CLAIRAUT RELATION FOR GEODESICS OF HOPF TUBES

J. L. CABRERIZO and M. FERNÁNDEZ^{*}

Departamento de Geometria y Topologia, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain e-mail: jaraiz@us.es

(Received February 25, 2005; accepted October 7, 2005)

Abstract. In this note we use the Hopf map $\pi: \mathbf{S}^3 \to \mathbf{S}^2$ to construct an interesting family of Riemannian metrics h^f on the 3-sphere, which are parametrized on the space of positive smooth functions f on the 2-sphere. All these metrics make the Hopf map a Riemannian submersion. The Hopf tube over an immersed curve γ in \mathbf{S}^2 is the complete lift $\pi^{-1}(\gamma)$ of γ , and we prove that any geodesic of this Hopf tube satisfies a Clairaut relation. A Hopf tube plays the role in \mathbf{S}^3 of the surfaces of revolution in \mathbf{R}^3 . Furthermore, we show a geometric integration method of the Frenet equations for curves in those non-standard \mathbf{S}^3 . Finally, if we consider the sphere \mathbf{S}^3 equipped with a family h^f of Lorentzian metrics, then a new Clairaut relation is also obtained for timelike geodesics of the Lorentzian Hopf tube, and a geometric integration method for curves is still possible.

1. Introduction

A surface of revolution in \mathbf{R}^3 is generated by the rotation of an arclength parametrized curve $\alpha : I \to \mathbf{R}^2$, $\alpha(s) = (x(s), 0, z(s))$ around the Z-axis. It

^{*}Research partially supported by MCYT FEDER Grant MTM2004-04934-C04-04 and by a PAI FQM-327, of the Junta de Andalucía.

Key words and phrases: Hopf map, generalized Kaluza-Klein metric. 2000 Mathematics Subject Classification: 53C15, 53C40.

can be defined also as the warped product $I \times_x \mathbf{S}^1$ endowed with the (warped) metric $g = ds^2 + x(s)^2 dt^2$, where $x : I \to \mathbf{R}$ works as the warping function.

As early as 1735, A. C. Clairaut obtained the following well known characterization for a geodesic curve of a surface of revolution in \mathbb{R}^3 :

If θ is the angle between the tangent to the curve and a circle of latitude, and if r is the radius of this circle, then $r \cos \theta = \text{const.}$ along the curve.

In this note we prove that a Clairaut relation can be also stated in a very different setting. In fact, the ambient space is now the 3-dimensional sphere \mathbf{S}^3 furnished with a family of Riemannian or Lorentzian metrics, and the geodesics live in Hopf tubes of \mathbf{S}^3 , which play the role in \mathbf{S}^3 of the surfaces of revolution in \mathbf{R}^3 . In fact, a Hopf tube is the inverse image under the Hopf map $\pi : \mathbf{S}^3 \to \mathbf{S}^2$ of a curve γ on \mathbf{S}^2 , and if γ is a closed curve, $\pi^{-1}(\gamma)$ is a Hopf torus. But a Hopf tube can be seen also as a warped product $I \times_f \mathbf{S}^1$ in \mathbf{S}^3 with f a positive smooth function on \mathbf{S}^2 . Hopf tori appear in the setting of the Riemannian geometry [3, 16] as well as in the Lorentzian geometry [1, 4].

2. Generalized Kaluza–Klein metrics on the 3-sphere

Let \mathbf{S}^3 denote the unit 3-sphere in \mathbf{C}^2 , $\mathbf{S}^3 = \{ z = (z_1, z_2) \in \mathbf{C}^2 \mid |z_1|^2 + |z_2|^2 = 1 \}$. The unit circle \mathbf{S}^1 acts naturally on \mathbf{S}^3 by means of

$$(e^{i\theta}, z) \to e^{i\theta} \cdot z = (e^{i\theta}z_1, e^{i\theta}z_2),$$

for any $e^{i\theta} \in \mathbf{S}^1$ and $z \in \mathbf{S}^3$. The Hopf map $\pi : \mathbf{S}^3 \to \mathbf{S}^2$ is a principal fibre bundle with structure group \mathbf{S}^1 .

For any point $z \in \mathbf{S}^3$ we consider the tangent vector $V(z) = iz \in T_z(\mathbf{S}^3)$. Then V is a global vector field on \mathbf{S}^3 . Now, if we denote by \bar{g} the standard metric of radius 1 on \mathbf{S}^3 and by g the standard metric of radius 1/2 on \mathbf{S}^2 , then $\pi : (\mathbf{S}^3, \bar{g}) \to (\mathbf{S}^2, g)$ is a Riemannian submersion with geodesic fibres. The 2-dimensional distribution \mathcal{H} defined by $\mathcal{H}(z) = \langle V(z) \rangle^{\perp}$ (orthogonal complement with respect to \bar{g}), gives a principal connection whose principal 1-form is denoted by ω .

Let $\overline{\nabla}$ and ∇ be the Levi-Civita connections of \overline{g} and g, respectively. From the theory of (semi) Riemannian submersions ([8, 14]) the following equations are well known:

$$\bar{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\nabla_X Y} - \bar{g}(i\widetilde{X},\widetilde{Y})V, \quad \bar{\nabla}_{\widetilde{X}}V = \bar{\nabla}_V\widetilde{X} = i\widetilde{X}, \quad \bar{\nabla}_V V = 0,$$

Acta Mathematica Hungarica 113, 2006

where overtildes stand for horizontal lifts. Notice that the latter equation shows the geodesic nature of the fibres.

An ample and interesting class of semi-Riemannian metrics can be considered on \mathbf{S}^3 . We start with an arbitrary Riemannian metric h on \mathbf{S}^2 and a positive smooth function f on \mathbf{S}^2 . Now, we define the following metric on \mathbf{S}^3 :

(1)
$$h^f = \pi^*(h) + \varepsilon (u \cdot \pi)^2 \omega^* (dt^2),$$

where $\varepsilon = \pm 1$ and dt^2 is the standard metric on \mathbf{S}^1 . Then, h^f is Riemannian or Lorentzian according to ε being +1 or -1, respectively. The metric h^f is called a *generalized Kaluza–Klein metric*. It should be noticed that these metrics are like local warped product metrics. In particular, if f is chosen to be constant, then it works as a global scaling factor on the fibres. In these cases, the metrics h^f are called *Kaluza–Klein* or *bundle-like* metrics. We will first consider $\varepsilon = +1$, and the Lorentzian case will be studied similarly. For the sake of simplicity, we shall write $f \cdot \pi \equiv f$, etc.

Clearly π : $(\mathbf{S}^3, h^f) \to (\mathbf{S}^2, h)$ is a Riemannian submersion with horizontal distribution \mathcal{H} . Moreover, the \mathbf{S}^1 -action is made up of isometries of (\mathbf{S}^3, h^f) . Let D^f , D denote the Levi-Civita connections of h^f and h, respectively. Then, a standard computation involving some well known facts from the theory of Riemannian submersions [8], gives

(2)
$$D_{\widetilde{X}}^{f}\widetilde{Y} = \widetilde{D_{X}Y} - \bar{g}(i\widetilde{X},\widetilde{Y})V.$$

Note that $h^f(V, V) = f^2$, and hence $\eta = (1/f)V$ is a unitary vertical vector field.

It is clear that $[\widetilde{X}, V] = 0$ for any horizontal lift \widetilde{X} , and therefore $D_{\widetilde{X}}^{f}(f\eta)$ = $D_{f\eta}^{f}\widetilde{X} = f D_{\eta}^{f}\widetilde{X}$. Then we have,

(3)
$$D^f_{\eta}\widetilde{X} = D^f_{\widetilde{X}}\eta + \frac{X(f)}{f}\eta.$$

Now we compute $D_{\eta}^{f}\eta$. It is obvious that it is a horizontal vector field. But from (3), for any horizontal lift \widetilde{X} we have

$$h^{f}(D_{\eta}^{f}\eta,\widetilde{X}) = -h^{f}(D_{\eta}^{f}\widetilde{X},\eta) = -\frac{\widetilde{X}(f)}{f} = -\widetilde{X}(\log f),$$

and hence we obtain

(4)
$$D_{\eta}^{f}\eta = -\nabla^{f}(\log f).$$

J. L. CABRERIZO and M. FERNÁNDEZ

REMARK 1. (a) Since f is constant along each fibre, then $\nabla^f(\log f)$ is nothing but the horizontal lift of the gradient of $\log f$ in (\mathbf{S}^2, h) .

(b) Notice also that (4) implies that all the fibres are geodesics in (\mathbf{S}^3, h^f) if and only if f is a constant positive function (i.e., h^f is a Kaluza–Klein metric).

(c) Generalized Kaluza–Klein metrics can be defined on a principal fibre bundle P(M,G), where G is an m-dimensional compact Lie group equipped with a bi-invariant metric dt^2 [6, 9]. Kaluza–Klein spacetimes have a remarkable interest in physics, including string theory [7, 17], general relativity [13, 20], particle physics [2, 18], quantum field theory [11, 19], etc.

Let γ be an arclength parametrized curve in (\mathbf{S}^2, h) , and let $\{T = \gamma', \xi, \kappa\}$ be its Frenet apparatus. The Frenet equations of γ are given by $D_T T = \kappa \xi$, $D_T \xi = -\kappa T$. Let $\tilde{\gamma}$ be a horizontal lift of γ (which is obviously arclength parametrized), and denote by $\{\tilde{T} = \tilde{\gamma}', \xi_2^*, \xi_3^*, \kappa^*, \tau^*\}$ its Frenet apparatus in (\mathbf{S}^3, h^f) . Now we shall relate both Frenet frames. To this end, we write down the Frenet equations for $\tilde{\gamma}$:

$$D_{\widetilde{T}}^{f}\widetilde{T} = \kappa^{*}\xi_{2}^{*}, \quad D_{\widetilde{T}}^{f}\xi_{2}^{*} = -\kappa^{*}\widetilde{T} + \tau^{*}\xi_{3}^{*}, \quad D^{f}\xi_{3}^{*} = -\tau^{*}\xi_{2}^{*}$$

Since \widetilde{T} is horizontal, from (2) we have

$$\kappa^* \xi_2^* = D_{\widetilde{T}}^f \widetilde{T} = \widetilde{D_T T} - \overline{g}(i\widetilde{T}, \widetilde{T}) V = \widetilde{D_T T} = \widetilde{\kappa\xi} = \kappa\widetilde{\xi},$$

and then $\kappa^* = \kappa$, $\xi_2^* = \tilde{\xi}$. This means that κ^* and ξ^* are the horizontal lifts of the curvature and the principal normal of γ , respectively.

The second Frenet equations of γ , $\tilde{\gamma}$ and (2) give $\tau^* \xi_3^* = -fg(\gamma', \gamma')\eta$, so that $\tau^* = -fg(\gamma', \gamma')$, and the binormal of $\tilde{\gamma}$ is $\xi_3^* = \eta$. In particular, if the metric *h* is the standard metric *g* on \mathbf{S}^2 and we take *f* the constant function f = 1, then $\tau^* \equiv -1$.

3. The shape operator of a Hopf tube

Let $\gamma: I \to \mathbf{S}^2$ be an arclength parametrized curve in (\mathbf{S}^2, h) . The Hopf tube over γ is the surface $M_{\gamma} = \pi^{-1}(\gamma)$ in (\mathbf{S}^3, h^f) equipped with the induced metric $h^f|_{M_{\gamma}}$. We can use the nice argument of Pinkall [16] to show that an immersed surface M in \mathbf{S}^3 is \mathbf{S}^1 -invariant if and only if $M = M_{\gamma} = \pi^{-1}(\gamma)$ for some immersed curve γ in \mathbf{S}^2 (i.e., M is a Hopf tube). In particular, if γ is closed, M_{γ} is a Hopf torus, which is embedded if γ is simple in \mathbf{S}^2 .

Acta Mathematica Hungarica 113, 2006

Let $\tilde{\gamma}$ be a horizontal lift of γ . The universal covering of this Hopf tube is

$$\Psi: \mathbf{R}^2 \to M_\gamma, \quad \Psi(s,t) = e^{it} \cdot \widetilde{\gamma}(s).$$

The metric coefficients of M_{γ} are given by $g_{11} = 1$, $g_{12} = 0$, $g_{22} = f^2$. The Gaussian curvature of this tube is

$$K^f = -\frac{f_{ss}}{f} = -\frac{1}{f}\frac{d^2}{ds^2} \left(f\left(\gamma(s)\right).\right.$$

In particular, we have obtained:

PROPOSITION 1. Let γ be a closed curve in (\mathbf{S}^2, h) . Then M_{γ} is a flat torus if and only if $f|_{\gamma}$ is a constant positive function.

Since $\{\Psi_s, \eta = (1/f)\Psi_t\}$ is an h^f -orthonormal frame along M_γ in (\mathbf{S}^3, h^f) , then $N = \Psi_s \wedge \eta = i\Psi_s$ is the unit normal vector field of this Hopf tube, and its Weingarten endomorphism A^f can be computed with respect to the basis $\{\Psi_s, \eta\}$ as follows:

$$\begin{split} A^{f}\Psi_{s} &= -D^{f}_{\Psi_{s}}i\Psi_{s} = -\widetilde{D_{\gamma'}\xi} + \bar{g}(i\Psi_{s}, i\Psi_{s})\eta = \kappa\Psi_{s} + fg(\gamma', \gamma')\eta, \\ A^{f}\eta &= -D^{f}_{\eta}i\Psi_{s} = -D^{f}_{i\Psi_{s}}\eta + (1/f)i\Psi_{s}(f)\eta = fg(\gamma', \gamma')\Psi_{s} - \xi(\log f)\eta, \end{split}$$

where we have used (2), (3) and the fact that Ψ_s (resp. $i\Psi_s$) is the complete lift of γ' (resp. $\xi = J\gamma'$). Therefore, the matrix of A^f is given by

$$\begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix}.$$

As a consequence, the mean curvature α^f of M_{γ} is given by

(5)
$$\alpha^f = \frac{1}{2} \left(\kappa - \xi(\log f) \right).$$

REMARK 2. Notice that if h is the standard round metric g on \mathbf{S}^2 of radius 1/2 and we choose f to be the constant function f = 1, then the torsion τ^* of a horizontal lift $\tilde{\gamma}$ of γ is $\tau^* = -1$, the Hopf tube M_{γ} is flat, and the mean curvature function of this tube is $\alpha^f = (1/2)\kappa$.

4. The Clairaut relation for geodesics of Hopf tubes

A direct computation involving equations (2), (3) and (4) give the following Gauss equations for the surface M_{γ} :

$$\begin{split} D^f_{\Psi_s}\Psi_s &= \kappa \, i\Psi_s, \quad D^f_{\eta}\Psi_s = \Psi_s(\log f)\eta + fg(\gamma',\gamma')i\Psi_s, \\ D^f_{\Psi_s}\eta &= fg(\gamma',\gamma')i\Psi_s, \quad D^f_{\eta}\eta = -\Psi_s(\log f)\Psi_s - i\Psi_s(\log f)i\Psi_s. \end{split}$$

Now we prove

THEOREM 1. Let β be a geodesic of the Hopf tube M_{γ} in (\mathbf{S}^3, h^f) and let θ denote the angle between β and the fibres. Then, the following Clairaut relation is satisfied: $f \cos \theta = \text{const.}$

PROOF. Let $\Psi(s,t) = e^{it} \cdot \widetilde{\gamma}(s)$ be a parametrization of M_{γ} and assume that β is an arclength parametrized immersed curve in this tube, i.e., $\beta(z) = \Psi(s(z), t(z))$, $\beta'(z) = s'\Psi_s + t'\Psi_t$ and $h^f(\beta', \beta') = (s')^2 + f^2(t')^2 = 1$. Since $[\Psi_s, \Psi_t] = 0$, then $D_{\Psi_s}^f \Psi_t = D_{\Psi_t}^f \Psi_s$, and we have

$$D^{f}_{\beta'}\beta' = s''\Psi_s + t''\Psi_t + (s')^2 D^{f}_{\Psi_s}\Psi_s + (t')^2 D^{f}_{\Psi_t}\Psi_t + 2s't' D^{f}_{\Psi_s}\Psi_t.$$

But

$$D^f_{\Psi_t}\Psi_s = fD^f_{\frac{1}{f}\Psi_t}\Psi_s = f\Psi_s(\log f)(1/f)\Psi_t + f^2g(\gamma',\gamma')i\Psi_s,$$

and

$$D_{\Psi_t}^f \Psi_t = f^2 D_{(1/f)\Psi_t}^f (1/f) \Psi_t,$$

because f does not depend on t. Thus,

(6)
$$D_{\beta'}^{f}\beta' = \left(s'' - f^{2}(t')^{2}\Psi_{s}(\log f)\right)\Psi_{s} + \left(t'' + 2s't'\Psi_{s}(\log f)f\right)\eta + \left(k(s')^{2} - f^{2}(t')^{2}i\Psi_{s}(\log f) + 2f^{2}s't'g(\gamma',\gamma')\right)i\Psi_{s},$$

where the first two terms on the right hand side are nothing but $D_{\beta'}^{M_{\gamma}}\beta'$, where $D^{M_{\gamma}}$ is the induced covariant derivative on M_{γ} . Thus β is a geodesic of M_{γ} if and only if the following equations are satisfied:

(7)
$$s'' - f^2(t')^2 \Psi_s(\log f) = 0, \quad t'' + 2s't'\Psi_s(\log f) = 0.$$

Note that M_{γ} is flat if and only if $\Psi_s(\log f) = 0$, and obviously then its geodesics are the images under Ψ of straight lines. Otherwise $\Psi_s(\log f) \neq 0$ and since f(s) = f(s(z)) along γ we have $f' = df/dz = \Psi_s(f)s'$. From

Acta Mathematica Hungarica 113, 2006

 $\Psi_s(\log f) = f'/(fs')$, the second equation in (7) gives t'' + 2t'(f'/f) = 0, or equivalently,

(8)
$$f^2 t' = \text{const.}$$

Let θ denote the angle defined by β and the fibres. Since

(9)
$$\cos \theta = \left(1/\|\Psi_t\| \right) h^f(\beta', \Psi_t) = ft',$$

from (8) and (9) we have obtained the following Clairaut relation for the geodesic β of the Hopf tube M_{γ} :

(10)
$$f \cos \theta = \text{const.}$$

From (7) we see that any horizontal lift $\tilde{\gamma}$ of a curve γ in \mathbf{S}^2 is a geodesic of the Hopf tube M_{γ} . All these horizontal lifts are as the "meridians" of the Hopf tube, and the fibres are as the "parallels". On the other hand, a fibre $\pi^{-1}(p), p = \gamma(s)$ is a geodesic curve in M_{γ} , if and only if s' = s'' = 0, and it satisfies the equations

$$(t')^{2}\Psi_{s}(\log f) = 0, \quad t'' = 0, \quad f^{2}(t')^{2} = 1,$$

and therefore $\Psi_s(\log f)\big|_{\pi^{-1}(p)} = 0$, that is, $\frac{df(\gamma(s))}{ds}(p) = 0$. We have,

COROLLARY 1. The fibre $\pi^{-1}(p)$ is a geodesic of the Hopf tube M_{γ} if and only if p is a critical point of $f|_{\gamma}$.

The Clairaut relation allows us to draw the following consequence. Let β be a geodesic of the Hopf tube M_{γ} which meets the fibres under an angle $\theta \neq 0, \pi/2$ (β is neither a fibre nor a lift of γ). Now, assume that $p_1 = \gamma(s_1)$ is a local minimum for the function f along γ . Then, from Corollary 1 the fibre $\pi^{-1}(p_1)$ is a geodesic of the tube. Let $p_0 = \gamma(s_0)$ denote a nearby point of $p_1 = \gamma(s_1)$ and pick any point $m_0 \in \pi^{-1}(p_0)$. Now define β to be the geodesic through m_0 that meets the fibre $\pi^{-1}(p_0)$ under an angle $\theta(p_0) > 0$ such that $\cos \theta(p_0) = \frac{f(p_1)}{f(p_0)}$. Then, the Clairaut relation for this geodesic β gives $f(p_0) \cdot \cos \theta(p_0) = c$ and hence $c = f(p_1) > 0$. Therefore, β meets the fibre $\pi^{-1}(p_1)$ provided $f(p_1) \cdot \cos \theta(p_1) = f(p_1)$, which is impossible. This means that β rolls up to the fibre $\pi^{-1}(p_1)$ asymptotically.

EXAMPLE. Let $(\mathbf{S}^2(1/2), g)$ be the standard round sphere of radius 1/2and take in \mathbf{R}^3 the vector v = (0, 0, 1). Define $f : (\mathbf{S}^2, g) \to \mathbf{R}$ as the positive smooth function $f(p) = \langle p, v \rangle + 1$, where \langle , \rangle is the Euclidean metric on \mathbf{R}^3 . The level curves of f are circles in \mathbf{S}^2 which yield in planes orthogonal to v.

The Hopf torus over any of these circles is flat and all its fibres are geodesic. Now let γ be the circle in \mathbf{S}^2 obtained as the intersection of \mathbf{S}^2 with a plane which is not orthogonal to v. If p_1 , p_2 are the points of γ where $f|_{\gamma}$ reaches its critical values, then $\pi^{-1}(\gamma)$ has exactly two fibres $\pi^{-1}(p_1)$ and $\pi^{-1}(p_2)$ which are geodesics.

5. Curvature and torsion of geodesics of M_{γ} in (\mathbf{S}^3, h^f)

Let $\beta(z) = \Psi(s(z), t(z))$ be an arclength parametrized geodesic of the Hopf tube M_{γ} . From (6) we have

$$D^{f}_{\beta'}\beta' = \left(k(s')^{2} - f^{2}(t')^{2}i\Psi_{s}(\log f) + 2f^{2}s't'g(\gamma',\gamma')\right)i\Psi_{s}.$$

Therefore the curvature ρ of β in (\mathbf{S}^3, h^f) is

$$\rho = k(s')^2 - f^2(t')^2 i \Psi_s(\log f) + 2f^2 s' t' g(\gamma', \gamma').$$

But if we denote by θ the angle between the geodesic β and the fibres, then

$$\beta'(z) = (\sin\theta)\Psi_s + (\cos\theta)\eta.$$

The curvature ρ of β can be written as

(11)
$$\rho = (\sin\theta \quad \cos\theta) \begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix} \begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix}.$$

Notice that since β is a geodesic of M_{γ} , then its unit principal normal in (\mathbf{S}^3, h^f) is nothing but $i\Psi_s$, and its unit binormal in (\mathbf{S}^3, h^f) is $(\cos \theta)\Psi_s - (\sin \theta)\eta$. Consequently, the torsion ν of β in (\mathbf{S}^3, h^f) is given by

$$\nu = -h^f \left(D^f_{\beta'} ((\cos \theta) \Psi_s - (\sin \theta) \eta), i \Psi_s \right) = -(\cos \theta \sin \theta) \kappa$$
$$- (\cos^2 \theta) ug(\gamma', \gamma') + (\sin^2 \theta) ug(\gamma', \gamma') - (\sin \theta \cos \theta) \xi(\log u),$$

or

(12)
$$\nu = (\sin\theta \quad \cos\theta) \begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix} \begin{pmatrix} -\cos\theta \\ \sin\theta \end{pmatrix}$$

Now a direct computation shows that

(13)
$$(-\cos\theta \quad \sin\theta) \begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix} \begin{pmatrix} -\cos\theta \\ \sin\theta \end{pmatrix} = 2\alpha^f - \rho,$$

where α^f is the mean curvature of the Hopf tube M_{γ} in (\mathbf{S}^3, h^f) . Thus, formulae (11), (12) and (13) yield the following relation:

$$\begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix} = \begin{pmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} \rho & \nu \\ \nu & 2\alpha^f - \rho \end{pmatrix} \begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix}$$

that is $\begin{pmatrix} \kappa & fg(\gamma',\gamma') \\ fg(\gamma',\gamma') & -\xi(\log f) \end{pmatrix}$ and $\begin{pmatrix} \rho & \nu \\ \nu & 2\alpha^f - \rho \end{pmatrix}$ are congruent matrices. Therefore the following equations are obtained:

(14)
$$\begin{cases} \kappa = -\rho \cos 2\theta - \nu \sin 2\theta + 2\alpha^f \cos^2 \theta, \\ fg(\gamma', \gamma') = (\rho - \alpha^f) \sin 2\theta - \nu \cos 2\theta, \\ \xi(\log f) = -\rho \cos 2\theta - \nu \sin 2\theta - 2\alpha^f \sin^2 \theta. \end{cases}$$

Now we state the following geometric integration method.

THEOREM 2. Let $\rho, \nu, \alpha^f, \theta : I \to \mathbf{R}$ be smooth functions satisfying $(\rho - \alpha^f) \sin 2\theta - \nu \cos 2\theta > 0$. Then there exist $f \in \mathcal{C}^{\infty}_+(\mathbf{S}^2)$, an immersed curve γ in (\mathbf{S}^2, h) and a geodesic β of the Hopf tube $M_{\gamma} = \pi^{-1}(\gamma)$ such that

- 1. ρ , ν are the curvature and torsion, respectively, of β in (\mathbf{S}^3, h^f) ;
- 2. α^f is the mean curvature of M_{γ} ;
- 3. θ is the h^f -slope of β in M_{γ} .

PROOF. Define $\gamma(s)$ to be an arclength parametrized curve in (\mathbf{S}^2, h) with curvature $\kappa(s) = -\rho \cos 2\theta - \nu \sin 2\theta + \alpha^f \cos^2 \theta$. Take a positive smooth function $f: \mathbf{S}^2 \to \mathbf{R}$ satisfying

$$f(\gamma(s)) = \frac{1}{g(\gamma', \gamma')} ((\rho - \alpha^f) \sin 2\theta - \nu \cos 2\theta),$$

$$\xi(\log f) = -\rho \cos 2\theta - \nu \sin 2\theta - 2\alpha^f \sin^2 \theta,$$

where g is the standard metric on \mathbf{S}^2 , and ξ is the normal of γ in (\mathbf{S}^2, h) . Then, the geodesic curve β of $M_{\gamma} = \pi^{-1}(\gamma)$ with h^f -slope θ is a curve in (\mathbf{S}^3, h^f) with curvature ρ and torsion ν . \Box

J. L. CABRERIZO and M. FERNÁNDEZ

6. Lorentzian metrics on the sphere

Now we start with the sphere \mathbf{S}^3 endowed with the Lorentzian metric h^f defined by formula (1) when $\varepsilon = -1$:

(15)
$$h^{f} = \pi^{*}(h) - f^{2}\omega^{*}(dt)^{2},$$

where π , h, f, ω and dt^2 have the same meaning as in Section 2. It can be proved that (2) and (3) still hold, but (4) changes to

(16)
$$D_{\eta}^{f}\eta = \nabla^{f}(\log f).$$

Let $\gamma(s)$ be an arclength parametrized curve immersed in (\mathbf{S}^2, h) with unit tangent vector T, normal ξ and curvature κ . Then, it is easy to prove that any horizontal lift $\tilde{\gamma}$ of γ has tangent vector \tilde{T} , normal $\tilde{\xi}$, binormal η , curvature κ and torsion $\tau^* = fg(\gamma', \gamma')$. The metric coefficients of M_{γ} are $g_{11} = 1, g_{12} = 0$, $g_{22} = -f^2$, and its Gauss curvature is still $K^f = -(1/f)(d^2/ds^2)f(\gamma(s))$. The Hopf tube M_{γ} can be parametrized as in Section 4, and it is easy to

The Hopf tube M_{γ} can be parametrized as in Section 4, and it is easy to see that the matrix A^f of the Weingarten endomorphism of M_{γ} in (\mathbf{S}^3, h^f) with respect to the orthonormal basis $\{\Psi_s, \eta = \frac{1}{f}\Psi_t\}$ now is

$$\begin{pmatrix} \kappa & -fg(\gamma',\gamma') \\ -fg(\gamma',\gamma') & \xi(\log f) \end{pmatrix},$$

and the mean curvature function α^f of M_{γ} is given by $2\alpha^f = \kappa - \xi(\log f)$. The Gauss equations now become

$$D_{\Psi_s}^f \Psi_s = \kappa \, i\Psi_s, \quad D_{\eta}^f \Psi_s = \Psi_s(\log f)\eta - fg(\gamma',\gamma')i\Psi_s,$$
$$D_{\Psi_s}^f \eta = -fg(\gamma',\gamma')i\Psi_s, \quad D_{\eta}^f \eta = \Psi_s(\log f)\Psi_s + i\Psi_s(\log f)i\Psi_s.$$

Suppose we are given an arclength parametrized geodesic curve $\beta(z) = \Psi(s(z), t(z))$ of the Lorentzian Hopf tube M_{γ} . Then $\beta'(z) = s'\Psi_s + ft'\eta$ and $h^f(\beta' y, \beta') = (s')^2 - f^2(t')^2 = \varepsilon_1$, where $\varepsilon_1 = \pm 1$ according to the causal character of β .

Some computations similar to those of Section 5 allow us to obtain the differential equations of a geodesic curve in M_{γ} :

(17)
$$\begin{cases} s'' + f^2(t')^2 \Psi_s(\log f) = 0, \\ t'' + 2s't' \Psi_s(\log f) = 0, \end{cases}$$

Acta Mathematica Hungarica 113, 2006

and since the second equation is the same as in the Riemannian case, it can be integrated to obtain $f^2t' = \text{const.}$

Assume that β is a timelike geodesic ($\varepsilon_1 = -1$) such that at the point $q \in M_{\gamma}$ its unit tangent β'_q satisfies

(18)
$$h^f(\beta'_a, \eta_a) < 0$$

i.e., β'_q belongs to the timecone $\mathcal{C}(\eta_q)$ of the timelike vector η_q which is the unit tangent to the fibre $\pi^{-1}(\pi(q))$ at q. As M_{γ} is time-orientable, this inequality holds along any point of β and we know [14] that there is a unique number $\varphi \geq 0$, called the *hyperbolic angle* between β' and η , such that

$$\cosh \varphi = -\frac{h^f(\beta',\eta)}{|\beta'|\,|\eta|}$$

Now the unit tangent to β can be written as

$$\beta' = \sinh \varphi \Psi_s + \cosh \varphi \eta$$

and hence $\cosh \varphi = ft'$. Thus, from $f^2t' = \text{const.}$ we have proved the following Lorentzian version of the Clairaut theorem:

THEOREM 3. Let β be a timelike geodesic of the Lorentzian Hopf tube $M_{\gamma} = \pi^{-1}(\gamma)$ in (\mathbf{S}^3, h^f) such that at some point q, (18) holds. Then β satisfies the Clairaut relation $f \cosh \varphi = \text{const.}$

As in the Riemannian case, Corollary 1 also holds.

Now, the curvature ρ and torsion ν in (\mathbf{S}^3, h^f) of a timelike geodesic β of the Lorentzian Hopf tube M_{γ} can be computed as in the Riemannian case to give the following relations:

(19)
$$\begin{cases} \kappa = (\rho + 2\alpha^f) \cosh^2 \varphi - \nu \sinh 2\varphi + \rho \sinh^2 \varphi, \\ fg(\gamma', \gamma') = (\rho + \alpha^f) \sinh 2\varphi + \nu(1 + 2\sinh^2 \varphi), \\ \xi(\log f) = \rho(1 + 2\sinh^2 \varphi) - \nu \sinh 2\varphi + 2\alpha^f \sinh^2 \varphi. \end{cases}$$

Thus the following geometric integration method can be stated.

THEOREM 4. Let ρ , ν , α^f , φ , $I \to \mathbf{R}$ be smooth functions satisfying $(\rho + \alpha^f) \sinh 2\varphi + \nu(1 + 2\sinh^2 \varphi) > 0$. Then there exists $f \in \mathcal{C}^{\infty}_+(\mathbf{S}^2)$, an immersed curve γ in (\mathbf{S}^2, h) , and a timelike geodesic β of the Hopf tube $M_{\gamma} = \pi^{-1}(\gamma)$ such that

1. ρ , ν are the curvature and torsion, respectively, of β in the Lorentzian sphere (\mathbf{S}^3, h^f) ;

2. α^f is the mean curvature function of M_{γ} ;

3. φ is the hyperbolic angle defined between β and the fibres of M_{γ} .

62 J. L. CABRERIZO and M. FERNÁNDEZ: CLAIRAUT RELATION FOR GEODESICS ...

References

- L. Alias and A. Romero, An integral inequality for compact maximal surfaces in ndimensional de Sitter space and its applications, An. Global Anal. Geom., 13 (1995), 3–8.
- [2] A. Banerjee, A. Sil and S. Chatterjee, Motion of particles in five-dimensional Kaluza– Klein space-time, J. Math. Phys., 35 (1994), 2423–2429.
- [3] M. Barros, Willmore tori in non-standard 3-spheres, Math. Proc. Cambridge Phil. Soc., 121 (1997), 321–324.
- [4] M. Barros, Free elasticae and Willmore tori in warped product spaces, Glasgow Math. J., 40(1982), 265–272.
- [5] M. Barros, J. L. Cabrerizo and M. Fernández, Reduction of variables for Willmore– Chen submanifolds in 7-spheres, *Israel J. Math.*, **113**(1999), 29–43.
- [6] M. Barros, A. Ferrández, P. Lucas and M. A. Meroño, A criterion for reduction of variables in the Willmore–Chen variational problem and its applications, *Trans. Amer. Math. Soc.*, **352** (2000), 3015–3027.
- [7] K. Behrndt and S. Förste, String Kaluza–Klein cosmology, Nuclear Phys. B, 430 (1994), 441–459.
- [8] A. L. Besse, *Einstein Manifolds*, Springer (1987).
- [9] J. P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, in: Conference on Partial Differential Equations and Geometry (Torino, 1988), in: Rend. Sem. Mat. Univ. Politec (Torino, 1989, Special Issue, 143–163).
- [10] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737.
- [11] M. Keyl, Quantum field theory and the geometric structure of Kaluza–Klein spacetime, Class. Quantum Grav., 14 (1997), 629–652.
- [12] K. Maeda and H. Nishino, An attractor universe in six-dimensional N = 2 supergravity Kaluza–Klein theory, *Phys. Lett. B*, **158** (1985), 4381–387.
- [13] M. D. Maia, On Kaluza–Klein relativity, Gen. Relat. Grav., 18 (1986), 695–699.
- [14] B. O'Neill, Semi-Riemannian Geometry, Academic Press (New York, 1983).
- [15] K. Pilch, P. K. Townsend and P. van Nieuwenhuizen, Compactification of d = 11 supergravity on S^4 (or 11 = 7 + 4, too), Nucl. Phys. B, **242** (1984), 377–392.
- [16] U. Pinkall, Hopf tori in S^3 , Invent. Math., 81 (1985), 379–386.
- [17] R. Poppe and S. Schwager, String Kaluza–Klein cosmologies with RR fields, Phys. Lett. B, 393 (1997), 51–58.
- [18] S. Tanaka, Harmonic expansions of fields and fermion mass problem in generalized Kaluza–Klein theory, Progr. Theoret. Phys., 70 (1983), 563–583.
- [19] Z. C. Wu, Quantum Kaluza–Klein cosmologies, Gen. Relat. Grav., 34(2002), 1121– 1128.
- [20] J. H. Yoon, Kaluza–Klein formalism of general spacetimes, Phys. Lett. B, 451 (1999), 296–302.