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The Biot–Savart operator for application to knot theory,
fluid dynamics, and plasma physics

Jason Cantarellaa)

Department of Mathematics, University of Georgia, Athens, Georgia 30605

Dennis DeTurckb) and Herman Gluckc)
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~Received 27 May 1999; accepted for publication 19 September 2000!

Thewrithing numberof a curve in 3-space is the standard measure of the extent to
which the curve wraps and coils around itself; it has proved its importance for
molecular biologists in the study of knotted DNA and of the enzymes which affect
it. The helicity of a vector field defined on a domain in 3-space is the standard
measure of the extent to which the field lines wrap and coil around one another; it
plays important roles in fluid dynamics and plasma physics. TheBiot–Savart op-
erator associates with each current distribution on a given domain the restriction of
its magnetic field to that domain. When the domain is simply connected, the
divergence-free fields which are tangent to the boundary and which minimize en-
ergy for given helicity provide models for stable force-free magnetic fields in space
and laboratory plasmas; these fields appear mathematically as the extreme eigen-
fields for an appropriate modification of the Biot–Savart operator. Information
about these fields can be converted into bounds on the writhing number of a given
piece of DNA. The purpose of this paper is to reveal new properties of the Biot–
Savart operator which are useful in these applications. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1329659#

I. INTRODUCTION

Let V be a compact domain with smooth boundary in 3-space, and let VF~V! be the space of
smooth vector fields onV with the L2 inner product^V,W&5*VV•Wd(vol). By ‘‘smooth,’’
equivalentlyC`, we mean that derivatives of all orders exist and are continuous.

If we think of the smooth vector fieldV on V as a distribution of electric current, then th
Biot–Savart formula

BS~V!~y!5~1/4p!E
V

V~x!3~y2x!/uy2xu3 d~volx!

gives the resulting magnetic field BS(V) throughout 3-space. If we restrict this magnetic field
the domainV, then we get theBiot–Savart operator,

BS:VF~V!→VF~V!.

Theorem A: The equation¹3BS(V)5V holds inV if and only if V is divergence-free an
tangent to the boundary ofV.

a!Electronic mail: cantarel@math.uga.edu
b!Electronic mail: deturck@math.upenn.edu
c!Electronic mail: gluck@math.upenn.edu
8760022-2488/2001/42(2)/876/30/$18.00 © 2001 American Institute of Physics
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It is well known that curl is a left inverse to the Biot–Savart operator when the input fieV
is divergence-free and tangent to the boundary. The new information is that this result holds
other cases. The impact of this is that eigenvalue problems for the Biot–Savart operator, wh
central to the study of helicity, cannot in general be converted to eigenvalue problems fo
~that is, to a system of partial differential equations!.

Theorem B: The kernel of the Biot–Savart operator is precisely the space of gradient vec
fields which are orthogonal to the boundary ofV.

Actually, somewhat more is true. IfV is a smooth gradient vector field defined onV and
orthogonal to its boundary, then its magnetic field BS(V)50 throughout 3-space. Conversely, ifV
is a smooth vector field defined onV whose magnetic field BS(V)50 in V, thenV is a gradient
field orthogonal to the boundary ofV, and hence BS(V)50 throughout 3-space.

Theorem C: The image of the Biot–Savart operator is a proper subspace of the image
curl, whose orthogonal projection into the subspace of ‘‘fluxless knots’’ is one-to-one.

Vector fields on the domainV which are divergence-free and tangent to its boundary
calledfluid knots; we explain this terminology in Sec. IV.Fluxless knotsare fluid knots with zero
flux through every cross-sectional surface (S,]S),(V,]V). The above theorems lead to seve
interesting examples of ‘‘impossible’’ magnetic fields. Nevertheless, TheoremC falls short of
giving a precise characterization of the image of the Biot–Savart operator, and hence of
fields in a domainV which are magnetic fields of current distributions withinV.

Theorem D: The Biot–Savart operator is a bounded operator, and hence extends
bounded operator on the L2 completion of its domain, where it is both compact and self-adjo.

The eigenfields of this operator which correspond to its extreme eigenvalues turn out to
vector fields inV with minimum energy for given helicity. If we start with a vector fieldV which
is divergence-free and tangent to the boundary of its domainV, that is, a fluid knot, then its
magnetic field BS(V), though divergence-free, will in general not be tangent to the boundar
V. In such a case, we simply modify the Biot–Savart operator BS by following it by orthog
projection back to the subspace of fluid knots. The eigenfields of this modified Biot–S
operator which correspond to its extreme eigenvalues are then the fluid knots inV with minimum
energy for given helicity. When the domainV is simply connected, these energy-minimize
model the stable plasma fields inV.

II. PRELIMINARIES

A. Writhing, helicity, and the Biot–Savart operator

The writhing numberWr(K) of a smooth curveK in 3-space, defined by the formula

Wr~K !5~1/4p!E
K3K

~dx/ds3dy/dt!•~x2y!/ux2yu3 ds dt, ~2.1!

was introduced by Caˇlugǎreanu1–3 in 1959–1961 and named by Fuller4 in 1971, and is the
standard measure of the extent to which the curve wraps and coils around itself.

The helicity H(V) of a smooth vector fieldV on the domainV in 3-space, defined by the
formula

H~V!5~1/4p!E
V3V

V~x!3V~y!•~x2y!/ux2yu3 d~volx! d~voly!, ~2.2!

was introduced by Woltjer5 in 1958 and named by Moffatt6 in 1969, and is the standard measu
of the extent to which the field lines wrap and coil around one another.
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Clearly, helicity for vector fields is the analogue of writhing number for knots.
The helicity ofV is closely related to its image under the Biot–Savart operator,

H~V!5~1/4p!E
V3V

V~x! 3V~y!•~x2y!/ux2yu3 d~volx! d~voly!

5E
V

V~y!•F ~1/4p!E
V

V~x! 3~y2x!/uy2xu3 d~volx!Gd~voly!

5E
V

V~y!•BS~V!~y! d~voly!

5E
V

V•BS~V! d~vol!,

so the helicity ofV is just theL2 inner product ofV and BS(V),

H~V!5^V,BS~V!&. ~2.3!

It is because of this formula that the Biot–Savart operator,

BS:VF~V!→VF~V!, ~2.4!

plays such a prominent role in the study of writhing of knots and helicity of vector fields.

B. Applications: A quick guide to the literature

For a glance at the prehistory of the writhing number, see Gauss’s half-page note7 ~1833! on
an integral formula for the linking number of two disjoint closed curves in 3-space. Rewrit
expression in modern notation and let the two curves coincide and you will have the formu
the writhing number.

The writhing number has proved its importance for molecular biologists in the stud
knotted duplex DNA and of the enzymes which affect it; see White,8 Fuller,9 Bauer, Crick, and
White,10 Wang,11 Sumners,12–14 and Cantarella, Kusner, and Sullivan.15

For an overview of the connection between knot theory and electrodynamics,
Lomonaco.16

Woltjer’s formula for the helicity of a vector field arose from his interest in force-free m
netic fields. These are magnetic fields which are everywhere parallel to the current flows
give rise to them, so that the Lorentz force on the flowing charged particles is zero. Becau
gross magnetic field in the Crab Nebula appeared to be steady over a number of years,
believed it to be force-free, and studied17 it in great detail. Two early papers on force-free ma
netic fields are Lundquist18 and Chandrasekhar–Kendall.19 Two more recent papers are Lauren
and Avellaneda20 and Tsuji.21 Marsh’s book22 has an extensive and up-to-date bibliography on t
subject.

For a study of the connection between writhing and helicity, see Berger and Field23 and
Moffatt and Ricca.24,25

For the connection between helicity and the ordinary and asymptotic Hopf invariants
Whitehead26 and Arnold.27

For an introduction to the spectral theory of the Biot–Savart operator and its use in dete
ing upper bounds for writhing and helicity, see Ref. 28. For explicit computation of extr
eigenfields, see Refs. 29 and 30. For an analysis of isoperimetric problems connected w
Biot–Savart operator, see Ref. 31. For application to the qualitative study of stable plasma
see Cantarella.32 For an overview of our work, see our survey paper.33

For further information on related spectral problems for the curl operator, see Yoshid
Giga.34
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For the connection between this spectral theory and plasma physics, see Yoshida.35

For a study of magnetic field generation in electrically conducting fluids, see the boo
Moffatt.36

For connections with dynamo theory, see the survey article by Childress.37

For many papers on the connections with the dynamics of fluids and plasmas, see the
by Moffatt and Tsinober38 and by Moffatt, Zaslavsky, Comte, and Tabor.39

For the connections between force-free fields, contact topology and fluid dynamics, see
and Ghrist.40

C. The Hodge decomposition theorem

In this section we present the Hodge Decomposition Theorem for vector fields on bou
domains inR3, which we will use throughout the paper. Although we state it below for the sp
VF~V! of smooth vector fields onV with the usualL2 inner product, it holds just as well for th
L2 completions of VF~V! and of the various subspaces described below.

The papers of Weyl41 and Friedrichs,42 the notes of Blank, Friedrichs, and Grad,43 and the
book of Schwarz44 are all good references; an exposition of this theorem in the form given b
appears in Ref. 45.

Hodge Decomposition Theorem:We have a direct sum decomposition of VF(V) into five
mutually orthogonal subspaces,

VF~V!5FK % HK % CG % HG % GG,

with

ker curl5 HK % CG % HG % GG,

image grad5 CG % HG % GG,

image curl5FK % HK % CG,

ker div5FK % HK % CG % HG,

where

FK5Fluxless Knots5$¹"V50, V"n50, all interior fluxes50%,

HK5Harmonic Knots5$¹"V50, ¹3V50, V"n50%,

CG5Curly Gradients5$V5¹w, ¹"V50, all boundary fluxes50%,

HG5Harmonic Gradients5$V5¹w, ¹"V50, w locally constant on]V%,

GG5Grounded Gradients5$V5¹w, wu]V50%,

and furthermore,

HK>H1~V;R!>H2~V,]V;R!>Rgenus of ]V,

HG>H2~V;R!>H1~V,]V;R!>R~# components of]V!2~# components ofV!.

We need to explain the meanings of the conditions which appear in the statement o
theorem.

The outward pointing unit vector field orthogonal to]V is denoted byn, so the condition
V"n50 indicates that the vector fieldV is tangent to the boundary ofV.
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Let S stand generically for any smooth surface inV with ]S,]V. Earlier, when commenting
on the statement of Theorem C, we indicated this by writing (S,]S),(V,]V). Now, orientS by
picking one of its two unit normal vector fieldsn. Then, for any vector fieldV on V, we can define
the flux of V throughS to be the value of the integralF5*SV"n d(area).

Assume thatV is divergence-free and tangent to]V. Then the value of this flux depends on
on the homology class ofS in the relative homology groupH2(V,]V;Z). For example, ifV is an
n-holed solid torus, then there are disjoint oriented cross-sectional disksS1 ,...,Sn , positioned so
that cuttingV along these disks will produce a simply-connected region. The fluxesF1 ,...,Fn of
V through these disks determine the flux ofV through any other cross-sectional surface.

If the flux of V through every smooth surfaceS in V with ]S,]V vanishes, we say ‘‘all
interior fluxes50.’’ Then,

FK5$Ve VF~V!:¹"V50, V"n50, all interior fluxes50% ~2.5!

will be the subspace offluxless knots, already mentioned when explaining the statement of Th
rem C.

The subspace,

HK5$Ve VF~V!:¹"V50, ¹3V50, V"n50% ~2.6!

of harmonic knotsis isomorphic to the absolute homology groupH1(V;R) and also, via Poincare´
duality, to the relative homology groupH2(V,]V;R), and is thus a finite-dimensional vecto
space, with dimension equal to the genus of]V.

The orthogonal direct sum of these two subspaces,

K~V!5FK% HK ~2.7!

is the subspace of VF~V! consisting of all divergence-free vector fields defined onV and tangent
to its boundary. These are the vector fields that represent current flows in the standard vers
the laws of Magnetostatics.

We called these vector fieldsfluid knotsin the Introduction, and pause to explain this term
nology. Given a knot in 3-space, we can choose a thin tubular neighborhood of the knot to
domainV, and then choose a divergence-free vector fieldV in V, for example orthogonal to the
cross-sectional disks and hence tangent to the boundary. In this way, questions about the g
of the knot can sometimes profitably be reformulated as questions about the vector fieldV, our
‘‘fluid knot.’’ We did exactly this in our paper28 when deriving an upper bound for the writhin
number of a knot of given length and thickness.

If V is a vector field defined onV, we will say thatall boundary fluxes of V are zeroif the flux
of V through each component of]V is zero. Then,

CG5$Ve VF~V!:V5¹w, ¹•V50, all boundary fluxes50% ~2.8!

will be called the subspace ofcurly gradientsbecause these are the only gradients which lie in
image of curl.

Next we define the subspace ofharmonic gradients,

HG5$Ve VF~V!:V5¹w, ¹•V50, w locally constant on]V%, ~2.9!

meaning thatw is constant on each component of]V. This subspace is isomorphic to the absolu
homology groupH2(V;R) and also, via Poincare´ duality, to the relative homology group
H1(V,]V;R), and is hence a finite-dimensional vector space, with dimension equal to the nu
of components of]V minus the number of components ofV.

The definition of the subspace ofgrounded gradients,

GG5$Ve VF~V!:V5¹w, wu]V50%, ~2.10!

is self-explanatory.
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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A vector fieldV belongs to the subspace HG% GG of VF~V! if and only if it is the gradient
of a smooth functionw on V which is constant on each component of]V, or equivalently, is a
gradient vector field which is orthogonal to]V. Theorem B asserts that these vector fields form
kernel of the Biot–Savart operator.

The five orthogonal direct summands of VF~V! can be characterized as follows:

FK5~ker curl!',

HK5~ker curl! ù~ image grad!',

CG5~ image grad! ù~ image curl!,

HG5~ker div! ù~ image curl!',

GG5~ker div!'.

These characterizations bear witness to the geometric and analytic significance of the sum
We end this section with examples of vector fields from each of the five summands.

1. FKÄfluxless knots

Let V be a round ball of radius 1, centered at the origin in 3-space. Consider the vecto

V52y î1x ĵ .

This is the velocity field for rotation of 3-space about thez-axis at constant angular speed. It
divergence-free and tangent to the boundary of the ballV, and hence belongs to the subspace
of fluxless knots, because there are no harmonic knots on a ball.

2. HKÄharmonic knots

Let V be a solid torus of revolution about thez-axis. Using cylindrical coordinates (r ,w,z),
consider the vector field

V5~1/r !ŵ,

which is the magnetic field due to a steady current running up thez-axis. It is divergence-free and
curl-free and tangent to the boundary of the solid torusV, and hence belongs to the subspace H
of harmonic knots.

3. CGÄcurly gradients

Let V be a round ball of radius 1, centered at the origin. Consider the harmonic functionz, and
the gradient field

V5¹z5 k̂.

This vector field is divergence-free and has zero flux through the one and only component]V,
hence it belongs to the subspace CG of curly gradients.

4. HGÄharmonic gradients

Let V be the region between two concentric round spheres, say of radius 1 and 2, cent
the origin. Using spherical coordinates (r ,u,w), consider the harmonic function 1/r , and its
gradient vector field

V5¹~1/r !5~21/r 2! r̂ ,
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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just the inverse square central field. Since the harmonic function 1/r is constant on each compo
nent of]V, the vector fieldV belongs to the subspace HG of harmonic gradients. We may t
of V as the electric field between two concentric spheres held at different potentials.

5. GGÄgrounded gradients

Let V be a round ball of radius 1, centered at the origin. Consider the function give
r 2215x21y21z221, and the vector field

V5¹~r 221!52x ı̂12y ĵ12zk̂.

Since the functionr 221 has constant value zero on the boundary ofV, the vector fieldV belongs
to the subspace GG of grounded gradients. We may viewV as an electric field with interior
charges inside a conducting boundary.

III. STANDARD INFORMATION ABOUT THE BIOT–SAVART OPERATOR

A. The basic facts

Given a smooth vector fieldV on V, the vector potentialA(V) for BS(V) is defined by the
formula,

A~V!~y!5~1/4p!E
V

V~x!/uy2xu d~volx!. ~3.1!

Here is the classically known information about the Biot–Savart operator and its v
potential. Note that some of the assertions below hold for any vector fieldVeVF(V), while others
need the more restrictive assumption thatV is divergence-free and tangent to the boundary ofV,
in other words, thatV lies in the subspace K~V! of fluid knots.

Standard Information: Let V be a compact domain in 3-space with smooth boundary]V.
Let V be a smooth vector field defined onV. Then

(1) BS(V) and A(V) are well-defined on all of 3-space, that is, the improper integrals defin
them converge everywhere;

(2) BS(V) andA(V) are of class C` on V, and on the closureV8 of R32V. BS(V) is continuous
on R3, but its derivatives typically suffer jump discontinuities as one crosses]V. A(V) is of
class C1 on R3, but its second derivatives typically suffer jump discontinuities as one cro
]V;

(3) DA(V)52V in V and DA(V)50 in V8, whereD is the vector Laplacian;
(4) ¹3A(V)5BS(V) on R3;
(5) If VeK(V), thenA(V) is divergence-free on R3;
(6) ¹•BS(V)50 in V and in V8;
(7) If VeK(V), then¹3BS(V)5V in V and ¹3BS(V)50 in V8;
(8) If VeK(V), then*CBS(V)•ds50 for all closed curves C on]V which bound in R3 2V;
(9) In general, A(V) decays at̀ like 1/r and BS(V) decays at̀ like 1/r 2; however, if VeK(V),

thenA(V) decays at̀ like 1/r 2 and BS(V) decays at̀ like 1/r 3.

Proofs of most of these basic facts can be found throughout the physics literature~see, for
example, Griffiths46!, with the exception of item~9!, which we prove in the Appendix. Item~7!
contains the first half of Theorem A; we will prove that immediately, since it affects the rest o
paper.

B. Proof of „7…

The argument to follow begins as in Griffiths,46 pp. 215–217, but is then modified to suit o
purpose.

To prove~7!, we assume thatV is a fluid knot, and must show that
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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¹y3BS~V!~y!5V~y!, when yeV,

50, when yeV8.

From now on, we will use the shorthand notation$V(y) in V / 0 in V8%, or simply $V(y)/0%,
to express these two outcomes.

The above assertion will follow immediately from the next proposition, which will then se
as a springboard to the rest of the paper.

Proposition 1:

¹y3BS~V!~y!5$V~y! in V / 0 in V8%1~1/4p!¹yE
V

~¹x•V~x!!/uy2xu d~volx!

2~1/4p!¹yE
]V

V~x!•n/uy2xu d~areax!.

If V is divergence-free, then the second term on the right-hand side vanishes; ifV is tangent
to the boundary ofV, then the third term on the right-hand side vanishes. If both hold, that i
V is a fluid knot, then we get item~7!.

We can view the statement of Proposition 1 as Maxwell’s equation,

¹3B5J1]E/]t, ~3.2!

as follows.
Let V represent a current distribution throughout the domainV. At time t50, let the volume

charge densityr throughoutV and the surface charge densitys along]V both be zero. Then se

r52~¹"V!t throughout V, ~3.3!

and

s5~V"n!t along ]V. ~3.4!

Equation~3.3! for the volume charge densityr is forced on us by the continuity equation,

¹"V52]r/]t. ~3.5!

Likewise, Eq.~3.4! for the surface charge densitys is forced on us by a version of the continui
equation appropriate to the boundary of our domain. The currentV is simply carrying charge from
locations withinV and on its boundary to other such locations. Thus the surface charge d
given by ~3.4! has a time rate of change equal to the flux density of the currentV through the
boundary]V.

Now the volume charge throughoutV gives rise to a time varying electric field

Er~y,t !5F ~1/4p!¹yE
V

~¹x"V~x!!/uy2xu d~volx!G t, ~3.6!

and the surface charge along]V gives rise to a time varying electric field,

Es~y,t !5F2~1/4p!¹yE
]V

V~x!"n~x!/uy2xu d~areax!G t, ~3.7!

both fields extending throughout 3-space.
The total electric field

E~y,t !5Er~y,t !1Es~y,t ! ~3.8!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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has a time rate of change

]E/]t5]Er /]t1]Es /]t5Er81Es8 . ~3.9!

With this notation, the equation of Proposition 1 condenses to

¹3BS~V!5$V / 0%1Er81Es8 , ~3.10!

which is just Maxwell’s Eq.~3.2!. Proving Proposition 1 confirms these interpretations.

Proof of Proposition 1:We must evaluate

¹y3BS~V!~y!5¹y3~1/4p!E
V

V~x!3~y2x!/uy2xu3 d~volx!

5~1/4p!E
V

¹y3$V~x!3~y2x!/u~y2x!u3% d~volx!. ~3.11!

We will need the following formula from vector calculus:

¹3~A3B!5~B•¹!A2~A•¹!B1A~¹•B!2B~¹•A!. ~3.12!

Applying this formula to the integrand, we get

¹y3$V~x!3~y2x!/uy2xu3%

5„~y2x!/uy2xu3
•¹y)V~x!2~V~x!•¹y!~~y2x!/uy2xu3

…

1V~x!¹y•~~y2x!/uy2xu3!2~~y2x!/uy2xu3!~¹y•V~x!!. ~3.13!

The first and last terms on the right-hand side are zero, because they involve differentiatio
respect toy of V(x), which depends only onx. Thus,

¹y3$V~x!3~y2x!/uy2xu3%5V~x!¹y•~~y2x!/uy2xu3!2~V~x!•¹y!~~y2x!/uy2xu3!.

~3.14!

In the first term on the right-hand side, the second factor

¹y•~~y2x!/uy2xu3! ~3.15!

is the divergence of the well known ‘‘inverse square central field.’’ Using spherical coordin
centered atx, this can be written as

¹• r̂ /r 25~1/r 2!~]/]r !~r 2~1/r 2!!50, ~3.16!

away from the origin.
But the integral of¹• r̂ /r 2 over any ball centered at the origin, when converted to a sur

integral via the divergence theorem, is clearly 4p,

E
ball

¹• r̂ /r 2 d~vol!5E
sphere

~ r̂ /r 2!•n d~area!54p. ~3.17!

Thus,

¹• r̂ /r 254pd3~r !, ~3.18!

whered3(r ) is the three-dimensional delta function; equivalently,
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¹y"~~y2x!/uy2xu3!54pd3~y2x!. ~3.19!

Hence,

~1/4p!E
V

V~x!¹y"~~y2x!/uy2xu3! d~volx!5~1/4p!E
V

V~x!4pd3~y2x! d~volx!

5V~y! in V / 0 in V8. ~3.20!

Thus far, we have proved that

¹y3BS~V!~y!5$V~y! / 0%2~1/4p!E
V

~V~x!"¹y!~~y2x!/uy2xu3! d~volx!. ~3.21!

Now we focus on the second term on the right-hand side and must show that

2~1/4p!E
V

~V~x!"¹y!~~y2x!/uy2xu3! d~volx!

5~1/4p!¹yE
V

~¹x"V~x!!/uy2xu d~volx!

2~1/4p!¹yE
]V

V~x!"n/uy2xu d~areax!. ~3.22!

We begin by writing each of the three terms in~3.22! in the form

6~1/4p!¹yE
V

~something! d~volx!. ~3.23!

Starting with the left-hand side of~3.22!, we claim that its integrand can be rewritten as

~V~x!"¹y!~~y2x!/uy2xu3!5¹y~V~x!"~y2x!/uy2xu3!. ~3.24!

To see this, we need the formula from vector calculus,

¹~V"W!5V3~¹3W!1W3~¹3V!1~V"¹!W1~W"¹!V. ~3.25!

We use this with¹5¹y , V5V(x), and W5(y2x)/uy2xu3. Three of the four terms on the
right-hand side of~3.25! will then be zero; the first is zero because¹y3W50; the second is zero
because¹y3V(x)50; the fourth is zero because (W"¹y)V(x)50. Thus¹y(V"W)5(V"¹y)W,
which is exactly our claim.

The first term on the right-hand side of~3.22! is already in the desired form.
The second term on the right-hand side of~3.22! can be rewritten as

E
]V

V~x!"n/uy2xu d~areax!5E
V

¹x"~V~x!/uy2xu! d~volx!, ~3.26!

thanks to the divergence theorem.
Now that all the terms in~3.22! have been rewritten in the desired form, we claim that

integrands on both sides are equal, namely, that

2V~x!"~y2x!/uy2xu35~¹x"V~x!!/uy2xu2¹x"~V~x!/uy2xu!. ~3.27!

This is an immediate consequence of the formula
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¹"~ f A!5~¹ f !"A1 f ~¹"A!, ~3.28!

and the proof of Proposition 1 is complete.

C. Examples

We give three examples to illustrate Proposition 1, each in ‘‘bare bones’’ format, and i
the interested reader to carry out the supporting calculations.

Example 1:In this example, we start with the vector field

V5]/]z5 ẑ ~3.29!

on the ballV of radiusa centered at the origin. Note thatVe CG(V).
Switching to spherical coordinates (r ,u,w), a straightforward computation yields

BS~V!5~a3/3!~sinu!/r 2ŵ for r>a

5~1/3!r sinuŵ for r<a. ~3.30!

Note that inside the ball, BS(V) coincides with the velocity field of a body rotating wit
constant angular velocity about thez-axis.

Next we compute¹3BS(V),

¹3BS~V!5~a3/3!$~2 cosu/r 3! r̂ 1~sinu/r 3!û% for r>a, ~3.31!

which is a standard dipole field, while

¹3BS~V!5~2/3!$~cosu! r̂ 2~sinu!û%5~2/3!V for r<a. ~3.32!

We invite the reader to check Proposition 1, equivalently the Maxwell equation~3.10!, inside
the domainV by directly computing thatEs85(21/3)V there.

Example 2 (see Example 4 of Sec. II C):In this example, we start with the functionf 51/r on
the domainV between the spheres of radii 1 and 2 centered at the origin, and then consid
vector field

V5¹ f 52 r̂ /r 2 ~3.33!

on this domain. Note that the functionf is harmonic, and is constant on each component of]V.
ThereforeV lies in the subspace HG~V! of harmonic gradients inside VF~V!. Borrowing once
again from the future proof of Theorem B, we note thatV lies in the kernel of the Biot–Savar
operator.

We invite the reader to confirm Maxwell’s equation~3.10! by checking that

Es5 r̂ /r 2 inside V,

50 outside V. ~3.34!

Example 3 (see Example 5 of Sec. II C):In this example, we start with the functio
f (x,y,z)5x21y21z2215r 221 on the unit ballV centered at the origin, and then consider t
vector field

V5¹ f 52r r̂ ~3.35!

on this ball. Note thatV lies in the subspace GG~V! of grounded gradients inside VF~V!, and is
therefore~borrowing from the future proof of Theorem B! in the kernel of the Biot–Savar
operator BS.
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With this in mind, we invite the reader to confirm Maxwell’s equation~3.10! in this case by
computing that

Er522r r̂ inside V

522r̂ /r 2 outside V, ~3.36!

and that

Es50 inside V

52r̂ /r 2 outside V. ~3.37!

IV. PROOF OF THEOREM A

Recall the statement:

Theorem A: The equation¹3BS(V)5V holds inV if and only if V is divergence-free an
tangent to the boundary ofV.

The condition thatV be divergence-free and tangent to the boundary ofV can also be written
asVeK(V)5FK%HK, the subspace of fluid knots. For the same effort, we will also get

Addendum to Theorem A: The equation¹3BS(V)50 holds in the closureV8 of R32V if
and only if VeFK % HK % HG% GG.

This condition onV is equivalent toV being orthogonal to the subspace CG of curly gradie
in VF~V!. Then we will prove.

Corollary to Theorem A: The vector potential A(V) is divergence-free if and only if V is
divergence-free and tangent to the boundary ofV.

A. Proof of Theorem A

Half of Theorem A has already appeared as item~7! in our list of Standard Information, and
was proved in Sec. III B, namely, ifVeK(V)5FK%HK, then¹3BS(V)5V in V.

By contrast, ifVe HG%GG, then it would be impossible for¹3BS(V) to equalV in V
unlessV50, since we know from the Hodge Decomposition Theorem that the image of cu
FK%HK%CG.

It remains to show that ifV is in CG, then¹3BS(V) can never equalV in V unlessV50.
The proof will be based on the Maxwell equation,

¹y3BS~V!~y!5$V~y! in V / 0 in V8%2~1/4p!¹yE
xe]V

V~x!•n~x!/ux2yu d~areax!.

~4.1!

Following our discussion in Sec. III B, we can write the second term on the right-hand si
this equation as

Es8 ~y!52~1/4p!¹yE
xe]V

V~x!•n~x!/ux2yu d~areax!. ~4.2!

Although Es8 is the time rate of change of the electrostatic fieldEs , it is also the same as th
electrostatic field due to a charge densitys(x)5V(x)•n(x) along]V, and so we can treat it a
though it were an electrostatic field.

We write

Es8 ~y!52¹yc~y!, ~4.3!
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where

c~y!5~1/4p!E
xe]V

V~x!•n~x!/ux2yu d~areax!. ~4.4!

Although we have in general been writing our gradient fields with a plus sign, as in the equ
V5¹w, we write electrostatic fields with a minus sign,Es852¹c, to follow standard conven-
tion.

While the electrostatic potential functionc for a surface charge distributions is continuous,
the electrostatic fieldEs8 will in general have a jump discontinuity as we cross the surfa
Nevertheless, we have¹•Es850 in V and¹•Es850 in V8.

We claim that ifV is a nonzero vector field in CG, thenEs8 cannot be identically zero inV.
Recall the definition of the subspace CG of curly gradients. A smooth vector fieldV defined

on V is in CG if and only ifV5¹w, wherew is a harmonic function onV, and where the flux of
V through each component of]V is zero. That is, for each component]V i of ]V, we have

E
]V i

V~x!•n~x! d~areax!5E
]V i

s~x! d~areax!50. ~4.5!

In other words, the total charge on each component of]V is zero.
Suppose now thatEs850 in V. We must show thatV50.
First we will show thatEs850 in V8, the closure ofR32V.
The hypothesis thatEs850 insideV tells us thatc must be constant on each component]V i

of ]V85]V.
Now we consider the fieldcEs8 in V8, and compute its divergence~a standard trick in

electrostatics!,

¹•~cEs8 !5~¹c!•Es81c~¹•Es8 !52Es8•Es852uEs8 u2. ~4.6!

Hence,

E
V8

uEs8 u2 d~vol!52E
V8

¹•~cEs8 ! d~vol!52E
]V8

cEs8•n8d~area!, ~4.7!

wheren8 is the unit outward-pointing normal vector toV8, so thatn852n.
Using the divergence theorem inV8 requires a comment, since one of its components

unbounded. That unbounded component should really be approximated by a bounded doma
one boundary component out near infinity. The flux ofcEs8 through this boundary componen
goes to zero as it recedes towards infinity, because the area grows liker 2, while the fieldEs8
decays like 1/r 2 and the potentialc decays like 1/r .

With that said, we continue,

E
V8

uEs8 u2 d~vol!52E
]V8

cEs8•n8d~area!52(
i

c iE
]V i

Es8•n8d~area!, ~4.8!

sincec is constant, say with valuec i , on each component]V i of the boundary.
Now, by Gauss’ Law,

E
]V i

Es8•n8d~area!56total charge ‘‘inside’’ ]V i

56 (
some j

E
]V j

s~x! d~areax!50, ~4.9!
hted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.215.149.98 On: Sat, 10 May 2014 06:24:42



ll

t
r

889J. Math. Phys., Vol. 42, No. 2, February 2001 The Biot–Savart operator

 This article is copyrig
because the total charge oneachcomponent]V j of ]V is zero~see Fig. 1!.
Thus,*V8uEs8 u2d~vol!50, and henceEs8[0 in V8.
Now we haveEs8[0 in V and also inV8. Then Gauss’s Law, applied to the typical ‘‘pi

box’’ neighborhood of a point on]V, implies that the surface charge distributions is identically
zero ~see Fig. 2!.

Since s(x)5V(x)•n(x), this imples thatV is tangent to the boundary ofV, and hence
VPK(V). But K(V)ùCG50, soV50.

This completes the proof of Theorem A.

B. Proof of Addendum to Theorem A

We know that ifV lies in K(V)5FK%HK, then¹3BS(V)50 in V8, according to item~7!
in our list of Standard Information from Sec. III A.

Borrowing from the future, we will see in the proof of Theorem B that ifVeHG%GG, then
BS(V)50 throughout 3-space, so that surely¹3BS(V)50 in V8.

This gives us half of the Addendum to Theorem A.
It remains to show that ifV is in CG, then¹3BS(V) cannot be zero inV8 unlessV50 in V.
The proof of this is based on the Maxwell equation~4.1!, as was the proof of Theorem A; i

is a copy of the argument given there, with the roles ofV andV8 reversed, so we omit furthe
details.

C. Proof of Corollary to Theorem A

If V is divergence-free and tangent to the boundary ofV, then we already know from item~5!
in the list of Standard Information that the vector potentialA(V) is divergence-free.

Recall, also from that list, items
~3! DA(V)52V, and
~4! ¹3A(V)5BS(V) for all Ve VF(V).
Now take the second derivative formula,

¹3~¹3W!5¹~¹•W!2DW ~4.10!

for any vector fieldW, and rewrite it with A(V) in place ofW,

FIG. 1. Components of the domainV and of its complement,V8.

FIG. 2. A typical ‘‘pill box’’ neighborhood of a point on]V.
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¹3~¹3A~V!!5¹~¹"A~V!!2DA~V!. ~4.11!

Using items~3! and ~4! above, substitute BS(V) for ¹3A(V) on the left-hand side, andV for
2DA(V) on the right-hand side, to get

¹3BS~V!5¹~¹"A~V!!1V. ~4.12!

If A( V) is divergence-free, then we get

¹3BS~V!5V inside V, ~4.13!

which by Theorem A implies thatVe K(V).
We conclude that A(V) is divergence-free if and only ifVe K(V), which is exactly the

assertion of the Corollary.

V. PROOF OF THEOREM B

A. Proof of Theorem B, easy direction

Recall the statement:

Theorem B: The kernel of the Biot–Savart operator is precisely the space of gradient vec
fields which are orthogonal to the boundary ofV.

The easy direction is to assume thatV is a gradient vector field which is orthogonal to th
boundary ofV ~equivalently, thatVe HG%GG!, and then conclude that BS(V)50. We will do
that here, and will actually show that BS(V)50 throughout all of 3-space, rather than just inV.

We begin with the following lemma, which is stated without proof on p. 60 of Griffiths.46

Lemma 1: Let V be a smooth vector field on the domainV, and let n denote the outward
pointing unit normal vector field to]V. Then,

E
V

¹3V d~vol!52E
]V

V3n d~area!.

Proof: Start with the Divergence Theorem,

E
V

¹•Vd~vol!5E
]V

V•n d~area!.

Then replaceV by V3C, whereC is any constant vector,

E
V

¹•~V3C! d~vol!5E
]V

~V3C!•n d~area!.

Writing ¹•(V 3C)5(¹3V)•C and movingC outside the integral, the left-hand side becom

C•E
V

¹3V d~vol!.

Writing (V 3C)•n52(V3n)•C and again movingC outside the integral, the right-hand sid
becomes

2C•E
]V

V3n d~area!.

Since the left- and right-hand sides are equal for allC, we must have
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E
V

¹3V d~vol!52E
]V

V3n d~area!,

proving the lemma.
Suppose now thatV5¹w is a gradient vector field onV which is orthogonal to the boundary

which means thatw is constant on each component]V i of ]V. We must show that BS(V)50.
Begin with the formula for the Biot–Savart operator,

BS~V!~y!5~1/4p!E
V

V~x!3~y2x!/uy2xu3 d~volx!. ~5.1!

Fix y, and letW5(y2x)/uy2xu3. Then,

BS~V!5~1/4p!E
V

~¹w!3W d~vol!. ~5.2!

Now consider the vector fieldwW on V and take its curl,

¹3~wW!5~¹w! 3W1w~¹3W!5~¹w!3W, ~5.3!

since¹3W50. Thus

BS~V!5~1/4p!E
V

¹3~wW! d~vol!. ~5.4!

We would like to use the preceding lemma to replace the right-hand side of this formu
the expression

2~1/4p!E
]V

~wW! 3n d~area!. ~5.5!

But the vector fieldwW does not quite fit the hypothesis of the lemma, since it has an iso
singularity at the pointy ~which we can assume is in the interior ofV!. However, this singularity
is ‘‘radial;’’ if we surround it by a small sphere, the vector fieldwW will be orthogonal to the
sphere, and so the integral*(wW)3n d~area! over this small sphere will be zero. It follow
immediately that the lemma can be applied in this case, in spite of the singularity.

We do so, and continue

BS~V!52~1/4p!E
]V

~wW!3n d~area!

52~1/4p!(
i

w iE
]V i

W3n d~area!, ~5.6!

wherew i is the constant value ofw on ]V i .
Now we claim that, for eachi,

E
]V i

W3n d~area! 50. ~5.7!

To see this, letV i be the compact domain in 3-space bounded by]V i . Then, using the lemma
once again,
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E
]V i

W3n d~area!56E
V i

¹3W d~vol! ~5.8!

with the 1 or 2 sign chosen according asn points into or out ofV i . In any case,¹3W50, so
the integral vanishes.

Thus BS(V)50 throughout 3-space.

B. Proof of Theorem B, harder direction

The heart of the argument is the following energy estimate.

Proposition 2: Let V be a compact domain with smooth boundary in 3-space, and V a sm
divergence-free vector field defined inV. Let Es8 be the electrostatic field due to the charg
distribution s(x)5V(x)•n(x) along ]V. Then,

E
3-space

uEs8 u2 d~vol!<E
V

uVu2 d~vol!.

That is, the energy of the electrostatic field Es8 throughout all of 3-space is bounded from abo
by the energy of the original field V inV.

When V is not required to be divergence-free, the energy of the fieldEs8 can be made
arbitrarily large, while keeping the energy ofV itself as small as desired: makeV(x)•n(x) large
along]V, and then quickly taperV off to zero throughout most ofV.

Proof of Proposition 2:Given a divergence-free vector fieldV, we can subtract fromV its
orthogonal projection into the space K(V)5FK%HK of fluid knots. This will leave the corre-
sponding electrostatic fieldEs8 unchanged, while at worst decreasing the energy inV.

So in proving the proposition, there is no loss in generality in assuming thatV is already
orthogonal to this subspace, and hence a gradient vector field...as well as being divergen
Thus we can write

V5¹w with Dw50. ~5.9!

Likewise,

Es8 ~y!52¹yc~y!, ~5.10!

where

c~y!5~1/4p!E
xe]V

V~x!•n~x!/ux2yu d~areax!. ~5.11!

Lemma 2: E
3-space

uEs8 u2d~vol!5E
]V

c]w/]nd~area!.

Proof of Lemma 2:This is a standard result in electrostatics; see Griffiths46 pp. 94–95. For
convenience, we give the argument here.

Since the surface charge distributions along]V is given by

s~x!5V~x!•n~x!5~¹w~x!!•n~x!5~]w/]n!~x!, ~5.12!

we can rewrite the equation to be proved as

E
3-space

uEs8 u2 d~vol!5E
]V

cs d~area!. ~5.13!
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This more clearly displays the relation of the integrand on the right-hand side to the fieldEs8 ; the
function s is the surface charge distribution along]V which gives rise to the fieldEs8 , while the
function c is the electrostatic potential forEs8 , that is,Es852¹c.

The proof is a little easier to express if we replace the surface charge distributions by a
volume charge distributionr in a small neighborhoodN(]V) of ]V, and let Er852¹c
be the resulting electrostatic field, because in this situation we can write¹•Er5r.

With this understanding, we must show that

E
3-space

uEr8u
2 d~vol!5E

N~]V!
cr d~vol!. ~5.14!

To prove this, rewrite the integral on the right-hand side as

E
N~]V!

c~¹•Er8! d~vol!. ~5.15!

Next,

¹•~cEr8! 5~¹c!•Er81c~¹•Er8!52uEr8u
21c~¹•Er8!. ~5.16!

Hence

E
N~]V!

cr d~vol!5E
N~]V!

c~¹•Er8! d~vol!

5E
N~]V!

¹•~cEr8! d~vol!1E
N~]V!

uEr8u
2 d~vol!. ~5.17!

If, in the integral on the left-hand side above, we replace the neighborhoodN(]V) by any
larger domain, call itV* , the value of the integral will not change becauser50 outsideN(]V).
And the equation above will still hold if we replaceN(]V) by V* in each of the three integrals

E
V*

cr d~vol!5E
V*

¹•~cEr8! d~vol!1E
V*

uEr8u
2 d~vol!. ~5.18!

Apply the divergence theorem to the first integral on the right-hand side, so that we now

E
V*

cr d~vol!5E
]V*

~cEr8!•n d~area!1E
V*

uEr8u
2 d~vol!. ~5.19!

Visualize the domainV* growing larger and larger, with its boundary receding towa
infinity. Then c decays like 1/r , while Er8 decays like 1/r 2 and the area of]V* grows like r 2.
Thus the value of the first integral on the right-hand side decays like 1/r , and so goes to zero in
the limit. Hence

E
N~]V!

cr d~vol!5E
3-space

uEr8u
2 d~vol!, ~5.20!

the desired result for volume charge distributions.
If we compress the neighborhoodN(]V) towards the surface]V, the above result for volume

charge distributions will tend to the corresponding result for surface charge distributions,

E
]V

cs d~area!5E
3-space

uEs8 u2 d~vol!, ~5.21!

and the lemma is proved.
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Completion of the proof of Proposition 2:Now we recall Green’s first identity.
Let A5c¹w. Then

¹•A5¹•~c¹w!5¹c•¹w1cDw5¹c•¹w, ~5.22!

sinceDw50.
Thus,

E
V

2Es8•V d~vol!5E
V

¹c•¹w d~vol!5E
V

¹•A d~vol!5E
]V

A•n d~area!

5E
]V

c¹w•n d~area!5E
]V

c]w/]n d~area!5E
3-space

uEs8 u2 d~vol!, ~5.23!

by the lemma.
Hence,

E
3-space

uEs8 u2 d~vol!5E
V

2Es8•Vd~vol!

<S E
V

uEs8 u2 d~vol! D 1/2S E
V

uVu2 d~vol! D 1/2

<S E
3-space

uEs8 u2 d~vol! D 1/2S E
V

uVu2 d~vol! D 1/2

, ~5.24!

and therefore

E
3-space

uEs8 u2 d~vol!<E
V

uVu2 d~vol!, ~5.25!

as claimed, finishing the proof of Proposition 2.

Completion of the proof of Theorem B:In the previous section, we showed that HG%GG, the
space of gradient vector fields which are orthogonal to the boundary ofV, lies within the kernel
of the Biot–Savart operator BS:VF(V)→VF(V).

Now we must show that there is nothing else in the kernel.
We will do this by assuming thatV is orthogonal to GG~equivalently, is divergence-free! and

that BS(V)50, and will show thatV must lie in HG.
First we observe that, under these assumptions,V must be a gradient vector field.
To see this, consider the Maxwell equation inV,

¹y3BS~V!~y!5V~y!2~1/4p!¹yE
xe]V

V~x!•n~x!/ux2yu d~areax!, ~5.26!

written in the form appropriate for any divergence-free vector fieldV.
If V had a nonzero component in the subspace FK%HK of fluid knots, then that componen

would persist when we computed¹3BS(V), since the Maxwell equation tells us tha
¹3BS(V) differs from V by a gradient vector field. It follows that no suchV could possibly be
in the kernel of BS.

So we can assume thatV is a gradient vector field, and writeV5¹w. SinceV is orthogonal
to GG, the functionw must be harmonic. To show thatV lies in HG, we must show that the
function w is constant on each component of]V.

To start on this, note that the second term on the right-hand side in the Maxwell equ
above is the electrostatic fieldEs8 (y), and write that equation more succinctly as
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¹3BS~V!5V1Es8 . ~5.27!

Now if BS(V)50, thenEs852V in V.
It follows thatEs8 must be identically zero outsideV because, by Proposition 2, it simply ha

no more energy.
This, in turn, implies that the electrostatic potential functionc for the field Es8 must be

constant on each component of]V.
But the three equations,

Es8 52¹c ~everywhere!, ~5.28!

V5¹w ~ inside V!, ~5.29!

Es8 52V ~ inside V!, ~5.30!

tell us that

¹w 5¹c ~ inside V!, ~5.31!

and hence that

w 5c 1 some constant ~5.32!

on each component ofV, where the constant may depend on the component.
Thusw inherits fromc the property of being constant on each component of]V, and hence

V5¹w must lie in HG, the desired conclusion.
This completes the proof of Theorem B.
In fact, we have actually proved a bit more.

Theorem B8: The kernel of¹3BS, the composition of the curl and Biot–Savart operators, is
also the space of gradient vector fields which are orthogonal to the boundary ofV.

This follows, with no further argument, because the only way we used the hypothesi
BS(V)50 in this section was to set¹3BS(V)50 on the left-hand side of the Maxwell equatio
~5.27!.

VI. PROOF OF THEOREM C

A. Statement and proof of Theorem C

Recall the statement:

Theorem C: The image of the Biot–Savart operator is a proper subspace of the image
curl, whose orthogonal projection into the subspace of ‘‘fluxless knots’’ is one-to-one.

This will follow immediately from Theorems B and B8 and~borrowing from the future! from
Theorem D.

Proof:
Keep in mind the Hodge decomposition,

VF~V!5FK% HK% CG% HG% GG. ~6.1!

We know from Theorem B that the kernel of the Biot–Savart operator BS is the subs
HG%GG of VF~V!.

We know from Theorem D that this operator is self-adjoint.
It follows that the image of BS lies within the orthogonal complement of its kernel, tha

within the subspace FK% HK% CG, which is precisely the image of curl.
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Alternatively, the formula¹3A(V)5BS(V), which appeared as item~4! on our list of
Standard Information in Sec. III A, also tells us that the image of BS lies within the image of

Now it follows from Theorems B and B8 together that

Image~BS!ùKer~curl!5$0%, ~6.2!

and since, by the Hodge Decomposition Theorem, the kernel of curl is HK% CG% HG% GG, the
orthogonal projection of the image of BS into FK must be one-to-one.

From this it also follows that the image of the BS is a proper subspace of the image o
This completes the proof of Theorem C.

B. Impossible magnetic fields

We are looking for smooth vector fieldsU on a compact, smoothly bounded domainV in
3-space, for which it is impossible to find a smooth vector fieldV on V satisfying the equation
U5BS(V). We will call such a fieldU an impossible magnetic field.

Of course, Eq.~6.2! tells us that any nonzero vector fieldU in HK% CG% HG% GG is an
impossible magnetic field.

But here is a more interesting example.
Consider the velocity vector fieldU of a ‘‘speeding bullet,’’ as pictured below~see Fig. 3!.
We visualize the unit ballV in 3-space as a lead bullet sitting in a cartridge which has b

shot directly upwards from a rifled barrel, so that it spins as it moves forward. In cylind
coordinatesr, w, z, the velocity vector fieldU is given by

U5r ŵ1 ẑ. ~6.3!

Note that the first summandr ŵ lies in FK, while the second summandẑ lies in CG.
Now look back to Example 1 in Sec. III C. There we started with the vector fieldV5 ẑ on the

unit ball V and computed its magnetic field within the ball,

FIG. 3. An impossible magnetic field on the unit ballV.
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BS~V! 5~1/3!r sinuŵ ~spherical coordinates!

5~1/3!r ŵ ~cylindrical coordinates!. ~6.4!

So of course~settling back to cylindrical coordinates!,

BS~3V!5r ŵ. ~6.5!

But this magnetic field on the unit ball ‘‘poisons’’U as a candidate magnetic field, sinceU and
BS(3V) have the same orthogonal projection into the space FK of fluxless knots. By Theore
the vector fieldU cannot possibly be the Biot–Savart transform of any smooth vector field oV.

VII. PROOF OF THEOREM D

It will be convenient to divide the statement and proof of Theorem D into three piece
follows:

~1! The Biot–Savart operator BS:VF(V)→VF(V) is bounded, and hence extends to a boun
operator on theL2 completion,

BS:VF~V!→VF~V!;

~2! The operator BS:VF(V)→VF(V) is compact, that is, it takes the unit ball inVF(V) to a set
with compact closure inVF(V);

~3! The operator BS:VF(V)→VF(V) is self-adjoint with respect to theL2 inner product, that is,
^V1 ,BS(V2)&5^BS(V1),V2&, for all vector fieldsV1 andV2 in VF(V).

A. A useful lemma

The proof that the Biot–Savart operator is bounded, as asserted in~1! above, will follow along
the lines of the usual Young’s inequality proof that convolution operators are bounded
Folland,47 p. 9, or Zimmer,48 Proposition B.3 on p. 10. We extract this proof as a lemma, so
we can use it again in the proof of part~2!.

Lemma 3: Let f(x) be a scalar-valued function with the property that

NV~f!5maxyE
V

uf~y2x!u d~volx!

is finite, where the maximum is over all points yeR3. Then the operator Tf :VF(V)→VF(V)
defined by

Tf~V!~y!5E
V

V~x! 3f~y2x!
y2x

uy2xu
d~volx!

is a bounded map with respect to the L2 norm, and furthermore,

uTf~V!u < NV~f!uVu.

Proof: Fix yeV. Then, using the Cauchy–Schwarz inequality,
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uTf~V!~y!u<E
V

uV~x!uuf~y2x!u d~volx!

5E
V

uV~x!$f~y2x!%1/2u u$f~y2x!%1/2u d~volx!

<S E
V

uV~x!u2uf~y2x!u d~volx! D 1/2S E
V

uf~y2x!u d~volx! D 1/2

<~NV~f!!1/2S E
V

uf~y2x!u uV~x!u2 d~volx! D 1/2

. ~7.1!

We square both sides, integrate and use Fubini’s theorem to get

E
V

uTf~V!~y!u2 d~voly!<NV~f!E
V
E

V
uf~y2x!uuV~x!u2 d~volx! d~voly!

5NV~f!E
V

uV~x!u2S E
V

uf~y2x!u d~voly! D d~volx!

<NV~f!2E
V

uV~x!u2 d~volx!. ~7.2!

Taking square roots, we get

uTf~V!u < NV~f!uVu, ~7.3!

and conclude thatTf is a bounded operator whose norm is at mostNV(f), as claimed.

B. Proof of „1…

Define theoptical sizeof V, written OS~V!, to be the number

OS~V!5maxyE
V

1/uy2xu2 d~volx!, ~7.4!

where the maximum is taken over all pointsye R3. The integral just above can be taken as
measure of the effort required to optically scan the domainV from the locationy; the optical size
of V is the maximum effort required to scan it from any location.

Then, in the language of Lemma 3,

BS~V!~y!5~1/4p!E
V

V~x!3~y2x!/uy2xu3 d~volx!

5Tf0
~V!~y!, ~7.5!

where

f0~y2x!5~1/4p!~1/uy2xu2!. ~7.6!

The lemma yields immediately that, forVe VF(V),

uBS~V!u < ~1/4p!OS~V!uVu, ~7.7!

and we conclude that BS:VF(V)→VF(V) is a bounded operator.
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Now let VF(V) denote theL2 completion of the space VF~V!; we will refer to the elements
of VF(V) asL2 vector fields.

Then we can, and do, extend the Biot–Savart operator to a bounded operator,

BS:VF~V!→VF~V!, ~7.8!

with the same bound as above.
This completes the proof of part~1!.

C. Proof of „2…

To prove that the Biot–Savart operator is compact, we use two standard facts from func
analysis. First is the fact that for any compact domainV, if f(x) is continuous onR3, then the
integral operator

~Tf f !~y!5E
V

f~y2x! f ~x! d~volx! ~7.9!

defines a compact operator onL2(V); see Zimmer,48 Theorem 3.1.5 on p. 53. It is stated the
only for operators on scalar-valued functions, but the extension to vector-valued ones, us
definition given in Lemma 9.3, is trivial.

Second is the fact that the norm-limit of compact operators is compact; see Zimmer,48 Lemma
3.1.3 on p. 52.

Now let

fN~x!5H N2/4p if uxu<1/N

1/~4puxu2! if uxu>1/N.
~7.10!

Note thatfN is a continuous function, and that

NV~f02fN!5maxyE
V

uw0~y2x! 2wN~y2x!u d~volx!

<~1/4p!E
uxu<1/N

~~1/uxu2!2N2! d~volx!

<~1/4p!E
uxu<1/N

~1/uxu2! d~volx!51/N. ~7.11!

By the first functional analysis fact,TfN
is a compact operator fromVF(V) to VF(V). By our

Lemma, we see that asTfN
converges in norm toTf0

, the Biot–Savart operator, asN→`. Using

the second functional analysis fact, we conclude that BS:VF(V)→VF(V) is a compact operator
This completes the proof of part~2!.

D. Proof of „3…

It is easy to see why the Biot–Savart operator is self-adjoint.
Suppose thatV1 andV2 are smooth vector fields defined onV. Then
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^V1 ,BS~V2!&5E
V

V1~y!•BS~V2!~y! d~voly!

5E
V

V1~y!•F ~1/4p!E
V

V2~x!3~y2x!/uy2xu3 d~volx!Gd~voly!

5~1/4p!E
V3V

V1~y!3V2~x!•~y2x!/uy2xu3 d~volx! d~voly!

5~1/4p!E
V3V

V2~x!3V1~y!•~x2y!/ux2yu3 d~voly! d~volx!

5^V2 ,BS~V1!&. ~7.12!

It is a straightforward exercise to check that these improper integrals are all convergen
Thus BS:VF(V)→VF(V) is a self-adjoint operator, and therefore remains self-adjoint w

extended to theL2 completionVF(V) of VF~V!.
Theorem D is proved.

APPENDIX: THE DECAY RATE OF A „V… AND BS „V… AT INFINITY

In item ~9! in our list of standard information from Sec. III A, we asserted that in gene
A(V) decays at̀ like 1/r and that BS(V) decays at̀ like 1/r 2. In the special case thatVeK(V),
we asserted that A(V) decays at̀ like 1/r 2 and that BS(V) decays at̀ like 1/r 3.

We give the proofs here.
The defining formula for the vector potential,

A~V!~y!5~1/4p!E
V

V~x!/uy2xu d~volx!, ~A1!

expresses an inverse first power law, with integration over a compact regionV. It follows imme-
diately that A(V) decays at infinity at least as fast as 1/r .

When we say that A(V) decays at infinity at least as fastas 1/r , we mean that the produc
uA(V)(y)uuyu has a finite upper bound onR3, and likewise for corresponding expressions us
below.

The Biot–Savart formula,

BS~V!~y!5~1/4p!E
V

V~x!3~y2x!/uy2xu3 d~volx!, ~A2!

expresses an inverse square law, with integration over a compact regionV. Again it follows
immediately that BS(V) decays at infinity at least as fast as 1/r 2.

The proof of the faster decay rates whenVe K(V) will be divided into two lemmas.

Lemma 4: The following are equivalent:

(1) A(V) decays at infinity at least as fast as1/r 2;
(2) BS(V) decays at infinity at least as fast as1/r 3;
(3) *VVd(vol)50.

Proof:
It is an easy exercise to check that conditions~1! and~2! each imply~3!. For example, when

uyu is very large, we have
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uyuA~V!~y!'~1/4p!E
V

V~x! d~volx!. ~A3!

If the integral ofV is not zero, thenuyu2uA(V)(y)u certainly blows up at̀ . Thus condition~1!
implies condition~3!, and likewise,~2! implies ~3!.

Suppose now that condition~3! holds. Then,

uyu2A~V!~y!5~1/4p!E
V

uyu2V~x!/uy2xu d~volx!

5~1/4p!E
V

uyu2V~x!/uy2xu d~volx!2~1/4p!E
V

uyuV~x! d~volx!

5~1/4p!E
V

$~ uy2/uy2xu!2uyu%V~x! d~volx!, ~A4!

where the integral added on the right-hand side is zero thanks to condition~3!.
Now,

$~ uyu2/uy2xu!2uyu%5$uyu/uy2xu%$uyu2uy2xu%.

The first factor on the right-hand side approaches 1 asy→` becauseV is bounded. The secon
factor on the right-hand side is<uxu, and hence also bounded. Thus

$~ uyu2/uy2xu!2uyu%

is bounded asy→`.
Since*VuV(x)ud(volx) is certainly bounded, it follows thatuyu2uA(V)(y)u is bounded, and

hence that A(V) decays at̀ at least as fast as 1/r 2. Thus condition~3! implies condition~1!, as
claimed.

Again suppose that condition~3! holds. Then

uyu3 BS~V!~y!5~1/4p!E
V

V~x!3~y2x!uyu3/uy2xu3 d~volx!

5~1/4p!E
V

V~x!3~y2x!uyu3/uy2xu3 d~volx!2~1/4p!E
V

V~x! 3y d~volx!

5~1/4p!E
V

V~x!3$~~y2x!uyu3/uy2xu3!2y% d~volx!, ~A5!

where again the integral added on the right-hand side is zero because of condition~3!. Continuing,

$~~y2x!uyu3/uy2xu3!2y%5$y~ uyu32uy2xu3!/uy2xu3%2$xuyu3/uy2xu3%.

Processing the first term on the right-hand side,

$y~ uyu32uy2xu3!/uy2xu3%5$y/uy2xu% $uyu2uy2xu% $~ uyu21uyuuy2xu1uy2xu2!/uy2xu2%.

The first factor on the right-hand side of this last equation is bounded asy→` becauseV is
bounded. The second factor on the right-hand side is<uxu, and hence is also bounded. The thi
factor on the right-hand side approaches the value 3 asy→`, and hence is also bounded.
follows that

$y~ uyu32uy2xu3!/uy2xu3%
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is bounded asy→`.
Now the term

$xuyu3/uy2xu3%

is certainly bounded asy→`, and so we conclude that

$~~y2x!uyu3/uy2xu3!2y%

is also bounded asy→`. From this it follows that

uyu3 BS~V!~y!

is bounded for ally, and hence that BS(V)(y) decays at̀ at least as fast as 1/r 3. Thus condition
~3! implies condition~2!.

This completes the proof of Lemma 4.

Lemma 5: *VV(x)d(volx)50 for all V in FK%HK%HG%GG, but this relation determines a
codimension-three subspace ofCG.

Proof:
We begin with the proof that*VV(x)d(volx)50 for all VeFK%HK5K(V).
The argument will be coordinate-wise, so that we can deal with scalar-valued integrals in

of vector-valued ones. So let us write the typical point ofV as x5(x1 ,x2 ,x3), and then write
V(x)5(V1(x),V2(x),V3(x)).

Then

¹•~x1V!5~¹x1!•V1x1~¹•V!5~¹x1!•V5V1 , ~A6!

sinceV is divergence-free.
Hence,

E
V

V1~x! d~volx!5E
V

¹•~x1V! d~volx!5E
]V

x1V•n d~area!50, ~A7!

becauseV is tangent to]V.
Of course the same argument holds forV2 andV3 , so we conclude that

E
V

V~x! d~volx!50, ~A8!

as claimed.
Now we prove that*VV(x) d(volx)50 for all Ve HG%GG.
Write V5¹w with w constant on each component of]V.
We claim that

E
V

V d~vol!5E
V

¹w d~vol!5E
]V

wn d~area!. ~A9!

We see this as follows:
Let C be any constant vector. Then,

¹•~wC!5~¹w!•C1w~¹•C!5~¹w!•C. ~A10!

Hence
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S E
V

¹w d~vol! D •C5E
V

~¹w!•C d~vol!

5E
V

¹•~wC! d~vol!

5E
]V

~wC!•n d~area!

5S E
]V

wn d~area! D •C. ~A11!

Since this is true for all constant vectorsC, we must have

E
V

¹w d~vol!5E
]V

wn d~area!, ~A12!

as claimed.
Now suppose that

]V5]V1ø¯ø]Vk ~A13!

is the decomposition of]V into its connected components, and letw i denote the constant value o
the functionw on the boundary component]V i . Then

E
V

V d~vol!5E
V

¹w d~vol!5E
]V

wn d~area!5(
i

w iE
]V i

n d~area!50, ~A14!

because*n d(area) over any closed surface in 3-space is always zero.
This completes the proof that*VV(x) d(volx)50 for all Ve HG%GG.
The observation that this relation determines a codimension-three subspace of CG f

directly from the fact that the three constant vector fieldsx̂, ŷ, and ẑ are curly gradients, com
pleting the proof of Lemma 5.

Clearly, Lemmas 4 and 5 imply the faster decay rates of A(V) and BS(V) whenVe K(V),
completing our argument.
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