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We provide product formulae for self-intersection numbers
in various coefficients.

1. Introduction.

Given an immersion f : Mm → P 2m, m ≥ 1, from a closed smooth manifold
M to a smooth manifold P , there is a well-known invariant I(f) called the
self-intersection number of f . We will consider I(f) in the Z2-coefficient or
in the Z-coefficient if M,P are oriented and m is even or in a Z-module
coefficient which is a quotient module of the free Z-module on π1(P ) (see
§5). These self-intersection numbers can be used to determine whether or
not f is regularly homotopic to an embedding if m ≥ 3. We will consider
the problem of what happens to the intersection number if one forms the
product of two given immersions.

The problem is much simpler in the case of the type of intersection number
which behaves as an obstruction for two submanifolds in an ambient space
to get separated from each other by a homotopy (which is not necessarily
regular): Let Mm1

1 ,Mm2
2 be submanifolds of Pm1+m2 which intersects trans-

versely and Nn1
1 , Nn2

2 ⊂ Qn1+n2 be another such triple. Then M1×N1 inter-
sects transversely M2×N2 in P ×Q at the points in (M1∩M2)× (N1∩N2).
On the other hand, assume we are given two immersions f : Mm → P 2m, g :
Nn → Q2n which are completely regular, that is, which are proper, self-
transverse and have no triple points (see §2). In general, f × g is neither
self-transverse nor without triple points. For example, if p, q ∈ M are such
that f(p) = f(q), p 6= q, we have (f × g)(p, y) = (f × g)(q, y) for any y ∈ N .
Therefore we must first transform f×g into a completely regular immersion
through a regular homotopy before we calculate the intersection number.

In fact, a special case of the problem arised in the process of deriving
the product formula for surgery obstructions in 1970’s (cf. p. 55, [Mo]).
It essentially concerned the case when g is an embedding, N is orientable
and Q is simply connected in the above and the answer was given by, when
rewritten in our notation:

I(f × g) = I(f)χ(νg),
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where χ(νg) denotes the integral Euler characteristic of the normal bundle νg
of g and the intersection numbers should be understood in such coefficients
as introduced in §5 below. This of course coincides with our results in this
paper. We are motivated by a different reason (cf. [BY]) and treat the
problem in a complete generality.

The following is one of the two main results of this paper, which concerns
the intersection number in the Z2 or the Z-coefficient.

Theorem A. Let f : Mm → P 2m, g : Nn → Q2n be immersions where
M,N are closed smooth manifolds and P,Q, smooth manifolds. Then,

(I) for the mod 2 intersection numbers, we have

I(f × g) = χ(νf )I(g) + I(f)χ(νg) ∈ Z2,

where χ(·) is the Euler characteristic in the Z2-coefficient.
Furthermore, assume M,N,P,Q are oriented and m+ n is even. Then, for
the integral intersection numbers, we have
(II) if both m,n are even,

I(f × g) = 2I(f)I(g) + χ(νf )I(g) + I(f)χ(νg) ∈ Z,
where χ(·) mean the integral Euler characteristic,

(III) and, if both m,n are odd, I(f × g) = 0 ∈ Z.

In the above, νf , νg denote the normal bundles. It must be understood
that a normal bundle is given the orientation which is consistent with the
orientations of the manifolds. Then the formula in (II) above is invariant
under the changes of the orientations of M,N and under those of P,Q.

In general, the mod 2 or the integral intersection number is not sophisti-
cated enough to be an exact obstruction for the immersion in concern to be
regularly homotopic to an embedding. Such an intersection number takes
its value in a Z-module which is a quotient module of the free Z-module on
the fundamental group of the codomain of the immersion in concern. Theo-
rem B in the last section is none other than a generalization of Theorem A
to this case. Even if the former unifies the equalities of the latter, it does
so only by sacrificing simplicity of the coefficient in which the intersection
number takes its values.

The key idea of the proofs of Theorems A and B might be best revealed
by the following simple example.

Consider the case when I(f) = 0, χ(νf ) = 0 and P is simply connected,
m ≥ 3 (cf. [BY]): Under the condition, we may assume f is an embedding
and that νf admits a nowhere vanishing section. This enables us to construct
an embedding F : M × I → P such that F (x, 0) = f(x) for any x ∈ M ,
using for instance the exponential map. For simplicity, assume g has only one
double point and p, q ∈ N, p 6= q, are such that g(p) = g(q). Choose a smooth
function ϕ : N → I so that ϕ(p) = 0, ϕ(q) = 1. Define Λt : M×N → P ×Q,
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0 ≤ t ≤ 1, by Λt(x, y) = (F (x, tϕ(y)), g(y)) for any (x, y) ∈ M × N . Then
it is straightforward to see that Λt is a regular homotopy and Λ1 is an
embedding. Note that this observation is consistent with Theorem A.

The two key steps to the proofs of Theorems A and B are to construct
carefully a regular homotopy for each of the immersions f , g and subse-
quently to use them to obtain a completely regular immersion regularly
homotopic to f × g in a way similar to the above.

2. Basic notions and facts.

Throughout this section, let f : M → P be a smooth map between connected
smooth manifolds.

We say f is an immersion if f is a proper map and df : TxM → Tf(x)P
is injective for each x ∈M . Let I denote the closed unit interval in the real
line R. A homotopy ft : M → P , t ∈ I, is regular if ft is an immersion for
each t ∈ I.

From now on let M be of dimension m and P , of dimension 2m.
We say an immersion f : M → P is completely regular if f has no triple

points and f is self-transverse, that is, f satisfies the following condition,

dfTpM + dfTp′M = Tf(p)P = Tf(p′)P,

for any p, p′ ∈M such that f(p) = f(p′), p 6= p′ (cf. [A]). We will call {p, p′}
a double pair of f and f(p) ∈ P a double point of f .

Now assign a metric d on P which induces the topology of P . Then, given
any immersion f : M → P and any continuous function δ : M → R, δ(x) >
0, x ∈ M , H. Whitney ([Wh]) has shown that there is a regular homotopy
ft, t ∈ I, such that f0 = f and f1 is a completely regular immersion and
d(f(x), ft(x)) < δ(x) for any t ∈ I, x ∈M .

In the rest of this section, we assume further that M is a closed manifold.
If f : M → P is a completely regular immersion, one may define the

intersection number I(f) of f as follows: (i) For the mod 2 intersection
number, one defines I(f) ∈ Z2 as the number of the double points mod 2.
(ii) Assume that M , P are oriented and m is even. Then one may define
the integral intersection number as follows: Let r = f(p) = f(p′), p 6= p′,
be a double point of f . Let v = (v1, v2, . . . , vm), v′ = (v′1, v

′
2, . . . , v

′
m)

be sequences of tangent vectors which represent the orientation of M at
p and p′, respectively. If the sequence of tangent vectors (dfv, dfv′) =
(dfv1, dfv2, . . . , dfvm, dfv′1, dfv

′
2, . . . , dfv

′
m) represents the orientation of P

at r, write εr = +1 and, otherwise, write εr = −1. Note that εr remains
unchanged even if we interchange p, p′. Define I(f) =

∑
r εr ∈ Z, where r

runs through all the double points of f .
If f, g are completely regular immersions which are regularly homotopic to

each other, then we have I(f) = I(g): According to J. Cerf ([C]), for generic
regular homotopy, the double points vary continuously except at a finite set
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of points at each of which a pair of double points appear or disappear. Ifm is
even, the two has opposite values for εr. Furthermore, since every immersion
is regularly homotopic to a completely regular immersion, it follows that I(f)
is well-defined for any immersion f .

Now assume m ≥ 3 and P is simply connected. Let I(f) denote the mod
2 intersection number if the dimension of M is odd or M is unorientable
and, in the remaining case, the integral intersection number. Then I(f)
vanishes if and only if the regular homotopy class of f can be represented
by an embedding, which is a consequence of the Whitney trick (cf. [Mi],
[Wh] and §5 of this paper).

3. A model case.

Throughout this section, let Mm, Nn, m,n ≥ 1, be smooth manifolds and
f, g, completely regular immersions from M , N , respectively, into P 2m and
into Q2n, each of which has only one double point. Furthermore, we assume
that both νf , νg admit nowhere vanishing sections. Then we will prove the
following.

Proposition 3.1. The product f × g is regularly homotopic to a completely
regular immersion with exactly two double points. Furthermore, assume
M,N,P,Q are oriented and m+n is even. Then the signs of the two double
points differ from each other by multiplication by (−1)n. If both m,n are
even, then both of the signs for the two double points are the multiplication
of the sign of the double point of f with that of g.

To prove 3.1, we need the following lemma which will be proved later in
this section.

Lemma 3.2. There is a smooth regular homotopy ft : M → P , t ∈ I, such
that f0 = f and the following conditions hold:

(i) ft is a completely regular immersion with exactly one double pair
{pt, p′t} for each t,

(ii) the map I × {0, 1} → M which sends (t, 0) to pt and (t, 1) to p′t is a
smooth embedding,

(iii) ‘ft(x) = fs(y), (x, t) 6= (y, s)’ implies that ‘(x, y) = (ps, p′t) or (x, y) =
(p′s, pt)’ and

(iv) ft meets fs transversely if t 6= s.

Proof of 3.1. Let ft, {pt, p′t} be as in Lemma 3.2 and also let gt : N → Q,
t ∈ I, be a smooth regular homotopy for g satisfying the conditions of 3.2
with double pairs {qt, q′t}.

Choose a smooth function ϕ : M → I which is constantly 1 on a neigh-
borhood of {pt|t ∈ I} and constantly 0 on a neighborhood of {p′t|t ∈ I}.
Likewise choose a smooth function ψ : N → I satisfying the same condition
for the two sets {qt|t ∈ I}, {q′t|t ∈ I}.
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Then we define a homotopy Λt : M ×N → P ×Q, t ∈ I, by

Λt(x, y) =
(
ftψ(y)(x), gtϕ(x)(y)

)
.

Then it is straightforward to see that Λt is a smooth homotopy through
immersions such that Λ0 = f × g.

We must show that Λ1 = Λ has only two double points.
Assume Λ(x, y) = Λ(x′, y′) and (x, y) 6= (x′, y′). Then we have x 6= x′ or

y 6= y′.
First consider the case x 6= x′. Then we have from fψ(y)(x) = fψ(y′)(x′)

that
(x, x′) = (pψ(y′), p

′
ψ(y)) or (x, x′) = (p′ψ(y′), pψ(y)).

Assume (x, x′) = (pψ(y′), p
′
ψ(y)), it follows that ϕ(x) = 1, ϕ(x′) = 0 and

that g1(y) = g0(y′), which means that (y, y′) is (q0, q′1) or (q′0, q1). If (y, y′) =
(q0, q′1), then (x, x′) = (p0, p

′
1) and, if (y, y′) = (q′0, q1), then (x, x′) = (p1, p

′
0).

Thus we have in this case as the double pairs for Λ

{(p0, q0), (p′1, q
′
1)}, {(p1, q

′
0), (p

′
0, q1)}.

Assume (x, x′) = (p′ψ(y′), pψ(y)) and proceed similarly as in the above.
Then we obtain the same two double pairs for Λ as in the above.

Now assume y 6= y′. Then, from gϕ(x)(y) = gϕ(x′)(y′), we may easily
infer that ψ(y) 6= ψ(y′). Then, from fψ(y)(x) = fψ(y′)(x′), we conclude that
x 6= x′. Thus this case reduces to the case when x 6= x′.

We conclude that {(p0, q0), (p′1, q
′
1)}, {(p1, q

′
0), (p

′
0, q1)} are the only two

double pairs for Λ.
That Λ is self-transverse follows from the fact that f0, f1 are transverse

to each other as well as g0, g1 together with the fact that ϕ, ψ are constant
on each of some neighborhoods of pi, p′i, qi, q

′
i, i = 0, 1.

Finally we prove the last statement of the proposition.
Let vt = (v1,t, v2,t, . . . , vm,t), v′t = (v′1,t, v

′
2,t, . . . , v

′
m,t) and wt = (w1,t, w2,t,

. . . , wn,t), w′t = (w′1,t, w
′
2,t, . . . , w

′
n,t) be sequences of vectors, continuously

parameterized by t ∈ I, representing the given orientations of M and N at
pt, p

′
t and at qt, q′t, respectively.

Let ε(ω) be 1 or −1 for each sequence ω of independent 2(m+n) tangent
vectors in T(x,y)P × Q, (x, y) ∈ P × Q, according to whether or not it
represents the orientation of P × Q, which is non other than the product
orientation.

Then ε(dftv0, dgtw0, dfv
′
t, dgw

′
t), ε(dfvt, dgtw

′
0, dftv

′
0, dgwt) are constant

for t ∈ I and, by the usual sign convention, we have

ε(dfv0, dgw0, dfv
′
0, dgw

′
0) = (−1)2mn+n2

ε(dfv0, dgw′0, dfv
′
0, dgw0).

Note that 2mn+ n2 ≡ n mod 2. Thus we conclude that

ε(df1v0, dg1w0, dfv
′
1, dgw

′
1) = (−1)nε(dfv1, dg1w′0, df1v

′
0, dgw1).
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Note that the left hand side of the equality is the intersection number of
Λ at Λ(p0, q0) = Λ(p′1, q

′
1) and the right hand side is the intersection number

at Λ(p1, q
′
0) = Λ(p′0, q1). These observations also proves the last statement

of the proposition. �

The rest of this section will be devoted to the proof of Lemma 3.2.
Write r = f(p) = f(p′), p, p′ ∈ M,p 6= p′. Let Dm

ρ denote the open disk
in Rm of radius ρ > 0 centered at the origin.

To prove 3.2, we will make use of Lemma 3.3 and Lemma 3.4 below.

Lemma 3.3. There is a coordinate neighborhood ψ : V → R2m = Rm×Rm

of r, such that ψ(r) = 0 and there are disjoint open neighborhoods U,U ′ ⊂M
of p, p′ so that f−1V = U ∪ U ′ and ψfU = Rm × {0}, ψfU ′ = {0} × Rm.

Proof. Let ψ0 : V0 → R2m be a coordinate neighborhood of r. Also let ϕ0 :
U0 → Rm, ϕ′0 : U ′

0 → Rm be coordinate neighborhoods of p, p′, respectively,
such that U0, U

′
0 ⊂ f−1V0, U0 ∩ U ′

0 = ∅. We choose ψ0, ϕ0, ϕ
′
0 so that

ψ0(r) = 0 and ϕ0(p) = ϕ′0(p
′) = 0.

Consider h : R2m = Rm × Rm → R2m, defined by

h(x, y) = ψ0fϕ
−1
0 (x) + ψ0fϕ

′
0
−1(y).

Then it is straightforward to see that dh0 : T0R2m → T0R2m is an isomor-
phism exploiting the fact that f is self-transverse. Therefore, there is an
ε > 0 such that h restricts to a diffeomorphism

h1 : Dm
ε ×Dm

ε → h(Dm
ε ×Dm

ε ).

Then we consider the coordinate neighborhood of r,

ψ1 = h−1
1 ψ0 : ψ−1

0 (h(Dm
ε ×Dm

ε )) → Dm
ε ×Dm

ε .

Now choose δ > 0, exploiting the fact that f is proper, so that

ψ−1
1 (Dm

δ ×Dm
δ ) ∩ f(M − (ϕ−1

0 Dm
ε ∪ ϕ′0

−1
Dm
ε )) = ∅.

Then we choose ψ as the restriction ψ−1
1 (Dm

δ ×Dm
δ ) → Dm

δ ×Dm
δ of ψ1

followed by a diffeomorphism α × α : Dn
δ × Dn

δ → Rm × Rm, where α is a
diffeomorphism. �

Note that, for any riemannian manifold, there is the exponential map
defined in terms of the geodesics, which we denote by exp. In general, the
map exp is a smooth map from an open neighborhood of the zero section
in the tangent vector bundle into the manifold. On the other hand, once
a riemannian metric 〈·, ·〉 is introduced on P , we will identify the normal
bundle νf with the subspace

{(x, v)|x ∈M,v ∈ Tf(x)P and 〈v, w〉 = 0 for any w ∈ dfxTxM}
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of X × TP . Let π : νf → M denote the projection. Then there is a map
from a neighborhood of the zero section in νf into P which maps (x, v) ∈ νf
to exp(v). We denote this map again by exp slightly abusing the notation.

Note that exp is an embedding on a neighborhood of the zero section of
νf |A if f |A : A→ P is an embedding for a subspace A ⊂M .

Lemma 3.4. Consider P with any riemannian metric. Let V ⊂ P any
open neighborhood of r. Then, for any open neighborhoods U,U ′ ⊂ M of
p, p′ such that U ∩U ′ = ∅ and f(Ū ∪ Ū ′) ⊂ V , there is an open neighborhood
T of the zero section in νf satisfying the following conditions:

(i) T ∩ π−1U, T ∩ π−1U ′ ⊂ exp−1 V .
(ii) exp is an embedding on each of T ∩ π−1(M − U ′), T ∩ π−1(M − U).

Proof. Let U1, U
′
1 be open neighborhoods of p, p′, respectively, such that

Ū1 ⊂ U, Ū ′
1 ⊂ U ′.

Then, since f embeds each of M − U ′
1, M − U1 into P (note that f is

proper), there are open neighborhoods T1, T
′
1 of the zero sections respec-

tively in π−1(M − U ′
1) and in π−1(M − U1) so that exp is an embedding.

Furthermore, since U ⊂M −U ′
1, U

′ ⊂M −U1 and f(Ū ∪ Ū ′) ⊂ V , we may
choose T1, T

′
1 so that exp(T1 ∩ π−1U), exp(T ′1 ∩ π−1U ′) ⊂ V .

Then we define T as follows:

T = ((T1∩π−1(M− Ū ′
1))∩(T ′1∩π−1(M− Ū1)))∪(T1∩π−1U)∪(T ′1∩π−1U ′).

It is straightforward to see that T satisfies all the conditions of the lemma.
�

Proof of 3.2. Cover P by a locally finite collection of coordinate neighbor-
hoods ψi : Ui → R2m, i = 1, 2, . . . , such that (a) r ∈ U1 and ψ1 : U1 →
R2m = Rm×Rm satisfies the conditions of Lemma 3.3 and (b) ψ−1

1 (Dm
2 ×Dm

2 )
does not intersect Ui for any i > 1. Write C2 = ψ−1

1 (Dm
2 ×Dm

2 ).
Construct a riemannian metric on P by piecing together the pull-back

metrics on Ui’s of the standard metric on R2m using a partition of unity for
{Ui|i = 1, 2, . . . }.

Then, by the condition (b), ψ1 : C2 → Dm
2 ×Dm

2 is an isometry.
Let T be an open neighborhood in νf of the zero section which satisfies

the conditions (i), (ii) of Lemma 3.4 with respect to C2 and with the open
neighborhoods U,U ′ of p, p′ defined by f(U) = Dm

1 ×{0}, f(U ′) = {0}×Dm
1 .

Write πT : T →M for the restriction of the projection π : νf →M .
By assumption, there is a section α : M → νf such that α(x) 6= 0 for any

x ∈M . We may assume α(x) ∈ T for any x ∈M .
Allow ourselves a slight abuse of notation so that we may mean by α(x)

the vector v ∈ Tf(x)P for which (x, v) is the value of α at x. We may choose
α so that α(x)’s, x ∈ U , are parallel in C2 as well as α(x′)’s, x′ ∈ U ′, and
also so that 〈α(x), α(x)〉

1
2 < 1 for any x ∈ U ∪ U ′.
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The following proves Lemma 3.2.

Claim. The homotopy ft : M → V defined by the rule

ft(x) = exp(tα(x)), 0 ≤ t ≤ 1,

satisfies all the conditions of Lemma 3.2.

Proof. For any tangent vector v ∈ TxP , x ∈ C2, let v0 denote the the tangent
vector at r ∈ P parallel to v in C2.

First of all, we observe the following: Assume exp(v) = exp(w), v, w ∈ T ,
v 6= w. Then, from our choice of T , it follows that (v, w) ∈ π−1

T U × π−1
T U ′

or (v, w) ∈ π−1
T U ′ × π−1

T U . And exploiting the flatness of C2, we may easily
conclude that fπT (v) = exp(w0), fπT (w) = exp(v0).

It is clear that ft is an immersion for each t ∈ I since it is the immersion
tα : M → T followed by the local diffeomorphism exp : T → P .

Assume ft(x) = ft(y) for some x, y ∈ M,x 6= y. Then exp(tα(x)) =
exp(tα(y)). Since tα(x), tα(y) ∈ T , we must have: (x, y) ∈ U × U ′ or
(x, y) ∈ U ′ × U .

If (x, y) ∈ U × U ′, we have

f(x) = exp(tα(y)0) = exp(tα(p′)), f(y) = exp(tα(x)0) = exp(tα(p′)).

Similarly, if (x, y) ∈ U ′ × U , we have x = exp(tα(p)), y = exp(tα(p′)).
Therefore, let pt ∈ U , p′t ∈ U ′, t ∈ I, be defined by:

f(pt) = exp(tα(p′)), f(p′t) = exp(tα(p)).

Then ft has only one double pair, {pt, p′t}, for each t ∈ I. Note that p0 = p,
p′0 = p′.

Also note that ft is self-transverse since (dft)ptTptM is parallel to dfpTpM
in C2 and (dft)p′

t
Tp′

t
M is also parallel to dfp′Tp′M in C2. This proves that

the homotopy ft, t ∈ I, satisfies (i).
It is clear that the homotopy ft, t ∈ I, satisfies (ii) with the double pairs

{pt, p′t}, t ∈ I, since we have {pt}t⊂I ⊂ U , {p′t}t⊂I ⊂ U ′, U ∩ U ′ = ∅.
Assume ft(x) = fs(y), (x, t) 6= (y, s). If t = s, then (iii) follows from (i).

If t 6= s, then from the equality exp(tα(x)) = exp(sα(y)) it follows that
we must have that (x, y) ∈ U × U ′ or (x, y) ∈ U ′ × U and that f(x) =
exp(sα(y)0) and f(y) = exp(tα(x)0). If (x, y) ∈ U × U ′, then α(x), α(y)
are parallel respectively to α(p), α(p′) in C2, which leads to the conclusion
(f(x), f(y)) = (exp(sα(p′)0), exp(tα(p)0)). Thus we have (x, y) = (ps, p′t).
Likewise we conclude that if (x, y) ∈ U ′ × U then (x, y) = (p′s, pt). This
proves that the homotopy ft, t ∈ I, satisfies (iii).

Assume t 6= s. Note that (dft)psTpsM is parallel to dfpTpM in C2 and
(dft)p′

t
Tp′

t
M , to dfp′Tp′M . Thus ft meets fs transversely at ft(ps) = fs(p′t).

Likewise we may conclude that ft meets fs transversely at ft(p′s) = fs(pt)
as well. Thus the homotopy ft, t ∈ I, satisfies (iv). �
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4. Proof of Theorem A.

We begin this section by recalling the following well-known fact.

Lemma 4.1. Let m be a positive odd integer. Then any orientable vec-
tor bundle of rank m over an orientable manifold Mm admits a nowhere
vanishing section.

Proof. The Euler class of an oriented vector bundle of an odd rank is 2-
torsion (cf. p. 98, [MS]). Since Hm(M ; Z) has no torsion, this means the
Euler class of the bundle vanishes. However the Euler class is the exact
obstruction for an oriented vector bundle in concern to admit a nowhere
vanishing section. This completes the proof. �

Assume Mm is oriented and m is even. Let ξ be a smooth oriented vector
bundle of rank m over M . We will denote the total space of ξ again by
ξ. Then ξ itself is an oriented manifold with the orientation determined by
those of the bundle ξ and M . Assume s is a smooth section of ξ which
meets the zero section transversely. If s(p) = 0, let ε(p) be the sign of the
intersection p between the two embeddings of M into ξ, that is, between the
zero section and s. Then the integral Euler characteristic χ(ξ) satisfies the
equality, χ(ξ) =

∑
p ε(p), in which p runs through all the zero points of s.

The proof of Theorem A is immediate from the following.

Proposition 4.2. Let f : Mm → P 2m, g : Nn → Q2n be completely regu-
lar immersions with respective double points r1, r2, . . . ∈ P , s1, s2, . . . ∈ Q.
Assume there are sections α : M → νf and β : N → νg which meet
the zero sections transversely respectively at a1, a2, . . . ∈ M , {a1, a2, . . . } ∩
f−1{r1, r2, . . . } = ∅, and at b1, b2, . . . ∈ N , {b1, b2, . . . }∩g−1{s1, s2, . . . } = ∅.
Then,

(a) f × g : M × N → P × Q is regularly homotopic to a completely reg-
ular immersion Λ which has, as its double points, two for each of the
ordered pairs (ri, sj) and one for each of (ak, sj), (ri, bl), all of which
are distinct among themselves.

Furthermore, assume m+ n is even and M,N,P,Q are oriented. Then we
have that
(b) if xi,j , xi,j′ are the two double points of Λ corresponding to each of

(ri, sj), we have εxi,j = (−1)nεx′
i,j

and,
(c) if in addition both m,n are even, we have εxi,j = εx′

i,j
= εriεsj and

if yk,j, zi,l denote the double points of Λ corresponding respectively to
(ak, sj), (ri, bl), we have εyk,j

= ε(ak)εsj , εzi,l
= εriε(bl).

The proof of 4.2 will be given in the later of this section. Here we provide:

Proof of Theorem A. We may assume f, g are completely regular, say, with
respective double points r1, r2, . . . , rκ ∈ P and s1, s2, . . . , sλ ∈ Q. Also let
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α : M → νf , β : N → νg be the sections which meet the zero section trans-
versely, say, respectively at a1, a2, . . . , aµ ∈ M and at b1, b2, . . . , bν ∈ N .
We may assume {a1, a2, . . . , aµ}∩ f−1{r1, r2, . . . , rκ} = ∅, {b1, b2, . . . , bν}∩
g−1{s1, s2, . . . , sλ} = ∅. Then let Λ : M × N → P × Q be a completely
regular immersion regularly homotopic to f × g as in 4.2.

Then the statement (I) is clear since Λ has (2κλ+µλ+κν) double points
by (a) of 4.2.

Now assume M,N,P,Q are oriented and m+ n is even.
If bothm,n are odd, then by 4.1 we may assume that {a1, a2, . . . , aµ} = ∅,

{b1, b2, . . . , bν} = ∅. Then by (a), (b) of 4.2, Λ has 2κλ double points, two
for each (ri, sj), i = 1, 2, . . . , κ, j = 1, 2, . . . , λ whose signs are opposite to
each other. This proves the clause (III).

Also if both m,n are even, then by (a), (c) of 4.2, we have

I(Λ) = 2
∑
i,j

εriεsj +
∑
k,j

ε(ak)εsj +
∑
i,l

εriε(bl) .

Thus it follows that I(f×g) = I(Λ) = 2I(f)I(g)+χ(νf )I(g)+I(f)χ(νg) ∈ Z
as claimed in the clause (II). �

To prove 4.2, we need the following generalization of Lemma 3.2. For
more details of the proof, one must refer to the Proof of 3.2.

Lemma 4.3. Let f : M → P , r1, r2, . . . ∈ P , α : M → νf , a1, a2, . . . ∈ M
be as in 4.2. Then there is a smooth regular homotopy ft : M → P , t ∈ I,
such that f0 = f and satisfying the following conditions:

(i) ft is a completely regular immersion with exactly one double pair
{pi,t, p′i,t} for each t ∈ I and for each i = 1, 2, . . . ,

(ii) the map I × {0, 1} × {1, 2, . . . } → M which sends (t, 0, i) to pi,t and
(t, 1, i) to p′i,t is a smooth embedding,

(iii) ‘ft(x) = fs(y), (x, t) 6= (y, s)’ implies that ‘(x, y) = (pi,s, p′i,t) or
(x, y) = (p′i,s, pi,t), for some i = 1, 2, . . . , or x = y = aj, for some
j = 1, 2, . . . ,’

(iv) and ft meets fs transversely if t 6= s.

Proof. First choose disjoint coordinate neighborhoods ψi : Vi → R2m of
ri, i = 1, 2, . . . so that each of them satisfies the conditions of Lemma 3.3
with some neighborhoods Ui, U ′

i of pi, p′i, where f(pi) = f(p′i) = ri, pi 6= p′i.
Then it is straightforward to construct a riemannian metric for which the
restriction of ψi to ψ−1

i (Dm
2 ×Dm

2 ) → Dm
2 ×Dm

2 is an isometry for each i.
Write Ui,1, U ′

i,1 ⊂M for the open neighborhoods of pi, p′i such that ψifUi,1
= Dm

1 ×{0}, ψifU ′
i,1 = {0}×Dm

1 . Then, by slightly generalizing Lemma 3.4
above, we may construct an open neighborhood T of the zero section in νf
such that exp : T → P embeds each of π−1

T (M−∪iUi,1), π−1
T (M−∪iU ′

i,1) and
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expπ−1
T (Ui,1 ∪U ′

i,1) ⊂ ψ−1
i (Dm

1 ×Dm
1 ), where πT : T →M is the restriction

of the projection π : νf →M .
We may assume the section α is chosen so that αM ⊂ T . Then we define

a homotopy ft : M → P, t ∈ I by ft(x) = exp(tα(x)). It is straightforward
to see that ft : M → P, t ∈ I, is a regular homotopy satisfying all the
conditions of the lemma. �

Proof of 4.2. Let ft, t ∈ I, be as in 4.3 and choose gt, t ∈ I, so that it satisfies
the conditions of 4.3 with the double pairs {qj,t, q′j,t}, j = 1, 2, . . . .

Let ϕ : M → I be a smooth function which is constantly 1 on a neighbor-
hood of ∪i{pi,t|t ∈ I} ∪ {a1, a2, . . . } and constantly 0 on a neighborhood of
∪i{p′i,t|t ∈ I}. Likewise choose a smooth function ψ : N → I satisfying the
same condition for the two sets, ∪j{qj,t|t ∈ I} ∪ {b1, b2, . . . }, ∪j{q′j,t|t ∈ I}.

Now we define a homotopy Λt : M ×N → P ×Q, t ∈ I, as before, by

Λt(x, y) = (ftψ(y)(x), gtϕ(x)(y)).

Then it is straightforward to see that Λt, t ∈ I, is a regular homotopy
such that Λ0 = f × g.

Write Λ = Λ1 and assume Λ(x, y) = Λ(x′, y′), (x, y) 6= (x′, y′).
Then, we obtain, as the double pairs of Λ,

{(pi,0, qj,0), (p′i,1, q′j,1)}, {(pi,1, q′j,0), (p′i,0, qj,1)},
for each i, j, and

{(ak, qj,1), (ak, q′j,1)}, {(pi,1, bl), (p′i,1, bl)},
for each k, j and for each i, l. The former are the two double pairs cor-
responding to (ri, sj), which are obtained essentially by 3.1. Note that in
this case we have x 6= x′, y 6= y′. The latter are the double pairs respec-
tively corresponding to (ak, sj), (ri, bl), for which we have x = x′, y 6= y′ or
x 6= x′, y = y′.

Since Λ is clearly self-transverse, this proves the statement (a). The clause
(b) has been essentially proved by Lemma 3.2. The first part of (c) also has
been proved by Lemma 3.2 and its last part is clear. �

5. The non-simply connected case.

We begin this section with a detailed description of the intersection number
which behaves as the exact obstruction for a given immersion to be regularly
homotopic to an embedding even when the relevant manifolds are not simply
connected. In what follows, the usual notational conventions for the paths
must be understood.

Let f : Mm → P 2m be a completely regular immersion between connected
smooth manifolds. Assume M is closed.

First of all, we recall when the Whitney trick can be applied to cancel
two double points (cf. [Mi], [Wh]). Let r0, r1 ∈ P be two double points
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of f and {p0, p
′
0} = f−1{r0}, {p1, p

′
1} = f−1{r1}. Assume there are paths,

α, α′ : I →M , such that:

(i) α(0) = p0, α(1) = p1, α′(0) = p′0, α
′(1) = p′1,

(ii) (fα) · (fα′)−1 is a contractible loop in P and,
(iii) for continuously parameterized orientations ωt, ω′t respectively of

Tα(t)M , Tα′(t)M , the signs ε(dfω0, dfω
′
0), ε(dfω1, dfω

′
1) are opposite,

when the signs are determined with respect to the orientations of
Tr0P, Tr1P which are the restrictions of a continuously parameterized
orientation of Tfα(t)P , t ∈ I.

Furthermore, assume m ≥ 3. Then α, α′ can be chosen as smooth embed-
dings and there is a smoothly embedded disk in P which meets fM on two
arcs which extend the arcs fαI, fα′I slightly and subsequently one may use
these to apply the Whitney trick to cancel the two double points.

Now choose a base point x0 ∈M and write f(x0) = z0 and fix orientations
for Tx0M , Tz0P . Let r ∈ P be a double point of f and {p, p′} = f−1{r}.
Choose paths α, α′ : I → M such that α(0) = α′(0) = x0 and α(1) =
p, α′(1) = p′. Then fα(1) = fα′(1) = r and therefore (fα) · (fα′)−1 : I →
P is a loop based at z0. Write γr = [(fα) · (fα′)−1] ∈ π1(P ). Also we
decide the sign εr = ±1 as follows: Use the paths α, α′ together with the
orientation of Tx0M to orient TpM , Tp′M and use the path fα together with
the orientation of Tz0P to orient TrP . We write εr = 1 if the orientation
of TrP coincides with the one determined by the ordered pair of oriented
subspaces dfTpM , dfTp′M and εr = −1 otherwise. We will consider εrγr in
Zπ1(P ), the free Z-module on π1(P ).

However, εrγr depends on the choice of α, α′. Let wM : π1(M) → {±1},
wP : π1(P ) → {±1} be the orientation characters, that is, the homomor-
phisms which respectively represent the first Stiefel-Whitney classes of M
and P . Then for any a, a′ ∈ π1(M), the element

wP (f∗a)wM (a)wM (a′)εr(f∗a)γr(f∗a′)

could have been chosen instead of εrγr if we chose α, α′ differently. On the
other hand, if we interchanged p, p′, (−1)mwP (γr)εrγ−1

r could have been
chosen by the same process. Here the multiplication by wP (γr) is due to
our using the path fα′ to orient TrP instead of fα.

Therefore we denote by Kf the submodule of Zπ1(P ) generated by

{b− wP (f∗a)wM (a)wM (a′)(f∗a)b(f∗a′),

b− (−1)mwP (b)b−1|a ∈ π1(M), b ∈ π1(P )}

and consider the quotient module

Zπ1(P )/Kf ≡ Γf .
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Note that, if there is a homotopy from f to f ′, then there corresponds a
natural isomorphism from Γf to Γf ′ . Furthermore, if the homotopy fixes
the base point, then Γf = Γf ′ and the isomorphism is just the identity.

Write [γr] to denote the class in Γf represented by γr ∈ π1(P ). Note that
εr[γr] is a well-defined element in Γf for any double point r, even if each
of εr, [γr] in general depends on the choice of α, α′. Then, the intersection
number IΓ(f) of f is defined by

IΓ(f) =
∑
r

εr[γr] ∈ Γf

where r runs through all the double points of f .
It is straightforward to see that IΓ(f) is invariant of the regular homotopy

class of f up to the natural isomorphisms and that IΓ(f) is well-defined even
if f is only an immersion (see §2 and also p. 46, [Wa]). Also it is clear by
construction that IΓ(f) = 0 if and only if f is regularly homotopic to an
embedding, assuming m ≥ 3.

Let g : Nn → Q2n be another immersion from a connected closed manifold
N to a connected manifold Q, where N , Q have base points y0, w0 = g(y0)
and Ty0N , Tw0Q are oriented. Consider M × N , P × Q with the base
points (x0, y0), (z0, w0) and with the product orientations for T(x0,y0)M×N ,
T(z0,w0)P ×Q. Then, IΓ(f × g) ∈ Γf×g must be well-defined.

Note that there is a natural isomorphism π1(P ) × π1(Q) → π1(P × Q).
We will write a ⊗ b for the image of (a, b) ∈ π1(P ) × π1(Q) by this map.
For simplicity we let w denote the orientation character for any manifold in
concern.

Lemma 5.1. There is a well-defined map ∗ : Γf × Γg → Γf×g, defined by
extending the rule bilinearly

∗([a], [b]) ≡ [a] ∗ [b] = [a⊗ b] + (−1)nw(b)[a⊗ b−1],

for any a ∈ π1(P ), b ∈ π1(Q).

Proof. We have that

((−1)mw(a)[a−1]) ∗ [b]

= (−1)mw(a)[a−1 ⊗ b] + (−1)m+nw(a)w(b)[a−1 ⊗ b−1]

= (−1)nw(b)[a⊗ b−1] + [a⊗ b] = [a] ∗ [b].

Similarly we have [a] ∗ ((−1)nw(b)[b−1]) = [a] ∗ [b]. Also, for any c, c′ ∈
π1(M), d, d′ ∈ π1(N), it is straightforward to see the identities:

(w(f∗c)w(c)w(c′)[(f∗c)a(f∗c′)]) ∗ [b] = [a] ∗ [b],

[a] ∗ (w(g∗d)w(d)w(d′)[(g∗d)b(g∗d′)]) = [a] ∗ [b].

�
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Let e denote the identity element for any fundamental group. Even if in
general the rule ([a], [b]) → [a⊗ b] does not provide a well-defined map from
Γf × Γg into Γf×g, we have the following, for which we omit the proof:

Lemma 5.2. The maps, ι1 : Γf → Γf×g, ι2 : Γg → Γf×g respectively
defined by extending the rules ι1([a]) = [a ⊗ e], ι2([b]) = [e ⊗ b] for any
a ∈ π1(P ), b ∈ π1(Q) linearly is well-defined.

On the other hand, we need to consider the Euler characteristic of a vector
bundle over a manifold in a more general context than before.

Let ξ be a smooth vector bundle of rank l over the connected manifold Ll,
which has the base point x0 and with a fixed orientation for Tx0L. Assume
ξx0 is oriented. Let s be a smooth section of ξ which meets the zero section
transversely. Let p ∈ L be such that s(p) = 0. Let α be a path from x0 to p.
Then ξp, TpL are oriented subspaces of Tpξ regarding ξ itself as a manifold, in
which the orientations are respectively determined by the orientations of ξx0 ,
Tx0L together with the path α. Define the sign ε(p) = 1 if the orientation
of Tpξ determined by the ordered pair of oriented subspaces dsTpL, TpM
coincides with the one determined by another such pair ξp, TpL and ε(p) =
−1 otherwise. Then ε(p) does not depend on the choice of the path α if and
only if w1(ξ) = w1(L) ≡ w1(TL), where w1 denotes the first Stiefel-Whitney
class. If w1(ξ) = w1(L), χ(ξ) is defined by χ(ξ) =

∑
p ε(p) ∈ Z, where p

runs through all the zeros of s. In fact, this is the Euler characteristic in the
twisted integral coefficient (cf. [B]). If w1(ξ) 6= w1(L), then χ(ξ) is defined
as the number of the zeros of s modulo 2. We will refer to χ(ξ) defined in
this way as the Euler characteristic in the twisted coefficient.

Before the statement of the second main result of the paper, we need to
observe the following.

Lemma 5.3. Assume w1(νf ) 6= w1(M). Then [e] ∈ Γf is 2-torsion and
ι2(y) ∈ Γf×g is also 2-torsion for any y ∈ Γg.

Proof. Note that under the assumption f∗TP is not orientable. Moreover
f∗TP is orientable if and only if wP (f∗a) = 1 for any a ∈ π1(M). There-
fore, there is an a ∈ π1(M) such that wP (f∗a) = −1. Then the following
observations prove the lemma: Firstly we have

e− w(f∗a)w(a)w(a−1)(f∗a)e(f∗a−1) = 2e

is in Kf and secondly for any b ∈ π1(Q) we have

e⊗ b− w((f ⊗ g)∗(a⊗ e))w(a⊗ e)w(a−1 ⊗ e)

· ((f × g)∗(a⊗ e))(e⊗ b)((f × g)∗(a−1 ⊗ e))

is 2e⊗ b and it is in Kf×g. �

Therefore, if w1(νf ) 6= w1(M), there is an action by mod 2 integers on
ι2(y) coming from the Z-action and the product χ(νf )ι2(y) in 5.1 below
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should be understood in this sense for any y ∈ Γg. Similarly with χ(νg)ι1(x)
for any x ∈ Γf .

In the following, we understand the fiber (νf )x0 is given the consistent
orientation in the sense that the orientation of Tz0P determined by the
ordered pair of oriented subspaces ι(νf )x0 , dfTx0M coincides with the fixed
orientation, where ι is the natural bundle monomorphism given by a choice
of riemannian metric on P . Similarly with (νg)y0 .

Then we have the following product formula which unifies the equalities
in Theorem A.

Theorem B. Assume Mm, Nn, P 2m, Q2n are connected closed smooth man-
ifolds and assume further that M,N are closed. Let f : M → P , g : N → Q
be immersions. Let x0, y0 be the respective base points of M,N and z0 =
f(x0), w0 = g(y0), those of P,Q. Assume Tx0M , Tz0P and Ty0N , Tw0Q are
oriented and T(x0,y0)M×N , T(z0,w0)P×Q are given the product orientations.
Then, we have

IΓ(f×g) = (−1)mn
(
IΓ(f)∗IΓ(g)+χ(νg)ι1(IΓ(f))+χ(νf )ι2(IΓ(g))

)
∈ Γf×g,

where χ(·) denotes the Euler characteristic in the twisted coefficients.

Proof. We retain the notations and contexts of the statement of 4.2 and its
proof. Note that

IΓ(f) =
∑
i

εri [γri ] ∈ Γf , IΓ(g) =
∑
j

εsj [γsj ] ∈ Γg

where each of γri ∈ π1(P ), γsj ∈ π1(Q) and εri , εsj , are determined by a
choice of an ordered pair of paths in M or in N for each of the double points.

Note that we have as the double points of Λ, for each i, j,

xi,j = (f1(pi,0), g1(qj,0)) = (f(p′i,1), g(q
′
j,1)),

x′i,j = (f(pi,1), g1(q′j,0)) = (f1(p′i,0), g(qj,1)),

and also for each j, k and for each i, l,

yk,j = (f(ak), g1(qj,1)) = (f(ak), g1(q′j,1)),

zi,l = (f1(pi,1), g(bl)) = (f1(p′i,1), g(bl)).

By definition we have

IΓ(Λ) =
∑
i,j

(εxi,j [γxi,j ] + εx′
i,j

[γx′
i,j

]) +
∑
k,j

εyk,j
[γyk,j

] +
∑
i,l

εzi,l
[γzi,l

]

where the expression in the right hand side depends essentially on a choice
of an ordered pair of paths in M ×N for each of the double points of Λ.
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We may assume that ϕ(x0) = 0, ψ(y0) = 0. Then note that the ho-
motopy Λu : M × N → P × Q, u ∈ I, which is defined by Λu(x, y) =
(fuψ(y)(x), guϕ(x)(y)), preserves the base point. The following completes the
proof of the theorem.

Claim. We may arrange so that

γxi,j = γri ⊗ γsj , γx′
i,j

= γri ⊗ γ−1
sj
,

γyk,j
= e⊗ γsj , γzi,l

= γri ⊗ e

and
εxi,j = (−1)mnεriεsj , εx′

i,j
= (−1)mn+nw(γsj )εriεsj ,

εyk,j
= (−1)mnε(ak)εsj , εzi,l

= (−1)mnε(bl)εri .

Proof. For any paths, α : I → M , β : I → N , write α ⊗ β : I → M ×N to
denote the path defined by α⊗ β(t) = (α(t), β(t)), t ∈ I.

Let α, α′ : I → M be the paths such that α(0) = α′(0) = x0 and α(1) =
pi,0, α

′(1) = p′i,0 and the loop a = (fα) · (fα′)−1 represents the class γri ∈
π1(P ). Similarly let β, β′ : I → N be the paths such that the loop b =
(gβ) · (gβ′)−1 represents the class γsj ∈ π1(Q).

First we consider the double point

xi,j = (f1(pi,0), g1(qj,0)) = (f0(p′i,1), g0(q
′
j,1)).

Let δ′u : I → M,u ∈ I, be defined by δ′u(t) = p′i,ut and ε′u : I → N,u ∈ I,
by ε′u(t) = q′j,ut.

Then let γxi,j ∈ π1(P × Q) be the class represented by the loop (Λ(α ⊗
β)) · (Λ((α · δ′1)⊗ (β · ε′1)))−1.

Note that

Λu(pi,0, qj,0) = (fu(pi,0), gu(qj,0)) = (f0(p′i,u), g0(q
′
j,u)) = Λu(p′i,u, q

′
j,u),

for any u ∈ I. Therefore, (Λu(α⊗β))·(Λu((α′·δ′u)⊗(β′·ε′u)))−1 is well-defined
for any u ∈ I. This gives a loop homotopy from (fα⊗ gβ) · (fα′⊗ gβ′)−1 =
((fα) · (fα′)−1) ⊗ ((gβ) · (gβ′)−1) to the loop which represents γxi,j , which
proves that γxi,j can be chosen as γri ⊗ γsj .

To prove that γx′
i,j

can be chosen as γri ⊗ γ−1
sj

, we introduce the paths
δu : I → M , δu(t) = pi,ut and εu : I → N , εu(t) = qj,ut, for each u ∈ I.
Then consider the homotopy (Λu((α ·δu)⊗β′)) · (Λu((α′⊗ (β · εu)))−1, which
provides a loop homotopy from ((fα) · (fα′)−1)⊗ ((fβ′) · (fβ)−1) to a loop
which we let represent γx′

i,j
∈ π1(P ×Q).

To prove that γyk,j
can be chosen as e⊗ γsj , we choose a path ᾱ : I →M

such that ᾱ(0) = x0, ᾱ(1) = ak and consider the homotopy (Λu(ᾱ⊗(β ·δu)))·
(Λu(ᾱ⊗ (β′ · δ′u)))−1, u ∈ I. This gives a homotopy from ((fᾱ) · (fᾱ)−1)⊗
((gβ) · (gβ′)−1) to a loop which we let represent the class γyk,j

. Similarly to
prove that γzi,l

can be chosen as γri ⊗ e.
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It remains to prove the equalities concerning the signs of the double points
with respect to the above choices of ordered pairs of paths in M ×N for the
double pairs of Λ.

First consider εxi,j . By definition it is determined as follows: Note that
Txi,jP×Q is oriented by the orientation on T(z0,y0)P×Q and the path Λ(α⊗
β). Also T(pi,0,qj,0)M ×N , T(p′

i,1,q
′
j,1)M ×N are oriented by the orientation

of T(x0,y0)M ×N and the paths α⊗ β, (α · δ′1)⊗ (β · ε′1). Then we compare
the orientation of Txi,jP ×Q with the orientation given by the ordered pair
of subspaces dΛT(pi,0,qj,0)M ×N , dΛT(p′

i,1,q
′
j,1)M ×N .

Note that, for each u ∈ I, in particular including u = 0, the paths Λu(α⊗
β), Λu((α′ · δ′u) ⊗ (β′ · ε′u)), also determines a sign for Λu(pi,0, qj,0). Since
this assignment of signs is continuous, the sign εxi,j is the same as the
one given by the following data: i) The orientation of T(f(pi,0),g(qj,0))P × Q

determined by the path fα⊗ gβ and ii) the orientations of T(pi,0,qj,0)M ×N ,
T(p′

i,0,q
′
j,0)M×N whose orientations are respectively determined by the paths

α⊗ β, α′ ⊗ β′. From this it is immediate that εxi,j = (−1)mnεriεsj .
Similar considerations establish the other claimed equalities. In particu-

lar, the multiplication by w(γsj ) in the equality εx′
i,j

= (−1)mn+nw(γsj )εriεsj

is due to the fact that we use the path fα⊗fβ′ to orient T(ri,sj)P×Q instead
of the path fα⊗ fβ. �

Remark. Theorem A is a corollary of Theorem B only modulo Lemma 4.1.
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