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0. Introduction

The purpose of this paper is to give the reader an impression of various tech-
niques used in controlled algebra. Controlled algebra was introduced by Connell-
Hollingsworth and developed by Quinn [4, 10] in connection with foundational
studies in topological manifold theory. Suppose given a ring R and a space X,
possibly with some extra structure such as a metric. The objects studied in con-
trolled algebra are free based R-modules together with a map π from the basis to
the metric space X. One usually requires that the image of π is nowhere dense
in X, and that π−1(x) is finite for all x in X. For every point x in X we denote
the free R-module generated by π−1(x) by Ax. A morphism ϕ between objects
A and B can now be given a matrix decomposition as ϕ = {ϕy

x} where ϕy
x is the

composition Ax → A
ϕ−→ B → By. Control is then a requirement that ϕy

x = 0 if
x is “too far away” from y. In this paper we shall consider X exhibited with a
metric and require the existence of a k such that ϕy

x = 0 if the distance from x to
y is bigger than k. These are the bounded categories introduced in [7]. Notice that
even in the case when X is compact, this category is a little more that just the
category of R-modules; indeed the hom-sets come exhibited with a filtration.

Controlled algebra is used to guide geometric constructions. Suppose given a
manifold or CW-complex with a reference map to a metric space. The cellular
chains of the CW-complex or the cellular chains of a handle-decomposition of the
manifold, can be interpreted as being the chain complex in a controlled category,
by associating each generator, which comes from a cell in the space, to the image of
the barycenter of the cell. By subdividing we can obtain that the boundary maps
are in as low filtration degrees as we want.

Geometrically there are two basic moves. The first one is handle addition, con-
sisting of sliding one cell (or handle in the manifold case) across another cell in a
cell-decomposition. Algebraically this corresponds to changing the boundary map
in the cellular chain complex by an elementary matrix. Sliding a cell across an-
other cell will typically increase the diameter of the cell. The purpose of controlled
algebra is to keep track of how much this diameter increases. The second basic
geometric move is to introduce a pair of canceling cells at an appropriate spot,
and then use these extra cells in the cell-slidings. These extra cells are used in
the cell-slidings. This can sometimes help avoid increase the diameters of the cells
too much. Algebraically, introducing a pair of extra canceling cells or canceling
handles corresponds to stabilization – introducing an extra generator in adjacent
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dimensions letting the boundary map send generator to generator. In the cell-
complex situation this is obtained simply by wedging on a disc at an appropriate
point.

We can perform many handle additions simultaneously as long as we do it locally
finitely. Since every handle addition increases the size of the handle, we also have
to make sure that we do not reuse handles that have already been increased in size
in a given step. This means that we need to divide the basis in two groups, and
only slide handles corresponding to elements in the first group across handles in the
second group. These moves are then expressed algebraically by a 2× 2 elementary
block matrix e = ( 1 A

0 1 ). We define the size of e as the size of A, the size of A being
an expression of how far away a generator is sent. This size is clearly a measure
of the increase in the size of the cells. Repeating this procedure a finite number of
times will preserve some control, so in general we define a deformation E to be a
composition of such elementary deformations e and we define the size of E to be
the sum of the size of ei when E is the product of the ei’s. We say that α can be
δ-deformed to β if α ·E = β and the size of E is less than δ. A very useful algebraic
result due to Quinn is that once an automorphism α is sufficiently small, then we
may stabilize α, and deform in a small way to an arbitrarily small automorphism
i. e. there exists an εX only depending on the metric space such that for every
ε < εX there is a δ so that if α is δ-controlled, then after stabilization, α can be
ε-deformed to an automorphism of arbitrarily small control. The crucial point is
that δ only depends on ε and X, not on how small we want the automorphism to
be. We present a new proof of this result below.

In a final section, we give a new proof of topological invariance of Whitehead
torsion. Controlled algebra comes into the picture as follows: If h : K → L is
a homeomorphism between finite polyhedra, we can use simplicial approximation
to approximate h by a simplicial homotopy equivalence with simplicial homotopy
inverse g. If f and g are chosen close enough to h and h−1, the tracks of the ho-
motopies f ◦ g ' id and g ◦ f ' id will be small. Following the usual Whitehead
prescription represents τ(h) by a controlled automorphism. The point here is that
since polyhedra are locally simply connected, it is unnecessary to specify paths be-
tween the barycenters of simplices, provided that these simplices are close together.
Thus, the usual passage to Zπ1L-modules is replaced by a passage to geometric
algebra. We now use a standard algebraic trick to pass from a K1-problem in ε-δ
controlled algebra to an equivalent K2 problem in Pedersen-Weibel’s bounded al-
gebra. It turns out we can show the Whitehead torsion is in the image from a
certain K2-group. We compute this K2-group to be ±π which is precisely what is
divided out in K1(Zπ) in the definition of the Whitehead group. Basically we prove
that the Whitehead torsion of a homeomorphism is in the image of the K-theory
assembly map, and hence trivial in the Whitehead group.

Other algebraic approaches to the topological invariance of Whitehead torsion
are given by Quinn in [9], and Ranicki and Yamasaki in [11]. They use an ε
controlled K1-group, Kε

1 , where we use an ordinary K2 of an additive category in
the sense of Bass [1].

1. A Category of metric spaces and eventual Lipschitz maps

We shall work in the category of metric spaces and eventual Lipschitz maps.
There are several similar, slightly conflicting concepts in the literature, such as the
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uniformly bornologous maps in [12] and eventual Lipschitz maps in [8] and in [13].
The following definitions seem appropriate for the purposes of this paper:

Definition 1.1. The category M of metric spaces and eventual Lipschitz maps
has as objects arbitrary metric spaces. An eventual Lipschitz map f : M → N is a
not necessarily continuous map satisfying:

(i) The inverse image of every bounded subset of N is bounded in M .
(ii) There exist r and k, depending only on f , so that for all x, y ∈M d(f(x), f(y)) <

k · d(x, y) + r.

Subspaces are given the induced metric and product spaces are given the max
metric. A homotopy of morphisms f0, f1 : M → N is a morphism F : M × I → N
which restricts to f0 and f1 on the ends. It follows immediately that maps f0 and
f1 are homotopic if and only if d(f0(x), f1(x)) is uniformly bounded.

To relate this to similar notions, we recall Gromov’s notion of quasi-isometry [5]:

Definition 1.2. Let X and Y be metric spaces and let F : X → Y be a function.
F is a (K, c)-quasi-isometry (c ≥ 0 and K ≥ 1) provided that for all x, y ∈ X

(1/K)d(x, y)− c ≤ d(F (x), F (y)) ≤ Kd(x, y) + c

Metric spaces X and Y are quasi-isometric if there are quasi-isometries in both
directions. This is clearly equivalent to saying that there is a quasi-isometry F
from X to Y and a constant C such that every point of Y is within C of the image
of X.

A homotopy equivalence in the category M is therefore a quasi-isometry in the
sense of Gromov and homotopy equivalent spaces are quasi-isometric.

Remark 1.3. All notions of this section make equally good sense if we replace
the metric spaces by pseudo-metric spaces, since the condition d(x, y) = 0 implies
x = y is not really needed. This is useful, for instance, in case we have a map
p : M → X and we want to use the pseudo-metric ρ(m1,m2) = d(p(m1), p(m2)) to
measure distances in M .

2. Bounded algebraic categories

Given a ring R and a pseudo-metric space M , we define a category CM (R).
The model case of our definition is the case in which M is the infinite open cone
O(K) = {t · x ∈ Rn+1|t ∈ [0,∞), x ∈ K} on a complex K ⊂ Sn ⊂ Rn+1 and
R = Zπ, with π a finitely presented group. The metric on O(K) is inherited from
the surrounding Euclidean space.

Definition 2.1. An object A of CM (R) is a collection of finitely generated free
based right R-modules Ax, one for each x ∈ M , such that for each ball C ⊂ M of
finite radius, only finitely many Ax, x ∈ C, are nonzero. A morphism ϕ : A→ B is
a collection of morphisms ϕx

y : Ax → By such that there exists k = k(ϕ) such that
ϕx

y = 0 for d(x, y) > k. The bound of ϕ i denoted bd(ϕ) is the minimal such k.
The composition of ϕ : A→ B and ψ : B → C is given by (ψ◦ϕ)x

y =
∑

z∈M ψz
yϕ

x
z .

The composition (ψ ◦ ϕ) satisfies the local finiteness and boundedness conditions
whenever ψ and ϕ do.

This makes CM (R) into a filtered additive category, where Fd hom(A1, A2) con-
sists of morphisms having bound ≤ d.
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Definition 2.2. The idempotent completion CM̂ (R) of CM (R) is the category
whose objects are pairs (A, p) where A is an object of CM (R) and p : A → A is
idempotent. A morphism ϕ : (A1, p1) → (A2, p2) is a morphism ϕ : A1 → A2 in
CM (R) such that ϕ = p2ϕp1. The filtration degree of ϕ is the smallest d such that
ϕ = p2fp1 for some f ∈ Fd hom(A1, A2) with fp1 = p2f .

Given a ring R we denote the Quillen K-theory spectrum by K(R). The non-
connective Bass-Quillen spectrum which includes the negative K-groups is denoted
K−∞(R).

Theorem 2.3. (Pedersen-Weibel [8]) If P is a finite polyhedron and ∗ ≥ 0, then

π∗−1(P+ ∧K−∞(R)) = H∗−1(P ;K−∞(R)) ∼= K∗(CÔ(P )(R)).

It is easy to see that an additive category is cofinal in its idempotent completion.
It thus follows that the idempotent completion only affects the K-groups in degree
0, so we have

H∗−1(P ;K−∞(R)) ∼= K∗(CO(P )(R))

for ∗ ≥ 1. In particular, we have

K1(CO(P )(R)) ∼= H0(P ;K−∞(R)).

The group K1(CM (R)) has a “classical” description: it consists of equivalence
classes of pairs (A,α), where A is an object of CM (R) and α : A → A is an
automorphism. If B is another object in CM (R), then α is equivalent to α ⊕ id :
A ⊕ B → A ⊕ B. In addition, id is declared to be equivalent to α if α is an
elementary automorphism as in Definition 3.1 below. We shall also be discussing
K2 classically as the limit of the endomorphism ring of an object under inclusion
of direct summands.

One purpose of this paper is to relate the bounded K-theory of O(P ) to the
controlled or “ε-δ” K-theory on P in the sense of Chapman and Quinn[3, 10]. We
will begin by showing that for each finite polyhedron P there is a critical size εP so
that automorphisms in CP (R) which have bounds less than εP can be “deformed
by small moves” to automorphisms with arbitrarily small bounds.

3. Squeezing K1 and K2

Consider a finite simplicial complex K. As an additive category, CK(R) is equiv-
alent to the category of finitely generated free R-modules, since K is eventual
Lipschitz equivalent to a point. However, as a filtered category the situation is
different. We consider the filtration of the hom-sets given by the bounds on the
morphisms. It is the aim of this section to prove that given K there is an ε so
that if an automorphism and its inverse are both bounded by ε, then the automor-
phism may be given a small deformation to an automorphism with arbitrarily small
bounds. We introduce some definitions:

Definition 3.1. Let X be a metric space.
(i) If A is an object in CX(R), a morphism η : A→ A is strictly triangular with

respect to an internal direct sum decomposition A = A1 ⊕ A2 if η factors

as A → A1
η′−→ A2 → A. We will denote the elementary automorphism

id+η : A→ A by eη when η is strictly triangular.
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(ii) If η : B → C is a morphism in CX(R), η≤k will denote the morphism such
that:

(η≤k)x
y =

{
ηx

y if ||x||, ||y|| ≤ k

0 if ||x|| > k or ||y|| > k.

(iii) If eη : A → A is an elementary automorphism in CX(R), then e≤k
η will

denote the elementary automorphism id+η≤k.
(iv) We will say that an object A in CX(R) has support in Y ⊂ X if Ax = 0

for all x /∈ Y . We will say that a morphism α : A → B in CX(R) has
support in Y if αx

y = 0 whenever x or y /∈ Y . We will say an elementary
automorphism eη has support in Y if η has support in Y .

Remark 3.2. In the definition above, since the direct sum decomposition is re-
quired to be internal, and Ai are objects in the category we have an internal direct
sum decomposition Ax = (A1)x ⊕ (A2)x for each x ∈ X. Notice that there are two
different kinds of “cutting off” in the definition above, one by morphisms and one
by objects.

Remark 3.3. If {eηi
} is a collection of elementary automorphisms on CO(K)(R)

and
∏n

i=1 eηi
= 1, then

∏n
i=1 e

≤k
ηi

, k large, will be equal to 1 for ||x|| sufficiently
large or sufficiently small, but may be nontrivial in the band k−

∑
bd(eηi

) ≤ ||x|| ≤
k +

∑
bd(eηi

). Compressing this band onto a single copy of K, say ||x|| = k, we
obtain an object in CK(R) and an automorphism of this object. By choosing k to
be large, we can force this automorphism to have bound as small as we like, in the
original metric on K, since it is bounded in the metric which has been multiplied
by k. This construction will be used in the proof of Theorem 3.7, which is our main
squeezing theorem.

Lemma 3.4. If α : A→ B and β : B → C are morphisms in CX(R),
(i) bd(β ◦ α) ≤ bd(β) + bd(α).
(ii) bd(α≤k) ≤ bd(α).

(iii) If e =
(

1 η
0 1

)
, then bd(e) = bd(η).

(iv) If α, ᾱ : A → B and β, β̄ : B → C are morphisms with αx
y = ᾱx

y and βx
y =

β̄x
y for x, y ∈ S ⊂ O(K), then α ◦ β = ᾱ ◦ β̄ away from a (bd(α) + bd(β))-

neighborhood of boundaryS.

For the rest of this section, we will assume that Rn has the max metric so that
the unit ball is

∏n
i=1[−1, 1]. By a cubical subcomplex of the boundary of the unit

ball in Rn, we will mean a complex consisting entirely of faces of
∏n

i=1[−1, 1]. To
see that every finite polyhedron is PL homeomorphic to such a cubical complex,
take the standard n-simplex ∆n to be the convex hull of unit vectors e1, . . . , en+1

in Rn+1. A PL homeomorphism from ∆n to a cubical subcomplex of the cube∏n+1
i=1 [0, 1] in Rn+1 is given by sending each barycenter ̂〈ei0 , . . . , eij 〉 to ei0 + · · ·+

eij and extending linearly. This PL homeomorphism takes each simplex of ∆n

onto a cubical subcomplex of the cube. Since every finite simplicial complex K
is isomorphic to a subcomplex of some ∆n, composing with the homeomorphism
above produces a cubical subcomplex of the cube which is PL homeomorphic to K.
Closer inspection shows that the cubes are obtained by amalgamating simplexes of
the first barycentric subdivision of K.

Recall the following basic matrix identity
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Lemma 3.5. (6 term identity)(
α 0
0 α−1

)
=

(
1 1
0 1

) (
1 0
−1 1

) (
1 1
0 1

) (
1 0
α 1

) (
1 −α−1

0 1

) (
1 0
α 1

)
Proof. This is of course well known. A graphical presentation is given as follows
where all the horizontal arrows are identities and matrix multiplication is given by
adding all ways through the diagram:

• //

α

��?
??

??
??

??
??

• // • //

α

��?
??

??
??

??
??

• // • //

−1

��?
??

??
??

??
??

• // •

• // • //

−α−1

??�����������
• // • //

1

??�����������
• // • //

1

??�����������
•

�

Here is the main technical result leading to the K1-squeezing theorem.

Theorem 3.6. (K1-vanishing) Let K be a cubical subcomplex of the boundary of
the unit ball in Rn. If A is supported outside of the unit ball in O(K) (which is∏n

1 [−1, 1] ∩ O(K), and α : A → A is an automorphism in CO(K)(R) such that α
and α−1 are bounded by δ < 2

3 · 6
−(dim K) in the max metric, then there exist an

object B in CO(K)(R), and a product of elementary matrices (= a deformation) of
bound at most δ · 6dim K+1,

∏
eηi

on A⊕B in the category CO(K)(R) such that :
(i) B is supported outside of the unit ball in O(K).
(ii) (α⊕ idB) ·

∏
eηi

= idA⊕B.

Before proving Theorem 3.6, we will show how it leads to the squeezing theorem.

Theorem 3.7. (K1-Squeezing Theorem) Let K be a cubical subcomplex of the
boundary of the unit ball in Rn. If ε < 6− dim K and α : A→ A is an automorphism
in CK(R) such that α and α−1 are bounded by ε in the max metric, then for each
µ > 0 there is an object C in CK(R) and an automorphism β : A ⊕ C → A ⊕ C
such that

(i) β and β−1 are bounded by µ.
(ii) There is a deformation of size 6dim K+1 · ε of α⊕ id to β

Proof. We have K a subset of the boundary of the unit cube and a subset of O(K).
Let α : A→ A be an automorphism as in the statement of the theorem. If ε is small,
Theorem 3.6 guarantees that we can find B and a deformation α ⊕ idB ·

∏
eηi

=
idA⊕B .

Let L > 0 be large and consider (α ⊕ id)≤L
∏
e≤L
ηi

. For L sufficiently large,
(α ⊕ id)≤L is simply α ⊕ idC where C denotes the modules of B sitting inside a
region a little larger than L. Since each e≤L

ηi
is an elementary matrix, we will write

e≤L
ηi

= eη̄i
. Obviously the product (α ⊕ idC) ·

∏
eη̄i

is no longer the identity. In
a region around radius L it will be an automorphism, and we do of course have
to be careful to make C so big that it supports this automorphism. Now restrict
the attention to a band from radius 1 out to a radius which is L plus the bound
of the deformation. This region is being preserved, and since the automorphism
is bounded, independently of L, and only different from the identity in a band
around radius L. This automorphism, when measured only in K, forgetting the
radial direction by using the radial projection x → x

|x| can now be made as small
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as wanted by choosing L large. The domain of this radial projection is the region
between a sphere of radius 1 and a sphere of radius a little larger than L intersected
with O(K). The target isK = O(K)∩Sn. (Remember we are using the max metric,
so the unit sphere is the boundary of the unit cube). This radial projection is a
map of compact spaces so we do get an induced map at the category level. Under
this map L ·K is sent to K by a map decreasing distances by the factor L, so we
get the desired result. �

Proof of Theorem 3.6. We begin by considering the case K = ∗ even though this
case does not exhibit the typical behavior. In this case, O(K) is a ray and we have
the picture below:

A 0 0 0 0

A is supported outside the unit ball. In the picture we illustrate the case where
A is supported on an embedded copy of K, but it is obvious that the arguments
to follow only need A supported outside the unit ball. We now take B to be an
infinite direct sum of copies of A, one at each “integral” point n ∈ O(K) for n ≥ 2.
We represent α⊕ id schematically in the picture below:

A

α

��
A

id

��
A

id

��
A

id

��
A

id

��

The 6 term identity allows us to multiply by a product
∏
eηi

of elementary matrices
to obtain the picture:

A

α

��
A

α−1

��
A

α

��
A

α−1

��
A

α

��

Shifting and using the 6 term identity again, we see that multiplication by a suitable∏
e′ηi

gives us:

A

id

��
A

id

��
A

id

��
A

id

��
A

id

��

We have therefore obtained that (α⊕ id) · (
∏
eηi)

−1 ·
∏
e′ηi

)−1 = id, as desired. In
this too simple case α is bounded by 0, but evidently we have used 12 elementary
operations, six of which have ±α and ±α−1 and six of which have ±1 off the diag-
onal. Each elementary operation is bounded by 1 because we placed the modules
at the integral lattice points, so the whole deformation is bounded by 12. Had we
instead placed the modules at all half integral points, the resulting bound would
have been 6, and we can obviously get the bound as small as we want. Since six of
the elementary operations When we do this kind of argument in higher dimensions,
the α’s are not bounded by 0, so this is the reason we only lose control by a factor
of 6.

The notion Eilenberg swindle refers to any argument where one exploits the fact
that one may get P ⊕X isomorphic to X by choosing X to be an infinite sum of
P ’s. The argument above is a kind of Eilenberg swindle. We now move to the case
K = S1, which is more representative of the general case. We would like to perform
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the same sort of Eilenberg swindle, but now pushing the module A to infinity in all
directions at once increases the bound unacceptably. i

The solution to this difficulty is to apply a variation of the swindle rigidly to
the top-dimensional faces and induct on dimension. Quinn points out that it is
the interplay between Cartesian and polar coordinates that is being exploited. Let
{Fi} be the collection of top-dimensional faces of K. We stabilize using infinitely
many copies of A|Fi with the identity automorphism. Doing this to all of the
top-dimensional faces at once, we have the picture below

S

...

S ··· ··· S

S

...

Let α|(A|Fi) be the composition (A|Fi) → A
α−→ A→ (A|Fi) and define α−1|(A|Fi)

similarly. Note that bd(α|Fi) ≤ bd(α). Since α|(A|Fi) need not be invertible, we
cannot use the earlier identities directly. We can, however, consider a similar prod-
uct of elementary matrices:∏

eηi
=

(
1 1
0 1

) (
1 0
−1 1

) (
1 1
0 1

)
(
(

1 0
α|Fi 1

) (
1 −(α−1|Fi)
0 1

) (
1 0

α|Fi 1

)
We can choose the copies of A|Fi close together so that

∑
bd(eηi

) < 3δ and so that∏
eηi

is equal to
(
α 0
0 α−1

)
outside of a 3δ-neighborhood of ∪i∂Fi. Applying the

swindle as before, we have
∏
eηi

·
∏
e′ηi

· (α⊕ id) = 1 outside of a 6δ-neighborhood
of ∪i∂Fi, and therefore in a neighborhood of the rays denoted S, provided that
δ < 1

6 . The 2
3 -factor ensures that we actually have the identity in the middle third

of the band around the ray S. The operations on the separate faces are disjoint, so
corresponding operations can be combined into single elementary matrices and the
bounds need not be summed over the faces. Destabilizing, we excise the area where∏
eηi

·
∏
e′ηi

· (α ⊕ id) = 1, obtaining modules in four separate quadrants and an
automorphism that is forced to preserves each quadrant by the control condition, at
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least after a further application of an elementary operation that does not increase
control.

To be precise, letB be the union of the two axis in R2, and write R2 = B∪
⋃4

i=1Qi

where Qi are the four quadrants. On A|B the automorphism is now the identity,
actually it is the identity in a little neighborhood, and the control conditions ensure
that the automorphism preserves A|Qi. We can eliminate A|Qi by performing the
infinite repetition trick in the four directions of 45 degree in each quadrant. That is,
we stabilize by making infinitely many identical copies of the nonzero modules and
then we apply 3.5 twice to write α⊕ id as a product of elementary matrices. This
completes the case K = S1. Since the last set of elementary matrices is constructed
using modified α’s, which lead to a loss of control by factor of 6, they are bounded
by 62 · δ. Indeed in each dimension we lost a factor of 6.

Suppose, now, that K is a cubical subcomplex of S2. We begin by performing
the infinite repetition trick along a ray perpendicular to each top-dimensional face.
Destabilizing, this eliminates all of the modules inside a distance of 1

3 of the rays
perpendicular to the top-dimensional faces.

Note that we have eliminated all modulesAx such that x has coordinates (x1, x2, x3)
with |xi| < 1− 6δ for two values of i. Next, we perform the infinite repetition trick
along the 45 degree angled arrows to eliminate all modules Ax such that x has co-
ordinates with |xi| < 1− 36δ for some value of i. After this operation, the nonzero
modules are concentrated into separate octants provided, of course, that δ < 2

3 ·
1
36

and can be eliminated by doing swindles in directions (δ1, δ2, δ3), where |δi| = 1.
The general induction proceeds in an entirely similar fashion. We begin by

eliminating all modules Ax where x has n − 1 coordinates with absolute value
< 1− 6δ. This is done by swindling in directions with one coordinate equal to ±1
and the rest equal to 0. Next, we eliminate all Ax so that x has n− 2 coordinates
with absolute value < 1 − 36δ. This is done by pushing in directions with two
coordinates equal to±1 and with the rest equal to 0. Continuing, we eventually have
no remaining nonzero modules Ax with any coordinates of x having absolute values
< 1 − 6(n−1)δ. At this point, the remaining nonzero modules are isolated in the
2n “octants” and can be eliminated by swindling in directions with all coordinates
equal to ±1. Notice we may do this process to all of Sn, not just the cubical
subcomplex of Sn. In the end the modules will have support in O(K) since we are
stabilizing with the zero modules on the faces of Sn that are not in K. A good
example to think of is the 1-skeleton of S2 where the first step in the argument is
an empty step. �

Addendum 3.8. As mentioned before, the argument we have given above actually
works for any automorphism α : A → A in CO(K)(R) such that α and α−1 are
bounded by δ and such that Ax = 0 for x inside of the unit ball. The point is that
the induction given above naturally starts with any α such that Ax = 0 for all x
with all coordinates < 1.

We want to prove that the squeezing is unique. For this, we will need a K2

analog of Theorem 3.6. We begin by recalling Bass’ definition of K2 of an additive
category. [1]
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Definition 3.9. (Bass) Let A be an additive category in which the isomorphism
classes of objects form a set. Assume A = A1 ⊕ A2, then we get a ring homomor-
phism End(A1) → End(A) sending η to η ⊕ 0.

K2(A) = lim
A
K2(End(A))

where the limit is taken over objects in A and inclusions as described above.

Conjugating by an automorphism of A induces the identity on K2(End(A)) so
there is no trouble in defining the above limit. C. Weibel proved in [14] that Bass’
definition agrees with Quillen’s definition of K2 of the symmetric monoidal category
obtained by restricting morphisms to isomorphisms. Since endomorphisms in a sum
of r copies of A can be written as an r × r matrix with entries in End(A),

End(A⊕r) = M(r,End(A)),

we can think of an element of K2(A) as a product of Steinberg symbols in End(A),
for some object A in A which when evaluated as a product of elementary matrices
gives the identity. More commonly we will be given a product of automorphisms of
A = A1⊕A2⊕ . . .⊕Ar which are the identity except for a component sending Ai to
Aj , i 6= j i. e. elementary automorphisms with product equal to the identity, and
we want to think of this as an element in K2(A), but this may be done by stabilizing
each Ai by ⊕j 6=iAj to get an element in K2(End(A)). Whenever we have a product
of elementary matrices equal to the identity, we thus get an element of K2 of the
category by replacing the elementary automorphisms by Steinberg symbols in the
obvious way.

Theorem 3.10. (K2-vanishing) Let K be a cubical subcomplex of the boundary
of the unit ball in Rn. If {eηi

} are elementary automorphisms of a module A

in CO(K)(R) with A<1 = 0, and such that
k∏

i=1

eηi = 1 and
k∑

i=1

bd(eηi) < δ <

6−(dim K−1) in the max metric, then the corresponding element in K2(CO(K)(R)) is
trivial.

Proof. The proof is very similar to the proof of the squeezing theorem. We shall
illustrate the proof by the case K = S1 = ∂([−1, 1]× [−1, 1]).

Consider the four regions B1 = [1,∞) × [−1, 1], B2 = [−1, 1] × [1,∞), B3 =
(−∞,−1] × [−1, 1] and B4 = [−1, 1] × (−∞,−1]. The strategy of the proof will
be to write the element in K2 as an element with support in Bi multiplied by
an element with support in the complement and such that the control conditions
ensure that the elements in the four quadrants Ci whose union is the complement
are independent. This will then ensure the element is trivial since

K∗(CBi
(R)) = K∗(CCi

(R)) = 0

by Eilenberg swindles.
Consider a product of elementary matrices eη1 · eη2 · . . . · eηk

= 1 and let xη1 ·
xη2 · . . . · xηk

be the corresponding element in the Steinberg group giving a K2

element in CO(K)(R). Write O(K) = B1 ∪ D1 as a disjoint union, and write the
modules on which the e′ηi

s are realized as A = (A|B1)⊕ (A|D1). In this direct sum

decomposition ηk may be written as ηk =
{

ηk
11 ηk

12

ηk
21 ηk

22

}
, where ηk

11 preserves (A|B1)
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and ηk
22 preserves (A|D1). Clearly

ηk =
(
ηk
11 0
0 0

)
+

(
0 ηk

12

ηk
21 ηk

22

)
so a Steinberg relation allows us to replace xηk

by

x{
ηk
11 0
0 0

} · x{
0 ηk

12

ηk
21 ηk

22

}
The morphism e{

0 ηk
12

ηk
21 ηk

22

} will only reach a tiny amount into the B1-region, and

we choose B′
1 to be [1,∞)× [−1 + µ, 1− µ] where µ is chosen as small as possible

so that e{
0 ηk

12

ηk
21 ηk

22

} does not reach into the region B′
1. We now decompose using a

Steinberg relation
xηk−1 = x{

0 ηk−1
12

ηk−1
21 ηk−1

22

} · x{
ηk−1
11 0
0 0

}

based on B′
1 and its complement, but since ηk−1

11 preserves B′
1 and

{
0 ηk

12

ηk
21 ηk

22

}
does

not reach into B′
1 we may commute x{

ηk−1
11 0
0 0

} and x{
0 ηk

11

ηk
21 ηk

22

} using a Steinberg

relation. Continuing this process we get

xη1 · xη2 · · ·xηk
=

x{
0 η1

12

η1
21 η1

22

} · · ·x{
0 ηk

12

ηk
21 ηk

22

} · x{
η1
11 0
0 0

} · · ·x{
ηk
11 0
0 0

}
in the Steinberg group. The product of the corresponding elementary matrices is
of course still the identity, but

e{
η1
11 0
0 0

} · · · e{
ηk
11 0
0 0

}
is an automorphism, say α satisfying the same control as the original deformation,
with support in a small band around [1,∞)×{−1, 1}. Such an automorphism may
be deformed to the identity using Lemma 3.5 along the ray [1,∞), and putting
these deformations in the middle leads to a description of the given K2-element as
a product of 2 elements, one with support in B1 and one with support in a small
neighborhood of the complement. We loose a factor of 6 in the control as usual
when we deform α to the identity. The above process may be done simultaneously
on B1, . . . B4 in the end writing the given K2-element as a product of 8 elements
each with support in Bi or Ci and hence all 0.

The general case proceeds as in the squeezing theorem generalizing this idea,
starting with the top-dimensional simplices, noticing that on the faces not belonging
to K nothing is done precisely as in the squeezing theorem.

�

4. Bounded algebra and geometric groups

Definition 4.1. ([4] and [9]) Let K be a finite polyhedron. A geometric Zπ -
module on K is an object A in CK(Zπ). A deformation is a composable string
e1, . . . , en of elementary isomorphisms. The bound of a deformation is the sum∑

bd(eηi
). A δ-isomorphism is an isomorphism α : A → B such that bd(α) and
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bd(α−1) are both less than δ. A δ-isomorphism α : A → B is geometric if α is
given by a bijection of basis sets. We will identify α with α⊕ id : A⊕C → B ⊕C.

Here is Quinn’s Stability Theorem. For clarity, we state the theorem for finite
polyhedra. The generalization to locally compact ANR’s is not difficult.

Theorem 4.2. ([10, p. 381]) Suppose that K is a finite polyhedron represented
as a cubical subcomplex of the boundary of the unit cube in Rn. Then there is an
εK > 0 such that for every δ < εK , and automorphism α in the category CK(R),
bounded by δ, there is a 6dim K+1 · δ-deformation to the identity if and only if
an invariant σ(α) ∈ H1(K;K−∞(R)) vanishes. Any element in H1(K;K−∞(R))
may be realized by such an α with arbitrarily small prescribed control. We may take
εK = 2

3 · 6
− dim K .

Quinn’s proof is a torus argument, and extracting explicit bounds would be
painful. Working directly with bounded topology avoids the torus and makes the
argument remarkably concrete.

Proof. Let K+ be the disjoint union of K and a basepoint. Given α as above, we
will now describe an element σ(α) ∈ K2(CO(K+)(R)) for δ sufficiently small. Recall
that Theorem 2.3 tells us that K2(CO(K+)(R) = H1(K+;K−∞(R)). By Theorem
3.6, α ⊕ id =

∏
eηi

, where the eηi
’s are elementary automorphisms in CO(K)(R)

which are supported outside of B1 ∩ O(K), B1 being the unit ball in Rn. On
the other hand, the usual swindle through the origin and “out the tail” O(+),
writes α⊕ id =

∏
eξi , where the eξi are supported on O(+) ∪ (O(K) ∩B1). Thus,

(
∏
eξi

)−1 ·
∏
eηi

= id. We define

σ(α) = (
∏

xξi)
−1(

12∏
i=1

xηi) ∈ K2(CO(K+)(R)).

We need to see this is well defined, so suppose given two such deformations. The
difference will then be supported on O(K) outside K, and the difference is 0 by
Theorem 3.10. To see that the vanishing of σ(α) ensures a small deformation to the
identity, suppose that σ(α) represents 0 ∈ K2(CO(K+)(R)). This means that using
Steinberg relations, σ(α) can be written as a product of Steinberg relations. We do
not a priori know how many of these relations are needed. But starting with the
original representative σ(α), we may cut down to a band from 1 to L, L large, to
obtain a small deformation from α to some much smaller automorphism α′. At this
point we have not used any Steinberg relations, so we have precise control of the
size of the deformation. Operating on σ(α) by Steinberg relations and cutting at
L gives deformations of α′, but we know how many Steinberg relations are needed
to trivialize σ(α), so we may choose L so large that the deformation from α′ to a
trivial automorphism can be made as small as we wish. This two-stage process is
necessary to keep control since there is no known upper bound on the number of
Steinberg relations needed to trivialize a given element in K2, and we only know the
elementary automorphisms corresponding to the Steinberg relations are bounded
not a priory what the bound is. The key point here is that cutting a Steinberg
relation produces an elementary automorphism, and we only have to choose L after
we know the reason for the K2-element being 0.

We thus obtain the deformation to the identity by first using the deformation of
α to α′, where α′ is obtained by cutting at a very large L, and then use the fact
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that Steinberg relations produce elementary automorphisms to show that α′ can
be written as a product of elementary automorphisms of controlled size. To see
that all obstructions are realized, assume an element β ∈ K2(CO(K+)(R)) is given.
Cutting at a large L produces an automorphism α as small as we wish hence we get
an element of Kδ

1(CK(R)) by choosing L sufficiently large. We also get a product of
elementary matrices with support outside L whose product is the identity except
in a region around L where we get α. We want to show that σ(α) = β. The
difference however can be written as a product of an element with support inside
L and a sufficiently bounded element with support outside L and these are both 0,
so σ([α]) = β. (see the final section for more details of this type of argument). �

5. An algebraic proof of topological invariance of Whitehead
torsion

In this section we give a quick proof that a homeomorphism of finite PL-complexes
has trivial Whitehead torsion, using the techniques developed in this paper. Let K
and L be finite complexes π = π1(K), and let h : L → K be a homeomorphism.
The Whitehead torsion is given as follows: approximate h by a PL map f and con-
sider the induced map on universal covers f# : C#(L̃) → C#(K̃), a chain homotopy
equivalence of based Zπ-chain complexes. As usual, there are of courses choices in
getting such a basis. Let C# denote the mapping cylinder of f#, then C# is a
contractible chain complex of based Zπ-modules so α = s + ∂ : ⊕Ceven → ⊕Codd

is an isomorphism of based modules. The modules must have the same rank, so
we can identify the modules by identifying basis. This way we obtain an auto-
morphism, whose torsion in K1(Zπ) represents the Whitehead torsion of h. Since
there are choices involved this is only well defined in Wh(π) = K1(Zπ)/±π, where
the ± should be interpreted as K1(Z). (We obviously have to divide out by all
permutations of the generators, but these permutations generate K1(Z)).

We want to make a couple of inessential reinterpretations of this. The category
CK(Zπ) is equivalent to the category of finitely generated free Zπ-modules, and
associating the barycenter of each simplex to the generator the simplex represents,
the chain complexes C#(K) and C#(L) can be thought of as chain complexes in
CK(Zπ) and we can compute the torsion in K1 of this category. Refining a bit
further consider the universal cover of K, K̃. Consider the category Cπ

K̃
(Z) the

subcategory of π-invariant Z-modules parameterized by K̃. This is actually the
most obvious way to think of the chain complexes C#(K) and C#(L). We are using
the chain complexes of the universal cover anyway, and we associate a generator
given by a simplex in K̃ to the barycenter of the simplex.

The method we intend to use is to refine the torsion of a homeomorphism to the
point where it lives in a group which algebraically maps to zero in the Whitehead
group. First we want to refine the element to a K2-element in an associated cat-
egory. Consider C+(Cπ

K̃
(Z)∞). Objects are π-invariant Z-modules parameterized

equivariantly by K̃ × Z+, and morphisms are germs at infinity of bounded mor-
phisms invariant under the π-action. This means we identify morphisms if they
agree on objects with Z+-coordinate sufficiently large. Given an automorphism in
Cπ

K̃
(Z), (A,α), consider the object (A,A,A, . . .) with the i’th copy of A placed at

the i’th coordinate in Z+. The automorphism

(α, 1, 1, . . .)
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represents the identity in C+Cπ
K̃

(Z)∞ because the germ at infinity is the identity.
There is an obvious deformation of (α, 1, 1, 1, . . .) (which represents the identity in
the category) to the identity through (α, α−1, α, α−1, . . .) and further to (1, 1, 1 . . .),
using the six term identity, setting the parenthesis two different ways. This defines
an element in K2(C+Cπ

K̃
(Z)∞) which we shall denote by [α].

Lemma 5.1. There is an epimorphism K2(C+Cπ
K̃

(Z)∞) → K1(Cπ
K̃

(Z)) sending [α]
to [(A,α)].

Proof. The map we define is actually an isomorphism, but we have no need for
that in the present argument. An element in K2 is represented by a product of
elementary automorphisms in the category with product the identity. Choosing
representatives we get a product of elementary automorphisms with product the
identity except on modules with Z+-coordinate smaller than some number l. Cut-
ting the product of elementary automorphisms at some k larger than l plus the
bound r of the deformation produces an automorphism which is the identity on
modules with Z+ coordinate less than k − r and bigger than k + r, so summing
the modules in the region k − r to k + r produces an object in Cπ

K̃
(Z) together

with an automorphism. It is easy to see that a Steinberg relation gives rise to
an elementary automorphism, thus the 0-element in K1, and that products are
sent to products, direct sums to direct sums, so we have a well defined map from
K2(C+Cπ

K̃
(Z)∞) → K1(Cπ

K̃
(Z)). Inspection shows that [α] is sent to [(A,α)]. More

precisely consider the diagram

A

1

��

α

%%LLLLLLLLLLLL A

1

��

A

1

��

α

%%LLLLLLLLLLLL A

1

��

A

1

��

α

%%LLLLLLLLLLLL A

1

��
A

1

��

A
−α−1

yyrrrrrrrrrrrr

1

��

A

1

��

A
−α−1

yyrrrrrrrrrrrr

1

��

A

1

��

A
−α−1

yyrrrrrrrrrrrr

1

��
A

1

��

α

%%LLLLLLLLLLLL A

1

��

A

1

��

α

%%LLLLLLLLLLLL A

1

��

A

1

��

α

%%LLLLLLLLLLLL A

1

��
A

1

��

A
1

yyrrrrrrrrrrrr

1

��

A

1

��

A
1

yyrrrrrrrrrrrr

1

��

A

1

��

A
1

yyrrrrrrrrrrrr

1

��
A

1

��

−1

%%LLLLLLLLLLLL A

1

��

A

1

��

−1

%%LLLLLLLLLLLL A

1

��

A

1

��

−1

%%LLLLLLLLLLLL A

1

��
A

1

��

A
1

yyrrrrrrrrrrrr

1

��

A

1

��

A
1

yyrrrrrrrrrrrr

1

��

A

1

��

A
1

yyrrrrrrrrrrrr

1

��
A A A A A A

This is the deformation of the identity to (α, α−1, . . .) (the matrix multiplication
is computed by adding all the ways one can get from one point in the diagram to
another). Cutting at a certain level consists of replacing all diagonal arrows by 0
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to the left of a certain point. Consider the identity as the composite

A

α

��

A

α−1

��

A

α

��

A

α−1

��

A

α

��

A

α−1

��
A

α−1

��

A

α

��

A

α−1

��

A

α

��

A

α−1

��

A

α

��
A A A A A A

and replace the upper arrows by the diagram above, and the lower arrows by the
diagram above shifted. We see that cutting in the middle we get

A

1

��

A

1

��

A

1

��

A

1

��

A

α

��

A

α−1

��
A

1

��

A

1

��

A

1

��

A

α

��

A

α−1

��

A

α

��
A A A A A A

which is the identity except on the fourth module where it is α as claimed. �

Since we started with a homeomorphism h and we can triangulate as finely as
we need, and PL-approximate as closely as needed, we have

Lemma 5.2. We can find representatives of the Whitehead torsion of h, (An, αn)
satisfying the following conditions:

(i) αn and α−1
n are bounded by 1

n .
(ii) There is a deformation of (An⊕An+1, αn⊕α−1

n+1), and hence also of (An⊕
An+1, α

−1
n ⊕ αn+1) bounded by 1

2n .

Proof. By triangulating and PL-approximating finely we may obtain an isomor-
phism βn : An → Bn smaller than any given r, so choose r < 1

n . Here An is the
sum of the odd dimensional cellular chains, and Bn the sum of the even-dimensional
cellular chains in the mapping cylinder of the chain complex of the cellular chains
K and L. Let δ = 1

n−r. We may construct an isomorphism γn from Bn to An with
bound smaller than δ, sending generators to generators at least after stabilizing,
but stabilizing is no problem, we just replace An and Bn by the stabilized modules.
To see this consider a generator gb in Bn and a generator ga in An. Assume ga is at
the point x ∈ K̃ and gb at the point y ∈ K̃. We may now choose a finite sequence
of points in K̃, x = x0, x1, . . . , xm = y such that the distance from xn−1 to xn is
less than δ. Stabilize An and Bn by generators gi at xi , i = 1, . . . ,m− 1 and the
isomorphism βn by the identity, and define γn(gi) = gi−1. At this point we only
need to define gn on a free module with one less generator than before, and the
proof is completed by induction. We may now define αn = γnβn, an automorphism
that clearly represent the torsion of h. To see the second part, notice that if we
have two fine PL-approximations they are homotopic by a small homotopy. We may
change the homotopy to be PL relative to endpoints. Denote the PL homotopy by
H. We may now use C#(H) to compute the torsion, but the torsion of C#(H) is
connected to αn and αn+1 by a sequence of collapses. It is however easy to see that
the inverse of a collapse algebraically consists of stabilizing and multiplying by an
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elementary matrix. Since the collapses can be made as small as we wish we are
done. �

This means we can find another K2 element in C+Cπ
K̃

(Z)∞ representing the tor-
sion of h namely given by the deformation first from (α1, 1, 1, . . .) to (α1, α

−1
2 , α3, . . .),

and then to (1, 1, 1, . . .). Once again we see that if we cut this deformation at some
large k we get (An, αn) hence a representative for α. The advantage of this rep-
resentation is that it remains a bounded deformation if we replace the metric on
the n’th copy of K by a metric n times larger, and require the morphisms to be
bounded with respect to this metric.

Thinking of K as embedded in {1} × Rm for some big m, and O(K) as the set
of rays in Rm+1 from 0 going through K. The category CO(K)(Z) is equivalent to
the full subcategory where the objects are 0 except when the first coordinate is an
integer, and the level of O(K) with first coordinate equal to n is a copy of K with
a metric which is precisely n times the metric in K. It is now easy to see that the
subcategory of C+Cπ

K̃
(Z)∞ with morphisms bounded in the metric where the n’th

copy of K has the metric multiplied by n, is isomorphic to the category CO(K)(Z)∞,
where the upper index ∞ indicates that we take germs at infinity. The point is
that we may divide out the π-action, and since morphisms near infinity are allowed
to move very little there is a canonical choice of morphisms near infinity. We have
thus shown that the torsion of the homeomorphism h lies in the image of a map
from K2(CO(K)(Z)∞) to K1(Zπ), but according to [8] we have

K2(CO(K)(Z)∞) = H1(K+; AlgK(Z))

which by the Atiyah-Hirzebruch spectral sequence is

H1(K,K0(Z))⊕H0(K;K1(Z)) = H1(K,Z)⊕H0(K; Z2) = π/[π, π]⊕±1.

But this is precisely what we divide out from K1(Zπ) to get the Whitehead group,
so the image is trivial in Wh(π) as claimed.

Remark 5.3. We could obviously give a different proof by representing the torsion
by just one sufficiently small automorphism, and then use the squeezing results of
the previous sections to produce the element in K2. Since a homeomorphism is
squeezed as much as possible it seems more natural to utilize that directly.

6. Pedestrian Algebraic K-theory

The proof of topological invariance of Whitehead torsion in the previous section
does depend on the computation in [8] of K2(CO(K+)(R)), and thus of the whole
machinery of higher algebraic K-theory. This however is not necessary, it is per-
fectly possible to compute this group by elementary (pedestrian) methods which
we shall proceed to indicate in this section.

Suppose M is a metric space, M1 and M2 metric subspaces. We shall consider
the category CM (R) and various subcategories. Abusing notation we denote the
full subcategories on objects with support in a bounded neighborhood of Mi by
CMi(R). This is not too bad because these subcategories are obviously equivalent
to CMi

(R). We shall denote the full subcategory on objects with support in a
bounded neighborhood of M1 intersected with a bounded neighborhood of M2 by
CM1,M2(R). This could be quite different from CM1∩M2(R), in particular M1 ∩M2

could be empty, but it does represent the intersection in the “bounded” sense, and
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in many favorable cases it is true that this category is equivalent to CM1∩M2(R) in
particular this will be the case if we take finite complexes K = K1 ∪K2 and put
Mi = O(Ki) which is the case we have on mind.

Theorem 6.1. With assumptions as above, denoting the maps induced by inclu-
sions by ii and ji, there is an exact sequence

K2(CM1,M2(R))
(i1,i2)−−−−→ K2(CM1(R))⊕K2(CM2(R))

j1−j2−−−−→ K2(CM (R)) ∂−→

K1(CM1,M2(R))
(i1,i2)−−−−→ K1(CM1(R))⊕K1(CM2(R))

j1−j1−−−−→ K1(CM (R)) ∂−→

K0(CM1,M2(R))
(i1,i2)−−−−→ K0(CM1(R))⊕K0(CM2(R))

j1−j2−−−−→ K0(CM (R)) ∂−→

K−1(CM1,M2(R))
(i1,i2)−−−−→ K−1(CM1(R))⊕K−1(CM2(R))

j1−j2−−−−→ K−1(CM (R)) ∂−→ . . .

where K0 should be interpreted as K0 of the idempotent completion, or K1 of the
category where M and Mi have been crossed with R, K−1 similarly as K1 after
crossing with R2 etc.

Proof. This follows immediately from [8], see also [2] for an easier proof, but our
aim here is to avoid higher Algebraic K-theory. The lower part of the sequence
is proved by a slight generalization of the methods in [6] so we shall concentrate
on the higher part. The boundary map is defined as follows: Given an element in
K2(CM (R)) i. e.

∏k
i=1 eηi each bounded by some r. We cut the elementary matrices

in a bounded neighborhood of M1 the following way: We write ηi = µi + νi where
µi has support in a (k − i+ 1) · r neighborhood of M1 and νi has support outside
a (k − i) · r neighborhood of M1. This means that, using Steinberg relations eνi

commutes with eµj
when i < j, so using Steinberg relations we get

eη1 · . . . · eηk
= eµ1 · eν1 · . . . · eµk

· eνk
= eµ1 · . . . · eµk

· eν1 · . . . · eµk

The product
∏
eµi will no longer be the identity, but it will be an automorphisms

which is the identity except for a bounded neighborhood of M1 intersected with
a bounded neighborhood of M2 thus defining an element in K1(CM1,M2(R)). It is
easy to see this is well defined. If we cut differently, the difference will be given by
an elementary automorphism with support in a bounded neighborhood of M1∩M2.
If the element is 0 in K1(CM1,M2(R)) we may write it as a product of elementary
matrices

∏
eλj , and we see that we may write the original element in K2∏
eηi =

∏
eµi ·

∏
eνi =

∏
eµi · (

∏
eλj )

−1 ·
∏

eλj ·
∏

eνi

thus as the difference of an element
∏
eµi

∏
(eλj

)−1 coming from K2(CM1(R)) and
an element (

∏
eλj ·

∏
eνi)

−1 coming from K2(CM2(R)). While it is tedious to work
out all the details the rest of the proof is elementary. �

Writing Rk+2 as a union of two halfspaces along Rk+1 and using an Eilen-
berg swindle on the two half spaces it follows from this that K2(CRk+2(R)) ∼=
K1(CRk+1(R)) which in turn is isomorphic to K−k(R) by [6]. As remarked above
whenK is the union of two PL-subcomplexesK1 andK2 we have CO(K1),O(K2)(R) '
CO(K1∩K2)(R) and this thus provides sufficient information to computeK2(CO(K)(R))
by the usual Mayer-Vietoris arguments, attaching one cell at a time.
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