TANGENT BUNDLE OF A MANIFOLD AND ITS
HOMOTOPY TYPE
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ABSTRACT

There is a homotopy equivalence ¢: M —— M’ between closed smooth manifolds of an odd dimension
such that p*TM’, TM are stably isomorphic but not isomorphic to each other.

1. Results

Let ¢: M —— M’ be a homotopy equivalence between closed smooth manifolds
of dimension n such that the tangent bundle 7M and the pull-back ¢p*TM’ are stably
isomorphic to each other. Then are ¢p*TM’, TM isomorphic to each other?

It makes the question more interesting that there is an invariant [5, 8], when 7 is
odd, which seems to depend only on the homotopy type of the manifolds. In fact,
once Dupont [5] announced that it was the case indeed, only to realise later, together
with Sutherland, that his proof had a gap and it was still an open problem. In this
paper, we will answer the question in the negative.

Let & be a vector bundle over M of rank »n which is stably inverse to v*, the normal
bundle of M for a smooth embedding into S™**, k > n+2.

If n is even, the Euler characteristic in its generalised form can be used to prove
that stable isomorphism between TM and ¢*TM’ implies isomorphism.

Therefore, assume that n is odd. Note that there are at most two isomorphism
classes of vector bundles ¢ of rank n over M which are stably isomorphic to the
tangent bundle (cf. [4]). We consider ¢ together with a trivialisation, 0:¢l[* —— &+ v,
from the trivial vector bundle ¢};* = ¢"** to the Whitney sum & +v.

Note that an invariant 5({,9) is defined in [3] for a pair ({, ) consisting of an
(n—1)-sphere fibration { over M and a trivialisation &:&7/* —— {+ Sv, presuming a
normal invariant c¢:S™"** —— T(v). Here &};* = ¢"** denotes the trivial (n+k—1)-
sphere fibration and Sv denotes the sphere bundle of v. We will write 5/({, ) to denote
this invariant, in effect, regarding ¢ as a variable.

Then, we set b,(&, 0) = bI(SE, SO).

Note that this definition does not use the universal vector bundle, unlike
Sutherland’s [8]. However, using naturality of the functional Steenrod square, one
may easily show that b (&, 6) above is b(¢, 0) in Sutherland’s sense if ¢: S"* —— T(v)
is chosen as the collapse map coming from the embedding M <, S"**.

We say that two pairs (£, 6), (¢7,60') are equivalent to each other if there is an
isomorphism «:&——¢” so that (a+1)0 ~ 0 :¢""* —— &’ +v, in which ‘ ~’ means
‘is homotopic to, through isomorphisms’.
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THEOREM 1.1 (Dupont, Sutherland). b,(&,0) = b(&",0) if and only if (£, 0), (E7,0")
are equivalent pairs. Furthermore, for each normal invariant c, there is a pair (£, 0) such
that b,(,0) =i, for each i€ Z,.

Let the trivialisation 0,:¢""* —— TM + v be the one coming from an embedding
1:M —— S™" and the normal invariant ¢,: S™"* —— T(v) be the collapse map onto
T(v) = N/ON, where N is the normal neighbourhood of :M in S”. Recall the semi-
characteristic y,,(M) = )., rank H,(M; Z,). Then we have the following theorem.

THeOREM 1.2 (Sutherland). b, (TM.0) = x,,(M)€ Z,.

As in [8], the James—Thomas number of M means the number of isomorphism
classes of vector bundles of rank 7 stably isomorphic to 7M. Similarly, the homotopy
James-Thomas number of M is the number of fibrewise homotopy equivalence
classes of (n— 1)-sphere fibrations stably fibrewise homotopy equivalent to STM.

Let ¢,:S""*——T(v') and 6,:¢"** —— TM’ + V" respectively denote the normal
invariant and the trivialisation coming from an embedding 1": M’ —— S"**,

Then Theorem 1.3 describes exactly when ¢*TM’, TM are isomorphic to each
other.

THEOREM 1.3. @*TM’, TM are isomorphic to each other if and only if there is a
bundle map f:v——V" covering ¢ so that by (TM',0,) = y,,(M").

THEOREM 1.4.  Assume that M’ is a smooth closed manifold of an odd dimension n
such that its James—Thomas number is 2 while its homotopy James—Thomas number is
1 and the surgery obstruction group L,(m,(M"),w,(TM")) vanishes. Then there is a
manifold M and a homotopy equivalence p: M —— M’ so that p*TM’, TM are stably
isomorphic but not isomorphic to each other.

As asserted by Sutherland [8, §7], we have the following lemma.

LEMMA 1.5. S¥x P? has the James—Thomas number 2 and the homotopy
James—Thomas number 1.

On the other hand, according to [10], L,;(Z,, w) = 0. Therefore, we conclude that
there is a homotopy equivalence ¢: M —— M’ between closed smooth manifolds such
that p*TM’, TM are stably isomorphic but not isomorphic to each other.

Let # be a vector bundle over M. Now Aut(y) denotes the group of all equivalence
classes of automorphisms of #, where the equivalence relation is ‘is homotopic to,
through automorphisms’. If o:TM—— TM is an automorphism, there is an
automorphism of v, say, j(a):v——v so that a+1~1+4j(a): TM+v——>TM+v
(cf. [2]). This gives a well defined homomorphism j: Aut(TM)—— Aut(v). If { is a
sphere fibration, Aut/({) is defined similarly and there is the homomorphism j:
Aut/(STM ) —— Aut/(Sv).

Then, in addition, we observe the following.

THEOREM 1.6. The group Aut(v)/jAut(TM) is trivial if the James—Thomas
number is 2 and isomorphic to Z, otherwise. Similarly, Aut/(Sv)/jAut/(STM) is
trivial if the homotopy James—Thomas number is 2 and isomorphic to Z, otherwise.
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2. Proofs

Proof of Theorem 1.6. Note that there are exactly two equivalence classes of
pairs (&, 0) according to Theorem 1.1.

Assume that the James—Thomas number is 2. Then (7'M, 0) represents the same
class for any 0:¢"** —— TM+v. Let f:v——v be any automorphism. Then, since
(TM, 0), (TM,(1+ ) 0) are equivalent to each other, there must be an automorphism
o:TM — TM such that (1+p)0 = («+1)0, which means that j[a] =[f]. This
proves that Aut(v)/jAut(TM) = 0.

The other cases can be dealt with in a similar way to obtain the asserted
results. O

Proof of Theorem 1.3. “If” part: Let 6:&"* —— ¢*TM’ + v be a trivialisation for
which the following diagram commutes up to homotopy through bundle maps:

0
ek —— *TM + v

4 gt+p J

’

L
eh—— M+

where the ¢ mean the natural bundle maps covering ¢.

Let g': Y——X'T(TM’) be the map dual to the unique map T(a'): T(v' +Vv) —
T(7,) introduced in [3] with respect to any duality between Y and 7(7,) and the
duality

n+k
9 . v -
S2n,+2k ~ znﬂcsnﬂc Zn,Jrk T(v/)

T(0,+1) T(4)
> T +v)—— T(TM' +v +V)—— T(TM' x (v +V'))

M

~ T(TM') A T(v+V).

(For details of the notations above, refer to the beginning paragraphs of [3, §6].)

Likewise, let g: X ——X'T(p*TM) be the dual of T(a): T(v+v)— T(7,) with
respect to the duality determined by (p*7TM, 0) and the normal invariant c,.

Let 9 ': TM’ —— ¢*TM’ denote an inverse of @ up to homotopy through bundle
maps. Then, it is straightforward to see that 'T(p"): X' T(TM ') —— X' T(p*TM’) is
dual to T(S+f): T(v+v)— T(v'+v') with respect to the dualities above. Therefore,
we have ¢ ~X'T(9) g.

Let U, denote the Thom class for any vector bundle ¢ in Z,-coefficients. Since
T(@)* Uy = U, opyr it follows that, by definition,

bn,((p*TM/S 0) = bT(/)’)cI(TM/a 91')9
which is, by assumption,
XI/Z(M/) = XI/Z(M) = bc,(TM’ 01)

It follows that (p*TM’,0),(TM,0) are equivalent pairs and, in particular,
@*TM’, TM are isomorphic to each other.
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‘Only if” part: By assumption, there is a bundle map o: TM —— TM’ covering
@. There is a bundle map f:v——V covering ¢ for which the following diagram
commutes up to homotopy through bundle maps (cf. [2]):

0
ek — s TM+v

"

ek ——— TM"+ V'

Let o': TM’—— TM denote an inverse of o up to homotopy through bundle
maps. Then it can be easily seen that the map g’: Y —— X'T(TM’), dual to the unique
map T(a'): T(v'+v')—— T(y,) with respect to the duality determined by (TM’,0,)
and the degree-one map T(f)c, factors the map g:Y——X!T(TM), dual to the
unique map 7T(a): T(v+v)— T(7,) with respect to the duality determined by
(TM,0) and the degree-one map ¢, by the map X'7T(a): X' T(TM') — X'T(TM).
That is, g ~ Z'T(e V) g’.

Now we may proceed as in the above to conclude that

b'r(/;) ,:,(TM/s 0,)= bC’(TM, 0) = Xl/z(M) = XI/Z(M/)' O

Proof of Theorem 1.4. Let ¢:Sv —— SV be an automorphism of the sphere
fibration such that bﬁ’,(STM ,(1+0)S0,) # x1,,(M’). Such a ¢ exists since the
homotopy James—Thomas number is 1 while there are exactly two equivalence classes
of pairs ({,$) consisting of an (n—1)-sphere fibration { over M’ and a triviali-
sation J:e——(+Sv. (In fact, o represents the non-trivial element in
Aut/(Sv')/j Aut/(STM’) of Theorem 1.6.)

Apply the usual transversality argument to T(g)c,:S""* —— T(v’) to obtain an
element [M, ¢, Fle NM(M"’), the normal set over M’, where p: M —— M’ is a degree-
one map and F:&%* —— TM+ ¢*V' is the trivialisation coming from the inclusion
M <, ™ (cf. [10]). Since the surgery obstruction group is zero, we may assume that
p:M—— M’ is a homotopy equivalence.

Let ¢,: S"** —— T(v) denote the collapse map onto the normal bundle v of M
coming from the inclusion 1: M <, S"**. Also note that M comes with a bundle map
S:v——" covering ¢. By construction, T(f)c, is homotopic to T(g)c,. Therefore,
we have

bT(ﬂ)c,(TM/’ 0,) # x1o(M).

Furthermore, there cannot be any bundle map " :v——v" covering ¢ so that
bpy (TM',0,) = y,,(M’); if there were such a f, we choose o:TM'+V —>
TM’'+v so that (a+1)(0,+1)(g+p):el*——(TM’'+v')+v is homotopic to
(0,+D(p+p) through bundle maps. Then we have by, (TM' a0,) =
by (TM’,0,) = y1,(M’), which contradicts the fact that the James-Thomas
number of M’ is 2. O

Proof of Lemma 1.5. As noted by Sutherland in the last paragraph of [7], for any
vector bundle ¢ over X'*P? the Stiefel-Whitney class w,(¢) =0 for i > 0. In fact,
[1, Theorem 2] asserts in general that it is the case for any real vector bundle over a
9-fold suspension of any finite complex. On the other hand, Sutherland also shows
that there is a sphere fibration { over **P* with w,,({) # 0.
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Let n > 3 be an odd integer. Both [6, 1.6] and [7, 3.1], respectively in the sphere
bundle (with a vector bundle reduction) category and in the sphere fibration category,
assert that the number of equivalence classes of (n— 1)-sphere fibrings over a connected
n-complex A in a given stable class o is the order of the quotient of H"(A4;Z,) by
the space spanned by w,() and all the cohomology classes given by (see [6, (1.5)])

oW, (&) + Z W)W, (20),
i=2
for a sphere fibring ¢ over X4, where o is the inverse of the suspension H(A4; Z,) —
H"(XA4;Z,) fori>1.
To show that the James—Thomas number of S x P? is 2, note that there is a well
known homotopy equivalence

(S x PY)—E(SBV PPV (S A PY)) x SUVEP Y IUP,

Now a straightforward calculation shows that there are two isomorphism classes of
vector bundles of rank 15 over S x P? in the stable class of the tangent bundle
T(S' x P?) =~ TS"™ x TP

To show that the homotopy James—Thomas number is 1, consider the sphere
fibration (' = f*{, where f:XZ(S'"x P?)——X(S¥ A P?) =X"P? is the collapse
map. Note that w,({) vanishes. First of all, for any sphere fibration ¢ over S”,
n#2,4,8, we must have w,(£)=0; otherwise there cannot be two fibrewise
homotopy equivalence classes of stably trivial (n—2)-sphere fibrations over S"™'.
Now consider the map 1: S'° ~ X" P'—— 31 P? which induces an isomorphism 7*:
HY¥(XMP? Z,)—— HY(S'; Z,). But r*w,,({) must be zero. Now a straightforward
calculation shows that there is only one fibrewise homotopy equivalence class of 14-
sphere fibrations in the stable class of the tangent sphere fibration of S** x P2 []
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