THE GENERATING INTEGRAL AND THE CANONICAL
MASLOV OPERATOR IN THE WKB METHOD

V. S. Buslaev
This paper contains a new approach to the results obtained by V. P. Maslov [1] onquasiclassical asymp-
totic forms (the WKB method).

§1. QUASICLASSICAL ASYMPTOTIC FORMS

1. The WKB Method. The asymptotic behavior of the solutions of differential equations having a small
parameter h in the derivatives frequently can be formulated in the form

2 () uexpLs, (1.3)
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where S is a real-valued function, uy is a complex-valued function, and i is the imaginary unit. Under these
conditions the functions S and ui are determined by formal substitution of (1.1) into the equation and a com-
parison of-the coefficients of the powers of h. In other words, it is assumed that (1.1) is a formal solution
of the differential equation. This method of formulating the asymptotic forms is usually called the WKB
method.

In quantum mechanics the asymptotic form described above is similarly called quasiclassical for both
the nonstationary
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Schrédinger equations, where t, E€R, (é€R". ‘This is connected with the fact that the functions S and uy satis-
fy equations that are formulated in terms of the corresponding classical dynamic systems in the phase
states M = R™ ®R™ generated by the Hamilton function
H=H(t, x) - Ptoltg x=(gpcM o (1.4)
For (1.2) the function S satisfies the Hamilton-Jacobi equation
(e {e ) =0 (1.5)
ot \ dq

and for (1.3) it satisfies the equation for "curtailed action." As far as the coefficients uy are concerned,
they obey a recursion system of ordinary total differential equations with respect to the trajectories of the
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dynamic system. Under certain definite conditions such asymptotic representations can be used to trace
the transition from quantum-mechanical dynamics to classical dynamics for h — 0.

In this paper we introduce and investigate a class of asymptotic representations which is broader than
the expansion (1.1). The necessity of broadening the class of asymptotic representations is dictated by the
well-known difficulties which the conventional approach encounters. For a stationary equation these diffi-
culties are manifested in the appearance of inflection points, caustics, etc. Their nonstationary equivalent
is noninvariance of formal solutions of the form (1.1) with respect to dynamics. Let us dwell on this in
greater detail.

Assume that we are dealing with the formal solution of Eq. (1.2) which has the form (1.1) and becomes
2 (4 ukexp 50 (1.6)
o b h

for t = 0. Under these conditions the Hamilton-Jacobi equation (1.5) is complemented by the initial condition

S, g =S°E). (1.7)

It is well known that the Hamilton-Jacobi equation is equivalent (with an accuracy up to terms S which
depend only on t) to a situation in which the manifold

Ty = {{q "-s—g‘;—"—’}\q« Rn'} (1.8)

moves in the space M due to the effect of the diffeomorphism m, of this space, which is generated by the
canonical system

. OH 0 —1
Jx =2 J( 0)' (1.9)

where I is an identical transformation of RD, so that
Tt = mT,. (1.10)

Note that the function S: R® — R is restored from a manifold in the form

{59501 ;0 Re 1.
{1"7’ aq !Iq("R} a.11)

with an accuracy of up to a constant term. We examine the manifold

Mg 9520 | 4y pe
r.- g, P llqc,R}. (1.12)

From the above it follows that Eq. (1.5) with the initial conditions (1.7) has a unique solution (only for those
t < t< ty ty< 0, 3> 0) for which the manifold mtl"o remains uniquely projectable onto the plane Q, Q =
R ® 0; in other words, it is a solution for those t for which mtI‘O preserves the representation

{{g, f(9)}|g€R™) (1.13)

with a certain f: RP— R, In this case f = 9S/8q. We could verify the fact that for these same t the recur-
sion system of equations for the coefficients ug, complemented by the initial conditions “klt 0= uf’{, iseas-
ily solved.

Assume the expansion (1.6) is the asymptotic form of a certain function ¥° =y, ¢) for h — 0. We ex-
amine the solution of the Cauchy problem defined by Eq. (1.2} and the initial condition
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VY 4 By =V (h ). (1.14)

Under well-known assumptions the formal solution formulated above will be the asymptotic form of the ex~
act solution (b, t, £). What will be the asymptotic form of this solution for t§(t;, t,)?

The class of formal expansions introduced below is invariant relative to dynamics and can be used
for the asymptotic representation of the solutions of the Cauchy problem (1.2), (1.4) for all t, t€R. -Invari-
ance relative to dynamics means that the formal solution belonging to this class and having an initial condi-
tion from this same class exists for all . Of course, it is assumed that the diffeomorphism m¢ exists for
all t.

2. The Content of the Paper. The manifolds ofthe form (1.11) which were involved in the previous sub-
section form a subeclass of a certain special class of n-dimensional manifolds in M—so-called Lagrange
manifolds; an n-dimensional manifold T in M is called a Lagrange manifold if the contraction of the differen-
tial form I’ onw = 1/2(p dg—qdp) is closed. A general Lagrange manifold has the form (1.11) only when it
is uniquely projected onto Q. :

The function S can be characterized by stipulating the Lagrange manifold I', which is uniquely pro-
jected onto Q, and the primitive = form of o =w + I/ 2 d(qp) on it:

S(@=Z({g. 1), {g, pYET, geER™ (1.15)

The coefficients yy: R™ — C of the asymptotic representation (1.1) can be treated as functions on I. There-

by the representation (1.1) becomes the set {F, z, v}, where v is a formal series of functions on I'. The gen-
eralization of the asymptotic representations which is examined here consists in the fact thatthe representa-
tions are juxtaposed with an arbitrary Lagrange manifold which is no longer necessarily projected uniquely

onto Q.

We begin by studying asymptotic representations that correspond to Lagrange manifolds which are
uniquely projected onto a certain arbitrary Lagrange plane A (i.e., onto a certain linear Lagrange manifold).
The general form of the Lagrange plane is )

A=g1Q, (1.16)

where g is a transformationfrom the group G of linear (inhomogeneous) canonical transformations of M.
The quantization of the space M generates the unitary representation V B Ly(RY of the group of transforma-
tions G in A. It is natural to ¢hoose the formal expressions

Ve o=2 (4 mepLs (1.17)
. B0 b h

as the asymptotic representations which correspond to Lagrange manifolds that are uniquely projectable on-

to A. This can be supported by the argument that in choosing the plane Q to play the role of the configura-

tion plane in M, the quantum-mechanical state represented by the element ¥, p € L,(R?) will be represented -
by the element V™ 1(g)y .

~ On the next step finite or infinite sums of expressions of the form (1.17), which are connected with
the arbitrary Lagrange manifold 1° and the primitive @ (or Z) form of w (or ¢) on it, are introduced for the
asymptotic representation of the function R — C. It turns out that such asymptotic representations already
have the property of invariance relative to dynamics. We designate these representations by the letter ¥.
Representations of the type ¥ play a dual role in our analysis. On the one hand they are included as formal
solutions of equations of the type (1.1) or (1.2), regardless of asymptotic applications. In this connection it
is necessary to develop a certain formal calculus, and, in particular, it is necessary to define linear opera-
tions on ¥, as well as differentiation ih{d/dt) and the action of an operator of the Schridinger type. On the
other hand, ¥ must generate a sequence of functions ¥: RA—~C, N =0, 1, 2, ..., which areused for asymp-
Nk .

totic representation in the same sense as the functions ) (%) 1y exp T‘S are used in the classical WKB
k=0

method. The result is the use of the formal solutions for the asymptotic representation of the exact solutions.
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In our analysis the center of gravity is concentrated on formal construction, and the asymptotic applications
are touched on only in passing.

Different sums of expressions of the form (1.17) can generate the same asymptotic representation ¥.
It turns out that ¥ (with an accuracy of up to natural identity) can be brought to a one-to-one relationship

\

with the sets {I, Q, u}, where p - > (i)k , and p are smooth complex~-valued measures on I'.* The
20 ¢ )

transition ¥ «—{T, @, u} is accomplished by means of the symbolic generating integral

() = \ w(de) Ker, 5 (8 %), (1.18)
r

where K I, 9> is a certain universal kernel. We arrive at this integral by approximating I by means of
tangential Lagrange planes A, at certain points x,, of the manifold I' and representing ¥ by means of a sum

of the form ) V(g.)¢,, where the carrier ¢ 1s localized in the vicinity of X, in a definite sense. The inte-

a .
gral (1.18) originates as a result of the natural transition in the limit in this construction. Using such an
integral, it is possible to describe the basic operations on ¥ rather simply.

This paper originated during a study of the papers by V. P. Maslov, who was the first to overcome
the shortcomings of the conventional approach. The Maslov presentation was formulated on the basis of
Eqs. (1.17) in which g was reduced merely to a change in the roles played by certain components of the co-
ordinate vector q and the momentum vector p. An examination of arbitrary g immediately led to a conve-
nient representation of ¥ by means of the generating integral. The canonical operator used by Maslov was,
of course, essentially equivalent to the generating integral (if we examine only the leading terms of the asym-
ptotic representations, as is done by Maslov). However, the generating integral has the advantages residing
in the fact that its definition is explicitly invariant and does not include such a concept as the index of a
curve on 2 Lagrangian manifold (the Maslov index). Note similarly that by virtue of the transition from the La-
grange manifolds themselves (on which the primitive form of ¥ may not exist) to their covering manifolds
(on this see §2 for greater detail) we can examine asymptotic representations which are generated by arbi-
trary Lagrange manifolds and not solely by manifolds which satisfy the "quantization conditions” that occupy
an important position in the Maslov construction. Besides, these conditions originate automatically if asymp-
totic applications to. stationary equations of the type (1.3) are examined (see §4).

We describe the plan of our subsequent presentation. In §2 we have collected the necessary informa-
tion from classical and quantum mechanics, and we have also given a new formula for the Maslov index.
The lastsection of this paper has points in common with the papers by V. 1. Arnol'd {2] and D. B. Fuks [3]
which were devoted to a clarification of the topological nature of the Maslov index. §3 is central: here we
formulate the generating integral and clarify its relationship to the Masloy canonical operator. In §4 we ex-
amine the Cauchy problem for an equation of the Schridinger type

Y v (1.19)
dt
and discuss the asymptotic expansions. A general description of the class of operators that can play the
role of the operator J under these conditions is given.

The author deeply thanks L. B. Faddeev for his valuable discussions.

§2. THE PHASE SPACE AND QUANTIZATION

1. The phase space. The unitary space Cl, which is treated as a real space, is called the phase space
M. The points of M will be designated by x and a. The real and imaginary parts of the scalar products
(+s*) +i[+, +] in C™ define a Hermitian and simplectic structure on M. The complex structure is specified
by the operator J which corresponds to multiplication by i in C; under these conditions, [+, «] = (=, J +).

* The primitive form Q is introduced instead of £ merely for convenience, and instead of p we could have ex-

amined o= ), (—h—)k v,» Where vi.: I'—C and vy = (duy/ds), and s is an element of area onT'.

k>0 v b
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We examine the differential form w = 1/2 [x, dx] on M. The n-dimensional submanifold I' is called La-
grangian in M if the form w|p is closed. The linear Lagrange manifold A is called a Lagrange plane. The
subspace A is a Lagrange plane only when the form [-, -] is nullified on it. The set of Lagrange planes is
designated by A, and the set of Lagrange subspaces is designated by A,.

We fix Q, Q€A. Q is assumed to be a Euclidian space with a scalar product gp = (9, p), ¢, p €Q. The
space M can be treated as the direct sum of two copies of the space Q, and under these conditions the identi-
fication of x€M and the pair {q, p}, 9, p€Q, is given by the formula x = q + Jp. The letters q and p will al-
ways designate the components of the pair x = {q, p} .

2. The Group G. The diffeomorphism m of the space M is called canonical if it preserves the form
dw. The diffeomorphism m will be canonical only when dm€Sp(M), where dm is the differential of m, and
Sp(M) is the simpletic group of M (i.e., the group of nondegenerate linear transformations of M which pre-
serve [-, -]). The canonical diffeomorphism converts a Lagrange manifold into a Lagrange manifold.

We examine the universal covering group Sp(M) of the group Sp(M). Its elements will be designated
by A, and A will designate their canonical projections onto Sp(M). The elements Sp(M) are naturally para-
metrized by the triplet §, 5, p} where #, 0, p are linear transformatlons of @, and ¢4 and 6 are symmetri-
cal transformations. In these terms, A = epr@exp J{0, 6} exp{p,—tp}, where ® = {8, 8} and {:, -} are guasi-
diagonal block matrlces of the 2 X 2 type which define the transformations of M and correspond to the ex-
pansion M =Q + Q. A is used to determine 2J® uniquely. After ® has been fixed, 6 and p are found in a
unique manner.

Assume G is the half-line product of the linear group of the space M and Sp(M). The elements of G
will be designated by the letter g. They are pairs g = {a, A}, where a€M. The group G generates the group
of transformations G of the space M, which operate according to the formula gx = gx =g + Ax, and is a uni-
versal covering group for G. The group G is none other than the group of linear (inhomogeneous) canonical
diffeomorphisms of M.

The general form of the Lagrange plane is: A = gQ, where géG. The set A, of Lagrange subspaces
can be interpreted as the homogeneous space of the group Sp(M), and it can easily be established that each
A€ Ay is representable in the form A = (exp J®)Q, where exp 2J0 is uniquely defined according to A.

_ 3. A Lagrange Pair. AssumeT'isaconnected Lagrange manifold. In our subsequent analysis E will de-
signate the universal covering space of the manifold I We similarly introduce the covering space E(w)
whose characteristic subgroup is the normal divisor x(w) in the group my(I") which is formed by the classes

of loops having the property S @--0. On E and E(w) there exists an original @: E —R of the form w; here
h
the original takes on different values at different points in each layer of the space E(w). Each of the spaces
E or E(w) has its advantages from the standpoint of the subsequent analysis. The advantages of E(w) are
connected with the uniqueness of a juxtaposition of the type ¥ ~—{E(w), @, p} (see §1 and, for greater detail,
§3), and the entire analysis could be formulated on the basis of E(w). However, certain formulations are
simpler if we use E. For us it is convenient to assume that E is equivalent to E(w) in the first stage of the
analysis right up to part 2 of §4. Later on this assumption is dropped, and we use E only.

The aggregate <I", 2> is called a Lagrange pair. Assume that the representation 7: E — G has the
property Tx = {x, A(x)} , where A(X)Q is parallel to the plane which is tangential to E at the point X. The
aggregate <I, ©, 7> is called a Lagrange triplet.

Assume <T, @, 7> is a Lagrange triplet and g = {a, A} €G. We will interpret g<T', Q, 7> as a Lagrange
triplet < gT, g, g7>, where Qgx) = (g™ x) + /,la, x], x€gl. We define g<T, 2> analogously.

The n-dimensional submanifold I' in M is called uniquely projectable onto Q* if it has the form {{ q,
F@} qeD}, where f: D—Q and D is an open set in Q. If D is singly connected, then the submanifold is
Lagrangian only when a function S: D — R exists which is such that f = 88/8q. Under these conditions<T, 2>,
where Q () = S(@)— !/, q [85(q)/0q] and x ={q, ...} €[, is a Lagrange pair.

4. Quantization. The quantization of M is defined (see, for example, [4]) as the representation K of
the space M in the set of selfconjugate operators of the Hilbert space © which hasthe following property: the

* We will no longer use the definition (1.13).
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unitary operators W(x) = exp(i/h)K(x) form a projective representation of the linear group of the space M in
such a way that Wx;)W(x,) = exp(i/2h)[x;, x,]W(x; + X5), where h is a stipulated constant, h€éA = (0, b). All
irreducible representations of quantization are unitarily equivalent; here the operators which establish such
equivalence are defined with an accuracy of up to a complex factor ¢, |c| = 1.

Schrédinger quantization of the phase space M is that quantization which is such that ® = Ly (@), and
the operators K(x) are stipulated by the differential expression ®x)r)(¢) = [(q¢) + @/Dp©/38)1f (¢), £€Q.
This quantization is irreducible.

The action of the group G is naturally defined in terms of the quantization G: K —gK = AK +aE, where
(AK) x) =K (tAx) and @E)x) = (@, x)E. It is easy to show that gK is an irreducible quantization if the quanti-
zation K is irreducible. Therefore, unitary operators V(g) exist which have the property KV(g) = V(g)gK.
They are defined with an accuracy of up to the factor c, |c¢| = 1. It is clear that these operators form a uni-
tary projective representation of the group G.

5. Explicit Formulas. We introduce the unitary operators

V(@ -ep K(Ja),  V(A)=exp L inaK, KL, 2.1)

N
Here [BK, K] - ! (BK)(e,)(/K)(e,)» Where {¢,} is an orthonormalized basis in M, JB = (JB)* and » designates
r=1
Hermitian conjugacy in the process of making M complex. We fix the operators V(A) by means of the nor-
malization conditions V(e} = E and the continuity condition. Then the operators V(g) = V(a)V(A) satisfy the
relationship V(g,)V(gy) = exp(i/2h)las, A, lV(ggy). KA =14, 6, p}, then VA) = V@) v 5)v® ). mthe
Schridinger representation we have

(V@NE) -espg-gpesp - p(E—)fE—a). a~q--Ip; (2.2)

(VPO D E) = |det™* r[f(rIE), r=e; 2.3)
here VIV @)v® @) is an integral operator whose kernel is equal to

. 27! Y. - .
lllﬂ: 1Ldet —.:_fl‘—(cos 0.0, --sin 0) | *exp {(— E"?) [‘g (—sinBed, - cos Oe)(cos B -;- sin U) ' E

+ &’ (cos B -~ sin O) "t cos B — 2 (cos Fedg - sin 3,) ‘t]" (2.4)

where 9 =4 +ig;6, =5 +ie; VI (0) = E.

In the presence of degeneracy of cosdg + sin+#, this expression defines a generalized function. The
ambiguities are eliminated by the continuity and normalization conditions.

The explicit formulas given in this subsection should be assumed known in quantum mechanics. Re-
grettably, the author has not been able to locate the papers where they have been developed in the form which
we require, and therefore we make several comments on their proof here. Replacing the element g by the
one-parameter subgroup g; in the defining relationship KV (g} = V(g)gK and differentiating with respect to t,
we can go over to the following equivalent equation KG = GK + g¢K for the generating operator G of the group
Vigt): V(gt) = expGt. By finding G in the form of a quadratic functional of the operators K and using the de-
finition of K, we arrive at Eqs. (2.1) for the operator V(g). The relationship

V(g,) V(g.) = exp *:;;‘ [a;, Al V(g8)

is obtained further on by means of a direct check. Equations (2.2) and (2.3) are obvious. In order to clarify
(2.4), we examine the group V(gt) and the equation (d/dt)V(gt) = GV(gt), V(gp = E once more. In the Schrs-
dinger representation G is a differentiable operator of the second order having coefficients which are qua-
dratic in the independent variables. The kernel of the operator V(gt), (i.e., the Green's function of the
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reduced problem) can be found in the form exp {£A(t)£ +¢B(t) &' +£'C(t)&' + D()} due to the latter fact. The
substitution of this expression into the equation yields a system of ordinary differential equations for the
matrices A, B, C and for D, which are easy to solve explicitly,

6. The Maslov Index. The set @ of symmetrical transformations 4 of the space @ is a universal cov-
ering space for A, (the set of Lagrange subspaces). The projection is stipulated by the equation A = (exp*
J®)Q. We examine the function vg (#) = det~¥2 cosde x | det¥? cos ¢ |, which is fixed by the continuity re-
quirements and the normalization condition v (0) = 1, on the set §. It is easy to see that the product
lim vgl(#) V(1) (8) is fixed on each layer.
g0

We examine the form ug = (2/ni)dInvg on 6. 1t is a form on A, We examine the singular form » =
limng on Ajp. Assume vy is an oriented curve on A, with a beginning A and an end A,. Assume that the
elo
Lagrange planes. A; and A, are uniquely projected onto Q. The index indy of the curve y is called the whole
number indy = \ ». The indices of closed curves ev1dent1y define a certain class of integer cohomologies
on Ay—the characteristic Maslov-Arnold class [2, 3].  The Arnold formula derives immediately from our
definition: ind of the closed curve y is equal to the degree of the representation £:7y — Sl, where € is the
contraction on vy of the representation Ay — St stipulated by the formula detexp2id; here A = (exp JO)Q.

The oriented curve y induces the oriented curve y' in A, on the Lagrange manifold I'. The index
indy' is called the Maslov index of the curve y. We likewise designate it indy. Analogously, the curve y
induces the curve y' in Aj on the group G. The index of the latter curve is likewise called ind y of the
curve vy,

7. The Dynamics. Assume mg, t € R, is a family of canonical diffeomorphisms which are stipulated
by the equation Jx = 9X/8x, where X: Rx M — R. We examine the differential form w —x dt on Rx M. Its
contraction on Ut E{, where Ef = m¢E, E is the covering space for the Lagrange manifold I, isa closed

—oo<i<oo

form. £ will designate the original of this form.

P .
We examine the differential dm : R x M — Sp(M), where dm is assumed fixed by the normalization con-
dition dm, x = e and the continuity condition. Here dm¢ x is the value of dm at the point {t,x}. The trajec-
tories ma, a € M, and g = {@, A} € G corresponds to a path in the group mig = {m¢a, dm¢, migA }. In gener-

al, its index coincides with the Morse index of the trajectory ma.

We will agree to designate the total derivative with respect to the trajectories m¢ of the dynamic sys-
tem by means of a dot or the symbol d/dt. The relationship

th———-(exp L QY (m, g)) { + (K——x, _:;‘_) i i—(K——x, —?——(K—x))}exp%— QOV (meg) (2.5)

is valid. Operations on K are defined by analogy with the technique used on p. 186. The proof is obtained
by direct calculation,

If (I, @, 7) is a Lagrange triplet, then we will agree to use my(T’, Q, -f) to define (m¢I, @ (1), m¢7),
where QM) |~y = © and (my7)x = m¢(7x). We examine a function in E which is stipulated by the equation

K = Kc[‘ Qv (x) w2 exp )(t)v (1: ()6 (2 .6)

where 6 is a delta-function on Q, and V are operators which are connected with Schrodinger quantization.
Note that V(g)é in general defines a generalized function on Q for fixed g. It turns out that the following re-
lationship is valid:

Kd",ﬁ.t»(x) - V(g") Kgcr,sz,p (g.v). ‘ (2 -7)
§3. THE GENERATING INTEGRAL

. .
In this and the succeeding sections series of the form ) (T) u; are assumed to be formal power

k>0

k h 1
series in h/i, h € A. Expressions of the form Z (i) u, , where Ur = 2 (l—} Ur: , should be understood to

k=0 / {20
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. (Y k If -
mean ) ( L} Dtr-11 . Expressions of the type D(¢| f» T) will designate linear differential operators which
o Y I=0
operate on the variable ¢ and have coefficients which depend on the functions or geometric objects fand T
in the finite vicinity of the point &.

1. The Expressions Vo. We introduce the formal expressions’

V(g)uexp ’:T S, 3.1)

& —
i.e., the sets {g, u, S}, where 1) g€ G, 2) 4 = Z (l'—) Uy, Ug : @ = C, and suppu == |J suppu, is a compact,
! R20

k>0

3)Se C°°(supp u), i.e., S: suppu = R and 8 can be continued on the open set U, suppu < U. Expression (3.1)
will be written in abridged form as V¢; under these conditions ¢ will similarly designate uexp(i/h)S and
will symbolize the set {u, S}.

Assume 8y is the continuation of § on U. Sy can be connected with the Lagrange manifold I'gy; (see _
p. 185) which is uniquely projectable onto Q. The subset of I‘SU which lies above suppu is designated by
I's. K for any Sy the Lagrange manifold gI‘sU is uniquely projectable onto Q we say that gI's is unambiguous-
ly projectable onto Q.

The symbol

s.p.\ (@nhe ) T wexp % fdt; 3.2)
Q

where u has been described above and f:U — R, where U, suppu < U, is an open set and, finally, f has a
unique nondegenerate critical point ¢g on U, will be defined as the formal expression

kR I i ‘ )
[2. () Petelna s (3.3)
k>0 ¢ ‘

which appears if the procedure of the stationary phase method (see, for example, [5]) is applied to the inte-
gral symbol in (3.2).

We use an explicit equation for the operator V(g) in Schrédinger quantization. Then the expression
V¢ can be connected with a symbolic integral of the form (3.2). The function f has a unique nondegenerate
critical point under these conditions when, and only when, gI's is uniquely projectable onto Q.

When this condition is satisfied, the symbol S. P. Vg, which defines an expression of the form ¢, =
uyexp(i/h)S,, has meaning.

The equivalence relation V¢, = Vyg, is established by the formula ¢ =S. P. (ViV,)@,. This defini-
tion is correct.

2. The § Classes. We will agree to designate the equivalence classes which have been introduced
above by the letter . Each class ¥ can be associated with a pair (T Ryp). Here Qy is the original of the
w on the compact I'y. Assume the class § contains the expression V-(g)uexp(_i/ h)S. We examine the
Lagrange pair (I‘SU, Qg) (see p. 185). The pair (I‘zp, ) is the contraction of the Lagrange pair g(I‘SU,
QSU) on gI'g. This contraction is independent of the choice of the representative of the class .

We examine the representation PV(P: Iy — suppu which is stipulated by the formula Pv(p = rs°g "},

where 7g is the orthogonal projection of I's onto Q. The locality property is in effect here: if V¢, = V,y¢,,
then

k
uyoPy g, == (}] (-fl—) Le( |Pv,w,Fw)ug)°Pv,w=- (3.9
>0
3. The Linear Space ¥ (T, ). We will say that the class ¥ is subordinate to the Lagrange pair (', Q)
if the pair (I'y, Qy) is a contraction of the Lagrange pair (I', @) on I'y. Under these conditions I'y can be
treated as a subset of E.
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Vectors of the linear space ¥ (I‘, Q) are formal sums

Y= e (3.5)
a€l
of a certain set I of classes ¥, which are subordinate to the pair (I', Q) for the condition that each point
x € E has a vicinity U(x) that intersects with only a finite number of I‘¢a.

Linear operations in ¥ (I', ) are defined in the obvious manner. We define a zero vector. Assume
¥ (I, Q). We fix the point x, x € E, and examine its vicinity U(x). It can be assumed that U(x) is umique-
ly projectable onto a certain Lagrange plane A, Assume Ujis a vicinity of x such that U, ¢ U(x), We intro-
duce the corresponding truncating function . We place ng= 7 °P{71a 90" We examine the expressions

V(ga) (U ne)exp(i/ h)Sy, where V(gg)ugexp(i/ h)Sy are included in the class §,. Assume gA =Q, g€ G, We
introduce the notation: I(x) = {a]UX)N Ty, = @}. For a € I(x) we have

V (ga) (aie) €XD ‘;i“ Sy = V(g)uexp IT S.

We form the expression Vg = V(g)( 2 u") exp(i/h)S. The vector ¥ is assumed to be a zero vector if
a€l(x)

( 2 u“) (PV,I,X) = 0, and thus for all x we have x € E,

a€l(x)

4. The Generating Integral. In preparing for the subsequent definitions we will begin with certain
symbolic transformations. We introduce the basic substitution

Tp =Tqooh ' (3.6)
for the congruence described below: T: {u}-— ¢ (T, Q), where (I', 2, 7) is a Lagrange triplet, and

: i
Boe= Z (—h—) u; and ui are smooth complex-valued measures on E, The basic substitution will be inter-
i
(>

preted in greater detail by the symbol

Tooob = SN.[’-S B (dx) Kap,0,0(x). (3.7

We will return to the role played by S.P. later, and the expression for K was described in §2. Equation
{2.7) leads to the symbolic equation

Td‘.!l.b}l o= V(g") ng"_g_t, W, (3'8)

where g € G and Mg(’)’) =u(g~ly), v c gE.

THEOREM 1. If is possible to establish a one-to-one relationship between the vectors ¥ of the space
% (T, ) and the measures u; for this relationship the linear operations on ¥ become ordinary linear oper-
ations on p.

We will conduct the proof by simultaneously constructing a specific form of the congruence T. This
form will be assumed throughout the subsequent analysis. We will show how the measure p is used to con-
struct the vector ¥. The reversibility of this construction will be obvious. We introduce a locally finite
cover {Eg}qeI and its subordinate partition of unity {5y} on E. We impose condition 1: each Eg is unique-
ly projectable onto a certain Lagrange plane A,. Assume gg € G is such that gQ = Aq. We impose condi-
tion 2: the operator 6,(xy) +tandg(xy), where d4 and 8y correspond to the element galTx = Taxg = {xa,
Aa(xa)} X € Eg, of the group G, is not degenerate on Eq.

The symbol Ty is naturally juxtaposed with the symbolic sum 2 T(ngu) which is represented as fol-
lows in accordance with (3.8): 2 V(ga)T LT, 9, T)("CY”) g‘1' The integral (3.7) which is associated with

(T el T2, T)(nau) _)(2) bhas the form of the integral in (3.2). The point Xy = {¢, ...} € g3'E is a nonde-

generate critical pomt of the corresponding function f under these conditions. S. P. in the symbol (3.7)
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designates the procedure of the stationary phase method with respect to this point, Thus, Tg—1 T,Q,7)"
o ’ s
("a“)gal — @q = ugexp(i/h)S, and the symbol T @,Q, HH is juxtaposed with the vector (3.5), where the
class Y, contains the expression V(gg) ¢q .
We will agree to call Ty the generating integral for the vector ¥, and we write ¥ = T,.

5. The Connection with the Canonical Operator. Note that Tu reduces to one class ¥ which contains
the expression of the form V(g) ¢ when, and only when, the Lagrange manifold g~ !T' is uniquely projectable
onto Q. In particular, when g is equal to unity the expression for ¢ is ¢ = uexp(i/h)S, where

S(E) = Qxg) - %Ep, xy ={§ p}eT

u, () - %‘—:-‘l |det™/*r 1 cos & }x:_xg expT' ak;

here, in turn, s is an element of area on I', r = eP; ¢ and p are parameters of 7x. Finally, k = ind y, where
v is the projection onto A, of the curve on ¢ which connects 4 = 0 and #(x), where x is arbitrary. Thus,the
index is included in the expression V{g)¢.

We will show how the canonical Maslov operation, which can be used for the asymptotic description
of the higher order terms, can be described in our terminology.

Each class § contains an expression of the form V(i)(ﬁ)uexp(i/ h)S; here the eigenvalues & can be as-
sumed equal either to zero or to 7/2. We examine the Lagrange pair (I, &) and the function v: E — C,
We introduce the Lagrange triplet (I', @, 7) and the measure u (y) = po(y) = Sv | det V?r | s(dx). We intro-

duce the vector T@’Q,-?u and represent it from the form (3.5), while in each class ¥, we choose a repre-

sentative of the form V(1 (3a)uaexp(i/ h)S,. The canonical Maslov operator is defined as the representa-

tion of {(I', ), v} in a function: Q — C of the form Y} v ($0)ugexp(i/h)Sy. It is assumed that v is finite
[+

and {a|suppvN E, = @} is finite.

§4. APPLICATIONS OF THE GENERATING INTEGRAL

In subsections 1 and 2 we examined the Cauchy problem for the formal equation

ih W (1) = A ()Y () (4.1)

having the initial condition ¥(0) = ¥ € ¢ (I,8). In this connection a certain class of linear operators in the
spaces ¢ (I',Q) is defined in subsection 1, while the expression ih(d/dt)¥(t) is defined in subsection 2. Sub-
section 3 discusses asymptotic applications.

1. The Quasiclassical Operator. We define linear operators of a special form in the spaces 2 (I,9);
these operators will be called quasiclassical. The quasiclassical operator ¥ is stipulated by the Hamilton
function H= 3! (h/i)kHg, Hg: M~ C. If H=Hyand ¥ = T(r,Q, )4, then

k>0

HY = T<I‘.!!.1:)I:[ (P. Iy, (4.2)

where

AT, Hp =73 (%)’ Di(x|H, T, D)n. (4.3)

>0

Dk depends linearly on Hy. For general H it is necessary to place

Ap =3 ":-‘)kZ (“:l")lDt(lek. I, fp (&4

k20 >0
in (4.3).

We describe a construction which leads to the explicit form of the expressions for D;. It is sufficient
to assume H = Hyand u = py. We give the chain of symbolic transformations:
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~ ' 1 3 .k o~ n »
HY ~SP. Su(dx) D (K—x, - H(B),o Kag.o(x) ~ 3 SP.{p(dx)KFs. (4.5)
E k>0 k>o E .

The definition of Fy is clear. It is easy to see that Fy is a polynomial in h and ¢, which depends linearly on
H and on the derivatives of H at the point x. Each term can be interpreted as an expression of the form Tu.
For this purpose it is necessary to use the transformations from §2 which transform (Ty there and the

given expressions here) this term into ¥ = 2 Pg; then we represent the results in the form Tu. In the end
“ ‘

we obtain

- 7 o
S.P. IS:p(dx)KFkA«T(r.n,n( 3 (—1—) dei(xH, T, r)u). _ (4.6)

ol
Here E(t), t € R, is the integer part of t. In the definition (4.3) we should place Dy = H, Dy = Z dg,2, 2= 1.
k=1
Now we will free ourselves from the assumption, which was adopted in § 2, that E is equivalent to
E(w). By referring to the previous content of this paper we note that this assumption is manifested solely
in the vanishing of the transformation (which is inverse with respect to T) of the measured u on E into ¥,
The Lagrange triplet should be stipulated on E. However, the transformation which is the inverse of T is
required only in the present subsection in formulating the differential operators D;. In view of their local
character, it is clear that the resulting equations can also be extended to the general case as a definition.
An analogous comment applies to the very beginning of the next subsection.

We will change the notation. We will agree to use ¥ to designate the symbols T(r,,7)u (ie., ensem-
bles of Lagrange triplets and measures). We will define ¢ (I',f) to be the linear space of these symbols
for fixed (I', 2, 7) that is generated by conventional linear operations on p. The space introduced in subsec-
tion 3 of §3 now differs from £ (I',Q). We will designate it by £ 7(T,Q). The element of ¢ (T, ) corre-
sponding to ¥, ¥ € £ (I',Q) is designated by ¥ . '

2. The Cauchy Problem. We examine the Cauchy problem (4.1). We define the operation ih(d/dt).
We assume that the dependence of ¥(t) on t has the form ¥(t) = Tmyr, 8, 1) where m; are diffeomorphisms

described in § 2. Basing ourselves on Eq. (2.5), we arrive at an expression of the type (4.5) for ih(d/dt)¥(t);
the interpretation of this expression makes the following definition a natural one:

L d . dp hoyed .
‘hg;‘y(t)= Tonper0,0 {lh Lpx+ > (—;—) > diel-[X, T, T)} W 4.7

d
dpy E>1 =

Returning to Eq. (4.1), we assume that Hy= x. Equation (4.1) is then equivalent to the equation

.

- k2 ! ‘
thy - Hope +Z(_h_) [Z die(- | Hy .. ) — Z(L) Di(-|Hoy "')]p‘f =0, (4.8)
‘ k>1 ¢ j=1 >0 :
which reduces to the system of recurrent equations
(e + Hy (po)e = Ne(uo)e i<<R), Ek=0,1,2 ..., (4.9)

‘after certain cancellations; here Ny = 0. In the Cauchy problem these equations are supplemented by the in-
itial conditions which combine with them to define g uniquely. The Cauchy problem has been solved.

The choice of T in the Lagrange triplet (I', 2, 7) which defines the congruence .= ¥y is arbitrary to
a considerable degree. In particular, it is always possible to stipulate K in canonical form K = k(W = exp-
(i/h)ﬂ(t)V(x)V(l) (#)6. The transition from K to k() corresponds to a local linear transformation of the cor-
responding measures and g and () ; under these conditions u, = ygi) | det!/2r |. If such a transition is car-
ried out in the solution of the Cauchy problem on the assumption that H; = 0, then it turns out that

(4)o (medx) () (dx) = [50 (dx) /5, (myd)) -, ; (4.10)
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where st is an element of area on I't. A generating integral with a kernel of the form K® was described in
[6]. Equation (4.10) establishes a connection between the solution of the Cauchy problem given there and
the solution derived in the present paper.

3. Asymptotic Applications. For the expression V ¢ we will agree to define V¢N as the element of
L,(Q) stipulated by the equation

. . o ’
V(P.\ - V(g)u”expT’S, W 2 (%) a4, (4.11)
k=0

It is easy to prove that from V¢, = V¢, it follows that Vﬂp%\I -V, (pZN = omN*Yy, We will assume that om),
k=0,1, 2, ... defines an element of Ly(Q) such that h-kKO(®K) is bounded, h € A ; the quantity yN defines the
class of functions VN, where V¢ belongs to the class ¥.

We use :Z (I',Q) to designate the subset of elements of < (I',Q) having finite "measures" . Assume
Ve ¢ (I,0) and ¥N =3 y,. The set Iwill be assumedfinite (this is possible). We assume \I'.lil =3 z,bg.

We will say that ¥%, ¥ ¢ Z (I',R) is an asymptotic expansion of the elements $y, ¥}, € 1o(Q), if ¥
—‘If¥ = O(hN'H), N=0,1,2,.. We use the notation $ ~ ¥, We will say that the linear operator Hoin L, (Q),
which is dependent on h, generates a quasiclassical operator X , if for any natural N and any ¥ € £ (T, Q)

the following conditions are satisfied: 1) ‘I'¥ belongs to the definition domain of H; 2) H‘I'&[ = ( z%"lf)%-I +0.
N+t ' i
G,

It is possible to indicate simple effective conditions for which H is an operator that generates a quasi-
classical operator. These conditions, in particular, are satisfied by the Schrédinger operator for simple
assumptions concerning d; here the corresponding Hamilton function is given by Eq. (1.4).

Assume H = H(t) depends on t. We examine the Cauchy problem in L,(Q):

i p() ~HOBEO - 10, $0) =+. (4.12)

We aésume that: 1) the operator H(f) generates a quasiclassical operator % (t); 2) the problem (4.12) is
solvable and ||¢ )| = cytllgll + Sup Il £(7)1[1, where C(t) is independent of h. The substantive conditions

for the validity of 2) can be found in [7-9].

THEOREM 2. If H satisfies the conditions 1), 2), and £ = 0, and the relationships p ~ ¥, ¥ ¢ % (I,9Q)
are valid, then ¥ (t) ~ ¥(t), where ¥(f) is the solution of the problem (4.1).

The proof is obvious if we make allowance for the fact that ih(d/ dt)\1f¥ = (ih[d/dt]‘I')% + O(hN+ ), An
analogous result in terms of the canonical operator is contained in the papers by Maslov.

In conclusion, several remarks are in order on the use of the generating integral in investigating the
asymptotic behavior of the eigenelements of the operator which generates the quasiclassical operator. It
turns out that every closed compact Lagrange manifold I" which is invariant with respect to the dynamic
system m; and has the defined stability property can be connected with an element ¥, ¥ € # (T, ), which
approaches the eigenfunction of the operator H asymptotically on a certain sequence hy,n= 0, 1, 2, ...,
hy = 0, n — =, For hy — 0 this eigenfunction is concentrated on I in a well-known sense. The sequence
hp is determined by the characteristic Maslov-Arnold class of the manifold I'. ' The modification of the gen-
erating integral makes it possible to obtain an analogous result for manifolds of lower dimensionality (for
example, for stable closed one-dimensional orbits). The role played by the stability conditions in this
group of problems was discovered in special cases in {10, 11], etc.
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