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ANNA oF Mv ATEMlATQCS 
Vol. 41, No. 4, October, 1940 

HOMEOMORPHISMS BETWEEN TOPOLOGICAL MANIFOLDS 
AND ANALYTIC MANIFOLDS' 

BY STEWART S. CAIRNS 

(Received September 25, 1939) 

1. Existence of the homeomorphisms. By a topological m-manifold, M, 
(m = 0, 1, * * * ) we mean a connected topological space which can be covered 
with a denumerable set of neighborhoods, each of which is an m-cell. We will 
employ, on M, various coordinate systems, each having an m-cell for domain 
and each defined by a homeomorphism between its domain and a region in a 
euclidean m-space, Em. 

Consider a set, X, of coordinate systems whose domains cover M. We will 
say that M is analytic (in terms of the systems X) if every transformation 

(1.1) vs = vi(x) (i = 1, ... , m) 

between two of the systems, (x) = (x1, * *, xm) and (v), whose domains over- 
lap, is analytic with a non-vanishing jacobian. 

Let (y) = (yi, ** *, y.) denote a coordinate system in En. A topological 
m-manifold in En will mean a set of points 

(1.2) M: y = y(P) (i=1,***,n) 

where (1) p is a variable point on a topological m-manifold, M', and (2) the 
correspondence (1.2) between M and M' is a homeomorphism. Let X be a 
set of coordinate systems whose domains cover M'. As p ranges over the 
domain of any system (x), the functions yi(p) can be interpreted as functions 
of (x). If all such functions are analytic and if every functional matrix (Oyj/Oxj) 
is of rank m on its domain, then M will be called an analytic manifold in En 
(in terms of the systems X and the correspondence (1.2)). 

Consider a point set, S, in En. A k-plane, 7rk (k > 1), through a point p 
of S will be called transversal to S at p if it makes angles bounded away from 
zero with the secant lines of some neighborhood of p on S. Any plane, arks is 

called transversal to S (in the large) if it makes angles bounded away from zero 
with all the secant lines of S. 

We will say that a topological m-manifold, M, in En is in normal position if 
it is possible to define, through each point p of M, an (n - m)-plane, ir n-(p), 
in such a way that (1) 7r-m(p) varies continuously with p and (2) 7r`m(p) is 
transversal to M at p. 

Suppose the topological m-manifold, M, can be subdivided into the cells of a 

I Presented to the American Mathematical Society; March 27, 1937, February 25, 1939, 
and October 28, 1939. 
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simplicial complex. It can then be mapped by a homeomorphism into a 
polyhedral complex, Pm, in an En (n > 2m), where the faces of Pm are euclidean 
simplexes corresponding to the cells into which M is subdivided. 

THEOREM I. Given a topological m-manifold, M, there exists a set of coordinate 
systems in terms of which M is analytic. with an analytic Riemannian metric, if 
and only if M can be triangulated so as to have a polyhedral representation, Pm, 
in normal position in some EV. 

This theorem, in so far as the sufficiency of the condition is concerned, is a 
consequence of the following. 

THEOREM' IL. Arbitrarily near any normal position of Pm, there exists an 
analytic manifold in E", homeomorphic to Pm. 

Part of this paper is devoted to an investigation of conditions under which 
a polyhedral manifold Pm can be put into normal position. By showing this 
to be always possible when m = 3, we obtain the following result. The cases 
m < 3 can easily be dealt with by known methods. 

THEOREM III. If a topological 3-manifold, M, can be triangulated, then there 
exists a set of coordinate systems in terms of which M is analytic and has an analytic 
Riemannian metric. 

2. Normal positions and general positions. We now establish the necessity 
of the conditions in Theorem I. Any analytic m-manifold, M, has a homeo- 
morph, M', which is analytic in some euclidean space En (DM, Theorem I). 
The writer has shown' that M' can be so triangulated into cells (a) that (1) the 
vertices of each i-cell determine a non-degenerate m-simplex and (2) the 
totality of the simplexes so determined is a polyhedral manifold, P"', homeo- 
morphic to M' in such a way that corresponding rn-cells have identical vertices 
and that the tangent i-plane to M' at any point of a cell, am' of (i) differs 
arbitrarily little in direction from the m-plane of the corresponding face of Pm. 
Now suppose (p, q) are corresponding points on (P', M') respectively. If 
r"tm(p) is the (n - m)-plane through p parallel to the (n - m)-plane normal 
to M' at q, and if Pm is a sufficiently close approximation to M', then 7r`t(p) 
is transversal to Pm as required by the definition of normal position. For, 
since the faces of pm are approximately tangent to M', the directions of the 
secant lines of any neighborhood on Pm are approximately the same as in the 
case of the corresponding neighborhood on M'. 

The sufficiency proof for Theorem I will not be complete until ?8. 
Consider an arbitrary triangulated topological m-manifold, M. We will 

assume first4 that there exists an upper bound to the number of cells in a star 

2 Our proof of Theorem II will involve methods due to Hassler Whitney. See Dif- 
ferentiable manifolds, Annals of Mathematics, vol. 37 (1936), pp. 646-680. This paper will 
be referred to as DM. 

3 Polyhedral approximations to regular loci, Annals of Mathematics, vol. 37 (1936), 
pp. 409-415. 

4 In 99 a method is given which does not involve this hypothesis. 
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on M. The assumption enables us to imbed Pm in an En, for n sufficiently 
large, so that the vertices on each star of simplexes are linearly independent. 
Pm is then said to be in general position. 

LEMMA. If it is possible to put Pm into normal position, then there exists a 
general position which is also a normal position. 

PROOF. We commence with an auxiliary result. 
(A) If a manifold, M, is in normal position in EY, then it is in normal position 

in any En which contains E' as a subspace. 
For, suppose that wr-`(p) in E' is transversal to M at p and that wrn-(p) in 

En is transversal to E' at p. Then it follows from our definitions that 7rn`'(p), 
determined by ir`"'(p) and ir`-(p) is transversal to M at p. It remains only 
to require that 7r'-'(p) be continuous in p on M. We might, for example, use 
the (n - v)-plane normal to E' at p. 

Now let pm be in normal position in E' C Et, n being so large that En can 
contain pm in general position. Then pm can be brought into a general posi- 
tion, *Pm, by arbitrarily small displacements of its vertices. Let barycentric 
coordinates be introduced on the simplexes of pm and, in precisely the same 
way, on the simplexes of *P`n. Two points on (Pm, *Pm), respectively, will 
correspond if their coordinates are the same. Suppose ir -m(p) is transversal 
to a certain neighborhood, N(p), on Pm. The directions of the secant lines of 
the corresponding neighborhood, N(p*), on *Pm can be made arbitrarily close 
to those of N(p) by suitable restrictions on the displacements carrying Pm into 
*pm. Hence it can be arranged that rn-m(p*) 11 f7r-m(p) shall be transversal 
to *Pm at p*, as required by the definition of normal position. 

3. Planes transversal to Brouwer stars. The triangulated manifold M, or 
its representation pm will be called a Brouwer manifold5 if the star of each 
vertex on pm can be mapped into an Em by a piecewise linear homeomorphism; 
that is, a homeomorphism which is linear on each simplex of the star. 

THEOREM IV. No Pm can be put into normal position unless it is a Brouwer 
manifold. 

This follows immediately from the first sentence in the lemma below. 
For m > 3, it is unknown6 whether every triangulated m-manifold is a Brouwer 

manifold. We show, in ?8, that this is surely true for m = 3. It is obvious 
for m < 3. 

Let trms Urns) be planes, of the indicated dimensions, transversal to each 
other in the euclidean space En. Consider the plane parallel to wn-m through 
any point p in En. This plane meets rm in a point, p', which will be called the 
T _nm-projection of p on rm The locus of p' as p ranges over a point set S will 

5 Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Mathematische Annalen 71 (1912), 
pp. 97-115. 

6 Since this was written, examples of non-Brouwer triangulated manifolds have been 
constructed. See Triangulated manifolds which are not Brouwer manifolds, immediately 
following the present article. 
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be referred to as the 7r -'projection of S on irm. This same expression will be 
used for the mapping of S onto irm in which p and p correspond. The following 
result is then obvious. 

(A) The 7rn-m-projection of S onto 7rm is a homeomorphism if rn-m is transversal 
to S. As a partial converse, if S is bounded and the 7r m-projection of the closure, 
3, of S is a homeomorphism, then 7rn-m is transversal to 9 and hence to S. 
Let Sk = Sk(5s) be a set of simplexes of dimensions (j, *.. ,I k) in EY, where 

(1) Sk is the star of a j-simplex, s, and (2) Sk, regarded as a point set, is a 
k-cell. We will refer to Sk as a Brouwer c-star if it has a piecewise linear homeo- 
morph in an Ek. 

LEMMA. If Sk(sj) can be put into normal position, it is a Brouwer star. Fur- 
thermore, every general position of a Brouwer star is also a normal position. 

As a first step in the proof, we make the following easily verified statement. 
(B) If N is an arbitrary neighborhood on Sk(sj) of a point on s', then every 

secant of Sk(8j) is parallel to a secant of N. 
It follows at once that, when Sk is in normal position, any (n - k)-plane 

rn-k transversal to Sk at a point of s' is also transversal to Sk in the large. 
n-kofSknk The 7r -projection of Sk onto any 7rk transversal to 7n-k affords a piecewise 

linear homeomorphism as required by the definition of Brouwer star. This 
establishes the first statement in the lemma. 

Consider, now, a Brouwer star, sk, in general position in En. By definition, 
there exists a piecewise linear homeomorphism, A = A(Sk), mapping Sk onto 
an Ek. Let (PO, , Pi) denote the vertices of Sk, the notation being so 
assigned that (PO, ... , Pk) are the vertices of some k-cell of Sk. Let (y) = 

(Yl, . * *, yn) be a rectilinear coordinate system in En, relative to which Po is 
the origin and Pi (i = 1, . . ., v) is unit point on the y,-axis. 

We restrict A so that it will map Sk onto the coordinate (Yi, . , yk)-plane 
with Pi self-corresponding (i = 0,. ,k). Let Q : (ail, ,ask, O.. ,O) 
denote the image of Pi (j =k + 1, .I , v) under A, and consider the trans- 
formation of coordinates 

Xi = Yi + asiiyj (i = 1, ...*, k) 
(3.1) 

x; = Ys ( j = k + 1, . .(. , n). 

In terms of the coordinate system (x), Po is still the origin, Pi (i = 1, . , k) 
is the unit point on the xi-axis, and the following are the coordinates of the 
remaining P's and of the Q's: 

(3.2) Pi:(ail, , aik, 0,. .., 0, Xi = 1, O 
, * 0) (j = k + 1, ) 

Qi: (ail, **,ask, Oy.. *** 0) 

Hence, if 7rn-k denote the (Xk+l, .-. , xn)-plane, then A is the 7rn-k-projection 
onto the plane of (PO, * *, Pk). Therefore, by result (A), 7rn-k is transversal 
to Sk, and the proof is complete. 
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4. Spaces of transversal planes. Let Sk be a Brouwer k-star in general posi- 
tion in E'. We will denote with IH(Sk, E') the topological space each of whose 
points is a system of parallel (v - k)-planes transversal to Sk in E', continuity 
being defined in terms of direction cosines.7 The following statements are 
easy to verify. 

(A) If 

(4.1) Sk C E' C En 

then 11(Sk, En) is the set of (n - k)-planes in En which intersect E' in planes of 
the set H(Sk, E'). [Compare the proof of ?2(A)]. 

(B) If sko is a subset of Sk, then 

(4.2) ll(Sk, En) C II (Sk, En). 

We will refer to two topological spaces, 11 and 22, as f3-equivalent8 provided 
the following statement holds: For each j (j = 0, 1, ... ) every (singular or 
non-singular) j-sphere in :1 bounds a (j + 1)-cell if and only if every j-sphere 
in 12 also bounds a (j + 1)-cell. 

LEMMA. Any space II(Sm(sk), En) is ,8-equivalent to a certain space 
II( m-k (so)I En-k). 

PROOF. We take so as the barycenter of 5k, and Enk as the (n - k)-plane 
normal to 5k at so. The star Sm-k = S-k(s?) is defined as the projection of 
Stm = Sm(sk) onto En-k. We commence with the following auxiliary result. 

(C) Suppose rn-m belongs to ll(Sm, En), and let rk denote the k-plane of sk. 
Then the plane 7n-m+k determined by 7rn-r and 7rk belongs to 11(Sm-k, En). 

In the first place, we note that the secants of S m-k are a subset of those of sm. 
With the aid of ?3(B), one can verify that if 1 is a line in E n whose irk-projection 
is a secant of Sm-k k then 1 is parallel to a secant of St. Since every line on 
7 n-m+k is parallel to irk or else has the same rk -projection as a line on 7rn-m it 

follows that the only secants of Sm parallel to Tn-.+k are also parallel to 7rk. 
Hence no secant of Sm-k is parallel to 7rn-m+k. Since the secants of Smk are a 
closed set, result (C) follows at once, It also follows that II(Sm kit En-k) con- 
sists of the intersections of En-k with planes such as ln-nm+k. 

An (n - m)-plane rn-, on 7rn-m+k belongs to ll(Sm, En) if it contains no line 
parallel to irk. Any subset of II(S', En) consisting of planes whose angles with 

k all exceed t9 > 0 can therefore be homotopically deformed in ll(Sm, En) so 
that each rn-m remains in a single plane such as rn-m+k and is carried into its 
7r k-projection on E n-. Now suppose every sphere in ll(Sm, En) bounds a cell. 
Since 1(S mki En k) is a subset of H(Sm, En), any sphere, fl', in the former 
space bounds a cell, a,)+1 in the latter. Some deformation of the sort just 

7 S. S. Cairns, The direction cosines of a p-space in euclidean n-space, American Mathe- 
matical Monthly, vol. 39 (1932), pp. 518-523. 

8 The stronger condition of complete homology equivalence (cf. Alexandroff-Hopf, 
Topologie I, 1935) might be established for the spaces we treat. However, we need only 
,8-equivalence. 
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described will leave 1i fixed and will carry au'l into a (j + 1)-cell in II(S"-m, 
Ef-k). Hence every sphere in nI(Smk E -k) bounds a cell in [I(S -k, En-k). 

Suppose conversely that, in fl(S,-k, En-k), every sphere bounds a cell: in 
other words, can be shrunk to a point. An arbitrary sphere in II(S', En) can 
be deformed, as above, into a sphere in 11(S-k, En-k) and then further shrunk 
to a point. This completes the establishment of the lemma. 

5. 13-equivalent spaces of maps. Corresponding to a Brouwer k-star, Sk, we 
define a space of mappings A(Sk) as follows. Each point of A(Sk) can be repre- 
sented by a piecewise linear homeomorphism of Sk into an Ek. Two such 
homeomorphisms represent the same point of A(Sk) if and only if one can be 
carried into the other by a linear transformation of Ek. Let (P1, i , PO) be 
the vertices of Sk and (P, *.* , P) their respective images under a piecewise 
linear homeomorphism representing a point, Xo, of A(Sk). A neighborhood, 
N(Xo), in A(Sk) will correspond as follows to any set of neighborhoods, Ni(P,) 
(i = i, o, v), in Ek: A point of A(Sk) belongs to N(Xo) if and only if it can 
be represented by a piecewise linear homeomorphism carrying Pi into Ni(P') 
(i = 1, * * , v). Thus A(Sk) is defined as a topological space. 

LEMMA 5.1. There exists a homeomorphism between A(Sk) and II(Sk, Et) 
provided (1) Sk is in general position in E' and (2) no n-plane with n < v contains 

xk. 

PROOF. Let Ek be determined by the vertices (PO, * . , Pk) of a particular 
k-simplex of Sk. Since two piecewise linear homeomorphisms of Sk into EBk 
represent the same point of A(Sk) if they are related by a linear transformation 
of Ek, we can obtain unique representations for the points of A(Sk) by stipulating 
that (PO, * * , Pk) be self-corresponding. Comparing the proof of ?3, Lemma, 
we see that a homeomorphism between I(Ik EB) and A(Sk) is defined if each 
element irtk of the former space be associated with the 7r.k -proj ection of 
Sk onto Ek. 

LEMMA 5.2. If En D E', then II(Sk, En) is 1-equivalent to 11(Sk, E') and hence 
to A(Sk). 

This can be proved, on the basis of Lemma 5.1, by reasoning as in the proof 
of ?4, Lemma. 

Given Sk = Sk(s), let po be the barycenter of s'. We will denote with AO(Sk) 
the subspace of A(Sk) consisting of those elements which map all the boundary 
vertices of Sk onto the unit (k - 1)-sphere in Ek about the image of po . 

LEMMA 5.3. The spaces A(Sk) and AO(Sk) are A-equivalent. 
PRooF. We represent all the points of A(Sk) by elements mapping po into 

the origin, 0, in Ek and mapping the vertices of some particular k-cell into 
prescribed images on the unit (k - 1)-sphere Sk' about 0. Let Xo denote any 
element of A(Sk), thus restricted, and let qo be the image of any vertex, p, of 
Sk under Xo. Let q1 denote the intersection of Sk-l with the ray OqO . We then 
denote with Xt that element of A(Sk) which carries each vertex p into the point 
qf on the segment qoql such that qoqt = tsqoql . As t increases from 0 to 1, Xt 
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defines a deformation of Xo into Xi. By applying this deformation simultane- 
ously to all the elements X, we deform the whole space A(Sk) into AO(Sk). Using 
this deformation, one can complete the proof as in the case of ?4, Lemma. 

6. The space of triangulations T(Tki1). Given a Brouwer star Sk = Sk( 
let the points of AO(Sk) be represented by homeomorphisms carrying the vertices 
(s8, P1, ... , Pk) of some k-cell into specified images (0, Q1, ... , Qk) in Ek. 
Let Zk denote the image of Sk under some such homeomorphism, X. By defini- 
tion of AO(S), the boundary, Bki, of 2k has all its vertices on the unit sphere, 
Sk-l, about 0. The central projection from 0 onto Sk-l maps Bk-i into a geodesic 
triangulation, -rk1, of sk ; that is, one in which each cell appears as a simplex 
relative to some local coordinate system in which arcs of great circles are repre- 
sented as straight lines. This implies that the closure of each cell of tr k is 
on an open hemisphere of Sk-i, in other words that each 1-cell is less than 1800. 
Let T(rki-) be the following topological space. Its points are geodesic tri- 
angulations of sk-1 homeomorphic to t kl with Qi (i = 1, * , k) self-correspond- 
ing. If rT 

- 
is any such triangulation and Qi (i = 1, io, v) are its vertices, 

then a neighborhood, N(r*-1), in T(rTk-) corresponds as follows to a given set of 
neighborhoods Nj(Qj) (j = k + 1, ***, v) of the points Qj on Ski: N(rTo) 
consists of all elements of T(rk-i) for which the vertex corresponding to Qj lies 
in N,(Q,). 

The following lemma is a direct consequence of our definitions. 
LEMMA. The spaces T(rk-) and AO(Sk) are homeomorphic under the correspond- 

ence induced by the central projection from 0. 

7. A sufficient condition in the normal position problem. THEOREM V. A 
sufficient condition that it be possible to put a Brouwer m-manifold into normal 
po0?tion is that, in every space l(S i(80), E') [or A(Sk) or T(r-i)], every 
(m - k - 1)-sphere bound an (m - k)-cell9 (k = 0,. , m - 1). 

The proof will occupy this section and the next. 
(A) Let v be a positive constant less than 1/(m + 1). If s' be any j-simplex, 

j < m, then the n-core, A', of a' will mean the set of points where all the bary- 
centric coordinates for 8' exceed q. In the case j = 0, we have y0 = . 

We now consider an m-simplex, sm, and define on it certain neighborhoods, 
N(y'), where Y' is the n-core of a typical bounding simplex, s', of Sm. The 
definition will be recurrent in j = 0, * * *, m. To define N(y0), we choose bary- 
centric coordinates (uo, ... , ur) on s' so that us = 0, (i = 1, ... , m) at . 
We then make the definition 

(7.1) N(y0): 0 _ ui ? We (i=1, *, m). 

To define N(y'), 0 < j < m, choose the barycentric coordinates so that u= 0 

9 For k = 0, the space T(rk1) is vacuous, and the condition becomes trivial. 
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(i = j + 1, * , m) oniy'. Assume the N(ye) all defined (k = 0, .*. j-1). 
We define a region N'(7y) as follows: 

(7.2) N'('y): O- ui (i = j + 1, ,m) 

and then make the definition 

(7.3) N(y) = N'(ey') - N(ty), 

the summation being over the n-cores of all bounding k-simplexes of s' (k < j). 
Then N(,y) is a closed, box-like, m-dimensional region with yj for one face. The 
simplex em is covered by ym plus the regions N('y) (j < m). These regions are 
distinct, save for common faces. The accompanying figure illustrates the defini- 
tions when m = 2. 

Any core y', 0 < j < m, is parallel to a certain bounding simplex, *Iyj of ym. 
In case j = 0, *by. will denote the vertex of ym nearest y0. Let Om"J-l denote the 

off/ N(') \ 

bounding simplex of y' opposite *,y. Consider any point, q, on y'. We will 
denote with Bm-i(q) the intersection of N(y') with the (m - j)-plane determined 
by q and m-1-l- Then Bm-i(q) is a box-like (m - j)-dimensional point set. 
As q ranges over the closure of al, the sets Br-'(q) fill out the region N(y') in 
continuous one-to-one fashion. 

(B) If q is on the boundary of y', then Bmi(q) is common to the boundaries 
of N(yj) and some N(Yk) where k < j. 

Now let sm be any m-simplex of Pm and s' any bounding simplex of Sm. with 
y' denoting its n-core. We will then use the notation 

1(yi) = E N~y') 

()q) = siB(q) q ony 

where S(s') is the star of sj on Pm. 
Our proof will consist in assuming the condition of the theorem and construct- 

ing suitable transversal planes 7rn-(p). We take Pm in general position in 
E". The method will be recurrent, with the following basic hypothesis. 
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HYPOTHESIS I. For some value j of the set (1, * *, m), a plane 7r'-m(p) has 
been defined so as to vary continuously with p on the sum of the neighborhoods 
91(7k) (k < j) and so as to be transversal to Pm at p. 

The initial step of the recurrency falls into two parts. We first select arbitrary 
transversal planes, rn-m(p), at the vertices (s? , s? , ) = ('y 0, . ) 
[see (A) above] of Pm. This is possible, by ?3, Lemma, since Pm is a Brouwer 
manifold. We then define 7rn-m(p) on the 9(y0) by the requirement 

(7.5) Tn-m(p) j1 7ln-m(OY) p on %(y), 

together with the requirement that 7rn-m(p) pass through p. The verification 
of hypothesis I for j = 1 depends on ?4 (B), to be applied where k = m, Sk = 

S(s?), and Sk is the star of any simplex of Pm incident with s? . 

8. The general step of the recurrency. Hypothesis I would be a sufficient 
basis for the proof of Theorem V. The following hypotheses are used to secure 
regularity restrictions which will enable us to prove Theorem II. The initial 
step in ?7 satisfies all these hypotheses. 

HYPOTHESIS II. If pi and P2 are common to any ?3k(q), then 

(8.1) 7n-m(pl) 11 7rn (p2) 

HYPOTHESIS III. There exists a function t -i(P) such that, if R(p) denote the set 
of points on 7rn-m(p) within distance t -i(p) of p, then the sets R(p) fill out, in one- 
to-one fashion, a closed neighborhood, R _1, in En of the inner points of the 91(,yk) 

(k < j). 
HYPOTHESIS IV. If 7rn-m(p') denote the plane of the set 7r'-m(p) through any 

point p' of Rj_1, then r7r-m(p'), regarded as a mapping of R3-1 into the space of 
all (n - m)-planes in E , is differentiable.10 

The general step of the recurrency extends the definition of 7rn-m(p) over the 
neighborhoods 9(y'). We break this step into two parts. In the first part, 
we extend the definition over a typical ti-core, yj. In the second part, omitted 
when" j = m, we extend it over the rest of 91('y'). 

The definition of 7r'-m(p) maps s' - yj differentiablyl'-into II(Sm(sj), En), 
which is p3-equivalent to some space II(Sm-j(so), En-j) [see ?4, Lemma]. Since 
the boundary of yj is a (j - 1)-sphere, the condition of Theorem V, read with 
k m - j, implies that the mapping of s' - can be extended over yj. As a 
result of Theorem 7 in DM, the extension can be made so as to give a differenti- 
ablel0 mapping of the whole of sj into II(Sm(Sj), En). By such a mapping, we 
extend the definition of 7r-m(p) over yj. 

If, now, q is any point of y', and p is any point of 13m(q), 7r'-m(p) will mean 
the (n - m)-plane through p parallel to 7r`m(q). This completes the definition 
of 7rn-,(p) on the neighborhoods %(,Y). 

10 This term has meaning here, because nG(Sm(si), En) is a subspace of the space of all 
m-planes in En, and this latter space can be interpreted as an analytic manifold in some 
euclidean space (cf DM, ?24). 

11 The proof of the theorem is completed with the first part of the step j = m. 
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The preservation of Hypotheses II and IV is an immediate consequence of 
the construction. In Hypothesis I, the transversality requirement is easy to 
verify, for the value j, with the aid of ?4 (B), and the continuity requirement 
follows with the aid of ?7 (B) and Hypothesis II. In establishing the preserva- 
tion of Hypothesis III, it is convenient to consider the two parts of our general 
step: (1) the extension of 7r'm(p) over y' and (2) the extension over the rest of 
91(y'). The preservation during part (1) can, since Hypothesis IV is preserved, 
be proved by the methods of DM, Lemma 21. During part (2), Hypothesis III 
is preserved by virtue of the parallelism requirement in Hypothesis II. 

9. Completion of the proofs of Theorems I and II. (A) If a Pm be in normal 
position, then transversal planes 7r'-m(p) can be constructed by the recurrency in 
??7 and 8. 

For, if 7r'(p) denote any set of transversal planes relative to which Pm is in 
normal position, then one can construct, using the methods of the recurrency 
with -q sufficiently small, an arbitrarily close approximation, T"rm(p), to 7r'(p). 

We are now ready to establish Theorem II, thus incidentally completing the 
proof of Theorem I. We assume Pm in normal position, with transversal planes 
ir"m(p) defined as in ??7 and 8. Hypotheses III and IV impose conditions 
which permit the application of Parts IV and V in DM, read with the following 
substitutions. 

(1) The differentiable manifold, M, in En is to be replaced by the polyhedral 
manifold, Pin in normal position in E'. 

(2) 7r-m(p) plays the role of the plane P(p), approximately normal to M at 
a point p. 

(3) For a given point p on Pm, let s'(p) denote the simplex containing p. 
Assuming a fixed numbering (se, sY , *** ) for the m-simplexes of Pt, let s~i 
denote the m-simplex with the smallest subscript belonging to the star of s'(p). 
The m-plane, r(p), of s'i replaces the tangent m-plane, T, to M at a point p. 

The relevant parts of Whitney's work can be outlined as follows, in their 
application to the construction of an analytic manifold M* homeomorphic to 
Pm. First, an analytic (n -l)-manifold S, surrounding Pt, is defined. This 
is done with the aid of a function, ('(p), continuous in R(Pm) = Rm (see Hy- 
pothesis III above), zero on Pt, and positive and analytic in R(Pm) - Pm. 
From V', there is subtracted a small positive analytic function, W(p), such that 
the equation 

(9.1) ?'(p) - @(p) = 0 

determines a suitably restricted'2 analytic manifold, S. This manifold is such 
that if 7rn-m passes through a point p in R(Pm) and has direction cosines suffi- 
ciently close to those of r`tm(p) [cf. Hypothesis IV above], then (1) 7r'-' is 
transversal to r(p'), p' being the point where 7r'-m(p) intersects Pt, and (2) 
Tn-m meets S in an analytic (n - m - 1)-sphere S*(p, 7rn-m) contained in 

12 The restrictions are obtained by conditions on A', w, and their gradients. 
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R(P"). Let Q*(p, i) be the part of mr" inside S*(p, ir"m). The following 
results are then proved. (1) The vector function g(p, wr) representing the center 
of mass of Q*(p, ir) is analytic. (2) If ir*(p) is a sufficiently close anlytic ap- 
proximation to ir'"(p) through first order derivatives, then the locus of the 
centers of mass g(p, ir*(p)) is an analytic manifold, M*, homeomorphic to pm. 

This manifold can be made arbitrarily close to Pm. 
If it is desired merely to make Pm, and hence M, differentiable to any given 

order r e (1, 2, * * *, X ), this can be done as follows. Construct 7r'-(p) by 
the recurrency of ??7 and 8 so that it is of class C7 in R(Pm). On each r(p), 
let there be introduced a fixed rectangular cartesian coordinate system, with its 
domain restricted to the part of r(p) inside R(Pm). If p' denote a point on 
such a domain, then the plane Tr -(p') [see Hypothesis IV] meets Pm in a single 
point near p'. This affords a mapping which carries the coordinate system 
from r(p) onto Pm. In terms of coordinate systems thus defined on Ptm, the 
latter is of class C' since the transformation between any two such systems agrees 
with the correspondence established by 7r'-m(p) in R(Pm) between rectangular 
cartesian systems and two r-planes 'r(po) and r(pi). This method enables us 
to dispense with the hypothesis that there be an upper bound to the number 
of cells in a star on pm [see footnote 4]. For we can apply the above argument 
over a sequence of finite subcomplexes each containing the preceding and, in 
the limit, covering M. This makes the entire manifold M of class Cr. It then 
remains only to apply DM, Theorem 1. 

The existence of differentiable approximations to polyhedral manifolds was 
prematurely asserted by the writer1, who is indebted to Hassler Whitney for 
calling his attention to the incompleteness of his work. The results of the 
present paper include the theorem of the abstract only for the case m = 3. 
This is the strongest such theorem which the writer has thus far proved. 

10. The Brouwer nature of M (m _ 3). LEMMA. Let S be any star of an 
(m - k)-cell on a Pm. Then, if k ? 3, it is possible to map S by a piecewise 
linear homeomorphism into an Em. 

PROOF. In view of ?4, Lemma, and the work in ?6, it is sufficient to show 
that any triangulation (cr) of a (k - l)-sphere, Sk-', can be mapped homeo- 
morphically into a geodesic triangulation of a (k - 1)-sphere. The proof is 
trivial for k < 3, so we restrict ourselves to the case k = 3. We employ a 
recurrency with the following basic hypothesis. 

HYPoTHEsIs. For some value j > 0, a subcomplex (o) j of (a), consisting of 
j 2-cells with their boundaries, has been mapped topologically into a geodesic 
complex (r,) on S2 so that the part of S2 not covered by (T) j is the sum of a 
finite number of convex regions, the closure of each of which is a subset of an 
open hemisphere and none of which has three of its boundary vertices on a 

Is Bulletin of the American Mathematical Society, vol. XL (1934), Abstract 67. 
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great circle. If ,3 is the boundary of any one of these regions, p, then the image, 
p3', of ,3 bounds a subcomplex (a)* of (a) containing no 2-cell of (7) i . 

For the initial step of the proof, consider any vertex, P, of (a). It is then a 
simple matter to map the closure of the star S(P), relative to (a), into a complex 
(r) i so that the conditions of the hypothesis are fulfilled for j equal to the number 
of 2-cells on S(P). 

To define the general step, using the notation of the hypothesis, let P be a 
vertex on #' and let S(P) denote its star relative to the subcomplex (u)* of (o). 
There is no difficulty in mapping S(P) onto (,3 + p) so as to secure the condi- 
tions of the hypothesis for a larger value of j. After a certain finite number 
of such steps, the mapping will be complete. 

COROLLARY. Every Pm (m < 3), and hence every triangulated m-manifold 
(m < 3), is a Brouwer manifold. 

This is the special case of the lemma in which m ? 3 and k = m. 

11. Establishment of Theorem III. The case m = 4. LEMMA 11.1. It is 
possible, for any Pm in general position, to define 7r'-m(p) on the regions 9(y') 
(j > m - 3) so that 7rn-m(p) will be continuous in p and will be transversal to Pm 
at p. 

PROOF. We will assume m ? 3, so that there will exist stars S(sm3). The 
lower-dimensional cases require only part of the following argument. By ?10, 
Lemma, every S(sm-3) is a Brouwer star. Hence, given a point po on any 

m-32 we can define a plane rn-m(po) transversal to Pm at po. We can then 
extend the definition as p ranges over the y-3 containing po by the requirement 
Tn-m(p) 11 7r-m(po). Since the ym-3 are bounded away from one another, this 
can be done independently for each of them. It is then possible to proceed 
with the recurrency of ??7 and 8, starting with the second part of the step 
j = m - 3. In order to apply the condition of Theorem V, as in ?8, to the 
remaining steps, we have to note that (1) in any T(r'), every (m - 3)-sphere 
bounds'4 a cell, (2) in T(rO), every (m - 2)-sphere bounds a cell, and (3) every 
(m - 1)-sphere bounds a cell in T(r-') [see footnote 9]. 

The case m < 3 gives the following result. 
COROLLARY. Every Pm (m ? 3) can be put in normal position in some En. 
From this corollary and Theorem II, we deduce Theorem III. 
LEMMA 11.2. If every T(r2) is connected, then every Brouwer 4-manifold can 

be put in normal position. 
PROOF. The connectedness of the T(r2) being assumed, we have only to 

note that the T(rl) are simply connected'4 and that the higher-dimensional 
connectivities of T(r') and of T(Tr1) satisfy the conditions of Theorem V. 

Thus the normal position problem for Brouwer 4-manifolds reduces to the 
following. 

14 For, T(r1) is a 1A-cell, where , + 2 is the number of vertices of r1. 
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DEFORMATION PROBLEM. Given two geodesic triangulations, (a) and (r), of 
a 2-sphere, which correspond under an orientation-preserving homeomorphism, 
does there exist a continuously varying geodesic triangulation (U)t (O _ t _ 1), 
such that (U)o = (a), (a-)1 = (T), and (U)t is always homeomorphic to (U)o? 

Some of Tietze's work' has a bearing on this deformation problem, but the 
writer has not succeeded in obtaining a solution save in a few special cases. 

(A) It follows from Theorem II and Lemma 11.2 that every 4-dimensional 
Brouwer manifold can be made into an analytic Riemannian manifold if the 
deformation problem has an affirmative solution. 

QUEENS COLLEGE, 

FLUSHING, N. Y. 

16 Renditiconti del circolo matematico di Palermo, vol. 38 (1914), pp. 247-304, especially 
Satz IV on p. 280. 
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