
T H E  G E N E R A T I N G  I N T E G R A L  A N D  T H E  C A N O N I C A L  

M A S L O V  O P E R A T O R  IN T H E  WKB M E T H O D  

V.  S. B u s l a e v  

This paper  contains a new approach to the resul ts  obtained by V. P. Maslov [1] on quas ic lass ica l  a symp-  
totic forms (the WKB method). 

§ I .  Q U A S I C L A S S I C A L  A S Y M P T O T I C  F O R M S  

1. The WKB Method. The asymptotic behavior of the solutions of differential equations having a small 
p a r a m e t e r  h in the der ivat ives  frequently can be formulated in the form 

( - - ]  u~ exp i S (1.1) 
k~0 \ i / h ' 

where S is a rea l -va lued function, u k is a complex-valued function, and i is the imaginary unit. Under these 
conditions the functions S and u k are  determined by formal  substitution of (1.1) into the equation and a com-  
par i son  of the coefficients of the powers  of h. In other words, it is assumed that (1.1) is a formal  solution 
of the differential equation. This method of formulating the asymptotic forms is usually called the WKB 
method. 

In quantum mechanics  the asymptotic form descr ibed above is s imilar ly  called quasic lass ieal  for both 
the nonstat ionary 

and the stat ionary 

iho, , , ( , ,  o , , ,  t)],, * * t, 
o, + (t,  = (h, 

(1.2) 

~.i o~. " j (1,3) 

Sehr~dinger equations, where t, EER, ~ER n. Th i s  is connected with the fact that the functions S and u k sat is-  
fy equations that are  formulated in t e r m s  of the corresponding c lass ical  dynamic sys tems in the phase 
states M = R n ~ R  n generated by the Hamilton function 

i 
H:- .H( t ,  x ) , .  ~-p~- i -v( t ,q) ,  x = { q , p } ~ : M .  (1.4) 

For  (1.2) the function S sat isf ies  the Hamil ton-Jacobi  equation 

0s . fq,0s/  
ot ~ , t ~ U  - ° '  (1.5) 

and for (1.3) it sat isf ies  the equation for "curtailed action." As far  as the coefficients u k are concerned,  

they obey a recurs ion  system of ordinary total differential equations with respect  to the t ra jec tor ies  of the 
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dynamic system. Under certain definite conditions such asymptotic representa t ions  can be used to t race  
the transit ion f rom quantum-mechanical  dynamics to c lassical  dynamics for h --* 0. 

In this paper  we introduce and investigate a class  of asymptotic representa t ions  which is broader  than 
the expansion (1.1). The necess i ty  of broadening the class  of asymptotic representa t ions  is dictated by the 
well-known difficulties which the conventional approach e n c o u n t e r s .  For  a stat ionary equation these diffi- 
culties are manifested in the appearance of inflection points, caustics,  etc. Their  nonstationary equivalent 
is noninvariance of formal  solutions of the form (1.1) with respec t  to dynamics.  Let  us dwell on this in 
g rea te r  detail. 

Assume that we are dealing with the formal  solution of Eq. (1.2) which has the form (1.1) and becomes 

~ /  h ,8 0 i ~o [--7- u, e x p - -  a (1.6) 

for t = 0. Under these conditions the Hamil ton-Jacobi  equation (1.5) is complemented by the initial condition 

s (t, ~) 1 . . . .  s °{~ 

It is well known that the Hamil ton-Jacobi  equation is equivalent (with an accuracy  up to t e rms  S which 
depend only on t) to a situation in which the manifold 

(1.7) 

rt = {{q, ~ } l q ~ :  8.} (.1.8) 

moves in the space M due to the effect of the diffeomorphism m t of this space, which is generated by the 
canonical sys tem 

0 - - [  
aHax, i==(i o)' (1.9) 

where I is an identical t ransformat ion of R n, so that 

Ft - mtF o. (1.10) 

Note that the function S: R n ~ R  is res tored  from a manifold in the form 

with an accuracy of up to a constant te rm.  We examine the manifold 

Fo If as°(q)l (1.12) 

From the above it follows that Eq. (1.5) with the initial conditions (1.7) has a unique solution (only for those 
t (t 1 < t < tz, tl < 0,: t 2 > 0) for which the manifold mt I~° remains  uniquely projectable  onto the plane Q, Q = 
R n @ 0; in other words, it is  a solution for those t for which mt F° p r e s e r v e s  the representa t ion  

{{q, f(q)} lq(5 R"} (1.13) 

with a cer tain f :  Rn--*R n. In this c a s e f  = 0S/~q. We could verify the fact that for  these same t the r e c u r -  
sion sys tem of equations for the coefficients Uk, complemented by the initial conditions Uk] t = 0 = u~, is eas -  
ily solved. 

Assume the expansion (1.6) is the asymptotic form of a cer tain function ¢0 = ~0(h ' ~) for  h--~ 0. We ex- 
amine the solution of the Cauchy problem defined by Eq. (1.2) and the initial condition 
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•(h, t, g)[t=0 = *°( h, ~). (1.14) 

Under well-known assumptions the formal  solution formulated above will be the asymptotic form of the ex- 
act  solution ¢(h, t, O.  What will be the asymptotic form of this solution for t}(t 1, tz)? 

The class  of formal  expansions introduced below is invariant relative to dynamics and can be used 
for  the asymptotic representa t ion of the solutions of the Cauchy problem (1.2), (1.4) for all t, tER. I nva r i -  
anee relat ive to dynamics  means  that the formal  solution belonging to this c lass  and having an initial condi- 
tion f rom this same c lass  exists for  all t. Of course,  it is assumed that the diffeomorphism m t exists for 
all t .  

2. The Content of the Paper .  The manifolds of the form (1.11) which were involved in the previous  sub- 
section form a subclass  of a cer ta in  special c lass  of n-dimensional  manifolds in M - s o - c a l l e d  Lagrange 
manifolds; an n-dimensional  manifold r in M is called a Lagrange manifold if the contraction of the differen- 
tial fo rm F on w = 1/~(pdq-qdp) is  closed. A general  Lagrange manifold has  the form (1.11) only when it 
is uniquely projected onto Q. 

The function S can be charac te r ized  by stipulating the Lagrange manifold F, which is uniquely p ro -  
jected onto Q, and the pr imit ive  ~. form of ~ = co + 1/z d(qp) on it: 

S ( q ) = Y . ( { q ,  p}), {q, pI~F, q~l~ ~. (1.15) 

The coefficients Uk: R n --* C of the asymptotic representa t ion (1.1) can be treated as functions on F. There-  
by the representa t ion  (1.1) becomes  the set {F, ~., v}, where v is a formal  se r ies  of functions on P. The gen- 
eral izat ion of the asymptotic representa t ions  which is examined here consis ts  in the fact that the represen ta -  
tions are  juxtaposed with an a rb i t r a ry  Lagrange manifold which is no longer necessar i ly  projected uniquely 
onto Q. 

We begin by studying asymptot ic  representa t ions  that correspond to Lagrange manifolds which are  
uniquely projected onto a cer tain a rb i t r a ry  Lagrange plane A (i.e., onto a certain linear Lagrange manifold). 
The general  form of the Lagrange plane is 

A = g-~Q, (1.16) 

where g is a t r a n s f o r m a t i o n f r o m  the group G of l inear (inhomogeneous) canonical t ransformat ions  of M. 
The quantiza:tion of the space M genera tes  the unitary representa t ion V B L2(R n) of the group of t r ans fo rma-  
tions G in A. It is natural  to Choose the formal  express ions  

xn / h ',~ e x P h  S (1.17) V(g)% ~ = Z5/--:-J uk 

as the asymptotic  representa t ions  which correspond to Lagrange manifolds that are uniquely projectable on- 
to A. This can be supported by the argument that in choosing the plane Q to play the role of the configura- 
tion plane in M, the quantum-mechanical  state represented by the element 0, ~bE L2(R n) will be represented 
by the element V-l(g)O. 

On the next step finite or  infinite sums of express ions  of the form (1.17), which are  connected with 
the a rb i t r a ry  Lagrange manifold 1 and the primit ive ~2 (or Z) form of co (or (~) on it, are introduced for the 
asymptotic representa t ion of the function R n --* C. It turns  out that such asymptotic representa t ions  already 
have the proper ty  of invariance relat ive to dynamics.  We designate these representa t ions  by the letter ~ .  
Representat ions  of the type ,I, play a dual role in our analysis.  On the one hand they are included as formal  
solutions of equations of the type (1.1) or (1.2), r ega rd less  of asymptotic applications. In this connection it 
is necessa ry  to develop a cer tain formal  calculus, and, in par t icular ,  it is necessary  to define l inear opera-  
t ions on ~,, as well as differentiation ih(d/dt) and the action of an operator  of the SchrSdinger type. On the 
other hand, g, must  generate  a sequence of functions ~,n: R n ~ C, N = 0, 1, 2 . . . . .  which a r eused  for asymp-  

.v ' h ,k 
totic representat ion in the same sense as the functions ~z I T )  u~exp ~ S are used in the classical  WKB 

k=0' h 

method. The resul t  is the use of the formal  solutions for the asymptotic representat ion of the exact solutions. 
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In our analysis the center of gravity is concentrated on formal construction, and the asymptotic  applications 
are  touched on only in passing.  

Different sums of expressions of the form (1.17) can generate  the same asymptotic representat ion ~I,. 
It turns out that ~I, (with an accuracy of up to natural identity) can be brought to a one- to-one relationship 

with the sets  {F, ~2, #}, where # : :  ~ ('__hh ]~ , and # k  are  smooth complex-valued measures  on r . *  The 
~>~0" i / 

t ransit ion ¢ ~--*{F, ~, #} is accomplished by means of the symbolic generat ing integral 

V(~)  = i p-(dx)K~r, e>(~, x), (1.18) 

where K<F, ~2> is a certain universal  kernel.  We arr ive  at this integral by approximating F by means of 
tangential Lagrange planes A a at cer tain points x a of the manifold F and represent ing • by means of a sum 

of the form ~, V(ga)~¢.a, where the c a r r i e r  ~o~ is localized in the vicinity of x a in a definite sense. The inte- 

gral  (1.18) originates as a resul t  of the natural transit ion in the limit in this construction.  Using such an 
integral, it is possible to descr ibe  the basic operations on ~I, ra ther  simply. 

This paper  originated during a study of the papers  by V. P. Maslov, who was the f i rs t  to overcome 
the shortcomings of the conventional approach. The Maslov presentat ion was formulated on the basis  of 
Eqs. (1.17) in which g was reduced merely  to a change in the ro les  played by cer ta in  components of the co-  
ordinate vector  q and the momentum vector  p. An examination of a rb i t r a ry  g immediately led to a conve- 
nient representat ion of ~, by means of the generat ing integral.  The canonical operator  used by Maslov was, 
of course,  essential ly equivalent to the generating integral (if we examine only the leading t e r m s  of the asym-  
ptotic representat ions,  as is done by Maslov). However, the generating integral has the advantages residing 
in the fact that its definition is explicitly invariant and does not include such a concept as the index of a 
curve on a Lagrangian manifold (the Maslov index). Note s imilar ly that by virtue of the transi t ion f rom the La- 
grange manifolds themselves (on which the pr imi t ive  form of ~I, may not exist) to their  covering manifolds 
(on this see §2 for g rea te r  detail) we can examine asymptotic representa t ions  which are  generated by arbi-  
t r a ry  Lagrange manifolds and not solely by manifolds which satisfy the "quantization conditions" that occupy 
an important position in the Maslov construction. Besides, these conditions originate automatically f f a symp-  
tot{c applications t o  stationary equations of the type (1.3) are  examined (see §4). 

We descr ibe  the plan of our subsequent presentation. In §2 we have collected the necessa ry  informa-  
tion from classical  and quantum mechanics,  and we have also given a new formula for the Maslov index. 
The last  section of this paperhas  points in common with the papers  by V. I. Arnol 'd  [2] and D. B. Fuks [3] 
which were devoted to a clarif icat ion of the topological nature of the Maslov index. §3 is centra l :  here  we 
formulate the generating integral and clarify its relationship to the Maslov canonical operator .  In §4 we ex- 
amine the Cauchy problem for an equation of the Schriidinger type 

ih ~ = ,~t ~v (1 . !9 )  
d/ 

and discuss  the asymptotic expansions. A general  descript ion of the c lass  of opera tors  that can play the 
role of the operator  Jf under these conditions is given. 

The author deeply thanks L. B. Faddeev for his valuable discussions.  

§2 .  T H E  P H A S E  S P A C E  A N D  Q U A N T I Z A T I O N  

1. The phase space. The unitary space C l, which is treated as a real  space, is called the phase space 
M. The points of M will be designated by x and a. The real  and imaginary par t s  of the sca la r  products  
(. ,  .) + i [ - ,  .] in C n define a Hermitian and simplectic s t ructure  on M. The complex s t ructure  is specified 
by the operator  J which corresponds to multiplication by i in cn ;  under these condRions, [ . ,  .] = ( o., J .) .  

* The primitive form f~ is introduced instead of E merely for convenience, and instead of p. we could haveex- 

amined v = -~- v~, where Vk: F - - C  and v k = (d#k/ds), and s is an element of area  on F.  
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We examine the differential form o~ = 1/2 [x, dx] on M. The n-dimensional  submanifold r is called La-  
grangian in M if the form o~1i- is closed. The l inear Lagrange manifold A is called a Lagrange plane. The 
subspace A is a Lagrange plane only when the form [., .] is nullified on it. The set of Lagrange planes is 
designated by A, and the set of Lagrange subspaces is designated by A0. 

We fix Q, QEA. Q is assumed to be a Euclidian space with a sca lar  product qp = (q, p), q, p EQ. The 
space M can be treated as the d i rec t  sum of two copies of the space Q, and under these conditions the identi- 
fication of xEM and the pai r  {q, p}, q, pEQ, is given by the formula x = q + Jp. The le t ters  q and p will al- 
ways designate the components of the pai r  x = {q, p~. 

2. The Group G. The diffeomorphism m of the space M is called canonical if it p r e s e r v e s  the form 
dw. The diffeomorphism m will be canonical only when dmESp(M), where dm is the differential of m, and 
Sp(M) is the simpletic group of M (i.e., the group of nondegenerate l inear t ransformat ions  of M which p r e -  
serve  [., .]). The canonical diffeomorphism converts  a Lagrange manifold into a Lagrange manifold. 

We examine the universal  covering group SOp(M) of the group Sp(M). Its elements will be designated 
by A, and/~ will designate their  canonical project ions onto Sp(M). The elements S~p(M) are  naturally pa ra -  
met r ized  by the tr iplet  ~ ,  5, p} ,  where 0, 5, p are l inear t ransformat ions  of Q, and ~ and 5 are symmet r i -  
cal t ransformat ions .  In these te rms,  A = expJ®exp J~0, 5~exp{p,- tp},  where ® = ~ ,  $~ and (., .~ are quasi-  
diagonal block ma t r i ce s  of the 2 × 2 type which define the t ransformat ions  of M and correspond to the ex- 
pansion M = Q + Q. ,~ is used to determine 2J® uniquely. After  ® has been fixed, 5 and p are  found in a 
unique manner .  

Assume G is the half-l ine product  of the l inear group of the space M and S~(M). The elements  of G 
will be designated boy the let ter  g. They are  pa i r s  g = {a, A}, where a E M. The group G generates® the group 
of t ransformat ions  G of the®space M, which operate according to the formula gx = gx = a + Ax, and is a uni- 
ve r sa l  covering group for G. The group G is none other than the group of l inear (inhomogeneous) canonical 
d i f feomorphisms of M. 

The general  form of the Lagrange plane is:  A = gQ, where gEG. The set A0 of Lagrange subspaces 
can be interpreted as the homogeneous space of the group Sp(M), and it can easily be established that each 
AE A0 is representable  in the form A = (expJO)Q, where exp 2J® is uniquely defined according to A. 

3. A Lagrange Pai r .  Assume F i s  a connected Lagrange manifold. In our subsequent analysis  E will de- 
signate the universal  covering space of the manifold F. We similar ly  introduce the covering space E(w) 
whose charac te r i s t i c  subgroup is the normal  divisor X(~o) in the group ~I(F) which is formed by the c lasses  

of loops having the proper ty  I ~0 : 0 .  On E and E(w) there exists an original ~ : E ~ R of the form w ; here  

the original takes on different values at different points in each layer  of the space E(w). Each of the spaces 
E or E(~o) has its advantages from the standpoint of the subsequent analysis.  The advantages of E(w) are 
connected with the uniqueness of a juxtaposition of the type ~' *--*{E(w), ~, ]~ (see §1 and, for g rea te r  detail, 
§3), and the entire analysis  could be formulated on the bas is  of E(w). However, cer tain formulat ions are 
s impler  if we use E. For  us it is convenient to assume that E is equivalent to E(w) in the f i rs t  stage of the 
analysis  right up to par t  2 of §4. La ter  on this assumption is dropped, and we use E only. 

The aggregate < F, ~ > is called a Lagrange pair .  Assume that the representat ion ~: E - - G  has the 
proper ty  ~'x = {x, A (x)~, where A (x)Q is paral le l  to the plane which is tangential to E at the point X. The 
aggregate < F, ~, T> is called a Lagrange tr iplet .  

Assume < F, g2, • > is a Lagrange tr iplet  and g = (a ,  A} EG. We will in terpret  g< F, ~, ~" > as a Lagrange 
tr iplet  < gF, ~g, g~>, where ~g(x) = ~ (g-ix) + l/2[a, x], xEgF. We define g< F, ~> analogously. 

The n-dimensional  submanifold F in M is called uniquely projectable onto Q* if it has the form ~{ q, 
f(q)}[ qED~, where f :  D --~Q and D is an open set in Q. If D is singly connected, then the submanifold is 
Lagrangian only when a function S: D ~ R exists which is such that f = 0S/0q. Under these conditions<F, ~>, 
where ~ (x) = S(q)-  1/2 q [0S(q)/~q] and x = {q . . . .  ~ EF, is a Lagrange pair .  

4. Quantization. The quantization of M is defined (see, for example, [4]) as the representa t ion K of 
the space M in the set of selfconjugate opera tors  of the Hilbert  space ~ which has the fol lowingproperty:  the 

* We will no longer use the definition (1.13). 
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unitary ope ra to r s  W(x) = exp(i/h)K(x) fo rm a pro jec t ive  r ep resen ta t ion  of the l inear  group of the space  M in 
such a way that W(xt)W(x 2) = exp(i/2h)[x 1, x2]W(x 1 +x~), where  h is a st ipulated constant,  hEA = (0, b). All 
i r reducib le  r ep re sen ta t i ons  of quantization are  uni tar i ly  equivalent;  he re  the ope ra to r s  which es tabl ish  such 
equivalence a re  defined with an accuracy  of up to a complex fac tor  c, lcl = 1. 

Schr~idinger quantization of the phase  space M is that quantization which is such that ~0 = L2(Q), and 
the ope ra to r s  K(x) a re  st ipulated by the different ial  express ion  (K(x)f)(~) = [(qO + {h/ i )p(O/OO]f(O,  ~ EQ. 
This  quantization is  i r reducib le .  

The action of the group G is  natural ly  defined in t e r m s  of the quantization G: K ~ gK = AK + aE,  where  
(AK)(x) = K(tAx) and  (aE)(x) = (a, x)E. It is  easy  to show that gK is an i r reduc ib le  quantizat ion if the quanti-  
zation K is  i r reducib le .  There fo re ,  uni tary ope ra to r s  V(g) exis t  which have the p rope r ty  KV(g) = V(g)gK. 
They are  defined with an accuracy  of up to the fac tor  c, Ic] = 1. It is c l ea r  that these  o p e r a t o r s  fo rm a uni-  
t a ry  p ro jec t ive  r ep resen ta t ion  of the group G. 

5. Explici t  Fo rmulas .  We introduce the unitary ope ra to r s  

• i V(a) = e x p ~ K ( J a ) ,  V ( A ) = e x p - ~ [ l n A K ,  K]. (2.1) 

211 

Here  [BK, K] :: ~ (BK)(e~,)(JK)(6,), where {ep} is an or thonormal ized  bas i s  in M, JB = (JB)* a n d ,  des ignates  

Hermi t i an  conjugacy in the p r o c e s s  of making M complex.  We fix the ope ra to r s  V(A) by means  of the nor -  
mal izat ion conditions V(e) = E and the continuity condition. Then the ope ra to r s  V ( ~  = V(a)V(A) sat isfy the 
re la t ionship  V(gl)V(g~) = exp(i/2h)[a l, Ala ~]V(glg2). If A = ~ ,  5, p}, then V(A) = V(i)(~)V if) (6)V (3) (p). In the  
Schr~dinger r ep resen ta t ion  we have 

i f 
(Y(a)f)(~) :exp-~a qpexp-.d_p(~ _ q ) f ( ~ _ q )  ' a =q-i- Jp; (2.2) 

(Vc3)(p)/)(g) : Idet~/*rJ[(r-lg), r = e°; 

he re  V (1) (~)V (~) (5) is  an in tegra l  opera to r  whose kerne l  is equal to 

(2.3) 

.e~o 

+ ~' (cos 0'e68 -! sin O'e) -t cos 0"~' - -  2~' (cos 0'~6~ i- sitl 3 )-,~']'1 (2.4) • ,: "~-[j ,  

where  ~ =,) + ig; 6¢ = 5 + ie;  V(l'2)(0) = E. 

In the p r e s e n c e  of degeneracy  of cos#5 + sin ~ ,  this  express ion  defines a genera l ized  function. The 
ambigui t ies  a re  el iminated by the continuity and normal iza t ion  conditions. 

The explicit  f o rmu la s  given in this subsect ion should be assumed  known in quantum mechanics .  Re-  
gret tably,  the author has  not been able to locate  the p a p e r s  where  they have been developed in the fo rmwhich  
we requi re ,  and the re fo re  we make seve ra l  comment s  on their  p roof  here .  Replacing the e lement  g by the 
o n e - p a r a m e t e r  subgroup gt in the defining re la t ionship KV(g) = V(g)gK and different iat ing with r e s p e c t  to t, 
we can go over  to the following equivalent equation KG = GK + g0 K for  the genera t ing ope ra to r  G of thegroup  
V(gt) : V(gt) = expGt. By finding G in the fo rm of a quadrat ic  functional of the ope ra to r s  K and using the de-  
finition of K, we a r r i v e  at Eqs.  (2.1) for  the opera to r  V(g). The re la t ionship  

i a 
Y (g,) V (go.) :=: exp - ~  [ ,, Arab] V (g,g2) 

is obtained fur ther  on by means  of a d i r ec t  check. Equations (2.2) and (2.3) a r e  obvious.  In o rde r  to c lar i fy  
(2.4), we examine the group V(gt) and the equation (d/dt)V(gt) = GV(gt), V(g0) = E once m o r e .  In the Schr~-  
dinger  r ep re sen ta t i on  G is  a different iable  opera tor  of the second o rde r  having coeff icients  which a re  qua-  
dra t ic  in the independent va r i ab les .  The kernel  of the opera to r  V(gt), (i.e., the G r e e n ' s  function of the 
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r educed  problem)  can be found in the f o r m  exp {}A(t)} +}B(t)~ '  + } ' C ( t ) } '  +D(t)} due to the l a t t e r  fac t .  The 
subs t i tu t ion  of this e x p r e s s i o n  into the equat ion y ie lds  a s y s t e m  of o r d i n a r y  d i f ferent ia l  equat ions  fo r  the 
m a t r i c e s  A, B, C and fo r  D, which a r e  e a s y  to  solve expl ic i t ly .  

6. The Mas lov  Index. The se t  e of s y m m e t r i c a l  t r a n s f o r m a t i o n s  ~ of the space  Q is a u n i v e r s a l  co~-  
e r i n g  space  fo r  A 0 (the s e t  of Lag range  subspaces ) .  The p ro jec t ion  is s t ipula ted  by the equat ion A = (exp.  
J ®) Q. We examine  the funct ion v ~ (,~) = de t -  ~/2 cos ~ x I det b/2 cos ~9~ ], which is fixe d by the continuiLy r e -  
q u i r e m e n t s  and the n o r m a l i z a t i o n  condi t ion ve(0)  = 1, on the se t  0. It is e a s y  to see  that  the p roduc t  
lim v~ l ($ )V(0 ($ )  is f ixed on each  l aye r .  
e $ 0  

We examine  the f o r m  x e  = ( 2 / ~ ) d l n v e  on 0. It is  a f o r m  on A 0. We examine  the s ingu la r  f o r m  x = 
lira x e  on A 0. A s s u m e  3 / i s  an or ien ted  curve  on A 0 wi th  a beginning A1 and an end A2. A s s u m e  that  the 
e~o . . . .  
L a g r a n g e  p l a n e s  A 1 and A 2 a r e  uniquely p ro j ec t ed  onto Q. The index ind3/ of the curve  3 / i s  cal led the whole 
n u m b e r  ind3/= t x .  The indices  of c losed  cu rves  evident ly  define a ce r t a in  c l a s s  of in teger  cohomolog ie s  

"f . o on A 0 - t h e  c h a r a c t e r i s t i c  M a s l o v - A r n o l d  c l a s s  [2, 3 ] .  The Arno ld  fo rmu la  de r ives  i m m e d i a t e l y  f r o m  our  
def ini t ion:  ind of  the c losed  cu rve  3 / i s  equal  to the degree  of the r e p r e s e n t a t i o n  e : 3/ --* S l, where  e is the 
con t r ac t ion  on 3/ of the r e p r e s e n t a t i o n  A 0 --" S 1 s t ipula ted  by the f o r m u l a  detexp2i ,5  ; he re  A = (exp JO)Q. 

The o r i en ted  cu rve  T induces  the o r ien ted  curve  T'  in A0 on the Lag range  mani fo ld  I ' .  The index 
ind3/' is ca l led  the Maslov index of the cu rve  3/. We l ikewise des ignate  it ind T. Analogous ly ,  the cu rve  3/ 
induces  the curve  3/' in A 0 on the g roup  G. The index of the l a t t e r  curve  is l ikewise cal led ind 3/ of the 
c u r v e  3/. 

7. The Dynamics .  A s s u m e  m t ,  t E R, is  a f ami ly  of canonica l  d i f f eomorph i sms  which a re  s t ipu la ted  
by the equat ion Jx  = ay,/0x, where  X : R x M -* R.  We examine  the d i f ferent ia l  fo rm ¢0 - X dt on R x M. Its 
con t r ac t i on  on U Et ,  where  E t = mtE  , E is the cover ing  space  fo r  the Lagrange  mani fo ld  I ' ,  is a c lo sed  

---4X} < t < CO 

f o r m .  ~(t) wil l  des igna te  the o r ig ina l  of this f o r m .  

We examine  the d i f ferent ia l  d m :  tt  x M "-* Sp(M), whe re  dm is a s s u m e d  fixed by the n o r m a l i z a t i o n  con-  
dition dm0, x = e and the cont inui ty  condit ion.  Here  dmt,  x is the value of dm aL the point  {t,  x } .  The t r a j e c -  
t o r i e s  mta ,  a E M, and g = {a ,  A} E G c o r r e s p o n d s  to a path in the g r o u p  mtg  = {mta ,  dmt,  mtaA }. In g e n e r -  

al ,  i ts  index co inc ides  wi th ' the  Morse  index of the t r a j e c t o r y  rata.  

We will  a g r e e  to des ignate  the tota l  de r iva t ive  with r e s p e c t  to the t r a j e c t o r i e s  m t of the dynamic  s y s -  
t em by  m e a n s  of  a dot o r  the symbol  d /dt .  The re l a t ionsh ip  

_ _  I ( K _ x ,  ~xz (K--x))}exp+~("V(m,g) (2.5) 

is val id .  Opera t ions  on K a r e  defined by analogy with the technique used  on p. 186. The p roo f  is obtained 
by  d i r ec t  ca lcu la t ion .  

If ( r ,  t~, v) is a Lag range  t r ip le t ,  then we wil l  ag ree  to use m t ( r ,  ~ ,  T) to define (rot I ' ,  o,(t), mtT),  
w h e r e  ~(t) It=0 = ~ and (mtT)x = mt(~"x ). We examine  a function in E which is s t ipula ted by  the equat ion 

t {)j0 y (~x) 8 ' (2.6) K = K~r.~,~,(x) : :  exp T 

w h e r e  b is a de l ta - func t ion  on Q, and V a r e  o p e r a t o r s  which a re  connected  with SchrSdinger  quant iza t ion .  
Note that  V(g)5 in g e n e r a l  def ines a gene ra l i z e d  function on Q fo r  fixed g. It turns  out that  the fol lowing r e -  
la t ionship  is val id:  

K,r,~.~,(x) :: V (g-') K~,r.~z.~, (gx). (2.7) 

§ 3 .  T H E  G E N E R A T I N G  I N T E G R A L  

In this and the succeed ing  sec t ions  s e r i e s  of the f o r m  >~. (+)kUk a r e  a s s u m e d  to be f o r m a l  power  
~ 0  • lh,t 

s e r t e s i n h / i ,  h E A .  E x p r e s s i o n s  o f t h e  f o r m  ~ ( + ) ' u , ,  , w h e r e  u~=: ~, - 7 - ) u ~ z , s h o u l d b e  unders tood  to 
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/¢ k e~ 

mean ~, ( ~ )  ,~F'u~+-" . Express ions  of the type D(~I f ,  r )  will designate l inear  differential  opera tors  which 

operate on the variable ~ and have coefficients which depend on the functions o r  geometr ic  objects f and r 
in the finite vicinity of the point ~. 

1. The Express ions  Vq.  We introduce the formal  expressions" 

V(g)ue×p -~L S, (3.1) 

i .e . ,  the sets  {g, u, S}, where 1) gE G, 2) u : - ~  (__h l ~ u k , u k : Q . . .  C, and suppu U supp uk is a compact ,  
le~O \ t  / ,e~-O 

3) S ~ C*~(suppu), i .e . ,  S : suppu --~ R and S can be continued on the open set  U, suppu c U. Express ion  (3.1) 
will be writ ten in abridged form as Vq~; under these conditions ~ will s imi la r ly  designate uexp(i /h)S and 
will symbolize the set  {u, S}. 

Assume S U is the continuation of S on U. S U can be connected with the Lagrange manifold r s u  (see 

p. 185) which is uniquely projectable onto Q. The subset of r s u  which lies above suppu is designated by 

I S. If for  any S U the Lagrange manifold grsu is uniquely projectable onto Q we say that grs is unambiguous- 
ly projectable onto Q. 

The symbol 

s .  *- ) + - .  f (3 .2 )  
Q 

where u has been descr ibed above and f : U  "-* R, where U, suppu c U, is an open set  and, finally, f has a 
unique nondegenerate c r i t ica l  point ~s on U, will be defined as the formal  express ion  

which appears  if the procedure  of the s ta t ionary phase method (see, for  example,  [5]) is applied to the inte- 
gra l  symbol in (3.2). 

We use an explici t  equation for the opera tor  V(g) in Schriidinger quantization. Then the express ion  
Vgo can he connected with a symbolic integral  of the form (3 .2) .  The function f has a unique nondegenerate 
c r i t i ca l  point under  these conditions when, and only when, g r s  is uniquely projectable onto Q. 

When this condition is sat isf ied,  the symbol S, P. V~0, which defines an express ion  of the form ~01 = 
ulexp(i/h)S1,  has meaning. 

The equivalence relat ion Vt~0 t = V2~o 2 is establ ished by the fo rmu la  ~01 = S. P, (V~I IV2)~02. This defini- 
tion is co r r ec t .  

2. The ~b Classes .  We will agree to designate the equivalence c lasses  which have been introduced 
above by the le t ter  ~b. Each class ~b can be associated with a pai r  (r~b, ~b) .  Here ~{b is the original of the 
oa on the compact r~b. Assume the class ~b contains the express ion  V(g)uexp(i /h)S.  We examine the 
Lagrange pair  (I'Su , ~S) (see p. 185). The pair  (I'~b, ~2~b) is the contract ion of the Lagrange pai r  g ( r s u ,  

~2Su ) on g r  S. This contract ion is independent of the choice of the represen ta t ive  of the class ¢. 

We examine the representa t ion  1)V~o : r~b -+ suppu which is st ipulated by the formula  PVg 0 = 7rsog -1, 

where lr S is the orthogonal project ion of I" S onto Q. The locality proper ty  is in effect  he re :  if Vl~01 = V2~o2, 
then 

(3.4) 

3. The L inear  Space 5~ ( r ,  ~) .  we will say that the class  ~b is subordinate to the Lagrange pair  ( r ,  ~) 
if the pai r  (r~b, ~¢) is a contract ion of the Lagrange pair  (I', ~2) on r~b. Under these conditions r ~  can be 
t rea ted  as a subset of E o 
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Vectors  of the l inear  space  ~ ( r ,  l-l) a re  f o rma l  sums  

v = (3.s) 
e e l  

of a certain set I of classes ~ which are subordinate to the pair (I ~, 12> for the condition that each point 
x E E has a vicinity U(x) that intersects with only a finite number of r~b~. 

Linear operations in ~ (r,  f]) are defined in the obvious manner. We define a zero vector. Assume 
~I, E T (r ,  12). We fix the point x, x E E, and examine its vicinity U(x). It can be assumed that U(x) is unique- 
ly projectable onto a certain Lagrange plane A. Assume U 0 is a vicinity of x such that U0 ~ U(x). We intro- 
duce the cor responding  t runcat ing function 7/. We place ~?a= 7/OP~vlc, We examine the expres s ions  

(Ptx" 
V(g~) (u~ /a )exp( i /h )S t r ,  where  V(g~)utrexp(i /h)S a a re  included in the c lass  Ca. Assume  gA = Q, g E G. We 
introduce the notation: I(x) = {t~[U(x) N t e a  ~ ~ } .  For  (r E I(x) we have 

V (ga) (uaqa) exp -~- Su == V (g) u ~ exp ~ 

We fo rm the expres s ion  V q =  V(g) ( ~  u~ )exp ( i / h )S .  The vec to r  • is  a s sumed  to be a ze ro  vec to r  if 
~a@/( x) l 

( ~ , )  u~)(PVq~X) = 0, and thus for  al l  x we have x E E. 

4. The Genera t ing  In tegra l .  In p r epa r ing  for  the subsequent  definitions we will begin with cer ta in  
symbol ic  t r a n s f o r m a t i o n s .  We introduce the bas ic  substi tution 

T~ := T,r,n.,,~ (3.6) 

for the congruence described below: T : {/~} --" ~ (F, fl), where (I ~, 12, ~-> is a Lagrange triplet, and 

oo ,,ox oo will p:= 
] 

k~0 

preted in greater detail by the symbol 

T,r.n.T,~t = ~P.~ tt (dx) /(,r,n,,,(x). 

We will r e t u rn  to the role  played by  S~P. la ter ,  and the express ion  for  K was descr ibed  in § 2. 
(2.7) leads to the symbol ic  equation 

(3.7) 

Equation 

T,r..q ~,~t ~= V (g-') T~r n.,, ~ ,  (3.8) 

where  g E G and P-g0') =/~ (g- iT) ,  T c gE.  

THEOREM 1. It is poss ib le  to e s t ab l i sh  a one- to-one  re la t ionship between the vec to rs  • of the space 
(F, fl) and the m e a s u r e s  # ; f o r  this re la t ionship the l inear  operat ions on ~ become ord inary  l inear  ope r -  

at ions on/~. 

We will  conduct the proof  by  s imul taneous ly  const ruct ing a specif ic  fo rm of the congruence T. This 
fo rm will be a s sumed  throughout the subsequent  ana lys i s .  We will show how the m e a s u r e  # is used to con- 
s t rue t  the v e c t o r  ~.  The r eve r s ib i l i t y  of this construct ion will be obvious. We introduce a local ly  finite 
cove r  {Eta}eEl and its subordinate  par t i t ion of unity {7/rv} on E.  We impose  condition 1: each  Err is unique- 
ly p ro jec tab le  onto a ce r ta in  Lagrange plane Aa .  Assume  ga  E G is such that gaQ = Aa .  We impose  condi- 
tion 2: the ope ra to r  6t~(xa) + tan#t~(xa) ,  where #t~ and 6a  co r re spond  to the e lement  g~'TX = TaX~ = {Xa, 
Aa(xt~)} , x E E a ,  of the group G, is not degenerate  on E a .  

The symbol  T# i s ' n a t u r a l l y  juxtaposed with the symbol ic  sum ~, T0/a/z) which is r e p r e s e n t e d  as fol -  
ct 

\ '  V(ga)Tg~l(F, fl, T> (~ol~)g~ lows in accordance with (3.8): ,~ i. The integral (3.7) which is associated with 
~t 

(Tg~l(F,12, T)(~#)g~1)(}) has the form of the integral in (3.2). The point x~ = {~ . . . .  } E g~'E~ is a nonde- 

generate critical point of the corresponding function f under these conditions. S. P. in the symbol (3.7) 
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designates  the procedure  of the s ta t ionary  phase method with r e spec t  to this point. Thus, Tg~l (F, t2, r) " 

(~a#)g~l  "-* ~oa = u a e x p ( i / h ) S a  and the symbol  T(F, t2, T># is juxtaposed with the vec to r  (3.5), where  the 

c lass  Ca contains the express ion  V(ga) q~a. 

We will ag ree  to call  T/z the generat ing integral  for  the vec tor  ~,  and we wri te  ~I, = T# .  

5. The Connection with the Canonical Opera tor .  Note that T# reduces  to one c lass  ¢ which contains 
the express ion  of the fo rm V(g)~ when, and only when, the Lagrange manifold g - i F  is uniquely projec table  
onto Q. In pa r t i cu la r ,  when g is equal to unity the express ion  for  ~ is ~0 = uexp( i /h )S ,  where  

t 
S(~) .... ~(x~)-!---~-~p, x~ : {~, p}~F 

d~o det.,/,r-~ i Uo (~) : ~ I cos ~ I I,=,~ exp-~- nk; 

here ,  in turn,  s is an e lement  of a r e a  on U, r = eP; ,~ and p a re  p a r a m e t e r s  of 7x.  Finally,  k = ind y,  where 
y is the project ion onto A 0 of the curve  on 0 which connects ,9 = 0 and ,)(x), where x is a r b i t r a r y .  Thus , the  
index is included in the express ion  V(g)9. 

We will show how the canonical  Maslov operat ion,  which can be used for  the asympto t i c  descr ip t ion 
of the higher  o rde r  t e r m s ,  can be descr ibed  in our  te rminology.  

] o 
Each  c lass  ¢ contains an express ion  of the fo rm V( )($)uexp(i /h)S;  here  the e igenvalues  ,~ can be a s -  

sumed equal e i the r  to ze ro  or  to , r / 2 .  We examine the Lagrange pa i r  (F, fl) and the function v : E --~ C. 
We introduce the Lagrange t r ip le t  (F, fl, T) and the measu re /~  (~/) = #0(Y) = I v [ det I/~r [ s(dx). We in t ro-  

duce the vec to r  T<r,  fi ' y)/~ and r e p r e s e n t  it f rom the fo rm (3.5), while in each  c lass  Ca we choose a r e p r e -  

sentat ive of the fo rm V0)( ,~a)uaexp(i /h)S a .  The canonical  Maslov opera to r  is defined as the r e p r e s e n t a -  

tion of {(r ,  fl), v} in a function: Q - -  C of the form ~ V O ) ( ~ a ) u a e x p ( i / h ) S a .  It is a s sumed  that v is finite 
(t 

and {o~] suppvf~ E a  ~ ~3} is finite.  

§ 4 .  A P P L I C A T I O N S  O F  T H E  G E N E R A T I N G  I N T E G R A L  

In subsect ions 1 and 2 we examined the Cauchy problem for  the f o r m a l  equation 

ih d W (t) = ,~ (t) qr (t) (4.1) 
d t  

having the initial condition ~(0) = • E ~ ( r ,  fi). In this connection a cer ta in  c lass  of  l inear  ope ra to r s  in the 
spaces  Z (F,[~) is defined in subsect ion 1, while the express ion  ih(d/dt)~P(t) is defined in subsect ion 2. Sub- 
sect ion 3 d i scusses  asympto t ic  applicat ions.  

1. The Quas ic lass ica l  Opera tor .  We define l inear  ope ra to r s  of a specia l  fo rm in the spaces  ~ ( r ,  [1); 
these ope ra to r s  will be cal led quas ic lass ica l .  The quas ic lass ica l  ope ra to r  3 ~ i s  s t ipulated by the Hamilton 
function H = ~ (h/i)kH k, Hk:  M -* C. If H = HI 0 and • = T~l~,fl, 1-)#, then 

k > 0  

;~'tY = T,r.Q.,.[-I (F, ~)~, (4.2) 

where 

Dk depends l inear ly  on H o. 

l 

1>~o 

For  genera l  H it is n e c e s s a r y  to place 

(4.3) 

h k l 

k ~ o  l>to 

in (4.3). 

We descr ibe  a construct ion which leads to the explici t  form of the exp res s ions  for  13l. It is sufficient 
to a s sume  H = H 0 and ~ = /,to. We give the chain of symbol ic  t r ans fo rma t ions :  
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1 K 0 ~ - x .  ) (4.5) 
E ~>o k>0 E 

The  def in i t ion of F k is  c l e a r .  It  is  e a s y  to s ee  tha t  F k is  a p o l y n o m i a l  in h and ~, which  depends  l i n e a r l y  on 
H and on the d e r i v a t i v e s  of H at  the point  x. E a c h  t e r m  can be i n t e r p r e t e d  as  an e x p r e s s i o n  of the f o r m  T#.  
F o r  th is  p u r p o s e  it  is  n e c e s s a r y  to use  the t r a n s f o r m a t i o n s  f r o m  § 2 which t r a n s f o r m  (T# t he r e  and the 
g iven  e x p r e s s i o n s  he re )  th is  t e r m  into ~P = ~ ~ ;  then we r e p r e s e n t  the r e s u l t s  in the f o r m  T#.  I n t h e  end 

we obta in  

h S ~)~]. 
(4.6) / 

E I>~E, ~÷l\ 

Here E(L), t E R, is the integer part of t. In the definition (4.3) we should place D o = H, D l : ~ dk,/, I >_ 1. 

Now we will free ourselves from the assumption, which was adopted in § 2, that E is equivalent to 
E(w). By referring to the previous content of this paper we note that this assumption is manifested solely 
in the vanishing of the transformation (which is inverse with respect to T) of the measured p on E into ~.  
The Lagrange triplet should be stipulated on E. However, the transformation which is the inverse of T is 
required only in the present subsection in formulating the differential operators I~. In view of their local 
character, it is clear that the resulting equations can also be extended to the general case as a definition. 
An analogous comment applies to the very beginning of the next subsection. 

We will change the notation. We will agree to use • to designate the symbols T(l.,gl,T>tt (i.e., ensem- 
bles of Lagrange triplets and measures). We will define .~ (I',II) to be the linear space of these symbols 
for fixed <F,[I, ~-) that is generated by conventional linear operations on p. The space introduced in subsec- 
tion 3 of §3 now differs from ~£ (l',gl). We will designate it by ~ T(F,~I). The element of ~ T(F, II) corre- 
sponding to ~, • E ~ (F, II) is designated by ~T- 

2. The Cauchy Problem. We examine the Cauchy problem (4.1). We define the operation ih(d/dt). 
We assume that the dependence of ~(t) on t has the form ~(t) = Tmt<F,~l, T>, where m t are diffeomorphisms 

described in § 2. Basing ourselves on Eq. (2.5), we arrive at an expression of the type (4.5) for ih(d/dt)~(t); 
the interpretation of this exi)ression makes the following definition a natural one: 

ih---v:(t)=T"'~r'~:'T~ lib d:t---L ~- ~ -  ~, (-7-)  ~ di'k('[)C' F, ~)~ it,. (4.7) 
dt d~t t¢~l ' i=~ 

Return ing  to Eq.  (4.1), we a s s u m e  that  H 0 = X. Equat ion  (4.1) is  then equ iva len t  to the equa t ion  

which  r e d u c e s  to the s y s t e m  of r e c u r r e n t  equat ions  

(~t)k~-U,(l~t)a=Nk((I~t)i, i<k), k=~0, l, 2 . . . . .  (4.9) 

after certain cancellations; here N o = 0. In the Cauchy problem these equations are supplemented by the in- 
itial conditions which combine with them to define #t uniquely. The Cauchy problem has been solved. 

The choice of T in the Lagrange triplet (IP, II, T) which defines the congruence # - *  ~T is arbitrary t o 

a considerable degree. In particular, it is always possible to stipulate K in canonical form K = K (i) = exp. 

(i/h)~(t)V(x)Y(1)(,~)5. The t r a n s i t i o n  f r o m  K to K (i) c o r r e s p o n d s  to a local  l i nea r  t r a n s f o r m a t i o n  of the c o r -  
r e s p o n d i n g  m e a s u r e s  and/x  and/~(1) ; under  these  condi t ions  /z 0 = #~1) I de t l /2 r  I. If  such  a t r a n s i t i o n  is c a r -  

r i e d  out in the so lu t ion  of the Cauchy p r o b l e m  on the a s s u m p t i o n  that  H~ = 0, then it t u rns  out that  

0tl'))0 (mdx)/(~(:))0 (dx) = Is0 (~x)/s, (mt~x)i'/°, (4.10) 
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where  s t is an e lement  of a r e a  on I t. A generat ing integral  with a kernel  of the fo rm KO) was descr ibed  in 
[6]. Equation (4.10) es tab l i shes  a connection between the solution of the Cauchy problem given there and 
the solution der ived in the p resen t  paper .  

3. Asymptot ic  Applicat ions.  For  the express ion  V~o we will agree  to define v~oN as the e lement  of 
L2(Q ) st ipulated by the equation 

,v ( h  /~ (4.11) Vcp 'v ::: V (g) uNexp ~ S, U 'v : ~_j u~. 
k=0 

It is e a sy  to prove that f rom VI~  1 =V2q ~ it follows that v I ~ N - v 2 ~ 2  N = o(hN+l). We will a s s u m e  that o(hk), 

k = 0, 1, 2 . . . .  defines an e lement  of L2(Q) such that  h-kO(h k) is bounded, h E A ; the quantity ~bN defines the 
c lass  of functions V~p N, where  V ~  belongs to the c lass  ¢. 

We use 8 (F,f~) to designate the subset  of e lements  of ~ (r,~2) having finite " m e a s u r e s "  ~.  Assume  
E ¢ (r,12) and @N = ~ Cot. W h e s e t I w i l l b e a s s u m e d f i n i t e  (this is possible) .  We a s sume  @N = ~ ~bN. 

We will say that q~a, • E ~ ( r , ~ ) i s  an asymptot ic  expansion of the e lements  ~h,  ~h E L2(Q), i f  ~h 

-~I'TN = o(hN+l), N = 0, 1, 2 . . . .  We use the notation ~b h ~ ~ .  We will say that the l inear  ope ra to r  H in L2(Q), 

which is dependent on h, genera tes  a quas ic lass ica l  opera to r  M , if for  any na tura l  N and any • E :~ (F ,~)  
the following conditions a re  sa t i s f ied:  1) @N belongs to the definition domain of H; 2) H~I,~ = ( ~ N  + O.  
(hS+ I). 

It is poss ible  to indicate s imple  effect ive conditions for  which H is an ope ra to r  that genera tes  a quas i -  
c l ass ica l  ope ra to r .  These conditions, in pa r t i cu la r ,  a re  sa t i s f ied  by the Schr~dinger  ope ra to r  for  s imple  
assumpt ions  concerning d; here  the corresponding Hamilton function is given by Eq. (1,4). 

Assume  H = H(t) depends on t. We examine the Cauchy problem in L2(Q): 

d ih-~-~(t) ::: H( t )~( t ) i -  f(t), ~(0) : ¢. (4.12) 

We as sume  that: 1) the opera to r  H(t) genera tes  a quas ic lass ica l  ope ra to r  ~ (t) ; 2) the p rob lem (4.12) is 
solvable and H ¢ (t)[[ _< C(t)[[[ ¢ [[ + sup H f (T) l l  ], where  C(t) is independent of h. The substant ive  conditions 

o ~ t  

for  the val idi ty of 2) can be found in [7-9]. 

THEOREM 2. If H sa t i s f i es  the conditions 1),  2), and f = 0, and the re la t ionships  ~b ~ ~t,, ~P E ~ (r,~2) 
a re  val id,  then ~b ( t )~  ~(t), where ~(t) is the solution of the :problem (4.1). 

The proof  is obvious if we make allowance for  the fact  that ih (d /d t )~  N = (ih[d/dt]~I,) N + O(h N+ 1). An 

analogous r e su l t  in t e r m s  of the canonical opera to r  is contained in the paper s  by Maslov. 

In conclusion, s eve ra l  r e m a r k s  a re  in o rde r  on the use of the genera t Ing in tegra l  in inves t iga t ing  the 
asymptot ic  behavior  of the e igenelements  of the opera to r  which genera tes  the quas ic lass ica l  ope ra to r .  It 
turns  out that e v e r y  closed compact  Lagrange manifold I" which is invar iant  with r e spec t  to the dynamic 
sy s t em m t and has the defined stabil i ty p rope r ty  can be connected with an e lement  ~I,, ~ E :~ ( r ,  ~) ,  which 
approaches  the eigenfunction of the opera to r  H asymptot ica l ly  on a ce r ta in  sequence hn, n = 0, 1, 2 . . . . .  
h n ~ 0, n --* ~o. Fo r  h n ~ 0 this eigenfunction is concentrated on I" in a well-known sense .  The sequence 
hn is  de te rmined  by the cha rac t e r i s t i c  Maslov-Arnold  c lass  of the manifold r .  The modif icat ion of the gen-  
e ra t ing  in tegra l  m a k e s  it poss ible  to obtain an analogous r e su l t  for  manifolds  of lower dimensional i ty  (for 
example ,  for  s table  closed one-dimensional  orbi ts) .  The role played by the s tabi l i ty  conditions in this 
group of p rob lems  was d i scovered  in specia l  cases  in [10, 11], e tc .  
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