 0 −1 6+ 0 1

−1 1 0 −1 2+ 0 2

1016 m = 2 1 −1 1 3+ 0 −2 2+ 0 1 0 −1 0 1 −1 0 2

1017 m = 4 −1 2+ 0 1 5+ 0 −1 6+ 0 1 0 −1 6+ 0 1 0 −1 8+ 0 1 0

−1 6+ 0 1 0 −1 1 0 −1 3+ 0 1 5+ 0 −1 2+ 0 1

1018 m = 2 2 0 −1 0 −1 1 4+ 0 1 0 1 −1 0 −2

1019 m = 3 1 0 −1 4+ 0 1 0 −1 4+ 0 1 3+ 0 −1 2+ 0 1 6+ 0 −2 0

−1 0 1 0 1 −1

1020 m = 2 3 −3 2+ 0 −2 3 2+ 0 −1 0 1 0 1 −1 0 −1

1021 m = 3 1 3+ 0 −1 2+ 0 1 6+ 0 2 2−1 2+ 0 −1 0 1 4+ 0 −2 0 2

3+ 0 1 −1 0 −1

1022 m = 3 −2 0 1 4+ 0 −1 1 3+ 0 2 0 −2 3+ 0 1 0 −1 1 6+ 0 1

−1 3+ 0 −1 0 1

1023 m = 3 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −2 4+ 0 1 0 −1 6+ 0 1 −1

1 0 1 2+ 0 1

1024 m = 2 2 0 −2 2+ 0 2 −1 0 −1 −2 3 2+ 0 1 2−1

1025 m = 3 2 2+ 0 2−1 2+ 0 1 6+ 0 1 0 −1 3+ 0 −1 1 2+ 0 2−1

2+ 0 2 0 −1 2+ 0 1 0 −1

1026 m = 3 1 0 −1 4+ 0 1 5+ 0 −1 1 3+ 0 −1 0 1 −1 1 0 1 0 −1 0

−2 4+ 0 1 0 −1

1027 m = 3 −1 5+ 0 1 −1 6+ 0 1 0 −1 4+ 0 2 3−1 1 0 −1 2 3+ 0

−1 2+ 0

1028 m = 2 1 −2 3+ 0 1 −2 3+ 0 2+ 1 −1 0 −1 0 1

1029 m = 3 1 2+ 0 −1 3+ 0 1 6+ 0 1 −1 3+ 0 2−1 2 3+ 0 1 −1 0 −1

3+ 0 1 −1 0 −1

1030 m = 2 2 −2 2+ 0 −1 3 −1 3+ 0 1 2+ 0 −1 1 −1

1031 m = 2 −1 1 3+ 0 −2 2+ 0 1 −1 2 −2 −1 1 −1 2

1032 m = 3 −1 1 5+ 0 −1 4+ 0 1 0 −1 3+ 0 1 −1 0 1 0 2−1 1 0 −1

2 −1 4+ 0 −1 2

1033 m = 2 2 −2 2+ 0 −1 2 3+ 0 1 −1 2+ 0 −1 1 −2

1034 m = 2 1 −1 3+ 0 1 2+ 0 −1 1 −3 3+ 0 1 −1
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1035 m = 2 1 −1 2+ 0 −1 2 2+ 0 −1 0 −2 0 1 −1 0 −1

1036 m = 2 1 −1 3+ 0 3 −1 3+ 0 1 2+ 0 −1 1 −1

1037 m = 2 2 −2 2+ 0 −1 2 2+ 0 −1 1 −2 3+ 0 1 −1

1038 m = 2 −1 3+ 0 −1 3 2−1 1 −2 2 4+ 0 1

1039 m = 3 −1 5+ 0 1 2 −1 4+ 0 −1 2 0 −1 4+ 0 1 0 −1 0 −1 2+ 0

1 3+ 0 −1 2+ 0 1

1040 m = 3 1 5+ 0 −1 6+ 0 −2 2+ 0 2+ 1 −1 0 −1 0 1 2+ 0 7 0 −1

0 −1 2+ 1 0 1 −2

1041 m = 3 1 0 −1 3+ 0 −1 2 6+ 0 1 −1 3+ 0 −1 0 1 2+ 0 1 −1

2+ 0 −1 1 −1 1 0 2+ 1 −2

1042 m = 3 1 5+ 0 −1 1 6+ 0 1 2+ 0 1 −1 1 0 −1 0 2+ 1 −1 0 1

−2 5+ 0 1 −1

1043 m = 3 1 0 −1 4+ 0 1 −1 3+ 0 −1 0 2 6+ 0 −1 2+ 0 1 −1 2+ 0

−1 0 −1 0 2+ 1 0 −1

1044 m = 3 1 2+ 0 −1 2+ 0 −1 2 −1 5+ 0 1 4+ 0 −1 0 1 2+ 0 1 −1

2+ 0 −1 3+ 0 1 −1 0 −1

1045 m = 3 1 0 −1 3+ 0 −1 2 5+ 0 −1 1 3+ 0 1 −1 0 −1 0 1 0 1

−1 0 −1 1 −1 3+ 1 0 −2

1046 m = 4 −1 5+ 0 1 2+ 0 −1 8+ 0 −1 0 1 6+ 0 −1 0 1 5+ 0 1 −1

3+ 0 1 4+ 0 −1 3+ 0 1 4+ 0 −1 0 1 3+ 0 −1 2+ 0 1

1047 m = 4 1 −1 7+ 0 1 6+ 0 −1 0 −1 3+ 0 1 4+ 0 −1 3+ 0 1 4+ 0

−1 5+ 0 1 2+ 0 −1 5+ 0 1 2+ 0 −1 5+ 0 1 2+ 0 −1

1048 m = 4 1 0 −1 6+ 0 1 0 −1 6+ 0 1 5+ 0 −1 2+ 0 1 8+ 0 −1

2+ 0 1 5+ 0 −1 4+ 0 −1 0 1 0 −1 3+ 0 1 2+ 0 1 0 −1

1049 m = 3 1 0 −1 4+ 0 1 0 −1 4+ 0 2 0 3− 1 2+ 0 1 3+ 0 −1 2+ 0

2 −1 2+ 0 −1 2+ 0 2

1050 m = 3 −1 6+ 0 −2 0 2 4+ 0 −1 0 1 2+ 0 2+ 1 −2 2+ 0 1 3+ 0

−1 0 1 2+ 0 −1 0 1

1051 m = 3 1 −1 5+ 0 1 4+ 0 −1 1 −1 2+ 0 1 3+ 0 −2 4+ 0 1 0 −1

4+ 0 1 0 −1

1052 m = 3 2 −2 4+ 0 −1 2 6+ 0 −1 2+ 0 1 3+ 0 −1 3+ 0 −1 1 0

−1 2+ 0 1 0 1 0 −1

1053 m = 2 1 2 −2 2+ 0 −1 3 3−1 0 2 −1 0 −1 0 2

1054 m = 3 2 −1 5+ 0 1 6+ 0 −1 2+ 0 1 3+ 0 −1 2+ 0 1 0 1 0 −1 0

−1 2+ 0 1 0 −1

1055 m = 2 2 −1 3+ 0 1 −1 0 3 −1 3+ 0 1

1056 m = 3 −2 1 0 1 2+ 0 1 −2 2+ 0 1 0 1 0 −1 4+ 0 1 0 −1 6+ 0

−1 2+ 0 1 −1 2+ 0 1

1057 m = 3 1 −1 5+ 0 1 4+ 0 −1 1 −1 2+ 0 2+ 1 −1 0 −2 0 1 3+ 0

1 −1 4+ 0 2+ 1 −2

1058 m = 2 1 2 −1 2+ 0 −1 2 2+ 0 1 0 −2 1 0 −1 1 −1

1059 m = 3 −2 1 5+ 0 −1 0 1 2+ 0 1 0 −1 5+ 0 1 −1 2+ 0 1 −1

2+ 0 1 2 −1 1 0 2−1 2
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1060 m = 3 1 −1 4+ 0 −1 2 6+ 0 1 3+ 0 −1 2+ 0 −1 1 0 1 −1 2+ 0

−1 1 0 1 −1 2+ 0 −1

1061 m = 3 −1 2+ 0 1 3+ 0 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 4+ 0 1

0 −1 3+ 0 1 −1 0 2

1062 m = 4 −1 3+ 0 1 4+ 0 −1 3+ 0 1 4+ 0 −1 5+ 0 1 2+ 0 −1 5+ 0

1 2+ 0 −1 5+ 0 1 2+ 0 −1 8+ 0 1 −1 1 0 −1 4+ 0 1

1063 m = 2 3 0 −1 −2 0 1 0 −1 2+ 0 1 0 −2 2+ 0 3

1064 m = 4 −1 8+ 0 −1 0 1 6+ 0 −1 0 1 5+ 0 1 −1 4+ 0 1 3+ 0 −1

8+ 0 1 0 −1 1 2+ 0 −1 2+ 0 1 0 −1 2+ 0 1 2+ 0 −1 1

1065 m = 3 −1 2+ 0 1 3+ 0 −2 0 1 2+ 0 1 0 −1 4+ 0 2 0 −2 2+ 0

−1 1 2+ 0 1 −1 1 −1 3+ 0 1

1066 m = 3 2 2+ 0 −1 0 −1 0 1 2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 1

2+ 0 −1 3+ 0 1 2+ 0 −1 3+ 0 2

1067 m = 2 −1 3+ 0 1 2 0 −1 2+ 0 1 −1 0 −2 0 3

1068 m = 2 −1 3+ 0 1 −1 4+ 0 3 −2 −1 0 −1 2

1069 m = 3 −1 2+ 0 1 3+ 0 −1 0 1 4+ 0 −1 3+ 0 3+ 1 −3 2+ 0 1 −1

2+ 0 1 2+ 0 1 −1 0 −1 1

1070 m = 3 1 6+ 0 1 0 1 −1 0 −1 0 −2 2+ 1 0 1 2+ 0 −1 4+ 0 1 0

−1 3+ 0 1 2+ 0 −1

1071 m = 3 −1 6+ 0 −1 1 3+ 0 2+ 1 −2 4+ 0 −1 1 2 −1 0 −1 1 0

−1 1 0 1 0 2−1 0 1

1072 m = 3 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 4+ 0 1 0 −2 1 5+ 0 −1

4+ 0 1 −1

1073 m = 3 1 −1 5+ 0 2 −1 3+ 0 −1 0 1 6+ 0 1 0 1 −1 3+ 0 −1 0 1

3+ 0 1 −1

1074 m = 2 −1 3+ 0 2+ 1 0 3−1 2 4+ 0 2

1075 m = 3 −1 1 4+ 0 1 −3 1 4+ 0 1 −1 3+ 0 1 −1 0 1 3+ 0 1 2−1

1 3+ 0 1 0 −1 1

1076 m = 3 −2 2+ 0 1 3+ 0 −1 0 1 4+ 0 −1 0 1 0 1 0 1 −2 2+ 0 1

3+ 0 −1 0 1 2+ 0 −1 0 1

1077 m = 3 1 −1 5+ 0 1 6+ 0 −1 2+ 0 1 3+ 0 −1 4+ 0 1 0 −1 0 1

−1 0 1 0 −2

1078 m = 3 2 −1 5+ 0 1 −1 3+ 0 −1 0 1 6+ 0 1 −1 5+ 0 1 3+ 0 1

−1 0 −1

1079 m = 4 1 0 −1 6+ 0 1 0 −1 6+ 0 1 5+ 0 −1 2+ 0 1 4+ 0 −1 1

2+ 0 −1 2+ 0 1 5+ 0 −1 6+ 0 1 0 −1 6+ 0 1 0 −1

1080 m = 3 2 0 2−1 3+ 0 1 0 −1 3+ 0 −1 2 0 −1 0 −1 2+ 0 2 2+ 0

−1 3+ 0 1 3+ 0 −1 2+ 0 1

1081 m = 3 −1 6+ 0 −1 5+ 0 1 −1 6+ 0 2 3−1 1 2+ 0 1 0 1 −1 0

−1 0

1082 m = 4 −1 8+ 0 −1 1 5+ 0 1 0 −1 8+ 0 1 2+ 0 −1 5+ 0 1 2+ 0

−1 0 1 −1 2+ 0 1 2+ 0 −1 0 1 2+ 0 −1 1 4+ 0 −1

3+ 0 1
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1083 m = 3 −2 2+ 0 2 3+ 0 −1 4+ 0 1 0 −1 3+ 0 2+ 1 0 −2 3+ 0 1

−1 0 1 −1 0 −1 0 1 0 1

1084 m = 3 1 −1 5+ 0 1 4+ 0 −1 1 −1 5+ 0 1 −1 3+ 0 −1 0 1 −2

5+ 0 1 −1

1085 m = 4 1 2+ 0 −1 5+ 0 1 8+ 0 1 0 −1 6+ 0 1 0 −1 3+ 0

−1 2+ 0 1 5+ 0 −1 2+ 0 1 5+ 0 1 −1 0 −1 4+ 0

−1 0 2+ 1 −1

1086 m = 3 −1 0 1 4+ 0 −2 1 4+ 0 2 −2 3+ 0 1 0 −1 1 6+ 0 1 −1

2+ 0 −1 0 1

1087 m = 3 −1 0 1 4+ 0 −1 5+ 0 1 −2 3+ 0 1 0 −1 1 6+ 0 1 −1

2+ 0 1 −1 0 1

1088 m = 3 1 5+ 0 1 −2 0 1 2+ 0 −1 1 −1 4+ 0 1 0 −1 4+ 0 1 −1 1

4+ 0 1 −1 1

1089 m = 3 −1 1 2+ 0 1 2+ 0 −1 3+ 0 −1 1 −1 1 4+ 0 1 0 1 6+ 0 1

−1 5+ 0 1

1090 m = 3 1 0 −1 4+ 0 1 5+ 0 −1 1 3+ 0 −1 0 1 −2 0 1 4+ 0 −1 0

1 −1 2+ 0 1 −1

1091 m = 4 −1 1 7+ 0 −1 0 1 6+ 0 −1 7+ 0 1 −1 4+ 0 1 −1 2+ 0 1

0 −1 6+ 0 1 0 2−1 0 1 3+ 0 1 5+ 0 −1 2+ 0 1

1092 m = 3 −1 3+ 0 1 2+ 0 −1 0 1 4+ 0 −1 3+ 0 1 2+ 0 −2 1 2+ 0

2 −1 0 −2 0 1 0 −1 2+ 0 1

1093 m = 3 −1 5+ 0 1 −2 6+ 0 1 −1 3+ 0 −1 0 1 0 2−1 1 −1 0 1 0

1 4+ 0 1

1094 m = 4 1 0 −1 5+ 0 −1 1 8+ 0 1 8+ 0 −1 4+ 0 1 −1 2+ 0 −1

0 1 2+ 0 1 −1 2+ 0 −1 0 1 5+ 0 1 −1 0 −1 0 2+ 1

3+ 0 −1

1095 m = 3 1 −1 5+ 0 1 6+ 0 −2 1 0 1 2+ 0 1 −2 2+ 0 −1 2+ 1 0

−1 0 1 −1 0 1 0 −1

1096 m = 3 −1 6+ 0 1 6+ 0 1 −1 2+ 0 1 −1 0 7 3+ 0 1 0 −1 −2 1

2+ 0 −1 2+ 1 −1

1097 m = 2 1 1 3+ 0 −1 −2 1 0 1 0 −2 1 0 2+ 1 −2

1098 m = 3 −1 6+ 0 2 2+ 0 2−1 1 0 1 6+ 0 1 −1 2+ 0 2−1 0 2 0 −1

2+ 0 −1 0 1

1099 m = 4 −1 8+ 0 −1 1 7+ 0 −1 1 4+ 0 1 2+ 0 −1 4+ 0 1 −1

2+ 0 1 0 −1 2+ 0 1 −1 2+ 0 1 0 2−1 0 1 3+ 0 1 5+ 0

−1 2+ 0 1

10100 m = 4 −1 1 7+ 0 −1 6+ 0 1 −1 1 2+ 0 −1 3+ 0 1 0 1 3+ 0 2−1

3+ 0 1 0 −1 6+ 0 1 5+ 0 −1 2+ 0 1 3+ 0 −1 4+ 0 1

10101 m = 2 1 −3 0 3+ 1 −1 3+ 0 1 −2 0 1 0 1 −2

10102 m = 3 1 0 −1 4+ 0 1 5+ 0 −1 1 3+ 0 −1 0 1 −2 0 2 4+ 0 −1 0

1 −1 0 2+ 1 −2

10103 m = 3 −1 5+ 0 1 −1 6+ 0 1 −1 3+ 0 −1 0 2 0 −2 −1 1 −1 0 1

0 1 2+ 0 −1 0 2
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10104 m = 4 1 7+ 0 −1 1 8+ 0 1 −1 5+ 0 −1 0 1 4+ 0 −1 2+ 0 1 −1

0 1 0 1 −1 3+ 0 −1 7+ 0 1 −1 5+ 0 1 2+ 0 −1

10105 m = 3 2 −1 4+ 0 −1 1 4+ 0 1 2−1 0 1 2+ 0 1 0 −1 0 1 3+ 0 1

−2 5+ 0 1 −1

10106 m = 4 1 8+ 0 1 −1 5+ 0 −1 0 1 5+ 0 −1 2+ 0 −1 1 3+ 0 1 0

−1 0 −1 2+ 0 1 5+ 0 −1 5+ 0 1 2+ 0 −1 6+ 0 1 0 −1

10107 m = 3 1 6+ 0 1 −1 5+ 0 1 6+ 0 −2 0 1 −1 2+ 0 1 −1 0 1 −1 0

1 1 0 −1

10108 m = 3 −1 6+ 0 −1 1 5+ 0 −1 1 2+ 0 1 2+ 0 −1 2+ 0 −1 0 1 0

2 −1 0 1 −1 2+ 0 1

10109 m = 4 −1 2+ 0 1 5+ 0 −1 6+ 0 1 0 −1 6+ 0 1 0 −1 8+ 0 1 0

−1 6+ 0 1 0 −1 1 2+ 0 −1 2+ 0 1 4+ 0 1 −1 2+ 0 1

10110 m = 3 −1 6+ 0 −1 6+ 0 2 2−1 4+ 0 1 2+ 0 −1 1 −1 0 1 0 1 0

−1 2+ 0 1

10111 m = 3 1 5+ 0 2−1 0 1 4+ 0 −1 0 1 3+ 0 1 −2 0 2+ 1 3+ 0 −1

2+ 0 1 1 0 1 0 −2

10112 m = 4 −1 8+ 0 −1 1 5+ 0 1 0 −1 6+ 0 1 −1 1 0 −1 6+ 0 1 0

−1 2+ 0 −1 3+ 0 1 0 −1 1 5+ 0 1 5+ 0 −1 2+ 0 1

10113 m = 3 1 −1 5+ 0 1 6+ 0 −2 0 1 3+ 0 1 −1 2+ 0 −1 1 0 1 −2

2+ 1 0 1 2+ 0 −1

10114 m = 3 1 0 −1 4+ 0 2 −1 4+ 0 −2 2 3+ 0 −1 0 1 −1 3+ 0 1 −1

1 −1 2+ 0 −1 2+ 0 1 −1

10115 m = 3 −1 6+ 0 −1 1 5+ 0 −1 3+ 0 1 −1 0 1 0 −1 0 1 −1 0 1

−1 3+ 0 −1 0 2

10116 m = 4 −1 1 7+ 0 −1 1 7+ 0 −1 5+ 0 1 −1 0 1 3+ 0 −1 −1 0

1 0 −1 3+ 0 1 2+ 0 1 5+ 0 −1 2+ 0 1 0 −1 4+ 0 −1 0 1

0 1

10117 m = 3 1 −1 5+ 0 1 6+ 0 −2 0 2+ 1 −1 2+ 1 −1 2+ 0 1 3+ 0 −1

2+ 0 −1 2+ 1 0 −2

10118 m = 4 −1 2+ 0 1 5+ 0 −1 6+ 0 1 0 −1 6+ 0 1 0 −1 5+ 0 1 −1

0 1 2+ 0 −1 5+ 0 1 −1 0 1 2+ 0 −1 2+ 0 1 2+ 0 −1 0 1

0 −1 0 1

10119 m = 3 1 0 −1 4+ 0 1 5+ 0 −1 1 6+ 0 −2 1 2+ 0 1 −1 1 −2 1

−1 0 2+ 1 0 −1

10120 m = 2 1 2 2−1 2+ 0 2 −1 0 −1 0 2 −1 0 −1 0 2

10121 m = 3 −1 5+ 0 1 −1 6+ 0 2 −1 2+ 0 −1 1 0 1 0 −1 1 0 −1 0

1 2+ 0 −1 3+ 0 1

10122 m = 3 −1 1 5+ 0 −2 1 3+ 0 2+ 1 −2 3+ 0 1 −1 0 1 −1 0 −1 0

1 0 1 −1 2+ 0 −1 2+ 0 1

10123 m = 4 −1 1 7+ 0 −1 8+ 0 −1 1 4+ 0 1 2+ 0 −1 4+ 0 1 −1 2+ 0

1 2+ 0 −1 2+ 0 1 −1 0 1 3+ 0 1 2+ 0 −1 0 1 0 −1 2+ 0

1 0 −1 0 1

10124 m = 4 −1 5+ 0 1 2+ 0 −1 8+ 0 −1 0 1 6+ 0 −1 0 1 5+ 0 1 −1

13+ 0 1 4+ 0 −1 3+ 0 1 4+ 0 −1 0 −1 3+ 0 1 2+ 0 −1
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10125 m = 3 1 5+ 0 2−1 6+ 0 2 −1 4+ 0 −1 5+ 0 −1 0 1 0 1 2+ 0 −1

0 −1

10126 m = 3 1 1 5+ 0 −1 1 4+ 0 1 0 1 6+ 0 −1 4+ 0 1 −1 0 1 3+ 0

2+ 1 0

10127 m = 3 0 −1 0 1 3+ 0 2 0 2−1 3+ 0 1 2+ 0 −1 1 5+ 0 −1 3+ 0

1 2+ 0 −1 3+ 0 1

10128 m = 3 −1 1 5+ 0 −1 4+ 0 −1 0 −2 0 1 0 1 −1 0 −1 0 1 0 1 2

0 −2 5+ 0 1 −1

10129 m = 2 2 0 −1 2 2+ 1 2+ 0 −1 3+ 0 1 2−1 0

10130 m = 2 0 −1 2+ 0 −1 0 2 0 1 2 2+ 0 2−1 2 −1

10131 m = 2 0 −1 2+ 0 −1 2+ 0 2 0 2+ 1 0 1 2 2+ 0

10132 m = 2 3+ 0 −1 1 3+ 0 −1 0 1 2+ 0 −1 2+ 0

10133 m = 2 1 4+ 0 1 2+ 0 −1 0 1 0 2−1 1 −1

10134 m = 3 −1 5+ 0 1 −1 6+ 0 −2 0 1 3+ 0 1 −1 2+ 0 −1 1 0 1 −2

10135 m = 2 1 −1 3+ 0 −1 1 3+ 0 2+ 1 0 2−2 −1 −3

10136 m = 2 1 −1 3+ 0 1 −1 2+ 0 1 −1 0 2+ 1 0 1 0

10137 m = 2 1 1 −1 2+ 0 −1 1 −1 0 −1 1 −1 1 2 −3 0 −2

10138 m = 3 1 −1 4+ 0 −1 7+ 0 1 3+ 0 −1 2+ 0 −1 1 0 1 −1 2+ 0

−1 1 0 1 −1 2+ 0 −1

10139 m = 4 −1 2+ 0 1 5+ 0 −1 6+ 0 1 0 −1 6+ 0 1 0 −1 8+ 0 −1

8+ 0 −1 0 1 0 −1 0 1 0 1 −1 0 −1 1 2+ 0 1 2+ 0 −1

10140 m = 2 1 2+ 1 2+ 0 1 4+ 0 2+ 1 0 1 −1 0 −1

10141 m = 3 1 6+ 0 −1 4+ 0 1 2+ 0 −1 0 −1 2+ 1 0 −1 2+ 0 2+ 1

2+ 0 1 3+ 0 2−1 2+ 0

10142 m = 3 −1 6+ 0 −1 0 1 4+ 0 −1 0 1 3+ 0 1 −1 2+ 0 1 3+ 0 −1

0 −1 2+ 0 1 0 −2

10143 m = 3 3+ 0 −1 0 1 −1 1 6+ 0 1 3+ 0 1 −1 2+ 1 2+ 0 2 −1

2+ 1 −1 0 −1 1 2−1 1 0

10144 m = 2 2−1 2 2+ 0 2 0 −1 2 2−1 0 −1 2+ 0 1

10145 m = 2 1 0 1 0 −1 1 2+ 0 1 −1 2+ 1 2 −3 0 2

10146 m = 2 −1 3+ 0 2−1 0 2+ 1 −1 2 −1 0 2 −1 0

10147 m = 2 −1 1 3+ 0 −1 2 0 1 2 −4 2+ 0 1 −2 −1

10148 m = 3 −1 6+ 0 1 6+ 0 1 4+ 0 −1 2+ 1 2+ 0 −1 2+ 0 −1 0 1 2

0 −1 2+ 1 −2

10149 m = 3 4+ 0 −1 0 −1 1 4+ 0 1 0 1 5+ 0 −1 1 2+ 0 −1 9+ 0 −1

1 2+ 1 0 1 2+ 0 −1

10150 m = 3 −1 0 1 3+ 0 1 −1 0 −1 3+ 0 1 −1 5+ 0 −1 1 2+ 0 −1

2+ 0 1 −1 2+ 1 0 −1 2+ 0 −1

10151 m = 3 −1 6+ 0 −1 5+ 0 1 −1 7+ 0 −1 1 −1 1 2+ 0 1 0 1 −1 0

1 0 −1

10152 m = 4 1 2+ 0 −1 5+ 0 1 −1 7+ 0 1 6+ 0 −1 0 1 4+ 0 1 −1 2+ 0

1 0 −1 6+ 0 1 0 −1 6+ 0 1 5+ 0 −1 2+ 0 1
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10153 m = 3 −2 2+ 0 2+ 1 2+ 0 7 0 −1 2+ 0 1 −1 4+ 0 1 7+ 0 1 0

−1 3+ 0 −1 2+ 0 1

10154 m = 3 −1 6+ 0 −1 5+ 0 1 −1 6+ 0 −2 0 1 −1 1 0 1 −1 0 1 −1

0 1 0 −1

10155 m = 3 4+ 0 −1 2+ 0 −1 4+ 0 −1 5+ 0 −1 3+ 1 2+ 0 3−1 −2

5+ 0 −1 2 1

10156 m = 3 1 6+ 0 1 6+ 0 −1 0 1 3+ 0 1 3+ 0 1 −1 0 1 −1 2+ 0 1

0 −1 0 1

10157 m = 3 −1 6+ 0 −1 4 0 −1 1 −1 1 6+ 0 −1 1 −2 1 −1 1 −3 2

−1 1 0 2+ 1 0

10158 m = 3 −1 1 5+ 0 −1 4+ 0 −1 0 −1 0 1 0 1 −1 0 1 3+ 0 1 2 0

2−1 3+ 0 −1 0 1

10159 m = 3 1 5+ 0 2−1 6+ 0 7 3+ 0 −2 −1 0 1 0 3−1 1 −1 3+ 0 −1

1 −2 −1 0

10160 m = 3 1 −1 5+ 0 −1 5+ 0 1 −1 3+ 0 −1 1 0 −1 3+ 0 −1 2+ 1

−1 3+ 0 −1 0 1 −1

10161 m = 3 1 6+ 0 1 4+ 0 2−1 1 3+ 0 1 0 −1 1 3+ 0 1 0 −1 1 2+ 0

−2 2+ 1 −1 1

10162 m = 2 −1 3+ 0 −1 1 2+ 0 −1 2+ 1 0 2 −2 −1 3

10163 m = 3 1 0 −1 4+ 0 −1 2 4+ 0 1 −1 3+ 0 −1 0 1 −1 3+ 0 1 −1

1 −1 2+ 0 −1 2+ 0 1 −1

10164 m = 2 −1 5+ 0 1 0 −1 2+ 1 3 −2 1 5 6

10165 m = 2 −2 0 1 0 1 2+ 0 −1 0 1 −2 2+ 0 −1 1 0

Table III contains the invariant λ(ζ ) computed by G. Wenzel and U. Lüdicke. It
is given for prime numbers p with p|Tr, p  | Tr−1 (see Table I), ζ is a primitive p-th
root of unity. (Compare 14.11.)

The sequences printed are a1, a2, . . . , a p−1
2

computed for the knot indicated and

its mirror image where λ(ζ ) =
p−1∑
k=1

akζ
k, ak = ap−k . From the class [λ(ζ )] always a

lexicographically first (and unique) member was chosen. If the two sequences do not
coincide the knot is shown to be non-amphicheiral by this invariant.

The following formulae allow to compute the linking number νij and µij of the

regular and irregular dihedral branched coverings R̂p and Îp, see Section 14 C:

2ν0j = aj −
1

p

p−1∑
k=1

ak,

µij = 2ν0j , µij = ν0,i−j + ν0,i+j .

A blank in the table indicates that either no admissible prime p exists or that no
result was obtained due to computer overflow. Table III contains λ(ζ ) for knots with
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less than ten crossings. It was computed, though, for knots with ten crossings, but the
material seemed to be too voluminous to be included here.

Further invariants are available under:
http://www.pims.math.ca/knotplot/
http://dowker.math.utk.edu/knotscape.html

Table III

Knot: 31 p = 3

6

−6

Knot: 41 p = 5

−2 2

−2 2

Knot: 51 p = 5

10 10

−10 −10

Knot: 52 p = 7

2 6 6

−6 −6 −2

Knot: 61 p = 3

−6

6

Knot: 62 p = 11

2 6 2 6 6

−6 −6 −6 −2 −2

Knot: 63 p = 13

−2 −2 2 −2 2 2

−2 −2 2 −2 2 2

Knot: 71 p = 7

14 14 14

−14 −14 −14

Knot: 72 p = 11

2 2 6 6 6

−6 −6 −2 −6
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Knot: 73 p = 13

−10 −10 −10 −10 −6 −6

6 10 6 10 10 10

Knot: 74 p = 3

6

−6

Knot: 74 p = 5

−14 −6

6 14

Knot: 75 p = 17

6 6 10 10 6 10 10 10

−10 −10 −10 −10 −6 −10 −6 −6

Knot: 76 p = 19

2 2 2 6 6 6 2 6 6

−6 −6 −6 −2 −6 −6 −2 −2 −2

Knot: 77 p = 3

−18

18

Knot: 77 p = 7

2 2 10

−10 −2 −2

Knot: 81 p = 13

−2 −2 −2 2 2 2

−2 −2 2 2 −2 2

Knot: 82 p = 17

10 6 10 6 10 10 10

−10 −10 −10 −10 −6 −6 −6

Knot: 83 p = 17

−2 −2 −2 2 2 −2 2 2

−2 −2 −2 2 2 −2 2 2

Knot: 84 p = 19

2 2 6 2 6 6 2 6 6

−6 −6 −6 −6 −2 −6 −2 −2 −2
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Knot: 85 p = 3

−12

12

Knot: 85 p = 7

−6 6 14

−14 6 −6

Knot: 86 p = 23

2 2 2 6 6 2 2 6 6 6 6

−6 −6 −6 −6 −2 −6 −2 −2 −6 −2 −2

Knot: 87 p = 23

−6 −6 −6 −6 −2 −6 −2 −6 −2 −2 −2

2 2 6 2 2 6 6 2 6 6 6

Knot: 88 p = 5

6 14

−14 −6

Knot: 89

−2 2

−2 2

Knot: 810 p = 3

0

0

Knot: 811 p = 3

−18

18

Knot: 812 p = 29

−2 −2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2

−2 −2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2

Knot: 813 p = 29

−2 −2 −2 −2 −2 2 2 2 2 −2 −2 2 2 2

−2 −2 −2 2 −2 −2 −2 2 2 −2 2 2 2 2

Knot: 814 p = 31

2 2 2 6 2 2 6 6 2 2 6 6 6 6

−6 −6 −6 −6 −6 −6 −2 −2 −2 −2 −6 −6 −2 −2

6

−2



Appendix C Tables 355

Knot: 815 p = 3

12

−12

Knot: 815 p = 11

10 18 22 30 30

−30 −22 −10 −30 −18

Knot: 816 p = 5

18 42

−42 −18

Knot: 816 p = 7

−42 −2 −26

2 26 42

Knot: 817 p = 37

−6 6 −2 −2 −2 6 2 −6 2 −2 6 −6 2 2 6 −6 −2

−6 6 −2 −2 −2 6 2 −6 2 −2 6 −6 2 2 6 −6 −2

2

2

Knot: 818 p = 5

−4 4

−4 4

Knot: 819 p = 3

12

12

Knot: 820 p = 3

0

0

Knot: 821 p = 3

12

−12

Knot: 821 p = 5

14 26

−26 −14

Knot: 91 p = 3

18

−18
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Knot: 92 p = 3

6

−6

Knot: 92 p = 5

−2 2

−2 2

Knot: 93 p = 19

−14 −14 −14 −14 −14 −14 −10 −10 −10

10 14 10 14 10 14 14 14 14

Knot: 94 p = 3

6

−6

Knot: 94 p = 7

10 14 18

−18 −10 −14

Knot: 96 p = 3

18

−18

Knot: 97 p = 29

6 6 6 6 10 10 10 6 6 10 10 10

−10 −10 −10 −10 −6 −10 −10 −10 −6 −6 −6 −10

10 10

−6 −6

Knot: 98 p = 31

2 2 2 2 6 6 2 2 6 6 6 6 2 6

−6 −6 −6 −6 −6 −2 −2 −6 −6 −6 −2 −2 −2 −2

6

−2

Knot: 99 p = 31

10 10 10 14 14 10 10 14 14 14 10

−14 −14 −14 −14 −14 −14 −10 −14 −14 −10 −10

14 14 14 14

−14 −10 −10 −10
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Knot: 910 p = 3

18

−18

Knot: 910 p = 11

−18 −10 −18 −10 −10

10 10 10 18 18

Knot: 911 p = 3

−18

18

Knot: 911 p = 11

−10 −6 −6 −2 2

−2 10 2 6 6

Knot: 912 p = 5

14 26

−26 −14

Knot: 912 p = 7

2 2 10

−10 −2 −2

Knot: 913 p = 37

−10 −10 −10 −10 −10 −10 −6 −10 −6 −10 −6 −6

6 6 6 6 10 10 6 6 6 10 10 10

−10 −6 −10 −6 −6 −6 −6

6 10 10 10 10 10 2

Knot: 914 p = 37

−2 −2 −2 2 −2 −2 −2 2 2 −2 −2 2 2 −2 2 2

−2 −2 −2 −2 −2 −2 −2 2 2 2 2 2 −2 −2 2 2

2 2

2 2

Knot: 915 p = 13

18

18

Knot: 916 p = 13

−14 −2 −10 −6 −10 −10

2 6 10 10 10 14
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Knot: 916 p = 3

−12

12

Knot: 916 p = 13

−10 −10 −2 2 10 10

−10 2 10 −10 10 −2

Knot: 917 p = 3

−30

30

Knot: 917 p = 13

6 6 6 6 14 14

−14 −6 −14 −6 −6 −6

Knot: 918 p = 41

6 6 6 10 6 6 6 10 10 6 6 10 10

−10 −10 −10 −10 −10 −10 −10 −10 −6 −6 −6 −6 −6

6 10 10 10 10 10 10 −6

−10 −10 −10 −6 −6 −6 −6 2

Knot: 919 p = 41

−2 −2 −2 −2 2 −2 −2 2 −2 2 −2 −2 2

−2 −2 −2 −2 −2 −2 2 −2 2 −2 2 2 2

−2 2 2 2 2 2 2

2 −2 2 −2 2 2 2

Knot: 920 p = 41

6 6 6 6 6 10 10 10 6 6 6 10 10

−10 −10 −10 −10 −10 −6 −10 −10 −10 −10 −6 −6 −6

10 10 10 6 10 10 10

−10 −10 −6 −6 −6 −6 −6

Knot: 921 p = 43

−6 −6 −6 −6 −6 −6 −2 −6

2 2 2 2 6 2 2 2

−2 −2 −6 −2 −6 −2 −2 −2 −2

6 6 6 6 2 6 6 6 6

2 −6 −2 −6

6 6 2 2
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Knot: 922 p = 43

−2 −2 −2 −2 2 2 2 6 10 10 14 14 18

−26 −2 −18 −10 −10 −22 2 −26 2 −26 −2 −18 −14

18 22 22 22 26 26 26 26

−6 −22 2 −26 2 −22 −2 −14

Knot: 923 p = 3

18

−18

Knot: 923 p = 5

−18 −2

2 18

Knot: 924 p = 3

0

0

Knot: 924 p = 5

−2 2

−2 2

Knot: 925 p = 47

6 6 6 6 10 10 10 14 14 18 18 22

−34 −14 −18 −30 −6 −34 −14 −18 −30 −6 −34 −10

22 22 26 30 30 30 34 34 34 34 34

−22 −30 −6 −34 −10 −22 −26 −6 −34 −10 −22

Knot: 926 p = 47

−6 −6 −6 −6 −2 −6 −6 −6 −6 −2 −2 −6 −6

2 2 2 2 2 2 6 2 6 2 6 2 6

−6 −2 −2 −2 −6 −2 −2 −2 −2 −2

6 6 6 2 6 2 6 6 6 6

Knot: 927 p = 7

−6 −6 −2

2 6 6

Knot: 928 p = 3

12

−12
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Knot: 928 p = 17

6 6 14 14 18 26 26 26

−26 −18 −6 −26 −14 −6 −26 −14

Knot: 929 p = 3

30

−30

Knot: 929 p = 17

−10 6 −10 6 −6 6 2 6

−6 −6 −6 −6 −2 6 10 10

Knot: 930 p = 53

2 2 2 2 2 6 6 6 10 10 14 14

30 −10 −14 −26 −2 −30 −2 −22 −18 −6 −30 −2

14 18 18 22 22 26 26 26 26 30 30 30

−26 10 −14 −26 −2 −30 −6 −22 −18 −6 −30 −2

30 30

−26 −14

Knot: 931 p = 5

22 38

−38 −22

Knot: 931 p = 11

−14 2 −6 2 −6

−2 −2 6 6 14

Knot: 932 p = 59

−10 −10 −6 −6 −2 −2 2 −2 −6 −6 −6 −2 −2 −2

−2 2 6 6 10 2 6 6 6 6 −2 6 6 2

2 −2 −2 2 2 −2 −6 −2 −10 −10 −6 −6

2 2 10 2 −2 2 6 10 2 6 10 2

−6 −6 −6

2 −2 6

Knot: 933 p = 61

2 −2 2 2 2 −2 2 2 2 6 −2 −2

2 −2 6 2 6 2 2 2 6 −6 2 −2

2 6 −2 6 6 −2

2 −6 −2 −2 −2 −2
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Knot: 934 p = 3

−42/5

42/5

Knot: 934 p = 23

−1498/277 −1022/277 206/277 −366/277 −250/277 −214/277

−206/277 214/277 526/277 438/277 146/277 250/277

−802/277 −146/277 −526/277 −878/277 −438/277

1022/277 1498/277 366/277 802/277 878/277

Knot: 935

Knot: 936 p = 37

−6 −6 −6 −2 −2 −2 2 6 6 10 10 14 18

−22 −2 −6 −18 6 −22 2 −6 −18 6 −22 2 −10

18 22 22 22 22

−14 6 −22 2 −10

Knot: 937 p = 5

−2 2

−2 2

Knot: 938 p = 3

42

−42

Knot: 938 p = 19

−6 6 −6 10 −2 10 6 10 10

−10 −10 −6 6 6 2 −10 −10 −6

Knot: 939 p = 5

−22 −18

18 22

Knot: 939 p = 11

−242/23 −142/23 −82/23 −190/23 −70/23

70/23 242/23 190/23 142/23 82/23

Knot: 940 p = 3

12

−12

Knot: 941
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Knot: 942 p = 7

2 14 26

−26 −2 −14

Knot: 943 p = 13

−6 −2 6 14 18 22

−22 6 −18 2 −14 −6

Knot: 944 p = 17

2 6 10 14 18 26 30 30

−30 −10 −14 −26 −2 −30 −6 −18

Knot: 945 p = 23

6 6 10 14 18 22 26 30 30 34 34

−34 −10 −26 −22 −14 −30 −6 −34 −6 −30 −18

Knot: 946

Knot: 947

Knot: 948
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β, 225
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b(7, 3), 37
Bn

b(α, β), 191, 201, 203, 217
bπ , 312
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C∞, 223
Cn, 117
C+, 251
Ĉ2, 138, 206
Ĉn, 137
Ĉ3, 123
Ĉn = Cn ∪h Tn, 117

�(t), 112
�(t1, . . . , tµ), 134
�(k#l)(t), 115
�ε , 128
�k(t), 112
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D-module, 126

E2n, 156
E1(t1, . . . , tµ), 134
Ek(A), 112
Ek(t), 112
Ê2n, 156
ε, 127
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F(i), 151
fn, 200
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0), 127
H1(Ĉ2), 120
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H = ϕ(Z)� ϕ(G′), 249
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IG, 127
IZµ, 135, 139
In, 150
index θ(A), 16
int, 106

J0, 134
Jn, 170

−k, 15
K(π, 1)-space, 48
k(a, b), 47
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k1 # k2, 19
k(q), 270
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M(t), 110
M(t1, . . . , tµ), 134
Ma,b(t), 133
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�k(t), 246

∂
∂Si

, 128
πnC, 49
ψn, 117
p∞ : C∞ → C, 104
p̂n, 117

q, 226

Rn, 118
rj , 33

S × I/h, 69
S+, 106
S−, 106
�r
i=0ciu

i , 113
σ(qk), 244
Sn, 150, 312–313

t(a, b), 133
�(t), 140
tr, 316

u = t + t−1 − 2, 113

V (k), 30
νjk , 107

Wn, 312

(ξ)ϕψ , 129
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, 107
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Z(t), 103
ZD-module, 126
ZZ, 139
ZZµ, 134, 139
Z, 103
ZG, 127
Z �α G′, 70
ZN = 〈t | tn〉, 137
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A-equivalent, 220
Alexander

knot, 139
matrix, 110, 111, 130, 137
module, 104, 110, 121, 133, 134, 139
module, satellite, 121
polynomial, 112–116, 121–122,

133–134, 140, 200, 251, 270,
280, 335

duality, 112
symmetry, 112

polynomial, reduced, 136
polynomial, roots, 120
trick, 6

alternating knot, 15, 239, 243
ambient, 2
ambient isotopic, 6
amphicheiral, 15, 227
annulus

essential, 295
aspherical, 48
associated basis, 220
associated braid automorphism, 146
augmentation homomorphism, 127
augmentation ideal, 127

band projection, 104, 123
Betti number, 120
boundary parallel, 295
boundary singularity, 11
braid, 22, 142–171

automorphism, 150
axis of, 23
closed, 23, 160
elementary, 143
frame of, 22
group, 143–145, 158
index, 319
normal form, 152
pure, 151
substitution, 175

braids, 142
isotopic, 22, 142
permutation of equivalence of, 22

branch index, 117
branch point, 14

order, 14
branching set, 117
bridge presentation, 23
bridge-number, 23
bridges, 180
Burau representation, 162, 171

reduced, 163

cable knot, 20, 294, 297–299, 305
center of knot group, 60
chess-board, 16
chord, four-fold, 11
classification of Montesinos links, 205, 210
commutator subgroup, 56, 68, 239
companion, 20
complement, 30
composite knot, 94
composition, 19
configuration space, 156
conjugacy problem, 160
Conway

algorithm, 200
potential function, 200, 246

Conway polynomial, 115, 323
covering

n-fold branched, 178
2-fold, 138
cyclic, 52, 88
finite cyclic, 52, 117–121, 137–139
infinite cyclic, 52, 104, 130, 140, 219
3-fold branched, 184

Coxeter group, 285
crossing, 8
crossing number, 191
cube with a k-knotted hole, 290
curvature total, 12
cutting along a surface, 53
cyclic covering, 52, 88

decomposing system of spheres, 96, 97
decomposition of fibred knots, 99
deformation, 5
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Dehn presentation, 51
Dehn twist, 181
Dehn’s lemma, 332
Dehn-surgery, 285
�-move, 4
�-process, 4
derivation, 127
diagram

special, 229, 232
downside, 106

ε-index, 231
elementary ideal, 134
embedded locally flat, 25
embedding, 1
equivalence, A-, 220
equivalent, 111

S-, 228
s-, 228, 245

exceptional point, 81, 244

factors, 19, 96
Fibonacci polynomials, 200
figure eight, 37, 59
finite cyclic covering, 52, 117–121,

137–139
4-plat, 25, 197
four-knot, 15, 37, 74, 76, 115, 116, 254,

265
fundamental formula, 128, 130

genus, 116, 203
canonical, 19
Heegaard, 179

genus of a knot, 18, 61, 93
Goeritz form, 240, 242
Goeritz matrix, 240, 242
graph of a knot, 16
group

Coxeter, 285
metabelian, 249
of motions, 254
of similarities, 254

group of braid automorphisms, 148
group ring, 103

half-plat, 188
handlebody, 42

Hecke algebra, 314
Heegaard

decomposition, 43
splitting, 43, 178

Heegaard genus, 179, 184
homeomorphisms, 72
HOMFLY-polynomial, 319, 322
homological properties, 30
homology

equivariant, 125
of branched cyclic coverings, 118

homotopy 1-chain, 126
Hosokawa polynomial, 136, 164, 200

ideal
elementary, 112, 134

incompressible, 332
infinite cyclic covering, 52, 104–111, 130,

140
infinite region, 15
initial section, 149
intersection number, 106
invertible, 192
isotopic, 1, 3

ambient, 3
isotopic by moves, 6
isotopy

-s, 156, 171
ambient, 2
level-preserving, 1

isotopy of braids, 142, 171

Jacobian, 130
Jones polynomial, 323

knot, 1
820, 78
algebraic knot, 27
alternating, 15, 239, 243
alternating prime, 248
amphicheiral, 15, 42, 73, 227, 260
bilinear form, 226
braid-like, 66
branched covering, 117
cable, 20, 294, 297–299, 305
clover leaf, 35
companion, 38
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composite, 19, 91, 94, 96
diagram, 9
diagrams, 9
doubled, 20, 140, 292
equivalent, 9
factor, 267
fibred, 68, 71, 99, 116, 124, 218, 237
figure eight, 37, 59
four-, 15, 37, 74, 76, 254, 265
granny, 284
inverted, 15
invertible, 15, 42, 47, 73, 192
iterated torus, 27
mirrored, 15
mirror image, 15, 227, 322
Montesinos, 204, 218
non-alternating, 15
non-trivial, 36
not amphicheiral, 48
oriented, 4
period of, 266, 280, 335
periodic, 266, 280
pretzel, 123, 280
prime, 94, 218
product, 19, 51, 92, 115, 291, 296,

299
projection, 9, 363–365
quadratic form, 226
ribbon, 26
satellite, 38
signature, 227
signature of a, 335
slice, 25
square, 284
tame, 3
torus, 47, 51, 61, 79, 95, 132, 137,

140, 236, 275, 285
trefoil, 2, 35, 59, 74, 76, 115, 116,

132, 138, 188, 322
trivial, 2
twisted, 283, 287
2-bridge, 25, 37, 59, 94, 139, 198,

264, 265
type of, 285
wild, 2, 3

knot group, 32, 39
center of, 60

second commutator group of, 39
knots

combinatorially equivalent, 5
composition of, 19
equivalent, 3, 4, 6
isotopic by moves, 5

knottedness, 11

law of unique prime decomposition, 96
lemma of Neuwirth, 71
lens space, 90
link, 1, 134

Alexander module, 134
Alexander polynomial, 134
Borromean, 136
invertible, 192, 212
Montesinos, 204
split, 11
splittable, 11, 135

linking number,
dihedral, 263, 264, 351

longitude, 19, 30, 39, 47
longitudinal invariant, 258
loop theorem, 332

manifold
aspherical, 209
sufficiently large, 332
torsion-free, 209

mapping class group of Dn, 148
mapping classes, 213
Markov move, 165
Markov-equivalent, 165
meridian, 19, 30, 39, 47, 117
mirror image, 15, 227, 322
Montesinos link

amphicheiral, 212
invertible, 212

move, Reidemeister, 9
Murasugi congruence, 272

normal dissection, 146

order of a knot, 8, 243
oriented tangle, 280

partial derivations, 128
pattern, 20
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period, 335
period of a knot, 266, 280
peripheral group system, 40
peripheral system, 40
Perko identities, 264
plat, 24, 146
point

double, 8
exceptional, 81, 244
multiple, 8

polynomial
Alexander, 112–116, 121–122, 133,

134, 140, 200, 251, 270, 280,
335 280, 335

Conway, 115, 323
HOMFLY, 319, 322
Jones, 323

presentation
braid, 145
bridge, 23, 146
cable, 305

pretzel knot, 123, 280
prime knot, 94, 218
product knot, 19, 51, 92, 96, 115, 227, 291,

296, 299
product rule, 127
projection, 8

regular, 8
regular alternating, 243
special, 229, 230
special alternating, 235, 236

projection plane, 8
projections
properly embedded, 332
Property P, 41, 51, 285, 287, 291, 292, 294

quadratic form
Trotter, 227, 248
Goeritz, 248

reduced Burau representation, 163
regions, 15
relative homology, 50
representation

abelian, 249
dihedral, 253, 256, 264
metabelian

k-step, 249
metacyclic, 252
trivial, 249

rooted tree, 234, 328

satellite, 20, 291
Alexander module of, 121
commutator subgroup of, 62

Seifert
fibration, 81
fibre spaces, 71
matrix, 107, 108, 115

Seifert fibred manifold, 79
Seifert matrix, 220, 232, 341

reduced, 221
Seifert surface, 17
signature, 326, 335
signature of a knot, 227
similar homeomorphisms, 72
similarities, 251
skein polynomial, 319
skein relation, 320
skein-tree, 321
Smith conjecture, 333
spanning arc, 295
sphere theorem, 332
splittable, 135
surgery, 285
symmetric union, 279
symmetry, 15, 335
symmetry group, 217

tangle
oriented, 280
rational, 102

theorem
Alexander, 172, 331
Alexander–Schönflies, 5
Alexander–Tietze, 5
Bott–Mayberry, 328
Burde–Zieschang, 79
classification of Montesinos links,

205, 210
Hilden–Montesinos, 184
Jordan curve, 5
loop, 41
Markov, 165
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matrix tree of Bott–Mayberry, 234
Nielsen, 80
Pannwitz, 11
Schoenflies, 49
Seifert–van Kampen, 331
sphere, 332
Stallings, 68, 71
Waldhausen, 40, 79, 333

3-manifold, fibred, 71
Torres-condition, 135
torsion, 191
torus knot, 47, 51, 61, 79, 95, 132, 137,

140, 236, 275, 285
torus link, 236
tree

rooted, 234
skein-, 321

trefoil, 2, 35, 59, 74, 76, 115, 116, 132, 138,
188, 322

twist knot, 283, 287
type of a knot, 285

units, 139
unknot, 2
upside, 106

valuation, 234

Wirtinger
class, 251
presentation, 33
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