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Singular spaces, characteristic classes,
and intersection homology

By Syrvain E. CappeLr' and Jurius L. SHANESON |

Introduction

This paper begins a series in which we try to understand the relation
between the local and global topological structure of stratified spaces. Here the
global topological invariant to be studied will be the L-classes

Li(X) = Hi(X;Q)>

X a stratified pseudomanifold with even-codimension strata. For manifolds,
these characteristic classes are the Poincaré duals of the Hirzebruch polynomials
in the Pontrjagin classes; Goresky-MacPherson extended the definition to strati-
fied spaces with even-codimension strata using intersection homology [GM1].
Cheeger [Ch] defined L-classes analytically using his development of L2-
cohomology theory of singular Riemannian spaces. See also [S], [CSW]. The
importance of these classes is illustrated by the famous theorem of Browder and
Novikov: The homeomorphism type of a compact simply connected manifold of
dimension at least five is determined by its homotopy type and its L-classes, up
to a finite number of possibilities. (For 4-manifolds, the homotopy type alone
suffices [F].) By recent work of Cappell-Weinberger (see [We]), similar results
hold for stratified spaces with simply connected even-codimension strata and
simply connected links, with respect to isovariant homotopy type and L-classes
of the space and its strata.

The study of L-classes will take place in the context of a stratified
pseudomanifold X" of real dimension n, embedded, say piecewise linearly, in a
manifold M™ of dimension m = n + 2. For example X might be a hypersurface
in a projective complex algebraic variety. For X a smoothly or PL locally flatly
embedded submanifold, the L-classes are given by the classical formula

L(X) = [X] ni*£(P(M) U (1 +x2) ),

-2 the total Hirzebruch L-polynomial, P(M) € H*(M) the total Pontrjagin class
of M, i the inclusion, and y the Poincaré dual of i, [X].

'Both authors partially supported by NSF Grants, and S.E.C. by a J. S. Guggenheim
Fellowship.
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In general, we assume given a stratification of the pair (M, X) (see §1), with
only even-codimension strata. Let 7 be the collection of components of singular
strata of the induced stratification of X.

Tueorem (see (6.2)). Assume each V € 7 is simply connected. Then

L(X) = [X] ni*Z(P(M) U (1 +x?) ) - Zyo(%v)(iV*L(‘_/)).

In this theorem iy is the inclusion of the closure V of the stratum V € 7,
and o(®B) is a signature invariant associated to the link pair of V. Specifically
B, is a (—1)°" Lsymmetric Hermitian torsion linking form, with values in
Q(t) /Qlt, t~ '] (the rational functions modulo the Laurent polynomials), on the
intersection homology group with local coefficients IH™ (G;Q[t, ¢ ']). Here
(G, F) is the link pair of a top simplex of V, dim G = 2¢ — 1, and the local
system on G — F is determined by a — t""® o € 7 (G — F) and I(F, @) the
linking number. The integer o(B,) is the signature of the form T o B,

T:Q(t)/Q[t,t7'] - Q
an appropriate (Trotter) trace (see §6). A mild condition, guaranteeing finite
dimensionality and always satisfied for varieties, is needed for this signature to
be defined and hence for the formula of the theorem to make sense; see §2. If
(G, F) happens to be a smooth knot pair, this signature is just the usual
signature of the intersection pairing on a Seifert surface.

When the strata are not simply connected, the terms in the sum must be
replaced by the twisted L-class associated to a local system of +symmetric
forms, as in (6.1) below. In some cases this can be decomposed as a product of a
characteristic class measuring twisting (cf. [At]), and the L-class of the stratum
(see §6).

In the final section, we illustrate this theorem by calculating the L-class and
in particular the signature (= L (X)) for some simple singular hypersurfaces in
projective space.

Non-locally smoothable embeddings in real codimension two also arise in
the following topological context: Let ¢* be a vector bundle over the manifold
N", with total space E(¢) and fiber R¥.

Tueorem [CS2,4]. Suppose that & is fiber-homotopy equivalent to the
Whitney sum of an oriented 2-plane bundle and a trivial bundle. Then there
exists a piecewise linear regular neighborhood W"*? of N and a PL. homeomor-
phism of pairs

(E(£),3(N)) = (W X R*"2, N x {0}),
B(N) the zero-section.
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In this situation i*P(W) = P(N) U P(£); hence the above formula (or (6.1)
selow) can be rewritten in the form

P(£) = (1 + i*x2)|1 + P7'(N) UJ{DZVU(%V)(iV*L(‘_/))}],

.or with twisted L-classes for non-simply connected strata) where D is Poincaré
duality and .# satisfies

x =°Zn(°/l(xl)’ Lo(x1,%5), - L3y, 1,),

where we ascume the stratification of (W, N) satisfies the hypothesis. Note that
for some integer ¢, the g-fold Whitney of sum ¢ with itself will be fiber
homotopy trivial. Note also that in the special case ¢ = stable normal bundle of
N, the formula of (6.2) becomes the formula

L(N) = = Ea(By) (i, L(V))
for the L-classes of the manifold N, or equivalently
P(N) = —j{DZO(%V)(iV*L(V))}.
v

These results raise (at least) the following questions:

1. Can W in the previous theorem be chosen so that the stratification of
(W, N) has only even-codimension strata?

2. If (or when) this is the case, is there a canonical choice for W and /or a

procedure to construct it explicitly from the geometry of N and ¢°?
There are many other situations in which codimension-two embeddings or
immersions of PL. manifolds arise with necessarily large singular (= non-locally
smooth) sets. These include embeddings of homotopy projective spaces and
homotopy lens spaces, immersions of homotopy products of spheres in Euclidean
space, etc. (see [CS2, 4, 5] [Ho]), and similar questions apply.

Although the main results on L-classes can be stated in terms of the PL
chain version of intersection homology of [GM1], our overall approach to
stratified spaces makes use of sheaf theory and the derived category [GM2], [Bo],
and we rely heavily on the basic material in these references. We also use some
foundational material on the category of perverse sheaves [BBD].

Note. We will always use the indexing conventions of [GM2].

We obtain our results as a consequence of the study of certain complexes of
sheaves that are naturally related to characteristic classes.

One of the basic features of intersection homology is that it satisfies
Poincaré duality over a field, e.g., Q or the function field Q(¢), but not in general
over rings, e.g., Z or Q[¢, ¢~ ']. Recall from [GS] that integral Poincaré duality for
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intersection homology theory does hold under the hypothesis that the links are
torsion free, at least in appropriate dimensions. We exhibit a duality (“superdu-
ality”) that holds at the opposite extreme—the intersection homology of the
links is all torsion. Perversities p and g will be said to be superdual

p(k) +q(k) =k — 1, k> 2.
(See (1.3) below concerning perversities with p(2) = 1.) Let R be a Dedekind
ring.

(3.2) Tueorem. Let Y™ be a stratified pseudomanifold, let & and M be
local systems over Y — % with coefficients in finitely generated R-modules, and
let p and q be superdual perversities. Suppose that if y € X, the stalks
H(IC(Y; M),) are torsion modules over R. Then a perfect pairing

L, M- Ry_s
and an orientation of Y over R induce a canonical isomorphism
IC,(Y;2) = R Hom(IC,(Y; ), Dy )[m ]
in the derived category D"(Y).

Of course, for trivial coeflicients the hypothesis is never satisfied, but for
non-trivial local systems this often happens. For example, in the case of Y a
sphere, % C Y a smooth knot, and R = Q[¢,t7'] = Qy, the induced pairing on
(co-)homology is the familiar Blanchfield pairing.

The (lower) middle and (upper) logarithmic perversities, m =
0,0,1,1,2,...) and [ = (1,2,2,3,3,4,...) are superdual. (Note that this differs
from the logarithmic perversity of [GM2].) Assume R has an involution a and,
in (3.2), an identification 2 = L°?, is given. The peripheral complex R} (L) is
defined by the distinguished triangle

IC,(Y; ) —> IG;(Y; Q)

(1]

Ry (%)
Then (3.2) implies a duality isomorphism
(1) Ry(2) = D(RY(L)[m + 1",

DA'= R Hom(A; D,) the Verdier dual of a complex of sheaves A". For m = 2n,
this induces a perfect (—1)"-Hermitian torsion pairing on hypercohomology,

A (YR (2)) @ # (Y Ry(2))” -5 F/R,
F the field of quotients of R.
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Now suppose that Y has only even-codimension strata, and let V be a
component of the open stratum of codimension 2¢. Let &Y be the local system
over the open stratum V with stalk at y the image of

IH™ (L,;R) - IH!_|(L,; ),

Yy’

L, the link of this stratum near y. Let
B, 6" e, (") > F/R

be the perfect pairing induced by superduality, as applied to L,. Then B,
induces

B, HT (V;6Y) @, IHT_(V;6")" > F/R.

Given morphisms
X' 5Y 57

in D”(Y) with v e u trivial, let C;, , = C,, be the algebraic mapping cylinder of
a lift «' of u to C[—1]. This will be well-defined when we assume
Hom (X, Z)[—1] = 0.

A complex R’ in the derived category D”(Y) supported on the singular set
of Y, with torsion stalks, and with a given duality isomorphism

R'= DR)[m + 1]

will be called a self-dual complex of torsion sheaves over Y. If Y'=R]
Z'= D(X)m + 1]°° (with respect to these duality isomorphisms), u =
D(v)m + 1]°°, X" has torsion stalks and is supported on the singular set, then
R; = C, , admits an obvious structure as a self-dual complex of torsion sheaves

as well. We then say that R is cobordant to Ry, if the latter is obtained from R’
by a series of such operations.

Tueorem (see (4.2) and (5.6)). Ry(R) is cobordant to the orthogonal sum
L 1CH(V; 8Y)[e(V)],
V4
7 the set of components of singular strata of Y. As a consequence, the pairings
B, and
LBy,
Ve
represent the same element in the Witt group #(F /R) of torsion pairings.

These results are consequences of a general splitting theorem, up to
cobordism, for an arbitrary self-dual perverse torsion sheaf; see (4.4) and (5.5).
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In applying these results to characteristic classes, we proceed as follows
(§§6,7): Let X € M be a stratified pseudomanifold, embedded in the smooth
manifold M. Let W be a closed regular neighborhood of X in M, and consider
the space

Y =W U,y c(dW)

obtained by attaching to W the cone on its boundary. Then Y has a stratification
with singular set

%, =X UN U ¢(dN),

N a proper submanifold dual to x(W, X) (§1), with a local system with stalks
Qlt,t7'] on Y — 3, given by linking number with X U — N. The element
represented by B, in a Witt group of torsion pairings can be calculated from
the intersection pairing on IH,™(Y; Q(t)) and vanishes in this case. Hence the
sum (m even)

LBy,
V

represents zero in this Witt group. By applying a generalized (Trotter) trace
(§6), taking signatures, and interpreting the results (§7), we obtain a signature
formula (7.0) that is the zero-dimensional case of our main result. Our main
result, (6.1), then follows essentially by the definition of L-classes (§6) in terms
of signatures.

In the final section we use our results to study the signature of non-locally
smooth knots and we give some calculations for a few hypersurfaces in projec-
tive space. In future papers, we will consider knot-theory-valued characteristic
classes, equivariant (Atiyah-Singer) characteristic classes for group actions on
stratified spaces, characteristic classes in generalized homology theories (e.g.,
G/TOP), etc., and special features of the algebraic case.

Some less general and precise forms of the present results were announced

in [CS6].

1. Stratifications and local systems

A stratification of a pair of paracompact Hausdorff (¥, X) spaces is a
filtration

c Ym. = Y

¢ = Y—l c YO c - Ym—2 = Ym—l
such that for each point y € Y, — Y,_ there exist a distinguished neighborhood

N, a compact Hausdorff pair (G, F), a filtration
6=G_,CcG,Cc - CG =G,

m—i—1
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and a homeomorphism

©: D' X ¢(G, F) - (N, NN X)
that carries D' X ¢(G;_},G;_; N F) onto (Y,,,Y,,, N X). Here ¢ denotes the
cone, and by convention c¢(¢) = {y}. If (¥, X) is a piecewise linear (PL) pair,
then such a stratification always exists, with Y;, ¢, etc. piecewise linear, and
refines the intrinsic stratification [A], [St]. Further, the pair (G, F) depends up to
PL homeomorphism only upon the component V of y in ¥, — Y,_,. Any loop in

13

V determines a PL. homeomorphism of (G, F), and if &# is any functor on the
category of PL pairs and PL. homeomorphisms to an algebraic category (groups,
modules, rings, bilinear forms, etc.), then (G, F) will be a local system of
objects in the category, over V. The pair (G, F) will be called the link pair of V,
written

(G, F) = (V).

In this paper it will generally be assumed that Y is an oriented connected
PL manifold of dimension m and that X is a compact connected oriented PL
pseudomanifold of dimension n; i.e., each (n — 1) simplex in a triangulation is a
face of exactly two n-simplices. It can always be assumed that

Y, ==Y, =Y, =X,

m—1 n+1
and, since S° € S™7! is always unknotted, that
Yn-l = Yn—2
also. We will call X a PL sub-pseudomanifold of Y, with the understanding that
any stratification of (Y, X) to be considered will satisfy these properties.

Suppose that m = n + 2 and that the fundamental class

[X] € H(X;Z)
maps trivially to H (Y). Then the map
a - I,
where [ denotes linking number, defines a homomorphism
(Y — X) = {t'li € Z}.

Hence the ring (Q = rational numbers)

A=Q[t,t7']

of Laurent polynomials becomes the coefficients of a local system over Y — X,
and hence, for any perversity p, the intersection chain complex

IC;(Y; A)
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is defined, as in [GM2]. (We have varied the notation slightly; in [GM2] this
would be denoted, suppressing the perversity, as IC;(2), & the local system
with coefficients in A just given.)

More generally, let N be a proper, locally flat, oriented submanifold of Y,
meeting X transversally [St], such that d[N], d an integer, represents the image
of [X] in the locally finite homology of H:(Y, &) of Y relative its ends. One
constructs such an N as the transverse inverse image of CP*~1' c CPk, k large,
under a map Y — CP* that pulls back the Chern class of the canonical complex
line bundle to a class &, with

déy = (Y, X) € HX(Y),

x(Y, X) the Poincaré dual of the image of [X] in H:(Y, ¢); every such N arises
in this way. (The image of (Y, X) in H?(X) is by definition the Euler class of a
regular neighborhood of X in ¥ [CS2].) Hence any such submanifold will be
called a dual submanifold (of multiplicity d) to (Y, X). The homomorphism

a — tl(X U—dN, a)

will then be defined for « € 7,(Y — X U N); let & denote the resulting local
system over Y — X U N with coeflicients in A. Then X UN is also a PL
sub-pseudomanifold of Y and IC(Y; £ ) is also defined.

Note. In general the definition of linking number will depend upon the
choice of a locally finite chain bounding X U —dN. It can be shown that
different choices will vary the linking number with a precisely by evaluation of
an element of H'(Y) on the image of @ in H,(Y). Thus for H'(Y) = 0, there is
no ambiguity. In general the ambiguity in the definition of &, will be
suppressed (but see (1.2)).

Obviously, we may take N = ¢ if and only if [ X] maps trivially into H (Y).
Then the following is clear:

(L.1) When N = ¢, IC(Y; £) = IC(Y; A).

For k sufficiently large, a map Y — CP* is determined up to homotopy by
the pull-back of the Chern class of the canonical line bundle. Standard transver-
sality arguments and linking number considerations then yield:

(1.2) Let N, i = 0,1, be dual submanifolds to x(Y, X), with én, = vy

Then there exists a proper submanifold P of Y X R, meeting X X R transver-
sally, with

PN(Yx{i})=Nx{i}, i=0,L1

Hence, after a possible change of 82\/1 by evaluation of an element of H'(Y),
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there is a (unique) local system 2, over Y X R — {(X X R) U P} with
8PI(Y - XUN,) x{i} = QN,
and
IC,(Y X R; £,)|Y X {i} = IC;(Y; 2y)

for i =0, 1.

(1.3) Note. In [GM1, 2] perversities always satisfy p(2) = 0. Here we will
also need to allow perversities p with p(2) =1 (and p(k + 1) = p(k) or
p(k) + 1). We may take as the definition of IC the Deligne construction: Let ¥

be a stratified pseudomanifold, let U, =Y — Y, _,, and let i,: U, = U, be
the inclusion. Suppose ¥ is a local system of R-modules over U,, R a ring. Set

IC;(Uy; 8) = &,
and inductively define
IC;(Upy )3 R) = 757®7"R(i}) , IC,(Uy; ).

This complex of sheaves satisfies the axioms [AX1] of [GM2] and is characterized
by these axioms in the derived category (compare Prop. 4.3 below). Alterna-
tively, IC(Y; &) can be defined as the complex of locally finite PL chains £
satisfying the admissibility conditions
dim(l¢lNY, ;) < dim & — k + p(k),
dim(|0¢l NY,_;) < dim 3¢ — k + p(k).
The key point in defining the boundary operator is that, in view of the
conditions, a principal face of a simplex of ¢ that lies in the singular set cannot

be contained in the support of d¢. Clearly (1.1) and (1.2) hold for this wider
notion of a perversity.

2. Knots and regular neighborhoods

Let X" be a PL sub-pseudomanifold of the PL manifold Y"*2, and suppose
that Y is an open PL regular neighborhood of X. By uniqueness of regular
neighborhoods, ,

Y =IntW,
where W is a compact PL manifold with boundary and a regular neighborhood
of X. Also W is unique up to PL. homeomorphism relative X. By definition the
Euler class of Y,

x(Y) = x(W) € H*(X),
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is the image of x(Y, X) under the map induced by inclusion. A dual submani-
fold to x(Y) will be defined as any dual submanifold N to x(Y, X) whose
closure N in W is a proper locally flat submanifold (with boundary) of (W, dW)
and a regular neighborhood of the PL pseudomanifold X N N.

(2.1) A dual submanifold N to x(Y) always exists. Further, given any two,
Ny and N, with £y = £, the submanifold P €Y X R of (1.2) relating them
can also be chosen to have as closure in W X R a proper submanifold with
boundary that is also a regular neighborhood of (X X R) N P.

The proof is essentially the same as the discussion of [CS2, p. 186 and
p. 189].

Definitions. A knot is a sub-pseudomanifold X" ¢ $"*2 of a sphere; it is
said to be of finite (homological) type if the homology groups H,(S"*2 — X; A)
with local coefficients in A are finite-dimensional over Q. A sub-pseudomanifold
X CY is said to be of finite local type if the link of each component of any
stratification is of finite type. It is an easy observation that a knot is of finite type
if and only if its k-fold suspension is; we leave it to the reader to use this to
show that a sub-pseudomanifold is of finite local type if and only if it has one
stratification with links of finite type. It is also not hard to see that the link pairs
of components of strata of a sub-pseudomanifold of finite local type also have
finite local type.

(2.2) Prorosiion. If the knot X C S"*? is algebraic or if X has the
rational homology of S", then the knot X C S"*? is of finite type. Hence if Y is a
neighborhood of a hypersurface, X, in a smooth complex algebraic variety or if X
is a rational homology manifold, then X C Y is of finite local type.

The assertion for algebraic knots follows from [M1, §4]. Recall that an
algebraic knot is just the intersection of a (possibly singular) hypersurface f~(0)
with small sphere about the origin, f: C* — C a complex polynomial. The result
for a rational homology sphere is proven in the same way as for smooth knots, as
in [L.2], for example.

Example. The standard smooth embedding S? X S ¢ §7*9*2 has comple-
ment homotopy equivalent to S' vV §7*! v §9%1 and hence does not have finite
type. The suspension of this embedding yields a sub-pseudomanifold of §7*¢+3
that is not of finite local type.

(2.3) Prorosition. Let Y"*? be a PL. manifold regular neighborhood of the
sub-pseudomanifold X" C Y, of finite local type. Let N be a dual submanifold to
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x(Y). Then the intersection homology groups
IHP(Y; 8y) = #7(Y;IC5(Y; £y))
are finite-dimensional over Q.

This result will be proven in conjunction with a similar statement for knots.

(2.4) ProrosiTion. Let X" C S™*2 be a knot that is of finite local type and
of finite type. Then the groups IHP(S"*2; A) are finite-dimensional over Q.

Proof of (2.3) and (2.4). First observe thatif n = —1,i.e, X = ¢,
P(Ql. = H(S!. — Q’ i=0
IHP(S'; A) = H(S'; A) {Q =0
Thus (2.4) holds for n = —1.

Now we prove (2.3) for n > 0, under the inductive hypothesis that (2.4)
holds for knots of dimensions — 1 through n — 1.

(2.3.1) LEmMa. X U N C Y has finite local type.

Assuming the lemma, let IC'= IC#(Y; {,). Let {Y} be a stratification of
(Y,XUN),leti<n,let y €Y, —Y,_,, and let (G, F) be the link pair of the
component of y in ¥, = Y;_;. Then £,|(G — F) = &,; and, as in [GM2, 2.4],

the stalk homology is given by
H-(1C", = IH? .. (G;A) %fi 2 (n+2) —p(n+2-i)
0 ifi<(n+2)—pn+2-i

But F C G = $""'" has finite type and finite local type. Hence H™(IC"),, is
finite-dimensional for y € X U N, whereas

H(IC)(Y = X UN) = y[n + 2].

It then follows from the spectral sequence for hypercohomology #* that,
modulo the class of finite-dimensional vector spaces,

IH?(Y;QN) H"+27i(Y;a!8N),

[N

a the inclusion of ¥ — X U N in Y. This may also be seen from the distin-
guished triangle (since a*IC'= Q,\[n + 2]

Ra,a*IC" — IC’
RB., B*IC

B the inclusion of X U N. However, standard arguments in regular neighbor-
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hood theory imply that Y — X U N has the structure of a product with R, and it
follows readily that

H" 27 {(Y; a,2y) = 0.
Finally, we prove (2.4) for a knot X" c S"*2, Let
. . n+2,
IC; = IC;(S"*%; A),
and consider the distinguished triangle
Ry y*IC; — IC;
AN
R&, 8*IC;

Here & is the inclusion of X and y of S"*? — X. Again, by the inductive
hypothesis the stalk homology of Ré,6*IC; is finite-dimensional for y € X;
hence so is its hypercohomology. Since X C $"*2 has finite type,

A8 Ry y*IC; ) = #7(S" 2 Ry, @[n + 2]) = H(S""% — X; A)
is also finite-dimensional. Hence, by the long exact sequence for hypercohomol-
ogy associated to a distinguished triangle,
IHP(S"*2;A) = #7 (8" % 1C;)
is also finite-dimensional over Q.

Proof of (2.3.1). Because N meets X transversely, there are stratifications
{Z,} of (Y, X) and {Y}} of (Y, X U N) with

Y,=Z,U(Z,,,NN).

Further, if

yeY, =Y, )NN=(Z,,-Z; ;) NN,
let (G,, F,) be the link pair in (¥, X) of the component of y in Z,,, — Z,,, (so
that G, = S"7~1). Then the link pair (G, F) in (Y, X U N) of the component of
y in Y, — Y,_, is given as

S*Tl=G=8"+G, D (S'*F)UG, =F,
where A * B denotes the join of A and B. It follows that

G —F=S8'X(c°G, — ¢°F,) = S' X (G, — F,) X R,

where ¢® = open cone. Moreover, £ [(G — F) = & is given by linking num-

bers with F, on (G, — F)) (i.e., &, for the pair (G, F,)) and on S by sending a
generator of 7 ,(S') to t¢ € A, d the multiplicity of the dual submanifold N.
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Hence
H/(G - FiA) = 1(C:Q),

C the d-fold cyclic covering of G, — F, corresponding to linking numbers with
F, reduced modulo d. But G, — F, has the homotopy type of the finite complex
G, — Int N(F,); hence these groups are finite-dimensional.

Points in X — X N N have the same link pairs in (¥, X) and in (Y, X U N),
hence these are also of finite type. Finally, the link pair at any point in
N — X N N will be (§*, ¢), also of finite type.

(2.5) Prorosition. Let X C Y have finite local type, and let P be, as in
(2.1), a submanifold of Y X R relating two dual submanifolds to x(Y), and let
L, be as in (1.2). Then

IH(Y X R; &,)
is finite-dimensional over Q, for all i.

The proof of (2.5) is left to the reader.

3. Superduality

Let R be a Dedekind ring. Let Y be a stratified pseudomanifold of
dimension m, with singular set % =Y, ,. Let & and It be systems over
Y — 3 of local coefficients in finitely generated modules over R. A pairing

Le, M- Ry_«
is called perfect if the induced map
L — Hom z(M, Ry_y)
is an isomorphism.

(3.1) Example. Let Y be a PL manifold, let X" CY, m = n + 2, be a PL
sub-pseudomanifold, and let N be a dual submanifold to x(Y). For any complex
of sheaves A" over A, let (A)°® be obtained by composing all module structures
with the involution f(¢) — f(t'). Then a perfect (Hermitian) pairing

LY Ly =2 Ay _xuw
is determined by the pairing

(f(1). (1)) = f(t71)g(t)
on the stalk over a basepoint.
Two perversities p and g will be called superdual if

p(k) +q(k) =k -1, k=2
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See (1.3) above concerning perversities with p(2) = 1. Dy = D(R,) will denote
the Verdier dualizing complex over R, so that, in the derived category,
D(A) = R Hom(A', D;).

(3.2) Tueorem. Let Y™ be a stratified pseudomanifold, let & and M be
local systems over Y — 3, with coefficients in finitely generated R-modules, and
let p and q be superdual perversities. Suppose that if y € 3, the stalks
H'(IC,(Y; IN),) are torsion modules over R. Then a perfect pairing

L®, M- Ry_
and an orientation of Y over R induce a canonical isomorphism
IC,(Y;2) = R Hom(IC;(Y; M), Dy )[m]
in the derived category D*(Y).

Proof. Assume that p(2) = 1 and q(2) = 0. Let IC = IC(Y; I) and let
S'= D(IC)[m]. Then it will be shown that S° satisfies the axioms [AX 1] of
[GM2, 3.3], for the perversity §. The pairing and the orientation give the
isomorphism S°|[(Y — ) = &[m] of [AX 1](a). Axiom (b), Hi(S) = 0 for i <

—m, is left to the reader.
LetyeY, , =Y, _,_, k=2 and let Jy {y} = Y be the inclusion. Then

H(ji8") = H*"(j,D(C))
= H"(D(jFIC")) = Ext(H """ 1(j¥IC*), R).
Hence Hi(j!yS') =0 for —i—m+1>pk) —m, ie. for i < —p(k), by
[AX 1](c) for IC". Since
—p(k) =q(k) =k + 1,
this proves [AX 1)(d").

Similarly,

H'(j;8")

[N

H* (D (IC"))
= " (D(j1C7))
= Hom(H™"~"(j\IC), R) ® Ext(H~""*(j!1C"), R).

Hence, by [AX 1](d") for IC" (see (1.3)), Hi(j;"S') =0 for —i—-m+1<
plk) —k + 1, ie, for i > —p(k) + k —m. Since k — p(k) = g(k) + 1 for
k > 2, this proves [AX 1](c).

Now we return to the Dedekind ring

A=Qlt,t7].
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(3.3) Turorem. Let X be a sub-pseudomanifold of the manifold Y, of finite
local type, with dual submanifold N. Let p and q be superdual perversities. Then

IC(Y; Ly)" = DICH(Y: Ly))[m],
m = dim Y. Hence
THI(Y; %y)” = Hom(IH? _,(Y; 8y), A) & Ext(IHE_,_,(Y;&y), A).

Proof. By (2.4) and [GM2, 2.4], the stalks H"(IC?%(Y;QN)!,) are torsion
modules for y € X = 3.

(3.4) CoroLLarY. Let X C S"*2 be a knot of finite type and finite local type.
Let p and q be superdual perversities. Then there is a canonical isomorphism

IHI(S"*%; A)" = Hom(IH?_,,,(S"*%; A), F/A),
F = Q(¢) the field of rational functions.

The isomorphism of (3.4) can be interpreted as a perfect Hermitian linking
pairing
IHT(S"*2,A) X IH?_,, (S"*%,A) = F/A.
For locally flat spherical knots, with n = 2k — 1 and i = k, this is just the usual

Blanchfield pairing of knot theory. If K € $"*2 is any locally flat submanifold,
then

_ H,(C;A), 2)=0

prsnn - [FUCAL p@) =0
H,(C,dC;A), p2) =1

where C is the complement of the interior of a tubular neighborhood of K.

4. The peripheral complex
Let m and [ be the middle and logarithmic perversities, respectively. Thus,
m(s) = [(s — 1)/2]
and
I(s) = [(s + 1)/2];

ie, m=1(0,0,1,1,2,...) and [ =(1,2,2,3,3,4,...). Let Y™ be a stratified
pseudomanifold. Let £ be a local system over Y — 2 with coefficients in a
finitely generated R-module, R a Dedekind ring with quotient field F. Then the
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peripheral complex R}(R) is defined by the distinguished triangle:
IC.(Y: 8) —> ICj(Y; )

o/

Let £* be defined by setting
8;‘; = Hom(ﬁy;R), yeY -2,
and by letting g € 7 (Y — %, y) act on ¢ € &% by
(g o)) =0(g " a).

We will also assume that R is bidual (the natural map & — £** is an
isomorphism), so that the pairing

L ®, &* > Ry_y

given by evaluation is perfect. Further, we will suppose that the ring R has an
involution and that we are given an identification £* = 2°P, as in the example
R = A, Qy = R of (3.1). Then, when we assume the stalks of IC_(Y; Q) over the
singular set are torsion modules, as in the hypotheses of (3.2), superduality
induces a canonical isomorphism in D(Y™):

(4.1) Ry(2) = D(Ry(L))[m + 1]™.

We will also assume that R is an algebra over a field over which torsion
R-modules are finite-dimensional.

By a self-dual complex of torsion sheaves over ¥ we will mean a pair
consisting of an object R" in D?(Y) whose stalks are finitely generated torsion
R-modules and whose support is contained in the singular set, and an isomor-
phism

R'=DR)[m + 1]™.

Thus the peripheral complex is a self-dual complex of torsion sheaves.

Another type of example can be constructed as follows: Let V be a singular

stratum of Y, let & be a local system of finitely generated torsion modules over
R and let

B: G ®, P > (F/R)y

be a perfect pairing, F the field of quotients of R. Then B induces an
isomorphism (dimV = m — 2¢),

IC(V; 8) = D(IC,(V; ®))[m — 2¢ + 1]”.

I
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(This is proved in a way similar to the proof of the basic duality result of [GM2],
when we use the fact that everything is torsion as in the proof of superduality
and take into account the dimension shift in the adjoint of ¢, viewed as an
isomorphism & = D(®)[1]. We leave the details to the reader.) Hence

JICH(V; 8)[c] = D(jICH(V; ©)[c])[m + 1],

j the inclusion of the closure V of V in Y. Thus j,IC.(V;®)[c], with this
isomorphism, is also a self-dual complex of torsion sheaves.

Given morphisms

xSy 57
in D*(Y) with v e u trivial, let C, , = C;, be the algebraic mapping cylinder of
a lift of u to C;[—1]. This will be well-defined when Hom (X, Y)[—1] = 0.
The reader can check that C, . is isomorphic to C_[—1], where v" is a
factorization of v through C; . In particular, from the isomorphisms ®C =
Ch[—1], w = v or «/, it follows that ©C, , = Cy, .-

Now we suppose that Y™ is a self-dual torsion complex, that X" is also
supported on the singular set and has torsion R-modules as stalks, and that we
are given an isomorphism Z'= D(X)[m + 1] such that the following com-
mutes:

Y VA
DY) [m + 1] DX )[m + 1],

This will usually be abbreviated by writing v = D@u[m + 1]°; with this notation
we obtain an isomorphism

C, .= DCh, »,= D(C, [-m = 1]") =D(C, ) [m + 1]™.

op Dulm+1]°P
-

Thus Y, is also a self-dual complex of torsion sheaves. We will say in this
circumstance that Y; is obtained from Y by an elementary cobordism. We will
say that Y' is cobordant to Y if there is a sequence Y'=Y,,Y;,..., Y= Y
such that Y, is obtained from Y;_; by an elementary cobordism. (It can be
shown that cobordism is an equivalence relation.)

(4.2) Tueorem. Let Y™ have only even-codimension strata. Assume that for
each component V of a singular stratum with link L, at a point y € V, the groups
IH(L g Q) are torsion R-modules. Let &Y be the local system over V with stalk
at y the image of the natural map

IHy, ((L,;:8) = Ich(V)—l(Ly; 2),
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where 2¢(V) = codimension of V. Let
B, GY® (6Y)" - (F/R)y

be the perfect pairing induced on each stalk by the superduality isomorphism

IH!_(L,; ) = Hom(IH (L,; %), F/R) .
Then Ry(R) is cobordant to the orthogonal sum

Lj=1C5(V; 8")[e(V)],
7 the set of components of (open) singular strata of Y.
The following result will be used in the proof of (4.2).

(4.3) Prorosition. Let A" and B’ be bounded complexes of sheaves over R
on the stratified pseudomanifold Z™, constructible with respect to the stratifica-
tion {Z,}. Let p be a perversity and assume that forz € Z,, _ — Z,, _x_1, k = 2.

(i) H'(j*A) =0 for i>p(k)—m.
Then restriction to Z — Z,,_, = Z — % induces an injection

Hom 5,1 ,/(A, B") = Hom pi,_5\(AN(Z — 2),B(Z — %))

if

(ii) H'(j;B)=0 for i<p(k)—k,
and an isomorphism if

(iii) H(j:B)=0 for i<p(k)—k+1.

Further, if H(A' [(Z = 3) =0 for i>sand H(B [(Z — 3)) = 0 for
i < s, there is an injection

Hom s ,,(A’, B’) € Hom(H*(A'(Z — %)), H*(B(Z - 2))),
if (i) and (ii) hold which is an isomorphism if (i) and (iii) hold.

The conditions (i) and (iii) are precisely the stalk and costalk conditions
[AX1)(c) and [AX1](d") of [GM2, 3.3], and the proof is readily extracted from the
arguments of [GM2, 3.5]. In fact, let U, = Z — Z,_,, and let i;: U, — U, be
the inclusion. Write A}, = A"|U,, B; = B |U,. By induction, assume the results
hold over U,. As in [GM2, 3.3], the weaker (stronger) costalk condition implies
that the canonical adjunction map

Byi1 = R(ix) « (By),

obviously a quasi-isomorphism over U,, also induces isomorphisms of cohomol-
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ogy stalks over U, ., — U, in dimensions at most p(k) — m — 1 and a surjective
map (isomorphism) in dimension p(k) —m. Also H'(A,,,) =0 for i>
p(k) — m (since p(k) is non-decreasing). From the argument used in the lifting
result given in [GM2, 1.15], we then have that

Hom DUy, 1)(A.k w1 B )
injects into (is isomorphic to)
Hole’(U,\.,H)(A.ki— b R(ig) « (Bk)) = Hom DI’(Uk+1)(R(iI<) « (AL)s R(iy) « (Bk))
= Hom pi, (A% By),

which by induction injects (is isomorphic) to Hom ., (A, B;). The final
statement of (4.3) follows by applying the first proposition in [GM2, 1.15].

We will prove (4.2) as a consequence of a general result on perverse torsion
sheaves with duality pairings. More precisely, a perverse self-dual torsion sheaf
on Y™ will be a pair consisting of an object R" in D?(Y), and a duality
isomorphism

d=dg:R > DR)[m + 1™

the object R is required to be supported on Y,,_,, to have torsion R-modules as
stalks (i.e. (R, d) is a self-dual complex of torsion sheaves), and to satisfy

H'(j¥R) =0

for Y € Ym—2c - Ym—Zc—
sheaf” (with respect to the perversity m) in the usual sense that it and its dual
satisfy the appropriate vanishing condition on stalks. (Recall we use the indexing
conventions of [GM2], leading to the definition as in [M, §9].) By duality the

above vanishing condition is equivalent to the condition

, and i > ¢ —m. It follows that R™ is a “perverse

H'(jyR) =0

for V a component of a stratum of codimension ¢, j its inclusion into Y, and
i<c—m.

Let R be a perverse self-dual torsion sheaf over Y. For each component V
of a stratum of Y, let §Y(R") be the local system

3V(R) = HO (LR,
The morphism

I - , .d o, . 0 o o
VR =R S FEDR)[m + 1]” = D(jyR)[m + 1]™
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induces upon applying H“Y)~™ a map
and hence a perfect pairing

By(R): B(R) & (GY(R))" — (F/R)y
on the image @Y(R") of this map.

(4.4) Tueorem. Let R™ be a perverse self-dual torsion sheaf over Y. Then
R’ is cobordant to the orthogonal sum

Z/*IC;—H(V; GY(R))[c(V)].

Proof. Let V be a component of a stratum of maximal codimension such
that the local system

BV = BY(R) = B (LR
is not trivial. 3
Let j = jy be the inclusion of V and let
"jI'R" =7_.j'R'= H"(j'R)

be the application to R’ of the functor on the category of perverse sheaves
obtained from j' on passage to this category [BBD, 2.1.7]. Thus, j,™'R" will be
a perverse sheaf over Y, or equivalently, "j'R [ —¢] will be a perverse sheaf over
V. (Recall that we use the indexing conventions of [GM2].) Further, from the
definition in terms of the truncation functor (see in particular 1.4.10 of [BBD],
“recollement”), there is a natural morphism

m],R_)]‘R

which, for W a singular stratum of V, induces isomorphisms

H'(jy"j'R7) = H'(jyj'R)
and isomorphisms

H'(j3"5'R) = H'(j3,)'RY),
for i <k —m, W of codimension 2k in Y. In particular,

%V — HC(V)fm(m]-i/R')-
From the above maximality, it follows that j'R[—c¢] satisfies the costalk

axiom [AX1](d or d”) of [GM2] for m; hence "j'R[—c¢] also satisfies this axiom.
Hence, by (4.3) there is a unique morphism

A ICH(V:§Y)[e] - TR

inducing the identity on stalks over y in dimension ¢ — m.
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Let (FY)* be the local system on V defined by
op

(3"), = Homg(3: F/R)

for y € V. Then
H (TR,

I

H (DR )[m + 1]7), = B (D(jLR)”),

=1 (D(j,R)") = B (D(F) - 17)) = (377
We will write
H"(j3R) = ()"
It follows from the duality
TR = ('R [m + 1]

induced by d that "j* R [—c] satisfies the stalk axioms for the middle perversity.
Hence there exists a unique morphism

M mj’"R'—) IC,'TI(‘_/; (%V)*)[c]
inducing the identity on H®™™, restricted to V. By uniqueness, A and u

correspond under the duality isomorphism induced by d and the duality of the
intersection complex; we write

w=9DN)[m+ 1]".

Let AV be the kernel of the map ¥ — (FV)* induced on H° ™™ restricted
to V by the canonical morphism

J'R=j*R;

then there is an exact sequence
0->AV > FV - (%V)* - ("2[")>I< - 0.

Let

GV =gV, /A
Then the map &Y — (FV)* induces an isomorphism

oy 8V > (BV) = ker((§) - (AY)").
By (4.3), the composite morphism
TR [ —c ] 229 10V (3Y)) - 1CL(V; (AV))

is trivial. Since the exact sequence

0 G > (3 > () 0
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splits (not naturally) over the ground field of R, we also have the distinguished
triangle

IC,(V; 8Y) — IC4(V: (§")")

(1 ’

1C;,(V; (AY)")
in which the map raising degrees induces zero on stalks and costalks and the
other maps are the obvious ones. Hence there is a morphism

AR ICL(V; BY)[e],

unique by (4.3), that induces the quotient projection §" —» &Y on H ™"
restricted to V.
Similarly, there exists a unique morphism

i IC(V:i(8Y)")[e] - ™*R,,

inducing the inclusion of (&Y)* in (FV)*. By uniqueness, these correspond
under duality, as for A and u; i.e.,

pr=D(A)[m + 17
Hence if A} and B, are defined by distinguished triangles

N/
CL(V; &Y)[c]

and

Cnl V5 (8Y))[e] — "j*R

(1] 1
B,
then there is an induced isomorphism
B; = D(A})[m + 1]%,

and

v, = D(u)[m + 1]*
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Note that A,oA[—c] is the unique morphism of intersection complexes
induced by the surjection " — &Y, which splits over the ground field. Hence
this composite, and therefore A, as well, induces surjections on stalks and
costalks. Hence u, induces injections on stalks and costalks. Similarly, or by
duality, v, induces surjections. In particular, A [ —c] and B[ —c] are perverse
sheaves over V (equivalently, j,A, and j,B; are perverse sheaves on Y),
A’ [ —c] satisfies the costalk axiom of [AX1] (for m) and B[ —c] the stalk axiom.
Note also that A, |V = AY[m — ¢] and B |V = (AVY*[m — ¢].

By the injectivity statement in (4.3), the square in the diagram

MmN S
A, —> 'R —— ICL(V; BY)[c]

m

L

B < "R «—— IC(V; (6")")[c]

commutes. Hence the composite

u

A.l _1) mng._) ,le*R i) Bl

is trivial.
Let A=j, A, B'=j,B;, and let u and v be the composites
A. JxUy ]*m]lR R
and

R ]*m]*R Jx01 ]*B

Then from the preceding, we obtain an isomorphism
B =DA)[m+1]",
and we have that
v =D(u)[m + 1],
and that v o u = 0. Hence we can construct an elementary cobordism from R’ to

the self-dual complex Ry=C, ,.
Clearly Ry |(Y — V) = R"|[(Y — V). It also follows readily that

"i'Ry = ICL(V; &) @ B;[—1],
that
Ti* Ry = ICL(V: (6Y)") @ A [1],

and, with the aid of (4.3), that the canonical morphism between these is the sum
of the isomorphism induced by the isomorphism

oy: BV > (BY)
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and the zero map on B,[ — 1]. This implies that R, has an orthogonal decomposi-
tion
R,=7,.IC.(V;8")[c] ®R,
where R’ is a self-dual perverse torsion sheaf on Y satisfying
H (G R =0

for W a stratum of Y of codimension 2¢(W) > 2¢(V) and for W = V.

Hence by induction we see that R™ is cobordant to a sum of intersection
complexes, as in the statement of the result, and a self-dual perverse torsion
sheaf R; with H*)~"™(j{,R}) trivial for all singular strata V of Y. Thus R;
satisfies the costalk axiom [AX1](d) for the intersection complex with the middle
perversity. By duality, it also satisfies the stalk axiom. Since R [(Y — Y,,_,) is
trivial, it follows by [GM2, §3] that R} = 0. |

Proof of (4.2). It follows easily from the triangle defining R}(%) and the
stalk (or costalk) axioms for IC; and IC; that the self-dual torsion complex
R (R) is also a perverse sheaf, so that (4.4) applies.

Let V be a component of a singular stratum of Y, of codimension 2¢. Let r
and § be the perversities

k=1 fork+#c
r(2k) = {k for k = ¢’

k=1 fork=c¢
S(2k)_{k fork +c¢’

Then 7 and s are superdual. Let S and I be defined by
IC.(Y; Q) — IC;(Y;2) and IC)(Y;Q) — IC;(Y;R)

NV,

Then there are obvious morphisms
S—>Ry(&)—~>T),
and hence a commutative diagram
WS ——jyRy(¥) = jy T’

| |

WS ivRy(8) —— AT
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and superduality induces an isomorphism
(4.5) T'=3D(S)[m + 1].

From [GM2, 5.5], it follows that S and T are supported on the closure of
the strata of codimension 2c¢; hence the extreme vertical maps are isomorphisms
in D?(Y). A straightforward argument using the defining triangles and the
computation of stalks of intersection complexes [GM2, §2] shows that the lower
right horizontal morphism induces an isomorphism

H™"(j5Ry(R)) = H" (YT,

Similarly, or by superduality, the upper left horizontal morphism also induces an
isomorphism on H°™™. Hence the local system &Y(R}(R)) of (4.4) is isomor-
phic to the image of
HOR(5) = BT

and B (Ry(R)) is carried by this isomorphism to the non-singular pairing on
this image induced at y € V by the isomorphism

c—m H * c—m (A * ~ c—m 2 * op

H™(j5T7), = H™(jyT’), = Hom(H*~™(j$S°),; F/R)

y

obtained from (4.5) upon passage to cohomology. From the defining triangles,
the stalk conditions, [GM2, §2], and [GS, §6] (the analogue of [GM2, 2.4] for
costalks), there are isomorphisms

H‘_’"(j"'jS')y = IHC"_‘_I(Ly; 2)
Hc_m(jéT')y

N

IHcZ—l(Ly; 8)
that carry the above map to the natural map
IH" (L,;R) - IH! (L, Q)
and the above pairing to the superduality isomorphism
IH!_(L,; ) = Hom(IHT (L,; ), F/R) " . O

Remark. It is possible to work with an alternative notion of cobordism, by
taking advantage of the abelian category structure on perverse sheaves to use
kernels and cokernels in place of distinguished triangles. Instead of the functors

™5t ™% etc., one would rely on the short exact sequence

0 — HE"(j% ker @) > HE"(jA") - HO"(j4B")
— H° ™(jy coker a) = 0

and the corresponding (dual) one for j}, for @: A'> B’ a morphism of perverse
sheaves.



350 S. E. CAPPELL AND J. L. SHANESON

5. Blanchfield torsion pairings

We continue with the notation of the preceding section. Let (R, dg-) be a
self-dual complex of torsion sheaves over Y, which we now assume to be
compact and of even dimension m = 2n. By the hypercohomology spectral
sequence, ##'(Y; R’) will be a torsion module, i.e., a finite-dimensional vector
space over the ground field R of R. Hence dy- induces an isomorphism

H"(Y;R) = (VDR )[m + 1]7) = #"(Y; DR)”
= Exty(#"(Y;R’), R)” = Homy(# "(Y;R'), R)”,
and hence a non-singular torsion pairing
Rr: # "(Y;R) & # "(Y;R)" > F/R.

Let #(F /R) denote the Witt group of such pairings. Thus #(F /R) is the
Grothendieck group associated to the orthogonal sum operation on isomorphism
classes of perfect Hermitian torsion pairings on finitely generated torsion
modules, reduced by requiring that

¢: H®, H® —> F/R
represent zero if there is a submodule K € H with
dimg H = 3 dimg H
and with ¢(x,y) = 0 for x and y in K. Let
[®Br] € 7 (F/R)

be the element represented by L. .
A morphism

a:A > DA)m]”
in DP(Y) satisfying (recall ®2 = id)
a=D(a)[m]”

determines a self-dual complex of sheaves (R}, , d,), where R, is the third term
in the triangle containing @. The morphism a will be said to be a resolution of
the self-dual complex of torsion sheaves (R, dy) if there is an isomorphism in
the derived category (R", d) = (R}, d_). Note that this implies that

d=D(d)[m+1]",

and hence By will be Hermitian symmetric (n even) or skew symmetric (n

odd).
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Let a be a resolution of R". Then (recall the quotient field F is flat over R)
a®F:A®F—> DA ®F)[m]”

is a quasi-isomorphism. Hence it induces a non-singular Hermitian pairing
(symmetric or skew-symmetric)

Q. H"(Y;A) & # "(Y;A)” > F.
Let
[2,] € 7(F)
be the element in the Witt group of such pairings represented by £ . Let
&6: ¥(F)— ¥(F/R)
be as, for example, in [AHV] (for Q and Z). Then by the same type of argument

as in [GS], one obtains:

(5.1) ProrosiTioN. Let a be a resolution of R". Then

3([LQ.]) = [Br]-
We will actually only need this proposition in the case when
H(Y;A @ F) = #(Y;A)® F =0

for i =n or n — 1. In this case, the exact sequence of torsion modules (with

B'= D(A)[m]P)

H(Y;A) > F(Y;B) > F(Y;R) - FH(Y;A) - (Y B)
is self-dual with respect to Hom z(—, F/R), and . vanishes on the image of

the second map from the left. This is exactly the same situation as in the usual

argument that the signature of a boundary is trivial.
The proof of the next result is left as an exercise.

(5.2) Prorosition. Let a: A'— D(A)[m + 1] be a resolution of R' and
suppose that R is cobordant to Rj. Then R has a resolution «, for which
there is a commutative diagram

a®F

A® F > DA ® F)[m]™

a,®F o
A, ® F— DA ® F)[m]™.

(5.3) CoroLLaRy. Suppose R has a resolution and R’ is cobordant to R} .
Then

[S’BR'] = [%Ri]'
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In particular, if R’ has a resolution
a:A'— @(A')[m ]
with # (Y;A" ® F) =0,i=n,n — 1, and R’ is cobordant to R, then
[®r;] =0
It is only the final statement of this corollary that will figure in the
applications (§7). For completeness we briefly discuss the general invariance of
[*Bg-] under cobordism. If R is cobordant to R;, then R°'® — R’ is cobordant to
R} ® — R’ where —R’ is obtained from R’ by using the same complex, but
setting d_g- = —dg. On the other hand, it can be shown, in analogy with a
familiar result for forms, that R'® — R’ is isomorphic to R* & DR )[m + 1],
with the obvious duality map; i.e., R° @ — R has the resolution
0
R - D(R)[m].
Since R* ® F = 0, it follows from (5.3) that
[§BR'®—Ri] = [Bx] - [EBRi] = 0.
Thus we have the following general result:

(5.4) Prorosition. Let the self-dual complexes of torsion sheaves R' and
R, be cobordant. Then

[Rr] = [S’Bni]
in #(F/R).
Let V be a stratum of ¥, & a local system of torsion R-modules on V, and
B: G e 8§ - (F/R)y

a perfect pairing. Recall from Section 4 that j,IC.(V; ®)c] is a self-dual
complex of torsion sheaves, with duality induced by B as described above.
Clearly

H (Y5 jICH(V; ©)[c ]) = IHT (V; ©)
and B, 1. v, @y 15 just the usual pairing [GM1 or 2]

B, IH" (V;®) &, IH" (V:®) - F/R
induced by . Hence (5.4) and (4.4) imply:

(5.5) Tueorem. Let R’ be a perverse self-dual torsion sheaf over Y. Then,
in #(F/R),

[Br] = Z [%V(B')*]‘
V4
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The peripheral complex R}(2) has the resolution given by the natural map
@y (£): 1CH(Y; 2) - IC|(¥; 2) = D(ICH(Y: ))[m |”.
(5.6) CoroLLary. Let the hypotheses and notation be as in (4.2). Then
8[Quye)| = Zy[%v*]

In particular, if
IHM(Y; R ®, F) =IH(Y;R) ® F =0,
fori=mn,n — 1, then
Z[%V*] = 0.
V4

The final sentence will be used in Section 7.

6. Characteristic classes of sub-pseudomanifolds

Let A be the Dedekind domain Q[¢,¢ '] with quotient field the rational
functions Q(t). Let
T:Q(t)/A - Q
be defined as follows (compare [T] and [Ra, p. 833]): By partial fractions, Q(t)
splits over Q as a sum of a copy of A consisting of sums of polynomials and
proper fractions with (in lowest terms) denominator a power of ¢, and the

subspace A consisting of 0 and all proper fractions with denominator prime to ¢.
Define T to be the Q-linear map which vanishes on the copy of A and with

T(f) =1(0)
for f € A. Note that this is defined because f € A if and only if its denominator
does not vanish at 0. Since T vanishes on polynomials, we may view it as
defined on Q(%)/A. .

Given a non-singular Hermitian pairing (with respect to the involution

alp(t)/q(t) = p(t™H /q(t™ 1),
B:G 8 G*® - Q(t)/A
on a finitely generated torsion A-module,
TeB:GXG—-Q,
defined by
(T °B)(x,y) = T(B(x ® y)),

will be a non-singular symmetric bilinear form on a finite-dimensional vector

space over Q, and ¢ will act as an isometry. Similarly, a skew-Hermitian torsion
pairing over A yields a skew-symmetric form over Q.
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Given such a torsion pairing B, the signature oy is defined as the usual
signature of the form T o B, ie., zero in the skew case and the number of
positive entries less the number of negative ones in a diagonalization over the
reals in the symmetric case. More generally, let X be a stratified, oriented
pseudomanifold with even-codimension strata, and let B be a local system on
X — % of non-singular Hermitian or skew-Hermitian torsion pairings on a local
system & of finitely generated torsion modules over A. Suppose that X has
dimension 2k, k odd in the skew case and even otherwise. Then, by [GM2],
T o B defined by

(T+%), =TeB,
induces a symmetric, bilinear, non-singular intersection pairing
IHJ(X; ) X IHT(X; ®) > Q.
Let 0y(X) be the signature of this pairing, and set o(X) = 0 for dim X # 0

(mod 4) and B Hermitian or dim X # 2 (mod 4) and B skew-Hermitian.
Given X and B as above, we define twisted L-classes

Li(X) € H(X; Q)
by the procedure used in [GM1] for the L-classes associated to the usual
signature. Thus, stably and up to non-zero multiples, an element ¢ of H*(X; Q)
can be represented by the map
f: X —> Sk
that is transverse to y € S*. Then LY(X) is defined to satisfy

(6, LY (X)) = onr -3 n (£ (1))

and is uniquely determined by this formula. In particular, for X — 3 connected
and © a trivial local system of A-modules,
LY(X) = o (B,)L(X).

Note also that LY (X) = o(B)[X], [X] the orientation cycle, L¥(X) =
05(X), and LY(X) = 0 for k # dim X — 2 (mod 4) in the case B is a skew-
Hermitian and k # dim X (mod 4) for B8 Hermitian.

If M is a manifold, let (M) € H**(M;Q) be the Thom-Hirzebruch
L-class. Thus, the Poincaré dual of £,(M) is L,_,,(M). Recall that the total
Zclass

(M) =1+ L(M)+ LH(M) + -
can be viewed, for M smooth, as a sum of the Hirzebruch polynomials

L=+ L+ L+
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evaluated on the rational Pontrjagin classes p,(M) € H*(M; Q). Thus, -£(p,) =
3P, Zop1. po) = 35(Tpy = pi); ete,,

Z(P) =1+ ZA(py) +-Lo(p1pe) + -,
where
P=1+p +p,+ -
and
(See, e.g., [MSt] for more details.) Let
L(X) = [X] + L,_4(X) + L, 4(X) + -+
and let the total twisted L-class L®(X) be defined similarly.

(6.1) Tueorem. Let X be an oriented sub-pseudomanifold of the (PL)
oriented manifold M of (real) codimension two and of finite local type. Let ¥ be
the set of components of the (open) singular strata of X in a stratification of the
pair (M, X). Assume that all elements of ¥ have even codimension. Let N be a
dual submanifold to x(M, X) of multiplicity one. For V€ ¥, let B, be the
system of torsion pairings,

op
By: BV @ (GY) - (Q(t)/A)y
defined by superduality on the local system &Y over V. — V N N, as in (4.2),
with stalks
®Y = Image{IHT (L, Ry) = IH!_(L,; )},

L, the link in M of a top simplex of V with y in its interior, and 2¢ = dim M —
dimV. Let i: X € M and iy: V C X be inclusions. Then, with x = x(M, X),

[X] nix2(P(M) U (1 +x%) ) = L(X) + Zy/(iv)*L%V(‘_f).

For X a smooth submanifold of M, this is just a consequence of the usual
equality

i*P(M) = P(X) U P(v),
v the normal bundle, obtained from the bundle equation
i*r(M) =7(X) ®v.

Thus the above formula describes the deviation from the equality of the smooth
case in terms of twisted L-classes of the singular strata.
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There are several situations in which the terms in the summation can be
further decomposed. The simplest is the following:

(6.2) CoroLrary. Assume, in addition to the hypotheses of (6.1), that for
V € ¥, the local system &V is trivial. Then

[X] nix2(P(M) U (1 +x2) ") = L(X) + z/(%v)(iv*L(V)),

where a(By) = a((B),).

Remark. It follows from the PL homogeneity of the pair (M, X) along a
stratum V that &V always has an extension to the open stratum V. Hence, (6.2)
applies in particular when the components of the singular strata, i.e., the
elements of 7, are simply connected.

The next simplest case involves the assumption that the local system &V
and the pairing B extend to a local system 7 and a pairing B” on V. In this
case the characteristic class

ch(V) = ch(sign)(T - B") € H*(V; Q)
is defined as in [At]. (Recall that it actually comes from a canonical class in

H*(Bw (V)).) One readily derives:

(6.3) CoroLLarY. Assume in addition to the hypotheses of (6.1) that GV
and BY extend as above. Then

[X] nixs(P(M) U (1+x%) ") = L(X) + %(iv)*{ch(x‘/) N L(V)}.

Next we consider the case in which V is a manifold, but without assuming

the above extensions exist. Then given any mapping
f: P* - v,
P an oriented closed smooth manifold, it may be assumed by transversality that,
after a small homotopy, f ~!(2) has codimension two in P. Then f*®&" and
f*BY will be defined in the complement of a codimension-two subpolyhedron
of P, and T o f*B" will induce a nonsingular pairing
IH;(P; f*@Y) ®, IHj(P; f*8Y) - Q.

Further, it is not hard to see that the signature of this pairing depends only upon
the oriented bordism class of f, and that the resulting homomorphism

S: Q4k(‘_/) i Z

is multiplicative with respect to the signature. It is a well-known part of the
characteristic variety theorem (see [MS]) that there exist canonical cohomology
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classes
@(\7) =1+ @l(‘_/) + @2(\7) + - € H4*(‘_7; Q)
such that

s[P.f] = (S(V) N £, L(P)),

(This is immediate if we instead use Witt bordism, apply the result of Siegel [S]
that, rationally, Witt bordism is the homology theory associated to real K-theory,
and take the Pontrjagin character.) Hence we obtain:

(6.4) CoroLrary. Under the hypotheses of (6.1) and the assumption that for
V € 7, Vis a manifold,

[X] ni*Z(P(M) U (1+x?) ) = L(X) + Zy(iv)*{@(‘_/) N L(V)}.

There is a formula with a similar appearance to (6.4) for algebraic varieties,
but with a much more subtle interpretation. First of all, one can show [CS7] that
L(V) has a lift to a sum of classes coming (probably canonically) from the
intersection homology IH,™ of the closed strata of V. Further, the class €(V)
above can always be defined at least as a homology class, for general stratified
spaces, but it may not lift to a cohomology class. For varieties, it has a lift similar
to that just described for the L-class. The product €(V) N L(V) is then
interpreted to mean the sum of the images of the homology classes of the closed
strata of V obtained as the intersection products of the terms in the decomposi-
tions of € and L corresponding to each stratum. This will be the subject of
another paper.

7. Proof of Theorem 6.1

We will first show that the desired formula holds in dimension zero, i.e.,
that the formula

(700 ([x] nixz(P) U (1+x*) 7)), =o(X) + Zy/cr%v(‘_/)

is valid. It clearly suffices to consider the case where M is the interior of a
manifold regular neighborhood W of X, and N is the interior of a proper locally
flat submanifold N of W with N a regular neighborhood of the transverse
intersection X N N. We will also start with the assumption that X is even-
dimensional (actually no restriction by crossing with S').



358 S. E. CAPPELL AND J. L. SHANESON

Let
Y = W U,yc(dW)
be the stratified space obtained by attaching to W the cone on its boundary.
Since Y — {c}, ¢ the cone point, is just the union of W and an open boundary
collar, & = &, has an obvious extension, also denoted &, to a local system over
— (X UN U ¢(dN)), with = A. Then Y has a stratification with singular
set

S, =XUNU c¢(dN),
and with (open) strata
Xo —Xo NN, Vy=NUc¢(N)—-NNX—{c},V=-VAN, VAN,

for V.€ 7, and {c}. All these strata have even codimension. Here X, = X — 3.
We wish to apply (4.2) and (5.6) to this situation.

We assert that for y € X, and p a perversity, the stalk H'(IC(Y; 8)), is a
torsion module over A, or equivalently, that it is finite-dimensional over Q. By
(2.3.1), X U N € M has finite local type. The assertion then follows, by (2.4),
applied to the link of the stratum containing y, and [GM2, 2.4], for y € X U N.
Since (Y — {c}, 3y — {¢}) is PL homeomorphic to (M, X U N), it remains only
to check the assertion for y = ¢. As the link of ¢ is dW and

(M —X,N—XNN)=(0W X R,IN X R),
it suffices to check that the groups IHP(M — X;&) are finite dimensional
over Q.

Let a: M — X > M be the inclusion and consider the distinguished

triangle:

Ri,i'IC; — IC; = IC;(M; )

N/

»a*1C;
By (2.3), #~{(M;IC;) is finite dlmenswnal over Q. By superduality,
D(i'IC; ) = i*D(IC;) = i*IC;[ —dim M],
p and g superdual. Since X C M has finite local type, the stalks of IC;, and
hence of i*IC, will be finite-dimensional, by (2.4). By the spectral sequence

for hypercohomology, HU(X; DG'IC 5)) will therefore be finite-dimensional;
hence

H{(M; Ri i*IC;) = #7/(X;i*IC;) = Ext(#"(X;i*IC;), A)

will also be finite-dimensional. Thus, from the long exact sequence for hyperco-
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homology associated to the above distinguished triangle,
IHI(M — X;R) = #(M; Ra ,a*IC;,)

is also finitely generated over Q. Hence the results of Sections 4 and 5 apply
to Y.

It also follows readily from the finite dimensionality of the stalks and of
IH?(M — X; R), by either a Mayer-Vietoris type argument or the hypercohomol-
ogy spectral sequence, that TH”(Y; &) is also finite-dimensional. Therefore,

IHP(Y; € ®, Q(t)) = 0.

Hence by the last sentence of (5.6), together with the fact that the signature of
torsion pairings defines a homomorphism

a: 7 (Q(#)/T) ~ Z,

(which is zero on a skew form), we obtain
(71)  L{ow(V) +og, (VAN) )
v

+ oy (X) + O'%VN(N U c(aN)) + o, ({c}) = 0.

X,—X, NN

Let (G, F) be the link pair of a component of V N N in (M, X U N), as in
the proof of (2.3.1), V € 7. Then we claim that

IH(G;2) =0, i#dimG -1,
and
H(G;)=0Q, i=dimG-1.

In particular, @;/mv - IHCZ_I(G; ) =0,dim G = 2¢ — 1, and hence the corre-
sponding signature will vanish.
To prove this claim, recall that, as in the proof of (2.3.1),

(7.2) G=8"%G D (S'*F)UG, =F,

where (G, F,) is the link pair of V in (Y, X) or, equivalently, the link pair of
VN N in (N, X N N). The restriction of L to GN(M —XUN)=G —F is
given by

(7.3) a > iSRG e A

for @ € m(G — F). Let IC'= IC;{(G; R). The link of the codimension-two
stratum G, — G, N (S§'* F)) of G is a circle that maps to t~' € A under &;
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hence by the analogue of (2.4) of [GM2],
H'(ICH{G, - G, n (S'+F,)} =0
for i > 1(2) — dim G = 1 — dim G, whereas

WO, = Hy(s54) = (@ £

for y € G, — G, N (S' « F)). Further, G, is a locally flat submanifold of G and
intersects S'* F, transversely. Hence the link pair in (G, F) of a stratum of

G, N ($'* F,) and the restriction of & will have the same form as in (7.2) and
(7.3). Thus, by induction on dimension and [GM2, (2.4)],

H'(IC)I(G, N S'+ F) =0,
for i # 1 — dim G, whereas
H!~9mS(IC), = Q
for y in G, N (S'* F)). Now, for y € G,

i Y — Q, i=1-dimG
H'(IC), {0, i#1—-—dimG’

Since G, is simply connected (in fact a sphere of dimension at least three), it
follows that

IC|G, = Q. [dim G — 1].

Thus the distinguished triangle

Ré,(IC1G,),
vy and & the inclusion of G — G, and G, respectively, yields the long exact
sequence
) . d .
IH} (G = G;38) > IH{(G; 8) > H,_(G;;Q) = IH(G — G5 8).

(Recall that in [GM2], [Bo], IHZ refers to intersection homology with locally
finite supports. Thus, IH%;°, intersection homology with compact supports, is
just what was originally called IH? in [GM1].)

However,

(G-G,,F-FnNG)) = (cG, X §',¢°F; X §'),
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and  is given on
(¢°G, — ¢°F)) X S' = (G, — F;) X R X §!

by sending a € 7 (G, — F)) to tF® and a generator of 7,S" to ¢. (Compare

the proof of (2.3.1).) Then a standard argument (on the chain level) shows that
IHP“(c°G, X 85 8) = [H*(c°G,; Q) = H,(c°G; Q).

as G, is a sphere; clearly, d is an isomorphism for i = 0. Thus IH(G; Q)
vanishes for i — 1 # dim G, =dimG — 2, ie, for i =dimG — 1, and
H. . (G,R) = Q, as claimed.

Hence (7.1) reduces to

(7.4) ZV{%V(V)} + oy, (X)+ oy, (NUC(N)) + oy ({c)) = 0.

The link of the stratum Xo — Xo NN in W (or Y) is a circle S', and R
carries a generator of m,S! to t. Hence G %"V =Q,  y as
IHT(SY; @) = IHSY; 8) = Hy(S'; &) = Q. Since XoXo N N is the non-singu-
lar set of a stratification of X (refining the stratification of the pair (W, X)), it

follows that

(7.5) T,y oy = (X)),

X, —X,

the Goresky-MacPherson signature of X. Similarly, o (N U c(dN)) is the
signature o(—N U ¢(dN)). (Recall that R was defined using linking with
X U — N, and the orientations must be compatible with this.) The (Novikov)
signature o(N) of a manifold with boundary is defined as the signature of the
intersection pairing (write dim N = 25) on the image of the natural map

H/(N;Q) — H/(N,iN; Q).

It is well-known and easy to see (see [GM1]) that the Novikov signature is the
Goresky-MacPherson signature of the stratified space obtained by adding the
cone on the boundary. Thus

(7.6) oy, (NU ¢(dN)) = —o(N).

Finally we look at the stratum {c}. The link of this stratum is the manifold
dW, and  is defined on W — N via linking number with the locally flat
submanifold dN. In particular, on a meridional S* about AN (i.e., the link of this
stratum), ¥ is given by sending a generator of 7, to t. Let v and & be the
inclusions of aW — dN and dN in dW, respectively. Then, from the stalk
conditions and the vanishing of H(S'; A), §*IC_(dW; ) = 0. Similarly, but
from the costalk conditions (or by superduality), 8'TIC;(dW; &) = 0. Hence, from
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the usual triangles, IC_(dW;R) = Ry,&[m], IC;(dW; &) = Ry°¥[m], m =
dim W, and by uniqueness, the morphism IC.; — IC; is the obvious one.
Let v be the normal bundle of dN in dW, with disk bundle D(v) C oW.
Linking numbers with X U — N defines a homomorphism
my(S(v)) = {£t'}

on the sphere bundle that is an isomorphism on each fiber. This homomorphism
determines a trivialization D(v) = dN X S! of the SO(2)-bundle v, and a map

p: W — Int D(v) — S'
with p|S(v) the projection on the second factor with respect to the trivialization
of v. Let W, = dW — Int D(v). Then
H,(Wy; A) = H*"{(W,,0Wy; A) = HH(W,, dW,; £[m ])
= H(0W; Ry &[m]) = IH(IW; Q),

and

H,(W,,dW,y; A) = IH (aW; ),
similarly. The natural map (m = 2n)

IHT(dW; &) — IHL(3W; 8)

is the inclusion induced map

H,(Wy; A) = H, (W, 0W,; 8),
and B, is the torsion pairing B, on the image of this map given by the usual
linking numbers in the manifold W,. We take B, as defined using the orienta-

tion of W, as part of the boundary of W, whereas for B, the natural
orientation comes from viewing dW as the boundary of the cone. Thus

(7.7) O, = ~ OB,

It may be assumed that p is transverse to a given point z € S; let
, = p '(2). Then it is well-known (by an argument going back at least to
Novikov) that

(7.8) oy, = o(Py).

(The argument is based on the decomposition of the infinite cyclic cover into
blocks, each obtained by cutting W,, along P,; compare [M2], [R]. We leave the
details to the reader, but mention the following variation: By codimension-one
surgery [C] it may be assumed that these blocks are rational homology products.
The result is then obtained from arguments implicit in [T] or [L2], and the
invariance of the signature under surgery.)
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Let J be a radial line from z € S! to the origin, so that under the above
trivialization of v,
IN X J € D(v) = dN X D2,
Let
P=P,U(INX]J)UNCW.
By Novikov additivity (see [AS, III, 7.1]),
(7.9) o(P) = o(P,) + o(N).

By pushing W into M = Int W using a boundary collar, we may view P as
a locally flat oriented submanifold of M. An argument using the Mayer-
Vietoris sequence shows that [P] = [X] in H,,(M). It follows from the defini-
tion that the restriction to P of a homotopy inverse g to the inclusion i: X ¢ M
pulls back the Euler class i*y € H*(X) to the Euler class

(g|P)*i*x = x(m) = x(Int D(n), P)IP
of the normal bundle n of P in M. It follows from the (block) bundle equation
TM|P = 1P & 1
that
. -1
o(P) = Ly(P) = {[P] nit£(P(M) U (1 +x*) )},
i, the inclusion of P in M. Since ip.[P] = i «[ X], it follows with the help of the
identity f«(x N fxy) = fxx Ny that
(7.10) o(P) = ([X] nixZ(P(M) U (1+x*) 7))
Clearly (7.4)—(7.10) imply the signature formula (7.0).
Theorem (6.1) now follows by a familiar argument: Let
¢ € H'(X;Q) = HY(W; Q).
It suffices to show that

(e.(x] nixs(P(M) U (1+x2) ")) = (£, LX) + Zy@’;g,ﬁv(\_/))

After crossing with a sphere, as in [MSt] and multiplying by a large enough
positive integer, we may assume that

& =f*,
v € H*(S¥) is a generator and

f:W — sk
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is a continuous function. Let z € S*. By standard techniques, it may be assumed
that f is transverse to y, and that the manifold Q = f ~'(y) meets X trans-
versely in the sub-pseudomanifold Z = (f|X)~'(y). Using the equations
EN[W,0W] =35,.[0,9Q0] and & N [X] =j,[Z] (with j the appropriate inclu-
sion in each formula) relating fundamental cycles, one readily checks that
x(Q, Z) is the restriction to Q of (W, X). It follows by standard arguments
that, after a small ambient isotopy, it may also be assumed that the dual
submanifold N to (W, X) meets Q transversely in a dual submanifold to

x(Q, Z).
By definition,

(&, L(X)) = 0(Z).

The strata of Z are precisely {V N Z|V € 77}, the link pair of VN Z in (Q, Z)
is the link pair of V in (W, X) (if VN Z # &), and

Byrz=By{(VNZ-NNVNZ}.

Moreover, f|V is transverse to y and

— -1 —
(f17) () =7 " z.
Hence, by definition,

(136, L% (V)) = 09, .

Finally, since the normal bundle of Q in W is trivial,
<§, [X] nixZ(P(M) U (1 + Xz)‘1)>
Len [X] nisg(P(M) U (1+x%) 7))
Lj[Z] nis(P(a) U (1+x%) 7))
1,[z] nj*iez(P(M) U (1+x*) 7))

- (L

= (L

-

~ (L1zZ] A (PO U (1 +x)7)
<1,[z] ni3-Z2(P(Q) U (1+x(Q.2)") )>
-

[Z] N 15_/ P(Q) U (1 +x(Q.2)") )>0

i, is the inclusion of Z in Q. Thus the desired formula is just (7.0), applied to
the pair (Q, Z). O
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8. Examples

(8.1) Signatures of non-locally flat knots. Let k: K271 ¢ §2**! be a knot,
i.e., a PL sub-pseudomanifold of the sphere, with even-codimension strata, of
finite type and of finite local type. Define the signature of «, o (k) as

o(k) =o((B*),).

Here, B**! is as in Section 5, where y is the cone point in ¥ = ¢°(§%**1) and
L the local system with coefficients in A = Q[#, ¢~ '] given on ¢°S%*! — ¢°K by
linking numbers with ¢°K. Thus, 58’;“ is the non-singular (— 1)*-Hermitian
pairing on the image of the natural map

IH]zT’t(szk+l;A) N IHIZ(SZk+l;A)
induced by the superduality linking pairing
IHT(S?**1; A) X IHL(S®*+1, A) — Q(¢)/A

as in (3.4). By definition, o(k) is the signature of the (—1)*-symmetric bilinear
form T o %5“,

T:Q(t)/A - Q,
the generalized (Trotter) trace, as defined in Section 6.

If the knot k: K  S2**! is smooth or even PL locally flat, then K bounds a
codimension-one submanifold

K = 90U c U% c §2k+1

the Seifert surface for K. In this case, it can be shown that o(k) as defined
above agrees with the (Novikov) signature o(U) or, equivalently, the usual
(Goresky-MacPherson if K is not a sphere) signature of the space U Ug(cK)
obtained by adding to U the cone on K. Note that K may be a manifold, or even
a sphere, but the knot k may fail to be locally flat. It would be interesting to
have a construction of a Seifert surface for an arbitrary knot, giving the correct
signature.

The following result is a generalization of the cobordism invariance of
signatures of smooth or locally flat knots:

(8.1.1) Tueorem. Let X C $%**2 be a sub-pseudomanifold of codimension
two of an even-dimensional sphere. Let 7 be the set of singular strata of X in a
stratification of ($2**2 X), and assume that each V € ¥ is simply connected
and has even dimension. Let k, be the link pair of V. Then

Y o(V)o(ky) + o(X) = 0.
14
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The case X = $2*, where, obviously, o(X) =0 and 7 is a collection
of points, is the invariance of signatures under smooth cobordism. The pre-
sent result is immediate from (6.2) and the facts that _£(S2**2) =1 and
X(Szk+1> X) € H2(Szk+2) = 0.

This result can be promoted to a statement in the smooth knot cobordism
group of Kervaire and Levine, generalizing the result of [FM] on embeddings of
even-dimensional spheres with isolated singular point. This will be the subject
of a future paper.

As a corollary, we obtain a substantial strengthening of the cobordism
invariance property of signatures of smooth knots.

(8.1.2) Cororrary. Let k;: K, C $?**! be smooth knots. Let |  S***1 X
[0,1] be a PL embedded h-cobordism that meets the boundary in K, U K,
transversely and is smoothly embedded near the boundary. Assume that the
singular strata of a stratification of Int J in S***! X (0,1) have codimension
congruent to 2 mod 4 and are simply connected. Then

o(kg) = (k).

Recall that smooth or PL locally flat knot cobordism is not quite periodic,
and that this failure occurs precisely in the behavior of the signature; see [L1],
[CS3]. Thus, for k > 1, there exist locally flat spherical (i.e., K PL homeomor-
phic to a sphere) knots in S**! with signature 8, whereas for k = 1, the
signature must be divisible by 16. The next result illustrates how this discrep-
ancy is reflected in higher dimensions in terms of the size of the singularities of
a PL cobordism.

(8.1.3) CoroLrary. Let k,, i = 0,1, be locally flat PL (or smooth) knots of
a (homotopy) S™ in S°, with

o(k,) — o(k;) # 0 (mod 8).

Let ] € S X [0,1] be a PL embedded h-cobordism, locally flat near the bound-
ary, meeting S° X {i} transversely in the knot k.. Let ¥ be the singular stratum
of Int J in a stratification of (S° X (0,1),Int J), and assume that dimV > 0,
dim V is even, and V is simply connected, for all V€ ¥. Then ¥ has an element
of dimension six.

Proof. 1f there is no 6-dimensional element of 7, then the link pair of any
4-dimensional component will be a locally flat spherical knot in S° and hence
will have signature divisible by 16. Then, by application of (8.1) to

¢(Ko) UT U e(Ky) Ce(8? X {0}) US? X TUc(S”x({1}) = 8™,
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we have
o(k,) = o(ky) (mod 16),
a contradiction to the assumptions.

Remarks. 1. This result probably remains true with only the weaker hy-
pothesis that 7" has no zero-dimensional elements.

2. It seems unlikely that a knot k of S® in S need have signature divisible
by 16. For example, if the singular set has a single component consisting of
knotted curve k in S, with link pair w, then one might conjecture that

o(k) = 8a(w)a(k) (mod 16),

where a(w) € {0, 1} denotes the Arf invariant of the knot w, and cobordisms |
with 6-dimensional singularities should actually exist. In higher dimensions one
can use the results of [CS1, §13] to construct knots with a given embedded
lower-dimensional sphere as singular stratum and with an arbitrary spherical
knot of the correct dimension as link pair. In the present situation, an explicit
low-dimensional construction is needed.

(8.2) Hypersurfaces in P". Let P" denote complex projective n-space, with
homogeneous coordinates [ X,;...;X,]. Let ¢ € H*(P") be the canonical gener-
ator, and let p; € H, (P") be the Poincaré dual of ¢" /. We will consider a few
singular hypersurfaces in P", beginning with quadrics. Given any set & of
homogeneous polynomials in n variables, let

V(F) = {[X.. s X If (X, ..., X,) = Ofor f€ F)

be the variety they define. We will discuss only the images of the L-classes of a
hypersurface X in the homology of P", thereby avoiding the computation of the
homology of X. These will be denoted iL . (X); in particular, the signature of X,
iy Lo(X) = o(X) will be calculated.

We begin with some notation. Let L,(n — 1) be the image in H,(P"; Q) C
H, (P”; Q) of the total L-class of the nonsingular hypersurface of P" of degree d.
Thus ([H]),

La(n = 1) = du,, 0 {A((1+ 3" (1 + d%e?) ")},
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For example, L,(n — 1) =i ,P""'; hence,

Li0) =1, Ly(1) =my, Ly(2)=p,+ 1,

L(3) =py+ 50, Liy(4)=p, + Su, + 1,

L(5) = ps+ 2u5 + 2u,, Ly(6) = me + 51, + Tu, + 1, ete,,

Ly(1) =2u;, Ly(2) =2my, Ly(3)=2um5— 501, Ly(4) = 2uy+ sup+ 2,
Ly(5) = 2us + mg + p1s La(6) = 2ue + 504 + i,

Ly(7) = 20 + Ths + ks + sk Lo(8) = 2pg + dpg+ [py + e+ 2,
Ly(1) = 3u;, Ls(2) = 3py =5, Ls(3) = 3py — 4uy,

L,(4) = 3u, — 3u, + 19, etc.

We will also write o,(n) for the signature of this hypersurface, i.e., the constant
term of L, (n). Hence, by [H], [KW],

o(n = 1) = (L((1 +¢2)

N+ d?) ), dp, )
= <(tanh dc)(c coth ¢)" ", ;,Ln>.

Let

Q(n,r) = V(X5 + X7+ -+ +X2) CP".
For r = n, this is a smooth hypersurface, and hence
iy LQ(n,n) = Ly(n — 1).
By [KW], the signature is given by .
2 for n = 1 (mod 4)
—1) = 1)) = .
oo(n = 1) = o(O(n.n)) 0 for n # 1 (mod 4)

For r <n, Q(n,r) is a sub-pseudomanifold with singular stratum the
projective space V(X,,...,X,) = P"7"~!. By considering an affine neighbor-
hood of the point [0;0;...;0;1] in the projective space V(X,, |,..., X,_,), one
sees that the link of the stratum is the algebraic knot in a 27 + 1 sphere given
by the intersection of the affine variety

Xg+XP+ - +X2=0
in C"*! = R**2 with a small sphere about 0. It is well-known that for r even,

the intersection form for the Milnor fiber of this knot is (—2), and hence its
signature is —1 for r even and zero for r odd. Hence, by (6.2):

(8.2.1) For r even
iwL(Q(n,7)) =Ly(n — 1) — Ly(n —r — 1),
and for r odd,
ixL(Q(n,r)) = Ly(n — 1).
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In particular, for n = 1 (mod 4),

o(0(n.1) = {
and for n # 1 (mod 4),

o0 ) = {
For example,
L L(0(5,2)) = 20, + by + 1
i L(Q(9,2)) = 2 + 3pg + Fry — ai5ms + 1, ete.
Next we consider the degree-three hypersurfaces
T(n,r) = V(X}+ Xo(XJ + X3 + -+ +X7)) Cc P,

n > 2 and 2 < r < n. The open strata of the singular set of a stratification of the
pair (P", T(n, r)) are

V(Xo, X\, X5 + -+ +X72) = V(X,,...,X,),
V(X,,...,X,) = V(X,,...,X,), and
V(Xp, X5 X))

2 for r odd
1 for r even’

0 for r(n —r) =0 (mod4)
1 otherwise.

The closures are homeomorphic to Q(n — 2,7 — 2), P*™", and P" """ !, respec-
tively, n > 2. The components of the open strata are simply connected; note that
the non-singular part of Q(n — 2,7 — 2) is a vector bundle over the non-singu-
lar Q(r — 2,7 — 2) € P"~2, which is simply connected, r > 3, see e.g., [KW], a
point if » = 2 and two points for r = 3.

To describe the link pair ko of the stratum O(n — 2,r — 2), it suffices to
study an affine neighborhood of, e.g., the isolated point singularity [0;0; i;1;0;
...;0]in the pair (V(X,, ..., X,), V(X,,..., X,) N T(n, r)). This is just the knot
obtained by intersecting a small sphere about (0, 0, i) in affine space C* with the
affine variety

X? + Xo(X3+ 1) =0.
Setting Y = 1 + iX,, so that 1 — iX, =2 — Y, X, = X, X, = Z, we obtain the
isolated singularity at 0 given by
X% —ZY?+27ZY = 0.
An easy calculation with the partial derivatives shows that throughout the family
X? = aZY? +27Y, 0<a<1
0 is an isolated singularity with multiplicity (“Milnor number”) two. Hence the

signature is constant throughout this family ([LR], [Sz1, 2]). The bilinear form
27Y is obviously non-degenerate at 0, and hence is equivalent over the complex
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numbers to X2 + Y 2. Hence K is homeomorphic to the generalized trefoil, i.e.,
the algebraic knot associated to X® + Y? + Z2 (i.e., type A,). Hence ([B], [A]),
olky) = —2.

Similarly, the link pair «p.- of the stratum P"~" will be the algebraic knot
given by the isolated singularity at 0 of the affine variety

XP+ X34+ +X2=0
in C". Hence

o (Kper) = { —2 for r odd

0 forreven’

Finally, for r < n, the link pair kp.-r—1 of P"~"~! will be the (non-locally
flat) algebraic knot k, given by the non-isolated singularity at 0 of the affine
variety in C"*!

XP + Xo(X5 + -+ +X7) =0,
i.e., the intersection of this variety with a small sphere.
Lemma. For r even,
o(k,) = o4(r) + 5.
Thus, oy(ky) = 0, ay(k,) = 24, o,(ks) = 58, etc.
Applying (6.2) now yields:
(8.2.2) For r odd
iy L(T(n,7r)) =Lsy(n — 1) —2Ly(n — 3) — 2Ly(n —r).
For r even,
ixL(T(n,r)) =Ly(n — 1) = 2Ly(n — 3) + (o4(r) + 7)Ly(n —r = 1).

In particular, for r odd and n odd,

oy(n—1)—2 forn
oy(n—1)+2 forn

3 (mod 4)
1 (mod4)’

a(T(n,r)) = {

and for r even and n odd,
oy(n — 1) + o4(r) + 3 for n = 3 (mod 4)
oy(n — 1) + o4(r) + 7 for n =1 (mod4).

o(T(n,r)) = {

For example,
i L(T(7,4)) = 3pg — 5uy + (3135 )u, + 75,
iw L(T(7,6)) = 3us — Sy + (5 )my + 109.
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Proof of lemma (outline). Let k, = (S*"*!, K,). Recall that o(k,) is the
signature of T o B, where T is the generalized trace (see §6) and B is the
pairing induced by superduality on the image of the natural map

IHT(S2+1; A) - IHI(S?"+1; A).
The quotient of (S*>"*! K,) by the free circle action
£ (Xy,..., X)) = (éX,,..., €X,)
is (P", T(r, r)). Since the singular set of T(r, ) in a stratification of the pair is
the disjoint union of P° and the manifold Q(r — 2, 7 — 2), the singular set of K,
in a stratification of (S>"*!, K,) will be the disjoint union of a circle and the total
space V2775 of an S'-bundle over Q(r — 2, r — 2) (actually a Stiefel manifold of
2-frames in real r — 2 space).
Let y € V27 and let (S5, J?) = K be the link pair of the stratum; this is
a smooth algebraic knot. Then, with IC.. = IC_(S*"*!; A),

IH! ,,_(S°;A)=H, , _(S° —j;A) fori<1l-—2r
0

fori >1—2r
By [M1], H(S® = J; A) = 0 for j > 2. Hence H'ICL|V*™° =0 for all i. A

similar argument shows that IC_. is also trivial on the singular circle. Hence, if
N(K,) is a regular neighborhood of K, and C = $*"*' — Int N(K,), it follows
from the appropriate distinguished triangle that IH™(S*>"*'; A) = H,(C; A). By
the same type of argument, or by superduality,

IH(S>*'; A) = H,(C,dC; A).

H'(IC3), =

Linking number with K, is induced on 7, by a homotopy class of maps
C — S'. Let (U,dU) c (C, dC) be the transverse inverse image of a point; for a
smooth knot this would be the Seifert surface, but in general dU # K,. From the
preceding paragraph and an argument of knot theory (compare (7.8)),

o(k,) =0a(U).

(By [M1], the map C — S' can actually be taken to be a fibration, with U as a
fiber.)

Let N(T(r,r)) be a regular neighborhood of T(r,r) in P’, and let
$2r*1 — P be the projection. Without loss of generality, it may be assumed
that N(K,) = = 'N(T(r, r)). Hence C will be the total space of an S'-bundle
over D = P — Int N(T(r, r)). The Chern class of this bundle will be the image
of the canonical class under the surjective map

H*(P";Z) » H*(D;Z) = Z/3Z

induced by the inclusion. From this it can be shown that the above homotopy
class contains a fibration with fiber the 3-fold cyclic cover D of D (and
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monodromy the covering translation). Hence,
o(k,) = o(D).
By Novikov additivity, with appropriate orientations,

o(D) = o(P") — o(N),
where P is the 3-fold branched cyclic cover of P”, branched along T(r,r) and
N is the part of this cover lying over N(T(r, r)). The map

H,(N;Q) - H,(N,dN; Q)
can be identified with the map

H(T(r.1);:Q) = H,_y(T(r, 1); Q)

given by intersection with 3u,_,. It follows from the hard Lefschetz theorem

(note that T(r, r) is a rational homology manifold, so that rational homology and
intersection homology agree) that

o(N) = -1,
with respect to the appropriate orientation. Thus,
o(k,) =o(P") + 1.
However, P is homeomorphic to the hypersurface
V(X? + Xo(X3 + - +X2) + X2,,) c P,
The singular set consists of the smooth simply connected variety
V(Xg, X1, X3+ -+ +X2, X)) = Q(r — 2,7 — 2)

of real codimension six in P”, and the isolated point [1;0; .. .;0]. The link pair of
the isolated point is the algebraic knot associated to the isolated singularity at 0

of the affine variety
XP+ X3, +X2+ - +X2=0

r+1

in affine space C”*'. By [B] or [Ph], this knot has signature —4. Hence, by (6.2),
in dimension zero,

a'(lA’r) = o4(r) + 4,
and hence
o(k,) = o4(r) + 5. i
Clearly, similar methods apply to many other hypersurfaces, e.g.,
V(X + o + X+ Xo(XE) + o +X27)) e
A more systematic study of hypersurfaces, non-locally flat knots, and branched
covers will appear elsewhere.
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Added in proof. Note that in 6.1 and 6.2, the left-hand side of the formulae
can be rewritten, as in the case of smooth hypersurfaces [H], as
((tanh i*y)/i*x) U i*£(P(M)) N [X]. Consequently, under the hypothesis of
6.2, letting jy, =i iy: V= M, we get:

_Tueorem 6.2.1. (tanh x U Z(P(M))) N [M] =i L(X) + Lo(By)jy«
(I(V)), in H,(M).
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