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ABSTRACT

The Hermite-Hurwitz theorem computes the degree, over R, of a real rational
function fin terms of the signature of an associated quadratic form—known today as
the Hankel matrix of f. This formula, which Hermite was led to by his work on the
problem of representing integers as sums of squares, gave rise to striking applications
in the theory of equations and in the stability theory of ordinary differential equations.
In this paper, this theorem and various generalizations to the matrix-valued case are
discussed and described in terms of signature formulae. These include its relation to
stability theory and the matrix Hermite-Hurwitz theorem of Bitmead-Anderson as
applied to questions of circuit synthesis. This also includes a global form of Hérmander’s
signature formula for the Maslov index of a rational loop in a Lagrangian Grassman-
nian, due to Bymnes and Duncan, and applications to the topology of spaces of rational
matrix-valued functions, following the work of Brockett, Bymes, and Duncan. This
includes, in particular, a topological proof of the matrix Hermite-Hurwitz theorem.

.

INTRODUCTION

The Hermite-Hurwitz theorem computes the degree, over R, of a rational
function f in terms of the signature of an associated quadratic form—known
today as the Hankel matrix of f. Hermite was led to his discovery by his work
in number theory, specifically the question of representing integers as sums of
squares. In the course of this work, he recognized that many classical
problems—such as counting the number of roots of a polynomial in a given
domain—which were solvable in terms of the Cauchy formulae could be
expressed in a far more computable form, viz. with a winding number
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62 CHRISTOPHER L. BYRNES

replaced by the signature of a quadratic form fashioned qut of the problem at
hand. Hurwitz extended and applied this theorem, giving a solution to a
problem raised by Maxwell: to give explicit criteria, in terms of the coeffi-
cients of the characteristic polynomial, for a linear differential system to be
asymptotically stable, i.e., to find explicit inequalities in the characteristic
coefficients of A which are satisfied if and only if all eigenvalues of A have
negative real parts. It is worth remarking that the quadratic form constructed
by Hurwitz is positive definite if, and only if, the system is asymptotically
stable, and in this case is a Lyapunov function for the differential system. It is
my contention that the Hermite-Hurwitz theorem is a far more central
theorem than is presently appreciated. In this paper, illustrations of the role
which the Hermite-Hurwitz theorem and several of its generalizations play in
linear algebra in topology, indifferential equations, and in the theory of
circuits and systems will be given in support of this contention. The reader is
referred to the papers [1], [3], [4], [7]-[9], [11}-[15], [18], [19], [25], [33], [34],
the references cited therein, and the original work [22, 24] for further
interpretations of this basic and beautiful theorem.

In Section 1, I present the Hermite-Hurwitz theorem together with some
relevant facts concerning rational functions and Hankel matrices. The elegant
proof of this theorem, which is presented in Section 2, is due to R. W.
Brockett [7], and to my knowledge this is the first point in the literature
where it is recognized explicitly that the Hermite-Hurwitz theorem can be
interpreted as a statement about the topology of spaces of rational functions.
In the third section, I present Hurwitz’s application of this theorem to the
study of the stability of differential equations on R". Indeed, using the
fact—noted by Parks [33]—that the Hankel form is in fact a Lyapunov
function, one can also prove the Poincaré-Lyapunov theorem as a corollary to
Hurwitz’s calculation.

The remainder of the paper deals with the matrix Cauchy index—which
is an extension of the notion of degree to matrix-valued functions—as it arises
in circuit synthesis, as an invariant (the Maslov index) of Lagrangian loops,
and as it relates to the topology of matrix-valued rational functions. Indeed, in
Section 4 three circuit synthesis problems are stated, and, following Bitmead
and Anderson [3-4], the matrix Cauchy index arises as a natural tool for the
characterization of impedance matrices of the circuits which arise in these
synthesis problems. Thus, various forms of the matrix Hermite-Hurwitz
theorem [4] give “testable” characterizations of these impedance matrices. In
this section, a topological proof of a special case—sulfficient for the char-

acterization of lossless networks—of the matrix Hermite-Hurwitz theorem is

given, and in Section 6 a complete proof the “symmetric” Hermite-Hurwitz
theorem is given. This proof is due to T. E. Duncan and me, and is based on
topological methods; see also [14).
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Rational functions on the real line can of course be generalized in many
ways. One rather natural generalization from the point of view of circuit
theory, suggested by Hermann and Martin [20, 21], leads to the study of
rational maps

f:8' - LG(m,2m),

i.e. the study of rational loops in a Lagrangian Grassmann manifold. In
Section 5, a formula is proved which identifies the Maslov index of the loop f
with the matrix Cauchy index of f, regarded as a symmetric matrix-valued
function. This identity generalizes the interpretation of the winding number
of a rational map

fiS—8'=1G(1,2)

as the Cauchy index of f and is a global form, suitably generalized, of a
formula of Hormander [23] for the local contributions to the Maslov index.
This identification, also due to T. E. Duncan and me, is yet another
motivation for deriving a simple algebraic expression for the matrix Cauchy
index, and as corollary to the matrix Hermite-Hurwitz theorem (Section 6)
and the computations of Section 5, one obtains the “topological Hermite-
Hurwitz theorem”

MaslovInd( f) = sign(Hankel( £))

[} .
for Lagrangian loops. This assertion, as in the classical case, has an interpreta-
tion in terms of the topology of spaces of m X m symmetric transfer functions
of fixed degree and thus in terms of the global properties of symmetric linear
systems (see [14]).

1. THE HERMITE-HURWITZ THEOREM

That is where I have stopped in the study of this beautiful and great discovery of
Mr. Cauchy. I had been led to this study in great part by research into arithmetical
questions which, since the year 1847, have called my attention to quadratic forms
composed of a sum of squares formed from the roots of the same equation. In addition
I have found a true satisfaction in applying these forms to the magnificent theorems of
Mr. Sturm and Mr. Cauchy, which open a new era in modern algebra.

—C. Hermite, on the Hermite-Hurwitz theorem [22,§6]
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64 CHRISTOPHER I. BYRNES

This beautiful, but not very well-known, theorem lies in the carly work by
Cauchy, Hermite, Hurwitz, Kronecker, Sturm, and others on the qualitative
theory of vector fields in the plane (and in R™) on the one hand, and in the
elimination theory of two or more polynomials, on the other hand. We can
begin with the question: When is a strictly proper meromorphic function fon
C rational? Here, strictly proper means that f is meromorphic at co, and
vanishes there.

One approach to this question, due to Kronecker [30], is to fashion the
infinite (Hankel) matrix

Hyp= [l-‘+i—l]:j-1 (1.1)

from the Laurent coefficients of

f(z)= ¥ L, | (1.2)

i=1

Of course, if fis in fact rational, say
f(z)=n(z)/d(z), (1.3)
then by multiplying each side of (1.2) by
d(z)=dy+ -+ +d,_;z" "1 +2"

one obtains a recurrence relation of length n among the Laurent coefficients
,, for i > n. Explicitly, comparing the coefficients of z~in the equation

_n(z)=( Y l‘z"')d(z) (1.3%)
i=1 A
yields the recurrence relation

O0=ldy+ -+l 1 dn_1+ (1.4)

In terms of the Hankel matrix C;, (1.4) asserts that the (n + j)th column of
‘JCf is linearly dependent on the preceding n columns. In particular,

rank(9C,) < 0. (1.5)
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Moreover, if n(z),d(z) have no common factors, then (1.5) may be sharp-
ened to

rank(9C,) = deg(d(z)) = deg( f(z))- (1.5)
Kronc;cker’s theorem asserts that the converse holds, viz.
fis rational < rahk(ﬂCf) < 00,

This is proved by retracing the steps outlined above, and makes use of the
following observation: Suppose

rank(‘JCf) =n
Construct the truncated Hankel matrix
= [Ii+i-1]in.j-v
and note that, from the form of the Hankel matrices, one has
n = rank(9C;) = rank([liﬂ-_l]:’jg 1) = - -+ =rank(9(,). (1.6)

From (1.6), one can construct a unique recurrence relation of the form (1.4);
i.e., one can solve the linear equations

' ln+1 ln l
=-—d, 4| """"do[ll] (1.7)
lon lpn—1

among the columns of f}Cj'- The coefficients are unique, so that one obtains
d(z) from the data (3(f,l;,) and finally one obtains n(z) from (1. 3'). The
pair n(z),d(z) are coprime, for if there were a common factor, then a
recurrence relation of length € n —1 would exist among the [,’s, contradict-
ing (1.6).

We can express Kronecker’s theorem in a form which we shall find useful:
Here k=R or C. We define

Rat(n; k)= (strictly proper rational functions f, defined over k, having
degree n),

Hank(n; k)= {n X n Hankel matrices, defined over k, of rank n}.

J
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66 ' CHRISTOPHER 1. BYRNES

If f:k¥ >k is a polynomial, then V(f) wil denote the zero set of f. For
example, we shall consider the polynomial

Res: k2¥ > k

whose value at a point (ng,...,ny_,dg,...,dy_,) is given by the resultant,
Res(n, d), of the polynomials

n(z)=ng+ - +ny_ 12V, d{z)=dy+ - +dy_ 1281+ 2V
Recall that
Res(n,d)=0 < =n(z),d(z)haveacommon factor.
In this notation, we can consider the open dense subspaces
Rat(n; k) = k2" — V(Res)
Hank(n; k) = k2"~! — V(det)

as smooth manifolds. On the one hand, by Cauchy’s integral formula the
Laurent coefficients (J;) are continuous functions of the coefficients of f. On

the other hand, (1.7) and (1.3’) show that the coefficients of f are continuous
functions of the coefficients (1,)?",. Thus, we have

<

Tueorem 1.1 (Kronecker). The Laurent map R(f)=(ly,....1y,) is a
homeomorphism

£:Rat(n, k) — Hank(n; k) X k.

Now, each strictly proper rational function f{z) extends to a holomorphic
map

£:82582 fleo)=0, (1.8)

and. conversely. One can also phrase Kronecker’s observation as giving a
formula for the (Hopf) degree, degc(f), in terms of algebraic data. That is,

since degc(f)= deg(d(z)),

dege(f) = rank(ﬂCf). (1.9)
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The Hermite-Hurwitz theorem [22, 24] is concerned with the case when f is
real. As above, f gives rise to a mapping

f:S'>8!  flo)=0, (1.10)

and one might ask for a calculation of the winding number, degg(f), in terms
of the data (3Cf,1;,)- Since f is real, J(; is a real symmetric matrix and
therefore possesses a second numeric invariant, viz. its signature, sign(JCf).
Now, by Kronecker’s Theorem, the identity

sign(‘JC}) = rank(ﬂ{',}) = degc(f) = degp(f) mod 2 (1.11)
holds in the integers modulo 2. In 1856, Hermite proved that the identity
sign(3C; ) = deggp () (1.12)

holds in the integers for generic f, i.e. for flying in an open, dense subset of
Rat(n;R). From this statement, (1.12) follows for all f € Rat(n;R) by a
general position argument. Explicitly, thinking of 3(f as a continuous symmet-
ric matrix-valued function of f € Rat(n;R)~—as in Theorem 1.1-—note that,
since 3C; has constant rank, the signature of 9C¢ is constant on the connected
components of Rat(n;R). In particular, the left-hand side of (1.12) is
a continuous function of f. But the righthand side is easily seen to be
continuous as well, so by Hermite’s calculation these functions agree on all of
Rat(n;R). Hurwitz [15] proved the general theorem in 1894 by different
techniques, which are still of interest at present.

Tueonem 1.2 (Hermite, Hurwitz). For any real, strictly proper rational
function f,

sign(‘JC}) = deggp(f). (1.12)

In the nineteenth century degg(f) was, of course, expressed in a different
way:

DeriniTioN 1.3 (Cauchy). The local index of a real, rational f at a real’
pole x, is + 1 if f changes from — o to + oo, — 1 if the opposite occurs, and
0 if f has a pole of even order at x,. The index of f, C(f), is the sum of the
local indices.

C(f), which is the winding number deggp(f) of the map fin (1.10), was
defined by Cauchy in [16). In Part I of that work, he uses the Cauchy index to
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68 CHRISTOPHER I. BYRNES

compute the number of real roots of a real polynomial (generalizing, among
other things, Descartes’s rule of signs), the number of negative real roots, and
related questions. In Part I, he uses the Cauchy index to define and evaluate
the index, at an equilibrium point, of a nondegenerate, polynomial vector field
on the plane. This was later extended to the case n > 2 by Kronecker [29],
who intreduced the notion of the “characteristic” of a system of equations as
a generalization of the Cauchy index of a plane vector field.

In the next section, we shall give a modern topological proof, following
Brockett, of the Hermite-Hurwitz theorem.

2. THE HERMITE-HURWITZ THEOREM AND THE TOPOLOGY OF
SPACES OF RATIONAL FUNCTIONS

Recall the statement of the

Heraite-Hurwitz THEOREM.  For any real, strictly proper rational func-
tion f,

sign{JC;) = deggp (). . (1.12)

Proof (Brockett {7]). From the general position argument sketched in
Section 1, it suffices to check the identity (1.12) once on each component of
Rat(n;R). Note that, from (1.11), both sign(J({) and degg(f) can take on
only n +1 values on Rat(n;R). We shall first determine the number of path
components:

THEOREM 2.1 (Brockett). Rat(n;R) has n + 1 path components Rat(p, q),
where p+ q=n, p >0, and q > 0. Furthermore g € Rat(p, q) if, and only if,

degp(g)=p—gq.

Proof of Theorem 2.1 [7]. We may begin by considering the problem of
deforming a rational function f with distinct poles, say

f(z)= ¥ ——+F(z), =¢€R,
i=1% "%

where Fy(z) has only complex poles. By deforming z; to z;1 and then
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deforming the quadratic contribution .

az+b

2
(z"z]-l-l)

first to
az+b
22
and then to
az+b
22+d’

where 22+ d has distinct, pure imaginary roots, we can deform fi(z) to
another real rational function f,(z) € Rat{(n; R) for which

q r p’ ;j .
fi(”)—‘zlz+i+._lz,_j+ 0(")’
= ]—

where 7, < 0 and 7,> 0. Thus f{(z) has the property that all the real residues
which are negative correspond to negative real poles, and all the real residues
which are positive correspond to positive real poles. Note that

‘ degn(f5) = degp(f))=p'- ¢,

which follows from examining the behavior of the graph of f;(z) at real poles.
Next, Fo(z) may be deformed to an Fy(z) which has purely imaginary poles,
occurring of course in conjugate pairs. Taking the pair which is closest to the
origin, which give rise to a contribution of the form

az+b
z224d’

one can reverse the process used above, allowing d to tend to 0 and then
splitting this multiplicity-2 contribution to one of the form

r H
+
st+eg s—e¢

where 7, > 0 and r < 0. In this way, we can deform £;, and hence f{): to the
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70 CHRISTOPHER 1. BYRNES

rational function .

a _; P,
Alz)= X 55t )y —J-S_]., (2.1)
i= j=1
where
deg(f)=p—g=p"—q'=deg(f).
Hence, Rat(p, q) is path-connected. | ]

It now remains to check the identity
sign(3(7) = C(£)

once on each path component Rat(p, q). Thus, we consider

p

$.q(8)= Z—l Z

s—j
By definition,

C(f;:q) =p—q,
so that £, . € Rat(p, q).

Lenmma 2.2. sign(‘JCh J=pr—a

This lemma follows from a straightforward but tedious computation. A
more elegant system-theoretic proof, based on circuit synthesis, can also be
given in the context of realization theory (see Fuhrmann [18], this issue, for
more details). Explicitly, any strictly proper real rational function g(s) of
degree n may be factored (or realized) matricially as

g(s)=c(sI— A)™'b, (2.2)

where b = e,, A is the n X n companion matrix

(0 0 - 0 -d,]
1 0 -d,
A= 1 0 -d,
0 0 1 -d,]
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of the unique monic degree n denominator d(s)=s" + dys" '+ .- +d,
and ¢=[l,,...,1,] is the vector of the first n Laurent coefficients of g(s).
Since (A, b, ¢) determines g(s), one can ask for a computation of sign(J(;) in
terms of (A, b, ¢).

For this purpose, we shall need the main theorem of realization theory
(see e.g. [6), [26], [35]), which we shall state for a p X m matrix G(s) of
rational functions.

DeriniTion 2.3 (Kalman). Any triple (A, B,C) consisting of an I X[
matrix A, an I X m matrix B, and a p X [ matrix C which satisfies

C(sI—A) 'B=G(s) (2.3)

is said to be an l-dimensional realization of G(s). The minimum such
I € NU({c0} is referred to as the McMillan degree of G(s), and any realization
of this dimension is said to be minimal.

For scalar rational functions g(s), we have constructed above a minimal
realization of dimension equal to degq(g), while from the identity (2.2) and
the fact that the resolvent of A has poles at the eigenvalues of A it is also clear
that this realization is minimal; i.e., for scalar g(s) one knows

McMillandeg(g) = degc(g) = rank(‘JCg). (2.4)

‘Tueorem 2.4 (Kalman). Every strictly proper rational matrix-valued
function G(s) admits a finitedimensional realization. Furthermore, if
(A, B;,C), i = 1,2, are two minimal realizations (of dimension n), then there
is a unique T € GL{n,R) such that

TA, = A,T,
TB, = B,, (2.5)
Cl = C2T.

Again, for scalar g(s) the first assertion is trivial, while the second and less
trivial assertion follows from a dynamical system-theoretic interpretation of
realizations (see e.g., [6], [24], [35)).

We illustrate Theorem 2.4 by finding a formula for sign(3(;) in terms of a
realization: suppose g(s) is a strictly proper, real rational function of
McMillan degree n and that (A, b, ¢) is a minimal realization of g(s). Then
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72 CHRISTOPHER I. BYRNES
(A, ¢!, b*) satisfies

b(sI— A et =c(sl — A) " 'b=g(s)

" and is therefore also a minimal realization of g(s). By Theorem 2.4, there

exists a T € GL(n,R) satisfying

TA = AT,
Tb=c', (2.6)
c=Db'T.

Transposing (2.6), and taking into account the uniqueness of T, one has
T=T:. 2.7)

We shall now compute J(, in two ways. First,

g(s)=c(sl—4) ‘b= 3, AP

i=1 S

yielding the entries [, = cA'"'b of I(, in terms of (A, b, ¢). Thus, one may
write

) - -

c
cA
. |[b, Ab,...,A'D,...] =%,
cA’
Alternatively, one may write
[b, Ab,. ...]'T[b, Ab,...,Ab,...] = %K, (2.8)

where T is the unique symmetric matrix satisfying (2.6). It is well known
[6, 24] that any minimal realization of g(s) satisfies the controllability
condition

rank[ b, Ab,...,A"~'b] = n. (2.9)
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Therefore, (2.8) reduces to
[b, Ab,...,A"'b]‘T[b, Ab,...,A"'b] = I,
and, in light of (2.9), we have
sign(T) = sign(f}C;).
As an application of (2.10) we have
. Proof of Lemma 2.2. I f, (s) is as defined above, then
A=diag[-—q,...,—-l,l,...,p], c=[1,...,l],
-1]

-1
b=1 41

+1_ J

b

is a minimal realization of £, (s). It is trivial to check that if

I, = diag[ T 1,...,1],
\__V—J L_Y_—/
q p

then

I, ,A=AT, .,

Ip’qb=c‘, c=b’Ip'q.

73

(2.10)

(2.11)

By uniqueness then, the matrix T in (2.6) and (2.10) is I, ,, and therefore

sign(‘JCf’;'q) = sign(Ip_q) =p-gq.

Remark. This elegant calculation is part of the general theory of intern-
ally symmetric realizations. Briefly, realizations satisfying (2.11) were first
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74 ' CHRISTOPHER 1. BYRNES

studied systematically, for G(s) an impedance matrix of a linear reciprocal
RLC circuit, by Youla and Tissi [37] under the title of “network symmetric”
realizations. The observation that such realizations cxist for any rational
symmetric (in particular, any scalar) matrix-valued function was made in [11]
and has been the starting point for various algebraic and geometric investiga-
tions of transfer functions G(s) possessing external symmetries. A systematic
study of various external, and the corresponding internal, system-theoretic
symmetries was made in [36], where the term “internally symmetric realiza-
tion” was coined. The existence of internally symmetric realizations for
systems defined over the integers and over a polynomial ring has been studied
from an arithmetic point of view in [12] and [14]. External and internal
symmetries have been studied and classified from a Lie-theoretic point of
view in [8] and [9], and from a polynomial model point of view in [18]; in
both treatments new forms and proofs of the Hermite-Hurwitz theorem are
derived. The geometry of externally symmetric transfer functions has been
studied in [6], [13]-[15], in particular stressing topological formulations of the
Hermite-Hurwitz and of Kronecker’s theorem.

The relationship between the Hermite-Hurwitz theorem and the topology
of spaces of rational functions can, in fact, be pushed much further. First of
all, Brockett’s theorem can itself be proved following some observations made
by Hermite, and again by Hurwitz (especially §8 of [24]). Explicitly, in [22]
Hermite first considers the problem of determining the number N, of roots of

Pi(z) =n(z)+id(z) =0, (2.12)

which lie in the upper half plane H, c C. Here n(z) and d(z) are real and
coprime with

fz)=n(z)/d(z) (2.12)

strictly proper, degc(f)= n. In §5 of [22], he remarks that N, is given by the
formula

N, =}[degc(f)+dega(f)], (2.13)

a statement which he attributes to Sturm, but derives from Theorem 1.2.
There is a similar formula, after replacing z by Z, for the number N_ of roots
in H_, viz.

N_ =4[degc(f) ~ dege ()] (2.13)
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This also follows from (2.13) upon observing that P{(z) cannot have any real
roots, since (n,d)=1. Indeed, by the same reasoning no root in H_ can
conjugate to a root in H,. From these observations, the connectivity of
Rat(p, q) follows from an easy divisor argument. That is, the (divisors of)
roots ‘D of Iy determine Py uniquely as that polynomial of degree n vanishing
on GD and havmg leading coeff:ment i. Now, to say f € Rat(p, q) is to say

D=D,+D,, DNH,=2, (2.14)

where ), (9,) consists of p unordered points in H, (g unordered points in
H_). G1ven f, FE€ Rat(p, q), it is of course clear that CDf can be deformed to
(D7 along a path of divisors satisfying (2.14).

Thus Brockett’s theorem follows from the Hermite-Hurwitz theorem, and
in this way the latter can be interpreted as a statement about the topology of
spaces of rational functions. Explicitly, the Hermite-Hurwitz theorem calcu-
lates the number of components of Rat(n;R), or (what is the same) the rank
of the cohomology space H%Rat(n);Z,). For interpretations of the Hermite-
Hurwitz theorem in the higher cohomology H' (Rat(n) Z,), the reader is
referred to [14].

3. THE ROUTH-HURWITZ THEORY: ASYMPTOTIC STABILITY OF
LINEAR DIFFERENTIAL SYSTEMS

‘ I propose at present, without entering into any details of mechanism, to direct the

attention of engineers and mathematicians to the dynamical theory of such governors.

It will be seen that the motion of a machine with its governor consists in general of

a uniform motion, combined with a disturbance which may be expressed as the sum of
several component motions. These components may be of four different kinds: —

1. The disturbance may continually increase.

2. It may continually diminish.

3. It may be an oscillation of continually increasing amplitude.
4. It may be an oscillation of continually decreasing amplitude.

The first and third cases are evidently inconsistent with the stability of the motion;
and the second and fourth alone are admissible in a good governor. This condition is
mathematically equivalent to the condition that all the possible roots, and all the
possible parts of the impossible roots, of a certain equation shall be negative.

I have not been able completely to determine these conditions for equations of a
higher degree than the third; but I hope that the subject will obtain the attention of
mathematicians.

—]J. C. Maxwell [31]
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The dynamical system

dx n
Et— —Fx, xeER (31)

is said to be asymptotically stable at 0 just in case for any initial condition
x, € R", the solution x, of (3.1) tends to 0 as ¢ — co. Stability is an old topic
in differential equations, dating back to Newton’s investigation of the stability
of systems governed by an inverse gth-power law, e.g. gravitational attraction.
In 1888, J. C. Maxwell published a study of the local asymptotic stability
about 0 of certain nonlinear 3rd-order differential equations on R, which were
models of various closed-loop feedback systems (see [31]). Maxwell knew that
local asymptotic stability of the nonlinear system ought to be determined by
the (global) asymptotic stability of the linearized system

d3c d*x dx

F-ﬂ-ngt—z"*- pl'a?+p0x=0, (32)

and he knew that this in turmn was determined by the roots of the characteris-
tic equation

P(D)=D3+P2D2+P1D+Po=0’ (3'2’)

where D may be thought of as an independent variable. That is, (3.2) is
asymptotically stable if, and only if, the roots of (3.2') lie in the left half plane.
Clearly, the conditions p; > 0 are necessary, and Maxwell found that adding
the condition

P1Pe—Po>0

gave necessary and sufficient conditions, in terms of the coefficients p;, for
p(D) to have all of its roots in the left half plane. In [31] and at a meeting of
the London Mathematical Society in 1868, Maxwell posed the following
problem: to determine the conditions on the coefficients of a (monic) poly-
nomial P(s) of degree n which characterize those polynomials having all roots
in the left half plane. Following a suggestion made by Clifford at the meeting,
Routh solved Maxwell’s problem, giving a set of n(n + 1) /2 inequalities in the
p,’s. These inequalities define an open region—the domain of stability—in
the space R" of such polynomials. The domain of stability was also char-
acterized by Hurwitz [24], and this is the treatment we shall follow here.

——— e e
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First, note that we can recast the problem in a more modemn framework:
by introducing the new * phase™ variables

dx drlx
X=X, x2='3;,..-, x"=dtﬂ“’1

the nth-order equations which normally arise may be regarded as Ist-order
equations (3.1) on R™ Now we may ask for the construction of universal
polynomials in the coefficients of the right-hand side which decide the
asymptotic stability of (3.1). As we shall see in Theorem 3.1, these polynomi-
als may be constructed from the Hermite-Hurwitz theorem.

We thus consider linear systems

dx
:I? = Fx (3.3)

with characteristic polynomial
p(s)=x¢(s). (3.3

Following Hurwitz, we assume that p(s) has no pure imaginary zeros, and we
denote by L and R the number of roots of p in the left half plane and right
half plane, respectively. By contour integration, the change in
(1/27)arg(p( — is)), as s varies from — oo to + oo, yields L — R. By trigo-
nometry, this is the Cauchy index of the rational function

‘

f(s)=v(s)/uls),

where v and u are defined as
ep( = is) = u(s)+iv(s)
and ¢ is a complex constant rendering v/u strictly proper. Therefore,
L-R= sign(‘.}Cv/u). (34)

Note that u, v, and the entries of 3, Ju 8Te easily obtainable from the
coefficients of p(s). Moreover, one has a criterion for R =0:

Tueorem 3.1 (Hurwitz). p(s) lies in the domain of stability if, and only
if, the quadratic form 3(, ,, is positive definite.
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This theorem leads to n polynomial inequalities defining the domain of
stability. Recall that, if

Q=((h1)=Q‘- i,j=1,...,n,

is a symmetric matrix, then the number of negative eigenvalues of Q is given
by the Jacobi algorithm (see [19]): Let

Ql=qu.---,0n=Q

be the sequence of the jX j principal submatrices, and let
P,=qy,..., P,=detQ (3.5)

be the corresponding minors. Provided no two successive F’s vanish, the
number of negative eigenvalues of Q is equal to the number of changes of sign
in the sequence (3.5). Moreover, Q is positive definite if, and only if, all the
terms P; are positive.

Now, in the case at hand, we may define the n functions

gvi(pO""’pn—l)':Pi(‘JCv/u)‘ (3.6)

It is not hard to see that the §; are polynomials in the p;. One therefore can
settle Maxwell’s‘problem: the domain of stability is defined by the equations

p(s)EGD; = G(p)>0, i=1,...,n. (8.7)

There is another interpretation of Hurwitz's theorem, which is quite
intriguing. JC, , defines a function on the “phase” space R" of the differen-
tial equation (3.4), viz.

L(x)=x'%,,,x>0,

where of course F and hence 3, ,, is constant. That the quadratic form L is
positive definite implies, for example, that the level surfaces

L(x)=c for ¢>0 (3.8)

are ellipsoids which are concentric about 0, decreasing as ¢ — 0. It is our
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claim that, in fact, L(x) is a Lyapunov function for the system (3.4), ie.,
along trajectories x, of (3.4) one has

%L(x,) <0 for x,=0. (3.9)

Geometrically, (3.8) asserts that x, crosses the ellipsoid from the outside to the
inside and that ¢ — 0 as t — o0, and hence x, — 0. It is of course a well-known
theorem of Lyapunov that such functions always exist provided (3.1) is
asymptotically stable.

Lemma 3.2, If K, , is positive definite, then L is a Lyapunov function

for (3.4).

Proof. In the linear case, it is not hard to construct some quadratic form
which is in fact a Lyapunov function, in the asymptotically stable case—which
we are in, by Hurwitz’ theorem. Let L, be such a form. Then by the spectral
thecorem, there exists a T € SO(n) such that

L,=T'LT. (3.10)
To say
d

is to say the tangent vector to x, at x, € Lg'(¢) points inward at x, . After an
orientation-preserving orthogonal transformation, the tangent vector to Tx,
remains not tangent to the level surface Tx, € L~Y(c) and indeed points
inward at x,,. Since each trajectory of the transformed system

dx _ ¢
i (TFT*)x (3.4)
has the form Tx,, where x, is a trajectory of (3.4), Equation (3.9) holds for all
trajectories. ]

Reamark 1. That the “second method” of Lyapunov can be used to
derive inequalities defining the domain of stability, and that the results of
Hermite and of Hurwitz can be used to construct Lyapunov functions, is
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rather well known among control theorists, and the reader should consult [33],
[34] for further information.

Remark 2. This derivation of the polynomial inequalities defining the
domain of stability reposes upon the classical application of the Hermite-
Hurwitz theorem, which asserts that to test if a polynomial has its roots in a
given region of C, one may construct a related quadratic form and calculate
its signature. Such an assignment of a quadratic form to a polynomial arises in
amazingly diverse settings. Purely algebraic methods have been derived by
Kalman [25] and by Djaferis and Mitter [38]. Another, rather surprising result
in this direction comes from Weyl’s criterion for the compactness of a
semisimple Lie group, viz. that its Killing form must be negative definite.
Explicitly, in [9] R. W. Brockett continues his study of the real Lie algebras
which arise (in a canonical way) from real rational functions—the particular
Lie algebra which arises can be determined from symmetry properties of the
rational function. For the case at hand, the rational function f(s)= v(s)/u(s)
constructed from p(s) as in Hurwitz’s theorem satisfies

f(s)=r*(-s)

According to Brockett {9, Theorem 1}, such an f gives rise to a Lie algebra
su(p, q), where p — g is the Cauchy index of f. In particular, p(s) has all of its
roots in either the left or the right half plane if, and only if, its associated Lie
algebra has a compact form—that is, if and only if the Killing form is
nonnegative definite.

[}

4. THE MATRIX CAUCHY INDEX: A CHARACTERIZATION OF THE
IMPEDANCE MATRICES OF LOSSLESS NETWORKS

An important problem in circuit synthesis is to characterize the imped-
ance matrices of LC circuits among rational matrix-valued functions of a
complex variable. In the scalar-input, scalar-output setting this is done rather
elegantly in terms of the Cauchy index, and therefore in a very “testable”
way in terms of the Hankel matrix. In order to obtain similar criteria for
multichannel circuits, Bitmead and Anderson [3, 4] were led to define the
matrix Cauchy index and then to prove a matrix version of the Hermite-
Hurwitz theorem [4]. In this section, we will sketch the circuit-theoretic
background of the problem considered in [4], state the generalized Hermite-
Hurwitz theorem, and give an easy topological proof—in the fashion of
Section 2—for a special case of this theorem which nevertheless suffxces to
characterize the impedances of RC circuits.
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Suppose the differential equations

—(cil—:=Ax+Bu, x(0)=x,€R", u(t)eR™,

(4.1)

y=Cx, y(t)eR™

model an RLC circuit in an initial state x,, driven by m current sources,
where 1,(¢) is an applied current and y,(¢) is the resulting voltage across the
i-th current source (e.g., a battery). The circuit, or rather the system (4.1), is
said to be passive provided there exists a positive definite form L such that
the dissipation inequality

(1) Lx(t) — x4 Lxy < fo ‘u(r)y(r)dr (4.2)

holds for all x, and all £, If equality holds in (4.2), then the system is said to be
lossless.

One can state the condition of passivity in terms of a property of the
weighting pattern for (4.1) or in terms of the Laplace transform of the
weighting pattern. Since (4.1) is constant-coefficient, we make contact with
the study of properties of rational function; that is, assuming x, =0, the
Laplace transform of (4.1) is given by

‘ 3(s) = [C(sT - A) "' B]a(s)
~ R(s)4(s), (4.3)

which of course, is an analogue of Ohm’s Law. The function R(s) is referred
to as the impedance of the circuit, and it is natural and important to ask
which m X m matrix-valued, rational functions R(s), vanishing at oo, arise as
the impedance of an RLC circuit driven by m current sources. Here, we may
have to allow rational functions having a pole of finite order at oo, but for the
sake of exposition we will consider only strictly proper rational functions.
Now, by Theorem 2.4 each such rational function R(s) can be factored as

R(s)=C(sI-A)"'B. (4.4)

Equivalently, every m-X m rational, matrix-valued function vanishing at oo
arises as the Laplace transform of a system of differential equations (4.1)..Of
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82 CHRISTOPHER 1. BYRNES

course, there exists a formula for the minimal dimension n for which such a
factorization is possible which is a generalization of Kronecker’s theorem, viz.

the identity
n= rank([L,ﬂ_l]:’j_ 1)’

where the block matrices L, are defined as the coefficients

R(s) = iil Lis—, (4.4)

Indeed, this is not surprising in light of the identities
L,=CA"'B

and the Cayley-Hamilton theorem. We shall always assume that the factoriza-
tion (4.4) is minimal in this sense and write degc(R)= n. This implies, for
example, that the poles of R(s) coincide with the eigenvalues of A, each set
counted with multiplicity.

In particular, taking u(t),y(t) in L?[0,c0) in the dissipation inequality
(4.2) and using the positive definiteness of the (storage) function L, one sees
as in Section 3 that ‘

(1) the poles of an impedance R(s) lic in the closed left half plane [one
may also show that R(s) must satisfy the additional constraints];

(2) any poles s, = iw of any entry of R(s) are simple, for w real;

(3) with the exception of such poles,

R(iw)+R(—iw)>0  for wreal;

(4) the residue of R at a pole s, = i« is Hermitian nonnegative definite.

Again, however, we have excluded the possibility that R(s) has a pole at
0. The general case includes the possibility that R(s) has a simple pole of
finite order at oo, with a symmetric nonnegative definite residue.

Furthermore, if the system is lossless, then the inequalities should be
changed to equalities—for example, all poles of R(s) must be simple and pure
imaginary, and the residues at such poles are Hermitian nonnegative definite.
Such an R(s) is said to be lossless positive real, and it is known that any
lossless positive real function is the impedance of a lossless LC network,
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perhaps containing ideal transformers and gyrators. Thus, it is of considerable
interest to give an efficient method for deciding whether a rational matrix-val-
ued function satisfying

R(s)+R{—s5)=0 (4.5)

is lossless positive real.
It is also of interest in circuit theory to have “testable” criteria for the

impedances of RC and of RL networks. We collect these problems in the
following list.

PropLEM 4.1. Characterize the impedance matrices of lossless LC net-
works, perhaps containing ideal transformers and gyrators.

ProBLEM 4.2. Characterize the impedance matrices of RC networks,
possibly containing ideal transformers. '

ProsLEM 4.3. Characterize the impedance matrices of RL networks,
possibly containing ideal transformers.

Naturally, characterizations of such networks have long been known in
classical circuit synthesis (see [32]). These characterizations, however, have
been in terms of the analytic character of the impedance matrices R(s)—e.g.
the location of and the behavior near the poles of R(s). Fortunately, such
behavior is often encoded in the value taken on by a suitable matrix Cauchy
index, and one of the major contributions in [4] was the evaluation, algebrai-
cally, of these Cauchy indices as the signatures of associated (block) Hankel
matrices.

Indeed, in the scalar case, the conditions (1), (2), (4) can be checked using
Cauchy’s index C(R), as in Definition 1.4. For replacing the rational function
R(s) by

g(w)=iR(iw) (4.6)

one can see that g is real for real w, by (4.5). Moreover, for each real pole w of
g, the local contribution to C(g) will be 31 depending on the sign of the
residue. Therefore:

ProrosiTiON 4.4.

R is lossless positivereal < C(g)=n. (4.7)
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Moreover, by the Hermite-Hurwitz theorem, (4,7) can be decided by
(universal) polynomials in the coefficients of R viz.

COROLLARY 4.5.

R is lossless positive real < 3, > 0. 4.7)

In order to generalize this criterion to the matrix case, Anderson and
Bitmead [4] were led to define, for rational real symmetric (or Hermitian)
matrix-valued functions (which we shall assume vanish at co):

DeriniTION 4.6 (Matrix Cauchy index). The local index of G(s) at a real
pole s = s, is the number of eigenvalues of G(s) which jump from —oc0 to
+ co minus the number which jump from + 00 to — oo as s goes through s,.
The (matrix) Cauchy index, C(G), is the sum of the local indices at all real
poles.

Setting
G(w) =.iR(iw), ' (4.8)

one obtains the identity

G(w)=C(w)'

)

from (4.5). Thus, the generalization of Proposition 4.4 for the impedance of
circuits driven by more than one current source is given by

Tueonem 4.7 [14]). R(s) is lossless positive real if, and only if, each
entry of R(s) has simple poles and

C(G) = degc(R). (4.9)

In order to calculate C(G), Anderson and Bitmead prove a Hermitian
matrix version of the Hermite-Hurwitz theorem. We prefer to state this
Hermitian result in a notation following [8]). Thus, we form the symmetric
matrix

g’é = [( - 1)i+jLi+j—l]
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from the Laurent coefficients (4.4") and refer to sign($ ) as the alternating
Cauchy index of R. Then, from the Anderson-Bitmead-Hermite-Hurwitz
theorem and the observation of Theorem 4.2, one obtains [4]:

TueOREM 4.8.  R(s) is lossless positive real if, and only if, R(s) has only
simple poles and has alternating Cauchy index n; i.e., if and only if $ 5 > 0.

This theorem also follows from Lie-theoretic considerations [8]. That is,
symmetric lossless functions R(s) satisfy

TR(s)=R'(—s)T, (4.10)

where T is a skew form. Brockett [8] has shown that (4.10) holds if, and only
if, the matrix Lie algebra generated by {A, BC}—where (A, B,C) is a
minimal realization of G(s)—Ileaves invariant a nondegenerate symmetric
form with signature = sign($¢5). The interpretation of 5 > 0 in Theorem 4.8
then follows from earlier work by Bitmead and Anderson [3).

One can, alternatively, offer a simple topological proof of Theorem 4.8:

Proof. Denote the set of degree-n, m X m lossless positive real functions
by £(n;m). As in Kronecker’s theorem, we may think of £(n;m) as a
subspace of the manifold (), . via the corespondence

R- ([Liﬂ-x]:;..p LG)-
CramM. £(n, m) is path-connected.

Prc')of. If R has distinct poles, then to say R € £(n,m) is to say that R
admits a partial-fraction expansion

Now, given R(s), R(s) € £(n, m), one can deform the poles of R(s)—as an
ordered set in the imaginary axis—continuously to the poles of R(s). Next,
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since the space of rank-1, Hermitian positive semidefinite matrices is con-
nected, one can deform the residues of R(s)—again as an ordered set—to the
residues of R(s). Thus, a dense open subset of £(n, m) is connected. ||

Since £(n, m) is connected and rank($ ) is constant on £(n, m), sign($ )
is also constant on £(n, m). On the other hand, C(G) is constant on £(n, m)
by Theorem 4.7 and the definition of £(n, m). Therefore, it suffices to check
the identity

c(G)= Sign(g'ﬂ)

for any particular choice of R, which is a straightforward external symmetry
argument, as in Section 2, and will be omitted. | |

Theorem 4.8 of course can be viewed as a special case of a matrix form of
a Hermite-Hurwitz theorem. Let 9L(n,m) denote the set of real rational
m X m matrix-valued functions R, vanishing at oo, and satisfying

R(s)+R(—-s)'=0 (4.11)
for s € C. Then, as before,
G(w)=iR(iw) (4.119)

is Hermitian for real o and therefore has a matrix Cauchy index, which we
denote by Ind(R). If ¢, is the alternating Hankel matrix defined above, then
the theorem which is asserted in [2] and alluded to above is

Tueorem 4.9 (The lossless Hermite-Hurwitz theorem). For R €
OM(n, m), if Cy(R)= C(G) then
Cy(R) =sign($5) (4.12).
This was also proved by a somewhat tedious connectivity argument in an
unpublished manuscript [15]. The special case which we have proved above,
viz. that Theorem 4.9 holds whenever C,;(R)= deg(R), suffices to answer
Problem 4.1. Problems 4.2 and 4.3 admit a solution in terms of the matrix
Hermite-Hurwitz theorem [4] for symmetric R(s), for which we shall sketch a
topological proof [14] in Section 6, and in terms of certain Lie algebras [8]
which are determined by rational matrix-valued functions. By the matrix
Hermite-Hurwitz theorem, we of course mean the identity

C(R) = sign(9Cg), (4.13)
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where J(; is the block Hankel matrix constructed from the Laurent coeffi-
cients (4.4’) of R. Then, following Bitmead and Anderson [4], one can
reinterpret classical circuit synthesis conditions [32] for realizability of R(s) in
terms of the Cauchy index of R, and via (4.13) obtain the following “testable”
criterion, thereby settling Problems 4.2-4.3. As before, for simplicity, we have
excluded the case that R(s) has a pole at o0, but remark that the nonstrictly
proper case can be handled within the same framework. Thus, as corollaries
to the matrix Hermite-Hurwitz theorem (see Corollary 6.2) we have

THEOREM 4.10 [14]. The strictly proper, real rational symmetric matrix-
valued function R(s) is the impedance of an RC nelwork, perhaps containing
ideal transformers, if and only if

sign(3C,) = degc(R);
i.e., if and only if Iy > 0.

TueoreM 4.11 [4].  The strictly proper, real rational symmetric matrix-
valued function R(s) is the impedance of an RL network, possibly containing
ideal transformers, if and only if

sign(9Cz ) = — degc(R);

i.e., if and only if X <O.

The reader is referred to [18] for an alternative proof of the matrix
Hermite-Hurwitz theorem using “ polynomial model” methods, and to [14] for
a topological proof, which we shall sketch in Section 6.

5. THE MATRIX CAUCHY INDEX AND THE MASLOV INDEX OF A
RATIONAL LAGRANGIAN LOOP

In the next two sections we shall show how a natural generalization of the
topological form of the Hermite-Hurwitz theorem gives a formula for comput-
ing the Maslov index of a 1-cycle of Lagrangian planes in R2™, This index was
discovered in different contexts by Keller and by Maslov, and analyzed by
Arnol'd and by Hormander in somewhat more geometric settings. In this
section we shall identify the Maslov index with the matrix Cauchy index, and
in the next section we give a topological proof of the matrix Hermite-Hurwitz
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theorem. Thus, as we have seen in Section 4, this index also turns up in the
circuit-theory literature. Our treatment follows a recent paper [14] by the

author and T. E. Duncan.
To begin with, consider R™ with the standard inner product (x, ). On
R™@®R™ there is then a natural skew form

(=), (=", 9y = (x,9) ~ (=" ). (5.1)
If V c R?™ is a subspace which is isotropic for { , ), i.e.
{v,w)=0 forall v,weV,

then dimV < m, since the skewform ( , ) is nondegenerate. If dimV=m,
then V is said to be a maximal isotropic, or a Lagrangian, subspace. For
example, if

T:R™ > R"™
is symmetric,
graph(T)={(x,Tx): x €R™)
is a Lagrangian subspace, since to say
(2, Tx), (2", ')y = (2, Tx") = (2", Tx) = 0 (5.2)
forall x€R™is to say T is sclf—adjbint. Thus, the vector space of symmetric

matrices can be identified with a subset of the set LG(m,2m) of Lagrangian
subspaces in R2™.

ExampLE. If m =1, every line [ is Lagrangian, since for nonzero v, w € l
we have v = aw and therefore

(v, w) =a{w,w)=—a{w,w)=0.
Alternatively, every 1X1 matrix is symmetric. Indeed, consider [ C R? as in

Figure 1. Each line ! except one—the y-axis—is complementary to the y-axis
and is therefore the graph of a linear function

y = mx.
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Y.

Fic. 1.

In this sense LG(1,2) is the one-point compactification of the space R of 1 X1
symmetric matrices, i.e.

LG(1,2) =S (5.3)

In the same way, LG(m,2m) may be thought of as a compactification of
the space of symmetric matrices. For as in Figure 1, almost every m-plane V is
complementary to the m-plane Y and is therefore the graph of a linear
function

]

y=Tx,

and according to (5.2) V is Lagrangian if, and only if, T is symmetric. If V
intersects Y nontrivially, V is clearly the limit of a sequence of m planes V,
(which can be taken to be Lagrangian if V is) which are complementary to Y.
In this sense, the compact space (in fact, manifold) of Lagrangian planes
contains the symmetric matrices as an open dense subspace. More precisely,
set

o(Y)={(V eLG(m,2m):dim(VNY)=1). (5.4)
Then

LG(m,2m)—o(Y)=R™(m+ /2 (5.5)

may be naturally identified with the space of symmetric matrices. The
subspace o(Y) is referred to as the Maslov cycle.
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Now, the connection with network and system .theory lies in a seminal
paper written by Hermann and Martin [20] (see also [21]). According to
them, each strictly proper rational p X m matrix-valued function G(s) gives
rise to a map

G:5% - Grass(m,m + p)
from the Riemann sphere to the Grassmannian manifold of m-planes in

(m + p)-space. Furthermore [21), if G is m X m symmetric, then G gives rise
to a map

G:§' > LG(m,2m)
of the equator S* of real points on S2 to the subspace of Lagrangian planes.

Explicitly, if {(sy,...,5;) CR are the real poles of G, then the neat
observation in [20] is that the correspondence

s+ graph{CG(s)), s€R—{s,....5,},
is an assignment to each such s of an m-plane in R2™, Since G(s)= G(s),
graph(G(s)) is a Lagrangian plane, and in this way we obtain the (symmetric)
Hermann-Martin map, which we still denote by G,

G:R — {sq,...,5;} = {symmetric matrices}

‘ =LG(m,2m)—o(Y).

Since G(e0)= 0 and graph(0) is a Lagrangian subspace complementary to Y,
we may extend G to a map defined at co:

G:S'— (51500, = LG(m,2m) — o(Y).

It is then elementary to check that G has removable singularities at {sy,...,5;}
and therefore extends to the (Lagrangian) Hermann-Martin map

G:St- LG(m,2m).
That G extends to S? can also be seen by noting that

N(s)

graph(G(s)) = column span[ G(IS)] = column span[D(S) ,

b ——
«
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where G(s)= N(s)D(s)~? is a factorization of G(s) into coprime polynomial
matrices [17, 35]. Such a factorization exists, of course, since the ring k[s]™*™
of m X m matrix polynomials in s is both left and right principal.

We can now proceed to the major results. Suppose

F:$' > LG(m,2m), F(oo)=[X] (5.6)
is a (continuous) closed curve. Since
m(LG(m,2m))=12Z (5.7)

canonically, just as in the case m =1, each F gives rise to an integer—which
is known as its (Armol’d)-Maslov index. The problem we shall consider is, in
analogy with the Hermite-Hurwitz theorem, that of computing

Ind(F) € = (LG(m,2m))

in terms of algebraic data. Now an isomorphism (5.7) may be defined by
associating to F the intersection number of the 1-cycle (or curve) F(S!) with
the codimension-1 cycle o(Y). If 6,,...,8, denote the points of intersection,
then for =0, i=1,...,n F(#) is a symmetric matrix T, in light of (5.5).
Moreover the mapping

)

S! - {6,,...,8,) = {symmetric matrices},
(5.8)
0T,

is continuous. By applying the Cayley transform to Ty, we can regard F as a
periodic matrix-valued function. By the Stone-Weierstrass theorem, one knows
that F can be uniformly approximated by a G for which (5.8) is a finite
Laurent polynomial

M
T,= ¥ L#, (5.9)
im—N

where the L; satisfy

L,= L.
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Supposing F satisfies the basé-point condition
F(w0) = [X],
which asserts that F(oo) =0, the zero matrix, we may take
L,=0 for i>0.
Furthermore, since G can be taken sufficiently close to F,

Ind(G) =Ind(F),

and therefore it is enough to compute Ind(G).

Tueorem 5.1 [14).  For any real rationdl syrrinmetric G(s),

MaslovInd(G) = CauchyInd(G).

Proof. The Maslov index of G can be computed from a general formula
for the local contributions to Ind(G) regarded as an intersection number, If
o <$p <sg are real points sufficiently close to an s, for which

G(sp) €o(Y)c LG(m,2m),

)

then, according to Hérmander [14, 3.3.4], the local intersection number at 8o
of G(s™) with a(Y) is given by

sgnG(sg ) — sgnG(s7)
£ o (5.10)

Ind, (G)=

under very general conditions on G. Explicitly, if 6(X) is the hypersurface in
LG(m,2m) defined by X, then to say G(s)€ o(X) is to say det G(s)=0.
Unless

detG(s)=0,

we can therefore assume that

detG(sy )=0, detG(s})=0,
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or that the Lagrangian planes
graph G(sg ), graphG(sg )

are transverse to X. Now, the image of the interval I =[s5, 55 J under Gisa
path in LG(m,2m), and Hormander’s calculation is valid whenever the path
G(I) remains transverse to X, i.e. under the condition

G(I)cLG(m,2m) - o(X).

Since the condition det G(s)= 0 is algebraic in s, one may choose s, 55 0
that’

detG(s)=0 forall s€l, s=s,.

That is, G(I)No(X) is either empty or consists of the singleton {G(sg))-
Moreover, it follows that

G(I)No(X)=(G(so)}

if, and only if, the matrix-valued function G(s) has a zero at s, —in addition
to the pole. This phenomenon cannot, of course, occur when G(s) is scalar
with numerator and denominator coprime. Indeed, in the scalar case the
theorem is precisely the definition given by Cauchy.

Recall that the matrix Cauchy index (Definition 4.1) is computed as the
sumn, over real poles s, of a local index. Upon traversing such an s, the local
index is calculated as the number of eigenvalues of G(s) which change from
— o0 to + 0 minus the number of eigenvalues which change from + o0 to
— 0. If 5, is not a zero of G(s), then no eigenvalue of G(s) can approach 0,
so that this local index coincides with (5.10). On the other hand, if s, is a zero
of G(s), a negative (or positive) eigenvalue could deform through 0 to a
positive (or negative) eigenvalue, in this case making a contribution to (5.10)
but leaving the local index unchanged. _

Thus, if the zeros and poles of G(s) do not coincide,

CauchyInd(G) = MaslovInd(G).

We claim that this identity holds for all G, but as the remarks above show,
one cannot use (5.10) to prove this statement. Here, we shall follow Arnol'd

(2.

In general, compositidn with the Cayley transform induces a map

G:S' - U(m),
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defined via
G(s)= (I —iG(s)}{I +iG(s)) ~* (5.11)
and therefore Ieads to the invariant
[G]lem(U(m))=Z.
Now, [G] may be computed as
[G] = degg(det G(s)) (5.12)
and, denoting by A (s) the algebraic function of s satisfying
det{AI - G(s)}=0, |

(5.12) yields

[G] =deg(jﬁ1{l-—iJ\j(s)}{l—l—i?\j(s)}_l). (5.12")

On the other hand, we claim

deg(ér_i,l {1—iA (s)H{1+ir ()} —1) = . ; CauchyInd, (G).

(5.13)

Now, the left-hand side of (5.13) calculates the degree of a product of
algebraic functions

g(s)={1—ix(s){1+ir(s)) -t

which take values 6 in U(1) for s real. And the degree in (5.13) is computed
with respect to the base point # = ¢'” in U(1). Thus, the left-hand side is the
sum of the degrees of the algebraic functions g (s). With these conventions,
suppose the pole s, occurs also as a zero of G(s), i.e., some A {(s) vanishes at
$¢ While some other eigenfunction takes on infinite values. If we consider such

Supplied by The British Library - "The world's knowledge”

ON A THEORI

a branch, then
makes no con!
other hand, A j
s = 8y, by defi

Therefore,

where the rig
Definition 4.6
Just as in i

and from the
Corollary 3.4.:

Indeed,

This identity,

6. THE MA
TOPOLC

In this sec
Hermite-Hun

THEOREM

where H is

A

!



'R I. BYRNES

ON A THEOREM OF HERMITE AND HURWITZ 95 -

a branch, then on the one hand as s goes through s,, A (s) vanishes and hence
makes no contribution to the degree of (its Cayley transform) g (s). On the

(5.11) other hand, A (s) makes no contribution to the local Cauchy index of G(s) at
s = §,, by definition.
Therefore,
[G] = CauchyInd(G),
where the right-hand side is understood as the matrix Cauchy index, as in
Definition 4.6.
Just as in the scalar case, one has a map
(5.12)
7:U(m) - LG(m,2m)=U(m),/0(m),
and from the homotopy exact sequence of this fibration one obtains [2,
Corollary 3.4.3] '
a*: a(U(m))} = 7(LG(m,2m)).
Indeed,
(5.12) Ind(G) = degy(det®G(s))
= degp(det[{I - iG(s)}{I +iG(s)) 7Y]).
(@) This identity, together with (5.11), proves the fundamental identity (5.10). ™
L,(G).
(5.13) 6. THE MATRIX HERMITE-HURWITZ THEOREM AND THE
TOPOLOGY OF MATRIX-VALUED RATIONAL FUNCTIONS
product of
In this section, we sketch a proof of the topological version of the matrix
Hermite-Hurwitz theorem, i.e.
[3 computed THeoREM 6:1 [14]-
1side is the
onventions, Ind(G) = sign(3C ), (6.1)
vanishes at
msider such where J¢; is the (truncated) block Hankel matrix g = [Lyy ;17 j=1-
I S _
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Remark. In Theorem 6.1, n can either be.taken to be

rank[L,-+j_1]'.']._1<oo,

which is finite (since G is rational), or, in analogy with Kronecker’s Theorem,
to be degc(G), where the Hermann-Martin map

G:8% - Grassc(m,2m)
is defined by

G(0) = graph(G(6))
for any complex 8.

Thus, combining Theorem 6.1 with Theorem .5.1, we obtain the
Anderson-Bitmead-Hermite-Hurwitz theorem:

CoroLLARY 6.2 [14]. For any real symmetric, matrix-valued rational
function R(s),

C(R) = sign(3Cs)-

The remainder of this section is devoted to a proof of Theorem 6.1—in
the context of the topology of spaces of rational matrix-valued functions.

Denote by Rat(n; m) the set of rational real m X m symmetric matrix-val-
ued functions of s which vanish at co and have degree n;

rank([L,.H_l]:?j_l) =n.
Tueorem 6.3 (14). Rat[n; m) is naturally a smooth manifold.

Proof. As in Kronecker's theorem, we may consider the bijection
n
g'—)([LHj—l]i,j-l'L%)' (6'2)
We first show that the set of block Hankel matrices

Hmm= {‘JCg= [L,+j_1]:;_ll:rank5}6g= n}
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is a smooth manifold. Recall that, by elementary linear algebra, the space
M of m(n+1)Xm(n+1) real matrices of rank n is the orbit in k%,
N = m%(n + 1)? of the matrix
I. O
T,=| "
" [0 0}

under the action of GL(m(n +1), k)X GL(m(n + 1), k), where
(S,T)M=SMTL.

Thus, the space 9N, . is a homogencous space for GL(m(n +1),k)X

GL(m(n +1),k) and hence a smooth manifold. Let us write an element
M € 9}, ,, in block form:

Mu Ml.n+1

A[n+l,1 lun+l,n+1

There is a finite group
G=8,X8;X ++» X8, XG, o X+ XGy_g

which acts on 9y, ,, in a natural way, viz.

the generator of §, acting on M interchanges M, , with M, j,

the generators of 8, acting on M sends M, 5 to My, M,, to M, ,, and
M;,toM,,,

etc.

The idea is that the fixed-point set of g acting on 9NY, ,, is precisely 37 ..
Now, by a theorem of Bochner [5], the fixed-point set for a compact group
acting on a smooth manifold is always a smooth submanifold. Thus, K misa
smooth submanifold of O}, ..

But, to say G is symmetric, i.e. G € Rat(n, m), is to say the block matrix

[L;4-1] is symmetric. Therefore, again by Bochner’s theorem,
Rat(n; m)c 3, .

is a smooth submanifold, as it is the fixed point set of the involution M — M.
| |
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Next, consider the disjoint subspaces: for p +.g=n, p>0and g > 0,
Rat(p, g; m) C Rat(n; m), (6.3)
where G € Rat(p, q; m) if, and only if, the Maslov index
Ind(G)=p—q. (6.4)

TueoreMm 6.4 [14]. Rat(n; m)= URat(p, q; m) is a decomposition of
Rat(n; m) into connected open submanifolds.

From Theorem 6.4, the formula (6.1) follows as in Section 2: Ind(G) is
constant on Rat(p, g; m) by definition, and sign(JC5) is constant on path
components, since rank(JCS)=n is constant on Rat(n;m), by definition.
Therefore, it is sufficient to check (6.1) once on each component. Consider,
for p and q fixed,

G(3)=( ‘Z—: :s‘—i_i— 'il ;l_')En=f(3)Eu’ (6.5)
j=

i=1 ]

where f(s) is a scalar rational function having Cauchy index p — q. It is clear
that

e O
9, ~ | % ]
¢ [ 0 0
so that
sign(Hg)=p—gqg

by Lemma 2.2.
On the other hand, for g(s) defined in (3.13) we claim that for any
sp €{1,...,n), an interval I = [s5, s¢ ] can be chosen such that

g(I)ne(X)=2,

and hence Hérmander’s formula (5.10) applies, yielding

nd(g)= T sgng(sa*);sgng(sa).

8(sg) =0

-1 D
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Thus, assuming the claim, the identity follows. As for the claim,
g(s)= f(s)E,,

so that the zeros and poles of g(s) are precisely those of f(s). Since f(s) is
scalar, a zero of g(s) cannot coincide with a pole.

In closing, I would like to thank R. W. Brockett, P. A, Fuhrmann, and
P. S. Krishnaprasad for several helpful conversations, and the Department of
Mathematics of Texas Tech University, which kindly invited me to give a
series of lectures on which this paper is based. Very recently, I have become
aware of the paper [27] published by Krein and Naimark nearly 50 years ago
which stressed the importance of and applications of Hermite'’s calculation.
There has recently become available in this journal (1980) a translation of this
article, to which the reader is referred for a complementary exposition of the
Hermite-Hurwitz theorem, based more on Hermite’s treatment, and several
interesting applications of this theorem to the determination of the number of
roots of certain equations lying in a given domain.
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