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THE INDICES OF TORSION-FREE SUBGROUPS 
OF FUCHSIAN GROUPS 

R. G. BURNS AND DONALD SOLITARI 

ABSTRACT. Elementary algebraic techniques are used to obtain the precise possible 
indices of torsion-free subgroups of finite index of finitely generated Fuchsian 
groups (and related groups). 

Introduction. In a recent paper, Edmonds, Ewing and Kulkarni [3] announced the 
precise finite indices possible for a torsion-free subgroup of a finitely generated 
Fuchsian group (of orientation-preserving isometries of the hyperbolic plane). The 
proof (as described by the authors) is of a geometric-topological nature (they state 
that it contains "an involved sequence of explicit constructions of tesselations 
coupled with inductions and branched covering arguments"). In the present paper 
we give an elementary algebraic proof based on the permutation representations of 
the triangle groups, given by Fox [4] in his proof of Fenchel's conjecture, that every 
finitely generated Fuchsian group has a torsion-free subgroup of finite index. (Note 
that Fox's paper contains an error, corrected by Chau [1].) 

Preliminaries. The finitely generated Fuchsian groups are characterized algebra- 
ically by the presentation 

(el,,.. .,er, al, bl,,... ag, bg,y,,...,y,; 

(1) ~~~e, ,. ... ,etr, [al, bJ ... [ag, bg] e, ... erYl ... Ys) 

where r, g, s > 0 but not all 0, mi > 1 for i = 1,. .. ,r, and [a, b] denotes the 
commutator aba'b-'. The finitely generated non-orientation-preserving subgroups 
of the hyperbolic plane which contain no reflections are characterized algebraically 
by the presentation 

(2) Kei,. ,er, aM,. ,ag, yr,...,y5; ej ,. ..emr al a e .a2e* ery * *. 

wherer,g,s2Obutnotall0, m,> 1 fori= 1,. ..,r. 

THEOREM 1 (EDMONDS, EWING AND KULKARNI). Let c = lcm(m1,. . . ,mr) be the 
least common multiple of the exponents on e ,...,er in (1) (or in (2)) [note: if r = 0 
then c =1], and let d be the remainder mod 2 of 25 times the number of even m M,... ,m 
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having the same exponent on 2 in their prime factorization as c. A torsion-free subgroup 
of finite index k exists in an infinite group with presentation (1) (or (2)) iff k is divisible 
by 2dc. 

In our proof of this theorem, the following two well-known results will be used 
repeatedly. 

LEMMA 1. A subgroup of finite index in a group with presentation (1) or (2) also has 
such a presentation. D 

LEMMA 2. Any element of finite order in an infinite group with presentation (1) or (2) 
is conjugate to a power of some e,. Moreover, the order of e, is mi. D 

For algebraic proofs of these lemmas see Hoare, Karrass and Solitar [5 and 6]. 
We shall also use the following result of Fox [4, cases II and III], which has an 

elementary algebraic proof (corrected in Chau [1]). 

LEMMA 3. If k, m and n are three positive integers with k > m, n, such that mnk is 
odd, or else mn is even and k > m + n, then there exist permutations a and w in Sk 

(the symmetric group on k symbols) of orders m, n respectively such that aw (1 
- k). O~ 

We can now give a proof of the theorem. Throughout G will denote an infinite 
group with presentation (1) or (2) unless otherwise indicated. The following lemma 
establishes the necessity of the condition on the indices of torsion-free subgroups of 
finite index. 

LEMMA 4. A torsion-free subgroup of finite index in an infinite group with presenta- 
tion (1) or (2) must have index divisible by c. Moreover, if d - 1 then the index must be 
divisible by 2c. 

PROOF. If H is a torsion-free subgroup of G and J is a finite subgroup, then 
obviously J has trivial intersection with any conjugate of H. Hence each (J, H)-dou- 
ble-coset of G has IJ I H-cosets in it, and therefore [G: H] is divisible by IJ I. Thus 
c [G: H]. Moreover, each element of J defines a regular (i.e., fixed-point-free) 
permutation of the H-cosets. Hence, if [G: H] is an odd multiple of c, then each ei 
with even order mi having the same 2-exponent as c, defines a permutation with an 
odd number of even cycles, i.e., an odd permutation, while the other ei define even 
permutations. But the product relation in (1) or (2) must define an even permutation 
(since it defines the identity), and moreover, a commutator or a square defines an 
even permutation. Hence, if s = 0, the product of the permutations corresponding to 
the e, must be even. Thus, if d = 1 we get a contradiction of our assumption that 
[G: H] is an odd multiple of c. D 

Sufficiency. An infinite torsion-free group with presentation (1) or (2) has r = 0, 
and clearly has an infinite cyclic quotient group and, therefore, torsion-free sub- 
groups of any finite index. Hence, to prove the theorem, it suffices to show that any 
group G with presentation (1) or (2) has a torsion-free subgroup of index c if d = 0, 
and of index 2c if d = 1. 
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Certain cases on the values of r, s and g are relatively easy, and we first dispose of 
these. 

When r= 0, G itself is torsion-free and c = 1, d = 0, and so this case is clear. 
When s > 1, G is a free product of cyclic groups, and may be mapped onto a cyclic 
group of order c, with e, being mapped into the (c/mr)th power of the generator 
while the other generators are mapped into 1, and so this case is also clear. Thus we 
may assume from now on that s = 0 and r > 1. 

If r = 1 then, since G is infinite, g > 1. For (1) we can map G into D2C 

(a, b; a2c, b2, (ab)2), the dihedral group of order 4c, with e- a -4, al a2, b- b 
if c is odd, and el a 2, al a, b- b if c is even; the other generators are 
mapped into 1. The preimage in G of gp(b) under the described map will be 
torsion-free and have the required index. For (2) we can map G onto Z. = (a; ac), 

the cyclic group of order c, with e -2 a2, al a, if c is odd, and map G onto 

Z2c = (a; a2c), the cyclic group of order 2c, with el a-2, al a, if c is even; the 
other generators are mapped into 1. The kernel of this map will be torsion-free and 
have the required index. 

If r = 2 then, again, g > 1. If d = 1 or c is odd we reduce this case to a previous 
one by mapping G onto the group with presentation (1) or (2) and r = 1, ml = c, in 
effect by mapping the cyclic groups generated by e, and e2 into their amalgamated 
direct product, a cyclic group of order c generated by e,e2, and leaving the other 
generators as they are. If c is even and d = 0, then ml and m2 both have the same 
highest power of two in them, say 2P. Let mi = 2Pn, for i = 1, 2, and let the cyclic 
group gp(a) of order 2c be the direct product of the cyclic group gp(u) of order 
2P1 and the cyclic group gp(v) of odd order q. If G has presentation (1), then we 
map G into the dihedral group D2C by sending e- u2v' and e2 -* U2vX where 
t = q/n1 and x = q/n2. Then e e2 is mapped onto a fourth power of some element z 
in gp(a). Hence, if a -2 z2, b- b, and the other generators are sent into 1, the 
image of G will be gp(a2, b) and the preimage of gp(b) will be torsion-free with 
index c. If G has presentation (2) we map G into D2C as above (but of course there is 
no b 1). The kernel of this mapping will be torsion-free with index c. 

If g > 1, then by mapping all al, b, into 1 and leaving the e,'s as they are, we 
clearly reduce the problem to that of finding torsion-free subgroups of the ap- 
propriate index in the finite and infinite groups having presentation (1) with r > 3 
and g = s = 0, i.e., 

(3) G = (el,, ...,er; eM1 '. .. leMr I el * *er r ,> 3 . 

This group will be finite iff r = 3 and (mi, m2, M3) is, in some order, one of the 
triples (2, 2, n), (2, 3, 3), (2, 3, 4) or (2, 3, 5). In each of these cases, the trivial 
subgroup 1 is torsion-free and has the appropriate index (which is the order of G) 
(see Coxeter and Moser [2]). We may therefore assume that group G in (3) is infinite. 

We shall use induction on c. 
Case 1. d = 0, c is odd, and the mi are coprime in pairs. 
Let p, P2, p3 be three distinct (odd) primes dividing three of the min, say, mlI, IM2, 

m 3, respectively, with p > P2, p3. By Lemma 3 there exist permutations a of order P2 
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and X of order p3 in Sp, the symmetric group on p objects, such that (1 ... p) aw. 
The mapping er P(1 .p), e2 -* , e3a-', and e I1 for i>3, defines a 
homomorphism p from G into Sp. Since the image pG is transitive in Sp, the 
stabilizer of I in pG has index p in pG; hence, if H is the preimage of the stabilizer of 
1 under p in G then [G: H] = p. Clearly, from Lemma 2, the orders of the elements 
of H divide those of G; moreover, some power of e, is in H iff p divides that power; 
also, some conjugate of e2 and of e3 is in H. It then follows from Lemmas 1 and 2 
that H has presentation (1) or (2) with the lcm of the powers of its e, equal to c/p. 
The torsion-free subgroup of H of index c/p, which exists by inductive hypothesis, 
will then have the required index c in G. 

Case 2. d = 0, c is odd, the ml are not coprime in pairs. 
Let p be an odd prime which divides at least two of the m,'s, say M,,...,Mk, 

where k > 2, and no other mi. Let f= 0 if i > k, f= 1 if 3 < i < k, while f= 1 

and f2 p- 1 if p divides k-2, but f1 = f2= (2-k)/2 mod p if p does not 
divide k -2. Clearly the mapping ei -J f, defines a homomorphism p of G onto Zp, 
the cyclic group of integers mod p. Some power of e, for 1 < i < k is in H, the 
kernel of p, iff p divides that power. Hence, by Lemmas 1 and 2, H has a 
presentation (1) or (2) with the lcm of its ml equal to c/p. The subgroup of H given 
by the inductive hypothesis is torsion-free with index c in G. 

Case 3. d = 0 and c is even. 
Suppose c = 2Pq where q is odd. Since d = 0 and c is even, p > 0 and there are an 

even number of m,'s such that 2P divides mi, say 1 < i < k, where k is even. Define 
p(i) to be the highest power of 2 in m,. We define a homomorphism p of G onto Z2k, 

the cyclic group of order 2P, by mapping ei to 2P/2P(') for 2 < i S r, and mapping 
e1 to f where f is the odd number such that f added to the sum of the images of the 
other e, is 0 mod 2P. (Since k - 1 of the images of the other ei's are 1 and the 
remaining images are even, it follows that f is indeed odd.) Clearly a power of some 
e1 is in H, the kernel of p, iff 2P(') divides that power; moreover, [G: H] = 2P. 

Hence, by Lemmas 1 and 2, H has only elements of odd order, and in the 
presentation (1) or (2) for H, the lcm of its mi is q= c/2P. The torsion-free 
subgroup of H guaranteed by the inductive hypothesis then has index c in G. 

Case 4. d = 1, at least 2 even m,. 
Suppose ml, M2 are even, where ml has the same 2-exponent as c. Consider the 

homomorphism p of G onto Z2, the group of integers mod2, given by e, - 1, 

e2 1, and all other ei - 0. Clearly a power of e1 or e2 is in H, the kernel of p, iff 
the power is even; clearly [G: H] = 2. If m, is the only mi with the same 2-exponent 
as c, then H has a presentation (1) or (2) in which the lcm of its mi is c/2. Now H 
cannot have a torsion-free subgroup of index c/2, since then G would have a 
torsion-free subgroup of index c, contrary to Lemma 4. Hence, by inductive 
hypothesis H has a torsion-free subgroup of index c = 2(c/2), and this has index 2c 
in G as required. 

On the other hand, since d = 1, if some other mi, in addition to mi, has the same 
2-exponent as c, then there are at least three such, so we may suppose the lcm of the 
presentation (1) or (2) for H is still c. Using a Reidemeister-Schreier rewriting 
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process to obtain a specific presentation for H with 1, e 1 as Schreier coset 
representative system (see Magnus, Karrass and Solitar [7]), and simplifying a bit, 
we obtain a presentation of type (1) with g s = 0 and generatorsf1 = e2, f2= e2 

f3= e3, . fr = er, and g3 ee3e1 ,g- = elere 1'. The exponents in the power 
relations are ml/2, m2/2, m3,... ,mr, m3,... ,mr. Hence, the number of generators 
with maximum 2-exponent is even, i.e. for H, d = 0 and c is even, Case 3 applies and 
therefore H has a torsion-free subgroup of index c which is of index 2c in G as 
required. 

Case 5. m even, ml odd for i > 1, some pair of ml not coprime. 
Let p be an (odd) prime which divides at least two of the m,'s. Then we construct 

a homomorphism of G into Z as in Case 2, and a subgroup H with [G: H] = p and 
with a presentation (1) or (2) in which the lcm is c/p. Now by inductive hypothesis 
H has a torsion-free subgroup of index c/p or 2c/p. Hence G has a torsion-free 
subgroup of index 2c, since one of index c is ruled out by Lemma 4. 

Case 6. ml even, all the ml coprime in pairs. 
Let p, m be odd primes, p > m, dividing distinct odd m,, and let n = 2. Then 

p, m, n satisfy the hypothesis of Lemma 3, and hence as in Case 1 we can find a 
subgroup H of G such that [G: H] = p and H has a presentation (1) or (2) in which 
the lcm is c/p. By inductive hypothesis H has a torsion-free subgroup of index c/p 
or 2c/p. Hence G has a torsion-free subgroup of index 2c as required, since one of 
index c is ruled out by Lemma 4. 
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