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Abstract We study the behavior of Hodge-genera under algebraic maps. We prove
that the motivicχc

y -genus satisfies the “stratified multiplicative property”, which shows
how to compute the invariant of the source of a morphism from its values on varieties
arising from the singularities of the map. By considering morphisms to a curve, we
obtain a Hodge-theoretic version of the Riemann–Hurwitz formula. We also study the
monodromy contributions to the χy-genus of a family of compact complex manifolds,
and prove an Atiyah–Meyer type formula in the algebraic and analytic contexts. This
formula measures the deviation from multiplicativity of the χy-genus, and expresses
the correction terms as higher-genera associated to the period map; these higher-gen-
era are Hodge-theoretic extensions of Novikov higher-signatures to analytic and alge-
braic settings. Characteristic class formulae of Atiyah–Meyer type are also obtained
by making use of Saito’s theory of mixed Hodge modules.
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1 Introduction

In the mid-1950s, Chern et al. [15] proved that if F ↪→ E → B is a fiber bun-
dle of closed, coherently oriented, topological manifolds such that the fundamental
group of the base B acts trivially on the cohomology of F , then the signatures of the
spaces involved are related by a simple multiplicative relation: σ(E) = σ(F) · σ(B).
A decade later, Atiyah [2], and respectively Kodaira [29], observed that without the
assumption on the action of the fundamental group the multiplicativity relation fails.
Moreover, Atiyah showed that the deviation from multiplicativity is controlled by the
cohomology of the fundamental group of B.

The main goal of this paper is to describe in a systematic way multiplicativity
properties of the Hirzebruch χy-genus (and the associated characteristic classes) for
suitable holomorphic submersions of compact complex manifolds. Indeed, we study
such problems for general algebraic maps, even of singular varieties, by using exten-
sions of the Hirzebruch χy-genus to the singular setting; our results in this generality
are expressed in terms of a stratified multiplicative property.

For example, in the classical case of fibrations of closed manifolds we extend the
results of Chern et al. in several different directions in the analytic and algebraic set-
ting. First, we show that in the case when the Chern–Hirzebruch–Serre assumption
of the triviality of the monodromy action is fulfilled, the χy-genus is multiplicative
for a suitable holomorphic submersion f : E → B of compact complex manifolds,
for which all the direct image sheaves Rk f∗RE underly a polarizable variation of real
Hodge structures, as studied by Griffiths [24]. In fact, the key to multiplicativity in
this case is Griffiths’ rigidity theorem for polarizable variations of real Hodge struc-
tures on compact complex manifolds. Hence, since by the Hodge index theorem the
signature of a Kähler manifold is the value of the χy-genus for y = 1, this theorem
can indeed be viewed as an Hodge-theoretic extension of the Chern–Hirzebruch–Serre
result. Second, we consider fibrations with non-trivial monodromy action, and prove
a Hodge-theoretic analogue of the Atiyah signature formula. We also derive a for-
mula for the χy-genus of E in which the correction from the multiplicativity of the
χy-genus is measured via pullbacks under the period map associated with our fibra-
tion, of certain cohomology classes of the quotient of the period domain by the action
of the monodromy group. Only for some manifolds F serving as a fiber of the fibration
in discussion, the quotient of the period domain is also the classifying space of the
monodromy group in the topological sense. Nevertheless, when one is only interested
in the value y = 1 yielding the signature, our correction terms coincide with those
of Atiyah. In fact, the Atiyah terms are the appropriate Novikov-type higher-signa-
tures, and our correction terms are thus Hodge-theoretic extensions of these Novikov
invariants to the analytic and algebraic category.

We now present in detail the content of each section and summarize our main
results.
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Hodge genera of algebraic varieties, II 927

In Sect. 2, we study the behavior of χy-genera under maps of complex algebraic
varieties. We first consider a morphism f : E → B of complex algebraic varieties
with B smooth and connected, which is a locally trivial topological fibration in the
(strong) complex topology, and show that under certain assumptions on monodromy
the χy-genera are multiplicative:

Lemma 1 Let f : E → B be an algebraic morphism of complex algebraic varieties,
with B smooth and connected. Assume that f is a locally trivial fibration in the strong
(complex) topology of B with fiber F. If the action of π1(B) on H∗(F,Q), respectively
H∗

c (F,Q), is trivial, then

χy(E) = χy(B) · χy(F), resp. χc
y (E) = χc

y (B) · χc
y (F). (1)

Such multiplicativity properties of genera were previously studied in certain special
cases in connection with rigidity (e.g., see [25,26,36]). For instance, Hirzebruch’s χy-
genus is multiplicative in bundles of (stably) almost complex manifolds with structure
group a compact connected Lie group (the latter condition implies trivial monodromy),
and in fact it is uniquely characterized by this property. The proof of our multiplic-
ativity result uses the fact that the Leray spectral sequences of the map f are spectral
sequences in the category of mixed Hodge structures. The later claim for the case of
quasi-projective varieties E and B has a nice geometric proof due to Arapura [1]. In
full generality, it is a well known simple application of Saito’s deep theory of algebraic
mixed Hodge modules, as we explain in some detail in Sect. 5.2.

In Sect. 2.3, we consider algebraic morphisms that are allowed to have singularities,
and extend the above multiplicativity property to this general stratified case. More pre-
cisely, we prove that, under the assumption of trivial monodromy along the strata of
our map, the additive χc

y -genus that arises in the motivic context satisfies the so-called
“stratified multiplicative property”:

Proposition 1 Let f : X → Y be an algebraic morphism of (possible singular)
complex algebraic varieties. Assume that there is a (finite) decomposition of Y into
locally closed and connected complex algebraic submanifolds S ⊂ Y such that the
restrictions (Rk f!QX )|S of all direct image sheaves to all pieces S are constant. Then

χc
y (X) =

∑

S

χc
y (S) · χc

y (Fs), (2)

were Fs = { f = s} is a fiber over a point s ∈ S.

This property shows how to compute the invariant of the source of an algebraic mor-
phism from its values on various varieties that arise from the singularities of the map,
thus yielding powerful topological constraints on the singularities of any algebraic
map. It also provides a method of inductively computing these genera of varieties.
A similar result was obtained by Cappell, Maxim and Shaneson, for the behavior of
intersection homology Hodge-theoretic invariants, both genera and characteristic clas-
ses (see [9], and also [8]). Such formulae were first predicted by Cappell and Shaneson
in the early 1990s, see the announcements [13,46], following their earlier work [12]
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928 S. E. Cappell et al.

on stratified multiplicative properties for signatures and associated topological char-
acteristic classes defined using intersection homology (see also [7], Sect. 4, and [49]
for a functorial interpretation of Cappell–Shaneson’s L-classes of self-dual sheaves,
generalizing the Goresky–MacPherson L-classes).

In the special case of maps to a smooth curve, and under certain assumptions for
the monodromy along the strata of special fibers, in Sect. 3.2 (see also Sect. 5.4) we
obtain a Hodge-theoretic analogue of the Riemann–Hurwitz formula [28]. A simple
but important special case is the following

Example 1 Let f : X → C be a proper algebraic morphism of complex algebraic
manifolds, with C a curve. Assume f has only isolated singularities so that the set
Sing( f ) of all singularities of f is finite. Assume, moreover, that the restriction
(Rk f!QE )|C\D of all direct image sheaves to the complement of the discriminant
D := f (Sing( f )) ⊂ C are constant. Then

χc
y (X) = χc

y (C) · χc
y (Fs)−

∑

x∈Sing( f )

χy
([

H̃∗(Mx ,Q)
])
, (3)

were Fs = { f = s} is a fiber over a point s ∈ C\D. Here H̃∗(Mx ,Q) is the reduced
cohomology of the Milnor fiber Mx of f at x ∈ Sing( f ), which carries a canonical
mixed Hodge structure (e.g. by [34]).

The proof uses Hodge-theoretic aspects of the nearby and vanishing cycles in the
context of one-parameter degenerations of compact algebraic manifolds.

The contribution of monodromy to χy-genera is studied in Sect. 4. This can often
be applied to compute the summands arising from singularities in stratified multiplic-
ativity formulae without monodromy assumptions. For simplicity, we first consider a
suitable holomorphic submersion f : E → B of compact complex manifolds (thus a
fibration in the strong topology), and compute χy(E) so that the (monodromy) action
of π1(B) on the cohomology of the typical fiber is taken into account. We can prove
this important result also in the analytic context:

Theorem 1 Let f : E → B be a holomorphic submersion of compact complex
manifolds. Assume we are in any one of the following cases:

1. E is a Kähler manifold, or more generally bimeromorphic to a compact Kähler
manifold.

2. f is a projective morphism.
3. f is an algebraic morphism of complex algebraic manifolds.

(Note that, by Griffiths’ work [24], the direct image sheaf Rk f∗RE defines a polariz-
able variation of R-Hodge structures of weight k, so that

Hp,q := Gr p
F (R

p+q f∗RE ⊗R OB) � Rq f∗�p
E/B .

In particular, all the coherent sheaves Hp,q are locally free.)
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Hodge genera of algebraic varieties, II 929

Then the χy-genus of E can be computed by the following formula:

χy(E) =
∫

[B]
ch∗(χy( f )) ∪ T̃ ∗

y (T B), (4)

where

χy( f ) :=
∑

k

(−1)k · χy([Rk f∗RE ,F �]) ∈ K 0(B)[y]

is the K -theory χy-characteristic of f , with

χy([L,F �]) :=
∑

p

[
Gr p

F (L ⊗R OB)
] · (−y)p ∈ K 0(B)[y, y−1]

the K -theory χy-characteristic of a polarizable variation of R-Hodge structures L
(for F � the corresponding Hodge filtration of the associated flat vector bundle).

Here K 0(B) is the Grothendieck group of holomorphic vector bundles, ch∗ denotes
the Chern character and T̃ ∗

y (−) is the (unnormalized) Hirzebruch characteristic class
[25] corresponding to the χy-genus. The proof of this result uses the Grothendieck–
Riemann–Roch theorem (which for compact complex manifolds follows from [30])
and standard facts from classical Hodge theory. We prove in fact the following charac-
teristic class version in the spirit of a Riemann–Roch theorem for the trivial variation
of Hodge structures [RE,F �] on E :

f∗
(

T̃ ∗
y (T E)

) = f∗(ch∗(χy([RE,F �])) ∪ T̃ ∗
y (T E))

= ch∗(χy( f∗[RE,F �])) ∪ T̃ ∗
y (T B), (5)

where

f∗[RE,F �] :=
∑

k

(−1)k · [Rk f∗RE ,F �] ∈ K 0(VHSp(B))

in the Grothendieck group of polarizable variations of R-Hodge structures on B.
Our formula (4) is a Hodge-theoretic analogue of Atiyah’s formula for the signature

of fiber bundles [2], and measures the deviation from multiplicativity of the χy-genus
in the presence of monodromy. As a consequence of formula (4), we point out that
if the action of π1(B) on the cohomology of the typical fiber F underlies locally
constant variations of Hodge structures, then the χy-genus is still multiplicative, i.e.,
χy(E) = χy(B) · χy(F).

More generally, the deviation from multiplicativity in (4) can be expressed in terms
of higher-genera associated to cohomology classes of the quotient by the monodromy
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930 S. E. Cappell et al.

group of the corresponding period domain associated to the polarizable variation of
R-Hodge structures [L,F �] = [Rk f∗RE ,F �]. Let D be Griffiths’ classifying space
[24] for the polarizable variation of R-Hodge structures [L,F �]. This is a homoge-
neous space for a suitable real Lie group G. The choice of a polarization and a base
point b ∈ B induces a group homomorphism π1(B, b) → G, whose image �̄ is
by definition the corresponding monodromy group. We assume that this is a discrete
subgroup of G, e.g., �̄ is finite. �̄ is automatically discrete, if we have a rational polar-
ization of the variation of Z-Hodge structures L � L(Z) ⊗Z R, with L(Z) a local
system of finitely generated abelian groups. In Theorem 1, this is for example true in
the cases 2 and 3. Then a finite index subgroup � ⊂ �̄ acts also freely on D, so that
D/� is a complex manifold. Moreover, [L,F �] is classified by a holomorphic map

π : B → D/�,

in such a way that the holomorphic vector bundle

Gr p
F (L ⊗R OB) � π∗Hp

is the pullback under π of a corresponding (universal) vector bundle Hp → D/�.
Therefore one obtains that

ch∗(χy([L,F �])) ∪ T̃ ∗
y (T B) =

∑

p

(
π∗(ch∗(Hp) ∪ T̃ ∗

y (T B)
) · (−y)p,

and formula (4) can easily be rewritten in terms of the higher-genera

χ

[
α

p,k
�

]

y (B) :=
∫

[B]
π∗ (

ch∗ (Hp
k

)) ∪ T̃ ∗
y (T B) (6)

corresponding to the polarized variation of Hodge structures [Rk f∗RE ,F �] as follows:

χy(E) =
∑

p,k

(−1)kχ

[
α

p,k
�

]

y (B) · (−y)p. (7)

From a different perspective, we can also use

χy([L,F �])(B) :=
∫

[B]
ch∗(χy([L,F �])) ∪ T̃ ∗

y (T B) (8)

as a cohomological definition of the χy-genus of a polarizable variation of R-Hodge
structures [L,F �] on the compact complex manifold B. If moreover B is a compact
Kähler manifold, then by a classical result of Zucker [[51], Theorem.2.9], the coho-
mology groups Hk(B;L) have an induced polarizable R-Hodge structure, so that one
can also define
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χy([H∗(B;L), F �]) :=
∑

k

(−1)k · χy([Hk(B;L), F �]) ∈ Z[y, y−1]. (9)

For a compact complex algebraic manifold B, the same is true for a polarizable var-
iation of Q-Hodge structures by Saito’s theory of algebraic mixed Hodge modules
[38,39]. And here we can prove in both cases the following Hodge-theoretic analogue
of Meyer’s formula for twisted signatures [33]:

χy([H∗(B;L), F �]) =
∫

[B]
ch∗(χy([L,F �])) ∪ T̃ ∗

y (T B) = χy(([L,F �])(B). (10)

At the end of Sect. 4.4, we present several interesting extensions of these Hodge-the-
oretic Atiyah–Meyer formulae to much more general situations. First, we allow the
fiber and the total space of the fibration to be singular. Then we also allow the base
to be non-compact, in which case we need to include contributions at infinity in our
formulae, see Theorem 8 and Corollary 1.

In Sect. 6, we extend some of the above mentioned results on χy-genera to Atiyah–
Meyer type formulae for the corresponding Hirzebruch characteristic classes. The
proofs are much more involved, and use in an essential way the construction of
Hirzebruch classes via Saito’s theory of algebraic mixed Hodge modules (see [7]
for the construction of these classes). The key point here is the functoriality of the
Hirzebruch class transformation

M̃ H T y : K0(M H M(Z)) → H B M
2∗ (Z)⊗ Q[y, y−1]

in the algebraic context. For Z a complex algebraic manifold, an admissible variation
of Q-(mixed) Hodge structures [L,F �] (with quasi-unipotent monodromy at infinity)
corresponds by Saito’s theory to an algebraic mixed Hodge module LH on Z (up to a
shift), whose underlying rational sheaf is the local system L. Conversely, any algebraic
mixed Hodge module whose underlying rational perverse sheaf is a local system (up
to shift), arises in this way from such a variation. Then our main result is the following
identification (see Theorem 11):

T̃y∗(Z;L) := M̃ H T y(LH ) = (
ch∗(χy([L,F �])) ∪ T̃ ∗

y (T Z)
) ∩ [Z ]. (11)

We note that many of our previous results in the algebraic context can be reproved in

greater generality from this identification and the functoriality of M̃ H T y . We pres-
ent the results for genera and variations of Hodge structures first, since they can be
proven in many interesting cases by using just standard methods of classical Hodge
theory. Moreover, some of these results can even be proved in a suitable context of
compact complex manifolds. It is plausible that many more of our results remain valid
in such an analytic context, by using Saito’s theory of analytic mixed Hodge modules
[38,39,41]. But in the analytic context one does not have the full functorial calculus on
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932 S. E. Cappell et al.

derived categories of mixed Hodge modules, e.g., one does not have a constant Hodge
module (complex) Q

H
Z on a singular analytic space Z . Therefore one is forced to use

the underlying complexes of filtered D-modules, a difficulty that can be avoided in
the algebraic context. For simplicity we therefore present the functorial results only
in this algebraic context.

We have tried to make this paper self-contained. For this reason, we first present
our results, as much as possible, without using Saito’s deep theory of algebraic mixed
Hodge modules. Only in the end (see Sect. 5.1) we explain, as much as needed, the
necessary background for this theory. We also point out how many of our previous
results in the algebraic context follow quickly from this functorial theory, thus show-
ing the reader the power of Saito’s machinery. No knowledge of our pevious paper [9]
is needed, were similar results are discussed for Hodge theoretical invariants related
to intersection homology. In Sect. 3.1 we recall Deligne’s formalism of nearby and
vanishing cycles, but we assume reader’s familiarity with certain aspects of Hodge
theory ([17,37]), e.g., the notion of a variation of Hodge structures.

In a future paper, we will consider extensions of our monodromy formulae to the
singular setting, both for genera and characteristic classes (e.g., see [11], but see also
[32] for a preliminary result). Such general results are motivated by the considerations
in [9] (where the case of trivial monodromy was considered), and by an extension of
the Atiyah–Meyer signature formula to the singular case, which is due to Banagl et al.
[4].

2 Hodge genera and singularities of maps

2.1 Hodge genera: definitions

In this section, we define the Hodge-theoretic invariants of complex algebraic varie-
ties, which will be studied in the sequel. We assume reader’s familiarity with Deligne’s
theory of mixed Hodge structures [17].

For any complex algebraic variety Z , we define its χy-genus in terms of the Hodge–
Deligne numbers of the cohomology of Z (see [16]). More precisely,

χy(Z) =
∑

p

⎛

⎝
∑

i,q

(−1)i−ph p,q(Hi (Z; C))

⎞

⎠ · y p

=
∑

i,p≥0

(−1)i−pdimCGr p
F Hi (Z; C) · y p,

where h p,q(Hi (Z; C)) = dimCGr p
F (Gr W

p+q Hi (Z)⊗ C), with F � and W� the Hodge
and respectively the weight filtration of Deligne’s mixed Hodge structure on Hi (Z).
Similarly, we define the χc

y -genus of Z , χc
y (Z), by using the Hodge–Deligne numbers

of the compactly supported cohomology H∗
c (Z; C). Of course, for a compact variety

Z we have that χy(Z) = χc
y (Z). If Z is smooth and compact, then each cohomology

group Hi
c (Z; C) = Hi (Z; C) has a pure Hodge structure of weight i , and the above
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formulae define Hirzebruch’s χy-genus [25]. Note that for any complex variety Z , we
have that χc−1(Z) = χ−1(Z) = χ(Z) is the usual Euler characteristic, where for the
first equality we refer to [[21], p. 141–142]. Similarly, χ0 and χc

0 are two possible
extensions to singular varieties of the arithmetic genus.

The compactly supported χy-genus, χc
y , satisfies the so-called “scissor relations”

for complex varieties, that is: χc
y (Z) = χc

y (W )+χc
y (Z \W ), for W a closed subvariety

of Z . Therefore, χc
y can be defined on K0(VarC), the Grothendieck group of varieties

over C which arises in the motivic context.
More generally, we can define χy-genera on the Grothendieck group of mixed

Hodge structures K0(MHS) = K0(DbMHS), where we denote by MHS the abelian
category of (rational) mixed Hodge structures. Indeed, if K ∈ MHS, define

χy([K ]) :=
∑

p

dimCGr p
F (K ⊗ C) · (−y)p, (12)

where [K ] is the class of K in K0(MHS). This is well-defined on K0(MHS) since the
functor Gr p

F is exact on mixed Hodge structures. For K � a bounded complex of mixed
Hodge structures, we define

[K �] :=
∑

i∈Z

(−1)i [K i ] ∈ K0(MHS)

and note that we have:

[K �] =
∑

i∈Z

(−1)i [Hi (K �)].

In view of (12), we set

χy([K �]) :=
∑

i∈Z

(−1)iχy([K i ]). (13)

Note that χy : K0(MHS) → Z[y, y−1] is a ring homomorphism with respect to the
tensor product. In this language, we have that:

χc
y (Z) = χy

([
H∗

c (Z; Q)
])

and

χy(Z) = χy
([

H∗(Z; Q)
])
,

where H∗
c (Z; Q) and H∗(Z; Q) are regarded as bounded complexes of mixed Hodge

structures, with all differentials equal to zero.
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934 S. E. Cappell et al.

2.2 Multiplicativity properties of χy-genera

In this section, we use Leray spectral sequences for studying simple multiplicative
properties of the Hodge-theoretic genera (compare with results of [9]).

Let f : E → B be a morphism of complex algebraic varieties. Then one has the
Leray spectral sequence for f , that is,

E p,q
2 = H p(B; Rq f∗QE ) 
⇒ H p+q(E; Q), (14)

and similarly, there is a compactly supported version of the Leray spectral sequence,
namely

E p,q
2 = H p

c (B; Rq f!QE ) 
⇒ H p+q
c (E; Q). (15)

We will assume for now that these are spectral sequences in the category of mixed
Hodge structures. In the case of algebraic maps of quasi-projective varieties, this fact
was proved by Arapura [1]. The general case will be proved later on (see Sect. 5.2),
when Saito’s machinery of mixed Hodge modules will be developed.

We can now prove the following:

Lemma 2 Let f : E → B be an algebraic morphism of complex algebraic varieties,
with B smooth and connected. Assume that f is a locally trivial fibration in the strong
(complex) topology of B with fiber F. If the action ofπ1(B) on H∗(F; Q), respectively
H∗

c (F; Q), is trivial, then

χy(E) = χy(B) · χy(F), resp. χc
y (E) = χc

y (B) · χc
y (F). (16)

Proof Consider the Leray spectral sequences (14) and (15) for f , which by our
assumption are spectral sequences in the category of mixed Hodge structures. The
monodromy conditions imposed in the statement of the lemma imply that the local
systems Rq f∗QE , respectively Rq f!QE , are constant. It follows then by Griffiths’
rigidity that the corresponding variations of mixed Hodge structures are trivial: indeed,
the natural morphisms

H0(B; Rq f∗QE ) → (Rq f∗QE )b → Hq(F; Q), (17)

respectively

H0(B; Rq f!QE ) → (Rq f!QE )b → Hq
c (F; Q), (18)

are isomorphisms of mixed Hodge structures, with F = { f = b} the fiber over b ∈ B.
So the following identifications hold in the category of mixed Hodge structures:

H p(B; Rq f!QE ) = H p(B; Q)⊗ Hq(F; Q),
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respectively

H p
c (B; Rq f!QE ) = H p

c (B; Q)⊗ Hq
c (F; Q).

This assertion follows from Saito’s machinery which will be explained later on, and
it will only be assumed here.

Since all differentials in the Leray spectral sequence are mixed Hodge structure
morphisms, thus strict with respect to the Hodge and weight filtrations, by [[17],
Lemma 1.1.11] we get a corresponding spectral sequence for the Hodge components
of a given type (k, l):

E(k, l)p,q
2 := Grk

F Gr W
k+l E p,q

2 
⇒ Grk
F Gr W

k+l H p+q(E; Q), (19)

and similarly for the cohomology with compact support. Now let ek,l be the Euler
characteristic of Hodge-type (k, l), i.e., for a complex algebraic variety Z we define

ek,l(Z) =
∑

i

(−1)i hk,l(Hi (Z; Q)).

By the invariance of Euler characteristics under spectral sequences, from (17) and (19)
we obtain

ek,l(E) =
∑

i

(−1)i dim
(⊕p+q=i E(k, l)p,q

2

) =
∑

r+t=k,s+u=l

er,s(B) · et,u(F).

The multiplicativity of χy follows now by noting that for a variety Z we have

χy(Z) =
∑

k,l

ek,l(Z) · (−y)k .

Similar considerations apply to the compactly supported version of (19), yielding the
multiplicativity of the χc

y -polynomial, provided π1(B) acts trivially on H∗(F; Q).
Of course, if all E , B and F are smooth, the multiplicativity of χy and χc

y respec-
tively are equivalent by Verdier duality.

Remark 1 In the proof of Lemma 2 we only needed the fact that all direct image
sheaves (resp. with proper support) are locally constant, except for the base change
isomorphism (Rq f∗QE )b � Hq(F; Q), where the fact that f is a locally trivial
fibration is used. So Lemma 2 holds in fact under weaker assumptions.

Remark 2 The same argument can be used to show that the result of Lemma 2
also holds for the Hodge–Deligne polynomials (or the E-functions) defined by
E(Z; u, v) = ∑

k,l ek,l(Z)ukvl (resp. for the E-functions Ec(Z; u, v) defined by
using the compactly supported cohomology).1 In particular, the result holds for the
weight polynomials W (Z; t) := E(Z; t, t), resp. Wc(Z; t) := Ec(Z; t, t), considered
in [[19], Theorem 6.1].

1 Note that χy(Z) = E(Z; −y, 1), and similarly, χc
y (Z) = Ec(Z; −y, 1).
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Example 2 (1) As an example, consider the case of the Hopf fibration defining CP
n .

Thenχy(CP
n) = χc

y (CP
n) = 1+(−y)+· · ·+(−y)n ,χc

y (C
n+1\{0}) = (−y)n+1−1,

χc
y (C

∗) = −y−1, and by Poincaré Duality,χy(C
n+1\{0}) = 1−(−y)n+1,χy(C

∗) =
1 + y. Thus the multiplicativity for both χy and χc

y holds.
(2) Let f be the Milnor fibration of a weighted homogeneous isolated hypersurface

singularity at the origin in C
n+1, that is,

F = { f = 1} ↪→ E = C
n+1\{p = 0} → B = C

∗,

for f a weighted homogeneous polynomial in n+1 variables, with an isolated singular
point at the origin. In this case, the monodromy is an algebraic morphism of finite order
equal to deg( f ), and the mixed Hodge structure on H∗(F; Q) is known by work of
Steenbrink [47]. It turns out that even in this special case, the χy-genus is not multipli-
cative. Here is a concrete example: let f (x, y) = x3 − y2 defining the cuspidal cubic
in C

2. Then, in the notations above and by [47], the (mixed) Hodge numbers of F are
h0,0(H0(F)) = 1, h1,0(H1(F)) = 1, h0,1(H1(F)) = 1 and h1,1(H1(F)) = 0 (note
that H2(F) = 0 since F is affine of complex dimension 1). Therefore, we obtain that
χy(F) = y, so by Poincaré Duality2 it follows that χc

y (F) = (−y) · χy−1(F) = −1.
It also follows easily that χc

y (E) = y2 + y, χc
y (B) = −y − 1, and χy(E) = 1 + y,

χy(B) = 1 + y.

Remark 3 The assumption of trivial monodromy is closely related to, but different
from the situation of “algebraic piecewise trivial” maps coming up in the motivic
context (e.g., see [7]). For example, the multiplicativity of the χc

y -polynomial holds
(without any assumption on monodromy) for a Zariski locally trivial fibration of pos-
sibly singular complex algebraic varieties (see [[16], Corollary 1.9], or [[7], Exam-
ple 3.3]). Note that if the base space B is smooth and connected, then a Zariski
locally trivial fibration is also a locally trivial fibration in the complex topology, with
trivial monodromy action sinceπ1(U ) → π1(B) is surjective for a Zariski open subset
U of B.

2.3 χc
y -genera and singularities of maps

In this section, by analogy with the results of [8,9], we discuss the behavior of the
χc

y -genus under morphisms of algebraic varieties, and show that χc
y satisfies the strat-

ified multiplicative property in the sense of [13]. The result will be further refined in
Sects. 3.2 and 5.4, in the case of maps onto curves.

Let f : X → Y be a morphism of complex algebraic varieties. Since f can be
extended to a proper algebraic map, it can be stratified with subvarieties as strata,
i.e., there exist finite algebraic Whitney stratifications of X and Y respectively, such
that for any component S of a stratum of Y , f −1(S) is a union of connected compo-
nents of strata in X , each of which is mapping submersively to S. This implies that

2 If Z is a complex algebraic manifold of dimension n, then χc
y (Z) = (−y)nχy−1 (Z). Indeed, the Poin-

caré duality isomorphism takes classes of type (p, q) in H j
c (Z; Q) to classes of type (n − p, n − q) in

H2n− j (Z; Q).
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f| f −1(S) : f −1(S) → S is a locally trivial map of Whitney stratified spaces (see [[23],
Sect. I.1.6]). In particular, all direct image sheaves Rk f!QX are constructible, i.e., each
restriction (Rk f!QX )|S is locally constant on a stratum S of such a stratification on Y .

The following easy consequence of Lemma 2 shows the deviation from
multiplicativity of the χc

y -genus in the case of a stratified map (compare with results
in [8,9]):

Proposition 2 Let f : X → Y be an algebraic morphism of (possible singular)
complex algebraic varieties. Assume that there is a (finite) decomposition of Y into
locally closed and connected complex algebraic submanifolds S ⊂ Y such that the
restrictions (Rk f!QX )|S of all direct image sheaves to all pieces S are constant. Then

χc
y (X) =

∑

S

χc
y (S) · χc

y (Fs), (20)

were Fs = { f = s} is a fiber over a point s ∈ S.

Proof Without loss of generality, we can assume (after refining the stratification) that
for each stratum S, the set cl(S)\S is a union of other pieces (strata) S′ of the decom-
position of Y . Then by the additivity of the χc

y -genus, and by the multiplicativity result
of Lemma 2, it follows that:

χc
y (X) =

∑

S

χc
y ( f −1(S)) =

∑

S

χc
y (S) · χc

y (Fs).

Remark 4 With no assumption on the monodromy along the strata of f , each summand
χc

y ( f −1(S)) of Eq. 20 can be calculated by means of Atiyah–Meyer type formulae as
in Sect. 4.2.

Remark 5 More generally, by Remark 2 and additivity, formula (20) above is also
satisfied by the Hodge–Deligne polynomial Ec(−; u, v) defined by means of com-
pactly supported cohomology. In other words, the polynomial Ec(−; u, v) satisfies
the stratified multiplicative property.

Example 3 Smooth blow-up.
Let Y be a smooth subvariety of codimension r + 1 in a smooth variety X . Let
π : X̃ → X be the blow-up of X along Y . Then π is an isomorphism over X\Y and a
projective bundle (Zariski locally trivial) over Y , corresponding to the normal bundle
of Y in X of rank r + 1. The result of Proposition 2 then yields

χc
y (X̃) = χc

y (X)+ χc
y (Y ) · (−y + · · · + (−y)r

)
. (21)

In fact this formula holds without any assumption on monodromy, by using instead
Remark 3 and the fact that π−1(Y ) is a Zariski locally trivial fibration over Y with
fiber CP

r (see [[16], Sect. 1.10]).
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3 A Hodge-theoretic analogue of the Riemann–Hurwitz formula

In this section, we specialize the results of Sect. 2.3 to the case of morphisms onto a
curve and obtain a Hodge-theoretic analogue of the Riemann–Hurwitz formula. We
first recall the definition of nearby and vanishing cycle functors.

3.1 Vanishing and nearby cycles

Definition 1 Let f : X → � be a holomorphic map from a reduced complex space
X to a disc. Denote by X0 = f −1(0) the fiber over the center of the disc, with
i0 : X0 ↪→ X the inclusion map. The canonical fiber X∞ of f is defined by

X∞ := X ×�∗ h̄,

where h̄ is the complex upper-half plane (i.e., the universal cover of the punctured disc
via the map z �→ exp(2π i z)). Let k : X∞ → X be the induced map. Then the nearby
cycle complex is defined by

ψ f (QX ) := i∗0 Rk∗k∗
QX . (22)

As it turns out, ψ f (QX ) is in fact a constructible complex, i.e., ψ f (QX ) ∈ Db
c (X0)

(e.g., see [[43], Theorem 4.0.2, Lemma 4.2.1]). The vanishing cycle complex φ f (QX )

∈ Db
c (X0) is the cone on the comparison morphism QX0 = i∗0 QX → ψ f (QX ), that

is, there exists a canonical morphism can : ψ f (QX ) → φ f (QX ) such that

i∗0 QX → ψ f (QX )
can→ φ f (QX )

[1]→ (23)

is a distinguished triangle in Db
c (X0).

It follows directly from the definition that for x ∈ X0,

H j (Mx ; Q) = H j (ψ f QX )x and H̃ j (Mx ; Q) = H j (φ f QX )x , (24)

where Mx denotes the Milnor fiber of f at x . This identification can be used as in
[34,35] to put canonical mixed Hodge structures on the (reduced) cohomology of the
Milnor fiber (even in the analytic context for non-isolated singularities). If X is smooth,
the identification in (24) can also be used to show that Supp(φ f QX ) ⊂ Sing(X0), e.g.,
see [[20], Ex. 4.2.6, Prop. 4.2.8].

In fact, by replacing QX by any complex in Db
c (X), we obtain in this way functors

ψ f , φ f : Db
c (X) → Db

c (X0). It is well-known that if X is a pure (n + 1)-dimensional
locally complete intersection (e.g., X is smooth), then ψ f QX [n] and φ f QX [n] are
perverse complexes. This is just a particular case of the fact that the shifted func-
tors pψ f := ψ f [−1] and pφ f := φ f [−1] take perverse sheaves on X into perverse
sheaves on the central fiber X0 (e.g., see [[43], Theorem 6.0.2]).

123



Hodge genera of algebraic varieties, II 939

The above construction of the vanishing and nearby cycles comes up in the follow-
ing global context (for details, see [[20], Sect. 4.2]). Let X be a complex algebraic (resp.
analytic) variety, and f : X → C a non-constant regular (resp. analytic) function.
Then for any t ∈ C, one has functors

K� ∈ Db
c (X) �→ ψ f −t (K�), φ f −t (K�) ∈ Db

c (Xt )

where Xt = f −1(t) is assumed to be a non-empty hypersurface, by simply repeating
the above considerations for the function f − t restricted to a tube T (Xt ) := f −1(�)

around the fiber Xt (here � is a small disc centered at t). By stratification theory, in
the algebraic context (or in the analytic context for a proper holomorphic map f ) one
can find a small disc � centered at t ∈ C such that f : f −1(�∗) → �∗ is a (stratified)
locally trivial fibration, with �∗ := �\{t}.

3.2 A Riemann–Hurwitz formula for χy-genera

Let f : X → C be a proper algebraic morphisms from a smooth (n + 1)-dimensional
complex algebraic variety onto a smooth algebraic curve. Let�( f ) ⊂ C be the critical
locus of f . Then f is a submersion over C∗ := C\�( f ), hence locally differentiably
trivial (by Ehresmann’s fibration theorem). For a point c ∈ C we let Xc denote the
fiber f −1(c).

We want to relate the χc
y -genera of X and respectively C via the singularities of f ,

and to obtain a stronger version of Proposition 2 in our setting. The outcome is a
Hodge-theoretic version of a formula of Iversen, or of the Riemann–Hurwitz for-
mula for the Euler characteristic (e.g., see [[20], Corollary 6.2.5, Remark 6.2.6], or
[[28], (III, 32)]), see Theorem 2 and Example 4, as well as the more detailed results
of Sect. 5.4. The proof uses the additivity of the χc

y -genus, together with the study of
genera of singular fibers of f by means of vanishing cycles at a critical value.

Theorem 2 Let f : X → C be a proper algebraic morphism from a smooth (n + 1)-
dimensional complex algebraic variety onto a non-singular algebraic curve C. Let
�( f ) ⊂ C be the set of critical values of f , and set C∗ = C\�( f ). If the action of
π1(C∗) on the cohomology of the generic fibers Xt of f is trivial, then

χc
y (X) = χc

y (C) · χc
y (Xt )−

∑

c∈�( f )

χy([H∗(Xc;φ f −cQX )]) (25)

where on H
∗(Xc;φ f −cQX )we have the mixed Hodge structure constructed in [34,35].

Proof Under our assumptions, the fibers of f are compact complex algebraic varieties,
and fibers over points in C∗ are smooth. By additivity, we can write:

χc
y (X) = χc

y (X
∗)+

∑

c∈�( f )

χy(Xc),
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where X∗ := f −1(C∗). Then by Lemma 2 (or by [[9], Prop.3.1]), we have that

χc
y (X

∗) = χc
y (C

∗) · χy(Xt ), (26)

where Xt is the smooth (generic) fiber of f .
Now let c ∈ �( f ) be a critical value of f and restrict the morphism to a tube

T (Xc) := f −1(�c) around the singular fiber Xc, where�c denotes a small disc in C
centered at c. By our assumptions, f : T (Xc) → �c is a proper holomorphic func-
tion, smooth over�∗

c , with compact complex algebraic fibers, that is, a one-parameter
degeneration of compact complex algebraic manifolds. Then there is a long exact
sequence of mixed Hodge structures (e.g., see [34,35]):

· · · → H j (Xc; Q) → H
j (Xc;ψ f −cQX ) → H

j (Xc;φ f −cQX ) → · · · , (27)

where H
j (Xc;ψ f −cQX ) carries the “limit mixed Hodge structure” defined on the

cohomology of the canonical fiber X∞ of the one-parameter degeneration f : T (Xc)

→ �c (e.g., see [[37], Sect.11.2]). However, a consequence of the definition of the
limit mixed Hodge structure is that (see [[37], Corollary 11.25])

dimCF p H j (X∞; C) = dimCF p H j (Xt ; C),

for Xt the generic fiber of the family (and of f ). Therefore,

χy(X∞) := χy([H∗(Xc;ψ f −cQX )]) = χy(Xt ).

With this observation, from (27) we obtain that for a critical value c of f the following
holds:

χy(Xc) = χy([H∗(Xc;ψ f −cQX )])− χy([H∗(Xc;φ f −cQX )])
= χy(Xt )− χy([H∗(Xc;φ f −cQX )]).

The formula in (25) follows now from (26) and additivity.

Remark 6 The key point in the proof of the above theorem was to observe that in a
one-parameter degeneration of compact complex algebraic manifolds the χy-genus of
the canonical fiber coincides with the χy-genus of the generic fiber of the family. This
fact is not true for the corresponding E-polynomials, since, while the Hodge structure
on the cohomology of the generic fiber is pure, the limit mixed Hodge structure on the
cohomology of the canonical fiber carries the monodromy weight filtration.

Example 4 If X is smooth and f has only isolated singularities, then

χc
y (X) = χc

y (C) · χc
y (Xt )+ (−1)n+1

∑

x∈Sing( f )

χy([H̃n(Mx ; Q)]), (28)
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where Mx is the Milnor fiber of f at x . Indeed, if f has only isolated singular points,
then each critical fiber Xc has only isolated singularities and the corresponding vanish-
ing cycles φ f −cQX are supported only at these points. Each Milnor fiber Mx at one of
these singularities is (n−1)-connected. Moreover, for each integer j , the isomorphism

H
j (Xc;φ f −cQX ) �

∑

x∈Sing(Xc)

H̃ j (Mx ; Q)

is compatible with the mixed Hodge structures.

Remark 7 In the special case of the Euler characteristic χ = χ−1, the formulae in
Theorem 2 and in the example above remain true for any proper algebraic morphism
onto a curve, without any assumption on the monodromy (see [[20], Corollary 6.2.5]).
This follows from the multiplicativity of the Euler characteristic χ under fibrations,
the additivity of compactly supported Euler characteristic χc, and from the fact that
in the category of complex algebraic varieties we have the equality χ = χc (see [[21],
p. 141–142]).

4 The presence of monodromy: Atiyah–Meyer formulae for the χ y-genus

In this section, we prove Hodge-theoretic analogues of Atiyah’s formula for the sig-
nature of a fibre bundles in the presence of monodromy [2], and of Meyer’s twisted
signature formula [33]. As already mentioned in the introduction, in some important
cases we can prove these results even in the complex analytic context.

4.1 Hirzebruch classes of complex manifolds and the Hirzebruch–Riemann–Roch
theorem

Recall that if X is a complex manifold, its Hirzebruch class T̃ ∗
y (T X) corresponds to

the (un-normalized) power series

Q̃y(α) := α(1 + ye−α)
1 − e−α ∈ Q[y][[α]], Q̃y(0) = 1 + y. (29)

In fact,

T̃ ∗
y (T X) := T d∗(T X) ∪ ch∗(λy(T

∗ X)), (30)

where T d∗(X) is the total Todd class of X , ch∗ is the Chern character, and

λy(T
∗ X) :=

∑

p

pT ∗ X · y p (31)

is the total λ-class of (the cotangent bundle of) X . Hirzebruch’s class appears in the
generalized Hirzebruch–Riemann–Roch theorem, (g-HRR) for short, which asserts
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that if E is a holomorphic vector bundle on a compact complex manifold X then the
χy-characteristic of E , i.e.,

χy(X, E) :=
∑

p≥0

χ(X, E ⊗pT ∗ X) · y p

=
∑

p≥0

⎛

⎝
∑

i≥0

(−1)i dimHi (X,�(E)⊗pT ∗ X)

⎞

⎠ · y p,

with T ∗ X the cotangent bundle of X and�(E) the coherent sheaf of germs of sections
of E3, can in fact be expressed in terms of the Chern classes of E and the tangent bundle
of X , or more precisely,

χy(X, E) =
∫

[X ]
ch∗(E) ∪ T̃ ∗

y (T X). (32)

In particular, if E = OX we have that

χy(X) =
∫

[X ]
T̃ ∗

y (T X). (33)

Also note that the value y = 0 in (32) yields the classical Hirzebruch–Riemann–Roch
theorem (in short, HRR) for the holomorphic Euler characteristic of E , that is,

χ(X, E) =
∫

[X ]
ch∗(E) ∪ T d∗(T X). (34)

We should point out that while Hirzebruch’s original proof of the (g-HRR) theorem
was given in the context of complex projective manifolds (see [[25], Sect. 21.3]), the
result remains valid more generally for compact complex manifolds by the Atiyah–
Singer Index theorem [3]. In this context, it is also a special case of the Grothendieck–
Riemann–Roch theorem (GRR) for compact complex manifolds (which will be
explained in Theorem 3 of the next section).

Important special cases of the χy-genus of a compact complex manifold include the
Euler characteristic (for y = −1), the arithmetic genus (for y = 0), and the signature
(for y = 1).

3 For X smooth and projective, χy(X,OX ) agrees with the Hodge-theoretic χy -genus defined in the first
part of this paper (indeed, by Hodge theory, h p,q = dimC Hq (X,pT ∗ X)), and this is in fact a special
case of formula (10) from the introduction.

123



Hodge genera of algebraic varieties, II 943

4.2 χy-genera of smooth families

Let f : E → B be a holomorphic submersion of compact complex manifolds, with
B connected. Then we have a short exact sequence of holomorphic vector bundles

0 → T f → T E → f ∗T B → 0, (35)

with T f the tangent bundle to the fibers, so that

T̃ ∗
y (T E) = T̃ ∗

y (T f ) ∪ f ∗(T̃ ∗
y (T B)

)
. (36)

By using Poincaré duality and the projection formula we obtain

f∗(T̃ ∗
y (T E)) = f∗

(
T̃ ∗

y (T f )
) ∪ T̃ ∗

y (T B), (37)

so that

χy(E) =
∫

[B]
f∗

(
T̃ ∗

y (T f )
) ∪ T̃ ∗

y (T B). (38)

For the degree-zero component

f∗
(
T̃ ∗

y (T f )
)0 ∈ H0(B; Q[y])

of f∗(T̃ ∗
y (T f )) we have by restriction to any fiber Fb = { f = b} (with T f |Fb = T Fb)

that:

χy(Fb) = f∗(T̃ ∗
y (T f ))

0. (39)

So the χy-genus of all fibers is the same, and the multiplicativity relation

χy(E) = χy(Fb) · χy(B)

would follow from the equality

f∗
(
T̃ ∗

y (T f )
) = f∗

(
T̃ ∗

y (T f )
)0 ∈ H0(B; Q[y]) ⊂ H2∗(B; Q[y]),

which classically is called “strict multiplicativity” (compare [[26], p. 47]).
For a better understanding of f∗(T̃ ∗

y (T f )) we can use a relative version of the
(HRR), i.e., the following Grothendieck–Riemann–Roch theorem for compact com-
plex analytic manifolds:
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Theorem 3 (GRR). For a compact complex analytic manifold M there is a (unique)
Chern character homomorphism ch∗ : G0(M) → H2∗(M; Q) from the Grothendieck
group of coherent sheaves to cohomology, with the following two properties:

1. For the (class of a) coherent sheaf V of sections of a holomorphic vector bundle
V → M this is the usual Chern character of V , i.e.,

ch∗([V]) = ch∗(V ) ∈ H2∗(M; Q).

2. For a holomorphic map f : M → N of compact complex manifolds the following
diagram commutes:

G0(M)
ch∗(−)∪T d∗(T M)−−−−−−−−−−→ H2∗(M; Q)

f∗
⏐⏐�

⏐⏐� f∗

G0(N )
ch∗(−)∪T d∗(T N )−−−−−−−−−−→ H2∗(N ; Q).

Here the left pushforward is defined taking the alternating sum of the (classes of
the) higher direct image sheaves Ri f∗ (which are coherent by Grauert’s theorem).

Note that for an algebraic manifold the Grothendieck groups of algebraic vector
bundles and coherent algebraic sheaves are the same K 0(M) � G0(M), because any
coherent algebraic sheaf has a finite resolution by algebraic vector bundles. So in the
algebraic context this is the usual (GRR) (compare e.g. [[22], Ch.15]). But for com-
plex analytic manifolds this needs not to be the case, and for defining ch∗ we have to
compose the usual topological Chern character ch∗ : K 0

top(M) → H2∗(M; Q) with

the K-theoretic Riemann–Roch transformation α : G0(M) → K top
0 (M) � K 0

top(M)
constructed in [30] (even for compact complex spaces). The uniqueness of the Chern
character follows from properties 1. and 2., since G0(N ) is generated by classes
f∗([V]) with f : M → N a holomorphic map of compact manifolds and V → M a
holomorphic vector bundle.

For our holomorphic submersion f : E → B of compact complex manifolds the
above commutative diagram can be rewritten as:

G0(E)
ch∗(−)∪T d∗(T f )−−−−−−−−−−→ H2∗(E; Q)

f∗
⏐⏐�

⏐⏐� f∗

G0(B)
ch∗(−)−−−−→ H2∗(B; Q).

So for the class T̃ ∗
y (T f ) = ch∗(y T ∗

f ) ∪ T d∗(T f ) we get from (GRR):

f∗(T̃ ∗
y (T f )) = ch∗( f∗[y T ∗

f ]), (40)
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with y T ∗
f = ∑

p �
p
E/B · y p. Therefore, we need to understand the higher direct

image sheaves Rq f∗�p
E/B , which a priori are only coherent sheaves. But by the (rel-

ative) Hodge to de Rham spectral sequence (compare [[37], Proposition 10.29]):

′E p,q
1 = Rq f∗�p

E/B ⇒ R p+q f∗��
E/B = H p+q

DR (E/B) � R p+q f∗CE ⊗C OB,

(41)

these coherent sheaves are related to the locally constant sheaves Rk f∗CE . Note that
this spectral sequence is induced by the “trivial filtration” of the relative de Rham
complex��

E/B . By analytic restriction to a fiber of f one has the (absolute) Hodge to
de Rham spectral sequence of the fiber Fb:

′E p,q
1 = Hq(Fb;�p

Fb
) ⇒ H

p+q(Fb;��
Fb
) = H p+q

DR (Fb) � H p+q(Fb; C). (42)

And under suitable assumptions on Fb, this spectral sequence degenerates at E1.
A sufficient condition for this to happen is, for example, that Fb is bimeromorphic
to a compact Kähler manifold (compare [[37], Corollary 2.30]), e.g. Fb is itself a
Kähler manifold or an algebraic manifold. But (42) also degenerates at E1 for any
two-dimensional compact surface. Finally, if the Hodge to de Rham spectral sequence
(42) degenerates at E1 for all fibers Fb of f , then (by Grauert’s base change theorem)
the relative Hodge to de Rham spectral sequence (41) also degenerates at E1, and all
coherent direct image sheaves Rq f∗�p

E/B are locally free (compare [[37], p. 251]).
All the above considerations imply the following result:

Theorem 4 Let f : E → B be a holomorphic submersion of compact complex man-
ifolds such that for all fibers Fb of f the Hodge to de Rham spectral sequence (42)
degenerates at E1. Then all coherent direct image sheaves Rq f∗�p

E/B are locally free,
and the χy-genus of E can be computed by the formula:

χy(E) =
∫

[B]
ch∗(χy( f )) ∪ T̃ ∗

y (T B), (43)

where

χy( f ) :=
∑

p,q

(−1)q
[

Rq f∗�p
E/B

]
· y p ∈ K 0(B)[y]

is the K -theory χy-characteristic of f .

We shall now explain how one obtains from this a proof of Theorem 1 and of for-
mula (5) from the introduction. If a compact complex manifold M is bimeromorphic
to a compact Kähler manifold, then not only the Hodge to de Rham spectral sequence
degenerates at E1, but the induced decreasing filtration F � on

H
k(M;��

M ) = Hk
DR(M) � Hk(M; C) =: V
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defines a pure Hodge structure of weight k (compare [[37], Corollary 2.30]), i.e.,

F p(V ) ∩ Fk−p+1(V ) = {0}.

Here the conjugation ¯ on V comes from the real (or rational) structure

Hk(M; C) � Hk(M; R)⊗R C � Hk(M; Q)⊗Q C.

Moreover, this pure Hodge structure is polarizable over R (or over Q for M algebraic)
(compare [17]), i.e., there is a (−1)k-symmetric pairing

Q : V ⊗R V → R
(
or Q : V ⊗Q V → Q

)
,

satisfying suitable properties (compare [[37], p. 38–39]).

By the arguments of Griffiths [24], these considerations when applied to the fibers
of a holomorphic submersion f : E → B of compact complex manifolds, yield a
polarizable variation of R-Hodge structures of weight k on the direct image sheaves
Rk f∗RE with

Hp,q := Gr p
F (R

p+q f∗CE ⊗C OB) � Rq f∗�p
E/B, (44)

provided we are in any one of the following cases (compare [[37], Corollary 10.32],
[17], [24]):

1. E is a Kähler manifold, or more generally bimeromorphic to a compact Kähler
manifold.

2. f is a projective morphism.
3. f is an algebraic morphism of complex algebraic manifolds.

So we get a (−1)k-symmetric pairing Q : L ⊗R L → RB for the local system
L = Rk f∗RE , together with a decreasing filtration F � of (L⊗R CB)⊗C OB =: V by
holomorphic subbundles, which on each fiber define a polarized Hodge structure of
weight k. Finally, the induced flat connection ∇ : V → V ⊗�1

B satisfies the Griffiths’
transversality condition

∇(F pV) ⊂ F p−1V ⊗�1
B

for all p. Note that the structure of such a geometric variation of Hodge structures is a
condition on the cohomology of the fibers of f , whereas the existence of a polarization
is a global property, were we use one of our assumptions 1, 2 or 3. In the last two
cases, the polarization is even defined over Q. This finishes the proof of Theorem 1
which we recall below for the convenience of the reader, and it also proves formula
(5) from the introduction:

Theorem 5 Let f : E → B be a holomorphic submersion of compact complex
manifolds. Assume we are in any one of the following cases:
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1. E is a Kähler manifold, or more generally bimeromorphic to a compact Kähler
manifold.

2. f is a projective morphism.
3. f is an algebraic morphism of complex algebraic manifolds.

Then the χy-genus of E can be computed by the following formula:

χy(E) =
∫

[B]
ch∗(χy( f )) ∪ T̃ ∗

y (T B), (45)

where

χy( f ) :=
∑

k

(−1)k · χy([Rk f∗RE ,F �]) ∈ K 0(B)[y]

is the K -theory χy-characteristic of f , for

χy([L,F �]) :=
∑

p

[
Gr p

F (L ⊗R OB)
] · (−y)p ∈ K 0(B)[y, y−1]

the K -theory χy-characteristic of a polarizable variation of R-Hodge structures L
(with F � the Hodge filtration on the associated flat vector bundle).

Remark 8 (1) Note that ifπ1(B) acts trivially on the real cohomology of the fibers of
a holomorphic submersion f : E → B as in the statement of Theorem 5, then by
Griffiths’ “rigidity” theorem [24] all polarizable variations of Hodge structures
Rk f∗RE are constant, since the underlying local systems are constant. We get in
this case the “multiplicativity” of the χy-genus for holomorphic submersions as
in one of the cases 1, 2, or 3 above. We should also point out that by formula (45)
the multiplicativity property holds provided only that the locally-free sheaves
Hp,q are all flat (since by [27] rational Chern classes of flat bundles are trivial in
positive degrees). This is the case if the above variations are what is called “local
systems of Hodge structures” (compare [[37], Example 10.7]).

(2) Formula (45) shows the deviation from multiplicativity of the χy-genus of fiber
bundles in the presence of monodromy. The right-hand side of (45) is a sum
of polynomials, one of the summands being χy(B) · χy(F), for F the generic
fiber. Indeed, as already pointed out, the zero-dimensional piece of ch∗(χy( f ))
is χy(F).

(3) Formula (45) is a Hodge-theoretic analogue of Atiyah’s signature formula [[2],
(4.3)] in the complex analytic/algebraic setting. Indeed, if y = 1, then by [[50],
Remark 3], and in the notation of [[2], Sect. 4],

T̃ ∗
1 (TB) =

dimB∏

i=1

αi

tanh
( 1

2αi
) =: L̃(B), (46)
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whereαi are the Chern numbers of the tangent bundle of B. Moreover, it is known
that χ1(E) = σ(E) is the usual signature (see [25]), and in a similar fashion one
can show that (−1)qHp,q is the K -theory signature Sign( f ) from [2]. In other
words, the value at y = 1 of (45) yields Atiyah’s formula

σ(E) =
∫

[B]
ch∗(Sign( f )) ∪ L̃(B). (47)

(4) In [2], Atiyah pointed out that his examples on the non-multiplicativity of the sig-
nature of holomorphic fibrations Z → C with dimC Z = 2, dimCC = 1 and with
non-trivial monodromy action on the cohomology of the fiber G, also show the
non-multiplicativity of the Todd genus Td(−). Examples of non-multiplicativity
in higher dimensions can be obtained as follows. Let D → C be an arbitrary
holomorphic fiber bundle with fiber F and having a trivial monodromy. Then the
Todd (and hence χy-) genus is non-multiplicative for the fibration Z ×C D → D,
since Z ×C D also fibers over Z with fiber F and trivial monodromy, and

Td(Z ×C D) = Td(F) · Td(Z) �= Td(F) · Td(C) · Td(G) = Td(D) · Td(G).

(48)

More such examples can be obtained via standard constructions, e.g., fiber or
direct products of Atiyah’s examples, or higher dimensional examples as above.

(5) Theorem 5 can be extended so that we allow E and F to be singular. We can also
discard the compactness assumption on the base B, but in this case we need to
allow contributions “at infinity” in our formula; see the discussion at the end of
Sect. 4.4 for precise formulations of these general results.

4.3 Higher χy-genera and period domains

In this section, we express the deviation from multiplicativity of the χy-genus in (4)
in terms of higher-genera associated to cohomology classes of the quotient by the
monodromy group of the corresponding period domain associated to the polarizable
variation of R-Hodge structures [Rk f∗RE ,F �] (k ∈ Z). These higher-genera are
analogous to the previously considered Novikov-type invariants corresponding to the
cohomology classes of the fundamental group (e.g., see [6]), and in some cases they
coincide with the latter.

Let [L,F �] be a polarizable variation of R-Hodge structures of weight k on a com-
pact complex manifold B. And let D be Griffiths’ classifying space [24] for [L,F �].
More precisely, if (L , F �) is the stalk of L at a point b ∈ B together with its Hodge
filtration, and if ε = (−1)k is the type of a polarization Q on L with η the Hodge
partition given by dim(L ⊗ C) = ∑

p h p,k−p (for h p,k−p := dim F p/F p+1), then
D := Dε,η is the classifying space of weight k pure Hodge structures of type (ε, η).
This space is a subset in the flag manifold consisting of flags in L which satisfy the
Riemann bilinear relations. In particular, D is the base of the universal flag bundle
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Fη := (· · · ⊂ F p+1 ⊂ F p ⊂ · · · ) with rank F p = dim F p, which has the flags as
its fiber, and it is also the base for the bundles Hp := F p/F p+1.

Let �̄ be the monodromy group corresponding to L. Then �̄ is a subgroup in the
subgroup of GL(dim(L),R) consisting of transformations preserving the biliniar form
Q. We assume �̄ is discrete, e.g. �̄ is finite. Note that �̄ is automatically discrete if we
have a rational polarization of the variation of Z-Hodge structures L � L(Z)⊗Z R,
with L(Z) a local system of finitely generated abelian groups. In Theorem 1 (or 5) this
is for example true in the cases 2 and 3. Then a finite index subgroup � ⊂ �̄ acts also
freely on D so that D/� is a complex manifold. Moreover, [L,F �] is classified by a
holomorphic map

π : B → D/�,

in such a way that the holomorphic vector bundle

Gr p
F (L ⊗R OB) � π∗Hp

is the pullback under π of a corresponding (universal) vector bundle Hp → D/�.
Indeed, the action of the group � on L and D induces an action on the total space of
Fη so that the projection Fη → D is �-equivariant. The latter map induces the locally
trivial fibration Fη/� → D/� and, moreover, for any h p,k−p ∈ η the bundle Hp

over D descends to a universal bundle (also denoted by Hp) over the quotient D/�.
Therefore, we can write:

ch∗(χy([L,F �])) ∪ T̃ ∗
y (T B) =

∑

p

(π∗(ch∗(Hp) ∪ T̃ ∗
y (T B)) · (−y)p. (49)

We next make the following definition:

Definition 2 Let α ∈ H∗(D/�). The higher genus χ [α]
y is defined by:

χ [α]
y =

∫

[B]
π∗(α) ∪ T̃y(T B).

Among polarizable variations of Hodge structures one can single out those for
which, if ε = −1 there are at most two non-vanishing Hodge numbers, and if ε = +1
and p �= q then all h p,q = 0 except for at most two of them for which one has h p,q = 1.
In this case, the period domain is simply-connected, since it is the Siegel upper-half
plane for ε = −1, and it is SO(2, h p,p)/U (1) × SO(h p,p), i.e., the quotient by the
maximal compact subgroup, for ε = +1 (see [[14], p. 145]). It follows that the period
map factors as B → Bπ1(B) → D/� = B� (where B� is the classifying space
of �), and χ [α]

y coincides in this case with the higher χy-genus considered in [6]. We
shall refer to such variations as “topological variations” of Hodge structures.

Let us consider the polarized variation of Hodge structures [Rk f∗RE ,F �] coming
from a map f : E → B as in the statement of Theorem 1. If we denote by Hp

k the
corresponding universal bundle on the quotient of the associated classifying space by
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the monodromy group, then by (49) our formula (4) can easily be rewritten in terms
of the higher genera

χ

[
α

p,k
�

]

y (B) :=
∫

[B]
π∗(ch∗(Hp

k )) ∪ T̃ ∗
y (T B) (50)

corresponding to the polarized variation of Hodge structures [Rk f∗RE ,F �] as follows:

Theorem 6

χy(E) =
∑

p,k

(−1)kχ

[
α

p,k
�

]

y (B) · (−y)p. (51)

Remark 9 If � = 1 (i.e., the monodromy group �̄ is trivial or finite), we obtain the
multiplicativity of the χy-genus. More generally, if the pieces H p,q of the Hodge
decomposition on the cohomology of the fiber are monodromy invariant then the
period map is homotopic to the map to a point, and again one has multiplicativity.

Remark 10 Fibrations for which the fibers are curves or K3 surfaces induce topo-
logical variations of Hodge structures, hence the χy-genus of the total space can be
expressed in terms of Novikov-type higherχy-genera. On the other hand, for fibrations
with fibers of higher dimensions one needs the generalization of the higher χy-genus
as defined in this section (except for very special cases).

4.4 A Hodge-theoretic analogue of Meyer’s twisted signature formula

Let [L,F �]be a polarizable variation of R-Hodge structures on a compact Kähler mani-
fold B (withF � the corresponding Hodge filtration on the associated flat vector bundle).
Then by a classical result of Zucker [[51], Theorem 2.9, Lemma 2.11], the cohomology
H∗(B;L) gets an induced polarizable R-Hodge structure with the Hodge filtration
induced from the filtered (by Griffiths’ transversality) de Rham complex (��

B(V), F �)
of the associated flat vector bundle V = L ⊗R OB , where ��

B(V) := ��
B ⊗OB V .

For a compact complex algebraic manifold B, the same is true for a polarizable
variation of Q-Hodge structures by Saito’s theory of algebraic mixed Hodge modules
[38,39].

The key point used in the results of this section is the fact that the spectral sequence
induced by the above filtration F � of the twisted de Rham complex, i.e.,

′E p,q
1 = H

p+q (
B; Gr p

F (�
�
B(V))

) ⇒ H
p+q(B;��

B(V)) � H p+q(B;L ⊗ C) (52)

degenerates at E1. In the Kähler case this is the result from [[51], Lemma 2.11],
whereas a corresponding relative version for a projective morphism is the main result
of [[38], Theorems 1, 5.3.1]. Finally, a compact algebraic manifold B is bimeromor-
phic to a projective algebraic manifold M , i.e., there is a projective birational morphism
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π : M → B. Then the spectral sequence for (��
B(V), F �) is a direct summand of the

spectral sequence for (��
M (π

∗V), F �), which implies the degeneration claim (compare
also with [[41], Theorem 2.2] for a much more general relative version in a suitable
Kähler context). This will be used in the proof of the following Hodge-theoretic version
of Meyer’s twisted signature formula [33]:

Theorem 7 Let [L,F �] be a (rational) polarizable variation of Hodge structures on a
compact Kähler (or compact algebraic) manifold B so that H∗(B;L) gets an induced
(rational) polarizable Hodge structure with F � the associated Hodge filtration. Then

χy([H∗(B;L), F �]) =
∫

[B]
ch∗(χy([L,F �])) ∪ T̃ ∗

y (T B), (53)

where

χy([L,F �]) :=
∑

p

[
Gr p

F (L ⊗R OB)
] · (−y)p ∈ K 0(B)[y, y−1]

is the K -theory χy-characteristic of [L,F �].
Proof By definition,

χy([H∗(B;L), F �]) =
∑

i,p

(−1)i dimCGr p
F Hi (B;L ⊗ C) · (−y)p

=
∑

p

χ p(B;L) · (−y)p,

where χ p(B;L) := ∑
i (−1)i dimCGr p

F Hi (B;L⊗C) is the Euler characteristic asso-
ciated to the exact functor Gr p

F .
If V = L⊗R OB is the flat bundle associated to L with decreasing Hodge filtration

F �, then the Hodge filtration on H j (B;L) is induced via the isomorphism

H j (B;L ⊗ C) � H
j (B;��

B ⊗OB V),

from the filtration F � defined by Griffiths’ transversality on the twisted de Rham
complex ��

B(V) := ��
B ⊗OB V:

F p(��
B ⊗OB V) :=

[
F pV �→ �1

B ⊗ F p−1V �→ · · · �→ �i
B ⊗ F p−iV �→ · · ·

]

The associated graded is the complex

Gr p
F (�

�
B ⊗OB V) =

(
��

B ⊗OB Gr p−�
F V, GrF�

)

with the induced differential.
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Then

χ p(B;L) =
∑

k

(−1)kdimCGr p
F Hk(B;L ⊗ C)

=
∑

k

(−1)kdimCGr p
FH

k(B;��
B ⊗OB V)

(∗)=
∑

k

(−1)kdimCH
k(B; Gr p

F (�
�
B ⊗OB V))

= χ(B,��
B ⊗OB Gr p−�

F V),

where (∗) follows from the E1-degeneration of the spectral sequence (52).
The last term in the above equality can be computed by using the invariance of the

Euler characteristic under spectral sequences. In general, if K� is a complex of sheaves
on a topological space B, then there is the following spectral sequence calculating its
hypercohomology (e.g., see [[20], Sect. 2.1]):

Ei, j
1 = H j (B;Ki ) 
⇒ H

i+ j (B;K�).

Assuming all χ(B;Ki ) are defined, then χ(B;K�) is also defined, and it can be com-
puted from the E1-term as

χ(B;K�) =
∑

i, j

(−1)i+ j dim H j (B;Ki ) =
∑

i

(−1)iχ(B;Ki )

Therefore,

χy([H∗(B;L), F �]) =
∑

p

χ p(B;L) · (−y)p

=
∑

p

χ
(
B;��

B ⊗OB Gr p−�
F V) · (−y)p

=
∑

i,p

(−1)iχ
(
B;�i

B ⊗ Gr p−i
F V) · (−y)p,

and by the Hirzebruch–Riemann–Roch theorem (HRR), the last term in the above
inequality can be written as:

∫

[B]

⎛

⎝
∑

i,p

(−1)i
(

ch∗(�i
B ⊗ Gr p−i

F V) ∪ T d∗(T B) ∩ [B]
)

· (−y)p

⎞

⎠ .

Finally, the characteristic class under the integral sign can be computed as
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∑

i,p

(−1)i
(
ch∗(�i

B ⊗ Gr p−i
F V) ∪ T d∗(T B) ∩ [B]) · (−y)p

=
⎛

⎝
∑

i,p

ch∗(Gr p−i
F V) · (−y)p−i

⎞

⎠ ·
(

∑

i

ch∗(�i
B) · yi

)
∪ T d∗(T B) ∩ [B]

= ch∗(χy([L,F �])) ∪ T̃ ∗
y (T B) ∩ [B].

which finishes the proof of the theorem.

Remark 11 The result and the proof of Theorem 7 remain the same for L a graded
polarizable variation of mixed Hodge structures. In this case H∗(B;L) gets an induced
graded polarizable mixed Hodge structure, in such a way that the spectral sequence
coming from the Hodge filtration F � on the twisted de Rham complex degenerates as
before at E1 (whereas the weight filtration W� is not used); compare [[39], Proposition
2.15] or [[41], Proposition 1.8].

We can now prove the following generalization of Theorem 1 in the algebraic con-
text:

Theorem 8 Let f : E → B be a morphism of complex algebraic varieties, with
B smooth, connected and compact. Assume that all direct image sheaves Rs f∗QE
(respectively Rs f!QE ) are locally constant on B (s ∈ Z). Then the χy- (resp. χc

y )-
genus of E can be computed by the following formula:

χy(E) =
∫

[B]
ch∗(χy( f )) ∪ T̃ ∗

y (T B); (54)

respectively,

χc
y (E) =

∫

[B]
ch∗(χc

y ( f )) ∪ T̃ ∗
y (T B), (55)

where χy( f ) (resp. χc
y ( f )) is the K -theoretic χy- (resp. χc

y )- characteristic of f , i.e.,

χy( f ) =
∑

i

(−1)iχy([Ri f∗QE ,F �]),

respectively,

χc
y ( f ) =

∑

i

(−1)iχy([Ri f!QE ,F �]).

Proof First note that since the direct image sheaves Rs f∗QE (resp. Rs f!QE ) are
locally constant, they underly in the algebraic context admissible variations of mixed
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Hodge structures. In our case B is also compact, so admissible here just means graded-
polarizable. (For more details and classical references for the fact that such “geometric
variations” of mixed Hodge structures are admissible, compare with [[37], Theorem
14.51] for the case when f quasi-projective. In the next section this will be explained
by using Saito’s theory of algebraic mixed Hodge modules.)

Since the Leray spectral sequences (14) and resp. (15) are compatible with the
mixed Hodge structures, we easily obtain that

χy(E) =
∑

s

(−1)s · χy([H∗(B; Rs f∗QE ), F �]), (56)

and respectively

χc
y (E) =

∑

s

(−1)s · χy([H∗(B; Rs f!QE ), F �]). (57)

The result follows now from the above remark and formula (53) of Theorem 7.

Remark 12 As stated in [33], Meyer’s formula for the signature σ(B;L) of a Poin-
caré local system L (that is, a local system equipped with a nondegenerate bilinear
pairing L ⊗ L → RB) on a closed, oriented, even-dimensional smooth manifold B
involves a twisted Chern character and the total L-polynomial of B (as opposed to
Atiyah’s formula [2], where an un-normalized version of the L-polynomial is used).
More precisely ([33]),

σ(Z;L) =
∫

[B]
c̃h∗([L]K ) ∪ L∗(B), (58)

where [L]K is the K -theory signature of L, L∗(B) is the total Hirzebruch L-polyno-
mial of B, and c̃h∗ := ch∗ ◦ψ2 is a modified Chern character obtained by composition
with the second Adams operation. Similarly, following [[26], p. 61–62] (see also [[44],
Sect. 6]), we can reformulate our Hodge-theoretic Atiyah–Meyer formulae in terms of
the normalized Hirzebruch classes T ∗

y (T B) corresponding to the power series4

Qy(α) := Q̃y(α(1 + y)) · (1 + y)−1 = α(1 + y)

1 − e−α(1+y)
− αy ∈ Q[y][[α]], (59)

by using instead a modified Chern character, ch∗
(1+y), whose value on a complex vector

bundle E is

ch∗
(1+y)(E) =

rkξ∑

j=1

eβ j (1+y), (60)

4 For B smooth and projective, the total Hirzebruch class T ∗
y (T B) unifies the total Chern class, Todd class

and respectively L-class of B; in fact, T ∗−1 = c∗, T ∗
0 = td∗ and T ∗

1 = L∗.
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for β j the Chern roots of E . (In this notation, Meyer’s modified Chern character is
simply ch∗

(2).) For example, in the notations of Theorem 7, formula (53) is equivalent

to5

χy([H∗(B;L), F �]) =
∫

[B]
ch∗
(1+y)(χy([L,F �])) ∪ T ∗

y (T B). (61)

Similar methods can be used to compute χy([H∗(U ;L), F �])6, the twisted
χy-polynomial associated to the canonical mixed Hodge structure on H∗(U ;L), for
U any (not necessarily compact) complex algebraic manifold and L an admissible
variation of mixed Hodge structure with quasi-unipotent monodromy at infinity on
U . (The existence of such mixed Hodge structures follows for example from Saito’s
theory, see also [[37], Theorem 14.52] and the references therein.) In this case, the
Hodge filtration on H∗(U ;L⊗C) is induced by the filtered logarithmic de Rham com-
plex associated to the Deligne extension of L on a good compactification of U . More
precisely, let (V,�) be the corresponding vector bundle on U with its flat connection
and Hodge filtration F �. Then we can choose a smooth compactification j : U ↪→ Z
such that D = Z\U is a divisor with normal crossings, and for each half-open interval

of length one there is a unique extension of (V,�) to a vector bundle (V̄ I , �̄I
) with a

logarithmic connection on Z such that the eigenvalues of the residues lie in I [18]. If
we set V̄ := V̄ [0,1), then the twisted logarithmic de Rham complex ��

Z (logD)⊗ V̄ is
quasi-isomorphic (on Z ) to R j∗L⊗C, and the filtration F � on V extends to a filtration
F̄ � ⊂ V̄ since the variation of mixed Hodge structures was assumed to be admissible.
As before, by Griffiths’ transversality, we can filter the twisted logarithmic de Rham
complex, and this filtration becomes part of a cohomological mixed Hodge complex
that calculates H∗(U ;L). The spectral sequence analogous to (52) for the correspond-
ing filtered logarithmic de Rham complex (��

Z (logD) ⊗ V̄, F �) also degenerates at
the E1-tem (e.g., see [[37], Theorem 3.18 (II.iv)]). So by repeating the arguments in
the proof of Theorem 7, we obtain the following result involving contributions “at
infinity” (i.e., forms on Z with logarithmic poles along D):

Theorem 9 Let U be a smooth (not necessarily compact) complex algebraic variety
and L an admissible variation of mixed Hodge structures on U with quasi-unipotent
monodromy at infinity. Then in the above notations, we have that

χy([H∗(U ;L), F �])

=
∫

[Z ]
ch∗

(
∑

p

[
Gr p

F̄ V̄
]

· (−y)p

)
∪ ch∗ (

λy(�
1
Z (logD))

)
∪ T d∗(T Z), (62)

where λy
(
�1

Z (logD)
) := ∑

i �
i
Z (logD) · yi .

5 This is in fact the formulation of our result in [10].
6 We do not mention the weight filtration in the notation since it is not used at all in our arguments.
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Remark 13 By Poincaré duality, it follows thatχc
y (U ;L) = (−y)nχy−1(U ; Ľ), where

Ľ is the dual (admissible) variation of mixed Hodge structures on the n-dimensional
complex algebraic manifold U .

Remark 14 If we let L = QU be the trivial variation on U , then formula (62) yields a
calculation ofχy(U ) in terms of logarithmic forms on a good compactification (Z , D),
i.e.,

χy(U ) =
∫

[Z ]
ch∗(λy(�

1
Z (logD))

) ∪ T d∗(T Z). (63)

In view of formula (62) and by using again the Leray spectral sequences, we can
obtain an even more general Atiyah-type result for an algebraic map f as in Theorem 8
by dropping the compactness assumption on its target B:

Corollary 1 Let f : E → B be a morphism of complex algebraic varieties, with B
smooth and connected. Assume that all direct image sheaves Rs f∗QE (resp. Rs f!QE )
are locally constant on B (s ∈ Z). Then the χy- (resp. χc

y )-genus of E can be computed
by the following formula:

χy(E)

=
∫

[Z ]
ch∗

⎛

⎝
∑

i,p

(−1)i
[
Gr p

F̄ (V̄i )
]

· (−y)p

⎞

⎠ ∪ ch∗(λy�
1
Z (log D)) ∪ T d∗(T Z);

respectively,

χc
y (E)

= (−1)n ·
∫

[Z ]
ch∗

⎛

⎝
∑

i,p

(−1)i
[
Gr p

F̄ (V̄i )
]

· (−y)p

⎞

⎠ ∪ ch∗(λy�
1
Z (log D)) ∪ T d∗(T Z),

where n is the complex dimension of B and (Z , D) is a good compactification of B with
D a normal crossing divisor. Finally V̄i denotes the unique extension of (Ri f∗QE )⊗
OB (resp. (Ri f!QE )ˇ⊗OB) to a vector bundle with logarithmic connection on Z such
that the eigenvalues of the residues lie in [0, 1) (for i ∈ Z).

5 The calculus of mixed Hodge modules and applications

In this section, we begin with a brief overview of Saito’s theory of algebraic mixed
Hodge modules. Then we present some quick applications of this theory, by show-
ing for example that the Leray spectral sequences are compatible with mixed Hodge
theory. We also obtain in this section a more explicit version of our Hodge-theoretic
Riemann–Hurwicz formula.
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5.1 Basics of Saito’s theory of mixed Hodge modules

Even though the theory of mixed Hodge modules is very involved, in this section we
give a brief overview adapted to our needs. (See also [40] and [[37], Ch.14] for a quick
introduction to this theory.)

We recall that for any complex algebraic variety Z , the derived category of bounded
cohomologically constructible complexes of sheaves of Q-vector spaces on Z is
denoted by Db

c (Z), and it contains as a full subcategory the category PervQ(Z) of
perverse Q-complexes. The Verdier duality operator DZ is an involution on Db

c (Z)
preserving PervQ(Z). Associated to a morphism f : X → Y of complex alge-
braic varieties, there are pairs of adjoint functors ( f ∗, R f∗) and (R f!, f !) between the
respective categories of cohomologically constructible complexes, which are inter-
changed by Verdier duality. For details, see the books [20,43].

M. Saito associated to a complex algebraic variety Z an abelian category MHM(Z),
the category of algebraic mixed Hodge modules on Z , together with a forgetful functor

rat : DbMHM(Z) → Db
c (Z)

such that rat(MHM(Z)) ⊂ PervQ(Z) is faithful. For M� ∈ DbMHM(Z), rat(M�) is
called the underlying rational complex of M�.

Since MHM(Z) is an abelian category, the cohomology groups of any complex
M� ∈ DbMHM(Z) are mixed Hodge modules. The underlying rational complexes of
the cohomology groups of a complex of mixed Hodge modules are the perverse coho-
mologies of the underlying rational complex, that is, rat(H j (M�)) = pH j (rat(M�)).

The Verdier duality functor DZ lifts to MHM(Z) as an involution, in the sense that
it commutes with the forgetful functor: rat ◦ DZ = DZ ◦ rat.

For a morphism f : X → Y of complex algebraic varieties, there are induced
functors f∗, f! : DbMHM(X) → DbMHM(Y ) and f ∗, f ! : DbMHM(Y ) →
DbMHM(X), exchanged under the Verdier duality functor, and which lift the analo-
gous functors on the level of constructible complexes. Moreover, if f is proper, then
f! = f∗.

Let us give a rough picture of what the objects in Saito’s category of mixed Hodge
modules look like. For Z smooth, MHM(Z) is a full subcategory of the category of
objects ((M, F�),K�,W�) such that:

1. (M, F�) is an algebraic holonomic filtered D-module M on Z , with an increasing
“Hodge” filtration F� by coherent algebraic OZ -modules;

2. K� ∈ PervQ(Z) is the underlying rational sheaf complex, and there is a quasi-iso-
morphism α : DR(M) � C⊗K� in PervC(Z), where DR is the de Rham functor
shifted by the dimension of Z ;

3. W� is a pair of (weight) filtrations on M and K� compatible with α.

For a singular variety Z , one works with local embeddings into manifolds and cor-
responding filtered D-modules with support on Z . In addition, these objects have to
satisfy a long list of very complicated properties, but the details of the full construction
are not needed here. Instead, we will only use certain formal properties that will be
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explained below. In this notation, the functor rat is defined by rat((M, F�),K�,W�) =
K�.

It follows from the definition of mixed Hodge modules that every M ∈ MHM(Z)
has a functorial increasing filtration W� in MHM(Z), called the weight filtration of
M, so that the functor M → Gr W

k M is exact. We say that M ∈ MHM(Z) is pure
of weight k if Gr W

i M = 0 for all i �= k. If M ∈ MHM(X) is pure of weight k and
f : X → Y is proper, then Hi ( f∗M) is pure of weight i + k.

We say that M ∈ MHM(Z) is supported on S if and only if rat(M) is sup-
ported on S. Saito showed that the category of mixed Hodge modules supported on a
point, MHM(pt), coincides with the category MHSp of (graded) polarizable rational
mixed Hodge structures. Here one has to switch the increasing D-module filtration F�
of the mixed Hodge module to the decreasing Hodge filtration of the mixed Hodge
structure by F � := F−�, so that gr p

F � gr F−p. In this case, the functor rat asso-
ciates to a mixed Hodge structure the underlying rational vector space. Following
[39], there exists a unique object Q

H
pt ∈ MHM(pt) such that rat(QH

pt ) = Q and

Q
H
pt is of type (0, 0). In fact, Q

H
pt = ((C, F�),Q,W�), with gr F

i = 0 = gr W
i for

all i �= 0, and α : C → C ⊗ Q the obvious isomorphism. For a complex variety
Z , define Q

H
Z := k∗

Q
H
pt ∈ DbMHM(Z), with rat(QH

Z ) = QZ , for k : Z → pt
the map to a point. If Z is smooth of dimension n, then QZ [n] ∈ PervQ(Z) and
Q

H
Z [n] ∈ MHM(Z) is a single mixed Hodge module (in degree 0), explicitly described

by Q
H
Z [n] = ((OZ , F�),QZ [n],W�), with gr F

i = 0 = gr W
i+n for all i �= 0. So if Z is

smooth of dimension n, then Q
H
Z [n] is a pure mixed Hodge module of weight n.

Note that a graded-polarizable mixed Hodge structure on the (compactly supported)
rational cohomology of a complex algebraic variety Z can be obtained by noting that,
for k : Z → pt the constant map, we have that

Hi (Z; Q) = rat(Hi (k∗k∗
Q

H
pt )) and Hi

c (Z; Q) = rat(Hi (k!k∗
Q

H
pt )).

Moreover, by a deep result of Saito [42], these structures coincide with the classical
mixed Hodge structures constructed by Deligne.

If Z is smooth of dimension n, an object M ∈ MHM(Z) is called smooth if and
only if rat(M)[−n] is a local system on Z . Smooth mixed Hodge modules are (up
to a shift) admissible variations of mixed Hodge structures with quasi-unipotent mo-
nodromy at infinity. Conversely, such an admissible variation L on a smooth variety
Z of pure dimension n gives rise to a smooth mixed Hodge module (see [39]), i.e., to
an element LH [n] ∈ MHM(Z) with rat(LH [n]) = L[n]. A pure polarizable variation
of weight k with quasi-unipotent monodromy at infinity yields a pure (polarizable)
Hodge module of weight k + n on Z . An easy consequence of this is the following:

Corollary 2 Let Z be a complex algebraic manifold and L be an admissible varia-
tion of mixed Hodge structures on Z with quasi-unipotent monodromy at infinity. Then
the groups H j (Z;L) and H j

c (Z;L) get induced (graded polarizable) mixed Hodge
structures. Moreover, these structures are pure if Z is compact and L is a variation of
pure Hodge structures.
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5.2 Spectral sequences of mixed Hodge modules

In this section, we explain how the Leray-type spectral sequences (e.g., the Leray spec-
tral sequence of an algebraic morphism, or the hypercohomology spectral sequence)
are in fact spectral sequences of mixed Hodge structures.

From the general theory of spectral sequences, since the category of mixed Hodge
modules is abelian, the canonical filtration τ on DbMHM(Z) preserves complexes
of mixed Hodge modules. Therefore, the second fundamental spectral sequence (e.g.,
see [[37], Sect.A.3.4]) for any (left exact) functor F sending mixed Hodge modules
to mixed Hodge modules, that is, the spectral sequence

E p,q
2 = H p F(Hq(M�)) 
⇒ H p+q F(M�), (64)

is a spectral sequences of mixed Hodge modules.
Note that the canonical t-structure τ on DbMHM(Z) corresponds to the perverse

truncation pτ on Db
c (Z). However, Saito [[39], Remark 4.6(2)] constructed another

t-structure ′τ on DbMHM(Z) that corresponds to the classical t-structure on Db
c (Z).

By using the t-structure ′τ in the construction of the second fundamental spectral
sequence above, one can show that the classical Leray spectral sequences are, in fact,
spectral sequences of mixed Hodge structures.

Example 5 (1) Hypercohomology spectral sequences.
Let Z be a complex algebraic variety. Then for K� a bounded complex of sheaves

with constructible cohomology on Z , we have a spectral sequence with the E2-term
given by

E p,q
2 = H p(Z;Hq(K�)) 
⇒ H

p+q(Z;K�), (65)

which is induced by the natural filtration on the complex K�. If K� underlies a complex
of mixed Hodge modules, then the spectral sequence is compatible with mixed Hodge
structures. Indeed, this follows by using the t-structure ′τ , and the fundamental spectral
sequence (64) for F = �(Z , ·) = k∗, together with the fact that mixed Hodge modules
over a point are (graded polarizable) mixed Hodge structures. As usual, k : Z → pt
is the constant map to a point.

Under the same assumptions on the complex K�, by taking F = �c(Z , ·) = k!
together with the t-structure ′τ above, we get that the compactly supported hyper-
cohomology spectral sequence

E p,q
2 = H p

c (Z;Hq(K�)) 
⇒ H
p+q
c (Z;K�), (66)

is a spectral sequence in the category of mixed Hodge structures, provided K� under-
lies a bounded complex of mixed Hodge modules.

(2) Leray spectral sequences.

Let f : E → B be a morphism of complex algebraic varieties. The Leray spectral
sequence for f , that is,
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E p,q
2 = H p(B; Rq f∗QE ) 
⇒ H p+q(E; Q) (67)

is a special case of (65) where K� = R f∗QE . Since K� underlies M� = f∗Q
H
E ∈

DbMHM(B), it follows that (67) is compatible with Hodge structures.
Finally, the compactly supported Leray spectral sequence, namely

E p,q
2 = H p

c (B; Rq f!QE ),
⇒ H p+q
c (E; Q). (68)

is obtained from (66) for K� = R f!QE , which is the rational complex for M� =
f!QH

E ∈ DbMHM(B), whence the compatibility with the mixed Hodge structures.
Note that for B an algebraic manifold and M a smooth mixed Hodge module, the

two Leray spectral sequences for f coincide (up to a shift), so in this case the use of
the t-structure ′τ can be avoided.

5.3 χy-polynomials of mixed Hodge modules

In this section, we use Saito’s theory of algebraic mixed Hodge modules to derive some
easy additivity properties of χy-genera of complexes of mixed Hodge structures. We
begin with a consequence of the fact that mixed Hodge modules over a point are just
(graded-polarizable) mixed Hodge structures:

Lemma 3 Let Z be a complex algebraic variety, and k : Z → pt be the constant
map to the point. For any bounded complex M� of mixed Hodge modules on Z with
underlying rational complex K�, the vector spaces

H
p(Z;K�) = rat(H p(k∗M�)) and H

p
c (Z;K�) = rat(H p(k!M�))

get rational (graded) polarizable mixed Hodge structures.

As a corollary, we obtain some very useful facts for the global-to-local study of
χy-genera. If Z is a complex algebraic variety, and i : Y ↪→ Z is a closed immersion,
with j : U ↪→ Z the inclusion of the open complement, then there is a functorial
distinguished triangle for M� ∈ DbMHM(Z), lifting the corresponding one from
Db

c (Z) (see [[39], p. 321]):

j! j∗M� → M� → i∗i∗M� [1]→ (69)

In particular, by taking hypercohomology with compact supports in (69) and together
with Lemma 3, we obtain the following long exact sequence in the category of mixed
Hodge structures:

· · · → H
p
c (U ; j∗M�) → H

p
c (Z;M�) → H

p
c (Y ; i∗M�) → · · · (70)

Therefore,

χy([H∗
c(Z;M�)]) = χy([H∗

c(Y ;M�)])+ χy([H∗
c(U ;M�)]). (71)
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As a corollary of (71), by induction on strata we obtain the following additivity prop-
erty:

Corollary 3 Let S be the set of components of strata of an algebraic Whitney strati-
fication of the complex algebraic variety Z. Then for any M� ∈ DbMHM(Z) so that
rat(M�) is constructible with respect to the stratification,

χy([H∗
c(Z;M�)]) =

∑

S∈S
χy([H∗

c(S;M�)]). (72)

Remark 15 By taking M� = Q
H
Z in (72), we obtain the usual additivity of the

χc
y -genus. This is a consequence of the fact that Deligne’s and Saito’s mixed Hodge

structures on cohomology (with compact support) coincide, where the latter assertion
can be seen by construction if the variety can be embedded into a manifold, but in gen-
eral it is a very deep result of Saito, see [42]. However, the use of [42] can be avoided
here by noting that both χc

y -genera of complex algebraic varieties, in the sense of Saito
and Deligne respectively, are additive, so they are the same since they coincide in the
smooth case.

Each of the terms in the sum of the right-hand side of equation (72) can be fur-
ther computed by means of the Leray spectral sequence for hypercohomology (see
Sect. 5.2). Indeed, by using the fact that the spectral sequence (66) calculating
H

∗
c(S;M�) is a spectral sequence of mixed Hodge structures, we obtain that for each

stratum S ∈ S,

χy
([

H
∗
c(S;M�)

]) =
∑

q

(−1)q · χc
y (S;Hq(rat(M�))), (73)

where χc
y (S;Hq(rat(M�))) := χy([H∗

c (S;Hq(rat(M�))]), with the Hodge structures
induced by the (admissible) variation of Hodge structures Hq(rat(M�))|S on the stra-
tum S. Each of the twisted χc

y -polynomials in formula (73) can be calculated by means
of Atiyah–Meyer type formulae as in Sect. 4.4. However, we first discuss the simple
case, where we assume that the monodromy along each stratum is trivial (e.g., all
strata are simply-connected).

Assume as before that S is an algebraic Whitney stratification with respect to which
K� := rat(M�) ∈ Db

c (Z) has constructible cohomology. Then each stratum S ∈ S is a
smooth, connected complex algebraic variety, and each cohomology sheaf Hq(K�)|S

is a local system underlying an admissible variation of mixed Hodge structures. We
have the following extension of Lemma 2:

Proposition 3 Assume the local systems H j (K�)|S are constant on S for each j ∈ Z,
e.g. π1(S) = 0. Then

χy([H∗(S;K�)]) = χy(S) · χy([K�
s]) (74)

and

χy([H∗
c(S;K�)]) = χc

y (S) · χy([K�
s]), (75)
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where [K�
s] := [i∗s K�] = [H∗(K�)s] ∈ K0(MHS) is the complex of mixed Hodge

structures induced by the pullback of the complex of mixed Hodge modules M� over
the point s ∈ S under the inclusion is : {s} ↪→ S.

Proof Since the Leray spectral sequence (65) is a spectral sequence of mixed Hodge
structures, it follows that

χy([H∗(S;K�)]) =
∑

q

(−1)q · χy(S;Hq(K�)|S), (76)

where

χy(S;Hq(K�)|S) := χy([H∗(S;Hq(K�)|S)])

=
∑

p

(−1)p · χy([H p(S;Hq(K�)|S)]).

By our assumption, the variation of mixed Hodge structures Hq(K�)|S on S is trivial
by “rigidity”, fact which admits the following simple proof in the language of mixed
Hodge modules: if L is an admissible (at infinity) variation of mixed Hodge struc-
tures with constant underlying local system, then the restriction map H0(S;L) → Ls

underlies the adjunction map H0(k∗LH ) → H0(k∗is∗i∗s LH ) in the category of
(graded-polarizable) mixed Hodge structures (corresponding to MHM(pt)), so it is
an isomorphism since rat is faithfull on MHM. Here k denotes as usual the constant
map to a point k : S → s, and is : s ↪→ S is the inclusion of a point.

Hence by (65) and as in the proof of Lemma 2, there are mixed Hodge structure
isomorphisms

E p,q
2 = H p(S;Hq(K�)|S) = H p(S)⊗ V q , (77)

where V q := Hq(K�)s ∼= H0(S;Hq(K�)|S), for any s ∈ S. Therefore, since χy is a
ring homomorphism, we get that

χy([H p(S;Hq(K�)|S)]) = χy([H p(S)]) · χy([V q ]).

Formula (74) follows now from the identification [K�
s] = [H∗(K�)s]. The proof of

formula (75) is similar, but one has to work instead with the spectral sequence (66).

Altogether, Corollary 3 and Proposition 3 yield the following global-to-local for-
mula:

Theorem 10 Let S be the set of components of strata of an algebraic Whitney strat-
ification of the complex algebraic variety Z. Assume that for M� ∈ DbMHM(Z) the
underlying complex K� = rat(M�) ∈ Db

c (Z) is constructible with respect to the given
stratification and, moreover, the local systems H j (K�)|S are constant on each pure
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stratum S ∈ S for each j ∈ Z, e.g. π1(S) = 0 for all S ∈ S. Then

χy([H∗
c(Z;K�)]) =

∑

S∈S

∑

q∈Z

(−1)q · χc
y (S;Hq(K�)|S) =

∑

S∈S
χc

y (S) · χy([K�
s]),

(78)

for some points s ∈ S.

Remark 16 For an algebraic morphism f : X → Z and M� = f!QH
X ∈ DbMHM(Z),

Theorem 10 specializes to our earlier result from Proposition 1.

5.4 Nearby and vanishing cycles as mixed Hodge modules

Of particular importance is the fact that the nearby and vanishing functors can be
defined at the level of Saito’s mixed Hodge modules [38,39]. More precisely, if f is a
non-constant regular (resp. holomorphic) function on the complex algebraic (resp. ana-
lytic) space X and Xc = f −1(c) is the fiber over c, then one has functorsψH

f −c, φ
H
f −c :

MHM(X) → MHM(Xc) compatible with the corresponding perverse cohomological
functors on the underlying perverse sheaves by the forgetful functor

rat : MHM(X) → PervQ(X)

which assigns to a mixed Hodge module the underlying Q-perverse sheaf. In other
words, rat ◦ψH

f −c = pψ f −c ◦ rat, and similarly for φH
f −c. As a consequence, for each

x ∈ Xc we get canonical mixed Hodge structures on the groups

H j (Mx ; Q) = rat
(
H j (i∗xψH

f −cQ
H
X [1])), (79)

H̃ j (Mx ; Q) = rat
(
H j (i∗xφH

f −cQ
H
X [1])), (80)

where Mx denotes the Milnor fiber of f at x ∈ Xc, and ix : {x} ↪→ Xc is the inclusion
of the point. And similarly, we obtain in this way the “limit mixed Hodge structure”
on

H
j (Xc;ψ f −cQX ) = rat

(
H j (k∗ψH

f −cQ
H
X [1]))

with k : Xc → {c} the constant map.

5.4.1 The Hodge-theoretic Riemann–Hurwicz formula revisited

We will now extend the formula of Example 4 to the case of general singularities. By
(25), it suffices to restrict f over a small disc�c centered at a critical value c ∈ �( f )
and to study the polynomial χy([H∗(Xc;φ f −cQX )]). Recall that the fibers of f are
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compact complex algebraic varieties, which are smooth over points in�c\{c}. Fix an
algebraic Whitney stratification of Xc with respect to which φ f −cQX is constructible.
For each q ∈ Z and each pure stratum S ⊂ Sing(Xc), Hq(φ f −cQX )|S is a local coef-
ficient system on S (underlying an admissible variation of mixed Hodge structures)
with stalk H̃q(Ms; Q), where Ms is the local Milnor fibre at some point in s ∈ S.
Then, according to Theorem 10, for M� = φH

f −c(Q
H
X [n]) and by assuming trivial

monodromy along all strata S ⊂ Sing(Xc), we obtain

χy([H∗(Xc;φ f −cQX )]) =
∑

S⊂Sing(Xc)

χc
y (S) · χy([H̃∗(Ms; Q)]).

Under no monodromy assumptions, the left hand side of the above equality can be
computed as an alternating sum of twisted χc

y -polynomials as in (73).
All these facts yield the following general Hodge-theoretic version of the Riemann–

Hurwicz formula:

Corollary 4 Let f : X → C be a proper algebraic morphism from a smooth (n +1)-
dimensional complex algebraic variety onto a non-singular algebraic curve C. Let
�( f ) ⊂ C be the set of critical values of f , and set C∗ = C\�( f ). Assume that each
special fiber Xc has an algebraic stratification with respect to which the corresponding
vanishing cycle complex is constructible, and moreover the monodromy along each
pure stratum is trivial. If the action of π1(C∗) on the cohomology of the generic fibers
Xt of f is trivial, then

χc
y (X) = χc

y (C) · χc
y (Xt )−

∑

c∈�( f )

∑

S⊂Sing(Xc)

χc
y (S) · χy([H̃∗(Ms; Q)]), (81)

where Ms is the local Milnor fibre at some point in s ∈ S.

Remark 17 In view of (73) and Theorem 10, and by using our Atiyah–Meyer type
formulae for twisted χc

y -polynomials, one can formulate a very general Hodge-theo-
retic Riemann–Hurwitz formula without any assumptions on monodromy. We leave
the details as an exercise for the interested reader.

6 Atiyah–Meyer type characteristic class formulae

In this section, we present characteristic class versions of our Atiyah–Meyer formulae
for the χy-genus. The proofs of these characteristic class formulae are much more
involved, and make use of Saito’s theory of algebraic mixed Hodge modules and the
construction of the motivic Hirzebruch classes [7], which we recall here.

Let Z be a complex algebraic variety. Then for any p ∈ Z one has a functor of
triangulated categories

gr F
p DR : DbMHM(Z) → Db

coh(Z) (82)
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commuting with proper push-down, with gr F
p (DR(M�)) � 0 for almost all p and

M� ∈ DbMHM(Z) fixed, where Db
coh(Z) is the bounded derived category of sheaves

of OZ -modules with algebraic coherent cohomology sheaves. If Q
H
Z ∈ DbMHM(Z)

denotes the constant Hodge module on Z , and if Z is smooth and pure dimensional,
then

gr F−p DR
(
Q

H
Z

) � �
p
Z [−p] ∈ Db

coh(Z).

The transformations gr F
p DR(−) are functors of triangulated categories, so they induce

functors on the level of Grothendieck groups. Thus, if G0(Z) � K0(Db
coh(Z)) denotes

the Grothendieck group of algebraic coherent sheaves on Z , we obtain the following
group homomorphism commuting with proper push-down:

gr F−∗DR : K0 (MHM(Z)) → G0(Z)⊗ Z[y, y−1], (83)

[M] �→
∑

p

(
∑

i

(−1)i [Hi (gr F−p DR(M))]
)

· (−y)p.

We can now make the following definitions (see [7,9]).

Definition 3 The transformation M̃ H Ty is defined as the composition:7

M̃ H Ty := td∗ ◦ gr F−∗DR : K0(MHM(Z)) → H B M
2∗ (Z)⊗ Q[y, y−1], (84)

where td∗ is the Baum–Fulton–MacPherson Todd class transformation [5], which is
linearly extended over Z[y, y−1]. Note that M̃ H Ty commutes with proper push-for-
ward.

Remark 18 Let K 0(Z) be the Grothendieck group of complex algebraic vector bun-
dles on Z . If Z an algebraic manifold, the canonical map K 0(Z) → G0(Z) induced
by taking the sheaf of sections is an isomorphism, and the Todd class transformation
of the classical Grothendieck–Riemann–Roch theorem is explicitly described by

td∗(−) = ch∗(−)T d∗(T Z) ∩ [Z ]. (85)

The transformation α of [30] which is used in the definition of the analytic (GRR)
for compact complex spaces is a K -theoretic counterpart of the Todd transformation
td∗ from [5], and Theorem 3 is the analytic version of the fact that for an algebraic
manifold Z , td∗(−) = ch∗(−)T d∗(T Z) ∩ [Z ] commutes with proper push-down.

7 The special case of the transformation M̃ H Ty at y = 1 was previously used by Totaro [48] for finding
numerical invariants of singular varieties, more precisely Chern numbers that are invariant under small
resolutions.
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Definition 4 The (homology) Hirzebruch class of an n-dimensional complex alge-
braic variety Z is defined by the formula

T̃y∗(Z) := M̃ H Ty([QH
Z ]). (86)

Similarly, if Z is an n-dimensional complex algebraic manifold, and L an admissible
variation of mixed Hodge structures with quasi-unipotent monodromy at infinity on Z ,
we define twisted Hirzebruch characteristic classes in homology by

T̃y∗(Z;L) = M̃ H Ty([LH ]), (87)

where LH [n] is the smooth mixed Hodge module on Z corresponding to L.

By [[7], Lemma 3.1, Theorem 3.1], the following normalization holds: if Z is
smooth and pure dimensional, then T̃y∗(Z) = T̃ ∗

y (T Z) ∩ [Z ], thus T̃y∗(Z) is an
extension to the singular setting of (the Poincaré dual of) the un-normalized Hirzeb-
ruch class.

The precise relationship between Hirzebruch characteristic classes and χy-genera
is given by the following

Proposition 4 Let Z be a compact (possibly singular) complex algebraic variety, and
k : Z → pt the constant map to a point. Then

χy(Z) = k∗T̃y∗(Z). (88)

Proof Since k is proper, by the definition of the Hirzebruch class we obtain

k∗T̃y∗(Z) = k∗M̃ H Ty([QH
Z ])

= M̃ H Ty([k∗Q
H
Z ])

=
∑

i

(−1)i M̃ H Ty([Hi (k∗Q
H
Z )]).

Note that each Hi (k∗Q
H
Z ) is a mixed Hodge module over a point, thus a (graded) polar-

izable mixed Q-Hodge structure. (Here one has to switch the increasing D-module
filtration of the mixed Hodge module to the decreasing Hodge filtration of the mixed
Hodge structure, so that gr F−p � gr p

F .) So, by the definition of the transformation

M̃ H Ty , for each i ∈ Z,

M̃ H Ty

([
Hi (k∗Q

H
Z )

])
= M̃ H Ty([Hi (Z; Q)])
=

∑

p

td0

([
Gr p

F Hi (Z; C)
])

· (−y)p

=
∑

p

dimC(Gr p
F Hi (Z; C)) · (−y)p.
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Putting together the two equalities above, we obtain

k∗T̃y∗(Z) =
∑

i,p

(−1)i dimC(Gr p
F Hi (Z; C)) · (−y)p = χy(Z).

Remark 19 If Z is smooth and compact, and L is an admissible variation of mixed
Hodge structures on Z , then by replacing Q

H
Z with LH in the above arguments,

we obtain a similar relationship between twisted characteristic classes and twisted
χy-genera.

Remark 20 Normalized Hirzebruch classes in the singular setting.
One can also construct a “normalized” characteristic class transformation M H Ty ,

whose value at the Hodge sheaf Q
H
Z yields an extension to the singular setting of the

(Poincaré dual of the) normalized Hirzebruch class T ∗
y (T Z) which was considered in

Remark 12. The transformation M H Ty is defined as the composition (see [7]):

M H Ty := td(1+y) ◦ gr F−∗DR : K0(MHM(Z))

→ H B M
2∗ (Z)⊗ Q[y, y−1, (1 + y)−1], (89)

where td(1+y) is the natural transformation

td(1+y) : G0(Z)⊗ Z[y, y−1] → H B M
2∗ (Z)⊗ Q[y, y−1, (1 + y)−1], (90)

[G] �→
∑

k≥0

tdk([G]) · (1 + y)−k,

with tdk the degree k component of the Todd class transformation td∗ of Baum–Fulton–
MacPherson [5], which is linearly extended over Z[y, y−1]. The new transformation
M H Ty also commutes with proper push-forward, and we set Ty∗(Z) := M H Ty(Q

H
Z )

(and similarly for the twisted case). Then, if Z is smooth and pure dimensional, it
follows from [7] that Ty∗(Z) = T ∗

y (T Z)∩[Z ]. Moreover, exactly as in Proposition 4,
one can show that if Z is a compact (possibly singular) variety and k : Z → pt is the
constant map to a point, then

χy(Z) = k∗Ty∗(Z).

The importance of the normalized characteristic class transformation M H Ty comes
from the fact that its lifting to the Grothendieck group K0(Var/Z) of varieties over
Z “unifies” (in the sense of [7]) the (rationalized) Chern–MacPherson transforma-
tion c∗ ⊗ Q [31], the Todd class transformation td∗ of Baum–Fulton–MacPherson
[5] and the L-class transformation of Cappell–Shaneson [12,49]. At the level of
(Borel–Moore) homology characteristic classes, it can be shown that if Z is a com-
plex algebraic variety then T−1∗(Z) = c∗(Z) ⊗ Q, but the other special cases (i.e.,
for y = 0 and resp. y = 1) fail in general to satisfy such a precise relationship. For
complete details, see [7].
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The first important result of this section is the following Meyer-type formula for
the twisted Hirzebruch characteristic classes:

Theorem 11 Let Z be a complex algebraic manifold of pure dimension n, and L an
admissible variation of mixed Hodge structures on Z with quasi-unipotent monodromy
at infinity, with associated flat bundle with “Hodge” filtration (V,F �). Then

T̃y∗(Z;L) = (
ch∗(χy([L,F �])) ∪ T̃y

∗
(T Z)

) ∩ [Z ] = ch∗(χy([L,F �])) ∩ T̃y∗(Z),
(91)

where χy([L,F �]) is as before the K -theory χy-characteristic of [L,F �].
Proof Let

LH [n] = ((V,F−�),W�,L[n])
be the smooth mixed Hodge module on Z corresponding to L, with F−p := F p the
increasing filtration on the D-module V , and with WkV := WkL ⊗Q OZ (e.g., see
[[37], Def.14.53]). It follows from Saito’s work that there is a filtered quasi-isomor-
phism between (DR(LH ), F−�) and the usual filtered de Rham complex (��

Z (V), F �)
with the filtration induced by the Griffiths’ transversality condition on �, that is:

F p��
Z (V) :

[
F pV �→ �1

Z ⊗ F p−1V �→ · · · �→ �i
Z ⊗ F p−iV �→ · · ·

]
.

Note that since L is an admissible variation of mixed Hodge structures with quasi-
unipotent monodromy at infinity, the associated filtered de Rham complex extends as
before to a filtered logarithmic de Rham complex on a compact algebraic manifold,
so that by GAGA all sheaves can be regarded as algebraic sheaves. Therefore,

T̃y∗(Z;L) = td∗

(
∑

p

(
∑

i

(−1)i
[
Hi

(
gr F−p DR

(
LH

))])
· (−y)p

)

= td∗

(
∑

p

(
∑

i

(−1)i
[
Hi (

gr p
F�

�
Z (V)

)]
)

· (−y)p

)

= td∗

(
∑

p

(
∑

i

(−1)i
[
�i

Z ⊗ Gr p−i
F V

])
· (−y)p

)

=
∑

p

(
∑

i

(−1)i td∗
([
�i

Z ⊗ Gr p−i
F V

]))
· (−y)p

=
∑

p

(
∑

i

(−1)i ch∗ (
�i

Z ⊗ Gr p−i
F V

)
∪ T d∗(T Z) ∩ [Z ]

)
· (−y)p

= ch∗(χy([L,F �])) ∪ ch∗(λy(T
∗Z)) ∪ T d∗(T Z) ∩ [Z ]

= ch∗(χy([L,F �])) ∪ T̃y
∗
(T Z) ∩ [Z ].
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Remark 21 If Z is compact, Theorem 7 in the algebraic context can be obtained from
Theorem 11 by pushing down to a point via the constant map Z → pt .

Jörg Schürmann [45] communicated to us that for the special case of a proper sub-
mersion the following Atiyah-type result can be obtained as a direct application of the
Verdier–Riemann–Roch formula for a smooth proper morphism (see [[7], Cor.3.1(3)]),
if we make the identification Hp,q � Rq f∗(pT ∗

f ), for T ∗
f the dual of the tangent

bundle T f to the fibers of f (cf. [[37], Proposition 10.29]). In fact, this argument
extends to the case of smooth proper maps between singular varieties. However, the
proof we give here is based only on the definition of the Hirzebruch classes and on
Theorem 11 in the context of geometric variations of Hodge structures.

Theorem 12 Let f : E → B be a proper morphism of complex algebraic varieties,
with B smooth and connected, such that the sheaves Rs f∗QE , s ∈ Z are locally
constant on B, e.g., f is a locally trivial topological fibration. Then

f∗T̃y∗(E) = ch∗ (
χy( f )

) ∩ T̃y∗(B), (92)

where χy( f ) := ∑
i,p(−1)i [Gr p

FVi ] · (−y)p ∈ K 0(B)[y] is the K -theory χy-char-

acteristic of f , for Vi the flat bundle associated to the local system Ri f∗QE .

Proof Since f is proper and the transformation M̃ H Ty commutes with proper push-
downs, we first obtain the following:

f∗T̃y∗(E) = f∗
(

M̃ H Ty([QH
E ])

)
= M̃ H Ty

([
f∗Q

H
E

])
. (93)

Now let τ≤ be the natural truncation on DbMHM(B) with associated cohomology
H∗. Then for any complex M� ∈ DbMHM(B) we have the identification (e.g., see
[[20], p. 95–96], [[43], Lemma 3.3.1])

[M�] =
∑

i∈Z

(−1)i [Hi (M�)] ∈ K0(D
bMHM(B)) ∼= K0(MHM(B)). (94)

In particular, if for any k ∈ Z we regard Hi+k(M�)[−k] as a complex concentrated
in degree k, then

[
Hi+k(M�)[−k]

]
= (−1)k[Hi+k(M�)] ∈ K0(MHM(B)). (95)

Therefore, if we let M� = f∗Q
H
E , we have that

f∗T̃y∗(E) =
∑

i∈Z

(−1)i M̃ H Ty

([
Hi

(
f∗Q

H
E

)])

=
∑

i∈Z

(−1)i M̃ H Ty

([
Hi+dimB

(
f∗Q

H
E

)
[−dimB]

])
.
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Note that Hi ( f∗Q
H
E ) ∈ MHM(B) is the smooth mixed Hodge module on B whose

underlying rational complex is (recall that B is smooth)

rat
(

Hi ( f∗Q
H
E )

)
= pHi

(R f∗QE ) = (Ri−dimB f∗QE )[dimB], (96)

where pH denotes the perverse cohomology functor. In this case, each of the local
systems Ls := Rs f∗QE underlies a geometric variation of Hodge structures.

Altogether, (96) becomes

f∗T̃y∗(E) =
∑

i∈Z

(−1)i T̃y∗(B;Li ), (97)

where LH
i [dimB] := Hi+dimB( f∗Q

H
E ) is the smooth mixed Hodge module whose

underlying perverse sheaf is Li [dimB]. Our formula (92) follows now from Theo-
rem 11.

Remark 22 If B is compact, then by pushing (92) down to a point, we get back our
earlier formula (54). Also, if f is a proper submersion, the above result reproves (5)
from the introduction.

Remark 23 By analogy with Remark 12, we can reformulate our Atiyah–Meyer type
characteristic class formulae in this section in terms of the normalized Hirzebruch clas-
ses Ty∗(·), by using instead the twisted Chern character ch∗

(1+y) (see the announcement
[10]).
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