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Thewrithing numberof a curve in 3-space is the standard measure of the extent to
which the curve wraps and coils around itself; it has proved its importance for
molecular biologists in the study of knotted DNA and of the enzymes which affect
it. The helicity of a vector field defined on a domain in 3-space is the standard
measure of the extent to which the field lines wrap and coil around one another; it
plays important roles in fluid dynamics and plasma physics. Biog-Savart op-
erator associates with each current distribution on a given domain the restriction of
its magnetic field to that domain. When the domain is simply connected, the
divergence-free fields which are tangent to the boundary and which minimize en-
ergy for given helicity provide models for stable force-free magnetic fields in space
and laboratory plasmas; these fields appear mathematically as the extreme eigen-
fields for an appropriate modification of the Biot—Savart operator. Information
about these fields can be converted into bounds on the writhing number of a given
piece of DNA. The purpose of this paper is to reveal new properties of the Biot—
Savart operator which are useful in these applications.20©1 American Institute

of Physics. [DOI: 10.1063/1.1329659

I. INTRODUCTION

Let ) be a compact domain with smooth boundary in 3-space, and lg@Mbe the space of
smooth vector fields o) with the L? inner product(V,W)= f,V-Wd(vol). By “smooth,”
equivalentlyC”, we mean that derivatives of all orders exist and are continuous.

If we think of the smooth vector fieltd on () as a distribution of electric current, then the
Biot—Savart formula

BS(V)(y) = (1/4) fQV<x)><<y—x)/|y—xl3 d(voly)

gives the resulting magnetic field B®) throughout 3-space. If we restrict this magnetic field to
the domain(), then we get théiot—Savart operatar

BS:VHQ)—VF(Q).

Theorem A: The equatioriV X BS(V)=V holds inQ if and only if V is divergence-free and
tangent to the boundary a®.
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It is well known that curl is a left inverse to the Biot—Savart operator when the input\field
is divergence-free and tangent to the boundary. The new information is that this result holds in no
other cases. The impact of this is that eigenvalue problems for the Biot—Savart operator, which are
central to the study of helicity, cannot in general be converted to eigenvalue problems for curl
(that is, to a system of partial differential equatipns

Theorem B: The kernel of the BietSavart operator is precisely the space of gradient vector
fields which are orthogonal to the boundary @f

Actually, somewhat more is true. ¥ is a smooth gradient vector field defined &nand
orthogonal to its boundary, then its magnetic field B€ 0 throughout 3-space. ConverselyVif
is a smooth vector field defined &b whose magnetic field BS()=0 in (), thenV is a gradient
field orthogonal to the boundary ¢f, and hence BS() =0 throughout 3-space.

Theorem C: The image of the Bie{Savart operator is a proper subspace of the image of
curl, whose orthogonal projection into the subspace of “fluxless knots” is one-to-one

Vector fields on the domaii which are divergence-free and tangent to its boundary are
calledfluid knots we explain this terminology in Sec. [\Eluxless knotsre fluid knots with zero
flux through every cross-sectional surfadg ¢) C (2,0Q). The above theorems lead to several
interesting examples of “impossible” magnetic fields. Nevertheless, The@efals short of
giving a precise characterization of the image of the Biot—Savart operator, and hence of those
fields in a domain() which are magnetic fields of current distributions witl§in

Theorem D: The Biot-Savart operator is a bounded operator, and hence extends to a
bounded operator on the?.completion of its domain, where it is both compact and self-adjoint

The eigenfields of this operator which correspond to its extreme eigenvalues turn out to be the
vector fields inQ) with minimum energy for given helicity. If we start with a vector fidfdwhich
is divergence-free and tangent to the boundary of its dorfgithat is, a fluid knot, then its
magnetic field BSY), though divergence-free, will in general not be tangent to the boundary of
Q. In such a case, we simply modify the Biot—Savart operator BS by following it by orthogonal
projection back to the subspace of fluid knots. The eigenfields of this modified Biot—Savart
operator which correspond to its extreme eigenvalues are then the fluid kif@twitihh minimum
energy for given helicity. When the domain is simply connected, these energy-minimizers
model the stable plasma fields {n

II. PRELIMINARIES

A. Writhing, helicity, and the Biot—Savart operator

The writhing numberWr(K) of a smooth curv in 3-space, defined by the formula
Wr(K)=(1/47r)f (dx/dsx dy/dt)-(x—y)/|x—y|® ds dt, (2.9
KX K

was introduced by Gagaeand— in 1959-1961 and named by Fuflein 1971, and is the
standard measure of the extent to which the curve wraps and coils around itself.

The helicity H(V) of a smooth vector field/ on the domain() in 3-space, defined by the
formula

H(V)=(l/471-)JQXQV(X)XV(y)o(x—y)/|x—y|3 d(voly) d(voly), (2.2

was introduced by Woltj&rin 1958 and named by Moff&tin 1969, and is the standard measure
of the extent to which the field lines wrap and coil around one another.
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Clearly, helicity for vector fields is the analogue of writhing number for knots.
The helicity ofV is closely related to its image under the Biot—Savart operator,

H(V)=(1/477)J’QXQV(X) XV(y)-(x=y)/|x=y|* d(vol,) d(voly)
=f V(y)~[(1/477)J V(x) X(y=x)/ly=x[* d(voly)|d(vol)
Q Q
= L)V(y) -BS(V)(y) d(voly)

= JQV~ BS(V) d(val),

so the helicity ofV is just thel? inner product ofV and BSY),
H(V)=(V,B(V)). (2.3
It is because of this formula that the Biot—Savart operator,
BS:VF(Q)—VF(Q), (2.4

plays such a prominent role in the study of writhing of knots and helicity of vector fields.

B. Applications: A quick guide to the literature

For a glance at the prehistory of the writhing number, see Gauss’s half-padg 1888 on
an integral formula for the linking number of two disjoint closed curves in 3-space. Rewrite his
expression in modern notation and let the two curves coincide and you will have the formula for
the writhing number.

The writhing number has proved its importance for molecular biologists in the study of
knotted duplex DNA and of the enzymes which affect it; see Whie|ler? Bauer, Crick, and
White 1° Wang!! Sumners?~**and Cantarella, Kusner, and Sullivah.

For an overview of the connection between knot theory and electrodynamics, see
Lomonaco'®

Woltjer's formula for the helicity of a vector field arose from his interest in force-free mag-
netic fields. These are magnetic fields which are everywhere parallel to the current flows which
give rise to them, so that the Lorentz force on the flowing charged particles is zero. Because the
gross magnetic field in the Crab Nebula appeared to be steady over a number of years, Woltjer
believed it to be force-free, and studtédt in great detail. Two early papers on force-free mag-
netic fields are Lundqui¥t and Chandrasekhar—Kend&lITwo more recent papers are Laurence
and Avellaned® and Tsuiji?* Marsh’s book? has an extensive and up-to-date bibliography on this
subject.

For a study of the connection between writhing and helicity, see Berger and”Féeid
Moffatt and Ricca*?®

For the connection between helicity and the ordinary and asymptotic Hopf invariants, see
Whitehead® and Arnold?’

For an introduction to the spectral theory of the Biot—Savart operator and its use in determin-
ing upper bounds for writhing and helicity, see Ref. 28. For explicit computation of extreme
eigenfields, see Refs. 29 and 30. For an analysis of isoperimetric problems connected with the
Biot—Savart operator, see Ref. 31. For application to the qualitative study of stable plasma flows,
see Cantarell? For an overview of our work, see our survey paper.

Fs(ir further information on related spectral problems for the curl operator, see Yoshida and
Giga:
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For the connection between this spectral theory and plasma physics, see Y8shida.

For a study of magnetic field generation in electrically conducting fluids, see the book by
Moffatt.3®

For connections with dynamo theory, see the survey article by Childfess.

For many papers on the connections with the dynamics of fluids and plasmas, see the books
by Moffatt and Tsinobef and by Moffatt, Zaslavsky, Comte, and Talor.

For the connections between force-free fields, contact topology and fluid dynamics, see Etnyre
and Ghrist®

C. The Hodge decomposition theorem

In this section we present the Hodge Decomposition Theorem for vector fields on bounded
domains inR3, which we will use throughout the paper. Although we state it below for the space
VF(Q) of smooth vector fields of) with the usualL? inner product, it holds just as well for the
L? completions of VEQ) and of the various subspaces described below.

The papers of We§t and Friedrich$? the notes of Blank, Friedrichs, and Grédand the
book of Schwar? are all good references; an exposition of this theorem in the form given below
appears in Ref. 45.

Hodge Decomposition TheoremWe have a direct sum decomposition of (¢F into five
mutually orthogonal subspaces

VF(Q)=FK® HK ® CG® HG @ GG,

with
ker curk= HK ® CGo HG @ GG,
image graek CGe HG @ GG,
image curEFK & HK & CG,
ker div=FK® HK @ CG® HG,
where

FK=Fluxless Knots={V-V=0,V-n=0, all interior fluxes=0},
HK=Harmonic Knots={V-V=0,VXV=0,V-n=0},
CG=_Curly Gradients={V=V¢, V-V=0, all boundary fluxes 0},
HG=Harmonic Gradients{V=V¢, V-V=0, ¢ locally constant ondQ},
GG=Grounded Gradients{V=V ¢, ¢|;,q=0},
and furthermore,
HK=H(Q;R)=H,(Q,dQ;R)=Roe"us of o2
HG=H,(Q:R)=H(,d0;R)=R* components o)~ (# components off2)_
We need to explain the meanings of the conditions which appear in the statement of this
theorem.

The outward pointing unit vector field orthogonal &) is denoted byn, so the condition
V-n=0 indicates that the vector fieM is tangent to the boundary ¢1.
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Let X stand generically for any smooth surfacelwith ¢ C 9€). Earlier, when commenting
on the statement of Theorem C, we indicated this by writBgg. ) C (2,9Q). Now, orients, by
picking one of its two unit normal vector fielas Then, for any vector fiel®/ on (), we can define
the flux of V throughZ, to be the value of the integré=[sV-n d(area).

Assume thaV is divergence-free and tangentdQ. Then the value of this flux depends only
on the homology class & in the relative homology groub»(Q2,dQ);Z). For example, if) is an
n-holed solid torus, then there are disjoint oriented cross-sectional Bisks. ,>.,,, positioned so
that cuttingQ) along these disks will produce a simply-connected region. The fldxes..,®,, of
V through these disks determine the flux\bthrough any other cross-sectional surface.

If the flux of V through every smooth surfacg in Q) with 9% CdQ vanishes, we say &l
interior fluxes=0.” Then,

FK={Ve VF(Q):V-V=0,V-n=0, all interior fluxes=0} (2.5

will be the subspace dfuxless knotsalready mentioned when explaining the statement of Theo-
rem C.
The subspace,

HK={Ve VF(Q):V-V=0,VXV=0,V-n=0} (2.6

of harmonic knotss isomorphic to the absolute homology gradp({);R) and also, via Poincare
duality, to the relative homology groud,(2,dQ;R), and is thus a finite-dimensional vector
space, with dimension equal to the genus/Qf

The orthogonal direct sum of these two subspaces,

K(Q)=FKaHK 2.7

is the subspace of (R) consisting of all divergence-free vector fields definedband tangent
to its boundary. These are the vector fields that represent current flows in the standard versions of
the laws of Magnetostatics.

We called these vector fieldhiid knotsin the Introduction, and pause to explain this termi-
nology. Given a knot in 3-space, we can choose a thin tubular neighborhood of the knot to be our
domain(}, and then choose a divergence-free vector fiela (2, for example orthogonal to the
cross-sectional disks and hence tangent to the boundary. In this way, questions about the geometry
of the knot can sometimes profitably be reformulated as questions about the vectdf, frald
“fluid knot.” We did exactly this in our papéf when deriving an upper bound for the writhing
number of a knot of given length and thickness.

If V is a vector field defined of), we will say thatall boundary fluxes of V are zeibthe flux
of V through each component éf) is zero. Then,

CG={VeVF(Q):V=Ve¢, V-V=0, all boundary fluxes 0} (2.8

will be called the subspace otirly gradientsbecause these are the only gradients which lie in the
image of curl.
Next we define the subspace ledirmonic gradients

HG={VeVF(Q):V=V¢, V-V=0, ¢ locally constant ondQ}, (2.9

meaning thatp is constant on each componentadi. This subspace is isomorphic to the absolute
homology groupH,(2;R) and also, via Poincareluality, to the relative homology group
H,(Q,0Q;R), and is hence a finite-dimensional vector space, with dimension equal to the number
of components of() minus the number of components Qf

The definition of the subspace gfounded gradients

GG={VeVF(Q):V=Vo, ¢|;n=0}, (2.10

is self-explanatory.
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A vector fieldV belongs to the subspace HESGG of VH()) if and only if it is the gradient
of a smooth functionp on () which is constant on each componentdéf, or equivalently, is a
gradient vector field which is orthogonal #). Theorem B asserts that these vector fields form the
kernel of the Biot—Savart operator.

The five orthogonal direct summands of B can be characterized as follows:

FK=(ker cur)*,

HK=(ker cur) N(image grag,
CG=(image grad N(image cur),
HG= (ker div) N(image cur*,
GG= (ker div)*.

These characterizations bear witness to the geometric and analytic significance of the summands.
We end this section with examples of vector fields from each of the five summands.

1. FK=fluxless knots
Let Q) be a round ball of radius 1, centered at the origin in 3-space. Consider the vector field

V=—-yi+x]j.

This is the velocity field for rotation of 3-space about thaxis at constant angular speed. It is
divergence-free and tangent to the boundary of the®alind hence belongs to the subspace FK
of fluxless knots, because there are no harmonic knots on a ball.

2. HK=harmonic knots
Let Q) be a solid torus of revolution about tlzeaxis. Using cylindrical coordinates (¢,z),
consider the vector field
V=(1Ine,

which is the magnetic field due to a steady current running up-thes. It is divergence-free and
curl-free and tangent to the boundary of the solid tdysnd hence belongs to the subspace HK
of harmonic knots.

3. CG=curly gradients

Let Q be a round ball of radius 1, centered at the origin. Consider the harmonic fumctiod
the gradient field

V=Vz=k.

This vector field is divergence-free and has zero flux through the one and only componént of
hence it belongs to the subspace CG of curly gradients.

4. HG=harmonic gradients

Let Q) be the region between two concentric round spheres, say of radius 1 and 2, centered at
the origin. Using spherical coordinates, §,¢), consider the harmonic functionrl/and its
gradient vector field

V=V(1r)=(-1I?Ft,
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just the inverse square central field. Since the harmonic functiois Wonstant on each compo-
nent of /2, the vector fieldv belongs to the subspace HG of harmonic gradients. We may think
of V as the electric field between two concentric spheres held at different potentials.

5. GG=grounded gradients

Let ) be a round ball of radius 1, centered at the origin. Consider the function given by
r2—1=x?+y?+z2—1, and the vector field

V=V(r?—1)=2x1+2yj+2zk

Since the functiom?— 1 has constant value zero on the boundarf2pthe vector fieldv belongs
to the subspace GG of grounded gradients. We may Wewas an electric field with interior
charges inside a conducting boundary.

I1l. STANDARD INFORMATION ABOUT THE BIOT-SAVART OPERATOR
A. The basic facts

Given a smooth vector field on (), the vector potentialA(V) for BS(V) is defined by the
formula,

A(V)(y)=(1/4m) L}V(x)/|y—x| d(vol). (3.D

Here is the classically known information about the Biot—Savart operator and its vector
potential. Note that some of the assertions below hold for any vectonMigi-((2), while others
need the more restrictive assumption tiaits divergence-free and tangent to the boundar$pf
in other words, thaV lies in the subspace (K) of fluid knots.

Standard Information: Let () be a compact domain in 3-space with smooth bound&ly
Let V be a smooth vector field defined @nThen

(1) BS(V) and A(V) are well-defined on all of 3-space, that is, the improper integrals defining
them converge everywhere;

(2) BS(V) andA(V) are of class € on (), and on the closur€)’ of R*— . BS(V) is continuous
on R®, but its derivatives typically suffer jump discontinuities as one crog@esA(V) is of
class ¢ on R, but its second derivatives typically suffer jump discontinuities as one crosses
Y

(3) AA(V)=—V in Q andAA(V)=0 in Q', whereA is the vector Laplacian;

(4) VXA(V)=BS(V) on R%;

(5) If VeK(Q), thenA(V) is divergence-free on R

(6) V-BS(V)=0in Q and inQ’;

(7) If VeK(Q), thenVXBS(V)=V in Q and VXBS(V)=0 in Q';

(8) If VeK(Q), then [<BS(V)-ds=0 for all closed curves C 0@ which bound in R —Q;

(9) In genera) A(V) decays ate like 1/r and BS(V) decays ate like 1/r%; however, if \eK(Q),
thenA(V) decays ate like 1/r2 and BS(V) decays ate like 1/r3.

Proofs of most of these basic facts can be found throughout the physics lite(tatrefor
example, Griffithd®), with the exception of itent9), which we prove in the Appendix. IteitY)
contains the first half of Theorem A; we will prove that immediately, since it affects the rest of the
paper.

B. Proof of (7)

The argument to follow begins as in GriffitA&pp. 215217, but is then modified to suit our
purpose.
To prove(7), we assume thaf is a fluid knot, and must show that
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VyxXBS(V)(y)=V(y), when ye(,
=0, when yeQ)’.

From now on, we will use the shorthand notatidf(y) in Q/0 in Q'}, or simply{V(y)/0},
to express these two outcomes.

The above assertion will follow immediately from the next proposition, which will then serve
as a springboard to the rest of the paper.

Proposition 1:

v, XBS(V)(y)={V(y) in Q/0 in Q’}+(1/47T)Vny(VX~V(x))/|y—x| d(voly)

- (1/47T)VVLQV(X) -n/ly—x| d(area).

If V is divergence-free, then the second term on the right-hand side vaniskeis, iingent
to the boundary of}, then the third term on the right-hand side vanishes. If both hold, that is, if
V is a fluid knot, then we get iterfv).

We can view the statement of Proposition 1 as Maxwell’'s equation,

VXB=J+9E/dt, (3.2

as follows.
Let V represent a current distribution throughout the donirt time t=0, let the volume
charge density throughout() and the surface charge densityalong Q) both be zero. Then set

p=—(V-V)t throughout(}, (3.3

and
o=(V-n)t along Q. (3.9
Equation(3.3) for the volume charge densifyis forced on us by the continuity equation,
VV=—dplét. (3.5

Likewise, Eq.(3.4) for the surface charge densityis forced on us by a version of the continuity
equation appropriate to the boundary of our domain. The cuxeéssimply carrying charge from
locations within{) and on its boundary to other such locations. Thus the surface charge density
given by (3.4) has a time rate of change equal to the flux density of the cukethirough the
boundaryd().

Now the volume charge througho(k gives rise to a time varying electric field

Ep(y,t)z[(1/47T)Vny(VX-V(x))/|y—x| d(voly) |t, (3.6)

and the surface charge aloaf) gives rise to a time varying electric field,

E,(y,t)= [ - (1/477)VyLQV(x)-n(x)/|y—x| d(area)|t, (3.7

both fields extending throughout 3-space.
The total electric field

E(y,t)=E,(y,t) +E,(y,t) (3.8
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has a time rate of change
JE/gt=0E,|dt+JE,It=E,+E,. (3.9
With this notation, the equation of Proposition 1 condenses to
VXBS(V)={V/O}+E,+E,, (3.10
which is just Maxwell’'s Eq(3.2). Proving Proposition 1 confirms these interpretations.

Proof of Proposition 1:.We must evaluate

VX BS(V)(y)= VX (1/4m) fQV(x) X (y=x)/|ly—x[® d(vol,)

=(1/4m) fQVyX{V(x) X (y=x)|(y=x)|%} d(voly). (3.1)

We will need the following formula from vector calculus:
VX(AXB)=(B-V)A—(A-V)B+A(V-B)—B(V-A). (3.12
Applying this formula to the integrand, we get
VX V)X (y=x)/|ly—x[%}
= ((y=x)ly=x[>- V)V = (V(x)- V) ((y= %)/ |y =)
+V(X) V- (Y= y=xI3) = ((y=x)/ |y =x[*) (V- V(x)). (3.13

The first and last terms on the right-hand side are zero, because they involve differentiation with
respect toy of V(x), which depends only or. Thus,

VXAV X (y=x)ly=x[Z = V) Vy - ((y=x)/ |y =x[3) = (V(x) - V) ((y =)/ [y = x[3).
(3.19
In the first term on the right-hand side, the second factor
Vy- ((y=x)y=x*) (3.19

is the divergence of the well known “inverse square central field.” Using spherical coordinates
centered ak, this can be written as

V-#Ir2=(1r?)(alar)(r?(1r?))=0, (3.16

away from the origin.
But the integral ofV -7/r? over any ball centered at the origin, when converted to a surface
integral via the divergence theorem, is clearly, 4

f V-#/r? d(vol):f (f/r?)-n d(area=4n. (3.17)
ball sphere
Thus,

V. -tIr2=478%r), (3.18

where 8%(r) is the three-dimensional delta function; equivalently,
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Vy ((y=x)|y=x[})=4m8%(y—x). (3.19

Hence,

(1/41r) LEV(X)V),-((y—x)/|y—x|3) d(volx)=(1/47T)LZV(X)47753(y—x) d(voly)

=V(y) in Q/0 in Q. (3.20

Thus far, we have proved that

VyxBS(V)(y)={V(y)/0}—(1/477)L)(V(x)-vy)((y—x)/ly—x|3) d(voly).  (3.2D

Now we focus on the second term on the right-hand side and must show that
—(1/447)fQ(V(X)'Vy)((y—X)/Iy—XIB) d(voly)
=(1/477)Vyf (VyeV(x)/|y—x| d(voly)
Q

—(1/477)Vyf V(x)-n/ly—x| d(areg). (3.22
a0
We begin by writing each of the three terms(8122 in the form
t(1/47-r)VyJ (something d(vol,). (3.23
Q

Starting with the left-hand side @B.22, we claim that its integrand can be rewritten as
(V) V ) ((y =)y =x[3) =V (V) (y = x)/[y = x[?). (3.29

To see this, we need the formula from vector calculus,
V(V-W) = VX (VXW)+WX (VXV)+(V-V)W+ (W-V)V. (3.25

We use this withV=V,, V=V(x), and W=(y—x)/|y—x|3. Three of the four terms on the
right-hand side of3.29 will then be zero; the first is zero becauégx W=0; the second is zero
becauseV, X V(x) =0; the fourth is zero becaus&®%V)V(x)=0. ThusV (V-W)=(V-V,)W,
which is exactly our claim.

The first term on the right-hand side (§.22) is already in the desired form.

The second term on the right-hand side(8R22) can be rewritten as

f V(x)-n/ly—x| d(area)zf Ve (V)/ly=x|) d(voly), (3.26
179} Q

thanks to the divergence theorem.
Now that all the terms in3.22 have been rewritten in the desired form, we claim that the
integrands on both sides are equal, namely, that

=VO)-(y =Xy =x[3= (Ve VO |y =X| = Ve (V(X) /[y = X]). (3.27)

This is an immediate consequence of the formula
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V-(fA)=(VT)-A+f(V-A), (3.28
and the proof of Proposition 1 is complete.

C. Examples

We give three examples to illustrate Proposition 1, each in “bare bones” format, and invite
the interested reader to carry out the supporting calculations.

Example 1:In this example, we start with the vector field
V=0ldz=2 (3.29

on the ballQ) of radiusa centered at the origin. Note thslte CG((2).
Switching to spherical coordinates, @, ¢), a straightforward computation yields

BS(V)=(a%3)(sin6)/r?p for r=a
=(1/3)r sinfp for r=<a. (3.30

Note that inside the ball, B${) coincides with the velocity field of a body rotating with
constant angular velocity about tzeaxis.
Next we computéV X BS(V),

VX BS(V)=(a%3){(2 cosb/r3)t +(sin6/r3) 8} for r=a, (3.31)
which is a standard dipole field, while
VXBS(V)=(2/3){(cosh)f —(sin 0)@}=(2/3)V for r=a. (3.32

We invite the reader to check Proposition 1, equivalently the Maxwell equédid0), inside
the domainQ) by directly computing thaE = (—1/3)V there.

Example 2 (see Example 4 of Sec. Il @)this example, we start with the functids=1/r on
the domain() between the spheres of radii 1 and 2 centered at the origin, and then consider the
vector field

V=Vf=—F/r2 (3.33

on this domain. Note that the functidris harmonic, and is constant on each componeni(bf
ThereforeV lies in the subspace HQ) of harmonic gradients inside Y8). Borrowing once
again from the future proof of Theorem B, we note tNaties in the kernel of the Biot—Savart
operator.

We invite the reader to confirm Maxwell's equati@10 by checking that

E,=F/r? inside Q,
=0 outside (). (3.39

Example 3 (see Example 5 of Sec. Il Q) this example, we start with the function
f(x,y,2) =x?+y?+ 72— 1=r?—1 on the unit ball) centered at the origin, and then consider the
vector field

V=Vf=2rf (3.39

on this ball. Note thaV lies in the subspace GQ) of grounded gradients inside V&), and is
therefore (borrowing from the future proof of Theorem)Bn the kernel of the Biot—Savart
operator BS.
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With this in mind, we invite the reader to confirm Maxwell’'s equati@il0 in this case by
computing that

E =—-2rf inside Q

p
=—2¢/r? outside Q, (3.3
and that
E,=0 inside ()
=2f/r? outside Q. (3.37

IV. PROOF OF THEOREM A

Recall the statement:

Theorem A: The equatior’V X BS(V)=V holds inQ if and only if V is divergence-free and
tangent to the boundary @d.

The condition thaV be divergence-free and tangent to the boundaif can also be written
asVeK(Q)=FK®HK, the subspace of fluid knots. For the same effort, we will also get

Addendum to Theorem A: The equatiorV X BS(V) =0 holds in the closuré)’ of R®*— Q) if
and only if VeFK®@HKaeHGa® GG.

This condition onV is equivalent td/ being orthogonal to the subspace CG of curly gradients
in VF(Q). Then we will prove.

Corollary to Theorem A: The vector potential &) is divergence-free if and only if V is
divergence-free and tangent to the boundaryof

A. Proof of Theorem A

Half of Theorem A has already appeared as it&nin our list of Standard Information, and
was proved in Sec. Il B, namely, WeK(Q)=FK®HK, thenV XBS(V)=V in Q.

By contrast, ifVe HG®GG, then it would be impossible fov XBS(V) to equalV in
unlessV=0, since we know from the Hodge Decomposition Theorem that the image of curl is
FKeHKaCG.

It remains to show that i¥/ is in CG, thenV XBS(V) can never equaV in () unlessV=0.

The proof will be based on the Maxwell equation,

V,XBS(V)(y)={V(y) in Q/0 in Q’}—(1/47T)VyJ V(x)-n(x)/|x—y| d(area).
xed)

4.9

Following our discussion in Sec. Il B, we can write the second term on the right-hand side of
this equation as

El(y)= —(1/477)Vyfx &QV(X)~n(x)/|x—y| d(areg). 4.2

Although E is the time rate of change of the electrostatic fiElg, it is also the same as the
electrostatic field due to a charge densitfx) =V(x)-n(x) along ), and so we can treat it as
though it were an electrostatic field.

We write

Eo(Y)=—=Vyily), (4.3
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where

Y(y)=(1/4ar) JX mV(x)-n(x)/|x—y| d(areg). (4.9

Although we have in general been writing our gradient fields with a plus sign, as in the equation
V=V, we write electrostatic fields with a minus sigh, = —V ¢, to follow standard conven-
tion.
While the electrostatic potential functiofifor a surface charge distributianis continuous,
the electrostatic fielcE] will in general have a jump discontinuity as we cross the surface.
Nevertheless, we havé-E =0 inQ andV-E/ =0 in Q'.
We claim that ifV is a nonzero vector field in CG, thefy, cannot be identically zero if0.
Recall the definition of the subspace CG of curly gradients. A smooth vectonNMielefined
onQ isin CG if and only ifV=V ¢, whereg is a harmonic function of, and where the flux of
V through each component of) is zero. That is, for each componei®; of J(), we have

J V(X)-n(x) d(areq)=f o(x) d(area)=0. (4.5
90, a0,

In other words, the total charge on each componerni(bfs zero.

Suppose now theE =0 in Q. We must show that/=0.

First we will show thatE! =0 in Q’, the closure oR3— ().

The hypothesis thaE =0 inside() tells us thatyy must be constant on each componéf
of Q)" =9Q.

Now we consider the fieldsE, in Q', and compute its divergend@ standard trick in
electrostatics

V- (YE,)=(Vih)-Ej+ (V-E))=—Ey-E = —|E,% (4.6
Hence,
f |E!|? d(vol)=—f V-(yE)) d(vol)=—f YE! -n"d(areq, 4.7
Q' Q' Q'
wheren’ is the unit outward-pointing normal vector £&', so thatn’= —n.

Using the divergence theorem ' requires a comment, since one of its components is
unbounded. That unbounded component should really be approximated by a bounded domain with
one boundary component out near infinity. The fluxyd through this boundary component
goes to zero as it recedes towards infinity, because the area grows likenile the fieldE/
decays like 7% and the potentials decays like 1.

With that said, we continue,

f |E!|? d(vol)z—f wE[,-n’d(area:—z z//if E,-n'd(area, (4.9
Q' 0’ i 90

since ¢ is constant, say with valug;, on each componeri(; of the boundary.
Now, by Gauss’ Law,

f E.-n'd(area= *total charge “inside’ 9Q;
ﬁQi

=+ > Lﬂ_a(x) d(areg) =0, (4.9

some j
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FIG. 1. Components of the domafd and of its complement)’.

because the total charge eachcomponen(); of /) is zero(see Fig. 1

Thus, [ o/|E!|?d(vol)=0, and henc&/ =0 in Q'.

Now we haveE=0 in Q and also inQ)’. Then Gauss’s Law, applied to the typical “pill
box” neighborhood of a point 0a(2, implies that the surface charge distributiens identically
zero(see Fig. 2

Since o(x)=V(x)-n(x), this imples thatV is tangent to the boundary d®, and hence
VeK(Q). But K(Q)NCG=0, soV=0.

This completes the proof of Theorem A.

B. Proof of Addendum to Theorem A

We know that ifV lies in K(Q)) =FK&HK, thenV XBS(V)=0 in (', according to item7)
in our list of Standard Information from Sec. Ill A.

Borrowing from the future, we will see in the proof of Theorem B thaV #HG® GG, then
BS(V) =0 throughout 3-space, so that sur81<BS(V)=0 in Q'.

This gives us half of the Addendum to Theorem A.

It remains to show that ¥ is in CG, thenV X BS(V) cannot be zero ifi)’ unlessvV=0 in ().

The proof of this is based on the Maxwell equatidnl), as was the proof of Theorem A; it
is a copy of the argument given there, with the roledo&nd ()’ reversed, so we omit further
details.

C. Proof of Corollary to Theorem A

If V is divergence-free and tangent to the boundar@ othen we already know from iteii®)
in the list of Standard Information that the vector potenfigV) is divergence-free.

Recall, also from that list, items

(3) AA(V)=-V, and

(4) VXA(V)=BS(V) for all Ve VF(L).

Now take the second derivative formula,

VX(VXW)=V(V-W)—AW (4.10

for any vector fieldw, and rewrite it with A{) in place ofW,

FIG. 2. A typical “pill box” neighborhood of a point o).
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VX (VXAV))=V(V-AV))—AA(V). (4.1

Using items(3) and (4) above, substitute B$() for VXA(V) on the left-hand side, and for
—AA(V) on the right-hand side, to get

VXBS(V)=V(V-A(V))+V. (4.12
If A(V) is divergence-free, then we get
VXBS(V)=V inside Q, (4.13

which by Theorem A implies tha¥ e K({2).
We conclude that AY) is divergence-free if and only i¥/e K({2), which is exactly the
assertion of the Corollary.

V. PROOF OF THEOREM B
A. Proof of Theorem B, easy direction

Recall the statement:

Theorem B: The kernel of the BietSavart operator is precisely the space of gradient vector
fields which are orthogonal to the boundary @f

The easy direction is to assume thatis a gradient vector field which is orthogonal to the
boundary of() (equivalently, thalVe HG®GG), and then conclude that B8)=0. We will do
that here, and will actually show that B&(=0 throughout all of 3-space, rather than just(ln

We begin with the following lemma, which is stated without proof on p. 60 of Griffihs.

Lemma 1: Let V be a smooth vector field on the dom&inand let n denote the outward
pointing unit normal vector field ta€). Then

f V><Vd(v0|)=—f VXnd(areq.
Q o0
Proof: Start with the Divergence Theorem,
f V~Vd(vo|)=f V-n d(area.
Q o)
Then replace/ by VX C, whereC is any constant vector,
j V- (VXC) d(vol)=f (VXC)-n d(area.

Q Fo)

Writing V- (V X C)=(VXV)-C and movingC outside the integral, the left-hand side becomes
C~f VXV d(vol).
Q

Writing (V XC)-n=—(VXn)-C and again movindgC outside the integral, the right-hand side
becomes

—C-f VXn d(area.
)

Since the left- and right-hand sides are equal foiCalive must have
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fVXV d(vol)=—J VXn d(areg,
Q a0

proving the lemma.
Suppose now that =V ¢ is a gradient vector field o2 which is orthogonal to the boundary,
which means thap is constant on each componeif®; of (). We must show that B&) =0.
Begin with the formula for the Biot—Savart operator,

BS(V)(y)=(1/477)JQV(x)x(y—x)/|y—x|3 d(voly). (5.1
Fix y, and letW=(y—x)/|y—x|3. Then,
BS(V) = (1/4m) fﬂ(w)xw d(vol). (5.2

Now consider the vector fiel¢W on Q) and take its curl,
VX (W)= (V) XW+ o(VXW)=(Vp)XW, (5.3

sinceVXW=0. Thus
BS(V):(1/477)J VX (oW) d(vol). (5.4
Q

We would like to use the preceding lemma to replace the right-hand side of this formula by
the expression

—(1/4ar) fm(goW) Xn d(area. (5.5

But the vector fieldpW does not quite fit the hypothesis of the lemma, since it has an isolated
singularity at the poiny (which we can assume is in the interior @j. However, this singularity
is “radial;” if we surround it by a small sphere, the vector fiefdV will be orthogonal to the
sphere, and so the integrf( W)X n d(area over this small sphere will be zero. It follows
immediately that the lemma can be applied in this case, in spite of the singularity.

We do so, and continue

BS(V)=—(1/4w) LQ(QDW)xn d(area

=— (1/477)2i @i LQ-WX n d(area, (5.6)

where ¢, is the constant value ap on d(); .
Now we claim that, for each

f Wxn d(areg =0. (5.7
29

To see this, lef); be the compact domain in 3-space bounded@Qy. Then, using the lemma
once again,
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WXxn d(area=if VXW d(vol) (5.8
a0, 0

with the + or — sign chosen according a&spoints into or out of(};. In any caseV X W=0, so
the integral vanishes.
Thus BS{)=0 throughout 3-space.

B. Proof of Theorem B, harder direction
The heart of the argument is the following energy estimate.

Proposition 2: Let Q) be a compact domain with smooth boundary in 3-space, and V a smooth
divergence-free vector field defined b Let E, be the electrostatic field due to the charge
distribution o(x) =V(x) - n(x) along d€}. Then

f [E,|? d(vol)if [V|? d(vol).
3 Q

-space

That is, the energy of the electrostatic fiel¢d Ehroughout all of 3-space is bounded from above
by the energy of the original field V iQ.

When V is not required to be divergence-free, the energy of the fig]Jdcan be made
arbitrarily large, while keeping the energy Wfitself as small as desired: mak&x) - n(x) large
alongdQ), and then quickly tape¥ off to zero throughout most df.

Proof of Proposition 2:Given a divergence-free vector field we can subtract fronv its
orthogonal projection into the space &J=FK®HK of fluid knots. This will leave the corre-
sponding electrostatic fiell unchanged, while at worst decreasing the energy.in

So in proving the proposition, there is no loss in generality in assuming\thatalready
orthogonal to this subspace, and hence a gradient vector field...as well as being divergence-free.
Thus we can write

V=V¢ with Ap=0. (5.9
Likewise,
E,(y)=—Vy¥(y), (5.10
where
Y(y)=(1/4) L mV(x)-n(x)/|x—y| d(area). (5.11

Lemma 2: J |E[,|2d(vol)=f Ydelond(areq.
3 90

-space

Proof of Lemma 2This is a standard result in electrostatics; see Griffitpp. 94—95. For
convenience, we give the argument here.
Since the surface charge distributioralong /() is given by

a(x)=V(x)-n(x)=(Ve(x))-n(x)=(de/dn)(x), (5.12

we can rewrite the equation to be proved as

f |E!|? d(vol)=f Yo d(area. (5.13
3 Q)

-space
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This more clearly displays the relation of the integrand on the right-hand side to th& figlithe
function o is the surface charge distribution alos#g which gives rise to the fielé&, , while the
function ¢ is the electrostatic potential fd&, , that is,E, = —V .

The proof is a little easier to express if we replace the surface charge distrikutigna
volume charge distributiorp in a small neighborhoodN(9Q) of dQ, and let E,’Jz -V
be the resulting electrostatic field, because in this situation we can Wrig = p.

With this understanding, we must show that

f |E, |2 d(vol)=f Yp d(vol). (5.14
3-space N(9Q)
To prove this, rewrite the integral on the right-hand side as
f Y(V-E,) d(vol). (5.15
N(aQ)

Next,

V- (yE,) =(Vip)-E,+p(V-E)=—|E,|>+y(V-E)). (5.16
Hence

J Up d(vol)=f #(V-E,) d(vol)
N(2Q) N(20)

=j V- (yE,) d(vol)+j |E,|? d(vol). (5.1
N(aQ) N(a€2)
If, in the integral on the left-hand side above, we replace the neighborN¢68) by any

larger domain, call iQ)*, the value of the integral will not change becapse0 outsideN(d()).
And the equation above will still hold if we repladé(dQ)) by * in each of the three integrals,

fm vp d(vol)=me-(¢E,’J) d(vol)+£)*|E;|2 d(vol). (5.18

Apply the divergence theorem to the first integral on the right-hand side, so that we now have

fm p d(vol)=LQ*(sz,’J)-n d(area)+fm|E;|2 d(vol). (5.19

Visualize the domainQ)* growing larger and larger, with its boundary receding towards
infinity. Then ¢ decays like I/, while E, decays like 17> and the area of)* grows liker?.
Thus the value of the first integral on the right-hand side decays likeabdd so goes to zero in
the limit. Hence

f vp d(vol):f E/]2 d(vol), (5.20
N(3Q)

3-space

the desired result for volume charge distributions.
If we compress the neighborhodt{ 7)) towards the surfac&, the above result for volume
charge distributions will tend to the corresponding result for surface charge distributions,

f Yo d(area=J |E!|? d(vol), (5.21)
Q) 3-space

and the lemma is proved.
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Completion of the proof of Proposition Xow we recall Green’s first identity.
Let A=¢yVe. Then

V-A=V-(yVo)=Vi-Vo+ A=V - Vo, (5.22

sinceAp=0.
Thus,

J —E,; 'V d(V0|)=f V-V d(V0|)=f V-A d(vol)=f A-n d(area
Q Q Q a0

=f YVe-n d(area=f Yaplon d(are6)=f |E!|? d(vol), (5.23
Q) Q) 3-space

by the lemma.
Hence,

f |E!|? d(vol)zf —E! -Vd(vol)
3-space O
1/2 1/2
s(f |E!|? d(vol)) (J [V|? d(vol))
Q Q

12 1/2
$<J |E!|? d(vol)) (f V|2 d(vol)) : (5.249
3-space Q

and therefore

f |E!|? d(vol)sf [V|2 d(vol), (5.25
3 Q

-space
as claimed, finishing the proof of Proposition 2.

Completion of the proof of Theorem Bt the previous section, we showed that #GG, the
space of gradient vector fields which are orthogonal to the boundaty, bés within the kernel
of the Biot—Savart operator BS:VBR()— VF(Q).

Now we must show that there is nothing else in the kernel.

We will do this by assuming that is orthogonal to GGequivalently, is divergence-freand
that BS{V) =0, and will show thalv must lie in HG.

First we observe that, under these assumptivnsiust be a gradient vector field.

To see this, consider the Maxwell equation(in

VX BS(V)(y):V(y)—(l/4w)VyL mV(x)-n(x)/|x—y| d(area), (5.26

written in the form appropriate for any divergence-free vector fiéld

If V had a nonzero component in the subspace&HRK of fluid knots, then that component
would persist when we compute¥ XBS(V), since the Maxwell equation tells us that
VXBS(V) differs fromV by a gradient vector field. It follows that no sudhcould possibly be
in the kernel of BS.

So we can assume th¥tis a gradient vector field, and wridd=V ¢. SinceV is orthogonal
to GG, the functiony must be harmonic. To show th&t lies in HG, we must show that the
function ¢ is constant on each componentdsl.

To start on this, note that the second term on the right-hand side in the Maxwell equation
above is the electrostatic field (y), and write that equation more succinctly as



J. Math. Phys., Vol. 42, No. 2, February 2001 The Biot—Savart operator 895

VXBS(V)=V+E.. (5.27)

Now if BS(V)=0, thenE=—V in Q.

It follows thatE, must be identically zero outside because, by Proposition 2, it simply has
no more energy.

This, in turn, implies that the electrostatic potential functigrfor the field E; must be
constant on each component &d.

But the three equations,

E, =—V¢ (everywherg, (5.289
V=V (inside Q), (5.29
E, =—V (inside Q), (5.30
tell us that
Vo=V (inside Q), (5.32
and hence that
¢ = + some constant (5.32

on each component d?, where the constant may depend on the component.

Thus ¢ inherits from s the property of being constant on each componenihfand hence
V=V must lie in HG, the desired conclusion.

This completes the proof of Theorem B.

In fact, we have actually proved a bit more.

Theorem B': The kernel oV X BS, the composition of the curl and BieBavart operators, is
also the space of gradient vector fields which are orthogonal to the boundddy of

This follows, with no further argument, because the only way we used the hypothesis that
BS(V) =0 in this section was to s8tX BS(V) =0 on the left-hand side of the Maxwell equation

(5.27.

VI. PROOF OF THEOREM C
A. Statement and proof of Theorem C

Recall the statement:

Theorem C: The image of the BietSavart operator is a proper subspace of the image of
curl, whose orthogonal projection into the subspace of “fluxless knots” is one-to-one

This will follow immediately from Theorems B and’Bnd(borrowing from the futurgfrom
Theorem D.

Proof:
Keep in mind the Hodge decomposition,

VF(Q)=FKaHK& CGo» HG® GG. 6.1

We know from Theorem B that the kernel of the Biot—Savart operator BS is the subspace
HGaGG of VH().

We know from Theorem D that this operator is self-adjoint.

It follows that the image of BS lies within the orthogonal complement of its kernel, that is,
within the subspace FKHK® CG, which is precisely the image of curl.
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Alternatively, the formulaV xXA(V)=BS(V), which appeared as itert4) on our list of
Standard Information in Sec. Il A, also tells us that the image of BS lies within the image of curl.
Now it follows from Theorems B and Btogether that

ImageBS)N Ker(curl)={0}, (6.2

and since, by the Hodge Decomposition Theorem, the kernel of curl is EB®HG® GG, the
orthogonal projection of the image of BS into FK must be one-to-one.
From this it also follows that the image of the BS is a proper subspace of the image of curl.
This completes the proof of Theorem C.

B. Impossible magnetic fields

We are looking for smooth vector field$ on a compact, smoothly bounded domélnin
3-space, for which it is impossible to find a smooth vector fiéldn Q) satisfying the equation
U=BS(V). We will call such a fieldd an impossible magnetic field.

Of course, Eq(6.2) tells us that any nonzero vector field in HK® CG& HG® GG is an
impossible magnetic field.

But here is a more interesting example.

Consider the velocity vector field of a “speeding bullet,” as pictured beloysee Fig. 3.

We visualize the unit balf) in 3-space as a lead bullet sitting in a cartridge which has been
shot directly upwards from a rifled barrel, so that it spins as it moves forward. In cylindrical
coordinates, ¢, z, the velocity vector fieldJ is given by

U=rp+2. (6.3

Note that the first summandp lies in FK, while the second summaidies in CG.
Now look back to Example 1 in Sec. lll C. There we started with the vector Yiet& on the
unit ball  and computed its magnetic field within the ball,

FIG. 3. An impossible magnetic field on the unit bgll
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BS(V) =(1/3)r sinfp (spherical coordinates
=(1/3)re (cylindrical coordinates (6.9

So of coursgsettling back to cylindrical coordinatgs
BS(3V)=ro. (6.5

But this magnetic field on the unit ball “poisondJ as a candidate magnetic field, sindeand
BS(3V) have the same orthogonal projection into the space FK of fluxless knots. By Theorem C,
the vector fieldU cannot possibly be the Biot—Savart transform of any smooth vector fiefd.on

VIl. PROOF OF THEOREM D

It will be convenient to divide the statement and proof of Theorem D into three pieces, as
follows:

(1) The Biot—Savart operator BS:VR()— VF(Q) is bounded, and hence extends to a bounded
operator on thé.? completion,

BSVF(Q)—VF(Q);

(2) The operator BSF(Q)—;W(Q) is compact, that is, it takes the unit baIIW(Q) to a set
with compact closure iVF(Q);

(3) The operator BSF(Q)—AF(Q) is self-adjoint with respect to thie? inner product, that is,
(V1,BS(V,))=(BS(V,),V,), for all vector fieldsV, andV, in VE(Q).

A. A useful lemma

The proof that the Biot—Savart operator is bounded, as assert&dabove, will follow along
the lines of the usual Young's inequality proof that convolution operators are bounded; see
Folland?’ p. 9, or Zimmer*® Proposition B.3 on p. 10. We extract this proof as a lemma, so that
we can use it again in the proof of pd#).

Lemma 3: Let ¢(x) be a scalar-valued function with the property that

No(¢)=ma>9fﬂl¢(y—><)l d(vol,)

is finite, where the maximum is over all pointsR?. Then the operator F:VF(Q)—VF(Q)
defined by

T V)(y) = fQV(x) X (y—x) % d(vol,)

is a bounded map with respect to thé horm, and furthermore

[TV < Na(#)|VI.

Proof: Fix ye(). Then, using the Cauchy—Schwarz inequality,
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TmI= [ Voollay—xl dvoly
- | IVootaty =1 1{sy-37 dvoly
1/2 1/2
=[ [ Voorte—xl ol | [ a1 dol |
Q Q

1/2
=(Nq(¢)*™ J;)Id’(y—x)l IV(x)[? d(V0|x)) - (7.1

We square both sides, integrate and use Fubini’'s theorem to get

L)|'|'¢(V)(Y)|2 d(V0|y)<Nn(<15)LJ{)lqﬁ(y—X)HV(XH2 d(vol,) d(voly)

~No(a) [ V0oP| [ o= duvol avoly
SNQ(¢)2JQ|V(X)|2 d(vol,). (7.2
Taking square roots, we get
ITs(V)] < Na(a)|V], (7.3

and conclude that , is a bounded operator whose norm is at még(¢), as claimed.

B. Proof of (1)

Define theoptical sizeof (), written OS()), to be the number

0S0)= ma>g,J91/|y—x|2 d(voly), (7.4

where the maximum is taken over all points R®. The integral just above can be taken as a
measure of the effort required to optically scan the donfafinom the locationy; the optical size
of Q) is the maximum effort required to scan it from any location.

Then, in the language of Lemma 3,

BS(V)(y) = (1/4m) fQV(x>><(y—x>/|y—x|3 d(voly)

=Ty, (VY), (7.9
where
boly—x)=(1/4m)(Ly—x|?). (7.6)
The lemma yields immediately that, fote VF(()),
[BS(V)| < (1/4m)0S( Q)| V], (7.7)

and we conclude that BS:VE()— VF((}) is a bounded operator.
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_Now let W(Q) denote thd_? completion of the space \(R); we will refer to the elements
of VF(Q) asL? vector fields
Then we can, and do, extend the Biot—Savart operator to a bounded operator,

BSVF(Q)—VF(Q), (7.8

with the same bound as above.
This completes the proof of paft).

C. Proof of (2)

To prove that the Biot—Savart operator is compact, we use two standard facts from functional
analysis. First is the fact that for any compact dom@inif ¢(x) is continuous orR®, then the
integral operator

(Tyf)(y)= L)</><y—x>f(x> d(vol,) 7.9

defines a compact operator A(Q)); see Zimmef® Theorem 3.1.5 on p. 53. It is stated there
only for operators on scalar-valued functions, but the extension to vector-valued ones, using the
definition given in Lemma 9.3, is trivial.

Second is the fact that the norm-limit of compact operators is compact; see Zffhbeenma

3.1.3 on p. 52.
Now let
N2/47 if |x|<1IN
INI= anix® it x=1N. (7.10
Note that¢y is a continuous function, and that
NQ(¢0_¢N):ma>&fQ|<Po(y_X) —on(y—x)| d(voly)
s(1/4«77)f ((1/1x|?)—N?) d(voly)
[x|<1IN
s(1/4«77)f| | (1/]x|?) d(vol,)=1/N. (7.1
X|<1/N

By the first functional analysis facT,d,N is a compact operator frofW(Q) to W(Q). By our
Lemma, we see that &5, converges in norm td, , the Biot—Savart operator, &—%. Using

the second functional analysis fact, we conclude thaVBg2)— VF(Q) is a compact operator.
This completes the proof of pa(®).

D. Proof of (3)

It is easy to see why the Biot—Savart operator is self-adjoint.
Suppose thaV; andV, are smooth vector fields defined éh Then
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(V1,BS(Vy))= Jnvl(Y) -BS(V)(y) d(voly)
:JQV1(Y)'{(1/477)J’QV2(X)><(y—X)/|y_X|3 d(voly) |d(voly)

= (1/4m) o QV1()/)><V2(X)~(y—X)/|y—X|3 d(vol,) d(voly)

=(1/4m) o QVz(X)XVl(Y)~(X—Y)/|X—Y|3 d(voly) d(voly)

=(V,,BS(V1)). (7.12

It is a straightforward exercise to check that these improper integrals are all convergent.

Thus BS:VFQ))—VF(Q)) is a self-adjoint operator, and therefore remains self-adjoint when
extended to thé.? completionVF(Q) of VF(Q).

Theorem D is proved.

APPENDIX: THE DECAY RATE OF A (V) AND BS(V) AT INFINITY

In item (9) in our list of standard information from Sec. Il A, we asserted that in general,
A(V) decays ate like 1/r and that BSY) decays ate like 1/r2. In the special case thiteK(Q),
we asserted that A{) decays ate like 1/r? and that BSY) decays ate like 1/r3.

We give the proofs here.

The defining formula for the vector potential,

AV)(y)=(1/4m) JQV(X)/|y—X| d(voly), (A1)

expresses an inverse first power law, with integration over a compact r@gitirfollows imme-
diately that A{V) decays at infinity at least as fast as.1/

When we say that A{) decays at infinity at least as faas 1f, we mean that the product
|A(V)(y)||y| has a finite upper bound dR®, and likewise for corresponding expressions used
below.

The Biot—Savart formula,

BS(V)(y)=(1/4m) L}V(x) X (y=x)/|ly=x* d(voly), (A2)

expresses an inverse square law, with integration over a compact r@gidwgain it follows
immediately that BS{) decays at infinity at least as fast as?1/
The proof of the faster decay rates whéa K({) will be divided into two lemmas.

Lemma 4: The following are equivalent:

(1) A(V) decays at infinity at least as fast a&?;
(2) BS(V) decays at infinity at least as fast a#3;
(3) JqoVd(vol)=0.

Proof:
It is an easy exercise to check that conditiohsand (2) each imply(3). For example, when
ly| is very large, we have
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IYIACV)(y)~ (1/4m) JQV(X) d(voly). (A3)

If the integral ofV is not zero, thery|?|A(V)(y)| certainly blows up ate. Thus condition(1)
implies condition(3), and likewise,(2) implies (3).
Suppose now that conditiof3) holds. Then,

YAV =(am) [ IyPVo0rly—x| dovoly
—(am) [ yIPv00lly x| dvol)—(am) [ [yvio) divoly

= (1/4m) fﬂ{(lyzlly—xb—lyl}wx) d(voly), (A4)

where the integral added on the right-hand side is zero thanks to con(jion
Now,

{(ylPly=xD=Iyly={Iyl/ly =X}yl =y —xI}-

The first factor on the right-hand side approaches §-as~ becaus«) is bounded. The second
factor on the right-hand side is|x|, and hence also bounded. Thus

{(yl#ly—=xD)—yl}

is bounded ay— .

Since [ o|V(x)|d(voly) is certainly bounded, it follows thay|?|A(V)(y)| is bounded, and
hence that AY) decays atc at least as fast asrf. Thus condition(3) implies condition(1), as
claimed.

Again suppose that conditio3) holds. Then

|y|3BS(V)(y)=(1/4J7T)L)V(X)><()/—X)|y|3/|y—><|3 d(voly)
=(1/4*7T)L}V(X)X(y—><)|y|3/|y—X|3 d(V0|x)_(1/477)fQV(X) Xy d(voly)

=(1/4m) fQV(X) X{((y=x)[yl*ly=xI*)—y} d(voly), (A5)

where again the integral added on the right-hand side is zero because of co8liti©antinuing,
{(y=2ly Py =xI%) =y ={y(ly*=ly=x[®ly= x>} = {xly[¥ly — x|}
Processing the first term on the right-hand side,
IyAyP=ly=xI®)ly=xP*={y/ly=x[} {lyl=ly=xI} {(yl?+Iylly=xI+]y=x[*)/ly—x?}.

The first factor on the right-hand side of this last equation is boundeg-a® becaus«) is
bounded. The second factor on the right-hand sidelig|, and hence is also bounded. The third
factor on the right-hand side approaches the value $§-as¢, and hence is also bounded. It
follows that

{y(lylP=ly—x[*1ly—x3
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is bounded ag— .
Now the term

{xlyl®ly—x[3}

is certainly bounded ag—c<, and so we conclude that

{((y=2)lyl¥y=x[*)—y}

is also bounded ag— . From this it follows that

lyI*BS(V)(y)

is bounded for ally, and hence that BS()(y) decays ate at least as fast asrf/ Thus condition
(3) implies condition(2).
This completes the proof of Lemma 4.

Lemma 5: [ oV(x)d(vol,) =0 for all V in FKeHK@®&HG$GG, but this relation determines a
codimension-three subspace GfG.

Proof:

We begin with the proof thaf,V(x)d(vol,)=0 for all VeFK&HK=K((}).

The argument will be coordinate-wise, so that we can deal with scalar-valued integrals instead
of vector-valued ones. So let us write the typical pointbfas x=(x;,X5,X3), and then write
V() = (V1(x),V2(x),V3(X)).

Then

V- (x:V)=(VXx1)-V+x1(V-V)=(VXxy)- V=V, (AB)

sinceV is divergence-free.
Hence,

fvl(x) d(volx)zf V- (x1V) d(volx)zf x;V-n d(area=0, (A7)
Q Q Q)

becauseV is tangent ta).
Of course the same argument holds YorandV;, so we conclude that

JQV(X) d(vol,)=0, (A8)

as claimed.
Now we prove thaf oV(x) d(vol,)=0 for all Ve HG&GG.
Write V=V ¢ with ¢ constant on each component 4.
We claim that

fv d(vol)=f Vo d(vol)zf en d(areq. (A9)
Q Q Q)

We see this as follows:
Let C be any constant vector. Then,

V-(¢C)=(Ve)-C+e(V-C)=(Ve)-C. (A10)

Hence
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( J Ve d(vol)) ~C=J (Ve)-C d(vol)
0 Q
= J V- (¢C) d(vol)
Q

=J (¢C)-n d(area
Q)

=( J on d(areg|-C. (A11)
Q)
Since this is true for all constant vectdfs we must have
f Vo d(vol)=J en d(areq, (A12)
Q )
as claimed.
Now suppose that
90 =090,U--- U, (A13)

is the decomposition af() into its connected components, and¢gtdenote the constant value of
the functione on the boundary componesf);. Then

fv d(vol)=f Vo d(vol)zf on d(area= >, (pif n darea=0, (Al4)
Q Q ) i Y

becausegn d(area) over any closed surface in 3-space is always zero.

This completes the proof thd,V(x) d(vol,)=0 for all Ve HG®GG.

The observation that this relation determines a codimension-three subspace of CG follows
directly from the fact that the three constant vector figlds§, andz are curly gradients, com-
pleting the proof of Lemma 5.

Clearly, Lemmas 4 and 5 imply the faster decay rates &f)A&nd BS{) whenVe K((),
completing our argument.
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