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Abstract

The unstable tangent fibration of a Poincare� complex is defined so that it is consistent with the manifold
case. It exists uniquely for each Poincare� complex X up to fibrewise homotopy equivalence and,
furthermore, if a Poincare� embedding structure exists on the diagonal X��X�X, its normal fibration
is the tangent fibration.

1. Introduction

Let M be a smooth manifold and consider the diagonal embedding Δ :

M��M�M. Then there is a tubular neighbourhood N of ΔM, with a retraction

r :N��ΔM�M, so that the tangent sphere bundle of M is isomorphic to the

one whose projection is r��N.

Therefore it seems natural to define the tangent fibration of a Poincare� complex

(in the sense of Wall [14]) using a notion which corresponds to the normal

neighbourhood of the diagonal subspace for smooth manifolds, namely the notion

of Poincare� embedding (see §4). Unfortunately, there are difficulties in this approach.

First of all, it is not clear whether the diagonal Δ :X��X�X admits a Poincare�
embedding. Even if there are results such as [9, 10] which assert that given any

continuous map f :Y��X from a finite Poincare� complex of dimension i to another

of dimension n that is simply connected with n� 2i�1, there exists a Poincare�
embedding structure on f, they do not apply to our situation for reasons including a

dimensional one. Furthermore, even if Poincare� embedding structures on Δ do exist,

it is still not clear whether the normal fibrations of different Poincare� embeddings are

fibrewise homotopy equivalent, unlike the situation in the stable range.

Even if we have obtained a partial result regarding the existence of a Poincare�
embedding structure on the diagonal, the tools involved are remarkably different

from those of this paper and it does not look natural for us to include it in the same

paper. (To be more specific, we consider the case when the Poincare� complex under

concern is formed by gluing two smooth manifolds along their boundaries using a

homotopy equivalence. Furthermore, when G denotes the fundamental group of any

path component of the boundary, we demand the extra condition that the diagonal

subgroup ΔG�G�G should satisfy the square-root closed condition (see [5]). In

particular, this provides a ground for the suspicion that there might be a Poincare�
complex for which the diagonal does not admit any Poincare� embedding structure.)

For these reasons, we have adopted Definition 1.1 below as the definition of the

tangent fibration. Unfortunately, it exploits the invariants such as χ(ξ,U ) (see

Definition 4.5) and b(ξ, θ) (see §6). The former is just the Euler characteristic in a form
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generalised so that it may encompass the unorientable cases and the latter is the

invariant defined by Dupont [6, 7] and Sutherland [12] in a slightly revised form so

that it may fit our more homotopy theoretic situation. Also χ(X ) is the Euler–Poincare�
number (see §3) and χ

�/�
(X )��

i
rank H �i(X ;Z

�
) is the semi-characteristic. Note

that we allow a Poincare� complex to be infinite.

Definition 1.1. A tangent fibration of a Poincare� complex X, dimX� n, is an

(n�1)-sphere fibration ξ over X such that (i) ξ is stably inverse to the Spivak normal

fibration ν, and (ii) if n is even, there is a Thom class U of ξ so that χ(ξ,U )� χ(X ),

presuming a choice of fundamental class of X and, if n is odd, there is a stable

trivialisation θ :εn+k�� ξ�ν so that b(ξ, θ)� χ
�/�

(X ), presuming a choice of normal

invariant c :Sn+k��T(ν).

Here, a normal invariant is just a degree-one map from the sphere Sn+k to the

Thom complex T(ν) when ν is a (k�1)-sphere fibration.

The following justifies Definition 1.1.

Theorem 1.2. E�ery Poincare� complex admits one and only one tangent fibration

up to fibrewise homotopy equi�alence.

A fibrewise homotopy equivalence will exclusively mean one covering the identity

map and we shall use the term ‘fibre map’ to refer in general to a map between

fibrations which is fibre preserving and is a homotopy equivalence when restricted to

each fibre.

Then, regarding the Poincare� embedding structure on the diagonal, we prove the

following theorem.

Theorem 1.3. Let X be a Poincare� complex. If there is a Poincare� embedding

structure on the diagonal Δ :X��X�X, its normal fibration νΔ is the tangent fibration

of X.

Corollary 1.4 immediately follows from Theorems 1.2 and 1.3.

Corollary 1.4. The tangent fibration of a smooth manifold (that is, the reduction

of the tangent sphere bundle to a sphere fibration) is an in�ariant of the homotopy type

of the manifold up to fibrewise homotopy equi�alence.

The same result is obtained by Benlian and Wagoner [1]. In particular, Dupont

[6, 7] defined an invariant, which is essentially the same as the one in this paper, to

prove the homotopy type invariance of the tangent fibrations for odd-dimensional

manifolds.

We note that Theorem 1.3 has the following parallel in smooth category: the

normal bundle of any immersion homotopic to the diagonal embedding Δ :

M��M�M is isomorphic to the tangent bundle of M. This can be proved using

a technique such as that in [1].

To prove Theorem 1.2 we will first show Proposition 1.5 below. For the precise

meanings of such terms as ‘equivalence’ between (ξ,U ) and ‘equivalence’ between

(ξ, θ) below, one must refer respectively to the paragraph preceding Definition 4.5 and

to the one preceding Proposition 6.2.
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Proposition 1.5. Let X be a Poincare� complex of formal dimension n. Assume

that n is e�en and fix a fundamental class of X. Then, for each integer κ, there is one

and only one equi�alence class of pair (ξ,U ) such that

χ(ξ,U )� 2κ�χ(X ),

where ξ is an (n�1)-sphere fibration stably in�erse to ν and U �Hn(Dξ,Sξ ;Zw) is a

Thom class of ξ. Likewise, assume that n is odd and fix a normal in�ariant c :

Sn+k��T(ν). Then there is one and only one equi�alence class of pair (ξ, θ) such that

b(ξ, θ)� i,

for each i �Z
�
, where ξ is an (n�1)-sphere fibration and θ :εn+k�� ξ�ν is a stable

tri�ialisation.

The author would like to give his special thanks to Professor L. Taylor who

suggested the definition of tangent fibration above, which improved the statement

of Theorem 1.3, clarifying its proof.

2. Homology

We will use the homology theory with Zπ
�
(X )-module coefficients. Even if its

appearance in literature is not rare, there are special needs to be met for this paper:

we have to deal with maps that may not be isomorphisms on the fundamental group

level and we should exploit the product operations in a slightly more refined fashion

than usual (see §3).

Throughout the paper, a pair will always mean an NDR-pair (X,Y ) (cf. [16, p. 22])

such as a CW-pair, where X is path-connected and pointed. Note that a pair (X,Y )

is referred to as an NDR-pair if it satisfies the following: (i) X is compactly generated

in the sense that X is Hausdorff and any set C�X such that C�K is closed for any

compact K�X is itself closed, and (ii) the inclusion map of Y into X is a cofibration.

Maps should be understood as basepoint preserving. Also, we will understand X as

coming with a universal cover X� . If Y� �X� denotes the inverse image of Y by the

covering projection, then the chain complex C�(X,Y ) is the quotient of singular

simplicial chain complexes Δ�(X� )�Δ�(Y� ), which is a chain complex of left Zπ
�
(X )-

modules.

We will use the involution of Zπ
�
(X ) defined by � n

g
g�� n

g
g−� instead of the

other form � n
g
g��w(g) n

g
g−�, where w :π

�
(X )�� �	1
 is a given homo-

morphism. Then, for any left Zπ
�
(X )-module B, C�(X,Y ;B) is C�(X,Y )�

Zπ
�
(X)

B

in which we exploit the right module structure of C�(X,Y ) coming from the

involution. Then H
k
(X,Y ;B) is H

k
(C�(X,Y ;B)). Similarly, C−*(X,Y ;B) is

Hom
Zπ

�
(X)

(C�(X,Y ),B) and Hp(X,Y ;B) is H
−p

(C−*(X,Y ;B)).

Any map f : (X,Y )�� (X �,Y �) induces a chain map f� :C�(X,Y )��C�(X �,Y �)
between the chain complexes of abelian groups. To count the actions of fundamental

groups, we understand f� :C�(X,Y )��C�(X �,Y �) as an ( f� :Zπ
�
(X )��Zπ

�
(X �))-

homomorphism: in general, if ρ :Λ��Λ� is a ring homomorphism and B, B� are left

Λ,Λ� modules, respectively, then a homomorphism α :B��B�(α� :B���B) will be

referred to as a (co-)ρ-homomorphism if α(rb)� ρ(r)α(b) (if α�(ρ(r) b�)� rα�(b�)) for

any r �Λ, b �B(b� �B�). Let Λ�Zπ
�
(X ), Λ��Zπ

�
(X �) and ρ� f� :Zπ

�
(X )��

Zπ
�
(X �). With these notations in mind, we have the following proposition.
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Proposition 2.1. There is a well-defined homomorphism

( f,α)� :H�(X,Y ;B)��H�(X �,Y � ;B�).

Similarly, there is a well-defined homomorphism

( f,α�)* :H*(X �,Y � ;B�)��H*(X,Y ;B).

It is straightforward to define the product operations.

Let B,B� be as in Proposition 2.1. Regard B�B��B�
Z
B� as a Z(π

�
(X )�

π
�
(X �))�Zπ

�
(X�X �) module in the obvious way. Then the cross product can be

defined with the help of the Eilenberg–Zilber map. Among others, it is a homo-

morphism

� :H�(X,Y ;B)�H�(X �,Y � ;B�)��H�((X,Y )�(X �,Y �) ;B�B�)

� :H*(X,Y ;B)�H*(X �,Y � ;B�)��H*((X,Y )�(X �,Y �) ;B�B�)

where (X,Y )�(X �,Y �) denotes the pair (X�X �,X�Y ��Y�X �).
For any continuous map f :X ���X and a left Zπ

�
(X )-module B, let f *B denote

the Zπ
�
(X �)-module such that its underlying abelian group is B itself and the action

of π
�
(X �) comes from f� :π

�
(X �)��π

�
(X ). Note that the identity 1: f *B��B is a

co-f�-homomorphism. Then the cup product is the composite

� :H*(X,Y
�
;B)�H*(X,Y

�
;B�)��

×

H*((X,Y
�
)�(X,Y

�
) ;B�B�)

��
(d,�)

*

H*(X,Y
�
�Y

�
; d*(B�B�))

where d : (X,Y
�
�Y

�
)�� (X,Y

�
)�(X,Y

�
) is the diagonal.

Let w :π
�
(X )�� �	1
 be a homomorphism. Then Bw means B itself except that

the action of π
�
(X ) is slightly changed by the rule g	b�w(g) gb for any g �π

�
(X ) and

b �B. For example, regarding the integers Z as a left Zπ
�
(X )-module with the trivial

action, we have d*(B�Zw)�Bw. We shall identify Hom(π
�
(X ), �	1
) with

H �(X ;Z
�
) and the additive notation below has been used in this context.

The slant product can be defined in the usual way which again exploits the

Eilenberg–Zilber map. It is a homomorphism:

� :H�((X �,Y �)�(X,Y ) ;B�Zw)�Hp(X,Y ;Zw�)��H�
−p

(X �,Y � ;Bw+w�).

Note that d*(B�Z )� d*(Bw �Zw) and j :B��Bw �Zw, j(b)� b� 1, is a

d�-homomorphism. The cap product is the composite :

� :H
k
(X,Y

�
�Y

�
;B)�Hp(X,Y

�
;Zw)���

(d,j)��
�

H
k
((X,Y

�
)�(X,Y

�
) ;Bw �Zw)�Hp(X,Y

�
;Zw)��

/

H
k−p

(X,Y
�
;Bw).

The sign conventions for the products are still at work.

Proposition 2.2. For x �H
k
(X,Y

�
�Y

�
;B), y �H

l
(X �,Y�

�
�Y�

�
;B�) and u �

Hp(X,Y
�
;Zw), � �H q(X �,Y�

�
;Zw�), we ha�e

(i) ��u� (�1)pq u�� �Hp+q(X,Y
�
�Y�

�
;Zw+w�), if X�X � ;

(ii) (x�y)�(u��)� (�1)lp((x�u)�(y��)) �H
n
((X,Y

�
)�(X �,Y�

�
) ; Bw �B�w�),

n�k�l�p�q;

(iii) x�(u��)� (x�u)�� �H
k−p−q

(X,Y
�
;Bw+w�), where X�X � and Y

�
�Y

�
�Y�

�
.
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3. Diagonal cohomology class

Throughout this section, X will be fixed as a connected Poincare� complex

in the sense of Wall [14] with an orientation character w and a fundamental class

[X ] �H
n
(X ;Zw). Note that X�X is also a Poincare� complex with the fundamental

class [X ]�[X ] �H
�n

(X�X ;Zw×w). Note that, in our convention (see §2), w
�
�w

�
:

π
�
(X�X )�� �	1
 means the one identified with w

�
�1�1�w

�
�H �(X�X ;Z

�
),

for any homomorphism w
�
,w

�
:π

�
(X )�� �	1
.

Now let R be either the integer ring Z or the field of rational numbers Q and

consider a homomorphism w� :π
�
(X )�� �	1
. We will identify the two coefficients

Rw �Rw�, Rw×w� so that r� s corresponds to rs.

Consider the diagonal map Δ :X��X�X. Then the identity 1:Rw ��R(w�+w)×w�

is a Δ�-homomorphism and, therefore, we have a homomorphism

(Δ, 1)� :H�(X,Rw)��H�(X�X,R(w�+w)×w�).

From now on, we will write Δ� to denote (Δ, 1)�. Also we will use the

same notation [X ] �H
n
(X ;Rw) to denote the image of [X ] by the homomorphism

H
n
(X ;Zw)��H

n
(X ;Rw). The following lemma is clear and we omit the proof.

Lemma 3.1. [X ]� :Hk(X ;Rw�)��H
n−k

(X ;Rw�+w) is an isomorphism for all k �Z.

Definition 3.2. The diagonal cohomology class u
w� �Hn(X�X ;Rw�×(w�+w)) is the

unique class satisfying [X�X]�u
w� �Δ�[X ] �H

n
(X�X ;R(w�+w)×w�).

For any pair (X,Y ) of finitely dominated spaces, we consider the number

χ
w�,R

(X,Y )��
k

(�1)k rankH
k
(X,Y ;Rw�) �Z,

in which w� :π
�
(X )�� �	1
 is any homomorphism.

In fact, χ
w�,R

(X,Y ) does not depend on the choice of w� or R. Let P� be a chain

complex of finitely generated projective Zπ
�
(X )-modules, chain homotopy equivalent

to C�(X,Y ) (cf. [13]). Then P��
Zπ

�
(X)

Z
�
� (P��

Zπ
�
(X)

Zw�)�Z
�
, for any w�. Note

that P
i
�

Zπ
�
(X)

Zw� is a free abelian group since it is a direct summand of one.

Therefore,

χ
w�,R

(X,Y )��
i

(�1)i rank
Z
(P

i
�

Zπ
�
(X)

Zw�)��
i

(�1)i rank
Z
�

(P��
Zπ

�
(X)

Z
�
).

The arguments above and the resulting definition below were suggested by

Professor Frank Connolly.

Definition 3.3. For any pair (X,Y ) of finitely dominated spaces, the

Euler–Poincare� number of (X,Y ), denoted by χ(X,Y ), is the common value

χ
w�,R

(X,Y ).

For any x �H
p
(X ;Rw�), a �Hp(X ;Rw�), we write 
x, a��x�a �H

�
(X ;R)�R.

Note that 
x�a, b��
x, a�b�, for any x �H
p+q

(X ;Rw�+w�), a �Hp(X ;Rw�) and

b �H q(X ;Rw�).

The technique of the proof of Proposition 3.4 below can be found in [11] without

the complications arising from the use of the equivariant homology theory.
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Proposition 3.4. For any homomorphism w� :π
�
(X )�� �	1
, it holds that


Δ*u
w�, [X ]�� χ(X ).

Proof. It is enough to show the equality when the coefficient R is Q.

Both H�(X ;Qw�) and H*(X ;Qw�) are graded vector spaces over Q of finite rank.

Note that the map H q(X ;Qw�)��Hom(H
q
(X ;Qw�),Q), a��
	, a� is an iso-

morphism.

Let �y
�
,…,yν
 be a basis for H�(X ;Qw�) consisting only of homogeneous elements.

Then there is a dual basis �y�,… , yν
 for H*(X ;Qw�), in the sense that 
y
i
, y j�� δ

ij

understanding 
y
i
, y j�� 0 if dim y

i

dim y j. Here δ

ij
is the Kronecker delta.

On the other hand, there are unique x
�
,… ,xν �H�(X ;Qw�+w) such that Δ�[X ]�

�
i
x
i
�y

i
�H

n
(X�X ;Q(w�+w)×w�). Then, by a direct calculation, it holds that

Δ�[X ]�yi �x
i
. Furthermore, since the homomorphism

Δ�[X ]�� [X ]� :H*(X ;Qw�)��H
n−

�(X ;Qw�+w)

is an isomorphism, �x
�
,… ,xν
 is in fact a basis for H�(X ;Qw�+w). Also let �x�,… ,xν


be the basis for H*(X ;Qw�+w) dual to �x
�
,… ,xν
. In particular, we have


[X ], yi�xj��
[X ]�yi,xj��
x
i
,xj�� δ

ij
.

Therefore, we have


[X ]�xj, yi��
[X ],xj�yi�� (�1)dimx
j
dimy

i δ
ij

and, by uniqueness of the dual basis, we conclude that

[X ]
Q
�xi � (�1)(n−dimyi)dimyi y

i
.

We may write u
w� �� yi�x�i for some x�i �H*(X ;Qw�+w), i� 1,… , ν. Then, from

the equalities

([X ]�[X ])�u��(�1)ndimy
i([X ]�yi)�([X ]�x�i)��x

i
�y

i

we have
x�i � (�1)(n−dimy

i
)dimy

i(�1)ndimy
i xi � (�1)dimy

i xi.

Therefore, it follows that u
w� ��(�1)dimy

i yi�xi. Finally, we have


[X ],Δ*u
w����(�1)dimyi
[X ], yi�xi���(�1)dimyi

��
p

(�1)p rankH
p
(X ;Qw�)� χ(X ). �

4. Sphere fibration

Let ξ be an (n�1)-sphere fibration over a space X with projection p. Then we will

write Sξ to denote the total space, Dξ, the mapping cylinder of p. We will write s for

the natural inclusions X
Dξ, X�� (Dξ,Sξ ). For any subspace A of X, ξ
A

will

mean the restriction. If η is another (m�1)-sphere fibration over another space Y with

projection q, the product ξ�η means the (n�m�1)-sphere fibration over X�Y

whose total space S(ξ�η) is Sξ�Dη�Dξ�Sη, with the obvious projection (replacing

it with a fibration in the sense that it satisfies the homotopy lifting property, if

necessary). Then, if Y�X, the Whitney sum ξ�η will mean the pull-back of ξ�η

along the diagonal Δ :X��X�X.

Following Wall [15, p. 113], given Poincare� complexes A,X of respective

dimension n, n�q and a map f :A��X, a Poincare� embedding structure on f consists
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of (i) a (q�1)-spherical fibration ν
f
� ν with projection p :Sν��A, (ii) a Poincare�

pair (Z,Sν) of dimension n�q, and (iii) a homotopy equivalence h :Dν�
Sν Z��X,

so that the following diagram commutes up to homotopy:

A X

Dv Dv�Z

s h

f

We will call ν
f
the normal fibration of the Poincare� embedding structure.

For the Poincare� complex X, let ν
X

denote the Spivak fibration of X. The

following lemma is due to Wall [15, p. 115].

Lemma 4.1 (Wall). Let A and X be Poincare� complexes. Assume that f :A��X

is a continuous map which admits a Poincare� embedding structure with a normal

fibration ν
f
. Then ν

A
is stably fibrewise homotopy equi�alent to ν

f
�f *ν

X
.

Therefore, the normal fibration of a continuous map, if it admits a Poincare�
embedding structure, is unique up to stable fibrewise homotopy equivalence. Also, we

have the following corollary.

Corollary 4.2. Let X be a Poincare� complex and assume that the diagonal

Δ :X��X�X admits a Poincare� embedding structure with a normal fibration νΔ.

Then νΔ represents the stable in�erse of the Spi�ak fibration of X.

The following lemma is well known and can easily be proved using the Thom

isomorphism theorem and the fact that Hn+k(Dν
X
,Sν

X
;Z )�Z, where n�dimX and

k is the fibre dimension of ν
X
.

Lemma 4.3. The orientation character of a Poincare� complex X is the first

Stiefel–Whitney class w
�
(ν

X
).

By combining Corollary 4.2 and Lemma 4.3, we have Corollary 4.4.

Corollary 4.4. If there is a Poincare� embedding structure on the diagonal

Δ :X��X�X, w
�
(νΔ) is the orientation character of X.

In general, if ξ, η are sphere fibrations and α :η�� ξ is a fibre map, there is

the Thom map T(α) : (Dη,Sη)�� (Dξ,Sξ ). Moreover, let Uξ �Hk(Dξ,Sξ ;Zwξ),

Uη �Hk(Dη,Sη ;Zwη) be some presumed Thom classes. Then we shall say α preserves

the Thom classes (or the orientations) if T(α)*Uξ �Uη.

From now on, X will be a Poincare� complex with a fixed fundamental class [X ] �
H

n
(X ;Zw). Then we consider the category of all pairs (ξ,Uξ) in which ξ is an (n�1)-

sphere fibration over X whose first Stiefel–Whitney class is w and Uξ �Hn(Dξ,Sξ ;Zw)

is the Thom class. Two such pairs are equi�alent to each other if there is a fibrewise

homotopy equivalence between the two which preserves the orientations.

Definition 4.5. We will call 
[X ], s*Uξ� �Z the Euler characteristic and denote

it by χ(ξ,Uξ).
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It is clear that χ(ξ,Uξ) is an invariant of the equivalence class containing (ξ,Uξ).

In particular, if ξ admits an automorphism reversing the orientation, it follows that

χ(ξ,Uξ)� 0.

Let h :DνΔ�SνΔ
W��X�X specify a Poincare� embedding structure on the

diagonal Δ :X��X�X. Then the Poincare� embedding structure specifies a choice

of Thom class Uτ of τ� νΔ as follows. Let h−� :X�X�� (Dτ�W,W ) denote the

map defined by h−�, a homotopy inverse of h, and let ι : (Dτ,Sτ)�� (Dτ�W,W )

denote the excision map. Consider the maps

H
�n

(X�X ;Zw×w)��
h
−��

H
�n

(Dτ�W,W ;Zh*(w×w))��
ι�

H
�n

(Dτ,Sτ ;Z ).

It is not difficult to see that h−��, ι� in the above are isomorphisms. Choose [Dτ,Sτ] �
H

�n
(Dτ,Sτ ;Z ) so that

ι�[Dτ,Sτ]� h−��([X ]�[X ]).

Then Uτ �Hn(Dτ,Sτ ;Zw) is chosen such that [Dτ,Sτ]�Uτ � [X ].

Proposition 4.6. Let X, τ and Uτ be as abo�e. Then we ha�e

χ(τ,Uτ)� χ(X ).

Proof. We will use the same notations as above.

Since ι*:Hn(Dτ�W,W ;Zh*(w×�))��Hn(Dτ,Sτ ;Zw) is an isomorphism, there is

a unique class U � �Hn(Dτ�W,W ;Zh*(w×�)) satisfying ι*U ��Uτ and we write u� to

denote h−�
*U �. Then there is a commutative diagram:

H2n(X�X;Zw�w)

�u �

h–1
* l *

H2n(X�X;Z1�w)

H2n(Ds�W,W;Zh*(w�w)) H2n(Ds, Ss;Z)

�U �

Hn(Ds�W;Zh*(1�w))

�U s

Hn(Ds;Zw).l *h–1
*

Thus it holds that h−�

�

([X�X ]�u�)� ι�([Dτ,Sτ]�Uτ), in which the latter is just

ι�[D(τ)]. Note that h−�Δ� ιs as maps from X into Dτ�W. We conclude that

[X�X ]�u�� h� ι�[D(τ)]� h� ι� s�[X ]� h� h−�

�

Δ�[X ]�Δ�[X ].

Therefore, u� is none other than the diagonal cohomology class u
w
. Since h−�Δ�

ιs, it follows that s*Uτ � s*ι*U ��Δ*h−�*U ��Δ*u
w
, which is enough for the proof

considering Proposition 3.4. �

More generally, the following holds, which we include for later use.

Proposition 4.7. Let ξ denote the stable in�erse of ν
X
. Then for the nth

Stiefel–Whitney class w
n
(ξ ), we ha�e

w
n
(ξ ) ([X ])� χ(X )mod2.

Note that Proposition 4.7 is clear if the diagonal Δ :X��X�X admits a Poincare�
embedding. If ξ is an (n�1)-sphere fibration, w

n
(ξ ) is the image of the Euler class

e(ξ )� s*Uξ by the natural homomorphism Hn(X ;Zw)��Hn(X ;Z
�
) (cf. [11, 9.5]).

However, w
n
(ξ ) is an invariant of the stable class of ξ. Since there is a representative

τ� νΔ for the stable inverse of ν, the assertion follows from Proposition 4.6. The

general case can be proved in a straightforward manner using the following facts. If

n is odd, w
n
� 0 and χ(X )� 0. If n� 2m, w

n
� �

m
��

m
, where �

m
�Hm(X ;Z

�
) is
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such that 
�
m
,x��
x,x� for any x �Hm(X ;Z

�
) (cf. [11]). Here, 
	, 	� :

Hm(X ;Z
�
)�Hm(X ;Z

�
)��Z

�
denotes the intersection form, defined by 
x, y��

(x�y) ([M ]), which is non-degenerate. Also, by duality, χ(X )� rankHm(X ;Z
�
).

5. Proof of Proposition 1.5 for e�en dimensions

Any Poincare� complex admits a Poincare� embedding structure on the inclusion of

a one-point space according to [8, 14]. Therefore, given a Poincare� complex X, we

may choose a decomposition X�Dn�
S
n−�

L where L is homotopic to an (n�1)-

complex. Then we will follow Dupont [6] : given a pair (ξ,U ) consisting of an (n�1)-

sphere fibration ξ over X and its Thom class U, we introduce an operation which

alters (ξ,U ) systematically to another such pair preserving the stable fibre homotopy

equivalence class of ξ. Then we show that the Euler characteristic detects this

operation sensitively enough to prove Proposition 1.5 for even dimensions.

Consider the pinching map

p :X��X�Sn−��X�Sn.

Let BG
n

be the classifying space of (n�1)-sphere fibrations, for which we fix a

basepoint. Let � :X��BG
n
, μ :Sn ��BG

n
be basepoint-preserving maps. Then for

any integer k, we consider the composite

X��
p

X�Sn ��
u�μk

BG
n
,

in which μk :Sn ��BG
n

represents k	[μ] �π
n
(BG

n
). We denote the composite

(��μk) p by ��μk.

Let j :BG
k
��BG

k+�
be the map stabilising the (k�1)-sphere fibrations. We

recall the following proposition.

Proposition 5.1 (Dupont). Assume that �, �� are basepoint-preser�ing maps from

X into BG
n
. Then they represent fibrations o�er X stably fibre homotopy equi�alent to

each other if and only if �� is homotopic to ��μ for some μ �Ker j� :π
n
(BG

n
)��

π
n
(BG

n+�
) by a basepoint-preser�ing homotopy.

In fact, [6, 2.1] concerns only the oriented fibrations. However, the proof is still

valid without a change. Also the following is well known (cf. [6, 2.2]).

Proposition 5.2. The kernel of j� :π
n
(BG

n
)��π

n
(BG

n+�
) is cyclic generated by

the map classifying the tangent sphere fibration of Sn. Furthermore,

Ker j��

1

2
3

4

Z if n is even

0 if n� 1, 3, 7

Z
�

if n is odd and q
 1, 3, 7.

Choose a universal (n�1)-sphere fibration γ
n

over BG
n

and orient γ
n

by choosing

a Thom class Uγ
n

�Hn(Dγ
n
,Sγ

n
;Zw), where w :π

�
(BG

n
)�� �	1
 is the isomorphism.

Let Y be any connected complex with a basepoint. For any basepoint-preserving

map � :Y��BG
n
, write �*γ

n
for the pull-back fibration and �*Uγ

n

for the Thom class

of �*γ
n
which is the pull-back of Uγ

n

along the natural fibre map. Then the equivalence

class of the pair (�*γ
n
, �*Uγ

n

) does not depend on the choice of � up to basepoint-

preserving homotopy.



1110 yanghyun byun

Moreover, consider the usual action of π
�
(BG

n
) on the set [Y,BG

n
]� of

the basepoint-preserving homotopy class of maps and let [ρ]	[�]� [ρ	�] denote

[�] � [Y,BG
n
]� multiplied by [ρ] �π

�
(BG

n
).

Lemma 5.3. For the non-tri�ial element [ρ] �π
�
(BG

n
) and for any [�] � [Y,BG

n
]�,

the pair ((ρ	�)* γ
n
, (ρ	�)*Uγ

n

) is equi�alent to (u*γ
n
, ��*Uγ

n

).

Proof. There is a map G :Y�[0, 1]��BG
n

such that G(	, 0) is � and G(y
�
, 	) is

ρ, where y
�
�Y denotes the basepoint. We write ρ	� for G(	, 1). Then, ρ	� represents

the homotopy class [ρ]	[�] � [Y,BG
n
]�.

Now we have (G*γ
n
)�
Y×�

�

 � �*γ

n
, (G*γ

n
)�
Y×�

�

 � (ρ	�)* γ

n
. Also note that �*Uγ

n

,

(ρ	�)*Uγ
n

are the pull-backs of G*Uγ
n

by the inclusions �*γ
n
��G*γ

n
, (ρ	�)* γ

n
��

G*γ
n
.

Consider α :�*γ
n
�� (ρ	�)* γ

n
which is the restriction of a fibrewise homotopy

equivalence α� :�*γ
n
�I��G*γ

n
to Y��1
.

Let � denote the basepoint of BG
n
and consider the composite, α� � :γ���
�[0, 1]��

ρ*γ
n
�� γ

n
, which is the restriction of α� followed by the natural fibre map.

Then the restrictions of α� , say, α�
r
:γ

n
���
 � γ

n
���
��r
�� γ

n
���
, r� 0, 1, would have

been homotopic to each other only if ρ represented the trivial element of π
�
(BG

n
).

From this it is straightforward to see that T(α)* ((ρ	�)*Uγ
n

)���*Uγ
n

, which

completes the proof. �

Proposition 5.4 immediately follows.

Proposition 5.4. For any oriented (n�1)-sphere fibration (ξ,U ) o�er Y, there is

a unique class [�] � [Y,BG
n
]� so that (ξ,U ) is equi�alent to (�*γ

n
, �*Uγ

n

).

We orient the Poincare� complex X by choosing a fundamental class [X ] �
H

n
(X ;Zw) and let (ξ,U ) denote an oriented (n�1)-sphere fibration over X such that

w
�
(ξ )�w.

Let (τ
n
,U

n
) denote the oriented tangent sphere fibration of Sn, which we consider

with the standard orientation [Sn]. We choose U
n

so that it is consistent with the

Poincare� embedding structure on Δ :Sn ��Sn�Sn (see §4).

Let μ :Sn ��BG
n
, � :X��BG

n
be the classifying maps for (τ

n
,Uτ

n

), (ξ,U )

respectively, in the sense of Proposition 5.4. Then we will write (ξ� τk

n
, U�Uk

n
) to

denote
((��μk)* γ

n
, (��μk)*Uγ

n

).

Proposition 5.5.

χ(ξ� τk

n
,U�Uk

n
)�

1

2
3

4

χ(ξ,U )�2k if n is even

χ(ξ,U ) if n is odd.

Proof. Note that χ(ξ� τk

n
,U�Uk

n
) is the evaluation at [X ] of the pull-back of

s*Uγ
n

by ��μk which is the composite

X��
p

X�Sn ��
v�μk

BG
n
.

Note also that Hn(X�Sn ;Z r*w)�Hn(X ;Zw)�Hn(Sn ;Z ), where r :X�Sn ��X

is the map collapsing Sn, and, allowing ourselves a slight abuse of the notations, that

p*[X ]� [X ], p*[Sn]� [X ], where [X ], [Sn] are the top dimensional cohomology

classes dual to the 1s in H
�
(X ;Z ), H

�
(Sn ;Z ), respectively.
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Now the proof follows from the fact that χ(τ
n
,U

n
) is 2, if n is even, and 0 if n is

odd. �

Proof of Proposition 1.5 for e�en dimensions. Apply [8, 15] to choose a

decomposition X�Dn�
S
n−�

L so that (L,Sn−�) is a Poincare� pair. Then we may

define the operation � of π
n
(BG

n
) on [X,BG

n
]� as above.

Note that the stabilising map, BG
n
��BG

n+k
,k� 1, is an n-equivalence.

Therefore, a stable inverse of ν
X

can be represented by an (n�1)-sphere fibration ξ

over the n-complex X (cf. [16]).

Now, by Propositions 4.6, 5.1, 5.2, 5.4 and 5.5, we conclude Proposition 1.5 when

n is even. �

6. Proof of Proposition 1.5 for odd dimensions

By Propositions 5.1 and 5.2, given an odd-dimensional Poincare� complex X, there

are at most two classes of (n�1)-sphere fibrations over X which are stably inverse to

the Spivak fibration. To distinguish between the two, we will use an invariant

introduced by Dupont [6, 7] and subsequently revised by Sutherland [12].

Even if Sutherland confines his construction to vector bundles, most of the

strategy also works in our homotopy theoretic situation. In particular, the use of his

‘symmetric lifting’ is crucial in the process (see below).

Throughout the section, we fix a Poincare� complex X of odd dimension n together

with a normal invariant c :Sn+k��T(ν), where T(ν) denotes the Thom space of the

Spivak (k�1)-sphere fibration ν of X, k� n�2.

We consider a pair (ξ, θ) which consists of an (n�1)-sphere fibration ξ and a

tri�ialisation θ which is a fibrewise homotopy equivalence from the trivial (n�k)-

sphere fibration εn+k to the Whitney sum ξ�ν. We outline the definition of the so-

called b-invariant as follows (for more details, see [2, 6, 7, 12]).

In what follows, Z
�
-coefficients must be understood for all the (co)homology

groups.

Let γ� κ, κ� 2k�2, denote a universal (κ�1)-sphere fibration over a space E which

classifies (κ�1)-sphere fibrations whose (n�1)th Wu classes �
n+�

vanish. Here,

the total Wu class �� 1��
�
��

�
�… of a sphere fibration ζ over a space Y means

Sq−�w−� �H*(Y ), where w−� is the inverse of the total Stiefel–Whitney class w of ζ

and Sq−� is the multiplicative inverse of the total Steenrod square Sq in the Steenrod

algebra (cf. [2]).

Choose a finite complex Y together with a duality between Y and (a finite skeleton

of) T(γ�
k
).

On the other hand, the trivialisation θ specifies, together with the normal invariant

c :Sn+k��T(ν), a duality between T(ξ ) and T(ν�ν) as follows:

S �n+�k�Σn+kSn+k��
Σn+k

c

Σn+kT(ν)

�T(εn+k�ν) ��
T(θ+�)

T(ξ�ν�ν)��
T(Δ

�
)

T(ξ�(ν�ν))�T(ξ )�T(ν�ν),

in which Σm	 denotes the mth reduced suspension and Δ� denotes the natural fibre map

covering the diagonal Δ :X��X�X.

Furthermore, Sutherland has shown that there is a symmetric lifting which is a

fibre map A :ν�ν�εi �� γ� κ, i�κ�2k such that A(t�1) and A are homotopic to
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each other through fibre maps, where t :ν�ν�� ν�ν is the fibre map given by

exchanging the factors. Also he has shown that a�A(Δ� �1) :ν�ν�εi �� γ� κ is

independent of the choice of A up to homotopy through fibre maps.

Therefore, there is a map g :Y��ΣlT(ξ ), for some integer l, well defined up to

stable homotopy as the dual of T(a) :T(ν�ν�εi)��T(γ� κ) with respect to the

dualities above.

Let the composite

Y��
g

ΣlT(ξ )��
ΣlUξ

ΣlK
n

be denoted by f, where Uξ is the Thom class and K
n
�K(Z

�
, n) is the

Eilenberg–Maclane space. Then the invariant b(ξ, θ) is defined as

Sqn+�
f

(Σlι) �H l+�n(Y )�Z
�
,

where Sqn+�
f

is the functional Steenrod square and ι �Hn(K
n
) is the fundamental class.

Only a point regarding the well-definedness of b(ξ, θ) seems worth some comments

considering the works by Dupont and Sutherland. We ask whether the functional

Steenrod square is well defined. Recall that it is defined via a diagram chase with the

commutative diagram

H l+n–1(Y ) H l+n( f ) H l+n(∑lKn)

H l+2n(Y )

Sqn+1

H l+2n+1( f ) H l+2n+1(∑lKn).

Sqn+1 Sqn+1

d

df *

f *j *

j *

To begin the chase, we must have the following lemma (cf. [7, 4.2]).

Lemma 6.1. f *(Σlι)� 0.

Proof. It is enough to show that g*ΣlUξ � 0. But ΣlUξ is dual to the generator

of Hn+�k(T(ν�ν)). Therefore, it is also enough to show that a� *:Hn(E )��Hn(X ) is

a zero homomorphism, where a� is the map covered by the fibre map a�A(Δ� �1) (see

above).

Note that, writing A� for the map covered by A, we have a� �A�Δ.

Let u �Hn(E ) be any class. Write t� :X�X��X�X for the map transposing

the factors. Then, since A� t� is homotopic to A� , it follows that t�*A�*u�A�*u. There-

fore, if we write A�*u��
dima�n/�

a�b��
dima�n/�

a�b�U
−
�U

+
, we must have

t�*U
+
�U

−
.

Therefore we conclude that a�*u�Δ*A�*u�Δ*t�*U
+
�Δ*U

−
�Δ*(U

−
�U

−
)� 0,

as desired. �

To see that the indeterminacy is zero, one must refer to [2]. In addition, one may

easily show that b(ξ, θ) does not depend on the choice of the duality between Y and

T(γ� κ).
We will say that two pairs (ξ

�
, θ

�
), (ξ

�
, θ

�
) are equi�alent if and only if there is a

fibrewise homotopy equivalence α :ξ
�
�� ξ

�
such that (α�1) θ

�
, θ

�
:εn+k�� ξ

�
�ν

are homotopic to each other through fibrewise homotopy equivalence.

The following is a restatement of [12, 2.5] which refines [7, 5.2].
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Proposition 6.2 (Dupont, Sutherland). Two pairs (ξ
�
, θ

�
) are equi�alent pairs if

and only if b(ξ
�
, θ

�
)� b(ξ

�
, θ

�
).

In particular, if b(ξ
�
, θ

�
)� b(ξ

�
, θ

�
), it follows that ξ

�
, ξ

�
are fibrewise homotopy

equivalent to each other.

On the other hand, note that we have fixed a normal invariant c :Sn+k��T(ν).

Lemma 6.3 below clarifies the dependence of the b-invariant on c and the proof will

be postponed until the later part of this section.

For any Poincare� complex X of an odd dimension n, let the homotopy

James–Thomas number of X mean the number of fibrewise homotopy equivalence

classes of (n�1)-sphere fibrations stably inverse to the Spivak fibration of X.

Lemma 6.3. The in�ariant b(ξ, θ) depends on the choice of the normal in�ariant

c :Sn+k��T(ν) if and only if the homotopy James–Thomas number of X is 1.

Now we recall the � operation introduced in §5. Let η be an (n�1)-sphere

fibration over Sn with a trivialisation α :εn+��� ε��η. Then we consider ξ� η with

the trivialisation θ�α which is the composite

εn+k+���
�+

θ

ε��ξ�ν� ((ε��ξ )� εn+�)�ν ��
(�
�α)+�

((ε��ξ )� (ε��η))�ν

� ε��(ξ� η)�ν.

Let b(η, θ) be given by choosing the collapse map Sn+���T(ε�) coming from the

standard embedding Sn ��Sn+� as the normal invariant.

Then the following has been essentially proved by Dupont [7, 5.2], in particular,

when n
 1, 3, 7. A careful but straightforward modification of his arguments proves

it in general.

Proposition 6.4 (Dupont). b(ξ� η, θ�α)� b(ξ, θ)�b(η,α).

Assume that there is a Poincare� embedding structure on Δ :X��X�X and let

τ� νΔ denote the normal fibration and h :Dτ�Sτ
W��X�X be the homotopy

equivalence which specifies the Poincare� embedding structure. Write ν�ν� h*(ν�ν).

Then we consider, on the one hand, the degree-one map

Σn+kc :S �n+�k�Σn+kSn+k��Σn+kT(ν)�T(εn+k�ν),

and, on the other hand, the degree-one map c� which is the composite

S �n+�k��
c�c

T(ν�ν)�T(ν�ν)��T(ν�ν�
Dτ)�T(ν�ν�

Sτ)�T(τ�ν�ν).

Then, according to [14], there is a unique fibrewise homotopy equivalence

θ� :εn+k�ν�� τ�ν�ν such that c� is homotopic to T(θ�)Σn+kc. Furthermore, θ� is

θ
h
�1 for some unique fibrewise homotopy equivalence θ

h
:εn+k�� τ�ν, up to

homotopy through fibrewise homotopy equivalence (cf. [3]). Once the normal

invariant c is fixed, we will refer to θ
h
as the trivialisation of τ�ν determined by the

Poincare� embedding structure on the diagonal.

Remark 6.5. Note that the equivalence class (τ, θ
h
) above depends on the choice

of the normal invariant c if and only if the homotopy James–Thomas number of X
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is 1, which must be clear from Proposition 6.2 and Lemma 6.3. However, it does not

depend on the choice of a Poincare� embedding structure on Δ :X��X�X by

Corollary 6.8 below.

Once the normal invariant c is fixed, there is a natural duality between T(ν�ν) and

T(τ). It is the composite

S �N��
c�c

T(ν�ν)��T(ν�ν)�T((ν�ν)�
W
)

�T((ν�ν)�τ)��
T(Δ

�
)

T((ν�ν)�τ)�T(ν�ν)�T(τ).

Also there is the duality between (X�X)
+

and T(ν�ν) :

S �N��
c�c

T(ν�ν)��T(ν�ν)�(X�X )
+
.

The following has been proved in [7, 3.2] when X is a manifold. The same proof

works for any Poincare� embedding structure on Δ :X��X�X.

Lemma 6.6. With respect to the dualities abo�e, the dual of T(Δ� ) :T(ν�ν)��
T(ν�ν) is the collapse map C

h
: (X�X )

+
��T(τ)� (Dτ�

Sτ W )�W.

Let u �Hn(X�X ) be the diagonal cohomology class in the sense [X�X ]�u�
Δ�[X ]. Recall the symmetric lifting A :ν�ν�� γ�

k
. Denote by q :Y��Σl(X�X )

+

the dual of T(A) :T(ν�ν)��T(γ�
k
) with respect to the same duality between T(ν�ν)

and Σl(X�X )
+

as in Lemma 6.6.

Write K for the kernel of q*:Hn(X�X )��Hn(Y ). Then there is the quadratic

function � :K��Z
�
defined by Browder [2] with respect to the (Y-orientation) q (q).

Recall the semi-characteristic χ
�/�

(X )��
i
rankH �i(X ;Z

�
)mod2. Even if the

following has been proved in [12, 2.7], the proof below seems more focused.

Lemma 6.7 (Sutherland). �(u)� χ
�/�(X)

.

Proof. We invoke the quadratic function ψ :Hn(X�X )��Z
�

defined by

Brown [4] using the same lifting A :ν�ν�� γ�
k
. In particular, ψ satisfies ψ(�)� j�(�)

for any � �K, where j :Z
�
��Z

�
is the monomorphism. Furthermore,

ψ(����)�ψ(�)�ψ(��)�j((����) ([X�X ])).

(This explains the terminology ‘quadratic function’.)

On the other hand, we have u� a�t*a for some a �Hn(X�X ) such that

(a�t*a) ([X�X ])� χ
�/�

(X ) (see the proof of Lemma 6.1). In particular, it follows

that u �K.

In fact, ψ(x) � jZ
�
�Z

�
for any x �Hn(X�X ) since x�x� 0 and ψ is ‘quadratic ’.

Also it is not difficult to see that ψ(x)�ψ(t*x) as long as we use a symmetric lifting

ν�ν�� γ�
k

to define ψ. Therefore, we have

j�(u)�ψ(u)�ψ(a�t*a)�ψ(a)�ψ(t*a)�j(a�t*a) ([X�X ])

� j((a�t*a) ([X�X ]))� jχ
�/�

(X ). �

Corollary 6.8. b(τ, θ
h
)� χ

�/�
(X ).

Proof. We consider the duality between T(ν�ν) and (X�X )
+

and the one

between T(ν�ν) and T(τ) as in Lemma 6.6. Note that, by construction of θ
h
, the latter
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is the same as the duality between T(ν�ν) and T(τ) determined by (τ, θ
h
) and the

normal invariant c by means of which we define b(τ, θ
h
) (see the beginning of the

section).

Recall C
h
: (X�X)

+
��T(τ), the collapse map given by the Poincare� embedding.

Also fix a duality between T(γ� κ) and Y. Let g :Y��ΣlT(τ) and q :Y��Σl(X�X )
+

denote respectively the map dual to T(a)�T(A)T(Δ� �1) and the map dual to T(A).

Then, the following diagram commutes :

Y ∑lKn

Y

∑l(X × X )+

id

q

g
∑lKn

id

∑lT(τ)

∑lCh

∑lUr

∑lu

It is straightforward to see that C�
h
Uτ is the diagonal cohomology class u and,

therefore, does not depend on the choice of Poincare� embedding of the diagonal.

By the commutativity of the diagram, we have

b(τ, θ
h
)�Sqn+�

(Σ
l
Uτ)g

(Σlι)�Sqn+�

(Σ
l
u)q

(Σlι)��(u)� χ
�/�

(X ). �

Corollary 6.9. For the tangent sphere fibration τ
n

of Sn and the standard

tri�ialisation α
n
:εn+k�� εk�τ

n
, we ha�e b(τ

n
,α

n
)� 1 �Z

�
.

Here we provide the postponed proofs.

Completion of the proof of Proposition 1.5. When n is even, Proposition 1.5 has

been proved in §5. When n is odd, Propositions 5.1, 5.2, 6.2 and 6.4 and Corollary 6.9

together prove Proposition 1.5. �

Proof of Lemma 6.3. Assume that the homotopy James–Thomas number of X

is 2. Let ξ represent one of the two classes of (n�1)-sphere fibrations stably inverse

to ν. Then, by Proposition 6.2, it follows that b(ξ, θ) does not depend on the choice

of θ.

Let c� :Sn+k��T(ν) denote another normal invariant. Then there is a fibrewise

homotopy equivalence α :ν�� ν such that T(α) c is homotopic to c� [14]. For a pair

(ξ, θ), let θ� :εn+k�� ξ�ν denote the composite

εn+k��
θ

ξ�ν���+
α

ξ�ν.

Then a straightforward calculation shows that b(ξ, θ�) with respect to the normal

invariant c is the same as b(ξ, θ) with respect to the normal invariant c�. But

b(ξ, θ�)� b(ξ, θ) when we use the same normal invariant c for both sides of the

equality.

Assume that the homotopy James–Thomas number is 1. Let ξ represent the

unique (n�1)-sphere fibration stably inverse to the Spivak fibration up to fibrewise

homotopy equivalence. Then, by Proposition 1.5, there are trivialisations

θ, θ� :εn+k�� ξ�ν such that b(ξ, θ)
 b(ξ, θ�), presuming a fixed normal invariant c.

Let α :ν�� ν be such that θ followed by 1�a :ξ�ν�� ξ�ν is homotopic to θ�
through fibrewise homotopy equivalences (cf. [3]).

Consider c��T(α) c :Sn+k��T(ν). Then, it follows that b(ξ, θ) with respect to c�
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is the same as b(ξ, θ�) with respect to c. However, we have b(ξ, θ)
 b(ξ, θ�), when we

fix the normal invariant c. �

Proof of Theorem 1.2. Once Proposition 1.5 is established, we must show that

the tangent fibration does not depend on the choice of the fundamental class or of the

normal invariant.

For even dimensions, if the orientation of the Poincare� complex is reversed, the

same fibration with the reversed orientation will have the same Euler characteristic.

For odd dimensions, if the homotopy James–Thomas number is 1, there is

nothing left to prove and, if it is 2, then the b-invariant does not depend on the choice

of the normal invariant by Lemma 6.3. �

Proof of Theorem 1.3. The assertion follows from Corollary 4.2 and Proposition

4.6 if n is even and from Corollaries 4.2 and 6.8 if n is odd. �
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