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Imbeddings and homology cobordisms of lens spaces 

SYLVAIN CAPPELL 1 and DANIEL RUBERMAN I 

In this paper we consider the existence of smooth or PL imbeddings of 
manifolds in Euclidean space with codimension one. The manifolds we treat are 
made from lens spaces (or homotopy lens spaces) by removing a disc or by taking 
a connected sum. (It is easy to see [R2] that a homotopy lens space must be 
punctured in order to imbed in Euclidean space of one higher dimension.) The 
results of [GL, R2] show that this problem reduces to the problem of finding a 
homology cobordism (i.e. one with the homology of a product) between two 
homotopy lens spaces. It is shown in [R2] that for (linear) lens spaces L with 
:~(L)  of prime power order,  the existence of such a homology cobordism implies 
the existence of an s-cobordism, and hence that a lens space L imbeds punctured 
if and only if L admits an automorphism satisfying certain conditions. It is 
straightforward to explicitly describe all such lens spaces. Further,  the connected 
sum of two such lens spaces imbeds if and only if they are diffeomorphic. Hence 
in both problems, the homology cobordism may be taken to be a product. 

The present paper will demonstrate that the situation changes when the order 
of n l (L)  is divisible by more than one prime and when L is allowed to be a 
homotopy lens space. The invariants used in [R2] as obstructions to imbedding 
were equivariant signatures associated to coverings of prime-power degree; in the 
general case considered here they do not characterise a homotopy lens space, 
even up to h-cobordism. Nevertheless, we show that in dimensions greater than 
three, the signature invariants used in JR2] do determine a homotopy lens space 
up to homology cobordism within its normal cobordism class. Hence only a small 
portion of the invariants used in [W1] to classify homotopy lens spaces comes into 
play; in particular Reidemeister torsion plays no role. This classification up to 
homology cobordism leads to necessary and sufficient conditions for punctured 
imbeddings and imbeddings of connected sums. 

The fact that only the invariants associated to prime-power coverings come 
into play has an analog in other parts of topology, most notably in the theory of 
transformation groups. In that context, Smith theory [B1] provides restrictions on 
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the homology of fixed-point sets of actions of finite groups. These homological 
restrictions often turn out to be (with some additional conditions) sufficient to 
construct actions with specified fixed-point set [J. W2]. So, as in Jones' converse 
to Smith theory [J], only prime-power restrictions arise. 

1. Definitions and notation 

The quotient of S 2k-1 by a [PL] free action of a cyclic group will be called a 
homotopy lens space; if the action is the restriction of a representation L is simply 
a lens space. For each L, fix a generator g of :r~(L) and an orientation of L. Let 
~p : Jr,(L)--> Za be a homomorphism taking g to 1; this gives an action of Zd on s 
Some multiple (say s) of this action bounds a free action of Zd on some manifold 
~,2k; examining the Za action on H~(ff') gives the multisignature Pa [W1]. We 
follow [W1] in regarding pd(L) as an element of the ring Q[X]/Z" where 
2" = ZdL~ X i, and g is a generator of Hom (Zd, Sl). We can thus view pd(L) as a 
function from ~ r l ( L ) - { e } ,  or as a polynomial Ed,~] O~X' well-defined up to 
addition of multiples of Z'. The numbers o, are 1Is times the eigenspace signatures 
of the action of Zd on Hk(l~'). If ~ j (L)  = Zd then pd(L) is denoted p(L)  in [W1]. 

If d i n  and the homomorphism ~p factors through the obvious surjection 
Z,---*Zd, then the invariants tad and /9, are related by a formula due to 

~ n - - I  k Hirzebruch: If n = md and p,  is written as L,k=, okX,, then according to [HI, Pa 
will be given as m Ea-~j OkmX~. For M a closed manifold, Mo will denote the 
punctured manifold M-(open ball). 

1.1. DEFINITION.  Suppose M and M' are oriented manifolds. A homology 
cobordism from M to M' is an oriented cobordism ( W ; M , M ' )  with 
H , ( W ;  M) = H , ( W ,  M')  = O. 

The obstructions to homology cobordism and imbeddings which we discuss are 
equally valid in the three-dimensional case and in high dimensions. However  our 
positive results are valid (so far as we know) only in dimensions greater than 
three,  so that all lens spaces considered from now on will have dimension ->5. We 
have phrased our results in terms of PL manifolds and imbeddings; we will 
indicate at appropriate places the modifications necessary for the smooth case. 

2. Homology cobordisms and imbeddings 

2.1. LEMMA.  I f  (W 2k, L, L')  is a homology cobordism between the homo- 
topy lens space L and L ', there is a retraction r : W---> L whose restriction to L ' is a 
homotopy equivalence. 
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Proof. View L as the ( 2 k - 1 ) - s k e l e t o n  of K(Zn, 1). Using the fact that 
H~(W, L) = 0, it is easy to extend the inclusion of L in K(Z , ,  1) to a map of W to 
K(Z , ,  1). But W = L L) cells of dimension -< 2k - 1 so this map compresses (rel L) 
into the ( 2 k -  1)-skeleton of K(Z~, 1), i.e. into L. Since r is a retraction, it 
induces a surjection on homology,  so that the restriction of r to L '  is a surjection 
on homology and hence on :r~ as well. Since the lens spaces have the same 
homology groups, r .  is an isomorphism, so r must be a homotopy  equivalence. 

2.2. P R O P O S I T I O N .  Suppose L, L' are ( 2 k -  1)-dimensional oriented ho- 
motopy lens spaces. 

1. I f  L #  - L' imbeds in S 2k, then there is a homology cobordism (W; L, L ' ) .  
2. I f  Lo imbeds in S 2k then there is a homology cobordism from L to itself such 

that the induced homotopy equivalence r:L--~ L satisfies r . ( g ) =  g", where a is a 
unit in ~r l( L ) = Z ,  satisfying the conditions: 

a k = - l ( m o d n ) ,  ( a J - l , n ) = l  for j < k .  (* )  

3. I f  there is a homology cobordism as in (2) with fundamental group Zn, then 
L.  imbeds in S 2k. 

4. I f  Lo imbeds in S 2k and there is a homology cobordism from L to L' with 
fundamental group Z , ,  then L #  - L' (and hence L~) imbeds in S 2k. 

Proof. (1) and (2) are shown in [R2, theorem 6]; W is essentially a component  
of S 2~ - ( L #  - L ' )  or of S 2k - L0 x I. Suppose we have (W; L, L) as in (2). Glue 
L to itself via the identity map,  resulting in a homology S 1 x S 2k-1 by a 

Mayer -Vie tor i s  calculation. (The point is that the conditions (*) describe the 
induced map on the homology of L.) Surgery on an imbedded circle hitting L 
transversally in one point produces a homotopy S 2k, hence a PL sphere with L0 
imbedded in it. Finally let (W; L, L ' )  be a homology cobordism with ~ ( W )  
cyclic. Remove  an arc from L to L ' ,  and glue two copies along L6 to get a 
homology cobordism from L0 to itself. If  now L0 is imbedded in S 2~, split open 
S 2k along L0 and insert this new homology cobordism. The result is again S 2k now 

with L # -  L' imbedded.  

From (2) we get an easy restriction on what lens spaces could conceivably 

imbed in S 2k. 

2.3. C O R O L L A R Y .  If  Lo imbeds in S zk and :rl(L) = Zn then p > k for all 
prime factors p of n. In particular if 2 L n then Lo does not imbed in S zk. 

Proof. The above conditions are clearly necessary for there to be an element  

of order  exactly k in Z*. 
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Proposition 2.2 reduces the imbedding problem to the question of finding a 
homology cobordism whose induced retraction acts in a given way on Jrl(L). It is 
not hard to find obstructions to homology cobordism of homotopy lens spaces; 
because we are primarily interested in the application to the imbedding problem 
we restrict to the case when ~rl is of odd order. By Corollary 2.3 this does not lose 
any generality. 

2.4. PROPOSITION.  Suppose (W; L, L') & a homology cobordism with 
r : L'---~ L the induced homotopy equivalence. 

1. r is normally cobordant [B2] to idL. 
2. For all prime powers d dividing the order of  Jrl(L), pj (L ' ) (X)  = pd(L)(x~). 

Proof. The first part is shown in ([CS], p. 307); the point is that a homology 
equivalence between two spaces induces a bijection between their sets of stable 
bundles, hence the stable normal bundle of L • I comes from a bundle on W. So 
W itself provides the normal cobordism. Part (2) is shown in [R2] and depends on 
a Smith-theory argument of Gilmer [G1]. 

Our main theorem is the converse of this proposition. 

2.5. T H E O R E M .  Suppose k > 2, r:L---~ L' is a homotopy equivalence, and 
that 

1. r is (PL) normally cobordant to idL. 
2. For all prime powers d dividing n, pd(L')(X) = pd(L)(Xr). 

Then there is a PL homology cobordism W from L to L' whose induced homotopy 
equivalence is r, and with ~I (W)  = Z, .  

As an immediate consequence of Theorem 2.5 and Proposition 2.4 we get 
necessary and sufficient conditions for L0 c S 2k and for L # -  L ' c  S 2k. For the 
rest of this section we assume that k > 2. 

2.6. T H E O R E M .  Let L, L' be homotopy lens spaces with Jr 1 = Zn. 
1. L o c S  2k if and only if  there is an a 6 Z ,  such that a ~--= 1 (modn) ,  

(a j - 1, n) = 1 (j < k) for which the following hold: 
(a) p ( L ) ( g  a) =- p ( L ) ( z )  (mod Z). 
(b) pd(L) (z  a) = pd(L)(x)  for all prime-powers d dividing n. 
2. I f  Lo c S  2k, then L # - L '  c S 2~ if and only if  there is an orientation 

preserving homotopy equivalence r : L---~ L ' with: 
(a) p ( L ) ( z  ~) =- p (L ' ) (Z )  (mod Z). 
(b) pd(L)(x  a) = pd(L')(X) for all prime-powers d dividing n. 
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Proof. This follows directly from parts 3 and 4 of Proposition 2.2 and the 
above theorem. 

To prove Theorem 2.5, we use the homology surgery of Cappell-Shaneson 
[CS]. Suppose f : W zk ---, L x 1 is a normal map such that 3 W  = L' U L, f I L'  = r, 
and f I L = idl.  Then an element o ( f )  e F~,(Z[Z,,]---~ Z) is defined which is the 
obstruction to doing surgery on W to make f into a homology equivalence. The 
obstruction group is not even finitely generated; what makes o ( f )  computable is 
the fact that f [  3W is a homotopy equivalence. This implies that o ( f )  is in the 
image of the natural map from L2hk(Z[Zn]). So to prove Theorem 2.5 we need to 
compute (enough of) F~k(Z[Zn]---, Z) to detect the image of Lh , (z [z , ] ) .  For the 
computation of Fhk we use the work of J. Smith [$2] which interprets Fh, as the 
L-group of a certain localization of Z[Z~]. (Smith's work holds in more 
generality; in the case stated below, the result is due to Capell and Shaneson 
(unpublished). See [V] for related results.) 

2.7. DEFINITION.  Let e:Z[Z,,]----,Z be the augmentation, and set S =  
{q) [ e(~p)= 1} = 1 + ker (e). Define the localized ring A =S- IZ[Z , , ] .  

2.8. T H E O R E M  [S21. z)---- Lh2,(A). The map L~,(Z[Z.I)---, 
F2a,(Z[Zn]--~ Z)---* Lf , (A )  is induced by the localization map s : Z[Z,]---* A. 

The computation of L~k(A) reduces, via the Ranicki-Rothenberg sequence 

[RI] 

--~ H'(Z2; /(o(A))---~ L~,(A)---* L~k(A)--~ 

to understanding LPk(A), l(o(A), and the maps from L~k(Z[Z,]) and /(,,(Z[Z,]). 
We summarise the computations in: 

2.9. T H E O R E M .  1. For all n,/(,,(A) = 0. In particular, LP(A) ~ Lh.(A). 
2. I f  x c LPk(Z[Z,]) has pa(x) = 0 for all prime-powers d dividing n, and has 

A f t ( x )  = 0 i l k  is odd, or signature (x) = 0 i l k  is even, then s . ( x ) =  0 in LP~(A). 

We will prove this in the next section, but first we deduce Theorem 2.5 from 

it. 

Proof o f  Theorem 2. 5. Let f : W ~ L • 1 be a normal cobordism of the given 
homotopy equivalence r to idL. Since r (and idz.) is a homotopy equivalence, 
there is an obstruction a ( f )  ~ Lhk(Z[Z,]) to doing surgery on W (rel 3) to make it 
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into an h-cobordism; we would like to know that s , ( o ( f ) ) ~  Lh2k(A) is trivial. 
Note that in the PL case we can kill the simply connected surgery obstruction 
(the signature of Arf invariant, depending on the dimension) by taking the 
connected sum with a standard surgery problem. This is the only part of the 
argument where the PL case differs from the smooth one. The localization map 
Z[Z~]---~ A induces a map between Ranicki-Rothenberg sequences: 

~- H'(Z2; Ko(Z[Z.])). , L~k(Z[Z.]) , L~(Z[Z. ] )  

1 l 
HI(Z~; L,(A)) �9 L~,(A) , C~,(A) 

By assumption, pd(o( f ) )= 0 for all prime-powers d, so by 2.9(2) s , ( o ( f ) ) =  0 
in L~k(A). Since /(0(A) is trivial, Lh,(A)-is isomorphic to LP,(A). Hence 
s , (o ( f ) )  = 0 and the theory of [CS] provides a homology cobordism from L' to 
L. 

2.10. C O R O L L A R Y .  If  L' is homology-cobordant to L 2k-1 there is a 
(k - 1)-connected homology cobordism from L' to L. 

Proof. If L'  is homology cobordant to L the prime-power multisignatures Pa 
are all equal. The homology cobordism provided by Theorem 2.5 can be taken to 
be (k - 1)-connected, by performing preliminary low-dimensional surgeries. 

3. Algebraic computations 

The idea behind our computation is that (roughly speaking) the ring Z[Z~] 
splits up as a product of rings according to the various factors of n. Upon passing 
to the localized ring A, the rings associated to composite factors of n become 
trivial, while those associated to prime-powers remain. The tools which are used 
in carrying out this idea are the Mayer-Vietoris sequences in K- and L-theory 
due to Milnor [M2] and Ranicki [Ri] respectively. We remind the reader that a 
diagram of rings 

RI ~ R2 

l 1 
R3 �9 R4 
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is cartesian if the associated sequence of the additive groups 
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O----~ R1---~ R 2 ~) l~ 3----~ R 4---~ O 

is exact. 
By definition the multiplicative set which we invert to obtain A is S = 

1 + ker (E) = 1 + (T - 1)Z[Z,]. Any other ring we will localize will be a quotient 
of Z[Z,] ,  and the multiplicative set will be simply the image of S. It is a standard 
exercise [A] to show that the localizations of the rings in a cartesian square still 
form a cartesian square. 

NOTATION.  We will denote the d th cyclotomic polynomial by ~d, SO that 
l-ldl, ~ d ( T ) =  T ' - 1 .  If 6d is a primitive dth-root of unity, then Z(~d)=  
Z[T, T-~]/~d(T).  We call d composite if d is divisible by more than one prime. 
Finally, we will write n as a product n = I] d, where the d's are powers of distinct 
primes. 

The key algebraic facts which distinguish prime-powers from composite 
numbers is the following well-known lemma (cf. [L]) and its corollary, which 
shows how (for n composite) a large portion of Z[Zn] gets killed upon 
localization. 

3.1. LEMMA.  @a(1) = 1 1 (d composite) 
L p (d =pr ,  p a prime). 

3.2. C O R O L L A R Y .  Let R = Z[T, T-L]/I where I is an ideal containing an 
element of  the form f ( T ) =  H @a(T) where all of the d's are composite. Let 
S = 1 + (T - 1)R, then S-~R is trivial. 

Proof. f (1 )  = 1] q~a(1) = 1 by the lemma, hence ( T -  1) I ( f ( T ) -  1), i.e. 
f ( T )  ~ S. But f ( T )  ~ 1, so 0 c S. This forces S-IR  to be trivial [A]. 

The first step is to split up the ring Z[Z,]  into pieces corresponding to the 
factorization of T " - 1  into a product of cyclotomic factors, where we group 
separately the polynomials corresponding to composite and prime-power factors 
of n. The result is summarized in the following lemma, whose proof we omit. 
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3.3. LEMMA. Let (~comp be the polynomial 

I-I 
rln 

r composite 

I f  d denotes the power o f  a prime d in n, then there is a cartesian square: 

Z [ Z n ]  ) Z [ T ~  T--1ll(Dcomp 

1 1 
11. z I Z . l  , II, z 

The map from Z[Zn] to H Z[Za] is given by the obvious projections, and the map 
from II Z[Za] to II Z is given by the product of the augmentations. 

Hence to localize Z[Z,] ,  we must determine the localization of each piece in 
the above cartesian square. According to Lemma 3.2, the 'composite piece' 
becomes zero when we invert the elements in S, so it suffices to understand what 
happens to the ring Z[Za]. 

3.4. LEMMA. For d a power o f  the prime p, there is a cartesian square 

S - l Z [ Z ~ ]  , Z 

Z~o~[Z~] �9 Zq,~ 

Proof. First we need to construct the left-hand vertical map; the horizontal 
maps are given by augmentations and the map Z---, Z(p) is the obvious inclusion. 
To construct the map S-IZ[Za]---> Z(p)[Za], we need to show that if g c Z[Za] has 
6(g) = 0, then 1 + g is invertible in Zr (Here E denotes the augmentation.) 
To see this, note first that a polynomial in Z[Za] is invertible in Z~p)[Za] if and 
only if it is invertible in Zp[Za]. But it is easy to verify that if c ( g ) =  0, then 
ga=-O(modp) ,  so that l + g  is invertible (modp).  Hence we can define the 
desired map as f /g-- ->f ,  g-1. 

To prove that the square is cartesian, we must verify that any h e Z(p)[Zd] 
with integral augmentation �9 may be written as a quotient f / g  for f, g e Z[Za] 
with � 9  1. We may write such an h in the form E (ai/m)x i, where 

a,-= 0 (mod m), and m and p are relatively prime. Choose an integer u with 
d �9 u ---- 1 (mod m), then working modulo integral terms: 

d--1 " d-- I  

( l  i~_ o aixi)(u i=O ~ xi + l - d " u)  =--u " �9  c z" 

Since � 9  x ~) = d, the second term has �9 = 1, and so the proof of the lemma is 
completed. 
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Putting together Lemmas 3.2 and 3.4, we obtain the desired splitting of the 
localized ring A: 

3.5. LEMMA.  There is a cartesian square: 

A ~ Z 

H,, Z~,,~[Za] , lip Z(,,~ 

We are now able to verify the first part of Theorem 2.9. 

Proof  o f  2. 9(1). According to Milnor [M2], the square in Lemma 3.5 yields an 
exact sequence in (reduced) K-theory: 

KI(Z) /(l~(Z) 

--~ Ki [ [  Z ( n  ) ~ �9 
K~(Ht, Ztt,)lZal) p Ko(llpZ~v~lZal) p 

Since Z(t,) is a local ring, K~(Zlp))=units  of Z(p), and so the 
map Kl(llr, Zo)[Za])--~ Kt(llp Z(t,)) is a surjection. Therefore it suffices to show 
that/(0(Z(p)[Za]) -- O. 

But Z(p)[Z,~ ] fits into its Rim diagram [M2] 

l l 
Z ( p )  - -  " Z p  

Both Z(p) and Z(p)(~a) are local rings (for the latter, see e.g. [SI]), and so have 
vanishing /(o-groups. K~(Z(n)) evidently surjects onto K~(Z~,), so the Mayer -  
Vietoris sequence shows the vanishing of/(~,(Z~n)[Zd]) as well. 

The second part of 2.9 follows in a similar manner. 

Proof  o f  2.9(2). Since all the /(0-groups vanish, the square in Lemma 3.5 
yields a Mayer-Vietoris  sequence [R1,w in U'- theory (remember that 
0 = ~ n  L~k+,(Z(n))): 

() , Lt~k(A) , L~k(Z) @ O LSk(Z~,,)[Z,,]) , O LSk(Zc,,,) , 0 
P P 

T T 

L~k(Z[Z,]) , L~k(Z) @ @ L~(Z[Z,,]). 
P 
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The bot tom square commutes ,  where o represents the simply-connected surgery 
obstruction, either signature or Arf-invariant.  Hence if an element x 6 LPk(Z[Z,]) 
has all the signatures pa(x) = 0 and o(x)  = 0, it will go to zero in L~k(A). 

4. Computations and applications 

The criteria of Theo rem  2.6 for existence of homology cobordisms lead to new 
examples of imbeddings of punctured lens spaces. 

E X A M P L E .  Let L 2k- l  be a lens space with an imbedding of L.  in S 2k, for 
example one of the fibered imbeddings constructed in [R2]. Let x E L~k(Z[Z,]) 
with multisignature p ( x ) = 4 ( X  + (--1)kx-~), and let L '  be the homotopy  lens 
space obtained as the boundary of a normal cobordism from L whose surgery 
obstruction is the element  x [W1]. p ( L ' ) =  p ( L ) +  p(x) ,  and it follows that L '  
cannot be h-cobordant  to L. Likewise, pa(L')  = pa(L) + pa(x), and we compute:  

4. l .  L E M M A .  pd(X) = O for all d in, d-~n.  

Proof. In general,  f rom [H], we have that if p(x)  = ~7s arx r, then pa(x) = 
d - I  k m ~k=0 ak,,Xa (m = n/d) .  In our case, then, pa(x) is evidently 0 for all d 4: n. 

4.2. T H E O R E M .  There is a homotopy lens space L' for which L[j imbeds in 
S 2k, but does not imbed as the fiber of  a fibered knot. 

Proof. Take L in the example above to be L(n; 1, c . . . . .  Ck-I), where c 
sat isfes the condition (*) of [R2], and where n is composite.  Perform the 
construction indicated to get the homotopy  lens space L ' .  By construction, L '  is 
normally cobordant  to L, so by the calculation above and Theorem 2.5, L '  is 
homology cobordant  to L and hence it too imbeds in S 2k. However  it cannot 

imbed punctured in a fibered manner.  For  let f : L ' - - ~  L'  be the monodromy of 
the fibration; it induces a homotopy  equivalence g from L to itself whose mapping 
torus is a homology S 1 • S 2k-~. But it is easy to see that this implies that g ,  must 
be multiplication by c j for some j < k. Since .f is a homeomorphism,  

p ( L ' ) ( X )  = p ( L ' ) ( f  , (X ) )  

p ( L ) ( x )  + p(x )  = p (L ) ( ' g , ( x ) )  + g , ( x )  

= p ( L ) ( z )  + f , ( x )  
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since g is in fact realized by a homeomorphism. Therefore,  x = f , ( x ) ,  which is 
clearly not so. 

Similar examples presumably arise from 2-torsion elements of Lzhk(Z[Z,]). 
Such elements abound, e.g. the torsion subgroup of L2hk(Z[Z15]) has an extra Z~ 
coming from /~0 [KM]. To get examples of lens spaces which do not imbed 
punctured in this way we need such elements which are not invariant under 
appropriate automorphisms of :rl. 

Our criteria for homology cobordism and imbeddings, while complete in 
principle, have two unfortunate aspects. One concerns our original motivation for 
this w o r k - t h e  imbedding question for linear lens spaces. The homotopy lens 
space constructed in Theorem 4.2 is not a linear lens space, and it is not clear how 
to carry out such a construction to get a linear lens space. In fact, extensive 
computer  calculations done on the CYBER computer at Courant have found that 
for lens linear spaces of dimension 5 or 7, and n = product of -<4 primes from the 
list 7, 13, 19, 31 (respectively 5, 13, 17, 37), L0 c S 6 ( c S  8, respectively) if and only 
if Lo imbeds fibered, and that the connected sum of two such lens spaces imbeds 
if and only if the two are diffeomorphic. On the other hand there are examples 
[GL] of non-diffeomorphic 3-dimensional lens spaces which satisfy the criteria for 
L # L '  to imbed in S 4. However,  recent work of Fintushel-Stern [FS] on 
Yang-Mills theory indicates that L is smoothly homology cobordant to L'  if and 
only if L = L'.  (This has been extended to more general 3-manifolds [M1, R3].) It 
is not clear whether or not our theorem extends to give topological imbeddings, 
because homology surgery does not work in general in dimension 4 [CG], even 
topologically. 

The other aspect is that the criteria for homology cobordism are not 
completely independent.  It is known [W1] that the class of p(L) m o d Z  is a 
normal cobordism invariant, and it is easy to verify that the same is true for all 
the pa(L). So the condition that pa(L)= pa(L') for d = p r  already places some 
restriction on the normal cobordism class of L' .  In fact in low dimensions, the 
condition about normal cobordism in Theorem 2.5 is superfluous. 

4.3. T H E O R E M .  If  r:L'---~L is homotopy equivalence of  5-dimensional 
homotopy lens spaces, and pa( L )( x r) = pd( L')(X) for all prime-powers d dividing 
n, then r is normally cobordant to idc. 

Proof. We follow the determination of normal cobordism classes of maps into 
L as given in [W1]. By the computation on p. 208, there are n normal cobordism 
classes in [LS, G/PL] for each homotopy type. Hence it suffices to find, for each 
lens space L 3, n homotopy lens spaces L~, with Li ~- Lj, but with pa(Li) - pa(Lj) 
not integral for some prime-power d dividing n. 
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CLAIM. (See below for proof.)  Let L 3 be a 3-dimensional lens space, and 
0 - j - n .  Then there is a 5-dimensional homotopy lens space L / with p(L~)= 
p(~ L) + 4j(x + X-')(1 + X)/(1/X). 

(Lj is constructed as a sort of suspension of L.) 
Using the formula of Hirzebruch [H], we compute that for n = md, 

d - I  

pa(Lj) - pa(L~) = 16 (m/n ) ( j  - i) ~, lxta. 
/=1 

If j =/= i (mod n), then we can choose a prime p with (j - i, p)  = 1, and let d = the 
largest power of p dividing n. It then follows from the above formula that 
pd(Lj) -- pd(L~) is not integral. Therefore ,  {Pal} determines the normal invariant. 

Proof  o f  claim. Let xj be a hermitian form with multisignature p ( x j ) =  
4j(x  + X-l),  and let (W 4, L~, L) be a normal cobordism which realizes x i. (Lj will 
be Z[Z,]-homology equivalent to L.) If Lj were S3/Z , ,  we could suspend the Z ,  
action on S 3 to get a Z ,  action on S 5 with p as desired. It is unlikely that/~j is S 3, 
(in fact it can't be for n = 3 k by [R4]), but we can still 'suspend' the action as 
follows: 

Let  E---~ Lj be the D2-bundle with Euler  class Poincare dual to the generator 
of ~q(Lj) corresponding to a fixed generator of ;q(L) .  Note that aE  = S t x / , j  is 
Z[Z,] -homology equivalent to S 1 x S 3. We would like to make c~E the boundary 
of a homotopy circle; the only obstruction to doing this is the #-invariant of Lj. 
But since n is odd, we can arrange that #(/~j) be zero by connected summing Lj 
with a homology sphere; this evidently doesn't  affect the p-invariant. Hence 
aE  = aV 5, where V---S 1. 

Let L 5 = E U V; it follows that L~ is a homotopy lens space. By crossing the 
whole construction with CP 2, one can show that the p-invariant of L~ is exactly 
that of a suspension, or in other words 

= p(L )(1 + X) / ( ;  + X- ' )  

which is equivalent to the claimed formula. 

Remark.  The proof  just given can be used instead of the argument given on 
pp. 213-214 of [W1] to construct all normal cobordism classes of 5-dimensional 
homotopy lens spaces. 

A final question raised by these investigations is whether a knot constructed as 
the boundary of an imbedded punctured homotopy lens space is determined by its 
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complement.  Recall that there are at most two knots with a given complement,  
and that these differ by a 'Gluck twist' around the knot [G2, K]. All linear lens 
spaces admit S~-actions with codimension-two fixed point sets. This implies that a 
knot which has a punctured lens space for a Seifert surface is determined by its 
complement.  For one can concentrate the Gluck twist to be non-trivial on 
K •  l where K=c~Lo and K x l c L o •  and use the circle 
action on Lo to extend the twist. 

In fact the same is true if the Seifert surface is just a punctured homotopy lens 
space. To see this, note that if L is a homotopy lens space, there is a linear lens 
space L'  and a homotopy equivalence f : L - - ~ L ' .  Conjugating the self- 
diffeomorphism of L~ • I just described by the homotopy equivalence f, we 
obtain a self-homotopy inverse F on L0 • I which extends the Gluck twist on 
3Lo • 1. It is easy to see that F will be in fact a simple homotopy equivalence, and 
that we can arrange that F be the identity on L~• al. If now L0 is a Seifert 
surface for a knot, F extends by the identity to give a simple homotopy 
equivalence of the knot complement to itself which extends the Gluck twist on 
the boundary of the tubular neighborhood of the knot. The surgery argument in 
[C] now shows that this simple homotopy equivalence may be replaced by a PL 
homeomorphism, so that the knot is determined by its complement.  
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