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Abstract. In this note we use the Hopf map π : S3 → S2 to construct an in-

teresting family of Riemannian metrics hf on the 3-sphere, which are parametrized
on the space of positive smooth functions f on the 2-sphere. All these metrics
make the Hopf map a Riemannian submersion. The Hopf tube over an immersed

curve γ in S2 is the complete lift π−1(γ) of γ, and we prove that any geodesic of

this Hopf tube satisfies a Clairaut relation. A Hopf tube plays the role in S3 of

the surfaces of revolution in R3. Furthermore, we show a geometric integration

method of the Frenet equations for curves in those non-standard S3. Finally, if

we consider the sphere S3 equipped with a family hf of Lorentzian metrics, then
a new Clairaut relation is also obtained for timelike geodesics of the Lorentzian
Hopf tube, and a geometric integration method for curves is still possible.

1. Introduction

A surface of revolution in R3 is generated by the rotation of an arclength
parametrized curve α : I → R2, α(s) =

(
x(s), 0, z(s)

)
around the Z-axis. It
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can be defined also as the warped product I×x S1 endowed with the (warped)
metric g = ds2 + x(s)2dt2, where x : I → R works as the warping function.

As early as 1735, A. C. Clairaut obtained the following well known char-
acterization for a geodesic curve of a surface of revolution in R3:

If θ is the angle between the tangent to the curve and a circle of latitude,
and if r is the radius of this circle, then r cos θ = const. along the curve.

In this note we prove that a Clairaut relation can be also stated in a very
different setting. In fact, the ambient space is now the 3-dimensional sphere
S3 furnished with a family of Riemannian or Lorentzian metrics, and the
geodesics live in Hopf tubes of S3, which play the role in S3 of the surfaces
of revolution in R3. In fact, a Hopf tube is the inverse image under the Hopf
map π : S3 → S2 of a curve γ on S2, and if γ is a closed curve, π−1(γ) is a
Hopf torus. But a Hopf tube can be seen also as a warped product I ×f S1 in
S3 with f a positive smooth function on S2. Hopf tori appear in the setting
of the Riemannian geometry [3, 16] as well as in the Lorentzian geometry
[1, 4].

2. Generalized Kaluza–Klein metrics on the 3-sphere

Let S3 denote the unit 3-sphere in C2, S3 =
{

z = (z1, z2) ∈ C2 | |z1|2
+ |z2|2 = 1

}
. The unit circle S1 acts naturally on S3 by means of

(eiθ, z) → eiθ · z = (eiθz1, e
iθz2),

for any eiθ ∈ S1 and z ∈ S3. The Hopf map π : S3 → S2 is a principal fibre
bundle with structure group S1.

For any point z ∈ S3 we consider the tangent vector V (z) = iz ∈ Tz(S3).
Then V is a global vector field on S3. Now, if we denote by ḡ the standard
metric of radius 1 on S3 and by g the standard metric of radius 1/2 on S2,
then π : (S3, ḡ) → (S2, g) is a Riemannian submersion with geodesic fibres.
The 2-dimensional distribution H defined by H(z) =

〈
V (z)

〉⊥ (orthogonal
complement with respect to ḡ), gives a principal connection whose principal
1-form is denoted by ω.

Let ∇̄ and ∇ be the Levi-Civita connections of ḡ and g, respectively.
From the theory of (semi) Riemannian submersions ([8, 14]) the following
equations are well known:

∇̄
X̃

Ỹ = ∇̃XY − ḡ(iX̃, Ỹ )V, ∇̄
X̃

V = ∇̄V X̃ = iX̃, ∇̄V V = 0,
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where overtildes stand for horizontal lifts. Notice that the latter equation
shows the geodesic nature of the fibres.

An ample and interesting class of semi-Riemannian metrics can be con-
sidered on S3. We start with an arbitrary Riemannian metric h on S2 and
a positive smooth function f on S2. Now, we define the following metric
on S3:

(1) hf = π∗(h) + ε(u · π)2ω∗(dt2),

where ε = ±1 and dt2 is the standard metric on S1. Then, hf is Riemannian
or Lorentzian according to ε being +1 or −1, respectively. The metric hf

is called a generalized Kaluza–Klein metric. It should be noticed that these
metrics are like local warped product metrics. In particular, if f is chosen to
be constant, then it works as a global scaling factor on the fibres. In these
cases, the metrics hf are called Kaluza–Klein or bundle-like metrics. We will
first consider ε = +1, and the Lorentzian case will be studied similarly. For
the sake of simplicity, we shall write f · π ≡ f , etc.

Clearly π : (S3, hf ) → (S2, h) is a Riemannian submersion with horizon-
tal distribution H. Moreover, the S1-action is made up of isometries of
(S3, hf ). Let Df , D denote the Levi-Civita connections of hf and h, respec-
tively. Then, a standard computation involving some well known facts from
the theory of Riemannian submersions [8], gives

(2) Df

X̃
Ỹ = D̃XY − ḡ(iX̃, Ỹ )V.

Note that hf (V, V ) = f2, and hence η = (1/f)V is a unitary vertical vector
field.

It is clear that [X̃, V ] = 0 for any horizontal lift X̃, and therefore Df

X̃
(fη)

= Df
fηX̃ = fDf

η X̃. Then we have,

(3) Df
η X̃ = Df

X̃
η +

X̃(f)
f

η.

Now we compute Df
ηη. It is obvious that it is a horizontal vector field.

But from (3), for any horizontal lift X̃ we have

hf (Df
ηη, X̃) = −hf (Df

η X̃, η) = −X̃(f)
f

= −X̃(log f),

and hence we obtain

(4) Df
ηη = −∇f (log f).

Acta Mathematica Hungarica 113, 2006



54 J. L. CABRERIZO and M. FERNÁNDEZ

Remark 1. (a) Since f is constant along each fibre, then ∇f (log f) is
nothing but the horizontal lift of the gradient of log f in (S2, h).

(b) Notice also that (4) implies that all the fibres are geodesics in (S3, hf )
if and only if f is a constant positive function (i.e., hf is a Kaluza–Klein
metric).

(c) Generalized Kaluza–Klein metrics can be defined on a principal fibre
bundle P (M,G), where G is an m-dimensional compact Lie group equipped
with a bi-invariant metric dt2 [6, 9]. Kaluza–Klein spacetimes have a re-
markable interest in physics, including string theory [7, 17], general relativity
[13, 20], particle physics [2, 18], quantum field theory [11, 19], etc.

Let γ be an arclength parametrized curve in (S2, h), and let {T = γ′, ξ, κ}
be its Frenet apparatus. The Frenet equations of γ are given by DT T = κξ,
DT ξ = −κT . Let γ̃ be a horizontal lift of γ (which is obviously arclength
parametrized), and denote by {T̃ = γ̃′, ξ∗2 , ξ

∗
3 , κ

∗, τ∗} its Frenet apparatus in
(S3, hf ). Now we shall relate both Frenet frames. To this end, we write down
the Frenet equations for γ̃:

Df

T̃
T̃ = κ∗ξ∗2 , Df

T̃
ξ∗2 = −κ∗T̃ + τ∗ξ∗3 , Dfξ∗3 = −τ∗ξ∗2 .

Since T̃ is horizontal, from (2) we have

κ∗ξ∗2 = Df

T̃
T̃ = D̃T T − ḡ(iT̃ , T̃ )V = D̃T T = κ̃ξ = κξ̃,

and then κ∗ = κ, ξ∗2 = ξ̃. This means that κ∗ and ξ∗ are the horizontal lifts
of the curvature and the principal normal of γ, respectively.

The second Frenet equations of γ, γ̃ and (2) give τ∗ξ∗3 = −fg(γ′, γ′)η, so
that τ∗ = −fg(γ′, γ′), and the binormal of γ̃ is ξ∗3 = η. In particular, if the
metric h is the standard metric g on S2 and we take f the constant function
f = 1, then τ∗ ≡ −1.

3. The shape operator of a Hopf tube

Let γ : I → S2 be an arclength parametrized curve in (S2, h). The Hopf
tube over γ is the surface Mγ = π−1(γ) in (S3, hf ) equipped with the induced
metric hf |Mγ

. We can use the nice argument of Pinkall [16] to show that an
immersed surface M in S3 is S1-invariant if and only if M = Mγ = π−1(γ)
for some immersed curve γ in S2 (i.e., M is a Hopf tube). In particular, if γ

is closed, Mγ is a Hopf torus, which is embedded if γ is simple in S2.
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Let γ̃ be a horizontal lift of γ. The universal covering of this Hopf tube is

Ψ : R2 → Mγ , Ψ(s, t) = eit · γ̃(s).

The metric coefficients of Mγ are given by g11 = 1, g12 = 0, g22 = f2. The
Gaussian curvature of this tube is

Kf = −fss

f
= − 1

f

d2

ds2 (f
(
γ(s)

)
.

In particular, we have obtained:

Proposition 1. Let γ be a closed curve in (S2, h). Then Mγ is a flat
torus if and only if f |γ is a constant positive function.

Since
{

Ψs, η = (1/f)Ψt

}
is an hf -orthonormal frame along Mγ in

(S3, hf ), then N = Ψs ∧ η = iΨs is the unit normal vector field of this Hopf
tube, and its Weingarten endomorphism Af can be computed with respect
to the basis {Ψs, η} as follows:

AfΨs = −Df
Ψs

iΨs = −D̃γ′ξ + ḡ(iΨs, iΨs)η = κΨs + fg(γ′, γ′)η,

Afη = −Df
η iΨs = −Df

iΨs
η + (1/f)iΨs(f)η = fg(γ′, γ′)Ψs − ξ(log f)η,

where we have used (2), (3) and the fact that Ψs (resp. iΨs) is the complete
lift of γ′ (resp. ξ = Jγ′). Therefore, the matrix of Af is given by

(
κ fg(γ′, γ′)

fg(γ′, γ′) −ξ(log f)

)
.

As a consequence, the mean curvature αf of Mγ is given by

(5) αf =
1
2
(
κ− ξ(log f)

)
.

Remark 2. Notice that if h is the standard round metric g on S2 of ra-
dius 1/2 and we choose f to be the constant function f = 1, then the torsion
τ∗ of a horizontal lift γ̃ of γ is τ∗ = −1, the Hopf tube Mγ is flat, and the
mean curvature function of this tube is αf = (1/2)κ.
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4. The Clairaut relation for geodesics of Hopf tubes

A direct computation involving equations (2), (3) and (4) give the fol-
lowing Gauss equations for the surface Mγ :

Df
Ψs

Ψs = κ iΨs, Df
ηΨs = Ψs(log f)η + fg(γ′, γ′)iΨs,

Df
Ψs

η = fg(γ′, γ′)iΨs, Df
ηη = −Ψs(log f)Ψs − iΨs(log f)iΨs.

Now we prove
Theorem 1. Let β be a geodesic of the Hopf tube Mγ in (S3, hf ) and

let θ denote the angle between β and the fibres. Then, the following Clairaut
relation is satisfied: f cos θ = const.

Proof. Let Ψ(s, t) = eit · γ̃(s) be a parametrization of Mγ and assume
that β is an arclength parametrized immersed curve in this tube, i.e., β(z) =
Ψ

(
s(z), t(z)

)
, β′(z) = s′Ψs + t′Ψt and hf (β′, β′) = (s′)2 + f2(t′)2 = 1. Since

[Ψs, Ψt] = 0, then Df
Ψs

Ψt = Df
Ψt

Ψs, and we have

Df
β′β

′ = s′′Ψs + t′′Ψt + (s′)2Df
Ψs

Ψs + (t′)2Df
Ψt

Ψt + 2s′t′Df
Ψs

Ψt.

But
Df

Ψt
Ψs = fDf

1
f
Ψt

Ψs = fΨs(log f)(1/f)Ψt + f2g(γ′, γ′)iΨs,

and
Df

Ψt
Ψt = f2Df

(1/f)Ψt
(1/f)Ψt,

because f does not depend on t. Thus,

Df
β′β

′ =
(
s′′ − f2(t′)2Ψs(log f)

)
Ψs +

(
t′′ + 2s′t′Ψs(log f)f

)
η(6)

+
(
k(s′)2 − f2(t′)2iΨs(log f) + 2f2s′t′g(γ′, γ′)

)
iΨs,

where the first two terms on the right hand side are nothing but D
Mγ

β′ β′,
where DMγ is the induced covariant derivative on Mγ . Thus β is a geodesic
of Mγ if and only if the following equations are satisfied:

(7) s′′ − f2(t′)2Ψs(log f) = 0, t′′ + 2s′t′Ψs(log f) = 0.

Note that Mγ is flat if and only if Ψs(log f) = 0, and obviously then its
geodesics are the images under Ψ of straight lines. Otherwise Ψs(log f)
6= 0 and since f(s) = f

(
s(z)

)
along γ we have f ′ = df/dz = Ψs(f)s′. From
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Ψs(log f) = f ′/(fs′), the second equation in (7) gives t′′ + 2t′(f ′/f) = 0, or
equivalently,

(8) f2t′ = const.

Let θ denote the angle defined by β and the fibres. Since

(9) cos θ =
(
1/‖Ψt‖

)
hf (β′, Ψt) = ft′,

from (8) and (9) we have obtained the following Clairaut relation for the
geodesic β of the Hopf tube Mγ :

(10) f cos θ = const. ¤

From (7) we see that any horizontal lift γ̃ of a curve γ in S2 is a geodesic
of the Hopf tube Mγ . All these horizontal lifts are as the “meridians” of the
Hopf tube, and the fibres are as the “parallels”. On the other hand, a fibre
π−1(p), p = γ(s) is a geodesic curve in Mγ , if and only if s′ = s′′ = 0, and it
satisfies the equations

(t′)2Ψs(log f) = 0, t′′ = 0, f2(t′)2 = 1,

and therefore Ψs(log f)
∣∣
π−1(p)

= 0, that is, df(γ(s))
ds (p) = 0. We have,

Corollary 1. The fibre π−1(p) is a geodesic of the Hopf tube Mγ if and
only if p is a critical point of f |γ.

The Clairaut relation allows us to draw the following consequence. Let
β be a geodesic of the Hopf tube Mγ which meets the fibres under an angle
θ 6= 0, π/2 (β is neither a fibre nor a lift of γ). Now, assume that p1 = γ(s1) is
a local minimum for the function f along γ. Then, from Corollary 1 the fibre
π−1(p1) is a geodesic of the tube. Let p0 = γ(s0) denote a nearby point of
p1 = γ(s1) and pick any point m0 ∈ π−1(p0). Now define β to be the geodesic
through m0 that meets the fibre π−1(p0) under an angle θ(p0) > 0 such that
cos θ(p0) = f(p1)

f(p0) . Then, the Clairaut relation for this geodesic β gives f(p0)

· cos θ(p0) = c and hence c = f(p1) > 0. Therefore, β meets the fibre π−1(p1)
provided f(p1) · cos θ(p1) = f(p1), which is impossible. This means that β

rolls up to the fibre π−1(p1) asymptotically.

Example. Let
(
S2(1/2), g

)
be the standard round sphere of radius 1/2

and take in R3 the vector v = (0, 0, 1). Define f : (S2, g) → R as the positive
smooth function f(p) = 〈p, v〉+ 1, where 〈, 〉 is the Euclidean metric on R3.
The level curves of f are circles in S2 which yield in planes orthogonal to v.
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The Hopf torus over any of these circles is flat and all its fibres are geodesic.
Now let γ be the circle in S2 obtained as the intersection of S2 with a plane
which is not orthogonal to v. If p1, p2 are the points of γ where f |γ reaches
its critical values, then π−1(γ) has exactly two fibres π−1(p1) and π−1(p2)
which are geodesics.

5. Curvature and torsion of geodesics of Mγ in (S3, hf )

Let β(z) = Ψ
(
s(z), t(z)

)
be an arclength parametrized geodesic of the

Hopf tube Mγ . From (6) we have

Df
β′β

′ =
(
k(s′)2 − f2(t′)2iΨs(log f) + 2f2s′t′g(γ′, γ′)

)
iΨs.

Therefore the curvature ρ of β in (S3, hf ) is

ρ = k(s′)2 − f2(t′)2iΨs(log f) + 2f2s′t′g(γ′, γ′).

But if we denote by θ the angle between the geodesic β and the fibres, then

β′(z) = (sin θ)Ψs + (cos θ)η.

The curvature ρ of β can be written as

(11) ρ = (sin θ cos θ)
(

κ fg(γ′, γ′)
fg(γ′, γ′) −ξ(log f)

)(
sin θ
cos θ

)
.

Notice that since β is a geodesic of Mγ , then its unit principal normal in
(S3, hf ) is nothing but iΨs, and its unit binormal in (S3, hf ) is (cos θ)Ψs −
(sin θ)η. Consequently, the torsion ν of β in (S3, hf ) is given by

ν = −hf(Df
β′

(
(cos θ)Ψs − (sin θ)η

)
, iΨs) = −(cos θ sin θ)κ

− (cos2 θ)ug(γ′, γ′) + (sin2 θ)ug(γ′, γ′)− (sin θ cos θ)ξ(log u),

or

(12) ν = (sin θ cos θ)
(

κ fg(γ′, γ′)
fg(γ′, γ′) −ξ(log f)

) (− cos θ
sin θ

)

Now a direct computation shows that

(13) (− cos θ sin θ)
(

κ fg(γ′, γ′)
fg(γ′, γ′) −ξ(log f)

)(− cos θ
sin θ

)
= 2αf − ρ,
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where αf is the mean curvature of the Hopf tube Mγ in (S3, hf ). Thus,
formulae (11), (12) and (13) yield the following relation:

(
κ fg(γ′, γ′)

fg(γ′, γ′) −ξ(log f)

)
=

(
sin θ − cos θ
cos θ sin θ

)(
ρ ν
ν 2αf − ρ

)(
sin θ cos θ
− cos θ sin θ

)
,

that is
(

κ fg(γ′, γ′)
fg(γ′, γ′) −ξ(log f)

)
and

(
ρ ν
ν 2αf − ρ

)
are congruent matrices.

Therefore the following equations are obtained:

(14)





κ = −ρ cos 2θ − ν sin 2θ + 2αf cos2 θ,

fg(γ′, γ′) = (ρ− αf ) sin 2θ − ν cos 2θ,

ξ(log f) = −ρ cos 2θ − ν sin 2θ − 2αf sin2 θ.

Now we state the following geometric integration method.

Theorem 2. Let ρ, ν, αf , θ : I → R be smooth functions satisfying
(ρ− αf ) sin 2θ − ν cos 2θ > 0. Then there exist f ∈ C∞+ (S2), an immersed
curve γ in (S2, h) and a geodesic β of the Hopf tube Mγ = π−1(γ) such that

1. ρ, ν are the curvature and torsion, respectively, of β in (S3, hf );

2. αf is the mean curvature of Mγ;

3. θ is the hf -slope of β in Mγ.

Proof. Define γ(s) to be an arclength parametrized curve in (S2, h) with
curvature κ(s) = −ρ cos 2θ−ν sin2θ+αf cos2 θ. Take a positive smooth func-
tion f : S2 → R satisfying

f
(
γ(s)

)
=

1
g(γ′, γ′)

(
(ρ− αf ) sin 2θ − ν cos 2θ

)
,

ξ(log f) = −ρ cos 2θ − ν sin 2θ − 2αf sin2 θ,

where g is the standard metric on S2, and ξ is the normal of γ in (S2, h).
Then, the geodesic curve β of Mγ = π−1(γ) with hf -slope θ is a curve in
(S3, hf ) with curvature ρ and torsion ν. ¤
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6. Lorentzian metrics on the sphere

Now we start with the sphere S3 endowed with the Lorentzian metric hf

defined by formula (1) when ε = −1:

(15) hf = π∗(h)− f2ω∗(dt)2,

where π, h, f , ω and dt2 have the same meaning as in Section 2. It can be
proved that (2) and (3) still hold, but (4) changes to

(16) Df
ηη = ∇f (log f).

Let γ(s) be an arclength parametrized curve immersed in (S2, h) with unit
tangent vector T , normal ξ and curvature κ. Then, it is easy to prove that any
horizontal lift γ̃ of γ has tangent vector T̃ , normal ξ̃, binormal η, curvature κ
and torsion τ∗ = fg(γ′, γ′). The metric coefficients of Mγ are g11 = 1, g12 = 0,
g22 = −f2, and its Gauss curvature is still Kf = −(1/f)(d2/ds2)f

(
γ(s)

)
.

The Hopf tube Mγ can be parametrized as in Section 4, and it is easy to
see that the matrix Af of the Weingarten endomorphism of Mγ in (S3, hf )
with respect to the orthonormal basis {Ψs, η = 1

f Ψt} now is

(
κ −fg(γ′, γ′)

−fg(γ′, γ′) ξ(log f)

)
,

and the mean curvature function αf of Mγ is given by 2αf = κ− ξ(log f).
The Gauss equations now become

Df
Ψs

Ψs = κ iΨs, Df
ηΨs = Ψs(log f)η − fg(γ′, γ′)iΨs,

Df
Ψs

η = −fg(γ′, γ′)iΨs, Df
ηη = Ψs(log f)Ψs + iΨs(log f)iΨs.

Suppose we are given an arclength parametrized geodesic curve β(z) =
Ψ

(
s(z), t(z)

)
of the Lorentzian Hopf tube Mγ . Then β′(z) = s′Ψs + ft′η

and hf (β′y, β′) = (s′)2− f2(t′)2 = ε1, where ε1 = ±1 according to the causal
character of β.

Some computations similar to those of Section 5 allow us to obtain the
differential equations of a geodesic curve in Mγ :

(17)

{
s′′ + f2(t′)2Ψs(log f) = 0,

t′′ + 2s′t′Ψs(log f) = 0,
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and since the second equation is the same as in the Riemannian case, it can
be integrated to obtain f2t′ = const.

Assume that β is a timelike geodesic (ε1 = −1) such that at the point
q ∈ Mγ its unit tangent β′q satisfies

(18) hf (β′q, ηq) < 0

i.e., β′q belongs to the timecone C(ηq) of the timelike vector ηq which is the
unit tangent to the fibre π−1

(
π(q)

)
at q. As Mγ is time-orientable, this

inequality holds along any point of β and we know [14] that there is a unique
number ϕ = 0, called the hyperbolic angle between β′ and η, such that

coshϕ = −hf (β′, η)
|β′| |η| .

Now the unit tangent to β can be written as

β′ = sinhϕΨs + coshϕη

and hence coshϕ = ft′. Thus, from f2t′ = const. we have proved the follow-
ing Lorentzian version of the Clairaut theorem:

Theorem 3. Let β be a timelike geodesic of the Lorentzian Hopf tube
Mγ = π−1(γ) in (S3, hf ) such that at some point q, (18) holds. Then β sat-
isfies the Clairaut relation f coshϕ = const.

As in the Riemannian case, Corollary 1 also holds.
Now, the curvature ρ and torsion ν in (S3, hf ) of a timelike geodesic β

of the Lorentzian Hopf tube Mγ can be computed as in the Riemannian case
to give the following relations:

(19)





κ = (ρ + 2αf ) cosh2 ϕ− ν sinh 2ϕ + ρ sinh2 ϕ,

fg(γ′, γ′) = (ρ + αf ) sinh 2ϕ + ν(1 + 2 sinh2 ϕ),

ξ(log f) = ρ(1 + 2 sinh2 ϕ)− ν sinh 2ϕ + 2αf sinh2 ϕ.

Thus the following geometric integration method can be stated.
Theorem 4. Let ρ, ν, αf , ϕ, I → R be smooth functions satisfying

(ρ + αf ) sinh 2ϕ + ν(1 + 2 sinh2 ϕ) > 0. Then there exists f ∈ C∞+ (S2), an
immersed curve γ in (S2, h), and a timelike geodesic β of the Hopf tube
Mγ = π−1(γ) such that

1. ρ, ν are the curvature and torsion, respectively, of β in the Lorentzian
sphere (S3, hf );

2. αf is the mean curvature function of Mγ;
3. ϕ is the hyperbolic angle defined between β and the fibres of Mγ.
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