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A Splitting Theorem for Manifolds
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Preface

This paper studies codimension one submanifolds of manifolds through the
development of general splitting theorems. These results are applicable to the
study and classification of manifolds with infinite fundamental group; they
can be used in decomposing such manifolds into manifolds with simpler funda-
mental groups. A subsequent paper will apply this to studying higher signatures
of manifolds.
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Introduction

We shall be concerned with the following situation. Let Y be a connected closed
(n+ 1) dimensional manifold (or Poincaré complex) and X an n-dimensional
connected closed submanifold (or sub-Poincaré complex), j: X <Y, n=4, with
7, (X)— =, (Y) injective. Moreover, we assume X satisfies any one of the following
three equivalent conditions:

(1) X cuts some neighborhood of itself in Y into two components.
(2) The normal bundle of X in Y is trivial.

(3) j*w,(Y)=0w,(X). Here w, denotes the first Stiefel-Whitney class.
These conditions are trivially satisfied if both X and Y are orientable.

Now, let W be a differentiable, piecewise-linear (P.1.) or topological manifold
and f: W—Y a homotopy equivalence. The map f is said to be “splittable”, or
more precisely “splittable along X 7, if it is homotopic to a map, which we continue
to call f, transverse regular to X (whence f ~!(X) is an n-dimensional submanifold
of Y), with the restriction of f to f~!(X)— X, and hence also to f~(Y—X)—
(Y— X), being homotopy equivalences. If (Y— X) has 2 components this means
that f restricts to a homotopy equivalence to each. In the present paper, for a
differentiable (respectively; P.L., topological) manifold, “submanifold” means a
differentiable (resp; P.L. locally-flat, topological locally-flat) submanifold.

h-Splitting Problem. When is W h-cobordant to a manifold W’ with the induced
homotopy equivalence f': W’ — Y splittable along X ?

s-Splitting Problem. When is f: W— Y splittable along X ?

Corresponding to the number of components of Y— X, these problems have
two cases. Let G=m,(Y) and H=m,(X); as we assumed =, (X)— =, (Y) injective,
we have H = G. The following discussion and the methods of the present paper,
also apply to relative splitting problems.

Case A. Y— X has two components. In this case, let Y, and Y, denote the closures
in Y of the two components of Y— X, so that Y=Y, U, Y,. Set G,=n,(Y), i=1,2;
the inclusion X < Y,, induces &;: H — G, with, as H = G, ¢, an inclusion, i=1, 2. By
Van Kampen’s theorem, G is the free product with amalgamation G=G, *, G,.

Case B. Y—X has one component. In this case, let Y’ denote the manifold or
Poincaré complex with boundary obtained by cutting Y’ along X; that is, the
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boundary of Y'is X, UX,, X, X ,~X and Y is obtained from Y’ by identifying
X, with X,. Set J=mn (Y). Corresponding to the inclusions X;cY’, there are
two maps &;: H—J which are injective as n,(X)cn,(Y). (To be more precise
about basepoints, choose pe X and correspondingly p,e X;,i=1, 2. Let y be a path
in Y’ from p, to p,. There is the obvious inclusion H =n,(X,, p;) > n, (Y, p;)=J.
Using the identification [y]: =, (Y, p,) — =, (Y’, p,) induced from y, we get another
inclusion H=n,(X,, p,) - n,(Y', p,) 2> 7, (Y’, p,)=J. The loop y in ¥, represents
teG.) Then from two applications of Van Kampen’s theorem we get G=J *, {t}
where we have:

Definition. For &;: H—J,i=1, 2, two injective group homomorphisms, let

g {y =Z = J/{t71 & (W)t &)~ lue HY)

where Z is an infinite cyclic group generated by t. As usual {({P}> denotes the
smallest normal subgroup containing {P}.

This J =, {t} notation [W 1] is concise. Note, however, that the group obtained
depends on the inclusions ¢&;.

In applying the results of the present paper to studying manifolds of a given
homotopy type, it is useful to note that if Y is a manifold of dimension greater
than 4, and if n, (Y)=G, *, G, (respectively 7, (Y)=J %, {t}), then there exists a
codimension one submanifold X of Yenjoying all the properties described in the
discussion of case A (resp.case B) above. This follows easily from methods of I §3
below.

Case B was first considered in the setting of the fibration problem, the deter-
mination of which high-dimensional manifolds fiber over a circle. Stallings [St1]
obtained a result on this problem for three-dimensional manifolds. In high
dimensions this problem was solved by Browder and Levine [BL] [B2] for
G=Z. The fibration problem is related to the problem of deciding when an open
high dimensional manifold is the interior of some closed manifold. This was
solved in the simply connected case by Browder, Levine and Livesay [BLL] and
in general by Siebenmann [S1]. Siebenmann’s result implies a splitting theorem
for certain open manifolds. A related result was obtained by Novikov [N] and
applied by him to prove the topological invariance of rational Pontryagen classes.
The high-dimensional fibration problem was solved by Farrell [F]. The related
splitting theorem of Farrell and Hsiang solved the case B when G=Z x H, n=5
[FH1]. In the notation introduced above, this corresponds to both &, and &,
surjective, and G=Z x H corresponds to &, =&, being surjective. In a special case,
Shaneson extended Farrell-Hsiang splitting to n=4 with G=Z [S3]. The result
of [FH1] was used by Shaneson and by Wall in obtaining a formula for the
Wall groups of Z x H and in computing the Wall groups of free abelian groups
[S2][w2].

Case A was solved by Browder [B1] for Y;, Y, and X all simply connected,
n>5. As a consequence of the development of relative non-simply connected
surgery theory [W2], Wall showed that the problem could always be solved in
case H=G,, and hence G, =G, n=5. R. Lee made an important advance when
he solved the problem for the case n even and greater than five with H=0and G
without 2-torsion [L1].
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All the above splitting theorems for compact manifolds are special cases of
the general high-dimensional splitting results, Theorems 1 and 2, stated below.
We treat cases A and B with the same geometric method. A further refinement,
when X is simply connected, is presented in Theorem 3. Corollary 4 applies this
to obtain a homotopy-theoretic criteria for a manifold to be a connected sum.
Theorem 5, Theorem 3 and Corollaries 4 and 6 extend some of our splitting
results to the case n=4. Corollary 6 restates the theorem of Farrell and Hsiang,
together with an extension in some cases to n=4.

The results of this paper lead to Mayer-Vietoris sequences for Wall surgery
groups and to the computation of the Wall groups of many infinite groups in-
cluding free groups, fundamental groups of closed two-manifolds etc. [C4] [C5].
A general rational splitting principle will be used in [C4] in showing, for a very
large class of fundamental groups, the Novikov higher signature conjecture.
Using the results of the present paper and special low-dimensional methods, a
stable splitting theorem for the case n=4 was proved by J. Shaneson and the
author [CS1].

Since the appearance of this paper in preprint form, we have found examples
showing that restrictions of the kind used below in some cases on fundamental
groups in order to obtain splitting theorems are necessary. See our examples of
“non-splitting” in [C5] [C6]. A description of the extension of the methods of
the present paper and a general manifold classification scheme for the fundamental
groups in which there is an obstruction to splitting is given in [C8] [C9]. Cor-
responding general results on the Wall surgery groups of any generalized free
product of finitely presented groups are announced in [C7].

We introduce some algebraic notation:

Definition. A subgroup H of a group G is said to be square-root closed in G if,
for all geG, g€ H implies geH.

In [C1] such subgroups were characterized by an equivalent condition called
“two-sided subgroup”. The formulation of this definition in terms of square-root
closed subgroups was suggested to us by C. Miller.

Examples

(1) If H is normal in G, H< G, then H is square-root closed in G if and only if
G/H has no elements of order 2. In particular, the trivial subgroup is square-root
closed in G if and only if G has no elements of order 2.

(2) Any subgroup of a finite group of odd order is square-root closed. In general,
a subgroup H of a finite group G is square-root closed if and only if H contains
all elements of G of 2-primary order.

(3) H is square-root closed in G, *, G, if and only if H is square-root closed in
both G, and G,.

(4) Given inclusions &;: H—J, i=1,2, then H is square-root closed in J  {t}
if and only if both &, (H) and &,(H) are square-root closed in J. In particular,
(or from (1) above):
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(5) H is square-root closed in Z x_ H.

(6) Let G be a free group and H a subgroup generated by a non-square element
of G. Then H is square-root closed in G. (This is used in computing in [C3] [C9]
the Wall surgery groups of all two-manifolds.)

(7) 1If H is square-root closed in G, Z x H is square-root closed in Z x G.

Note that for X an n-dimensional submanifold with trivial normal bundle
of the (n+1) dimensional manifold Y with Y—X having two components,
Y=Y, u, Y, (respectively; one component with Y=Y’/(identifying two copies
of X) and with &;: n, (X)— =, (Y’) the induced maps), n, (X) — 7, (Y) is injective
with square-root closed image if and only if this is true for each of the induced
maps 7, (X)—n,(Y,) (resp; & n,(X)—>n, (Y'), i=1,2. This follows from ex-
ample 3 (resp; 4) of square-root closed subgroups above.

We describe first, in Theorem 1, the fundamental groups for which we show
that the h or s splitting problems can always be solved. For a group G, Wh(G)
denotes the Whitehead group of G, and K,(G) denotes the reduced projective
class group of the ring Z[G]. '

Theorem 1. Let Y be a closed manifold or Poincaré complex of dimension n+1,
nz5 with n,(Y)=G and X a closed submanifold or sub-Poincaré complex of
dimension n of 'Y with trivial normal bundle and n,(X)=H < G a square-root closed
subgroup!. Assume Y—X has two components (respectively; one component) with
Sfundamental groups G, and &;: H— G, (resp; group J and &;: H—J), i=1,2 the
induced maps.

(W) If &, —&,,: Ko(H) > Ko(G) @ K (Gy) (resp; &, —&,,0 Ko(H)— Ko (J)) is
injective or even just

H"*Y(Z,; Ker(K,(H) - K(G,)® K,(G,))=0
(resp; H™1(Z,; Ker (R, (H)—"5 R, (J)) =0)

then for any homotopy equivalence f: W— Y, W a closed manifold, W is h-cobordant
to a manifold W' with the induced homotopy equivalence f': W — Y splittable.

(i) If Wh(G,)® Wh(G,) » Wh(G) (resp; Wh(J) —» Wh(G)) is surjective, then
every homotopy equivalence f: W—Y, W a closed manifold, is splittable.

Note that the hypothesis of (i) is always satisfied if one of the inclusions
H — G, has a retraction. The hypothesis of (ii) is always satisfied for H a member
of a class of groups constructed in [W1].

The rings Z[H] and Z[G] acquire, as usual, the involutions determined by
g=w(g) g™, geG=Z[G], w: G>Z,={+1} the orientation homomorphism.
These involutions determine Z, actions [M 1] on Wh(G) and K, (H), which are
referred to in (i) of Theorem 1.

There is a relative form of Theorem 1, in which we begin with a splitting of
0W— Y along X and obtain similar results for the problem of extending to a
splitting of W— Y along X.

' Or, assume H=G, and hence G,=G and Wh(G,) - Wh(G) surjective. For simple homotopy
equivalence this case is in [W 1]
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Waldhausen, extending results of [St] [BHS] [FH2] showed that

Wh(G, *,4 G,)/Wh(G,)®Wh(G,) ~ (resp; Wh(J x, {t})/Wh(J))
decomposes as a direct sum of

Ker(Ro(H) > Ro(G)®Ry(G,)  (resp; Ker(Ry(H) — =25 Ry (J))
and a group of Z[H] linear nilpotent maps [W1]. For the projections to these
summands we write

@: Wh(G, %, G,)— Ker(K,(H) - K, (G,)® K,(G,))

n: Wh(G, *4 G,) > Wh(G, x, G,)/(Wh(G,)® Wh(G,)

@ Ker(K,(H)— Ko (G, ® K,(G,)
(resp; @: Wh(J , {t}) - Ker(K o (H) ——245 R, (J))

S &,—&, o
#: Wh(J sy {t}) > Wh(J *4 {t})/(Wh(J) @ Ker (K, (H) —— K, (J))).
For the Z, action defined above on Wh(G) and KO(H), Lemma II.3 shows that
B (x*)= — B (x), xe Wh(G, *; G,) or Wh(J # {t}).

For an abelian group C equipped with a Z, action, x — x*, xe C, we make
the usual identification H*(Z,; C)={xe C|x=(—1)*x*}/{(x+(—1)*x*|xe C}. If
xeWh(G, #; G,) (resp; xe Wh(J %, {t}) with x=(—1)*"'x* in Wh(G, %, G,)/
Wh(G,)® Wh(G,) (resp; Wh(J %, {t})/Wh(J)) we write ®(x) for the element in

H**1(Z,; Ker(K,(H)— K(G,) ® K(G,)))

(resp; H**1(Z,; Ker (R o(H)—=2 R, (J)))

represented by ®(x).
Similarly, we write #(x) for the element in

H*(Z,; Wh(G, *,, G,)/Wh(G,)® Wh(G,)® Ker(K,(H) - K,(G,)® K(G,))

(resp; H*(Z,; Wh(J %, {1})/Wh(J) @ Ker (Ko (H)—=" K, (J)))
represented by #(x).

Theorem 2. Let Y be a closed manifold or Poincaré-complex of dimension n+1,
nz5 with n,(Y)=G, and X a closed submanifold or sub-Poincaré-complex of
dimension n of Y with trivial normal bundle and with n,(X)=H, H<=G a square-
root closed subgroup. Assume Y— X has two components (respectively; one com-
ponent) with fundamental groups G, and G, (resp; group J with &2 H—J,i=1,2
being the induced maps). Assume given a homotopy equivalence f: W—Y, W a
closed manifold; denote its Whitehead torsion by t(f)e Wh(G). Then:

(i) Wis h-cobordant to a manifold W' with the induced homotopy equivalence
[ WY splittable along X if and only if

B(z(f)eH ™ (Z,; Ker(R o (H) — Ko (G,)® K, (G,))
(resp; B(z(f))e H"™1(Z,: Ker (R o(H) —=24, R (J)))

is zero.
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(i) The map f is splittable along X if and only if the image of t(f) in
Wh(G)/Wh(G,)+Wh(G,) (resp; Wh(G)/Wh(J))

is zero and further, for n odd,
0(f)eH"'(Z,; Wh(G)/Wh(G,)® Wh(G )@ (Ker(K o(H) > K o(G,)® K ,(G,)))

(resp; H"*'(Z,; Wh(G)YWh(J)@ Ker (R, (H) —"2% R, (J)))

is zero.

In (ii) for n odd and t(f)elmage Wh(G,) ® Wh(G,)— Wh(G, *, G,) (resp;
Wh(J) — Wh(J #, {t})), we define 6(f)=7#(x), where x is the Whitehead torsion
of any h-cobordism, which must from (i) above exist, of W to a split manifold.
We show that 0(f) is a well-defined invariant of the homotopy class of f and
assumes for different choices of f all values in the given cohomology group. The
group in whose cohomology it takes its value is isomorphic to Waldhausen’s
group of nilpotent maps. He showed that this group is zero for H a member of a
large class of groups including free groups, free abelian groups twisted products
of Z, fundamental groups of 2-manifolds, etc., and G,, G,,J any groups [W1].
In fact, this group is zero for Z[H] a regular ring, or just a coherent ring of finite
global homological dimension. However, his conjecture on the vanishing of this
group of nilpotent maps for H a member of a larger class of groups he constructed
is not apparently known. However, Theorem 2 is used in an appendix of the
present paper to show that, for H square-root closed in G, the odd cohomology
of Z, with coefficients in this group of nilpotent maps is zero.

There is also a relative form of Theorem 2 in which W is a compact manifold
with boundary d W, Y a Poincaré complex with boundary dY, and the homotopy
equivalence of pairs f: (W, W)—(Y,0Y) is split along ¢ X =0 Y. The obstructions
to producing an h-cobordism, fixed on ¢ W, of W to a manifold split along X, or of
extending the splitting of dW— JY along d X to a splitting along X are the same
as in the absolute case of Theorem 2.

In an important special case, we weaken both the dimension and the square-
root closed restraints.

Theorem 3. Let f: W— Y be a homotopy equivalence with W a closed n+ 1 dimen-
sional differentiable or P.L. (resp; topological) manifold and Y a closed n+ 1 dimen-
sional Poincaré complex, n=4. Let X be simply-connected closed codimension 1
sub-Poincaré complex of Y. If n=4 assume that X has the homotopy type of a
P.L. (resp; topological) 4-dimensional manifold.

Assume further that
(i) =, (Y) has no elements?® of order 2
or

(i) n=2k, and letting w: n,(Y)—Z,={+1} denote the orientation homo-
morphism, for each® gen, (Y) with g of order2, w(g)=(—1}*"

2 It suffices to check this for each element g of m, (Y,) and =, (Y,) (resp; =, (Y"))
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or
(iii) one of the components of Y— X is simply connected. Then f is splittable
along X.

Theorem 3 applies to both case A and case B. The examples of non-splitting
we have constructed in [C5] [C6] (since writing the present paper) show that
at least for n even the hypothesis on x, (Y) stated in (ii) or (iii) above are actually
always needed.

Note that the hypothesis of (ii) is always satisfied if Y'is orientable of dimension
4k+3. If f is a simple homotopy equivalence, then under the hypothesis of
Theorem 3, the split map will induce a simple homotopy equivalence of com-
ponents. For n<+4 there is also a relative form of Theorem 3. For =, (Y)=0 with
Y—X having two components, n+4, Theorem 3 was first proved by Browder
[B1] and this was extended to the case where only one of the two components
of Y— X is assumed simply-connected, n+ 4, by Wall [W 2]. The case of Theorem 3
with n even and not 4 with Y—X having two components and =, (Y) without
elements of order 2 was proved by R. Lee [L1].

Denote the connected sum of manifolds P and Q of the same dimension by
P4#Q; we call this a non-trivial connected sum if P and Q are not spheres. Simi-
larly if P and Q are Poincaré complexes of dimension n we define the connected
sum P4 Q using the fact that an n-dimensional Poincaré complex, n=4, is
homotopy equivalent to a complex with a single n-dimensional cell [W2].
Taking X =S" in Theorem 3, we obtain the following

Corollary 4. Connected Sum Homotopy Criteria: A P.L.(resp; topological) closed
manifold W of dimension n+1, n=4, with either

(i) 7, (W) has no elements of order 2
or

(i) for dimension W=2k+1 and letting w: n,(W)— Z,={+1} denote the
orientation. homomorphism, for each element gen, (W) with g*=1, g*1, w(g)=
( _ l)k +1 ,
is a non-trivial P.L. (resp; topological) connected-sum if and only if there exist
Poincaré complexes, P, Q, not homotopy equivalent to spheres, with W homotopy
equivalent to P#Q.

Note that the above condition on 7, (W) is always satisfied if W is orientable
of dimension 4k + 3. In [C5] [C6] we construct examples for n even, when 7, (Y)
does not satisfy hypothesis (i) or (ii), of manifolds which are homotopy equivalent
to nontrivial connected sums but are not themselves connected sums.

The following also extends some of our results to the case n=4.

Theorem5. [: W— Y, XcY, H=n,(X) and G as in Theorem 1> or Theorem?2
but with n=4. In addition assume

(i) H is zero or is finite of odd order

3 Or as in the footnote to Theorem 1
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and

(i1) if W is a differentiable or P.L. (resp; topological) manifold assume X has
the homotopy type of a P.L. (resp; topological) four-manifold. Then we have the
same conclusion as in Theorems 1 and 2.

More generally, condition (i) may be replaced by H,(r,(X);Z,)=0 and
[ZX; G/H] - L(m, (X), w) surjective, H=PL (resp; Top). Thus Theorem 5 also
extends to the case W, X topological manifolds with =, (X)=Z.

The following important special case of Theorem 2 was proved by Farrell
and Hsiang [FH1] for n>4. The Farrell fibering theorem [F] could be derived
from it. In a special case when n=4 with H=0, the following was proved by
Shaneson [S3]. Here for a group C equipped with an automorphism o we write
C* for {xe Cla(x)=x}.

Corollary 6. Let Y be a closed Poincaré complex of dimension n+1, n=4, with
m,(Y)=Z x,H and with X a sub-Poincaré complex of dimension n of Y with
n,(X)=H. Let f: W—Y be a homotopy equivalence, W a closed differentiable or
P.L. (resp; topological) manifold. If n=4, assume that X has the homotopy type
of a closed 4-dimensional P.L. (resp; topological) manifold with H=0 or H finite
of odd order (resp; or H=2Z). Then, letting t(f) denote the Whitehead torsion of f

(i) Wis h-cobordant to a manifold W’ with the induced homotopy equivalence
f': W' —Y splittable along X if and only if ®(z(f))eH" ' (Z,; K,(H)**) is 0.

(i) fis splittable along X if and only if the image of ©(f)in Wh(Z x ,H)/Wh(H)
is 0.

When n >4, if H is not square-root closed in G, we still construct, if ®(z(f))=0,
in both case A and case B a normal cobordism of (W, f) to a split homotopy-
equivalence. Moreover, the surgery obstruction of this normal cobordism goes
to 0 in the “surgery obstruction group” of the ring Z[1][x, (Y)]. (This leads to
general Mayer-Vietoris sequences for Wall groups of R[G], G=G, *, G, or
G=J x, {t}, Z[1] =R <= Q without the square-root closed restraint.) In the present
paper the main technical use made of the square-root closed condition on H<= G
is in concluding, see Lemma 11.7, that asa Z [H] bimodule Z[G]=Z[H]®E®E,
where the involution on Z[G] sends E to E and E to E.

We briefly outline the proof of Theorems 1 and 2. First we try to produce a
submanifold f~!(X) in W"*! homotopy equivalent to X" by ambient surgery
inside W. Using a procedure related to one used by Waldhausen [W1] in his
study of Whitehead torsion of chain complexes, this is carried out in Chapter [
to fix up f ~!(X) below the middle dimensions. In the middle dimensional range
the geometry required to perform ambient surgery by handle exchanges cannot
be directly carried out and the effect of such surgeries is more difficult to assess.
So for n=2k, we go as far as we can up to the middle dimension of f/ ~!(X), and
measure the remaining difficulty in terms of certain Z [ H]-linear nilpotent maps
of projective Z[H]-modules. Then working outside of W, we construct in Chap-
ter II, by a procedure we call the nilpotent normal cobordism construction a
cobordism of W to a homotopy equivalent split manifold. Of course, we want
to replace this cobordism by an s-cobordism or h-cobordism. We compute the
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obstruction to doing just that, as a surgery obstruction, in terms of the Z[H]-
linear nilpotent maps. If the subgroup =, (X) is square-root closed in =, (Y), we
show algebraically that any surgery obstruction constructed in this way from
nilpotent maps is in the image of L, _, (7, (Y—X))— L, , ,(%,(Y)). It can therefore
be changed to zero by a further normal cobordism without affecting the splitting .

For n=2k—1, we could get a weak form of the result of the present paper by
crossing with a circle to get into a dimension in which the splitting problem has
already been solved. Of course, this employs the observation that if H is square-
root closed in G, Z x H is square-root closed in Z x G. We could then try to split
along S' x X and use the Farrell-Hsiang theorem to remove the extraneous circle.
However, the obstructions which would arise in this use of the Farrell-Hsiang
theorem are difficult to relate to our initial data. Hence this would only suffice to
prove Theorem 1 and not Theorem 2.

Instead of this, we use for n=2k—1, a direct geometric construction. After
working in Wto improve f ~'(X) below the pair of middle dimensions, we con-
struct an explicit geometric splitting of S' x W using the construction already
developed for n=2k. We then measure explicitly the obstruction to removing
the circle factor and show it vanishes under the hypothesis of Theorem 2.

The extension of our results from the differentiable and P.L. cases to topo-
logical manifolds makes use of topological transversality [KS] and surgery
[L2] [KS].

Chapter I: Below the Middle Dimension

§ 1. Ambient Surgery below the Middle Dimension

This chapter begins the proof of Theorem 2 and of its special case, Theorem 1.
Notation which will be used repeatedly is introduced in §2 and §4. The square-
root closed hypothesis is not used in this chapter.

Lemma I.1, the main result on ambient surgery below the middle dimension,
and Lemma 1.2 are stated in the present section. Section 2 reviews well-known
material on covering spaces, normal form for elements of G=G, *, G, or
G =J * {t} (which is less familiar) and corresponding descriptions of Z[G]. The
derivation of normal form and its geometric meaning is recalled in more detail
in the appendix to Chapter I. The technique of handle-exchanging, used to per-
form ambient surgery below the middle dimension, is recalled in § 3. It is applied
there to the special problems encountered in low dimensional surgery.

Section 4 contains computations relating the homology groups of various
components of the universal covers of W and Y. Nilpotent maps and upper-
triangular filtrations are used to describe the images of some of these homology
groups in each other. Using this, the proof of Lemma I.1 is completed by an
induction in §5.

4 When =, (X) is not square-root closed in 7, (Y) we have since writing the present paper shown how
to use these nilpotent maps to define the general codimension 1 splitting obstruction in our UNil
groups [C7] [C9]. The surgery obstructions arising from the nilpotent normal cobordism then can
be in general reinterpreted as being in the image of a natural map from UNil groups to sorgery groups.
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The main result of §4, Lemma 1.10 is derived algebraically from the preceding
computations of homology groups. It can also be demonstrated, along the lines
suggested in the remarks of Section 4, by a geometric argument which uses a
detailed description of universal covers as in the appendix to Chapter I. The
uniqueness of normal form, employed in the proof of Lemma I.10, contains
implicitly geometric facts about covering spaces.

Lemma L.1. Let Y be an n+ 1 dimensional closed manifold (or Poincaré complex)
and X a codimension one closed submanifold (or sub-Poincaré complex) with
trivial normal bundle in Y and with n (X)— n,(Y) injective. Let W be an n+1
dimensional closed manifold with f: W—Y a homotopy equivalence, n=5.% As-
sume given m<(n—1)/2; then f is homotopic to a map, which we continue to call f,
which is transverse regular to X (whence =1 X is a codimension one submanifold
of W) and with the restriction of f to f~'(X)—X inducing isomorphisms
m(f 1 (X) -, (X), i<m.

For m=0 and m=1 this is proved in § 3 and the proof for m> 1 is completed
by induction in § 5. Of course, there is also a relative form of Lemma I.1.

The role of Lemma I.1 as a first step in the proof of Theorem 2 is indicated
by Lemma [.2. If f is transverse regular to X < Y, write M for f~1(X); M is a
codimension one submanifold with trivial normal bundle of X. Write f!: M —» X
for the map obtained by restricting f. Corresponding to the decomposition in
case A (respectively; case B) Y=Y, u, Y, (resp; Y=Y’/identify X, with X, where
X, =X,=X) we get decompositions by cutting W along M, W=W, u, W,
(resp; W=W'/identify M, with M, where M, ~M,>~M). Thus f induces maps
Sl W, Y, (resp; f! W —Y with fI (M))=X),i=1,2

Lemma 1.2. Hypothesis as in Lemma 1.1°; then,

@ If (f),: m(M)—n(X) is an isomorphism for 0<i<m, then in case A
(S m(W) - m(Y),j=1,2 and in case B (f!),: m,(W') — n,(Y’) are isomorphisms
for 0Zis=m.

(i) If m(M)— n,(X) is an isomorphism for 0=<i=<n/2 then f is split.

Part (i) of Lemma 1.2 will be proved for m=0 and m=1 in § 3 and the proof of
Lemma [.2 will be completed in §4.

The reader may find it useful when reading this chapter to concentrate on
case A, while taking note of the modifications of the notation in case B.

§ 2. Review of Covering Space Theory and Related Algebra

Apart from the introduction of notation for various components of covering
spaces of Y and W, the main purpose of this section is to recall the uniqueness
of normal form for elements of G=G, *, G,[K 1] or G=J %, {t} (the geometric
facts corresponding to this are described in the appendix to Chapter I), and the
corresponding description of the integral group ring of G. For any group H we
write Z[ H] or just ZH to denote the integral group ring of H.

5

If Wis a P.L. or differentiable manifold, this lemma and its proof is valid for n =4
Lemma I.2, and its proof, are actually valid for all n

6
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For any connected space V equipped with _basepoint peV, write V for the
universal cover of ¥ with covering projection 7, : ¥ — Vand let p denote a basepoint
of V with ,(p)=p.

Choose a basepoint for X and Y, pe X c Y; recall that x, (X) — m,(Y) is injec-
tive. Let ¥ denote the cover of Y w1th covering projection 7ty: Y- Y and with
basepoint p lying over p and with (7,), (nl(Y))—lmage(n (X)— 7, (Y)). Assume
that the basepoint pe ¥ has been chosen to lie over p. The inclusion X — Y lifts
to a unique basepoint-preserving inclusion X — ¥, Whenever X is referred to as a
submanifold of Y, this inclusion is meant. Similarly, there is a unique basepoint-
preserving inclusion X < ¥ lying over XY or X< Y. While other inclusions
of X in Y will be employed, when we write X < ¥, unless otherwise indicated, the
unique basepoint-preserving inclusion is meant. Of course ny'(X) consists of
copies of X. (However, unless 7,(X) is a normal subgroup of x,(Y), the various
components of 7;'(X) may not be homeomorphic.) From the definitions, the
preferred inclusions X c ¥, X c Y induce isomorphisms of fundamental groups.

It is easy to see that (¥ — X) and (Y — X) both have precisely two components.
Trivially, they have at most 2 components and if ¥— X (respectively; ¥ —X) had
one component, then HL(X JE: (Y) (resp; H (X)+H, (Y)), contradicting nl(X )=
nl(Y) (resp; m, (X)=m,(Y)).

In case A, (respectively; case B) Y=Y, u,Y, (resp; Y= Y’/identifying X,
with X,, X, 2 X, >~ X) and give Y, the basepoint pe X < Y; (resp; give the spaces Y; 2
where Y’ Y/ the basepoint p,eX <Y, correspondmg to peX )i=1,2. Let Y
(resp; ;) denote the cover of Y, (resp, Y ) with basepomt pe¥; (resp; p,eY ) lylng
over p (resp, p) and with covering projection 7 : Y—»Y (resp; Ty, Yi’—> Y')
satisfying

(fty,), (m, (¥))=image(m, (X) - m,(¥)),
(resp; (ﬁyg)*(nl(f’i’)) =imagen, (X, p) » (Y, p)), i=12.

Similarly, construct the basepointed universal covers (Y, p) (resp; (Y7, p;) with p
(resp; p,) lying over p (resp; p,), i=1, 2. (Note: Of course, in case B, ¥/~ Y, but this
obvious homeomorphism will not preserve basepoints. In general, there may not
be a basepoint- preservmg homeomorphism of Y, and Y;.) There are unique
basepoint-preserving inclusions Y—» Y (resp; Yi’—> Y) lying over ¥, —»Y (resp;
YY), i=12 Similarly, there are unique basepoint preserving mclus1ons Y-Y
(resp, ¥/ —Y) lying over Y, — Y (resp; Y — Y). Thus when we write YcY (resp,
Y'<Y) it is always this 1nclus1on that is meant. Similarly, unless stated otherwise,
when we write ¥, ¥ (resp; ¥/ = ¥) this basepoint preserving inclusion is meant,
i=1,2. Of course, the composites of the preferred, i.e. basepoint preserving,
inclusions X »¥,-Y%, X ¥ 7V (resp; X=X, -V -7 X=X, -V -7),
i=1,2 are again the preferred inclusions.

The closure of the component of ¥— X containing the interior of ¥ (resp; ¥)
will be called Yg fori=1and Y, fori=2. Thus Y=Y, 1 Vg Yg- Similarly, the closure
of the component of ¥ —X containing the interior of Y, (resp; Y;') will be called
Y, for i=1 and Y, for i=2. Hence Y= Y, Uy Y,. The action of =, (X) on Y restricts
to actions on X, Y and Y (resp; Y, and Y;), Y, and Y, with the quotient spaces
being X, ¥, and Y, (resp, Y and Y. ), Yand Y.
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For a subgroup C of a group D, let [D; C] denote the left cosets of C in D
and let [D; C]=[D; C]—{C}. For ae[D; C], g(«) denotes some fixed choice
of an element g(x)ex=D. Note that if C, = C,<D are groups and «,€[D; C,],
there is a unique element a,e[D; C,] with o, ca,. The set {g(x)|ae[D; C]} is a
basis for the free left Z [ C] module structure of Z[D].

We consider an explicit description of ¥ in terms of ¥, and ¥, (resp; Y, and 1)),
[W1] the corresponding explicit decomposition of G *; G, (resp, J* {t}) in
terms of G,, G, (resp; J, &, and &,) and H, [K] [W 1], and the corresponding
explicit description of Z[G, *, G,] (resp; Z [J x4 {t}]) in terms of Z[G, ], Z[G,]
(resp; Z[J], &: Z[H]— Z[J],i=1,2)and Z[H] [W 1] [St].

For a subset S of Y and gen, (Y), Sg denotes the image of S under the covering
translation corresponding to g. Thus adopting the conventions of [W 2], S(g, g,)=
(Sg,) g, 8, 8,€6G. 7 Recall that writing H ==, (X), G,=n,(Y,) (resp; J=n,(Y’, p,)
with &;: nl (X)—J the two inclusions induced from X;—Y’) we have G=n (Y)=
G, x5 G, (resp; J % {t}, as explained in more detail below)

oG

Y in case A Y in case B

Diagram of ¥ in case A:

~

7 The corresponding convention for multiplication in =, (X) is that for loops « and §, o f denotes
first tracing the loop f followed by that of a
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In case A, recall the preferred embeddings of Y;, ¥,, X in ¥ with ¥, n¥,=X.
Then

1y v= U Ylg(a)u U Xg) U ng(a)

ae[G; Gy] x€[G; H] a€e[G; G2)
Here, for ae[G; H] and f the unique element of [G;G,] with acf, Xg(a)c
Y. g(B), i=1,2. In particular

@ %= (J Xg@.

ae[Gy; H]
Thus, we have the above picture of Y. (The reader may find it useful to recall the
universal covering space of the figure “eight” with basepoint at the intersection
of the two circles. For further details see the appendix to Chapter L)

In case B, recall the preferred inclusions of X, ¥/ and ¥, in Y, and of X, in ¥y
Wehavein ¥, ¥/ n ¥, =X, =X,=X. Let J=n,( 2,p1)andtapath1nY Y’ from
p, to p,. Of course, ¢ represents an element of x, (Y, p). Then, image of n,(Y;, p,) —
n,(Y,p) is tJt~'. Setting H=mn (X) we have the inclusions ¢&,: H=1r1(X)=
n (X,)—n(Y)=J, and &,: H=n,(X)=n,(X,)—> n,(Y;)>J where c¢(x)=t""xt.
Then &, (x)=t&,(x)t7! and 7, (Y)=G=J x, {t} =Z xJ/{t ' &, (x)t&E,(x)", xeH}.
Thus
3 Y= U Y= U T

ael[G,J] BelG,tJt—1]
(4 with Y/ g0)=Y;g() for p=at~!.

Moreover, in the decompositions of ¥ of (3), we have in addition to that of (4) the
following further identifications.

Let ae[G; & (H)]=[G; t&,(H )t~'], and let B, denote the unique element of
[G;J] with = B, and hence X, g(a)= Yy g(By). Slmllarly, let B, denote the unique
element of [G;tJt~'] with a = ,, and hence X, g(@)c Y;g(B). Then

(5) X1 g(x) as a subset of Y, g(f,) is identified with
X, g(a) as a subset of ¥;g(B,).

Explicitly, the boundary of ¥; is given by, i=1, 2,

© o= U Xg@u U X,gp

aelJ; & (H)] BelJ: %, (H))
(M A= ) X,tge'v (J X gp)e!
aclli& () Betd:& (1))

In these two decompositions, every component of d(¥;) labeled X, k, ke G lies
over X, fo~r the covering projection Y- Y/ =Y’,i=1,2. Similarly, every compo-
nent of a(Y,.’) labeled X, k, some k, lies over X,,i=1, 2.

(8) Note that from (4) above, f’z’ = f’l’t“ and thus (7) can be obtained by applying
t~! to (6).

In the geometry of Chapters I, II, III, we adopt a convenient slightly different
notation to describe case B. As &, (H)cJ=m,(Y/)and t&,(H)t~ ' ctJi™!, & (H)=
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t&,(H)t™! in G, it is natural to simply identify xe H with & (x)=1t¢,(x)t~*. Thus
we can write HcJ, Hct.]t‘1~and~the map of H=n,(X)—>n,(Y)=G is the
inclusion H<=G. Note that as, Y/ cY, the map of J=n,(Y)—>n,(Y)=G also is
injective. Thus in our new notation we have the inclusions
J
4
H G J oy {1}
tJt—1
and Egs. (6) and (7) can be conveniently rewritten

© a¥p= U X gxv | X,zt,

aelJ;H] BeltdJt—1;H)
(10) avy)= U Xegwu (J X B
aeltJt—1; H) pelJ;H]

Again note that in (9) and (10) the components of oY, labeled X k lies over X in
the projection 0¥, — Y'. Eq. (10) can be obtained, see (4), by applymg t='to both
sides of (9).

We recall the unique normal form for elements of G=G, *,;G, [K1] and
G =J * {t}. This can be derived from a description of ¥ using trees as recalled
and outlined in the appendix to Chapter I. The geometric significance of the
normal form is discussed there.

Proposition. Every element g€ G can be written uniquely in the formh=hk ,k, ... k,
where he H and
(i) for G=G,», G,, k;=g(a), for some ae[G,; HIU[G,:H], 1<i<n and

{ki,ki+1}¢[Gj;H], j=1,2 for 1=2isn—1[K1];

(i) for G=J*, {t}, k; has the form g() or g(B) or g(y)t or g(8)t " for ae[J; H]
BeltJt=1; H], ye[tJt"1 H)ée[J;H], 1<i<n, and if k; has the form g()
g2(0)t~! (resp; g(B) or g(y)t) then k;_, has the form g(B) or g(é)t‘1 (resp; (a) or
g

Example. If J=H=tJt™! so that G=Z x H, Z generated by ¢, then [J; H] =
[tJt~1;H]=@and[J, H]=[tJt ']={a} where a = Hand we maytake g(a)= 1€ H.
Hence, in this case uniqueness of normal form asserts that every element g of
Z x H can be written uniquely as either g=ht' orasht~',i=1orasg=h, he H.

Lastly, consider a description of the ring Z[G], G=G, *; G, or G=J x, {t}
corresponding to the description of elements of G in the normal form. Note first
that a fixed choice of elements g(a)ea for ac[G,; HJU[G,; H] (resp; ae[J; H] U
[tJt‘ [tJ =T, H] determines a choice g(f)ep for all Be[G; H]. In fact, let g(f) be the
unique element of § which can be written in normal form with h=1. This choice
of elements g(f) provides a basis, called the normal form basis for the left ZH
module structure of ZG.

Now in case A, define Z [6:] (also written ZG,) to be the additive subgroup of
Z[G,] generated additively by ge{G,— H}=Z[G,], i=1,2. Of course, using the
ring inclusion Z[H] = Z[G,], Z[G,]isa bimodule over Z[ H] and, as {G,— H} = G;
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is invariant under left and right multiplication by H, Z [Ei] isa Z[H] sub-bimodule
of Z[G,]. In fact, as a Z[H] bimodule, Z[G,]=Z[H]®Z[G,]. The bimodule

Z [6:.] is free as a left Z[H] module; {g(x)|a€[G,; H]} is a basis. Similarly, Z [6:]
is free as a right Z [ H] module (though, if H is not normal in G, there may not be
a set which is simultaneously a left and right basis). Of course, any tensor product
over Z[H] of Z[H] bimodules is again a Z[H] bimodule. We claim that as a
Z[H] bimodule

Z[G, 4G, 1= ZHOZG, ®Z2G,® 2G, ® 1y 2G,®ZC,®,, 2G,
D26,0,,26,8,,26,® ...

More precisely, let 4;, B;, C;, D, be defined inductively by the following:

A,=7G,, B,=0, C,=ZG,, D,=0

Ai+1=Z/\G/1®ZHDi’ B, ,1=2G,®z4 C, Ci+1:ZAGZ®ZHBi

D,,,=726,Q,,A4, i1

Obviously for any i, two of the terms 4, B;, C;, D, are zero. A4, (resp; B;; C;; D)),
when not zero, consists of a tensor product with i-terms beginning on the right
with ZG, (resp; %2; %2; Zfbll), with the terms alternating in ZAGJ1 and ZTSZ,
and ending on the left with %1 (resp; ZAGII; ZG,; ZACJ;Z). Clearly such a tensor

product exists only for i odd (resp; even; odd; even). The multiplication in ZG
induces a map of ZH bimodules, which is an isomorphism [St]:

Z[G,*4G,]=ZH® Z A4;® ZBi@ Z ¢® ZDi‘
i=1 i=1 i=1 i=1
This is immediate from the uniqueness of normal form for elements of G, %, G,
and examination of the normal form basis for ZG. Note that the normal form
basis is a union of bases for Z[H], 4;, B;, C,, D;, i= 1. The tensor products 4;, B;,
C;, D, will be identified with their images in z [G,*4G,].

We give a parallel analysis, in case B, of Z[J*,{t}]. Let Z [J] denote the
additive subgroup of Z[J] generated additively by ge{J — H}<Z[J]. Then, as
in case A, asa Z[H] bimodule, Z[J]=Z[H]® Z[J] and Z[J] is free as a right
and as a left module. In fact, as a left Z[ H] module, {g(«)|a€[J; H]} is a basis for
Z,T-/J]. Similarly, use the inclusion of groups HctJt™! to give Z[tJt~'] the
structure of a Z[H] bimodule. Letting Z[tJt~!] be the additive subgroup of
Z[tJt~'] additively generated by ge{tJt™'—H}<Z[tJt7'], Z[tJt7'] is a
Z[H] bimodule, free as both a left and as a right ZH mocule. A basis for the left
module structure is given by {g(f)|fe[tJt~T; H]}.(Note that in the &, , &, notation,
this bimodule is isomorphic to the Z[£,(H)] bimodule generated by the elements
of (J—¢,(H)<=Z[J])
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The additive subgroup Z[tJ] of Z[J %, {t}] generated additively by elements
of the form (tg), geJ is also a Z[H] bimodule. The right module structure is
obvious from H<J and the left bimodule structure is obvious from HctJr™1.
(In the &,, &, notation, as a right module Z [¢J] is isomorphic to the obvious right
Z[¢,(H)] module structure on Z[J]; as a left module it is isomorphic to the left
Z[¢&,(H)] module structure on Z[J]). Similarly, Z[J¢~'], the additive subgroup
of Z[J » {t}] generated additively by Jt~! = Z[J %, {t}] is a Z[ H] sub-bimodule
of Z[J#,{t}]. (In the &, &, notation, the left module structure is isomorphic
to the left Z[£,(H)] module structure of Z[J] and the right module structure is
isomorphic to the right Z[¢,(H)] module structure of Z[J].) Both Z[tJ] and
Z[Jt~'] are free as left and as right Z[H] modules. A basis for the left module
structure of Z[tJ] is given by {g(y)t|ye[tJt~';H]} and for Z[Jt~!] by
{g(®)t~110e[J; HI}.

I~~~ T —

Summing up, Z[J], Z[tJt™1], Z[tJ], Z[Jt~'] are Z[H] bimodules, free
as left and as right modules. Thus their tensor products, over Z[ H] are again
Z[H] bimodules. Moreover, using the ring structure of Z[J*, {t}], there is an
obvious map of any such tensor product to Z[J =, {t}]. We claim that asa Z[H]
bimodule:

Z[ 4 () =Z[H®Z N Z [T @ Z [ Z[J 1]
BZtIt O Z[Jt )@y (Z[T1®Z[Jt~1])
SZMN®Z[1I)®y(Z[1I =1 Z[1J])

@ terms with 3 tensor products @---.

More precisely, define 4;, B;, C;, D, inductively as follows
~ —
A,=2J, B, =Z[Jt7'], C,=Z[tJt7'], D,=Z[1J]
Aisy =ZJ @y D@ Z[J17'1®y 4,
By =Z[Jt_l]®ZHBi@Z]®ZH ¢
Ci1=Z[tJ]1®,z C:O®Z[tJt']®,uB;
D, =Z[tJ]1Q,uD;®Z[tJt ' ]® 4 A;
Then,
ZUx{}]12ZHO Y A® Y B®Y C;® Y D,
i i i1 i=1

=1 =1

as a ZH bimodule.

This is immediate from examination of the normal form basis of Z[J x, {t}].
Note that the normal form basis is, as in case A, a union of bases for ZH, A4;, B,,
C,D,izl.

The geometric interpretation of the decompositions of Z[G], G=G, %, G,
or G=Jx, {t} as a left Z[ H] module into the summands Z[H], A4;, B;, C;, D, is
described in the appendix to Chapter I.
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In both case A and case B, the inductive definition of 4, ., B

summed up by:
A, =A D;+B, A
B;.,=B,B;+4, C,
C,.,=D,C+C, B,

D;yy =D, D;+C, 4;.

i+1>Biz1s Cips Diyy 18

From this an easy induction shows that for i> 1,
A, =A;D,+B, A, =A4,Q,4D, ®B,®,, A
B;,1=B;B,+4,C,=B,®;4 B, ® 4,07, C,
Ciy1=D;C;+C;B,=D;®;,C;® C;®zy B,
D,.,=D,D;+C,A =D;®,,D, ®C;®,, A,

Example. f H=J=tJt~'sothatJ*, {t}=Z x H,A;=C,;=0,alliand D,=Z[H]{',
i21,B;=Z[H]t7,iz1.

§ 3. Handle Exchanges and Low Dimensions

Before proving Lemmas 1.1 for m=0 and m=1, f will be made transverse
regular to X in the following prescribed manner. As f is varied by homotopies,
where no confusion will result, the new map obtained will continue to be called f.

Let C' be a finite CW 2-skeleton for Y—N, N a tubular neighborhood of
X <Y and let B be a cellularly embedded arc in Y, intersecting X transversally in
one point and with fn C'=endpoints of . Set C=C'u f§ and denote by i the
inclusion i: C — Y. Letting g denote a homotopy inverse for f, gi is, as dim Y >
2dim C, homotopic to an embedding h: C— W. Hence, as fh~fgi~i, by the
homotopy extension principle [Sp] f can be varied by a homotopy to achieve
fh=i. Then f is homotopic, by a homotopy fixed on h(C), to a map transverse
regular® to X. Write M=/ ~!(X); M is a codimension one submanifold of W
with, as the normal bundle of X in Y is trivial, a trivial normal bundle in W. Below,
as f is varied by homotopies to obtain maps still transverse to X, we continue to
denote f~!(X) by M.

For V a subspace of ¥, the restriction of f toU= S ~}(V) will usually be denoted
by f1: U — V. The cover of Wcorrespondlng tothei image of 1, (X) —» n, (Y)=n (W)
is denoted by W and the covermg projection by 7y W — W. The induced map
covering f will be denoted by f: W— Y and the map induced by f on the unversal
covers will be denoted by f: W— Y. For the _maps induced by restrictions of f
and fon f=1(S)—> S,S<Yor f~(T)— T, T< ¥, we write f'! and f ! respectively.

Recall the notation W;, W, in case A and W’ in case B employed in the state-
ment of Lemma 1.2 and the maps f ! on these spaces. Slmllarly, define Wy =f- 1(Yy),
W, =7 (Y), W,=1~'(Y), W= f~1(Y)) and in case A W,=1"1(¥), and in case B
W’ f “(Y) It will be convenient in case B to employ a slight terminological

8 In the topological case, this uses [KS]
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abuse and refer to Y’ as a subspace of Y; this is of course possible as Y’ may be
identified with the complement of a tubular neighborhood of X in Y. Similar
remarks apply to W' = W.

We proceed to make the map f!: M — X increasingly connected. The sub-
manifold M will be modified ambiently in W by surgeries corresponding to
“handle exchanges”. This procedure is based upon the following essentially well
known technique:

Lemma 1.3. Handle-exchanging

(i) Let aen(W,, M) (resp; m(W', M;) with (f1) (0)=0 in 7(Y;, M) (resp;

(Y, X)), j=1 or 2. Then if 2i<n+1, o can be represented by an embedding

a: (D', s~ yx pr+i-i —(W,, M) (resp; (W', M))).

(i) Given an embedding a: (D) S"‘l)xD"+1 ‘= (W, M) (resp; (W', M)
j=1or 2 Let T denote a neighborhood of M U (image()). Then [ is homotopic to
a map f', by a homotopy fixed outside of T, with f'~'(Y,)=W, uimage(x) k= j
(resp; with, letting W' be the manifold obtained by cutting Y along f’ “1(X),

W' =(W' —interior (image()) Ugi—1 , pns1-: D' x D" 175,

Here the map S'=' x D"*'~'— M, (W' —interior(image(a)) corresponds, under
the identification of M, with M, k= j,to do.) In particular, f' f‘(X) =M’ , where M’ is
obtained from M by a surgery on the restriction of a to do: S~ x D"¥1~i{ 5 M.

In the differentiable case, the corners of « in part (ii) of Lemma 1.3 should be
rounded [CF].

Case A Case B

W,

Handle-exchanging in W

Proof of Lemma 1.3. We briefly outline this standard exercise in general position,
for part (i), and in the homotopy extension principle, for part (ii). [FH1] [W2].
The class aen(W,, M) is represented by an embedding a: (D}, s~ 1)—>(W M)
as 2i <dimension W—n + 1. Moreover as the normal bundle of a(D’) is tr1v1al the
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map extends to an embedding a: (D', $'1) x D"*!~'—(W,, M). As fu is, as a map
of pairs, null-homotopic, we have a null-homotopy, relative to the boundary,
of the restriction of f to image (x). Extending this by the homotopy extension
principle, we construct f’. (resp; the proof in case B is similar; we omit further
details.)

Proof of Lemmal.l for m=0. As f is transverse to X = Y with W, X, Y compact,
M has a finite number of components. We show how, if M has more than one
component, to reduce the number of them. It suffices, using Lemma 1.3, to construct
an arc in case A a: (1, oI) — (W;, M), (resp; in case B, a: (I, 0I) - (W', M), j=1or 2,
o joining two components of M and with [ Na)em, (Y, X) (resp; m,(Y', X)) the
trivial element. Varying « by a homotopy, we may further assume that
a(I) " h(C)=4. Clearly, a handle exchange on o reduces the number of components
of M and we may assume that we still have fh=i.

Diagram of W

To construct an arc o with the prescribed properties, it will be convenient to
describe the decomposition of W— M into components by means of a tree T.
Let T have one vertex for each component of W—M and one edge for each
component of M; the incidence relation is defined by having an edge corre-
sponding to a component M, of M join the vertices corresponding to the compo-
nents of W— M whose closures contain M,,.

The graph T is connected. To see this, observe that there is easily constructed
embedding T— W sending each vertex v to a point in the component of W—M
corresponding to v; as there is also a retraction W— T and W is connected, T is
connected. (In a sense, T'is a kind of “dual cell” complex to M = W)

Corresponding to the component of M which intersects h(f), there is an
edge d of T. (Note that in case B, from the construction of C’ and g, the two end-
points of d are the same point.) As h(C’) is contained in the components of W— M
corresponding to the endpoints of d, the fundamental groups of these two (resp;
in case B, one) components go onto «, (Y;) and 7, (Y,) (resp; 7, (Y")).

If T has more than one edge, that is if M has more than one component,
there is in particular, as T is connected, an edge d' with d'+d, d'nd contains
a vertex v, of d and d'.

In case A let V denote the closure of the component of W— M corresponding
to v,; let o be an arc in V connecting the component of M corresponding to d’
to the component of M corresponding to d. Then, from the construction of h(C’)
and d, nl(V)—li»nl(Y}), j=1 or 2 is surjective. As m,(Y)—m (Y, X) is also
surjective, replacing o’ by «, the sum of o’ and a loop representing an appropriately
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chosen element of m,(V), we may assume that f! (¢)en (Y;; X) is trivial. This
completes the proof of Lemma I.1 for m=0 in case A.

In case B, let V denote the component of W’ corresponding to v,. Recall the
notation W', M|, M, of §1. From the construction of C’, C and d, there corre-
spondstod a component M, in 0V A M, and M, in 8V N M,. Moreover, d’ corre-
sponds to at least one component M’ of a¥, 6VcM uM Say that M'=M;,

j=1or 2; let « be an arc in V from M’ to M. 2 From the constructlon of h(C )
nl(V)—> n,(Y’) is surjective and as n,(Y') - n,(Y’, X)) is surjective, by replacing
o by o, the sum of o and a loop representing an appropriately chosen element of
n,(V), we may assume that (f!,)(«)en, (Y}, X)is trivial..

Proof of Lemma 1.2, part (i), for m=0.If M is connected, conclude that W, and W,
(resp; W’) are connected by examining a part of the Mayer-Vietoris sequence of

W=W,u,W, (tesp; W=W'IM,=M,):
Hy(M)— Hy(W))® Hy(W,) > Hy(W) (resp; and in case B,
H (W) —— Hy(M) —— H,(W') —— H,(W))

n n

Hl(‘Y)———> Hy(X)

Proof of Lemmal.l for m=1. By Lemma 1 for m=0, we may assume that M is
connected. As f is a homotopy equivalence, the induced map f!: M — X is of
degree one [B3]. Hence, f! : m,(M)— =, (X) is surjective. (This standard fact
about degree 1 maps is proved by observing that f! factors through the cover
of X corresponding to f! (n,(M))=m, (X)) We need the following standard
result to complete the argument.

Lemma 1.4. Let ¢: G — H be an epimorphism of groups with G a finitely generated
and H a finitely presented group; then Ker¢ is the normal closure of a finitely
generated subgroup.

Proof. Let g,,...,g, be generators for G and h,, ..., h, generators for H with
wilhy, ..., h), 1Sj<t wordsin h,, ..., h, which generate the relations of H. As ¢ is
surjective, choose h;e G with ¢(h))=h;, 1 Si<s. As {h;} generates H, we can write
#(g)=v;h,,...,h), 1=j<r wherev;are wordsin {h;}. Now let K be the subgroup
of G generated by the finite set {w,(h;, ..., b)), v,(h}, ..., h) g7 '} 1Si<t, 1<j<r

Clearly K<Ker¢ and the argument will be completed by showing that the
projection p: G—G/{K) is 6¢, ¢ a map H— G/{K). Let a(h)=p(h); as
a(wyhy, ..., h))=pw;(h, ..., h)), o is a well-defined homomorphism. Moreover,
ocp(g)=ovjhy,..., hs)=vj(h'1, ..., h)=p(g;) and hence p=0c ¢. .

As 7, (M) and =, (X) are fundamental groups of compact manifolds (or possibly
X a compact Poincaré complex), they are finitely presented groups. Hence, by
Lemma .4, there are elements «,, ..., a, e Ker(f !, : n, (M) — n, (X)) with Ker(f!,)
=0y, ..., o) in T (M).
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From the diagram induced by f
0, (W, M) —2— 1, (M) —— m, (W)

m (X) —— 7, (Y)

as 7w, (X)— m,(Y) is injective, 38, en,(W, M) with 0, =a,. Represent §, by an
embedded disc D<= W which meets M transversally. Then D ~W consists of a
finite union of disjoint circles in D. We give a procedure for reducing the number
of these circles, while replacing M with M'=f~1(X), where n,(M’) is a quotient
of 7, (M).

Choose an innermost circle among the circles of D~ M < D; that is, a circle
bounding a disc D' in D with (interior D) M =@. The disc D’ represents a class
in 7,(W, M) (resp; in case B, n,(W’', M,)), i=1 or 2. Moreover, in the diagram
induced by f

Case A
nz(u/})——‘_‘)nz(u/}a M)_—" nl(M)

|

7I2(Yl-)——‘—-> nz(Yia X) ——-————)TEI(X)

Case B
(W) ———n, (W', M) —— (M)

T, (Y)—— 71,(Y, X;) —— 7, (X)

the map f!,: n,(W) — n,(Y) (resp; n,(W') = n,(Y") is, as fh(C')=i(C')c Y—N,
surjective. Hence, by an elementary diagram chase, there is a 2-disc D" in (W,, M)
(resp; (W', M,)) with D" =0D" in M and f!_(D")en,(Y,, X) (resp; n,(Y’, X,)) is
trivial. Now the disc D=(D—D')uD"” has the same boundary as D. Perform
using Lemma 1.3 a handle-exchange on D" to obtain M’ by a surgery on M. As
dim D" =2, it is easy to see that m,(M’) is a quotient of n, (M). Note that as
dim D +dim C =4 <dim W, all these discs can be chosen to not intersect C; hence
we still have fh=i. Moreover, D" nM’'=@ and thus, D~ M’ has one less com-
ponent than DN M.

Proceeding in this manner, after eliminating all the components of (in-
terior D)n M, the above procedure produces a disc with boundary &, on which
a handle-exchange, again as above varying the disc, can be performed. Thus,
handle-exchanges can be performed to “kill” the classes «,, «,, etc. Finally, we
construct a homotopy of f toa map f” with r, (f'~' (X)) — =, (X) an isomorphism.

Proof of Lemma 1.2, part (i) for m=1. By Lemma 2 for m=0 and the hypothesis
M, W, W, (resp; W’) are connected. Now we show that f! : = (W)—n, (Y),
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j=1,2 (resp; n, (W) - m, (Y")) are isomorphisms. These homomorphisms, as they
are induced from the degree 1 maps f1: W, —Y; (resp; f !: W' —Y"), are surjective.
Moreover, in the commutative diagram

(M) —— 7, (W)

.y

T (X) ——m (Y)

all the maps other than =, (M) — =, (W) are already known to be injective; hence
n, (M) — m, (W) is injective. Hence n, (M) — =, (W) (resp; n, (M) - n, (W), i=1,2
are injective. Then, by Van Kampen’s Theorem [Sp], 7, (W) =n (W) *, 4, 7, (W)
(resp; m (W)=m (W) *, o {t}) and in particular = (W)—n (W) (resp;
n, (W) > =, (W) is injective. But this factors through =, (W)— m, (Y)) (resp;
n, (W’) — m, (Y")) which is therefore also injective. We conclude that 7, (W)=, (Y))
(resp; , (W)=, (Y')).

From this point onwards, we may assume that M, W, and W, (resp; W’) are
connected and n, (M) — n,(X), n, (W) > n,(Y), j=1,2 (tesp; n, (W) > =, (Y")
are isomorphisms. Thus, we may now write W,=/f~!(Y) (resp; W/ =7 ~1(Y)). In
fact the analyses of the universal cover Y of Y, made in Section 2 now applies to
the universal cover of W, W. For example, the boundary of W, (resp; W) is described
by equations similar to (2) of §1 (resp; (9), (10) of §1).

§ 4. Homology Computations

For a connected space V with basepoint peV, V denotes the universal cover of
V,n,: V—V the covering projection, p some fixed choice of a basepoint in v
with 7, (p)=p. Standard notions about cell complexes (and Poincaré complexes)
will first be recalled. (See [W 2] for further details.) If Vis a cell complex, V has a
unique covering cell structure. If T is a subcell complex of V, n;!(T) is a subcell
complex of V. The chain complex of cellular chains of ¥, modulo the cellular
chains of n;;!(T) is denoted C + (V. T). As usual, using the action induced from
the covering translations, this is a complex of free based right Zx, V' modules.
Here Z n, V denotes the integral group ring of =, V. If V'is a (compact) differenti-
able, P.I. or even topological [KS] manifold, it has the structure of a (finite)
cell complex, (and even that of a simple Poincaré complex [W2]). If T is a sub-
manifold of V, the inclusion of T in V may be taken to be cellular. In particular,
for V, T compact manifolds, or Poincaré complexes, C, (V, T) consists of finitely
generated Zx, V modules.

The manifold structure of V determines a homomorphism, explicitly given
by the first Stiefel-Whitney class of V, n, V—>Z, ={+1}. As usual, this is used
to define a conjugation on Zm, V by the formula g=w(g)g~", gen, VcZn, V.
For B a right Zn, Vmodule, define homology and cohomology with coefficients
in B by

Hi(V, T; B)=H,(Hom,, ,(C,(V, T), B)
HU{(V, T; By=H,(C,(V, T)® .,y B)-
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In the second of these expressions, B is given the structure of a left Zz, V module
structure by the formula Ac=c1, leZn, V, ceB. (For a discussion of Poincaré
duality in this general setting, see, for example, [W 2].) An important special case
is B=Zn,V, in which case we may omit explicit reference to B.

Assume now that T is a connected submanifold, or subcell complex, of V.
A submanifold can in particular be taken to be a subcell complex. It will often
be convenient to give T and V' the same basepoint. If m, (T) — m, (V) is injective,
there is a unique basepoint preserving inclusion T— V' lying over the inclusion
T— V. Of course, n, ' (T) consists, if n, (T)+r, (V), of many copies of T. In fact,
observing that C_(n;' T) is, using the covering translations corresponding to
n, V,aright Zn,V module, there is an isomorphism of right Z n, V' chain complexes

C*(n;1 N=C.(1Q®gz,rZm V.

Here Zn, V is given the structure of a left Zn; T module using the inclusion
Zn, T—»Zn, V. Moreover, as Zn, V is a free Zn, T module and denoting the
homology of C,(n; 'T) by H{(T; Zn, V), we have the isomorphism of Zn, V
modules

H{(T; Zn, V)=H(T; Zn, T)®,, r Z7, V.

Now let T be a submanifold of V, S a submanifold of U, U and V connected
manifolds. Let g: U— V be a map, assumed proper if these spaces are not com-
pact, and boundary preserving if these spaces have boundary, of degree one.
Then if g is transverse regular to T< Vand S=g~!(T), the induced maps

HWU,S; Zn, V)>H,(V,T; Zn, V)
is surjective for all i [W2]. Denote

K, (U,S)=Kernel (H;(U,S; Zn, V)-> H{(V, T, Zn, V))
and

K.(S;Zn, V)=Kernel (H;(n;'S; Zn, V) > H{(T; Zrn, V)).

The notation K, (U, S) omits a reference to g and to the image of g, which will

usually be apparent from the context. The group K,(U, S) can be described as
the (i+ 1) homology group of the quadrad

S —T

|+ |

U——>V

[W2].

Proof of Lemma 1.2; Part (i). For m=0,1 Lemma 2 was demonstrated in § 3.
Under the hypothesis of part (i) by Lemma 1.4, K ;(M)=0, j<m. We show that
this implies K (W), K;(W,) (resp K;(W")) are zero, j<m, and, by the Hurewicz
theorem this will complete the argument.
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Corresponding to the decomposition, similar to that expressed in (1) of §2
(resp; (3) of § 2) for Y, of Wthere is a Mayer-Vietoris exact sequence of ZG modules
. K.

i1 W) —>K,(M; Zn, W)
KW, Za, W)®K,(W,; Zn, W)—>K;(W)— ---

(resp;in case B, --- - K, ,(W)>K,(M; Zn, W) K,(W'; Zn, W)—> K (W)— ---).
But as f is a homotopy equivalence, K;(W)=0 for all i. Also,

KM;Zn, W)=K,M)®,, nZ7, W

KW Zr, W) =K,W) @, ZT W, j=1,2

(resp; K;(W'; Za, W)=K,(W')®z, wyZ7y W).
Hence, we have the isomorphisms of ZG modules
(1) K,(M)®,4 ZG=K,(W,) ®,4, ZG ® K,(W,) ®,4,ZG
(1) (resp; K;(M)®,,ZG=K,(W)®,,ZG).

As ZG is a free module over ZG,,ZG, (resp; ZJ) clearly if K;,(M)=0, then
K, (W)=K;(W,)=0 (resp; K,(W)=0).

Proof of Lemmal.2, Part (ii). By Lemma 1.2, part (i), W, and W, (resp; W’) are
connected with 7, (W))=mn,(Y), n (W,)=n(Y,) (resp; n, (W')=mn,(Y")). More-
over, by Poincaré duality ([W2]) if K;(M)=0 for i<n/2, then K,(M)=0 for i<n.
Then from part (i) of Lemma 2 K;(W))=0, j=1,2 (resp; K;(W')=0), for all i and
hence by the Whitehead theorem, f is split.

Thus, to prove Lemma 1.1 it suffices to produce an inductive procedure for,
given M connected with =, (M)— 7, (X) an isomorphism and with K,(M)=0,
i<j—1, varying M to further achieve K;(M)=0, j<(n—1)/2. This will require a
more detailed description of the groups K (W) (resp; K;(W’)) than that of Eq. (1)
above. For the remainder of this section j is some fixed integer, 1 <j. Later on in
this section j will be further restricted to satisfy K;(M)=0, i<j.

Recall that the group =, (M), acting as a group of covering translations, acts
on M, Wy, W,, W=W,ug W, with the quotient spaces being M, W,, W,, W=
W, U, W,. Corresponding to this decomposition of W, we therefore have the
Mayer-Vietoris sequence of Zn, M modules

But as f is a homotopy equivalence, Ki(W)=Ki(W)=O, for all i and hence there
is the isomorphism, induced by inclusions of spaces, of Zn, M modules
K;(M) 2> K, (W) @ K,(W),  all j.

Consider now the exact sequence of the pair (W, M). As KE(W)=0 all i, this
reduce§ to the isomorphism, for all j, K;(M)=K; +1(W, M). But, by excision,
K, (WM=K, (W, M)®K,, (W, M). Thus there are isomorphisms of ZH
modules

@ K. (W M@ KW, M)=K,(M)=K (W)@ K, (W).

J+1 Jj+1
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Moreover the composite maps K ; , , (W;, M)— K (W) and K, ., (W,, M) — K (W)
are, as the composites of consecutive maps in the exact sequences of the pairs
(W,, M), v=r,1, zero. In particular, K, (W, M) - K;(W,) and K, ,(W,, M)—
K (W) are isomorphisms of ZH modules and the two decompositions of K;(M)
in (2) coincide.

Define:
Q=image (Kj+1(VI/,,M)—>Kj(M))=Ker (Kj(M)—>Kj(W,))
P=image (K, ,(W,, M) > K;(M))=Ker (K;(M) — K ;(W)).
Thus K;(M)=P® Q.
Recall the description in Eq. (2) (resp; 9 and 10) of §2 of W, and dW, (resp;

GWI’ and GWZ’) in case A (resp; case B). Corresp~ondingl¥, we have the decomposi-
tions of the complements of the interiors of W, and W, (resp; W, and W,)

W-int W, = () W,_g(@)

ae[Gy H]

W-int W= () Weg(B)
BelG2, H)

(resp; WHnt W= () Wyglmu | WigBt

aelJ; H] BeltJt—1; H]

W-int W= () Wigou |J W gBr™).

ae[tJt~1; H) BelJ; H]
Hence, we have the identifications®
C,(W-int W)= C,(W)®,4ZG, of ZG, modules
C,(W-int W,)=C,(Wp)®,5 ZG, of ZG, modules
(resp; C,(W-int W)= C, (W) ®,4 ZJ ® C,(Wp) @5 Z[tJ]
C,(W-int W)= C, (Wp)®,, Z[1Jt71]@® C, (W) ®,5 Z[J1t71]).

Correspondingly, as Z'G1 and ZG, (resp; ZJ, Z[tJt™'], Z[tJ], Z[Jt™']) are free
ZH modules

() K;(W-intW))=K (W) ®,4ZG, =P ®,,ZG,

isomorphisms of ZG, modules;

(@) K,(W-int W)= K (We)®,42G, =0 ®,4 ZG,

isomorphisms of ZG, modules;

(5) (resp; K;(W-int W)= K;(W)®,,ZJ DK (Wp)®,, Z[1J]]
2PRuZJ®0®,4Z[t]]

®  Geometrically, these identifications can be seen directly by considering, for example, W-int W,

as 7~ ' (W— W,) where Wis the cover of W with n,(W)=G, and 7i: W — Wis the covering projection
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isomorphisms of ZJ modules;
(6) and K (W-int W) =K (W) ®,4 Z[tJt T 1@ K (W) ®,5 Z[Jt ']
20, Z[tJt T ]®OP®,, Z[Jt71],

isomorphisms of Z[tJt~!] modules.

Eq. (6) can also be obtained by applying t~* to (5).)

Corresponding to the decomposmon W= WuaW (W-intW,), where 0W,=
Ty (M) (tesp; W= W/ Uy (W~ W), where W, =my; (M, U M,)) there are Mayer-

Vietoris exact sequences
= K (0W) > K (W) ® K (W-int W) - K (W) —

(resp; -+ — K,(0W))— K (W)@ K (W-int W) > K (W) — ---). As K (W)=0 for

all s, there are isomorphisms

(1) K, (0W)—=— K (W)@ K (W-int W),

(8) (resp; K,(0W}) —— K(W))® K (W-int W)).

But from Eq. (2) (resp; (9) and (10)) of § 2

9 K (0W)=K,M)®,4ZG,

=(P®O)®,4ZG;
>2P®,,2G,®0®,,2ZG,,

(10) (resp; K (0W)=K ,(M)®,4, ZJ®O KM ®,,Z[tJ]
2(POQRHZIOPD®Q®,,Z[t]]
2(PRuZI®QRuZ[tI)OQ®,nZI®P R, Z[t]]),

(11) and K (0W;) =K ,(M)®,, Z[tJt ' 1@ K (M)®,4 Z[Jt™']

PO Z[tIt ' 1®P®Q®,yZ[Jt 7]
Q@ Z[tJt ' I®P®,x Z[Jt 1))

OPRZ[tJt ™ ]1®OR,u Z[Jt71]).
These computations lead to:

Lemma L.5. In case A,

(12) K;(W)=0®,42G, asa ZG, module

(13) K;(W,)=P®,4ZG, as a ZG, module

and in case B,

(14) K(W)=0Q®,,ZJ® P®,uZ[tJ] as a ZJ module
(15) Kj(Wz’)gP®ZHZ[tJt“1]@Q@ZHZ[Jt*l]

as a Z[tJt~'] module. (Eq.(15) is just obtained by applying ¢t~' to both sides
of (14), see Remark 1 below.)
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Proof. We show in detail only (12), which is proved by substituting (9) for i=1
and (3) in (7). Eq. (13) is proved by similarly substituting (9) for i=2 and (4) in (7).
Similarly (14) is shown by substituting (10) and (5) in (8) for i=1 and (15) is shown
by substituting (11) and (6) in (8) for i=2.

We concentrate on Eq. (12). First by substituting using (9) and (3) in Eq.(7)
we get the isomorphism

(16) (P®,4ZG,)®(Q®,4ZG,)—— K (W)@ K (W-int W,)
=K;(W,)®P®,,ZG,.

By showing that one of the “components” of the isomorphism of (16) is the zero
map and another is 1,4, ,; we will obtain (12). This isomorphism of (16) is
induced from the inclusion

U Mg@w—W, and () M- W-intW,.

ae[Gy;H] ae[Gy; H]
But from (2) above, the map

0®,4ZG, — K (W-intW,)=P®,, ZG,
is zero and the map

P®,,ZG, — K, (W-intW,)=P®,, ZG,
is the identity. Hence, from (16) the map Q ®,, ZG, — K (W,) is an isomorphism.

Remark-1. Eq. (15) can be derived directly from (14) by recalling (8) of §2
W, = W’t‘1 and applying t~! to both sides of Eq.(14). That this identification
of K (W) with P®,, Z[tJt '1®Q®,,Z[jt'] is the same as that of (15)
follows because (15) is derived from equations, each of which is geometrically seen
to be obtained by applying ¢ ~* to the corresponding equation for W;.

Remark 2. We briefly outline the geometric meaning of the next few lemmas. The
map P®,,ZG, — K;(W,), which is a “component” of the isomorphism of (16)
and corresponds geometrically to

@ (K (W, M)g@)—> D K;(Mg@)———K;(W)
ae[Gy; H] ae[G1; H]
where i is induced from inclusions, need not necessarily be zero. A class in P
“dies” in Wy but does not necessarily “die” immediately in W,. This situation
will be studied below in greater detail for j the smallest integer with K ;(M)=+0,
Jj22. We shall show that if ae K (M) goes to zero in K ;(W,), then « is the boundary
of some class (not unique!) 8 in Ker(njH(Wl,M)——mHl(Yl,X)) and Lemma 1.3
can be used to perform a handle exchange on f. Hence, we will need to determine
when a class ae K (M) goes to zero in K;(W]) or K;(W,). Of course, if a goes to
zero in K;(W)), it goes to zero in K ;(W,) and thus «e P. Therefore, we are concerned
with finding a useful description of the map P — K ;(W;) and similarly Q — K (W,)
(resp; in case B, P— K (W]) and Q — K (W,)). For example, if these maps were
zero a handle exchange could be performed, if j <(n— 1)/2, to produce an ambient
surgery in W on any class of P or of Q. The maps p, and p, are introduced below
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to describe these maps of P and Q. As the proofs given are formulated algebraically,
the reader may find it helpful to keep in mind the following picture. A class a.e P
bounds a disc D in Wy (asj is the smallest index for which K ;(M)=+0) but in general
D¢ W,. Hence D'*! may cross the boundary of W,. The class p,(«) described
formally below measures how the disc D crosses 0W,. In fact, p, () is a sum of
classes in K (W, — M) as in the following picture:

ofle) = a+b

For the remainder of this section j is assumed to be an index for which K,(M)=0
fori<jand j> 1.
Lemma 1.6. K (M), P and Q are finitely generated Z H modules.

Proof. P® Q=K (M). But K (M) is the first non-vanishing homology kernel map
of the degree one map M — X. A standard argument [W2] shows that such a
group is finitely generated.

Now we consider in detail the map of ZH modules,

P K(M)—> K, (W)=0®,4,2G,20®,, ZH®0®,, ZG,.
Lemma L7. (i) In case A the map P— K(M)— K,(W)=0®,4,ZG, is given by
P250®,,Z2G,=Q®,,ZG, where the inclusion Q®,,2G,cQ®,4ZG, is
induced from ZEICZGI. The map Q — K(M)— K (W,)=P®,,ZG, is given by
QL’P®ZHZA62CP®ZHZG2'

(ii) Incase B, themap P — K (M) — K, (W)=Q® 4, ZJ® P ®,, Z[tJ] is given
by P25 0Q,, ZI®P®,, Z[1J1cQQ,y ZJ®P® 43 Z[1J]. The map

Q- K,M)—K,W)=P®,,Z[tJt']®0®,,Z[Jt ']

is given by Q2> P®,, Z[1J1 1@ Q®,5 Z[Jt~1].

(iii) In particular, xeK (M) goes to zero in K,(W) (resp; K;(W,); K(W);
K (W,)) if and only if xeP (resp; Q; P; Q) and p,(x)=0 (resp; p,(x)=0; p,(x)=0;
p,(x)=0).
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Proof. We consider, for example, the map from P. The lemma then is immediate
from the definition of p, and p,, the identification of K; (W) with Q®,, ZG,

(resp; K;,,(W’) with Q®ZHZI ®PR®,yZ[tJ] in case B) and the commutative
diagram in case A

P—=—K, (W,M)——K, (W, W,)

Jj+1

0

K,(M)—— K (W)

(resp; and in case B, the same diagram with W, replaced by W’).
Note, that if xe K (M) goes to zero in K (W), then as W, = Wy, x goes to zero

in K (W) and hence xeKer(K (M) — K ;(Wg))=P.
Example. In case B if J=H=tJt™' and G=Z x H, which was considered by
Farrell and Hsiang, Z [7] =7 [T.It\‘l/] =0 and hence in that case

py: P—>0®,,Z[tH]

py: Q- P®,uZ[Ht™].

Now in case A by applying ®,, ZG for G=G, G, to P> Q®,,ZG, and

as multiplication in ZG induces a map %1 ®,5ZG — ZG, we get an extension
py of py, p1: P®,uZG— Q®,,ZG. The map p; is an extension of p,, indeed
the unique ZG linear extension of p, as the following diagram commutes:

P —2 5 0®,, 26,
I
P®ZHZH ﬂ

P®ZHZG‘“LQ®ZHZG

Extend p; to a map, still called p}, of (P@®Q)®,, ZG

POQY®,4 26— 0®,,ZG=(PO®Q)®,,ZG

by setting it equal to 0 on Q ®,, ZG and the given map p; on P®,, ZG. Similarly,
extend Q - P®,,2G, to py: Q®,4,ZG—P®,,ZG and hence, extending
trivially, to the ZG linear map

Pyt POQ)®,ZG— (POQ)®,,ZG.

Using a parallel construction in case B for G=J x4 {t}, apply ®,4ZG to both

sides of P (Q ®ZHZ~J(-BP®ZHZ[tJ] and using the multiplication in ZG to
define maps ZJ®,,ZG— ZG and Z[tJ]®,,ZG — ZG we get p;: PQ,, ZG —
0®,yZGO®P®,4ZG. The map p; is an extension, indeed the unique extension




A Splitting Theorem for Manifolds 99

to a ZG linear map, of p, in that the following diagram commutes:

P P Q@ ZI®PR,, Z[t]]
l
P®,,ZH N

PR,y 26— Q®,, ZGOPR®,,ZG

We extend p; to a map of (P®Q)®,4,ZG—>(PO®Q)®,,ZG by setting
p1(Q® ;5 ZG)=0.Similarly, weextend p, t0 p5,:Q0®,, ZG—> PR, ZGOQ®,, ZG
and, extending further trivially to p}: (P@®Q)®,4ZG - (P®Q)®,4 ZG.

Now define p: (P@®Q)®,,ZG—>(PO®Q)®,,ZG a ZG linear map, in both
case A and case B by the formula p=p} + pj.

Remark. We briefly explain the geometric interest of the map p. As was observed
in a remark above, for an element xePCKj(M) bounding a disc 12 in W, p,(x)
“represents” in case A, the homology class obtained by “Dn(0W, —M)” as a
class in Kj(aW1 — M). Then for a class x€ K (M) bounding a disc D in W, p(x) can
be thought of as the class “represented” by

y="Dnd(W, ugW,)” in KW, ugW,).

Note that the disc D gives us a “cycle” “D n(W—3(W, uyi W,))” with boundary
“Dn oW, uyW,)”. Now we can use this cycle to “compute” p(y) by the same
method by which D with boundary x was used to compute p(x). Proceeding
inductively we use D, or rather pieces of it, to “compute” p*(x), s=0. But D, being
compact, intersects only finitely many copies of W, and W, in W. Hence, we expect
that p*(x)=0 for s sufficiently large.

We call the finite filtrations of ZH modules
P=R>FE>P>--2P=0
Q=Q03Q13Q23"':’Qr=0
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an upper-triangular filtration of (P, Q) if
(i) each ZH submodule P, and @, is finitely generated, i >0, and
(i) in case A,

pl(R)CQi+1®ZHZ~G1

and
p,(Q)<=P ®,,ZG,, i=0.
In case B,
pl(Pi)cQi+l®lﬂﬁ@3+1®ZHZ[tJ]
and

P20 P, @ Z [T @0, ®p Z[Jt1].

Lemma L8 (i) The map p is nilpotent; ie. AN=0 with p¥(x)=0 for all
xe(P®Q)®,xZG.
(ii) There exists an upper-triangular filtration of (P, Q).

Before examining the proof of Lemma .8 the reader may wish to read §5
to see how it leads to the completion of the proof of Lemma I.1. The proof of
Lemma [.8 given below derives it as a formal consequence of homology compu-
tations demonstrated above. It may also be proved by referring back again
directly to the geometric situation.

Proof of Lemma 1.8. Using Lemma 1.9 below, the proof of Lemma 1.8 is reduced
to showing that I+ p is an isomorphism for I the identity map of (P® Q)®,, ZG.
We proceed to prove this.

First consider case A. Recall the ZG isomorphism of (1) above in case A

(1) b: KM)®,4ZG—— K (W,)®,6, ZGOK ;(W,)®,6,ZG

which is induced, as a ZG linear map, from the ZH linear maps induced from
McW,, McW,, ie. from K;M)— K(W,) and K ,(M)— K(W,). Moreover,
K (M)=P@®Q and hence

(18) K,(M)®,,ZG =(P®Q)®,, ZG,

(12) and from Lemma 5 K (W)= 0 ®,, ZG,,

(19) K (W) ®y6,Z6G=Q® 4 ZG, ® 6, ZG =0 ® 4, ZG

(13) and lastly from Lemma 5 K;(W,)=P®,,ZG,,

(20) K;(W,)®,6,ZG=P®,42G,®;;,2G=P®,,ZG.
Combining (19) and (20) we get

@1) K (W) @y, ZGOK,(Wy)®6,ZG=(P®Q) ®,, ZG.

Then substituting for the left hand side of (1) using (18) and for the right hand
side of (1) using (21), the map b induces an isomorphism, which we continue to
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denote by b,
22) b: (P®Q)®,, 26— P®Q)®,,ZG.

We claim b=1+ p; in particular, I + p is therefore an isomorphism. This will
be shown by examining each of the four components of the map b corresponding
to the decomposition of (P ®,,ZG)®(Q ®,,4ZG) into the given two summands.
First, as the component of (b) of (1)

P®,4ZG— K ,(W)®,6, ZG

is induced from the inclusion P — K (M) — K (W), as is the isomorphism of (13),
it follows that the component map P®,,ZG — P®,,ZG of the map b of (22) is
lpe,.z6- Similarly the component map Q®,,ZG —Q®,,ZG of the map (b)
of (22)is 1, g ,,. z6- However, the component P®,, ZG — Q ®,4 ZG of the map (b)
of (22) is induced from

P K (M) K (W)= 0®,,ZG

and hence is given by p, on P. Similarly the component Q ®,,ZG - P®,,ZG
of the map (b) of (22) is induced from

Q- K{M)—K;(W,)=P®,,2G,
and hence agrees with p, on Q. Thus on
P@Q=(P®Q)®ZHZHC(P®Q)®2HZG,

b=1I+p.Butasbothband I + pare ZG linear,b=1+ponall of (P® Q)®,, ZG.
We similarly show in case B that I + p is an isomorphism. Recall from earlier
in this section the form of the isomorphism (1) in case B, with G =J x,, {t}

(1) b: K,M®,,ZG—— K, (W/))®,,ZG.

(14) From Lemma 5, Kj(Wl’);Q®ZH ZJ®P®,,Z[tJ]and hence

(23) K (W)®,ZG=Q®,y ZI® PR,y Z[1N])®,,2G
=0®,, ZGOPR®,,ZG

making the identification of ®,,Z[tJ]®,;ZG with ®,,ZG as tG=G. Then
substituting using (8) on the left-hand side and (23) on the right hand side of (1),
we obtain the isomorphism

b: (PO®Q®,y 26— (PO®Q)®,, ZG.

We claim as in case A, that b=1+ p. It suffices to check this on P@®Q as b and
I+ p are ZG linear. Since the map b of (1) is given by a Mayer-Vietoris sequence,
it is given on K;(M) by

P@®Q=K,(M)— K, (W,)®K (Wy) =K, (W) ® KW, 1)
—(0®,y ZIOP @,y Z[1TDB(P®,, Z[1J1 1@ Q®,, Z[J1~1]).
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(See (14), (15) and Remark 1 after Lemma 1.5.) We consider the components of
this map, which are maps of P and of Q to (Q®,,ZJ®P®,,Z [tJ] and to
(P®ZHZ[tJt“]@Q@ZHZ[JF‘]) The map Q<K (M)— K(W,) is induced
from the inclusion of M = 8(W;) and the map of (14)

Q®zuZIOP®,5 Z[tJ]) — K (W)

was also produced by restricting the map of K (6W )— K;(W) induced from
OW, = W,. Therefore we have the commutative dlagram

0
22\
K, (M) \Q ®,uZH

\ QQ@ZHZJ®P®ZHZ[L]]
—=

1

K,(%)

and hence the component map Q — K;(M) - K;(W))=Q®,4,ZJ® PR, Z[tJ]]
is just the inclusion Q=0®,,ZJc QR ZJ®P®,,Z[tJ]. Similarly the
component map P— PQ®,,Z[tJt ' ]®Q®,,Z[Jt~'] is just the inclusion
P=PQ,yZHcP®,,Z[tJt7']®Q®,4Z[Jt~']. On the other hand, the com-
ponent map P< K (M) — K (W))=Q®,4,ZJ® P @,y Z[tJ] was the definition of
the map p, and the component map

Q<K (M)— Kj(W2’)=P®Z,,Z[tJt“](-BQ®Z,,Z[Jt"]

was the definition of p,. Henceon P@Q, b=1+p.
The remainder of this section contains no further geometry and proves two
algebraic lemmas employed in the proof of Lemma I.9.

Lemma 1.9. Let P, Q be finitely generated Z [ H] modules and p: (P® Q)®,4ZG —
(P®Q)®,4ZG a ZG linear map, where

case A: G=G,*,G,; caseB: G=Jx,{t}
satisfying
(1) I+ p isanisomorphism, I the identity map of (P@® Q)®,4,ZG
(@) caseA: p(P)cQ®,ZG,, pQP®,uZG,,
case B: p(P)CQ®ZHfI@P®Z,,Z [tJ]
PQCP,y Z[1TT 1@ Q®,, Z[J171].
Then (i) p is nilpotent and

(ii) Wkiting p, for the restriction of p to P and p, for the restriction of p to Q,
(P, Q) has an upper-triangular filtration.
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Proof of Part (i) of Lemma 1.9. Write, for ae[G; H], Z [o] to denote the left ZH
module generated by gea = G=Z[G]. Then as

G= {J «

ae[G;H]
as a left ZH module
Z[Gl= @ Z[o]

ae[G; H]
and

POO®yZG= Z PR,uZ[a]® Z Q®zyZ[a].
ae[G; H) ae[G;H]

Write P, for P®,, Z[«] and Q, for Q®,, Z[«], K,=F,®(Q, and set

K= ® K,=(P®Q)®,4ZG.

ac[G;H]
For S a subset of [G; H] write K for @ K,. Write K, for K, = P® Q. Now define
aeS

T()<[G; Hl by T(0)={H} and T(i)={ae[G; H]|ac A4,, B;, C;or D;},i= 1. From
the description of 4;, B, C; and D; in §2, [G; H] is the disjoint union of the T'(i),
i>0.

Now we show that p*(K )= Kr,. The proof of Part (i) of Lemma 1.9 is then

completed by Lemma .12, with T=[G; H]. In fact, we show somewhat more
and will demonstrate that in both case A and case B, for s> 1,

(24) P (P)cP®,u D@0 Q5 4,
(25) P(Q)cQ®uBOP sy C,.

For s=1, this is just a restatement in terms of the 4;, B;, C;, D, notation intro-
duced in §2 of the hypothesis. Assuming these formulas for s, we inductively
derive them for s+1:

P (P)=p(p*(P)=p(P ®2zy D;®Q ®zn A)
<p(P)D;@ p(Q) 4,
<(PD,®QA,)D,+(QB, ® PC,) A
cP(D,D,®C,A)®Q(A, D, ® B, A,)
cPD,,, ®QA,,,, from the definition of D, and 4,

CP®ZH Ds+1 ('BQ@ZHAs+1 .
Similarly,
Q) =p(p*(QN=p(Q®,y B;®P ®;5 C)
cp(@Q)B,®p(P)C,

=(QB,+PC,)B,®(PD,+QA,)C,
cQ(B,B,+4,C)®P(C,B+D, C),

cQB,,,®PC,,,, from the definition of B, and C,,,
COQ®zp B 1 ®P®zy Csyr-
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Lemma L1.10. Let T be a set equipped with a transitive action of a group G. Assume

given corresponding to each element deT, an abelian group K, with K=@ K,
deT

a finitely generated ZG module and with K ,g<K,, for geG<ZG. Assume given
a decomposition of T into the disjoints sets T(n), n=0 with T(0)={e}, ecT. If
p: K—K is a ZG linear map satisfying

(1) I+ p is an isomorphism, I the identity map of K,
(i) p(K)= @ K, szl.

deT(s)

Then p is a nilpotent map.

Proof. First observe that as K,, (K, )g 'g<K,g, K,,=K,g. Then, for d'eT,
writing d'=eg, for some geG,
pi(Ky)=p' (K., )=p(K)g= @ (K)g= ® K,,
deT(s) deT(s)g
and T is the disjoint union of the sets T(s)g, s=0. Hence, we can define y=
I—p—p*—p’—):@DK;—[]K,;. Let §: P K,— [] K, denote the usual
deT deT deT deT

inclusion. Clearly x(I +p)=# and in particular, as I+p was given in (i) as in-
vertible, Image (y) =Image(@) and thus x(K,)=Image (#). Hence for xeK,, deT,
only finitely many terms of p'(x), p?(x), p>(x), ... are non-zero. It follows that for
any xeK, for n, sufficiently large p"(x) =0, if K is generated over ZG by {z;}, ., .,
with p™(z)=0, then letting n=maxn,, 1<i<r, p"=0. T

Proof 1° of Part (ii) of Lemma 1.9. Recall the normal form basis for the left ZH
module structures of 4;, B;, C;, D;, ZG, defined in §2. Correspondingly we have
decompositions,

PRy D;®0®;54,= ) P®pZHg®)® ) 0®,;ZHg()

63[GI;)H] aelG; H]

<Dg acAg
0®,4B,®P®,yC,= Y 0®,,ZHgH® Y P®,zZHg().

ﬂ;{WBHJ ye[G;Cm

By y<Cs

Here the elements g(x), g(fB), g(y), g(5) are given by the normal form basis. There
are obvious isomorphisms

80:Q®ZHZHg(U)_"Qa U=5,ﬁ
e, PR,y ZHg(v)>P, v=a,y

and these maps are trivially extended to
PR,y(D,®C)DQR,,4(A,® B)

by setting them equal to zero on the other summands.

10 This algebraic argument can be interpreted geometrically using the geometric interpretation of
normal form outlined in the appendix to Chapter I
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From (24) and (25), for xe P we get
26) pP)= ) &(P'X)g@)+ Y & (p*(x)g)

4e[G; H] ae(G; H]
dcDg acAs

and for xeQ,

27) p)= Y g x)gB)+ X &(p*(x)g).
ﬁ;[ghil] vilgcjﬂ

Define F,=P, Q,=Q, and for s>0, P,=the Z H submodule generated by &,(p*(P)),
for 5e[G H],6<=D and by ¢ (p° (Q))forye[G H]l,yc CS,Q =the Z H submodule
generated by ¢, (p* (P)) for ae[G H], x= A and by g;(p*(Q)) for Be[G; H], B<B,.

As P and Q are finitely generated, say with generating sets {p,,...,p,},
{q,, ..., 4, respectively and from (26) and (27) for only finitely many 6, ¢;(P) are
non-zero, 1 <i<r, and similarly for a, B,y we conclude that P, and Q, are finitely
generated. Moreover, as p°=0 for s sufficiently large, P.=Q_=0 for s sufficiently
large.

Next, we check that in caseA, p,(P)=Q;,, ®2Hﬁ? and in caseB,
p,(P)=Q; ., QuuZl® P, ®ZHZ[tJ] By the same method, we can also check
that in case A, p,(Q)= P, ®ZHZG2, and in case B

p2(Q)=P ®ZHZ[tJr1]@Q,~+1 ®,uZ[Jt1].

Taking s=i in the definition of P, P, is generated by sé(p (P), &,(p' ‘(0)); hence,
it suffices to check that (i) p, (85( ( ))) and (ii) p, (¢, (p'(Q)) are included in

01 ®ZHZG1 in case A, and included in Q¢+1®ZHZJ® P, ®;uZ[tJ] in
case B. We check only (ii), by examining Eq. (27); (i) follows by the same discussion
applied to (26). Taking Eq.(27) for s=i, and applying p to both sides, we get
for xeQ,

28) P =P ()= Y £, (' NN+ X pale(p'(x)) g(B)
v«fylgzc:‘ll ﬁ?g;).‘;l,»”

= Y Y &l x)ed)g0)

velG; H] 6'€[G; H]
y<Cs 6'cDy

+ X Y o (e, (0 (X)) g(@) g (7)

yelG; H] a'€[G; H]
y<Cs a' <Ay

+.o+---, from (26) and (27).

But the elements g(d')g(y) together with the similarly constructed elements
g(»)g(B), yelG;H], y=C,, are the normal form basis for C,,,; similarly
g(@) g(y) and the similarly constructed g(8') g(B), B'€[G; H], f' = B, are the normal
form basis for B, ,. Hence Eq.(28) is Eq. (27) for s=i+1. In partlcular,

i+1°

e (py (6, (0" DNER 1, &,(p, (e, (P (X))EQ;
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and thus

ey (P ONER, 1, & (p()E€Q;,, for y=¢ (p'(x)=P.

But
p= 2 elp,(Me@)+ Y &0, (»)g@)
T e

and hence p, (y)eP,, ®,y D, ®Q;,, ®,, A4,. In case A, this asserts that

0, (e, (P (P)=Q,,, ®,, ZG,
and in case B that
Py (S,Y(Pi(P)))C Qi1 ®zy zJ @F, ®;nZ[tJ]]

as was to be shown.

Lastly, we check that Fo P, and similarly we get 0,5 Q, . P, , is generated
by e5(p'*'(P)) and &, (p'*'(Q)), 7,0 as above. We check for example, that
sv(p”l(Q))cI’i; the corresponding argument for ¢,(p'*'(P)) is entirely similar.
Now, g(y)eC;,; and C,,,=D,;®,, C, ® C,®,, B,. From the construction of
the normal form basis for C, ,, we have that g(y) is of the form g(d) g(y’) or
g(7) g(p) for 6,77, p€lG;H], 6<=D,, y'= Cy, g(#)=C,, g(B')= B, . Say, for ex-

ample, that g(y,)=g(d,) g(v;)-

For xeQ,
29) P X)=p' (" N=p"( Y &, (p,(NeG)+ Y 5 (p(x)g(B)
y,f'[g'b,m ﬂ’;[[g;;ll

= ) Y &', p(x)g(6) g(y)

y'elG; H] d€[G; H]
y' <Cy <Dy

+ Yy 2 &', () g@) g(v)
y'e,[G;CH] ae[G;H]
Yy eCy acA;

+-+4--, from (26).

Eq.(29) is again an expression with the coefficients in Z[G] being members of
the normal form basis and thus is essentially (27) for s=i+ 1. In particular, for

xeQ,
&, (0" (x))=¢,, (p"(ey;)(X)))
e, (p'(P))
€P, as was to be shown.

§ 5. Completion of Proof of Lemma 1.1

Proceeding inductively, we assume that Lemma I.1 has already been verified

-1
form=j—-121, mg%. We show Lemma I.1 for m=j. By the inductive hypo-
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thesis, we may assume that M is connected, 7, (M) ==, (X), and that j is the smallest
integer for which K;(M)=+0. Hence the entire discussion of §4, in particular
Lemma 1.8, is applicable.

Now let
P=P>oP>:-2P=0
0=0,>0,>-0,=0

be upper-triangular filtrations of (P, Q), K;(M)=P @ Q. These, by Lemma 1.8,
certainly exist. Let r be the number of non-zero terms in the sequence
{P,,Q0,F.,0,,..., P, 0Q,}. In this section, we construct a map f’, homotopic to f,
with f’ transverse regular to X, and writing M’=f""!(X), M’ connected with
n, (M')=mr,(X), K;(M)=0,i<jand K;(M")=P @ Q' with (P, Q) having an upper
triangular filtration with at most r—1 non-zero terms. By decreasing induction
on r, the proof of Lemma 1.1 will then be complete.

Let s be the largest index for which P. @ Q 0. Say, for example, P,#0. Then
p,(P)=0. Let z,,z,,...,z, be a finite set of generators of P, as a ZH module.
By Lemma L9, z;eKer(K;(M)— K;(W,) in case A and z,eKer(K;(M,) — K ;(W})
in case B.

Consider the diagram in case A

j+1(XaM) ———“*ﬂj_'_l(Yl,"Vl)

7Ij+2(ﬂ)—————~——-> n

h|= h|=

K, (M)

K;(W)

7[1-+1(VV1,M)*>7!J-(M)*————>HJ.(M;Zn-lM)

71'J-+1(Yl ,X)

where § is the quadrad,
- W/l

— 5 Y

e —

-
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and in case B, the diagram

Tjy2 ®@)

(XL, M) ——m;

(lY', W)
=|h =|h

N

7Ij+1(VVi', Ml)"’nj(M)——'—"Hj(M; Zn, M)

1 (Y, X))
where § is the quadrad

M, — W

|

X, — Y

Here the upper rows and left-hand columns are exact, and h is the Hurewicz iso-
morphism (see §4). From this commutative diagram in case A (resp; case B)
z; can be lifted to zien; , (X, M) (resp; n; (X, M,)), and as z; goes to zero in
7,y (Y, W), (resp; m;,, (Y], W), it can be lifted to an element z{ in nj”(ﬁ). But,
letting y; denote the image of z;' in =; , (W, M), (resp; =, , (W], M,)), we have
that y;eKer(n;  (W;,M)—>m, (Y}, X)), (resp; Ker(nj“ (W), M,)— Ty (Y}, X))
and y, is represented by (D*',§%) 2% (W,, M), (resp; (W/, M,)) with y,(S’)
-1
representing z,eK;(M)cH;(M;Zn, M). As j<(nT) handle exchanges can be
performed on the classes y;, by Lemma 1.3, to obtain f’ homotopic to f and with
M'=f"~1(X) produced from M by surgeries on embedded spheres representing
z;. Then, as this is surgery below the middle dimension, a standard argument
[W 2], (which is essentially reproduced in the proof of Lemma I.11), shows that
M’ is connected, n, (M')=m,(X) and K;(M')=0, i <j,

Kj(M,);Kj(M)/{Zi}I §i§u=(P@Q)/{Zi} =P/{z} ®Q.

We will need to be more explicit in our description of K;(M’). Using the de-
composition K;(M')=P'@® Q' defined in §4, and writing p}, p, for the associated
maps defined in §4 we have:

Lemma I.11. P'=P/{z;}, Q'=Q and in case A diagrams
ILQ@ZHZAGI Qi‘*P@zHZAGz
PI‘L"QI@zuZAél Q,_‘)E—’P,@)znzpaz

commute.
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In case B, the diagrams

])_ﬂl__) Q ®ZHZ]®P®ZHZ[tJ]
Pl ®,, 20 ®P @,y Z[t]]

and

0 P®,,Z[() 1 1®Q®,, Z[J171]

|

0P, Z[tJt 1@ Q ®,, Z[J 1]
commute.

Using Lemma .11 we complete the proof of Lemma I.1. Let P’ =Image (P, — P’),
Q:=Image(Q,— Q). Then from Lemma I.13,

P=Po>P>F>---DF
0'=0,20120,>20,

is easily seen to be an upper triangular filtration of (P’, Q') with K;(M")=P' & Q".
But as P'=P/{z;} =0, this filtration has at most r—1 non-zero terms, as was to
be shown.

Proof of Lemmal.ll. Let X xIcY, with X x0=X. Let C be the cobordism,
Cc W, ,formed by attaching handles corresponding to y,to M sothat cC=M U M’.
They by Lemma 1.3, using handle exchanges f is homotopic, by a homotopy fixed
on W,, and restricting to a homotopy from W, to Y, to f” with f"(C)c X xI,
fM)cXx1land ff(W-C)cY,—X xI.Set C,=C—-M'".

As j<(n—1)/2, K;,(M)=K;(M)=K;(C)=0 for i<j. Moreover, the inclusion
M’ — C induces isomorphisms K;(M’)=K;(C) and the inclusion M — C, as C
is formed by attaching (j+ 1) dimensional discs to M, induces an isomorphism
Kj(M)/{Zi} EK](C)

Corresponding to the decompositions

W=W, Uy We, W=Wuy W,
W=W,u )y (We—Cp), W=(W,U C)upy (W,—C,)
W=(W, Uz C)Up(We), W=(W,u,, C)UW,

there are Mayer-Vietoris decompositions. Comparing these, and recalling that
K,(W)=0 for all i, '
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I

K;(C) —=—K;(Wuy O) ® K, (W)

J

K;(M)—=— K ;(W,uy O)@ K ;(W,— C,)

Here the vertical maps are induced from the inclusions of spaces. The lower three
vertical maps are isomorphisms as K (M) — K j(C) is. Moreover, K (W, Uy, O)x~
K;(W)/{z;} as C is formed by attaching handles to the classes z;. In particular,
decomposing K;(M')=P'@Q', we get that

Q'=K,(W,~ C))=K,W)=Q, and
P' =K (Wuy O)=K,(W)/{z} =Pz} <i<o-
Now, corresponding to the decompositions of W, using
W=(W, Uy C) Uy (W, —Cy)

there are the isomorphisms discussed in §4
K(WuyO)=0'®,,2G, and K;(W,—Co)=P' ®,,ZG,.

The maps of P'®,,ZG, to K(W,—C,) and of Q'®,,ZG, to K;(W; U, C) are
induced from the inclusions of
oW,—Cy)= |J M g@)—(W,—C,) and

ae[G2; H)

dW, o CO)= | M'g() (W, 0y O).

ae[Gy; H]
Similarly, using W=(W, u,, C)u.W, we get
Q' ®znZG,=K;(Wuy O)®,4ZG, =K (W, uy (),

with the maps again induced from the inclusions of subspaces.
Thus, we have the commutative diagrams

P1

-

P=K, (W, M) cK;(M) —— K;(W) «—E—Q®ZHZ%;1
P'=K, (W, C) cK,(C) —— K(W)) —=—0'®,,4ZG,

Il)(ng+l(VVr_ CO’M')CK;'(M()“—"‘_” Kj(Wl" Co)‘—E‘—Q(®ZHZTG1

pi
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and
P2
s = Y
Q-:—KHI[W”M) =K;(M) —— K;(W,) ———P®;,2G,
0'=K;,,(Wuy <=K;(C) __’"’Kj(WzUMC)‘**;—“‘P/(@zHZGz
Q'=K,, (W, uy,C, M)CKJ(MI)————’K (Wy Uy C)——P' ®ZHZGz

Hence the lemma has been proved.

Appendix to Chapter I

Geometry of Normal Form for G, *, G, and J »4 {t}

In this appendix we study in more detail the universal cover of Y and interpret
geometrically the normal form for elements of G, , G,, which is familiar, and of
J#y {t}. The use of trees for this purpose, standard for G= G, %, G, and suggested
also for G=J x, {t} in [W 1] is technically refined below by using oriented trees.

Recall, a tree is a connected and simply connected graph. The tree T, used
to describe Yand Y=r;!(X), is defined as follows. To each connected component
of Y—n;'(X) there corresponds a unique vertex of 7, and two vertices are con-
nected if the closures of the corresponding components of ¥ —n;*(X) have non-
trivial intersection. Such an intersection is a connected component of iy H(X)
and hence each edge corresponds to a connected component of n;!(X). That
T, is actually a tree follows immediately from the connectedness and simple-
connectedness of Y. (In fact, it is easy to construct an embedding T, — ¥ with the
image of each vertex lying in the corresponding component of Y ny }(X) and
with a retraction Y— T,.) For an edge d of T, write X to denote the corresponding
component of n;!(X). The edge corresponding to )? < Y will be denoted d, and
will be called the base edge.

Given a tree T with some edge d,, of T called the base edge, define inductively

Co(T)= {do}
C,..(T)={danedge of T|Jedged'eC,,dnd +@,d¢C,, d¢C,_,}.

Letting |T| denote the set of edges of T, as T is a tree, |T| is the disjoint union of
the sets C,(T), n=0.

A tree will be called oriented if every edge is given an orientation. No com-
patibility condition on the orientations of different edges is assumed. The orien-
tation of an edge is described by stating in what direction it is “pointing”; i.e., by
ordering its endpoints.

In deriving uniqueness of normal form, it is useful to orient the tree T, by the
following procedure. In case A, let e: T, — S be the unique graph map (sending
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vertex to vertex, edge to edge, preserving incidence relations) of 7, to the graph S,
consisting of two vertices v, and v, with one edge d connecting v, to v, and with
e(v)=uv,, for v the vertex of T, corresponding to W,. Now orient d to point towards
v, and give T, the unique orientation making e orientation preserving. Thus,
T, has been oriented so that each edge points to its endpoint corresponding to a
component of 7; ! (Y;).

In case B, intuitively we want to orient T, so that the edge d points to the
vertex corresponding to the component of Y —n;!(X) for which X, is a boundary
component lying over X, < Y'. Precisely, to orient Ty in case B, let Y denote the
cover of ¥, Y= U Y'(n)/X,(n)=X;(n—1), Y'(n)=Y'. The infinite cyclic group Z

neZ

acts on Y with, for meZ, m(Y'(n))=Y'(n+m), and Y=Y/Z. This is the usual
“paving-stone” normal covering space of Y. (If G=Z x_H, Y=Y) Write #: Y - Y,
#: Y— Y for the covering maps. Thus, #t=mn,.

QR R

<<
>

RaS
<
<

—
<
>
=<

Now define a graph T; as follows. Corresponding to each connected component
of Y—%~!(X) there is one vertex of T; and two of these are joined by an edge if
the closures of the corresponding components of ¥—#%~!(X) have non-trivial
intersection. Thus, each edge corresponds to a connected component of ! (X).
Orient each edge to point from the component corresponding to Y(n— 1) to that
corresponding to Y(n). Hence, T; is simply a line with all edges pointed in the
same direction.

Ty

The action of the group of covering translations Z on ¥ induces an orientation-
preserving action of Z on T;. Now, let e: T, — T; be a graph map with for de|T, |,
e(d) an edge corresponding to (X ,). Now give T, the unique orientation making e
orientation-preserving.

The tree T, may, following [W 1], be described algebraically and we indicate
how this is done; we also describe the orientations algebraically. The reader may
find the following schematic diagrams, which describe a neighborhood of d,
in T,, helpful.
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EC)
dggfei)
do dog () o
g 9, Y9 (x)
d
dog(h1) 0g (@)
Y gley) 729(“1)

«,e[G,; H], B;€[G,; H], d, corresponds to X c Y.
I. Diagram of neighborhood of d,, in T, in case A. (See Eq. (2) of §1.)

dgg (6,) !

welJ, H], B,el[tJt~*; H], y,e[tJt~T; H], 6e[J; H], d, corresponds to X ¥
II. Diagram of neighborhood of d; in T, in case B. (See Eq. (8), (9), (10) of §1.)

The action of the group G on ¥ and on n;!(X) induces an action of G on T,.
This action is clearly transitive on | T, | with isotropy subgroup H=m,(X)<=r,(Y)=G.
Moreover, this action is orientation-preserving. This is trivial in case A, and in
case B follows from the action of the covering translation group Z on T; being
orientation-preserving.

Following [W 1], the (oriented) tree T, will be described algebraically as
follows. In case A, the set of vertices of T, corresponds to [G; G,]Ju[G; G,] and
the set of edges of T, corresponds to [G; H]. (See (1) of §1.) An edge d corre-
sponding to ae[G; H] joins the vertex v, corresponding to B,€[G; G,] to the
vertex v, corresponding to f,€[G; G,]if ac B, and e f,. The edge d is oriented
to point towards v, . The action of G on Tj is, in this formulation, the obvious one
induced from the action of G on [G; G,], [G;G,], [G; H]. Note that as this
action is transitive on [G; H], that is, on the set of edges of T, a “neighborhood”
of any edge d of T, is carried, by an orientation-preserving graph map sending d
to d, to the neighborhood of d,, described in schematic diagram I.

We briefly recall how this is used to obtain uniqueness of normal form for
elements of G=G, x4 G,. If de|T,| with d+d,, as T, is a tree, there exists a unique
series of edges (d,,d,, ..., d), d,=d with d, intersecting d;,,, 0<i<s—1 in one
point. Then, using the action of G on T, and the description of the oriented
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neighborhood of d,, it follows that d can be described by
(1) d=dyg()g@,)... g(a), oe[G;HJU[G,;H] 1=iss,
{oj 2, }¢[G:;H], k=12, 15j<s-1.

J
In fact,d; ., =d;g(a;,,), 0Si<s—1.

Conversely, using the fact that every edge of T, has a neighborhood iso-
morphic, by an orientation-preserving isomorphism, to that described above
of d,, it follows that for any edge d written in the form of (1) above, the series
(d,, ...,d) defined by d;_ , =d;g(«; ), 0Si<s—1 has d, intersecting 4, , in one
point, 0<i<s—1. The point of this is that we have shown that each de|T}|, d*d,,
can be written uniquely in the form of Eq.(1). As G acts on |T| with isotropy
subgroup H, it follows that any element ge G can be written uniquely as

g=hg(“l)g(a2)--~g(“s)a aie[Gl;H]U[Gz;H] 1=i<s,
{ocj,aj“}q:[Gk;H], k=1,2, 1£j<s—1, heH.

This is the standard uniqueness of normal form for elements of G, *4; G,. Note
that for g written in this form, d, ge C(T,).

Now the tree T, will be described algebraically in case B. In that case, the set
of vertices of T, corresponds to [G; J] (see (3) of §1) and the set of edges, | T/,
corresponds to [G; H] (see (5) of §1). An edge d corresponding to ae[G; H] joins
v, corresponding to f,€[G;J] to v, corresponding to f,€[G;J], and points
towards v, if and only ifac §;,t ' a = B, (see (5) and (8) of § 1). With this description
of T, the action of G on T, is induced from the action of G on [G;J] and [G; H].
This action is transitive on [G; H] and hence on |T;|; thus as in case A, each edge
is carried by an orientation preserving graph map to the neighborhood of d,,,
described in schematic diagram II. For de|Ty|, constructing (d,,...,d) and
arguing as in case A, it follows that every element ge G =J *, {t} has the following
unique normal form [W1]:

g=hkk,...k, k=g() or gB) or gy)t or g©d)t!
for q,e[J; H], BieltJt™';H], vy,e[tJt ';H]

6,€[J;H] and if k; , is of the form g(«;,,) or 8(0;,,)t™" (respectively g(B;.y)
or g(y;,,)?) then k; is of the form g(B,) or g(éj)t‘1 (resp; g(a;) or g(y)t. As in
case A, for g in this form, d, ge C(Ty).

From the uniqueness of normal form, we have that in case A, for G,= G, ;4 G,,
i=1,2,H=G,nG, and in case B,for J, tJt ' cJ*, {t}, H=J ntJt 'inG.

From the discussion of normal form in both case A and case B it is obvious
that the summand of Z[G], 4,® B,;® C;®D,, defined in §1, is generated as a left
Z[H] module by {geG|d, ge C{(Ty)}.

The reader may check, though we do not explicitly use this in the present
paper, that for geG, *, G, or geJ *, {t}

geA, forsomeiiff Y, gc¥,, Ypg¢tVY,
geB, for someiiff g Y, Y, g¢Y,
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geC,for some iiff gV, YpgdYy
geD, for someiiff Vg ¥, Y, gdtY;
geHif YpgcYpand Y g Y.

Chapter II: The Odd-Dimensional Case

§ 1. The Nilpotent Normal Cobordism Construction

This chapter completes the proofs of Theorems 1 and 2 for n=2k and also develops
material that will be used in Chapter III to complete the argument for n=2k+1.
Without using the square-root closed hypothesis on H < G, this section constructs,
if n=2k>4 and ¢(z(f))=0 by a procedure we call the nilpotent normal cobordism
construction a normal cobordism of W to a homotopy equivalent split manifold.
The intersection form of this 2k +2 dimensional normal cobordism (denoted A
in the terminology of [W2, Chapter V]) is computed in Lemma I1.6 in terms of
the maps p,, p, and p defined in Chapter I, §4. The self-intersection form (u in
the notation of [W 2, Chapter V1) of this normal cobordism could also be studied
by similar methods. However, for the application we make of Lemma I1.6 to the
square-root closed case, this is not needed and is not discussed below.

In §2 Lemma I1.10, which uses the square-root closed assumption on H <G,
is used to show that the surgery obstruction of the nilpotent normal cobordism
constructed in §1 lies in a certain subgroup of the surgery group of G. This leads
directly to the construction under the assumptions of Part (i) of Theorems 1 and 2
of an h-cobordism, and under the assumptions of Part (ii) of Theorems 1 and 2
of an s-cobordism, of W to a split manifold.

For P finitely generated projective right module over the integral group-ring
ZD of a group D, [P] denotes the element of K o(D), the reduced projective class
group of the ring ZD, represented by P.

Lemma IL1. Let n=2k, W a closed manifold and Y a closed manifold (or Poincaré
complex) of dimension n+ 1. Assume given X a closed submanifold (or sub-Poincaré
complex ) of dimension n of Y with trivial normal bundle and with H=mn,(X)— n,(Y)
injective. Assume further that f: W—Y is a homotopy equivalence transverse
regular to X with, writing M= f~Y(X), M connected and n,(M)— n,(X) an iso-
morphism and K (M)=0, i <k. Then letting K,(M)=P @ Q denote the decomposition
of ZH modules defined in 1.4,
(i) K,(M)isastably free ZH module and [P]= —[Q]. Moreover, in case A

[P] GKCI‘(KO(H) - KO(G1)®K~0(GZ»;
in case B,
[PleKer(Ro(H) =225 R \(J)).

(i) Any finite set of elements of P (respectively; Q) can be represented by
embedded disjoint framed spheres in M for k>2. The intersection pairing [W2;
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Chapter V] of K,(M) is trivial when restricted to P (resp; Q) and Q = P*. Thus,
[P]1=-[P*]

(iii) If [P]1=0, f is homotopic to a map f' with M'= '~ (X) — X k-connected
and with, writing K,(M')=P' @® Q' for the decomposition of 1.4, P’ and Q' free ZH
modules.

Thus from (ii), if P is a free module P and Q are, in the terminology of [W2;
Chapter V] subkernels of the Hermitian form defined on K, (M) by intersections
and self-intersection. This can be used to show that if [P]=0 the surgery problem
of M — X induced by the homotopy equivalence f can be solved to obtain a
homotopy equivalence.

Proof of LemmaIl.1; Part (i). As K,(M)=0, i <n/2=k, n=dimension M, K, (M)
is a stably free finitely generated module [W2; Chapter V]. Hence its summands
P and Q are finitely generated projective modules and [P]= —[Q]. Moreover,
in case A from Lemma L5 the image of [P] under the map K (H)— K(G,) is
[K,(W,)] and the image of [Q] in K (G,) is [K,(W,)]. In particular, K, (W) are
projective ZG; modules for j=1, 2. But K;(W))=0 for i+k by Lemma L.5. Hence
as the chain complex of (Y, W)) is a free finitely generated ZG; complex whose
only non-zero homology group is the projective module K,(W), by a standard
argument [W 2] K, (W) is stably free.
Similarly, in case B,

(&, =& )P1=¢, [P1+&, [Q1=[P®,y ZI®Q®, Z[t]]].

(Recall from 1.1 that as a left ZH module Z [tJ] is isomorphic to the left Z [£,(H)]
module structure of Z[J].) Again by Lemma 1.5

[(PO,uZJ®Q®,y Z[tJ]]=[K (W]

and the rest of the argument for case B is exactly as in case A.

Proof of Part (iii). Recall from the definition of P and Q in 1.4, any element
veP <K, (M) is represented by du for some €K, ,(W,, M). In particular, for a
finite set {V;} 1<i<s, of elements of P, there are {o,} with do;=V, 1 <i<s. Now as
K, (W, M)CKj(M)= 0 forj<k and, see I1§1, n, (M)=m, (W), {o;} is represented
by maps which we denote simply «;: (D**', §)— (W,, M). But as 7, M=m, W,,
the standard piping argument (see for example [W 2; p. 41]) shows that {«;} can
be represented by immersions with {0«;} framed embedded and disjoint spheres.

Thus the non-singular intersection form of K, (M) [W2; Chapter V] is trivial
when restricted to P, or to @, and hence its adjoint [W 2; p. 44] induces the iso-
morphisms P~ Q*, Q= P*.

Proof of Part (iii). If [P]=0, then by performing trivial ambient surgeries on
M = W to stabilize P, it may be assumed free. As Q = P*, Q will then also be free.

The map ¢ is defined and Lemma I1.2(i) is proved in [W1; §5]. Part (ii) of
Lemma I1.2 just quotes for the case of manifolds a result of [W 1; §6]; there the
modules P and Q are defined by an analogous procedure to that used in 1.4 in the
general setting of a CW-complex splitting problem.
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Lemma I1.2. (i) In case A,

$: Wh(G, *,G,) — Ker(K,(H)— K o(G,) ® K ,(G,))

(resp; in case B, ¢: Wh(J %, {t}) — Ker(K ,(H) LR K, (J)) is surjective.

(i) Hypothesis as in Lemmall.l. Then [P]=¢(t(f)), t©(f) the Whitehead
torsion of f.
Of course Lemma I1.2 and the following result, Lemma I1.3, are not needed if

Ro(H)—> R o(G)®K o(G,) (resp; R o(H) —2~2+» K (J)) are injective. Lemma I1.3
describes the behavior of the usual Z, action on Whitehead groups and projective
class groups in Waldhausen’s exact sequence for Wh(G), G=G, *, G, or G=J #, {t}.

Lemma IL3. Let HcG, (resp; &;: H—J) be inclusions of groups, i=1,2, and set
G=G,*; G, (resp; G=J#, {t}. Assume given homomorphisms wy: H— Z, and
w;:G,—Z, (resp;w;: J>Z, andw,: Z — Z,, Z generated by t) with w, restricting
to wy (resp; with w, &, =wy) fori=1,2. Let w: G — Z, denote the unique extension
of w; and w, (resp; w, and w,) to G. Let x — x* denote the Z, action on Wh(G)
and on K ,(H) determined by the involutions of ZH and ZG defined in the usual way
using wy and w. Then for xe Wh(G), ¢(x*)= — p(x)*.

The proof of Lemma I1.3 is technical and is deferred to the end of § 1. Lemma I1.4

is also trivial if K,(H)— Ky(G,)®K,(G,) (resp; KO(H)ﬁ*—_—iz—*—»KO(J)) is
injective.

Lemma IL4. Let Y be a closed manifold or Poincaré complex of dimension n+1,
n=4, with 1, (Y)=G, G=G, %, G, (resp; G=J », {t}). Then if
(];(T(f))EH"+1(Z2; KCI’(KO(H) - KO(G1)®K0(G2)))

(resp; € H"+1(Z,; Ker(R o(H) —=~5 R ()

is zero, there is an h-cobordism (V; W', W) with, writing f'— Y for the induced
homotopy equivalence, ¢(z(f'))=0.

Proof. Observe first that as f is a homotopy equivalence of closed (n+ 1) dimen-
sional manifolds, (f)=(—1)"<(f)*. Hence by Lemma IL3, ¢(z(f))=
(= 1"+ ¢(z(f))* and thus determines an element ¢ (z(f)) of

H"+I(Zz; Ker(Ko(H)_’ K0(61)®K0(62)»

(resp; H"*1(Z,; Ker(K o(H) == Ko ().

Now suppose ¢(z(f))=0. Then there

JaeKer(Ro(H) - Ko(G)®R(G,)  (resp; Ker(Ko(H) —== Ko ()

with ¢(t(f))=v+(—1)"+1v*. Choose, using Lemma I1.2(i) B¢ Wh(G) with ¢(f)=v
and let (V; W, W’) be an h-cobordism with torsion f [M1]. Then

t(f)=1(f)+(=B+(=1)y+" ¥
and hence ¢(z(f))=(c(f)) +(—v+(—1)"v*)=0 by Lemma IL3.
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We proceed to construct if ¢(z(f))=0, and hence also by Lemma I1.4 if
¢(x(f))=0, a normal cobordism T of W to a split manifold homotopy equivalent
to Y and compute the intersection form of T. This geometric construction will be
referred to as the nilpotent normal cobordism construction.

If ¢(z(f))=0, by Lemma I1.2(iij) and Lemma I.1(iii) we may assume that
P and Q are free ZH modules. Let I’ denote the closed interval [ —2,2] and let
M xI' denote a tubular neighborhood of M x0=M < W constructed so that
extending the lift of M to W to a lift of M x I' we get M x (—2)c W,Mx2cW,.
(In case A, this last condition is equivalent to M x(—2)cW,, M x2cW,). Let
{e;} 1<i<d denote a fixed choice of a basis for the free ZH module P and let
{¢;} 1=i=<d denote a dual basis for Q under the intersection pairing 4 of K,(M).
Choose {¢;} 1=i=d disjoint framed embedded spheres in M representing {s,},
and { f;} 1 Si<ddisjoint framed embedded spheres in M representing {¢;} 1 Si<d.
Clearly, from the given intersection data on {¢;} and {¢,} we may assume that
e; nfj= ¢, i+j,and e, and f, intersect in one point, 1 Si<d.

Performing surgery on the spheres {e;} 1<i<d representing a basis of the
subkernel P of K,(M) produces a normal cobordism C, of M to a manifold
M,, M, homotopy equivalent to X. [W2; Chapter V]. Similarly, performing
surgery on the spheres {f;} 1<i<d representing a basis of the subkernel Q of
K, (M) produces a normal cobordism C, of M to a manifold M,,, M, homotopy
equivalent to X.

Let I denote the interval [0, 1]. Attaching C,x[—2, —1] along

Mx[-2, —1]xlcMxI'x1lcWx1lcW xI
and similarly attaching C,x[1,2] to
Mx[L,2]x1lcMxI'xlcWxlcW xI

produces an (n+2) dimensional manifold T. One component of 0T is just
W=W x0 and the other is denoted by W. See the diagram.

Cpx[-2,11 A‘ r Cox[1,2]
T~ s
Wl (Mx2)x1 L

(Mx0)x1

Mx[-2,21x[0,1] Wx [0,1]

Wx0 2 -
(Mx0)x0 (Mx2)x0

Diagram of the construction of T

Using the standard normal cobordism extension lemma [B4], the normal
map induced by the homotopy equivalence f: W— Y extends to a normal map

F:T=WuC,x[-2, —1]JuCyx[1,2] > Y xI.
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Of course covering bundle maps are part of the structure of this normal map F
[B3] [W2] though they are not explicitly indicated in our notation. Write
fiw-Y foro the restriction of F to W< T. There is an obvious inclusion
C, Uy Co=W and the restriction of f.fl:c »Yum Cp— X is a homotopy equiva-
lence as, up to homotopy, C,u,, C, is obtained by attaching cells to spheres
representing a basis of P @ Q =K, (M).

Lemma IL5. The map f: W— Y constructed above is a homotopy equivalence and
is homotopic to a split map.

Remark. The explicit computation performed below of the intersection form of
K,,1(T) and the observation that it is a non-singular form leads to another
proof of Lemma IL5.

Proof of Lemma Il.5. In case A, from the construction of T, see the diagram,
W=(W, Uy C,) Uy, (C, Uy Co) Upg, (Cop Uy W)

and M,—X, M,— X, CpuM Co— X are homotopy equivalences. Thus the
Mayer-Vietoris sequence of W gives just

K;(W)=K;(W, Uy C,; ZG)® K;(W; Uy Cy; ZG).

But K;(W, Uy C,; ZG)=K;(W, 0y C,)®,4,ZG and as K;(W,)=0, j*k, and
by Lemma L5 K, (W,)=P ®,,ZG, and as C, is formed, up to homotopy, by
attaching cells to a basis of P, K (W0, C)= 0 Similarly K, (W; vy, C,)=0 and
thus K, (W) 0 for all j.

Slmllarlym case B, W= (Cpun, WUy, Co)Uy, omg (G, uM C,) and arguing
as in case A, it suffices to show that K;(C, U, W'uM CQ) . But K;(W")=0
for j+k and by Lemmal5 Kk(W’)=Q®ZHZJ@P®ZHZ[tJ] "But as
C, Uy, WUy, Cy is formed up to homotopy by attaching on W’ cells on spheres
representing generators of Q <K, (M,) and PtcK,(M,) the result follows as in
case A.

From the construction the map f is clearly homotopic to a map with
f1(x)= M, and M,— X is a homotopy equivalence. Thus f is a splittable
homotopy equ1valence

Let L be the (—1)**! Hermitian pairing to Z [G] defined on (P® Q) ®,, ZG,
G=G, *,; G, in case A and G=J *y {t} in case B, by

L(x,y)=A(x,y) if xeP and yeP, or xeQ and yeQ, or xeP and yeQ.

Here 4 denotes the intersection form of K, (M).
Thus, L(x, y)=0 if x,yeP or x,yeQ and

L(y,x)=(—1*'L(x, y)=(=1***A(x,y) for xeP, yeQ.
The form L thus has subkernels P®,, ZG and 0 ®,,4 ZG.

Lemma IL6. The normal cobordism T constructed above is connected, 1, T— n, Y
is an isomorphism, K,(T)=0 i+k+1, and K, ,(T)=(P® Q)®,4ZG. With this
identification, the intersection form Ap of K, (T) is given by Ap(x,y)=
L((1+p+p>+p3+--)x,y), p the nilpotent map defined in 1§4.
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Proof. Tis homotopy equivalent to Wy, (C, U, (Cp) and hence T is connected,
n, T=m Y and the Mayer-Vietoris sequence of Wu,(C,uy C,) gives

= Ky (T) = K (M5 ZG) > K, (W) ® K, (C, Uy Co ZG)

But as W— Y and C,u,, C,— X are homotopy equivalences, this exact sequence
reduces to the isomorphism

K, (T)=K,(M;ZG), K/(T)=0, ifk+1.
Moreover, K, (M; ZG)=K,(M)®,, ZG=(P® Q) ®,, ZG and thus
K, ., (TM=P®Q®,,ZG.

Lastly we compute the intersection form [W2] A, of K, ,(T). The map p
defined in Chapter 1.4 was shown there to be nilpotent. Thus, 1 +p+p2+p3+--
exists and in fact 1+p+p?+p*+...=(1—p)~'. Thus the proof of Lemma IL6
will be completed by showing that

(1) A.(A—p)x,y)=L(x,y) for xeP yeP, or xeQ yeQ, or xeP ye(Q.

For x, yeP or x, ye(Q, this reduces to showing that 1.((1—p)x, y)=0.

We demonstrate (1) geometrically by constructing immersed spheres E,F
representing ¢; and ¢; in Kk 1(T)=(P®Q)®,, ZG and spheres E,, represent-
ing (1—p)g; and (1 —p)(b in K, , (T). We will count the 1ntersect10ns ofE and F
with E, and F,.

From the construction of C,, the spheres e, representing ¢; in K, (M)=(P @ Q)
bound framed embedded disjoint discs (handle-cores) D, in C,; similarly the
spheres f; bound framed embedded disjoint discs F, in C,,. Pushing these slightly
in a normal direction, we obtain disjointly embedded dlSCS D,in C,, D, in C,
with 0D, =e;cM, 0D, = f'=M. Clearly ¢ represents ¢, f; represents d) and
we may assume that the classes {e;} {e}} are all disjointly embedded asare { f; } {fit
However, in M we have ¢,n f/=¢;n f;=¢ il i+j and ¢; and f/, and ¢; and fi,
intersect respectively in one point.

Recall that the class represented by €;x0x0cM xI'x0cW x0<T is

trivial in W x0 and bounds an immersed dlSC in Wx0cT. Call this disc D
We join D ~and D, along e; to form E,. Precisely, set

E=D,x =320, , _3,,g€&x[—3/2,0]x1u

Ue.-xOxODe.-’ léléd'

x 0% [0, 1]

eix0x1 1

Similarly, choose Dofi an immersed disc in W x0 with 6l°)fi= fix0x0 and set
F=D; x3/2U; 32,1V fix[3/2,00x 10U, 051 fixOx[0,11U;, 040Dy,

1£i<d; that s,




A Splitting Theorem for Manifolds 121

Mp Mg
Dex-3/2 | 1
T
i
]
e;x-3/2x1 -?
! o
T i De;
} NS,

e —

Construction of E;

Construction of E;

We proceed with the construction of E, and F,. First note that, letting & denote
a lift of ¢, to M, & bounds a disc D, in V where in case A,

V= Wl U( [¢] Mg(a))( U_ CQg(a))

ae[Gy, H] ae[G1, H]

and in case B,

V= Wl’ Y Mg(a))( U CQg(a)) U( U Mg(ﬂ)r)( U Cpg(ﬁ) t)‘

(ae[.l H] ae[J, H] BeltJt~1; H] BeltJt—1; H]

For, recall from Lemma L5 that K, (W,)=0Q ®,, ZG, (resp; in case B, K, (W)=
Q0®,yZJ®P®,y Z[tJ]) and the image of ] representing ¢;€ P = K, (M) under
the map K,(M)— K, (W,) (resp; K,(M)— K,(W))) is given, see Lemma 1.7, by

pE)EQ R,y Z’?}l (resp; Q®,y ZJ®P ®,4Z[tJ]). Moreover, from the con-
struction of V, clearly

in case A, K,(V)=K,(W,)/Q®,4 26,
and

in case B, K, (V)=K,(W))/Q®,4 Z] ®P®,4 Z[tJ].

Thus & bounds an immersed disc D,,. Now as

R=(W, x3—M x [0, 2)X%UMX2X%MX2X[%7 Uy 201 CoeT

(resp; in case B,

R=(W' x:—Mx[0,2)X3Up, 5, s M x2x[3,1]1Up 2,1 Co=T)
is homeomorphic to W; uy, C, (resp, W'y, Cp) there is an obvious projection
map V—R induced from V<:R Let D, be the image of D, under thls map.

Thus, we may take D, to be an 1mmersed disc with boundary €;x2x%. The
sphere E, is formed by j _]ommg D,, with D, , along e;. Precisely, set

E;=D,x =2Uy, _;,.1€X ——2><[5,l]ueéx_2xéeix[—2,2]x%.
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Mp Ma
I ~
o B )
| i
$ ¥
| el x-2x1 il
! N
S [ VRN
T elx2x1/2

Construction of E;

Similarly, construct

Dy in WUy el U C,e0)

ae[G2, H] ae[G2, H]
R T ~ ~ -1
(resp; WU i@ Cp8Y  § frppi-1 Co8(AE )
ae(tJt-1; H] BelJ, H]
Epg ()

D, in W,u Mg(a)( U Cpg(“))

ae[G;, H] ae[G2, H]
and from this get, as above, D, in
Wyx3=Mx(=2,01X3Up 5, s Mx —2x[4, JuC,x -2
(resp; W'x3—Mx(=2,01x3Uy,,, _ Mx —2x[%, 1JuC,x -2)
bounding f/ x —2x1. Form the sphere F, by joining D,, with D,, along f;

precisely, as above, set

F=Dp 205,50V x2x[5, 10 Up 50 WS X [2, =21 X3 Upy 504 D)
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From the constructions,

_ ) .

E,nE;=e;x0x3ne,x0x3=¢,

nl ! 1 7

EnF=f/x0x3nf/x0x3=¢
and

g =¢ 1 1
EnF=¢x0x3nf;x0x3.
Mp
\Ei

exl-22x1/27  ENF

|

:
I ! \
S
f])‘o X[OJ]

>y

Mg
+

WxQ

ENF =e x0x1/20 ffx0x 12

Thus choosing orientations for M and W at a basepoint [W2; Chapter V] to
define 4, the intersection form on K, (T), we get that

Ap(E, F)=2€, [)=1, ir(E,,E)=0, Ar(F, F)=0,
1<i<d, 1<j<d. Thus, to complete the proof of (1) it suffices to show that E;, F;,

E,, F, represent ¢;, ¢;, (1—p)¢; and (1 —p)¢, respectively in
(P(-BQ)@ZHZGEKk+1(T).

We first check that E, represents ¢;; an entirely parallel argument checks that
F, represents ¢,. As the isomorphism K, ,(T)=K,(M; ZG)=(P®Q)®,,ZGC
is induced from the Mayer-Vietoris sequence of T, which is homotopy equivalent
to Wu,, (C,uy Cp), we have the commutative diagram

K, 1(T) K,(M;ZG)=(P®Q)®,,ZG

Ky 1 (T, W) 9

excision

Ky 1(C,uy Cy, M; ZG)
Clearly E; in K, ,(T) goes to (D,,,¢,) in
K, 1(C,uy Cy, M; ZH)=K, (C,u Co-M;ZG)

and hence to ¢;€K,(M; ZG) representing e;.
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Lastly we verify that E, represents (1 — p)¢, under the isomorphism K, (T)=
(P®QO)®,5ZG;an entlrely parallel procedure checks that F, represents (I-p)o;.
From the construction of E; as the union of D, and D,, along e;, where D, lifts
to D, in V, the sphere E, llfts to a map to VuM C thus recallmg the deﬁmtlon
of V ‘under the map

K (T) > Ky (T, W) 220, KL (C, 0y Cou M3 ZG),

E, goes to a class in Ky 1(C,, M)® K, (Cy, M)®,y Z G, (respectively; in case B,
Ky 1 (C,, M)®K, 1 (Cop, M)®,,Z] B K, ,(C,, M)®,, Z[tJ] ) with the com-
ponent in K, ; (C,, M) representing (D,,, ¢;). Thus under the following composed
map, which is the Mayer-Vietoris isomorphism

Ky 1 (T)— K, 1 (C,uy Cy, M; ZG)—H K, (M;ZG)=P®Q)®,,ZG,

E, goes to ¢, +ve(P® Q)®,, ZG where in case A, veQ ®,, ﬁl and in case B,
veEQ®,y ZJ®Pp ®,y Z[tJ]. Furthermore, from the commutative diagram

K., (VugyC)

Kk+1(T)

K., (VuyC,,C,u(V-—W))— (T, C,uy Cp; ZG) K,(M;ZG)

=(P@Q)®;4ZG

k+1

=] excision

K, W,0W,;; ZG,) —— K, (W, M; ZG)

g,+v is represented by an element of Image
(Kk+1 (VV1 > 6Wl)—> Kk(aw/l))CKk(M:7ZG)

(for case B, in the above sentence and diagram, replace W, by W,). Thus ¢+ v
goes to zero under the map K, (0W,) — K, (W) (resp; K, (0 W, — K, (W])). But as

g€P and veQ®,y Z’EI (resp; O ®,y ZJ® P®,yZ[tJ]) by Lemmal.7 and
the preceding discussion, v= —p, (¢).

Remark. Lemma I1.4 can also be demonstrated by a less geometric computation
of the adjoint of A, in terms of 4 and p.

Note that if ¢(z(f))=0, W is, by Lemma I1.4, h-cobordant to a manifold W
with the induced homotopy equivalence f: W— Y satisfying ¢ (t(f))=0. Then,
performing the nilpotent normal cobordism construction of T described above,
we obtain a normal cobordism of W to a split homotopy equivalence.

Proof of LemmaIl.3. We first prove Lemma IL.3 for case A, G=G, *,G,, and
then briefly indicate the variation of notation for case B, G=J *, {t}.

For y and 6 two stable bases of a free Z[D] module, D a group, let (g) devote

the element of Wh(D) represented by the automorphism carrying y to 8. Note that
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)
[PleKer (Ko(H)— K, (G,) ® K, (G,)),

0
(y) =— (y) . For P a finitely generated right projective Z[ H] module with

let a(P) denote an element of a coset of
Image (Wh(G,) ® Wh(G,) —» Wh(G, *, G,))

defined as follows. Choose a projective module Q with [P]+[Q]=0. Thus there
is a stable Z[H] basis for P@Q and choose such a basis «,. We also write a,
for the induced basis of (P® Q) ®,, ZG. However, P®,, ZG, is a stably free
ZG, module and Q ®,,ZG, is a stably free ZG, module. A choice of stable
bases for these two modules also determines a choice a, of a stable basis for
PRuZG,®6,2GDQ®,,2G,®,5,Z6G=(PO®Q)®,4,ZG. Thus we get

(Zl) € Wh(G), which however, is only well defined, because of the choices!! made
2

in its construction, modulo Image (Wh(G,)® Wh(G,)— Wh(G, *,G,)). Let
a(P)= (“1).
%,
The argument of [W1; 5.8] shows that every element xe Wh(G) has a (not
unique) representative of the form*?2

1 A

x=0o(P) (B i

) co

where A is a matrix with coefficients in Z[G,], B is a matrix with coefficients

in ZG,, C is a matrix with coefficients in ZG, and D is a matrix with coefficients

I A . .
in ZG,. Here (ﬁ—l) is the matrix form of the element of Wh(G) given by an

element of Waldhausen’s reduced group of nilpotent maps I:ITI(H ;G6,,G,) and 1
denotes the identity map. (Note that we are here using the fact that for an element

of the reduced group NTI(H; G,, G,) we may choose a representative (P, Q, p,, p,)
with, by stabilizing, P and Q free modules of the same rank.) Waldhausen shows
that for x in this form, ¢(x)=[P].

Now clearly, as Wh(G) is abelian,

x*=a(P)* (AHF" lj) C'D!

where for a matrix MeGL(n, Z[G)), M denotes the conjugate transpose of M
(see [M1]). Moreover, it is easy to see that in WhG), [M 1]

(-G

't This corrects slightly the statement of [W 1, 5.7]
12 This expression for x indicates the relationship between the results of [W 1] and the Higman

process of [St]
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I A ,

Also, Lemma 1.11 shows that ( 7 1) represents an element of Waldhausen’s

reduced group of nilpotent maps ﬁfl(H ; G, G,). Writing y* to denote a dual

basis of N* for y a basis for a free module N, we also get

(“;) - (“‘*) = —a(P*) modulo (Image(Wh(G,)® Wh(G,) — Wh(G, +,G,)).

* *
% a3

Hence, writing x* in the form

x*=a(—[P]") (H) D

we get ¢(x*)= —[P*].
The argument in case B is similar. For

[PleKer(R (H) —=" R (),

let a(P) denote a representative in the coset of Wh(J) in Wh(J *, {t}) constructed
as follows. Again choose Q with [P]@®[Q]=0 and choose a stable basis «, for
P@® Q and hence for (P@®Q)®,,ZG. Using

(&1, — I P1=[P @16, ZI D Q B, 1 2],
choose a stable basis over ZJ of
P®ziemZIDPQ®z 1, mZJ-
This induces a stable basis of
PR,y ZI®,Z[J #y {1 1@ Q Ry 1y ZI @7y Z[J #y {t}].
But as there is an obvious isomorphism of
0@ e, ZI @2, Z[J %y {t}]
with
Q@ Z[tIt™ 1@ y-1 Z [T %, (t}],
this induces a basis «, for
P®ZHZJ®ZJZG®Q®ZHZ[tJt_1] ®Z[r.l:“1]Z[G] =POQ)®,4ZG.

%y

Now set a(P)z(
X2

Again, 5.8 of [W 1] shows that every element x of Wh(J %, {t}) can be represented,
for some P, by
I+C| A )

B |I+D

) , which is well defined modulo Im(Wh(J)— Wh(J x, {t})).

x=a(P) (
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where A (resp; B; C; D; E) is a matrix with entries in ZJ (resp; Z [ﬁ?“‘]; Z[tJ];
Z[Jt™']; Z[J]) and for x in this form, ¢ (x)=[P]. The remainder of the argument
is as in case A.

§ 2. Completion of the Argument for n=2k

Lemma I1.10 below, the main algebraic result of this section, is used in the
completion of the proof for n=2k at the end of this section to analyze the surgery
obstruction of the nilpotent normal cobordism construction. Lemma I1.7 indicates
the role that is played by the square-root closed condition. Lemma I1.8 is a
necessary technical exercise; the reader may wish to look at its proof only after
reading the remainder of the chapter. Lemma I1.9 plays a crucial role in the proof
of Lemma II.10.

Lemma IL7. Let H be a square-root closed subgroup of a group D. Let w: D —Z,
be a homomorphism determining as usual an involution of Z[D]. Then as a Z[H]
bimodule Z[D]=Z[H]® E®E where E={x|xecE}.

Proof of Lemma Il.7. First observe that the only double coset HdH of H in D,
deD, equal to its inverse double coset (HdH)"!=Hd 'H is the trivial double
coset'?; ie., deH. For if hydh,=h,d~'h,, for h,, h,, h,, h,eH, deD, then
dhy'h,d=h,h;'eH and thus (dh;'h,)’eH and hence as H is square-root
closed in D, dh;'h,eH and deH.

Then we can construct T a union of double cosets of H in D with D— H the
disjoint union of T and T~ ! = {x|x~'eT}. Now let E be additively generated by
the elements of T.

Using Lemma I1.7, if H is square-root closed in G, and G, (resp; in J and
tJt~') we may write:

(1) ZG,=A, @A, A=A,
2) 7G,=B,®B,, B,=B,
(resp;

3) ZI=A,®A,, A,=A

(o]}

@4) Z[{Ji"']=B,®B,, B,=B,).

Of course, these decompositions are in general not unique but we choose one and
keep it fixed for the remainder of this section.

In L1, Z[G] for G=G,*,G, (resp; G=J x4 {t}) was described as a Z[H]
bimodule as a sum of Z[H], 4,, B;, C;, D, where each of these last 4 is a tensor
product over ZH of ZA(J;1 and th}z (resp; 77, Z[t’.ﬁ“], Z[tJ] and Z[Jt™1].
Correspondingly, using the ZH bimodule decompositions (1) and (2) (resp; (3)

13 In our earlier paper [C 1] and also in [CS 1] this was used as a definition of square-root closedness




128 S.E. Cappell

and (4)) above, Z[G] may be described in terms of sums of tensor-products of
the ZH bimodules A, A,, B,, B, (resp; and Z[tJ] and Z[Jt™']. To make this
precise, we introduce the following notation. Let F denote the free associative
monoid in case A on the symbols a,, «,, f;, f, (resp; and also y and J in case B).
Let F,c F denote the subset of words of length i, i> 1. Call a word we F admissible
if none of the pairs a; o, B; 8;,i=1,2, j=1,2 (resp; and also ya,, B;7, B, 7,6, v,
dy in case B) occurs as a consecutive pair in w. For example, o, , o, and a,yyf, o
are admissible, but S, o, «,f, and f,a, d are not admissible. Write F° for the
subset of admissible words of F and set F°=F°nF,. For a word we F°<F in a,,
o,, B; and B,. (resp; and y and J in case B), let Z[w] denote the corresponding
tensor product over ZH of the ZH bimodules Al, A,, B, B, (resp; and Z[tJ]
and Z[Jt~'] in case B). The precise definition is given by settlng

Zla,]=A,, Z[o,]= A2
Z[B1]=Bl, Z[ﬂz]=B2

(resp; and also in case BZ[y]=Z[tJ], Z[6]=Z[Jt™'])and for xweF°, Z[xw] =
Z[x]1®zuy Z[W], x=ay, a,, B, B, (resp; or x=y, J in case B).

Using the inductive definition of 4;, B;, C;, D; of 1.1 we show the following
when H is square-root closed in G.

Lemma IL8. As Z[H] bimodules,
() Z[G1=Z[H]® ) Z[w],

weFO

(i) A,®B,®C,®D,= Y Z[w].

we F9

At least for small values of i, the reader may check Part (ii) of this lemma using (1),
(2), (3), (4) and the inductive definition of A4;, B;, C,, D, to decompose the left-hand
term. The precise proof we give sums up this decomposition process by induction
arguments.

Proof of Lemma I1.8. Recalling the formula of 1.1
Z[G]=ZH® Z (4,2B,®C,®D)
i=1
Part (i) follows immediately from Part (ii), which we proceed to prove. Define
subsets of F, F,(a), F,(b), F(c), F;(d) for i = 1 by the following inductive procedure:

F(a)={a1’a2}’ E (C)={ﬁ1,,82}.

In case A, Fy(b)=F,(d)= ¢
In case B, F,(b)= {6}, F(d {r}

E_(@)={xy|xeF (a), yeF/(d) or xe F, (b), ye F)(a)}
F,, (b)={xy|xeF,(b), yeF/(b) or xeF,(a), ye F(c)}
F,,()={xy|xeF (d), yeF(c) or xeF,(c), ye F(b)}

F,1(d)={xy|x€F,(d), yeF(d) or xeF,(c), ye Fi(a)}.
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We claim that
A= Z Z[w], B,= z Z[w], C;= Z Z[w], D= Z Z[w].

we Fi(a) we F; (b) weF;(c) we F;(d)
For i=1, this is immediate from (1), (2), (3), (4), and the definitions of 4, B;, C,,
D, in case A and in case B. For i>1, this is shown by an easy induction which
compares the inductive definition of A4;, B, C;, D, with the similar inductive
definition of F,(a), F;(b), Fi(c), F,(d). Details are left to the reader.
Hence, it suffices to show that for all i,

F?=F(a)UF,(b)UF,(c)u F(d).

(Notice that the terms on the right hand side are disjoint as otherwise 4, B;, C,,
D, would not be disjoint.) It is trivial to check that

F’=F,(a)UF,(b)UF,(c) U F,(d).
Now let w be a word of the shortest length with we F° but
w¢ F(a)u F.(b) U F(c)u F/(d).

As w is admissible we may write, for example, w=a, f, w'; the other cases
w=a, fi, w=p, a,w etc. are treated by the same method we employ here. Then
f, w'is admissible and hence, by assumptionisin F,_,(a)UF,_, (b)UF_,(c)UF,_,(d).
But checking definitions of these last 4 sets, only F,_,(c) and F,_,(d) have terms
ending on the left in §, or f§,. Hence f, w'eF,_,(c) U F,_,(d); but a, F,_,(c)=F,(b),
o, F,_,(d)< F/(a), whence weF,(b) L F(a).

Similarly, suppose weF,(a) U F(b)u F(c)U F,(d) is a word of smallest length
with w¢ F°. Then, for example, w=a,a, w'. But o, w, as it ends on the left in
o, or a, must bein F,_, (a) or F,_, (b) and examination of the definitions shows that
o, F,_,(a) & F(a) or E(b) or F(c) or F(d) and similarly for «, F;_, (b), contradicting
our assumption on w. The other cases, w=p, f,w, w=yJw' etc. are handled
similarly and are left to the reader.

We now define some terms used in stating Lemma I1.9, which is used in
proving Lemma I1.10. Let Z[F] denote the integral monoid-ring of the asso-
ciative monoid F defined above. Of course, as an additive group

5 Z[Fl=Z® ZIZ[F,.]
i
where Z [ F,] denotes formal linear sums of words of length i. Define an involution
X — X on Z[F] by the formulas xy=yXx, xFy=Xx+y for x, yeF, &, =a,, &, =0y,
B,=B,, B,=B,. (resp; and =4, 6=y). Let I denote the ideal in Z [F] additively
generated by the elements of F—F° and let A be the quotient ring Z[F]/I. As
I=1, A inherits an involution from Z [F]. Also as I is homogeneous in the decom-
position of (5), we get the additive group decomposition A=Z@ Z A;, where
iz1

A;=Image(Z[F] — A). Write Z[F°] for the additive subgroup of Z [F] consisting
of linear sums of elements of F® and Z[F"] for the linear sums of elements of F?.
The restriction of Z[F] — A gives additive involution-preserving isomorphisms

Z[F°]1—> A, Z[F?] > A, i2 1.
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Lemma IL9. For i20, 3v,€)’ A, with, setting t=1—(a, +a,+p, +B,) (resp; in
jzt
case B, t=1—(o; +o, +, +B,+7y+9)
~(1+ )1+ WX 4;.

Jj>i
Proof of LemmaIl.9. Observe first that for we F°, w#w. We check this first in
case A. Recall that w is a word in a,, «,, f; and f,. If it has an odd number of
factors, clearly the middle factors of w and w are different. If it has an even number
of terms, as w is admissible the factors alternate between «, or a, and f, or f8,. For
example, if w with an even number of factorsisof the formw=a, , 8, , o, ... ¢, _ B,

W=ﬁ,&., e ﬁlz a, and ﬂ =f, or B, and so W+w. Similarly, if the first factor
on the left of wis §; , we get W w.

In case B, for a word w, let ¢(w) denote the word obtained by delecting all the
factors y and 4. It is easy to see from the definition of admissibility that if w is
admissible, so is ¢(w). Moreover, if w=w, then @(w)=@(w). Hence if w="w, ¢(w)
is the null word and hence w is a word in y and d. But as w is admissible, it does
not contain as consecutive pairs y6 or 6. Hence w=4' or w=y'. But also §'=
7'= 04" and as in case A we conclude that w+w.

As an additive group with involution, Z[F°]= A, and hence from the above
demonstration that w=w, we get that if xeA, satisfies x=X, then there exists
yeA, with x=y+73.

Inductively, define V; as follows. Set V,, =0. Assume V; satisfying the conclusion

of the lemma has been deﬁned we proceed to define V, ;. From
t=t
we get t—(1+V,)(1+V)—t—(1+V)(1+V)
andas t—(1+V)(1+V)eYy 4,
i>i
t—(1+V)(1+V)=C+C+d, Cedy,y,de ¥ A,
Nowset V, =V +C i
Then, t—(1+V,, )(1+V, )=t—(1+V,+CO)(1+V,+C)
=t—(1+ V.)(1+V.-)~(C+C)—(c +CV,+¥%,0)
=C+C+d—(C+C)—(CC+ V,C)

The main algebraic result of this section used to study the Hermitian pairing
A of the nilpotent normal cobordism construction of II §1, is the following:

Lemma IL10. Let H=G,, i=1,2 (resp; H=J, Hc=tJt™') be inclusions of H as a
square-root closed subgroup. Let w: G — Z, be a homomorphism of G=G, *,G,
(resp; G=J , {t}) and also denote the restrictions of w to subgroups of G by w. Let
xel, (G, w) be represented by the (—1)*+' Hermitian form (N, ¢, ) where:
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(i) There are free ZH modules P, Q with N=(P® Q)®,,ZG.
(ii) There are ZH linear maps, nilpotent in the sense of 1.4,
pri P— 0@, ZG,
P2t Q> P®;,ZG,
(resp; p;: P— Q®Z,,Z’I(-BP®ZHZ[IJ]

Py Q> P®,, Z[1IE 1®Q®,,Z[Jt™1]).

(iii) There is a non-singular (—1)**! Hermitian pairing L: (P@Q)x(P®Q)—ZH
with L(x, y)=0 for x, ye P or x, ye Q and, letting L also denote the extension of this
to a Hermitian pairing L: Nx N — ZG, with ¢(x, y)=L({(1—p)~'x,y). Here,
p denotes the ZG linear map p: N — N induced by p, and p, (see 1.4).

Then, if H is a subgroup of H containing all elements of order 2 in H,
xelmage (L, , ,(H, w)— L, . ,(G, w)).
Remark. In the present section we use this only for H=H.

Proof of Lemma 11.10: For a ZG linear map s: N — N, let 5 denote the map
§5: N — N satisfying

L(sx,y)=L(x,5y), xyeN.

We first show that to prove the lemma it suffices to produce a Z[G] linear map
V:N—N with (1-p)=VV.Lete,, ..., e, denote a basis for P, and f, ..., f a dual
basis for Q so that

L(e,e)=0, L(f,f)=0, 1=isr, ISjsr
L(e, f)=0, i%j
L(e, f)=1, 1=<i=r.

Set e;=V(e), f{ =V (f), 1<i<r. Then
d(e, e)=¢p(Ve,Ve)=L(1-p)~' Ve, Ve)
=L(VV) Ve, Ve)
=LV~ 1e,,Ve)
=L(VV~le,e)
=0.

Similarly, &(f/.f))=0, and also if i+j ¢(e,f)=L(e,f)=0. But, ¢(e,f)=
L(e, f)=1,1=5i< < r. B

Moreover as H is square-root closed in G, H and hence also H, contain all
elements of order 2 in G. Thus, as

p(€)+(— 1+ p(e)=gle], €)=0



132 S.E. Cappell

u(e), and similarly pu(f;) take values in Z[H]/{u—(—1**'ulue Z[H]} (see [W2;
Chapter V]). Expressing the Hermitian form (N, ¢, u) with respect to the basis
given by {e},e,,....,e., f/,....,f'} it is clearly obtained from a Hermitian form
over Z[H] by just extending coefficients. _

It remains only to check the claim that there is a map V with (1—p)=VV.
Corresponding to the decompositions (1) and (2) (resp; (3) and (4)) above, we may
decompose the ZH linear maps p, and p,,

Py P—>Q®ZHZGl=Q®ZHA1®Q®ZHA2
Py Q_’P®ZHZAGZ=P®ZHBI@P®ZHBZ

(resp; in case B,

i Po0®y ZI®P @,y Z[1J]1=0®,u A @y Ay O P @,y Z[1J]

Py Qo P®,, Z[IT 1®0®,,Z[Ji!]
=P®;4B ®P®,4B,®0®,,Z[Jt™'])
and write p; =, @a,, p, =B, ®f, (resp; p, =1, Do, D7, p, =, D, D),

Now as
L(1=p) " x, 0)=0(x,»)=(—= 1)+ ¢(y, x)

=(= D)1 L(1=p 'y, x)

=(— 1Y (=1 Lx,(1—p)"'y)

=L(x,(1-p)""y)

we get (1—p)=1—p and in particular,

p=p.

Denote the extensions of &, a,, f,, f, (resp; and y and J) in the usual way (see the
procedure in 1.4 for extending p, and p,) to ZG linear maps of N to itself by the
same symbols. Then'®, p=p| +p)=a, +a,+f, +f, (resp; p=p; +p,=0a, +a,
+7+ P, +9). This decomposition expresses the components of the restriction of
the map p to

p:POQ—->PR,uBOP®yB, ®0®,yA ®O®,4A,
(resp; p: PO®Q > P®,u;B ®P®,,B,®0®,,Z[Jt™ ]
DO®,x AL POy A, @P®y Z[t]]).

As p=p, & +a,+f +B,=a,+a,+p+B, (resp; @ +T,+B +B,+7+0=
ay +a,+ B+, +y+9).

14 Recall the notation of 1.4. The maps p; and p/, denote the extensions of p, and p, to ZG linear maps
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Comparing domains and ranges, we get

U =0,, Ay=0

Bz=ﬁ1, B1 :ﬁz
(resp; and also 5=4, 6=1y).

For example, L(x, &, y)=L(x, x, y). Hence, as a0, xeQ ®,, A,, L(x, &, y)=0 for
yeQ. Moreover, for ye P, L(x, &, y)=L(x, x, y)eA, for xe P and thus

oy y€Q®ZHA1 =0Q®u A,

Now to complete the proof of Lemma I11.10 we wish to apply Lemma 1.7 with

t=1—p=1—(a,+a,+p,+p,)
(resp; t=1—p=1—(a, +a,+ B, +p,+7+9)).

Note first that if w is a word in «,,a,, ;, 5, (resp; and y and &) which is not
admissible, then by comparing domains and ranges we see that the composite
map of N to itself represented by w is trivial. For example, a, a, =0 because

1, (N) =2, (P® Q ®,, ZG) (2, (P)+ 2, (Q)) ZG
oty (P)ZG(Q®,y A)ZG=Q®,4 ZG

and o, (Q)=0.

Thus, from Lemma IL.9, there exist maps 1+ V, with (1—p)—(1+l7i)(i+ V)
a map represented by a sum of words of length greater than i in o, a,, f;, S,
(resp; and y and ). The proof will therefore be completed by showing that the
nilpotency condition on p implies that the composite functions obtained by
sufficiently long compositions, in any order, of the maps «,,a,,f,,, (resp;
and y and J) are zero.

As p=o, +o,+p,+p, (resp; p=o,+o, + B, +,+7+0) p'=(a; +o,+ B, +5,),
i=1 (resp; p'=(a +0o,+p, +p,+7+0)) and thus p'= ) w. But, as observed

weF;

above, if w is not an admissible word in a,, a5, 8, , B, (resp; and y and ), the map

represented by w is 0.
Hence, (6) p'= ) w, i=1. But also, by (24) and (25) of 14,

we F0
PPROAc(POQ®,y(A,@B,®C,®D)

and by Lemma I1.8 we get from this

() PPO®Y=(POA®,y Y, Z[w].

weF?

Moreover, beginning with the fact that this is obviously true if w has length 1
the same kind of induction as that used in Section 1.5 above shows that

8) WPO®Q(PO®Q®,,Z[w], weF’.
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Hence, from (6), (7), and (8), on P@ Q,

pPl=P@w, izl

weF?

and hence as, by Lemma 1.11, p'=0 for i sufficiently large, we get that for i suf-
ficiently large and weF°, the map

w.P®Q->(PR®O)®,,ZG is zero.

Completion of the Proofs of Theorems 1 and 2 for n=2k; Part (i). We first show,
for all n, the necessity of the condition ¢(z(f))=0. The proof of Lemma I1.4
shows that ¢(z(f))=(—1"*' ¢(z(f))* and thus ¢ (z(f) determines an element

(—ﬁ(‘[(f)EHn'H(Zz; KCI(KO(H) - Ko(Gl)('B Ko(Gz)))

(resp; H"*1(Z,; Ker (R o (H) —="2 R, ()))).

If there is an h-cobordism with torsion v (V; W, W) with the induced homotopy
equivalence f: W—Y split along X, then [M1]

@ t(N)—t(NH)=v+(=1y*"v*.

Moreover, the split map f induces a Mayer-Vietoris decomposition of the chain
complex of the acyclic pair (Y, W), from which 7(f) is computed,
Case A.
0 C (X, M)®,,ZG— C, (Y, W) ®,5, ZG® C, (Y, W,) ®,;,ZG
— C, (Y,W)—0.
Case B.
0 C, (X, M)®,y ZG—525 C (Y, W) ®,, ZG — C, (Y, W) >0

and, all the chain complexes in the above sequences being acyclic, and comparing
their torsions we get [M 1],

(f)eImage (Wh(G,) ® Wh(G,) — Wh(G))
(resp; ©(f)eImage (Wh(J) —» Wh(G)).

But, then by [W1],

(5 ¢(HN=0.

Hence from (4) and (5),
t(f)=v+(=1)y+ o*

and hence by Lemma I1.3,

¢ () =¢@+(-1)" ¢@)*
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which asserts that in
H"“(Zz; Ker(KO(H)—JZO(GI)G—) KO(GZ)))
(resp; H"*1(Z,; Ker (Ko (H) —="2, R (J)) 6 (z(/))=0.

To prove sufficiency, assume @(t(f))=0. Using Lemma I1.4, it suffices to
prove the result if ¢(z(f))=0. In that case, the nilpotent normal cobordism
construction of II §1 produced a normal cobordism T of W to a split homotopy
equivalence f W— Y. Moreover, the surgery obstruction xel’, +2(G, w) of this
normal cobordism, by Lemma II.6, satisfies the hypothesis of Lemma II.10 for
1=H. Hence, xeImage (L, , ,(H,w) > L, , ,(G, w)).

Furthermore the inclusion H— G factors through G, —nl(W), (resp; J=
7, (Y")). Hence a normal cobordism with surgery obstructlon in sz +2(Gy,w)
(resp; 2k+2(‘] w)) going to (—x) under the map L2k+2(Gl,w)—>L2k+2(G w)
(resp; L%, 2 w)— L%, +2(G, w)) can be constructed [W2] on the homotopy
equivalence W, — Y, (resp; W' —Y’), fixed on 6W (resp; oW"). Attaching this to
T along W (resp, W) we get a normal cobordlsm with O surgery obstruction of
Wtoa spllt homotopy equivalent manifold.

// -_cobordism with
L / -z surgery obstruction

\\\\\\\//
\\\\ Y \\\\\\\\

0

Then, surgery can be performed on this normal cobordism to obtain the required
h-cobordism.

Proof of Theorems1 and 2 for n=2k; Part (ii).
The proof of the necessity of
©(f)elm (Wh(G,) ® Wh(G,) > Wh(G))
(resp; t(f)eIm (Wh(J) —» Wh(G))

is the same as the argument in the first part of the above completlon of the proof
for part (i) showing 7( f ) is in this Image.

Part (i) constructed for n=2k an h-cobordism of W to a split manifold. To
complete the proof of part (ii), we show that beginning with the sharper control
on torsion given in the hypothesis of part (ii), the geometric constructions em-
ployed in the proof of part (i) can be used to give an s-cobordism. Then the s-
cobordism theorem [K 3] [M 1] will complete the argument.

To prove this, it will be convenient to use, generalizing the surgery groups
L (G, w) and L' (G, w), surgery groups L?(G, w) where B is a subgroup of Wh(G)
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satisfying B=B* for B*={xeWh(G)|x*eB}. The group L%(G,w) is defined
precisely as L, (G, w) is defined, but with torsions evaluated in Wh(G)/B. For
example, a simple isomorphism modulo B of based free Z[G] modules means an
isomorphism with torsion in B. In particular, L(G,w)=L,(G,w) and
L¥*O(G, w)=1" (G, w). These generalized Wall groups were introduced in [C1];
see [C3] and also [CS1] for examples of applications and see [R1] for further
algebraic generalizations.

Assume now that
7(f)elmage (Wh(G,) ® Wh(G,) — Wh(G))
(resp; T(f)elmage (Wh(J)— Wh(G))
so that f is a modulo B simple homotopy equivalence for
B=Image (Wh(G,) ® Wh(G,) —» Wh(G))
(resp; B=1Image (Wh(J) — Wh(G)).

The nilpotent normal cobordism construction of 1.1 gave a normal cobordism
Tof f: W—Yto f: W—Y with f split. Hence, by an argument employed above
in the proof of necessity in part (i), 7(f)elm(Wh(G,)® Wh(G,)— Wh(G))
(resp; 7( f)elm (Wh(J)—> Wh(G)). Thus, f is a modulo B simple homotopy-
equivalence and the normal cobordism T has a surgery obstruction x in
L% . 2(G, w) represented by a modulo B based Hermitian form (K, (T), ¢, p).
Moreover, the basis ¢, ..., ¢,, ¢, ..., $, which corresponds geometrically to the
spheres producted from the handle cores E,,...,E,, F,, ..., F, represents the
modulo B equivalence class of bases for K, (T) [W2].
As in part (i), we complete the argument by showing that

xelmage (L, , ,(H, w)— L%, ,(G, w)).

For, in that case, by the same argument as that employed in part (i), there is a
“modulo B s-cobordism”, i.e., an h-cobordism with torsion in

B=1Image (Wh(G,) ® Wh(G,) —» Wh(G))
(resp; B=Image (Wh(J) - Wh(G)),

of W to a split manifold W. Attaching to this h-cobordism an h-cobordism of
W, and W, (resp; of W’) we can obtain an s-cobordism of W to a split homotopy
equivalent manifold [M 1].

To show that xeImage (L%, , ,(H) — L%, ,(G, w)), we use the same argument
as that employed in the proof of Lemma II.10, but we must now also check that
the automorphism induced on (P@® Q) ®,, ZG by (1+ V), for i sufficiently large,
is simple modulo B.

To see this, recall from [W1] the construction of Grothendieck groups of
reduced nilpotent objects (P, Q, p,, p,) with P,Q free ZH modules. From the
homotopy equivalence f: W— 7, we constructed in 1.4 an element of this group
with P® Q =K, (M). Waldhausen [W1] shows, in the general setting of a CW
complex splitting problem that if ©(f)elmage (Wh(G, ® Wh(G,) - Wh(G))
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(resp; t(f)elmage (Wh(J)— Wh(G))) then this (P,Q,p,,p,) represents the
0-object in the group of nilpotent objects. Moreover, the map 1+ V, was con-
structed formally, when H is square-root closed in G and using Lemma I1.9, as
a non-commutative polynomial in the components «,,a,,;,, (resp; and y
and J) of p, and p,. As this definition can clearly be extended, using the same
formal polynomial V,, to any object (P,Q,p,,p,), it defines a map (1+V)
(P,Q,py,p,) f PRO)R,,ZG—> (PP Q) R,y ZG. Moreover as V, is a sum of
monomials each having 1 or more factors of a,«,, B,, f, (resp; and y and ),
see Lemma IL.9, V" for r large is a sum for maps represented by words of length
greater than or equal to rin o, a,, 8, f, (resp; and y and J). The argument used
in the proof of Lemma I1.10 shows that for r sufficiently large, V"=0 and hence
1+V)(P,Q,p,,p,) is invertible and thus determines an element of Wh(G).
Hence, inducing addition in Wh(G) by the direct sum construction, the formal
polynomial 1+ ¥, determines a homomorphism

1+V;: Nil(H; G,, G,) > Wh(G)
(resp; 1+ V;: Nil(H; J, &,, £,) > Wh(G)).

This follows immediately from the definition of Nil as a Grothendieck group.
In particular, for (P, Q, p;, p,), constructed as in our present situation from a
homotopy equivalence with

©(f)eIm (Wh(G,) ® Wh(G,) — Wh(G))
(resp; ©(f)eIm (Wh(J) —» Wh(G))

and hence representing the 0-element of Nil (H; G,, G,) (resp; Nil (H;J,¢,,8,),
1+ V)(P,Q,p,,p,) is a simple isomorphism.

Remark. This argument involves choosing i large enough so that for the given
P,Q,p,,p, produced from f: W—Y, the map induced from 14V, satisfies
(1—p)=(1+V)(1+ V) (see the proof of Lemma II.10). In fact, the argument could
be made uniform by observing that in the construction of V,_, in the proof of
Lemma I1.9 V, , —V, is a sum of words of length i. Hence for any (P, Q, p,, p,),
for i sufficiently large, (1+V)) (P, Q, p,, p,)=(1+V,,,) (P, Q, p, p,) and we could
define (1+V)(P, Q, p,, p,) this may obtained is the “limit” as i gets large.

Remarks. 1) If f is a simple homotopy equivalence, the above argument shows
that the nilpotent normal cobordism construction is a normal cobordism of f
to a split simple homotopy equivalence. Moreover, for H a subgroup of H con-
taining all elements of order 2 in H and H square-root closed in G the above
argument shows that for xe L, , , (G, ) denoting the surgery obstruction of the
nilpotent normal cobordism, xe€Image (L, , , (H, w) > L, , , (G, w)).

2) Even if H is not square-root closed in G the surgery obstruction of the
nilpotent normal cobordism construction is easily seen to go to zero in the Wall
group of the ring R[G], Z[3] =R < G. Over the ring R[G] in place of Lemmas I1.7,
11.8 and I1.9 which led to the construction of I + V; by using square-root closedness
to decompose p, , p, in terms of a, , a,, B, , f, (resp; and y and 6 in case B) just use
the decomposition p, =1/2p,+1/2p,, p,=1/2p,+1/2p,. From this, it follows
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using homology surgery theorem [CS2] that even when H =G is not a square-
root closed subgroup, if @(z(f))=0, n=2k >4, there is a “homology h-cobordism”
of W to a split “homology-equivalent manifold ”, where homology is taken using
local coefficients in Z[5][7,(Y)]. This can be directly applied to compute the
Wall groups of the ring R[G, *,G,], Z[}]=R<Q, even when H is not square-
root closed in G, and G,.

3) If n26 and H=G,, even if H is not square-root closed in G, and in fact
even if H— G, is not injective, any homotopy equivalence f: W— Y is splittable.
For fa simple homotopy equivalence this is Theorem 12.1 of [W 2]. Essentially the
same proof, but using the surgery theory associated to the homotopy equivalence
problem in place of that for simple homotopy equivalences, shows that W is
h-cobordant to a split manifold. But if H=G,, then G=G, *,G,=G, and in
particular, Wh(G,) — Wh(G) is surjective. From this, the h-cobordism to a split
homotopy equivalence is easily replaced by an s-cobordism to a split homotopy
equivalence.

Chapter I11: The Even-Dimension Case

§ 1. Splitting in a Covering Space

The present chapter completes the proofs of Theorems 1 and 2 for n=2k —1, that
is for dimension Y even. The results of Chapters I and II are heavily used below.

In many cases, for example when K (H) is zero, the results of the present
chapter could be derived quite easily from those of Chapter II. However, in the
general case considered here considerable effort is needed, when n=2k—1,
to establish the relationship between the projective modules arising in the proof
and the initial data on the Whitehead torsion of f. This is accomplished in
Lemma I11.4.

We briefly outline the argument of the present chapter. In § 1, we consider the
problem of splitting the map of covering spaces f: W— Y along X = Y. Lemma III.2
shows that the only obstruction is an element of K (H). In § 2, this obstruction
is shown to depend only on t(f). Using the results of § 1, we carefully construct
a submanifold V< W x §!, with V a transverse inverse image of X x ' <Y x S!
and with ¥— X x S! a k connected map. This is the situation which was studied
in Lemma II.1 and we perform the nilpotent normal cobordism construction of
Chapter II. The main result of §2, Lemma II1.6 shows that when &(z(f))=0
this produces a nilpotent normal cobordism of W x §' to a manifold U, with
W < U and W— Y a split homotopy equivalence. In § 3 results of Chapter II are
used to replace this normal cobordism by an s-cobordism of W x S! to U’, with
W cU'. Hence W < W x §' and we complete the proof of the -splitting theorem
by showing that this implies W and W are h-cobordant. The s-splitting result for
n=2k—1 is derived from the h-splitting result.

The assumption that H is square-root closed in G is not used in § 1 and § 2.
It is used in § 3 in replacing a nilpotent normal cobordism by an s-cobordism.
In particular, even if H is not spare-root closed in G the results of § 2 show that if
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&(1(f)=0, (W, f) is normally cobordant to a split homotopy equivalence, n=
2k—1. For n=2k this was proved in Chapter II.

To begin the argument, note that from Lemma I.1, when n=2k—1 we may
assume that the homotopy equivalence f: W—Y is transverse to X =Y with,
setting as usual M= f~!(X), f!: M — X inducing isomorphisms of fundamental
groups and K, (M)=0, i%k—1, k. Unfortunatelly, unlike the situation studied
in Chapter II, K, _,(M) and K,(M) will not, in general, be free or even projective
modules® over Z[H].

Recall the decomposition defined in 1§4, K, (M)=P@®Q where Px=
K,(W,, M) and Q=K,_,(W,, M) are by Lemma L6 finitely generated Z[H]
modules. Let o, ..., o, be a Z[H] module generating set for P and let f, ..., f8;
be a Z[H] module generating set for Q. These elements are represented by dis-
joint embedded (k— 1) dimensional spheres in M**~!. In the middle-dimension
under consideration here, we cannot apply Lemma 1.3 to perform handle exchange
on M cW. However, as we shall see below handle-exchanges, on discs with
boundaries the spheres «;, ..., a,, f,, ..., B, can be performed on M < W.

Let M xI, I=[—1,1] be a neighborhood of M x0=M in W, lifting to a
neighborhood M xI of M in W with Mx1cW,, M x —1<W,. Recall from
Chapter I that K, _,(W,, M)® K, _,(W,, M)=K,(M) and hence K(W,, M)=0 for
i<k. Hence as n,(M)=mn,(W,)=m,(W) by the relative Hurewicz theorem each
class of K,(W,, M) is represented by an immersed disc (D, $*~')— (W,, M). In
particular, let &;: (D*, $*~') > (W,, M) be an immersed disc with 0@, = a;. Similarly
there are immersions J,: (D¥, S~1) — (W,, M) with 0B,=p,. As n,(M)=n,(W,) a
standard piping argument (see [Z, Lemma 48], [M 2, p. 71], [W 2, p. 39]) shows
that the immersions {&;} 1 <i<r are regularly homotopic to disjoint embeddings
in (W,, M). Similarly, the immersions {f;} 1<i<s are regularly homotopic to
disjoint embeddings in (W, M).

Thus, we may assume that {a;} 1<i<r, {§;} 1<j<s are disjointly embedded
discs in (W, M). Thickening M and the discs &, < W 1<i<r weobtainacobordism
C, of M to a manifold M, W,.

//MP
% — e
Wy - --Cp
(’ \&I
M1
W

Similarly, thickening up the discs B;, 1<i<s, produces a cobordism C, in W, of
M to Myc=W,. Then C=Cpuy C, < W is a cobordism of M to M,

'S In fact, if K,_,(M)is a projective module and K,(H)=0 it is not too difficult to construct, without
using the square-root closed condition or any condition on elements of order 2 in m, (Y), an h-cobordism
of W to a split homotopy equivalent manifold. See in this connection the discussion on Farrell-Hsiang
splitting in Chapter VI
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%

The map f: W— ¥ restricts, after being varied by a homotopy, to fl:c-XxxI,
X x Ianeighborhood of X in Y. Let R=closure of W,— C,, L=closure of W,— C,
in W.

The following result is proved by a method similar to that used in proving
Lemma 4.1 of [FH1].

Lemma IIL1. K, (Mp)=0, K(My)=0 for i+k—1, k. K, ;(Mp), K, (M),
K (Mp) and K,(M,) are finitely generated projective Z[H] modules. K,(C)=0
for ik and K, (Mp)@® K,(M,)— K,(C) is an isomorphism of stably free Z[H]
modules. Ki(R)=0, K,(L)=0 for i+k—1 and K, _,(Mp)—> K, _;(R), K, ,(My)—
K, _ (L) are isomorphisms of Z[H] modules. Also K (My) — K (W, Uy, C,) and
K, (Mp) = K (W, Uy, Cp) are isomorphisms, and K (W, U, C,)=0, K, (WU, Cp)=0
for ik,

Proof. We will need to employ in this proof the cohomology cokernel groups
K'(C) and K‘(C,0C) associated to the maps C — X xI. Such groups are dis-
cussed in a more general setting in [W 2; Chapter 11].

First note that up to homotopy, C was produced by attaching k-dimensional
cells to a generating set for P@Q =K, _,(M). Hence, K ;(C)=0for j=+k. Moreover,
we claim that K*+'(C; B)=0, B any Z[H] module, and hence by a standard
argument [W2; p. 26] K, (C) is a stably free Z[ H] module. To show the vanishing
of K¥+(C; B) recall that by Poincaré duality, K**'(C; B)~K, ,(C,dC; B) and
we have the exact sequence

K, ,(C;B)—K,_,(C,0C;B)>K,_,(dC; B).

Moreover, 0C=MpuU M, with M, and M, obtained from M by surgeries on
(k— 1)-dimensional spheres and hence as K;(M;B)=0j<k—1,wegetK,(0C; B)=
K;(Mp; BI® K;(My; B)=0 for j<k—1. Thus, K,(C) is a stably free finitely
generated Z[ H] module.

We proceed to relate K,(C) to K, (Mp)@® K, (My)=K,(0C). In the exact
sequence

Ky, 1(C,30) - K (9C)— K,(C)
by Poincaré duality K, , ,(C,0C)=K*"'(C)=0. Hence
K, (0C)=K,(Mp)® K,(M,) — K,(C)
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is 1n3ect1ve To see that this map is also surjective, use the Mayer-Vietories sequence
of W= Loy, Cuy,R; this reduces, as W— Y is a homotopy equivalence, to the
1somorphlsms

(1) Ki(Mp)@K;(My) — K,(L)® K,(C)® K,(R).

In particular, K, (M) ® K, (M,)— K,(C) is also surjective and hence is an iso-
morphism of Z[H] modules.

To compute K;(R) and K;(L), from (1) and K,(C)=0, ik, K,(C)=K,(M,) ®
K,(M,) conclude that K;(R)=0, K,(L)=0 i*k—1, and K,_,;(M,)— K,_;(R),
K, (My—K,_,(L)are isomorphisms.

To check that K, _,(M,) is projective, we show that K, _, (M) ® K,_;(My)=
K,_,(0C) is a stably free Z[H] module. As K,(0C)— K,(C) was seen above to
be an isomorphism and as K,_,(C)=0, we have K, (C,0C)=K,_,(0C) and
K,(C,3C)=0 for i+ k. Hence by an argument used above, to show that K,(C, 0C)
is a stably free Z[H] module, it suffices to check that K**!(C, dC: B)=0 for any
Z[H] module B. But, K**!(C,0C: B)=K,_,(C: B)=0by Poincaré¢ duality [W 2].

Lastly, these computations and the Mayer-Vietoris sequence of W=
LUy, (Cpoy W)

o K(Mp) = K(L)® K,(Cpuy W) — K (W) —

show immediately that K,(Cpu,, W)=0for i%k, K,(Cpu,, W)= K,(Mp). Similar
remarks apply to Cyuy W,.

After variation by a homotopy, the map f: W— Y restricts to f!: C— X x I,
I=[—1,1], X xI a neighborhood of X x0=Xc¥Y, with f(M p=Xx1, fm 0=
X x—1.

Lemma IIL2. If [K,(M,)]eK,(H) is zero, then, after performing further trivial
ambient surgeries on (k—1) spheres of M, and still calling the resulting manifold
M, K,_ (M) and K, (M) will be free Z[H] modules. If K,_,(Mp) is a free
Z[H] module, then f!: C— X x I is homotopy by a homotopy fixed on 0C, to a
map, which we continue to denote f, transverse to X with f~YX)— X a homotopy
equivalence.

Proof. As K, _,(Mp)and K, (M) are projective and are the only nonzero homology
groups of a free Z[H] complex standard arguments show that [K, ,(M,)]—
[K,(M,)]=0 in K,(H). As performing trivial surgeries stabilizes K, _,(M}) and
K, (M), the first statement of the lemma is obvious. Note that performing trivial
surgeries corresponds to enlarging the generating set (o, ..., ,) of P with copies
of the zero element.

To see the second statement of the lemma, let ey, ..., e, be a basis for the
free Z[H] module K, ,(Mp). As K,_,(C)=0, K,(C,Mp)—K;_;(My) is
surjective. Moreover, as K;(C,Mp)=0 for i<k, by the relative Hurewicz
theorem there are immersed discs d;: (D¥, $*~')— (C, M) with dd, representing
e, 15isv. As n (C)=mn,(M,) a standard piping argument, see [W2 p- 39], used
above shows that after variation by regular homotopies the discs {d;} 1<i<v
may be taken to be disjoint embeddings. Performing handle exchanges on M,



142 S.E. Cappell

in C using these embedded discs, we obtain a cobordism Cp of M, to M’ with
CpcC.

We claim that M’ — X is a homotopy equivalence. Actually, it is a standard
fact that surgery on a free Z[H] module basis for K, ,(M3*!) produces a
homotopy equivalence, but for completeness we give in the present case a direct
argument. Clearly n M'=n X. Moreover, C,=0(Ru,, C}) and as K,(R)=0,
i£k—1 and C, is up to homotopy, produced by attaching cells to a basis of
K,_;(Mp), KY(Cp)— K/(M ) is an isomorphism for j=k — 1. But this map factors
through K/(Cp) — K'(C}) which is onto for j+k—1 as

KI*(Cp, 0Cp =K, ;_1(Cp)=0  for j*k—1.

Hence as 0C=M,uM’, K/(M')=0 for j$k—1 and using Poincaré Duality, we
conclude that K,(M')=0 for all i.

We will show below in Lemma I11.4 that &(c(f))=[K,(M,)]eK,(H) and
hence from Lemma I11.2 if &(z(f))=0, f is homotopic to a map split along X c Y.

To proceed with the proof in § 2 we will need to be more careful in our choice
of a basis for P and Q and correspondingly in the construction of C, and C,.
Using Lemma 1.8, we may choose finite Z[H] module generating sets a,, ..., a,
for P, f,, ..., B, for Q with p,(a;)=0, p,(B,)=0, p(a,) and p(ﬂ,.) elements of the
Z[H] submodule of (P@Q)®,,ZG generated by Asoes %y, Bisos Biys
1 <i=u. The corresponding construction of C, and C, given above constructed
embedded discs &;, B;, 1<i<u with 0a,, B, bemg spheres in M representmg o
and S, respectively Note that these embedded discs {&,, @,, .. i e /3}
can be chosen so that their images in W are in general position and thus as
dimension W=2k, have only isolated points of self-intersection. (For example,
given an embedding &,: (D*, S*') — (W,, M) by varing the image of & in W by a
small regular homotopy fixed on S¥~! this image may be put in general position.
The lift of this homotopy is a regular homotopy of & to a map, which if the regular
homotopy was chosen sufficiently small, will still be an embedding.)

We may impose one further restraint on the choice of the discs #;, Bj. Filter
the space C,, by setting

Cp, ;=M x [0, 17U handles obtained by thickening a,, &,, ..., &;
so that C,=Cp ,2Cp ,_y, ..., Cp =M x [0, 1]. Similarly, filter C, by setting
Cy.;=M x [0, — 1] U handles obtained by thickening 8,, ..., §;.

We state the condition first in case A, that is Y— X has 2 components. Note that
W,u,, W, is the covering space of W corresponding to the subgroup =, (W,)c
n,(W) and similarly W, U, W, is the covering space of W corresponding to
n, (W) cn (W). Let n: W— W,u, W,, n,: W— W, U,, W, denote the obvious
covering space maps corresponding to H < G, and to H = G,. Now we claim that
the discs &, B; can be chosen inductively so that

) &, =closure (m] (W, Uy Cy )—Cp ) in W,
(2) B, <closure (1, ' (W, Uy Cp )= Cp ) W,
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Also, the disc @; 41 (resp; B +1) is to be chosen so that its image represents the
zero element of nk(Yl, X) (resp; nk(Yz, X)).

Essentially the same arguments as those employed in [§5 show that the
discs @, B; may be inductively chosen to satisfy this condition. The point is again,
see Lemma 1.7, «; and p(2,)eQ ®,, ZH, represent essentially from the definition
of p the same element of K,_,(W,). But from our choice of generating sets, p(a;)e
{Bis. s B} ®zy ZG where {f,, ..., f;_,} is the ZH submodule of Q generated

by B, ..., B;_, and
Kk 1( (WUMC ) CQ‘i)_—"Kk_l(VVl)/{ﬁl’""Bi-l}@ZHZAGl‘

Hence as in the arguments of Lemma IL.6 «, bounds a disc in (z, ' (W, U,, Co.)—
CQ ;) and as observed above this disc &, may be taken to be embedded and with
its image in W having only point self-lntersectlons

Note that as Cp ;, is obtained from C, ; by attaching a handle obtained by

thickening &, _ ;, we may inductively construct C, ;_, so that

Cp. ;.1 =closure (r ' (W, Uy, C, )~ Cy ) in W
Similarly, we may assume that

C =closure (m; ' (W, Uy Cp )—Cp ) in W.

Q,i+1

We now briefly state the corresponding condition which we may impose in
case B on the choice of the discs & and B;. Note that W,u,, W'u,, W,, with
basepoint the basepoint of M,, is the covering space of W corresponding to
J<=J*y {t}. If we pick as the basepoint of Wju,, W'u,,, W, the basepoint of M,
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this is the covering space of W corresponding to tJt~! <= J *, {t}. Let

N7/ ’ Y ’
T Wo Wy Wou W, wn:WoWoy Wu, W,

re

be the covering projections corresponding to H<=J and HctJt™! with 7, (M)=
M,, m(M)=M,. Then arguing exactly as in case A, we may inductively choose

the discs &, ,, B;,; so that

() & =closure (1,1 (Cy ;Up, WUy, Cp )—Cp. ) in W,
(3) B, cclosure (1, (Cg. iU, WUy, Cp)—Cp ) in 114
and correspondingly

Cp,i 1 =closure (17 1(Cyy Uy, WUy, Cp )= Cy ),

Co.i1closure (71 (Cy Uy, WUy, Cp)—Cp ) in W.

§ 2. A Nilpotent Normal Cobordism on W x §!

Lemma III.6, which is proved in this section using the results of III §1, con-
structs a nilpotent normal cobordism of W x S' to a manifold U, with Wc U
and W—Y a split homotopy equivalence. This, together with the results of
Chapter II, is used to complete the argument in § 3.

Recall that the nilpotent normal cobordism construction of II §1 began with
the construction, see Lemma II.1, of a codimension one transverse inverse image
on which the homotopy equivalence restricts to a map connected below the
middle dimension. Such a submanifold V=W x S! is explicitly constructed in
proving Lemma III.3. The submanifold V is constructed by performing handle-
exchanges relative to the boundary on M xI<W x I, I=[0, 1], to obtain V,c
Wx1 with 0V,=M x0uUM x1. We will then set V=V,/identify M x0 with
M x 1, a codimension one submanifold of W x S'=W x I/identify W x0 with
W x 1. Of course, corresponding to the ambient surgeries on M x I = W x I there
are ambient surgeries on M x I = W x I and it will be convenient to begin with
a discussion of surgery in W x I.

Clearly, ambient surgery can be performed on the spheres o, x 1/4, «, x
1/4, ... a,x1/4, B, x3/4, B,x3/4,...,8,x3/4 in MxI, MxIcW xI using
handle-exchanges on the discs &, x 1/4, B, x3/4, 1<i<u, I=[0,1]. Here &, B,
1 <i=<uare the discs constructed in III § 1. These handle-exchanges, see Lemma 1.3,
correspond to a homotopy, fixed on the boundary, of f x 1,: WxI— ¥x1I to a
map g’, where

g M X xD)=Cpuy,, Cpuy Cuuy Cy

= CpUp, Cup, Co-

Let Vo=Cpuy, Cuy, Cp and sy Vo — W x1 this inclusion so that s,(V,)=
g H(X xI).
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Mx1 o
Wx1
M1
Ui Bix3/4
Vo/
l_ Ce .
Wx 0
Mx0
Vo Wxl

We proceed to construct an embedding V, = W x I. The proof of the following
result uses the observation that it is easier to embedded a disc in W x I than in W.

Lemma II1.3. The map f x 1,: W xI— Y x1,1=[0, 1], is homotopic, by a homotopy
fixed on O(WxI), to a map g,: Wx1—YxI transverse to X xI<YxI and
with V,=(g,)” (X x I) and, letting s,: Vo, — W x I denote a lift of

Vy=(go) "(X xI) > W x 1,
with s, isotopic to s, by an isotopy fixed on 0V,.

Proof. We begin with some generalities about embedding discs in a “mani-
fold x I”. Let L be a 2k dimensional manifold, k>2, and N a codimension 1
submanifold of L with trivial normal bundle in L. Let y: (D*, S*=!)— (L, N) be
an immersion with dy: S*"! - N an embedding, and with y (interior D)n N =¢
and y in general position, that is with only point self-intersections, having inverse
images p,, ..., p,eD*. Let p: (L, N)x I — (L, N) denote the projection, I=[0, 1].
Then the immersion y,: (DX, $*=') > (L, N) x I, y,(x)=(y(x), 1/2) is easily seen to
be regularly homotopy to an embedding y, by a homotopy v,: (D, S)— (L, N) x I,
0<t<1fixed on S and with py,=y. In fact, if g,: D* > [1/2—¢, 1/2+¢],0<e<1/4,
is a smooth function with g, (p,) #g, (p;) for p,#p;, 1 Si<v, 1 <jsv,and g:D—1,
0<t<1, is a smooth homotopy of g, to g,, g,(x)=1/2 for xeD, just set y,(x)=
((x), g,(x)). We refer to this as a “handle-pushing” procedure.

We proceed to show that in a covering space in which y lifts to an embedding,
the lift of y, is unique up to isotopy. Precisely, assume further that n: L — L is a
covering space and that N’ is a component of 7~ '(N) and that y lifts to an em-
bedding v': (D, S)— (L, N'), i.e. ny'=y. Write y, for the embedding y,: (D, §) —
(L, N')x I, y5(x)=(y'(x), 1/2). Then if y, as above is an embedding, y,: (D, §) —
(L, N) x I with py, =y and with y,(x)=(y(x), 1/2) for x€S, then letting y; denote a
lift of 7, to 7;:(D,S) - (L N)x L, (xx 1) =7, and with (3;]5)=(%,15), 7, is
isotopic to y;, by an isotopy vy;: (D, S) — (L, N')x 1, 0=t<1, with (3, S)=(y,|S)
and with p'y,=9, p': LxI—L the projection. In fact, choosing a smooth
homotopy h,: (D, S)— I, 0=t=<1, with h; the composite, for i=0 or 1, D x
I—1, set y,(x)=(y'(x), h,(x)). Notice that here y; =(y', h;) because they are both
lifts of y, and they coincide on S.

Using this handle-pushing procedure, we describe an inductive process for -
performing handle exchange on M x I = W x I using discs which have boundary
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a;x1/4cMx1/4, B,x3/AcMx3/4, 1<i<u. The discs & and B; with dx,=
a;x 1/4, 0B;=p,x3/4 will be constructed 1nduct1vely to satlsfy pla)= nw(oz)
p(B )= nw(ﬂ) p: Wx1— W the projection and 7: W — W the covering space
map, d;, B, as in III §1. Recall from the discussion at the end of III § 1, that (@)
and frw(ﬁi), while not necessarily embedded, will be in general position and have
only point self-intersections.

We adapt our notation in the following inductive construction to case A;
modifications of the notation for case B are briefly described afterwards. To start
the argument, recall from (2) of III §1, n(&l)c W, n(Bl)c W, and &, and B, were
constructed so that #(a,) and #(B,) would be immersions w1th isolated self-inter-
section points. Therefore using the handle-pushing procedure described above,
f(@)x 1/4=W, x I, #(B,) x3/4cW, xI may be perturbed slightly to get em-
bedded discs & and B; with 0a; =a, x 1/4, 0B, =, x 1/4, p(&,) =1, (&), p(B)) =
#tw(B,). Now perform handle-exchanges on M x I W x I using thickenings of
the discs a;, f8; .

We proceed to the similar general inductive step. Assume that handle -ex-
changes have been performed on M x I < W x I using the discs &, ﬁl, e O ﬁl,
with boundaries «, x 1/4, f; x3/4, ..., a, x 1/4, B, x 3/4, and with

@) pE=tya, ph=ty,f, 1<jsi

To construct f;, ;, notice first that W, x 0u,,, , M x [0, 1/4] U (thickenings of the
handles a;, @, ..., &)= W, U,, Cp ; is included in the component of W x I which
is, after the performance of these ﬁrst 2i handle-exchanges, the inverse image of
Y, xI<Y xI; in fact, a copy of W, x0u,, Cp , is included in the boundary of

thls subspace of W xI. Pushing sllghtly M x [0, 1/4] into the interior of this
inverse image of Y, xIcY x I, we can arrange from the inductive assumption

W, x1 W x1

W, x0 Vs W, x0

(Wx0 UpgMx[0, 1741 Uy, Cp i) € Wikl
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of (4) that the composite map W, u,, Cp ;> W x I — W is the same as
W, Uy Cp i —> W— W.

Here the inclusion W, u,, C, ; is that given in IIT § 1.

Now as f,,, in M was constructed to be disjoint from o, ..., o, fi, ..., B;,
B;. 1 x 3/4 is trivially seen to be isotopic to the sphere f; | x 1/4 in the manifold
obtained from M x [ by performing surgery on

o, x1/4, ... a;x1/4, B, x3/4,..., B, x3/4

In fact we will see easily below that it suffices to construct a disc Bl .y with boundary
B;x1/4 and with pﬂ —nwﬂ,+1 But B,,, x1/4=M x 1/4 is in the image of the
embedding of W, u,, C ;=W x I constructed above. Moreover, from the (2) of
I11 § 1, the composed map D* Pt W W was DFEs W, Uy, Cp ;— W where

B is the composite D* SUTING 7/ (covering space of W corresponding to G, =G).
Hence, as  was constructed to be in general position with only point self-inter-
sections, we may use the handle-pushing procedure described above to obtain
an embedding B, in a neighborhood of W, U, C, , with pB; , =7,(B, ).

Clearly the effect of these ambient surgerieson o, x 1/4, ..., a, x 1/4,8, x3/4, ...,
B,x3/4 is to produce an embedding Vo<W and the homotopy equivalence
fx1,;: WxI—-Y xI,fromLemma I[.3and the constructionofa,, a,, ..., Bl, . Bu,
can be varied by a homotopy to obtain g, homotopic to f x 15,8, WxI—>Y xI
with g5 (X x )= V,. Now recall that the selfintersections of j,, , and its inter-
sections with all the ﬁ are isolated pomts which may be taken to be outside of
B...(V), Va nelghborhood of dD*+! in D*+!. Let h: D**'— [ =interior I be a
smooth map with h(dD**!)=3/4 and h|(D**'—V) the composite

D B .

Now set B:~+1 :(ﬁwg,‘+1’h)~

Wy x 1 Mx1 Wyx 1
W1
—-Mx[3/4,1]
W, x 0
Moreover, as &, ..., &,, ﬁl, ..., B, were constructed in IIT1§1 to be embedded

in W x I, from the remarks at the beginning of this proof on the uniqueness up
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to isotopy of the handle-pushing procedure in covering spaces, the lifts of &; and
Bito W x I are isotopic to a & x 1/4and f x 3/4,1<i<u. Hence, the lift of ¥, -»W x I
to s,: Vo— W x I is isotopic to sy: V,— W x 1.

ThlS completes the proof of the lemma in case 4. The argument in case B is
entirely similar and the modifications of the notation are left to the reader. Note
that in case B, (3) of II1 §1 must be used in place of (2) of III §1 and the role of
W, x0Uy, oM %[0, 1/4] and of W, x 1 U, M x[3/4,1] in the above argument
is taken by a copy of W’ in W x I with boundary M x 1/4u M x 3/4. The discs
&, By, &, B, ..., B, in case B are constructed to be disjoint from this copy of W'.

Setting W x S1 W x I/identify W x 0 with W x 1, and V=V, /identify M x0
with M x 1, we have V< W x S' and f x 1: WxS' Y xS is homotopic to a
map g transverse to X xS! with V=g '(X x §'). From this and Lemma IIL.3
we will also deduce the following:

Lemma 1.4, &(z(f))=[K,(M,)]e KO(H).

Proof. We employ again, as in the proof of Lemma I1.2(ii), the geometric inter-
pretation of @(z(f)) given in [W1; §5]. Recall this involves construction of a
CW complex splitting problem with torsion t(f) and with homology kernel
group non-zero in only one dimension. Clearly the homotopy equivalence
fx1p: WxD?*—Y xD? has Whitehead torsion 7(f) and we will construct a
homotopy of fx 1, to a map e, extending the homotopy constructed above of
fx1lg to g, with e”' (X xD*)=CxI.

In the proof of Lemma II1.3, we constructed inductively a series of handle
exchanges to produce ambient surgeries on M x S' =W x S§'. Corresponding
to these handle exchanges, we may inductively perform a corresponding exchange
in W x D? using a neighborhood in W x D? of each of these handles in W x S'.
This produces a codimension one submanifold of W x D? and from the last part
of Lemma IIL3 and its proof, the decomposition this induces of W x D? can be
identified with

W x D?
= {(W, x D?-neighborhood (Cgy x 3/4)) Uclosure of a neighborhood Cp, x 1/4}
U {(W, x D*-neighborhood (C, x 1/4)) U closure of a neighborhood Cyx3/4}

Here, as in_the proof of Lemma IIL.3, C,x 1/4< W x 1/4cWx S'=8(W x D?),
Cp % 3/AcW x3/AcW x S' =3(W x D?). But the removal of a neighborhood
of a subcomplex in the boundary of a manifold does not change the homotopy
type and thus these two components of W x D? are homotopy equivalent to
Wy Cp and W, vy, C, respectively. But by Lemmalll.l, K (W u, Cp)=0,
K (W, Uy Cp)=0 for ik and K,(W,u, Cp) and K (WuMCQ) are projective
Z[H] modules. But then by [W1;§5], &(z(f x 1,,1)) [K,(W,u,, Cp)]. But
D(t(f x1))=P((f)) and by Lemmallll, K,(W,u,C,)=K,(M,). Hence,
®(x(/)=[K,(M)].

Thus, from Lemma II1.4 and Lemma II1.2 when @(t(f))=0, we may assume
that K, (M) and K,_,(M,) are free Z[H] modules. As from Lemma IIL1,
[Ki(Mp)]=—[K,(My)] when @(z(f)=0 we may also assume that K,(M,)
and K, _, (M) are free Z[H] modules.
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The proof of the main result of this section, Lemma II1.6 below, involves
constructing explicitly the nilpotent normal cobordism of Chapter 11 on the homo-
topy equivalence W x S — Y x S! with V = W x §!, then inverse image of X x S ¢
Y x S', taking the role of the codimension one submanifold studied in Lemma I1.1.
This construction uses a description, provided in Lemma II1.5, of the decomposi-
tion defined in I §4 and used in Lemma II.1,

K,(V)=F®Q,

where B, and Q, are Z[n, (X xS")] modules, n, (X x S')=H x Z. (Warning on
notation: Below, we always use P, and Q, to denote the summands of K,(V),
instead of the P, Q notation of Lemma II.1; the symbols P, Q are already being
used here to denote the summands of K, _,(M).)

Recall from Lemma I1.2 that when K, (M) is a free Z[ H] module, the map of
C=Cpuy CQ—E—»X x [—1, 1] is homotopic to a map transverse to X x 0 with
the inverse image M’ of X x 0 homotopy equivalent to X. Write C}, for the closure
of the component of C — M’ which contains M, and write C, for the closure of the
component of C— M’ which contains M. Thus,

C=Cpuy Cp=Cruy Cy.
Hence,

V =V,/identify M x 0 with M x 1
= Cp Uy, Cuy, Cyfidentify M x 0 with M x 1
= C Uy, Co Uy Cp/identify the two copies of M, in the boundary
= Cp Uy Co Uy, Cp Uy Chpfidentify the two copies of M, in the boundary
=(Cy Untg Co) Up (Cp Uy, Cp)/identify the two copies of M’ in the
boundary.

Moreover, the map V— X x S' restricts to maps CoYn, Cb—ﬂaXxI’, I' an
interval in ' and C; U, Cp—"2>X xI", I" an interval in S'. Note that

ClpUp Co=d(Cy X I')

and we construct in the proof of Lemma IILS5. (ii) an extension of i, to C, x I' >
X xI'. Thus, we may make use of the map K, (Cyuy,, Co)— K, (Cp). Similar
remarks applied to Cp will produce a map K, (Cjp Uy, Cp)— K, (Cp). Also, there
are obvious maps of K, (M), K, (M), K,(Cp Uy, Cp), K\ (Cyuy, Co) to K (V)
induced from the inclusions of subspaces in V.

Lemma IILS. Let V be as above with K,(Mp) a free Z[ H] module.
(i) K (V)=0 for i*k.
(i) Ker(K,(Cyuy, Co) > K (Co) =K, _ (M)
Ker (K, (Cp Uy, Cp) = K (Cp) =K, (Mp).
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(iii) The summands F, and Q,, of K, (V) are given by

Py =Ker (K, (Co Uy, Co) = K, (Cp)) ®py Z[H x Z]
DK, (Mp) ®,, Z[H x Z]

@y =Ker (K, (Cp Uy, Cp)— K, (Cp) @y Z [H x Z]
DK, (M) ®yp Z[H x Z].

Note that in Lemma IIL5, Z[H x Z]=Z [z, (X x S1)].
We defer the proof of Lemma IIL.5 to the end of this section and apply it
immediately to the proof of Lemma I1L6.

Lemma IIL6. For n=2k—1>3, if ®(z(f))=0, the nilpotent normal cobordism
construction can be performed on fx1s: W xS'—Y xS, for the problem of
splitting along X x S' <Y x S*, to obtain a normal cobordism of [x1g to a homo-
topy equivalence o: U—Y x S* with o transverse to Y x p, peS* and with, setting
W=oa"1(Y x P, WoY=Y x p a homotopy equivalence split along X < Y.

Proof. From Lemma II1.4, Lemma II1.2 and Lemma III.1, when ®(z(f))=0 we
may assume that K, (M), K, _,(M,), K, M), K, _, (M) are free Z[H] modules.
Fix a choice of bases for K,(M,) and K, (M,). This determines dual bases for
K,_,(M,) and K,_1(M,) and hence, by Lemma II1.5.(ii), this determines fixed
bases for Ker(K,‘(C;2 Uprg Co)— K, (Cp)) and Ker(K,(C) U Cp) = K (Chp)).
From Lemma II1.5.(iii), the basis of K, (M) together with the basis of

Ker (K, (Cp Uy, Co)— K, (Cl)

form a basis for the free Z[H x Z] module F,. From Lemma IL.1.(ii) B, is a sub-
kernel of K, (V) and we may represent this basis of F, by disjoint embedded spheres
in V; moreover, we may clearly choose the spheres representing the basis of K, (M )
to lie in a neighborhood of M,, in ¥V and those representing the basis of

Ker (K, (Cp Uy, Cp)— K, (Cl)

to lie in the interior of CoYm, Co= V. Entirely similar remarks apply to 0,
We show, at the end of the proof of Lemma IIL.5, that this basis for the subkernel

Oy is dual to that of the subkernel B, .

Note. The above argument for embedding elements representing a basis for
K, (Mp) in M, x I makes strong use of the geometry of the splitting problem.
In general, it is not true that k-spheres which come from codimension one sub-
manifolds of a 2k-dimensional manifold are homotopic to embeddings; the
intersection form is easily seen to vanish on such spheres, but the self-intersection
form might be non-zero [W2;§ 8]. A more directly geometric argument to embedd
these classes of K, (M) in M, x I than that given above is the following: From
LemmaIILl, K, ,(RxI,MpyxI)—K,(MpxI) is surjective and a standard
piping argument [W2; § 4] shows that elements of K, ,{(RxI,M,x1I) can be
represented by immersed discs with the boundary sphere embedded.

Let ¥ x [—2,2] denote a neighborhood of ¥, x 0= Vo in W xI; correspon-
dingly we have a neighborhood V x[—2, 2] of ¥ x0=V in W x S'. Here, the
parameterization of the neighborhood of V is chosen so that letting V' x [—2,2]
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also denote the corresponding neighborhood of Vin W x S, V x 2 (resp; V x —2)
is in the component of W x 8! — ¥ x 0 which is the inverse image under g of
Y. xS' (resp; Y, xS'). We now perform the nilpotent normal cobordism con-
struction of Chapter II using V=W x S§' and the given bases for B, and Q, .
Precisely, attach handles to spheres, embedded in (Cj Ly, Cp) X2V X2 W x st
representing the basis of Ker (K, (Cy Uy, C’Q)—>K,,(C’Q¢§) and attach handles to
spheres, embedded in a neighborhood of M, x 1 in ¥V x 1= W x S', representing
the basis for K, (M ). Also, attach handles to spheres, embedded in (Cp Uy, C') X
—2cVx —2cW xS, representing the basis of Ker(K,(Cpuy,, Cp)— K (Cp))
and lastly attach handles to spheres, embedded in a neighborhood of M, x —1in
V x —1<W x S'. This constructs the nilpotent normal cobordism of Chapter I1
for the problem of splitting f x 1: W x S'— Y x §* along X x S'. Let a: U?¥+!—
Y x §' denote the homotopy equivalence of (2k + 1) dimensional manifolds ob-
tained by these surgeries on W x S*.
To complete the proof of Lemma III.6, we construct a submanifold

V’f/c W x S' with M’ = W and with, after varying f x 15, by a homotopy, W the
inverse image of Y x pcY x S'. However, V?’—» Y x p will not be a homotopy

equivalence. But, from W< WxS! we construct WU with W=a"(Y xp)
and W—Y xp a homotopy equivalence split along X xpc Y xp. We proceed

with the construction of V’f/ W x1I and hence of W< W x S'.

Recall that
Vo= CpUr, C Uy, Co=(Cp Uy, Cp) Up (Co iy, Co)
and in particular this gives a fixed embedding M’ <= V,,. This M' = ¥, corresponds

to a component of the boundary of Cj Uy, C, and of Cpuy, Cpin V=V, x1/
identify M, x0 with M x 1.

W,x 1 Mx1 W, x1
S ——————— Wx1
| F—-- C
Mg D W
______ CQ
R L
N S Ch
W ! Mp
- o J - Cp
Wx 0
W2x0 Mx 0 W"‘O

*
W Cc WxI in case A

Now in case A4, set W= W, x 0Uy V, Uy W, x 1, as in the diagram. (Resp; Recall
that in case B, V, was constructed in W x I disjoint from a copy of W' with for
OW'=M, UM,, M, going to M x0 and M, to M x 1. Now set VT’:this copy of
W Uy xoomxi Vo)
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The map fx1g: WxS'—>Y xS' is easily varied by a homotopy to obtain
ij/ as the inverse image of Y x pcY x S, p a fixed choice of a point in S'. From
M cV,c Vﬂf/, M’ is the inverse image of X X p.

Note that M, VOCV’K“/ and M, Vocf\k/[_ From the construction of U, U

contains the manifold W obtained from W by surgery on the basis of K,(M,)
and K, (M) and after varying « by a homotopy, W=o"'(Y xp). As Mpand M,
are disjoint from M'cW, we get M’ =o' (X x p). The proof of Lemma IIL.6
is completed by showing that W—Yisa homotopy equivalence. Clearly, it suffices

to show that K( W) =0 for i <kand that the basis for K,(M,)and K, (M) generate

a subkernel of K k(I/’f/) [W2; Chapter V]. We will show this in case A4 ; the argument
in case B is entirely similar, with apropriate changes of notation.

Recall that K;(W;)=0, i+k—1, k, K,(W,)=0, ixk—1,k. Then, as C, was
constructed by attaching discs to spheres representing a generating set for P and
C, was constructed by attaching discs to a generating set for Q, by Lemma L5,
K (W, Uy, Cp)=0for i+k and K;(W, Uy, Cp)=0 for i+ k. Recall also from Lemma
L1 that K,(Mp)=0, K;(M,)=0 for i+k—1,k and K,(C)=0 for i%k, K,(M,) ®
K, (M,)— K, (C) is injective. Hence the Mayer-Vietoris sequence for

W =(W; Uyg Co) Upry (C) Uy, (W Uy )
reduces to
0K, (Mp; Z[GD) @ K (M y; Z[G]) - K\ (W, Uy Cyp; Z[G]) @ K, (C; Z[G])

® K, (W, Uy Cp: Z[G) — K, (W) - K, (Mp; ZIGD @ K, _, (M¢; Z[G])
—0.

We show below that K, (M,; Z[G])— K, (W, Uy, Cp; Z[G]) and that
K, (My; Z[G])— K, (W, uy Cy; Z[G])

are isomorphisms. Hence, as K, (M) ® K, (M,)— K, (C) is an isomorphism, and
Z(G) is a free Z[H], module, this Mayer-Vietoris sequence gives the short exact
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sequence

0— Kk(A;Ip) ®Z[H]Z [G]® Kk(MQ) ®Z[H] Z[G]
K (W) K, (M) @,y ZIGT® K, (M )@y Z[G1—0.

But then, as K, (M), K, (M), K,_, (M), K, _, (M) are free Z[H] modules, and
as by Poincaré duality rank K,(Mp)=rank K, _,(M,),and K,(M,)=rank K, _,(M,),
the basis of K,(M,) and K,(M,) generate a free Z[G] summand of rank

1 (rank Kk(Vaf/)) in Kk(W). Moreover, as from the construction of W< U surgery

could be performed on the basis of this summand, it is a subkernel of Kk(I;Ik/).
It remains only to check the fact used above, K,(Mp)®y;,Z[G,]—
K, (W, Uy, Cp) is an isomorphism. An entirely similar argument also shows that
K, (M) @1 Z[G,]— K, (W, Uy Cp) is an isomorphism.
Recall, as in Lemma IIL.1, the construction of C, = W,, W,=R U, C,. Clearly,
W=W2U U Mg ( U W-g(a))
(ze[Gz,H] ) ae[G,, H]

:qu U Mg(z)( U (CPUMPR)g(a))

ae[Gy, H] ae[G2, H]
=(W,uyCplu Mpg(a)Rg(fl)-
ae[G2, H]

But then as K,(W)=0, for all i, the Mayer-Vietoris sequence of this decomposition
of W gives

K (Mp) ®, ZLG,] — K (W, 0y Cp) @ K (R) Oz Z1G,].
From LemmaIIL.1, K, (R)=0 and hence
K, (M) ®zim Z[Gz]“;_’ K (W, Uy Cp).
As Z[G] is a free Z[G,] module, this gives the isomorphism
K,(Mp; Z[G))— K, (W, U, Cp; Z[G]).

Proof of Lemma 111.5. As V= C Uy, u, C and by Lemma IIL1 K,(C)=0, i*k
and K;(M;)=0, K;(M,)=0 for i<k—1, the Mayer-Vietoris sequence for this
decomposition of V shows that K;(V)=0, i<k—1. Hence, by Poincaré duality,
K,;(V)=0 for i+ k. This proves part (i).

The embedding V—W x §' lifts to an embedding Ves(W x SY), extending
the lift of M — W to M — W. From the last part of Lemma II1.3, this embedding
can after an isotopy be identified with the embedding VW x S' = Wx I/identify
W x 0 with W x 1 given by

Mpx[0,1/4] Uy 174 C X 1/4UMQ>(1/4MQ x[1/4,3/4] Unox 34

Cx3/4 0y, 3aMpx [3/4, 1] with M, x 0 identified with M x 1.
Note that

Conme Co=Coux3/4Up, ,3aMgx [3/4,1/4] Uy 1/a Co x 1/4
=d(Cy x[1/4,3/4])
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Mpx 1 -
Wx 1
Mg % 3/4
(WxS')p (Wx S"),
Mg * V/4
-—e Wx 0

Mgx0 Mx0  Mpx0

VeWxS'=W x /(W x0=W x1)

and thus Cj Uy, C,— X extends to Cj, x [1/4, 3/4]. Moreover, as Cy Uy, Cp=C
and K,(C)=0for i%k and K,(M")=0 for all i, Mayer-Vietoris sequences show that
Ki(Cé)=0 for i%k. Thus, the sequence of the pair (Cj, x [1/4, 3/4], C, Unte Cop)
gives the exact sequence
0K, (Cyx[1/4;3/4], Cyuy, Co)— Ky (Couy, Co)
— K, (C, x [1/4,3/4])

and thus
Ker (K (Cy Uy, Co) ™ K (Cp x [1/4, 3/4]) = K, 1(Cyx[1/4,3/4], Cy Uy, Cop)-
But by Poincaré Duality, and as

0(Cy x [1/3,3/4])— interior (C;, Uno Co)=M’"x[1/4,3/4]

K, 1(Cyx[1/4,3/4], Cyuy, Cop) = K"(C’Q x[1/4,3/4], M’ x[1/4,3/4])
:K"(C;Z,M’)
=K, (Cy, M,).

But, as above, the Mayer-Vietoris sequence of C= Cj Uy Cp shows as K;(M')=0
for all i that K, (C)=K,(C,)® K, (C}). Recall also from Lemma IIL1, K, (C)=
Kk(MP)(BKk(MQ). Hence, Mp— C}, and M, — C;, induce isomorphisms K, (Mp) —
K, (Cp), K, (M, )—»K (C’ ). Then, the exact sequence of the pair (Cy,, M) gives
as K, _ 1(C )=0 K, (C, MQ);Kk_I(MQ).
We conclude that

Ker (K, (Cy Uy, Co)— K, (Cy x [1/4, 3/41) =K, _, (M,).

. An entirely similar result for M, completes the demonstration of Part (ii).

To prove part (iii) of Lemma IILS, recall from 1§ 4 that the decomposition
K,(V)=P, @ Q, is defined using the decomposition of W x S, the covering space
of W x S' corresponding to n, (X x S')=n, (Y x S'), given by

W x St =(W x §), U, (W x §"),.

I;Iere we denote by (W xS, (resp, (W x §"),) the closure of the component of
W x S' — V which is the inverse image of ¥,x S* (resp; (¥, x S)) under the lift of
the map g.




A Splitting Theorem for Manifolds 155

The definition of P in I § 4 gives

PV-Image( ki (WX SH,, V) > K (V)
K, (WxSY,, V).

But, see the above diagram, for R as in Lemma III.1 we may decompose

(W x 8'), =R x[0,1/4] Ug , 1,4 (W, U, C) x [1/4, 3/4])
Ug x 34 R x[3/4, 1])/identify R x0=R x 1
=H, U(RopCprx1/4 0 R ure oy x 34 Ha
where set
H;=(Ruy,C)x[1/4, 3/4]
H,=((Ruy, C)x 1/4Ug ., o Rx [0, 1/4]) U (R, C)x 3/4
Ug « 34 R X [3/4, 1]))/identify Rx0=R x 1.
Correspondingly, decompose

V=F, U(M’xl/4uM’x3/4)F2
where
Fi=Cox1/40y . 1aMoXx[1/4,3/4] Uy, 34 Cp % 3/4
= Couy, G
F,=((Mpx[0,1/4] Uy, 1,4 Cp x 1/A) U(Cp X 3/4Ups 34
M, x[3/4,1]))/identify Mpx0=Mpx 1
= Cpuy, Chp.
Notethat F; cH,, F, = H, . Thus as, see the proof of Lemma 111.2, K;(W, Uy, Cp, M)

=0 for all i, the Mayer- VlCtOI'lS sequence for ((W xS V)= (HI,F Yu(F,,H,)
gives

B =K, (W,xS",,V)=K,, (H,F; Z[m (X x sH)
O K, (Hy, Fy; Z[m (X x SHI).
But by excision,
Ky, (Hy Fys Z[n (X x SYD= K,y (R, Mp; Z[m, (X x S1)])
=K, (Mp; Z[n, (X xS")]) by Lemma IIL1
~K,(Mp) @Z[H]Z[HXZ].
We now proceed to complete the description of P, by computing
Ky 1 (Hy F Z[m (X x sHY).
First note that
(Hy, F)=(Cy x [1/4,3/4], Cox 1/4 Uy 1/a Mg x [1/4, 3/41 Upg x 374 Co X 3/4)
Uit 1172, 3741 M x 18 0 e x 3 (R Oy Cp) x ([1/4, 3/4], (1/4 0 (3/4))
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and as K;(M')=0, for all i, and from the proof of Lemma II1.2, K;(R u,, C})=0,
for all i, the Mayer-Vietoris sequence of this decomposition gives

Ky, (Hy, F; Z[n (X xSY)])

=K, ,(Cyx[1/4,3/4], C, x 1/4uMQx”4MQ x [1/4,3/4] Ung x 3/4 Cyx3/4;
Z[m, (X x $H))

=K, ,,(Cox[1/4,3/4], Co x 1/4 0y 1,0 M x [1/3,3/4] Untg x 314 Co % 3/4)
®umZ[H*xZ].

This last expression was described in proving part (ii) above. This completes the
computation of B, and entirely similar methods give the description of @, in
Lemma IILS.

Notice that from the above description of P, and Q, it is easy to obtain an
explicit description of the intersection pairing on K, (V). Let e,, ..., e, be spheres
representinga basisfor K, (M p)andlete], ..., e.representa dual basis for K, _, (M ).
Similarly, let f,, ..., f, beabasis for K, (M y)and f}, ..., f; adual basis for K, _, (M ).
Then, a basis for F, (resp; Q,) is given by e, e,,....e,, fi’.fy,....f." (tesp;
fishys oo fis €€y, ..., e); here f (resp; e;') is explicitly constructed by the follow-
ing procedure. The sphere f] (resp; ¢;) bounds a disc in Cj, (resp; C}); taking the
double of this disc we get the sphere f;’ (resp; €/') in Cj, Upg Co (tesp; Cpuy, Chp).
Clearly this sphere bounds a disc in Cj, x I, where Cj, Uy, C,=d(Cy x I) (resp;
Cpx 1, where Cp Uy p Cpc0(Clp X 1)) As V=(Cp Uy, Cp) Uppr  p (Co Uy, C) the
intersection form 4 on K, (V)=F, @ Q,, is easily seen to be given explicitly by

Mey, e)=Ale;, /] =Ale,, [))=A(f /] ) =27, €)= A ([, [)= ([, €])
=Alef,e)=0 forall ij.

e, €))=0 for ixj and Ale,e)=1, 1

Mf.f])=0 for i%j and A(f.f/)=1, 1

Remark. Even if H = G is not a square-root closed subgroup, the normal cobordism

of W to W which can be obtained from Lemma II1.6 shows that when @(z(f))=0

and n>S5, wW—Ls5Yis normally cobordant to a homotopy equivalence split along
X < Y. For n even this was proved in Chapter II.

§ 3. Completion of the Argument

Proof of Theorem I for n=2k— 1, Part (i). The necessity of the condition @(¢(f))=0
was shown for all n in the completion of the proof of part (i) for n=2k in Chapter I1.

Assume now that ®&(z(f))=0. Then by Lemma 114, W is h-cobordant to a
manifold W for which the induced homotopy equivalence f: W — Y satisfies
@(z(f))=0. Thus, in proving part (i), we may assume without loss of generality
that @(t(f))=0. Then Lemma II1.6 constructs a nilpotent normal cobordism of
Wx s -LI5 Yy xSt to a: U— Y xS! with We U, W— Y a homotopy equi-
valence split along X.

But as H is square-root closed in G, Z x H is square-root closed in Z x G;
moreover, H contains all elements of order 2 in Z x H. Now as f is a homotopy
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equivalence, f x 1g: W xS' — Y x §' is a simple homotopy equivalence [KwS].
Hence, using Remark 1 at the end of Chapter II, the surgery obstruction v of the
nilpotent normal cobordism of Lemma II1.6 is in

Image (IS, , ,(H, ®) - I, (Z x G, w)).

Hence, as HcG= nl(Y xS'—Y xp)=mn,(U- W), we may attach a normal
cobordism along U — W realizing a surgery obstruction whose image in

Ly, 2(ZxG,v)

is (—v) [W2]. This produces a normal cobordism with zero surgery obstruction
inI%,, ,(ZxG,w)of f x 15, W xS§' — Y x §' to a simple homotopy equivalences
o: U —Y xS, o 1(Yxp)=W. Then, W xS§' is s-cobordant to U’ and so
fx1g: WxS' - Y xS is homotopic to a map transverse to Y x p with W the
inverse image of Y x p. Passing to the covering space W x R, R=(— 00, o0), we
have corresponding to W< W x S and Wc W x S' that We W xR and Wc
W x R. Applying a covering translation of the covering space W x R — W, we
may assume that W and W are embedded disjointly in W x R. Let D denote the
compact submanifold of W x R with 0D=Wu W. We claim that (D; W, W) is an
h-cobordism. In fact, we may regard D as g~ (Y x[p, q]) for g: WxR— Y x R
a proper homotopy- equlvalence property homotopicto f x 1, withg™!(Y x p)=

(Y x q)=W. Then as g is split along Y xp and Y x g the methods of Lemma
I2 (i) show that D — Y x[p, q] is a homotopy equivalence. This completes the
proof of part (i).

Notice that part (ii) of Theorem 1 is an immediate consequence of part (i).
If Wh(G,) ® Wh(G,) — Wh(G) (resp; Wh(J)— Wh(G)) is surjective, it is easy to
replace the h-cobordism of W to a split manifold by an s-cobordism to a split
manifold. Before completing the proof of part (ii) of Theorem 2 for n=2k—1 we
need some preliminary results on A-cobordant splitting problems.

Recall the maps defined in [W 1] ,
Wh(G, *, G,) - Ker (K,(G) — K,(G,)® K,(G,))
(resp; Wh(J » {t})—2 Ker (Ko(H) —~* Ko (J))
Wh(G, *, G,)—"> Nil (H; G,, G,)
(resp; Wh(J #, {t) - Nil (H, J; &, &,))
where
Wh(G, *4 G,)/(Wh(G,)+ Wh(G,)) B
~Ker (R (H)— K,(G,)® K,(G,) ®Nil (H; G,, G,)
(resp; Wh(J =y {t})/Wh(J)
~Ker (R o(H) — "2 K (J) @ Nil (H, J; £, &,).

As usual, a fixed homomorphism G — Z,, restricting to H — Z, determines Z,
actions on Wh(G) and KO(H). The following result is a refinement of Lemma I1.3.
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Lemma IIL7. Let G, H and G,, G, (resp; {;: H— J, i=1,2) be as above with
G=G, *yx G, (resp; G=J x, {t}). Then the involution x — x* on Wh(G) induces an
involution on

Wh(G)/(Wh(G,)+Wh(G,)) _
~Ker (K (H) - K,(G,)®K,(G,) ®Nil (H; G,, G,)
(resp; on Wh(G)/Wh(J)
~Ker (Ko(H) - Ko() @ Nl (H, J; &5 &,))
which restricts to the negative of the usual involution on
Ker (Ko (H)— K, (G,)® K(G,) = K, (H)
(resp; on Ker (KO(H)—Q*;Eb K,(J) =K, (H))
and to an involution on Wil (H; G, G,) (resp; Nil (H,J; ¢, 8)).
Proof. This has essentially the same proof as that used to show Lemma I1.3.

Remark. Actually, the proof of Lemma II.3 could be used to show a stronger
result, not needed below. The splitting

Nil(H; G,, G,)—»Wh(G) (resp; Nil (H,J; &, ¢,)— Wh(G))

commutes with the Z,-actions.

Lemma IIL.8. Let Y be a closed Poincaré complex of dimension n+1, n=5 with
Y=Y, u, Y, (resp; Y=Y'/identify X, with X,, 0Y'=X, U X,), X a closed codi-
mension one sub-Poincaré complex of Y. Assume

H=7n,(X)->n(Y)=G;, (resp;¢;: H=n(X)—n(Y)=J)

are injective, i=1,2. Let W be a closed manifold and f: W— Y a homotopy equi-
valence split along X. Then, given

&1, —¢

xeKer (R (H)— Ky(G,) ®K,(G,) (resp; xeKer (K,(H)—— K,(J))

with x=(—1)"x*, there is an h-cobordism (V; W, W) with torsion v satisfying
1(v)=0, ®(v)=x and with the induced homotopy equivalence f: W — Ysplit along X.

We defer the proof of Lemma III.8 and use it to show the following.

Lemma IIL9. Let f: W—Y be split as in Lemma IIL8. If (D; W, W) is an h-
cobordism with torsion d satisfying d=(—1)"*! d* in

Wh(G)/(Wh(G,)+ Wh(G,)) (resp in Wh(G)/Wh(J)), G=mn(Y),
and if 1j(d), the element represented by n(d) in
H"(Z,; Nil(H; G,, G,)  (resp; in H™*'(Z,; Nil (H,J; &, &,))

is zero, then the induced homotopy equivalence f: W Yis split along X.
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Proof. From the hypothesis and Lemma I11.3, &(d)=(—1)" &(d)*. Then, let V be
as in Lemma I11.8 with x=(—1)" &(d)* and let D'=DuyV so that (D'; W, VV;)
is an h-cobordism with torsion denoted u and with W— Y split. Then as W— W
splits, it has torsion, see II §2, in Image

(Wh(G,) @ Wh(G,)) > Wh(G))  (resp; (Wh(J) - Wh(G))
and the torsion u of (D'; W, W) is (= 1) v* +d in
Wh(G)/(Wh(G,)+Wh(G,)) (resp; in Wh(G)/Wh(J)).
Then,
Pw)=D((—1)" v*)+ D(d)=(— 1"+ d(v)*+D(d)=(—1)"*! x*+ D(d)=0
and n(u)=n((—1)"v*)+d=n(d). In particular, ®(u)=0 and #(u)=0.

Thus in proving Lemma I11.9, we may assume without loss of generality that
7(d)=0 and &(d)=0. But then d represents the zero element of

H"*Y(Z,; Wh(G))/(Wh(G,)+Wh(G,))) (resp; of H"*!(Z,; Wh(G)/Wh(J)))

and hence there is an h-cobordism, relative to the boundary, of D to an h-cobordism
(D""; W, W) whose torsion represents zero in

Wh(G)/(Wh(G,)+Wh(G,))  (resp; Wh(G)/Wh(J)).

But then by attaching along W—f~'(X) a further h-cobordism we obtain an
s-cobordism of W to a split manifold.

The proof of Lemma IIL.8, is based on a realization procedure, in the relative
case, using an infinite process trick for the Siebenmann obstruction to con-
structing a boundary for an open manifold.

Proof of Lemma I11.8. Let M =f ~*(X), where from the hypothesis of Lemma I1L.8,
M — X is a homotopy equivalence. Let xe K, (H) with x=(— 1)" x*. We construct
a proper homotopy equivalence of open manifolds g: (7, 0T) > (M x I x I — M x
dl xinterior I, MxIx —1uUMxIx1), I=[—1,1], with dT=MxIx —1UV,
(gIMxIx—-1)=1,, ,,_, and gl: V>MxIx1 a proper homotopy equi-
valence split along M x0x 1 and with, setting N=g~!(M x0xI), g transverse
to M x 0 x 1 with:

(i) forn=2k K(N)=0i+kand x=[K, (g " (M x[0,1] xI—M x 1 x(—1,1))]
(i) for n=2k—1, K(N)=0 i+k—1,k, K,_,(N) and K, (N) are projective
Z[H] modules with K,(N)—> K, (g""(Mx[0,1]xI—-M x1x(—1,1))) an iso-
morphism and x=[K,(N)].
We defer the construction of T to the end of the argument.

Now, attach T along M xIx —1<T to the boundary component W x —1
of Wx[—-2,—1]. If

xeKer (R,(H) - K ,(G,) ® K,(G,))
Ko ()

(resp; xeKer (IZO(H)—':'—*——?-‘L—»
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from [S1] the resulting manifold is the interior of an h-cobordism of W to some
manifold W, V= W. From the geometric description of # and @ of [W1;§5],
letting v denote the Whitehead torsion of this h-cobordism, #(v)=0 and @(v)= x.
Moreover, as V< W, W—Yis split.

It remains only to construct T. For n=2k—1, let P be a finitely generated
projectiv Z[ H] module with [P]=x and P@® P* a free module. Introduce on
P @ P* the obvious Hermitian form structure and [W2;§5] realize this by a
normal cobordism C of M to the homotopy equivalent manifold M’. Now to
M xR x[—1,1], R=(00, o) attach along a neighborhood of M xnx 1 in M x
R x 1, for each neZ =R, the manifold C x[—n-+g, n+¢] to get H. Let P, denote
the copy of P in K,(C x(n+¢)) and P* denote the copy of P* in K,(C x(n—¢)).
Then attach to H handles corresponding to a basis of ((P.@ B*,). From the

neZ
resulting manifold remove all the boundary other than a closed neighborhood

of M and one of M’; thisis T.

The argument for n=2k is similar. Let [P]=x with «: P — P* an isomorphism.
Let Q be a finitely generated Z[H] module with P& Q free and f: Q — Q* an
isomorphism. Then a@® 1, (resp; 1, @ f) extends in the obvious manner to deter-
mine an automorphism E (resp; F) of the obvious Hermitian form on

(POQ®P*DQY).

Let Cg (resp; Cp) denote a realization of this by a normal cobordism of M to M’
[W2; §6], K,(Cp)=Q*=Q (resp; K, (Cr)=P*=P). Now attach to M xR x
[—1,1] in a neighborhood of each M x2kx1 a copy of Cpx[2k—e¢,2k+¢]
and to a neighborhood of each copy of M x(2k+1)x 1 attach a copy of Cp x
[2k+1—¢2k+1+¢] just ---U(Cpu Cp)u(Cru Cp)u--- and as K, (Cpu Cp) =
Q@ P, is a free module perform surgery on each copy of K,(Cpu Cp). From the
resulting manifold remove all the boundary other than a closed neighborhood
of M and M’ to get T.

Completion of the Proof of Theorem 2 for n=2k— 1, Part (ii). The necessity of
the condition

7(f)e Image (Wh(G,) ® Wh(G,)) —» Wh(G))
(resp; Image (Wh(J) —» Wh(G))

was proved in Chapter II. We defer to the end of the argument the proof that
0(f)=#(u), u the Whitehead torsion of an h-cobordism, which must by part (i)
exist, of W to a split manifold, depends only on f. Assuming this, clearly 6(f)=0
is a necessary condition for splitting; if f splits, we could use the trivial h-cobordism
to define 6(f).

Assume now that f satisfies (f)e Image (Wh(G,) ® Wh(G,) — Wh(G)) (resp;
Wh(J)— Wh(G)). Then, as ®(z(f))=0, by part (i) of Theorem 2, there exists an
h-cobordism of W to a split manifold. Letting u denote the torsion of this h-
cobordism, as 6(f)=1#(u), from Lemma I1.9 if 8(f)=0, f is splittable.

It remains only to check that when t(f)e Image (Wh(G,) ® Wh(G,) — Wh(G))
(resp; Wh(J)— Wh(G)), 8(f) is well-defined. Recall that from part (i), with this
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assumption on t(f) there is an h-cobordism (V;, W, W) of W to W, W—» Y
split and let v, denote the torsion of this h-cobordism. As f is split,

1(f)e Image (Wh(G,)® Wh(G,) » Wh(G))  (resp; Wh(J) > Wh(G)),
by a result of Chapter II. Hence v, +(—1)" vf =1(f)—1(f) represents 0 in
Wh(G)/(Wh(G,)+Wh(G,)) (resp; Wh(G)/Wh(J))

and so ’1(01) represents an element #(v;) in H”“(Zz, Nil (H; Gy, G,)) (resp;
H"*Y(Z,; Nil (H J; &1, &) Now, let (V,; W, W) be another h-cobordism of W
to a manifold W, W— Y split; denote its torsion by v,. The proof is completed
by showing 7(v,)=7#(v,).

Using Lemma I11.8, exactly as it is used in the first paragraph of the proof of
Lemma II1.9, we may assume without loss of generality that @(v,)=0and @(v,) =
But then (V,uy V,; W, W) is an h-cobordism with torsion ¢ satisfying ®(¢q)=0
and #(q)=v, —v,. By the relative form of part (i) of Theorem 2, there is an h-
cobordism of V] u, V, to a map split along X x I, and so letting z denote the
Whitehead torsion of this h-cobordism

g=z+(—1"*' z* modulo (Wh(G,)+ Wh(G,))  (resp; Wh(J)).
Hence v, — v, represents the zero element of
H™ (2, Nl (H: G, G,) (resps H™N(Z: Nil (H, U3 &, &)

Remark. If H**(Z,; Nil (H; G,, G,)) (resp; H*YZ,; Nil (H, J; &,, &,)) is not trivial,
then 0(f) takes all values in this group.To realize an element in this group, just
construct an h-cobordism, with torsion representing this element, on a split
manifold.

Chapter IV : Another Splitting Theorem

§ 1. Another Result when H=0

Theorem 3 will be proved in this section. Note first that for n odd or if 7, (Y) has
no 2-torsion, Theorem 3 is just a special case of part (ii) of Theorem 1. In case A
this uses the fact that Wh(G,) ® Wh(G,) > Wh(G, = G,) is surjective [St]; in
case B note that for H=0, J*,{t}=J*Z and as Wh(Z)=0 [BHS], Wh(J) —
Wh(J * Z) is surjective.

We give below a proof of Theorem 3 for n=2k, n+4. The extension to the
case n=4 follows from the method used in the proof of Theorem 5 in Chapter V
to derive five-dimensional splitting results from the corresponding high-dimen-
sional results. Note also that as a consequence of the results on Whitehead groups
quoted above, it suffices to show that W is h- cobordant to a manifold W for
which the induced homotopy equivalence W — Y is splittable.

We return to the conclusion of Lemma IL.1. Recall we may assume that as
n=2k and H=0, 1, M=0, K;(M)=0 i<k and there is the splitting K,(M)=
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P®Q, P and Q finitely generated projective Z[H] modules. In the case under
consideration here as H=0 P and Q are free finitely generated abelian groups.
Assume that K, (M)=+0. The proof will be completed by constructing a normal
cobordism, w1th ZEero surgery obstruction, of W to a manifold Ww1th the induced
homotopy equivalence f: W — Y transverse to X <Y and with M=f-1(X) con-
nected and simply-connected and with K,(M 1)=0 i<k, rank (K, (M))<rank
(K, (M)). Repeating this construction, we flnally get a normal cobordism with
zero surgery obstruction of W to a split homotopy-equivalent manifold and hence
W is h-cobordant to a splitting.

To construct W, recall from Lemma 1.8 that there is an upper-triangular
filtration

Q:QODQID'”DQ)‘:O'

Let s denote the largest number for which P® Q_=0. Then clearly p,(P)=0 and
p,(Q,)=0. Thus, p, or p, has a non-zero kernel. We will assume that p, has a
non-zero kernel; the argument of p, has a non-zero kernel is entirely similar.
As the Image(p,)=Q ®,Z[G,] (resp; Q®, Z[J]® P @, Z[tJ]) is a subgroup
of a free abelian group, it is also free. Hence Ker (p,) is a direct summand of P
and thus P contains a free direct summand of rank 1 generated by an element e
with p,(e)=0. From Lemma II.1 (ii) we may choose feQ with A(e, f)=1 for 4
the intersection form of K, (M). The arguments of I § 5 show that we may represent
e by da where a: (D**+!, S¥) — (W, M) (resp; W', M,)) is an immersion. As Q =
K, ,(W,, M), f may be represented by 0f for f an immersion f: (D**!, §*) —
(W, M) lifting to f: (D¥*+*, S¥) — (W,, M)=(W, M). From Lemma IL1 (ii) we may
assume that da and 08 are embedded spheres, with trivial normal bundles, which
intersect in one point. The idea of using such pairs do and 08 is due to Ronnie Lee
in[L1].

We complete the argument first for k odd, that is for (dimension Y)=3
(modulo 4). Let M x I« W, I =[—2,2] denote a neighborhood of M x0=Mc W
constructed so that if this inclusion is lifted to W, M x —2cW,, M x2cW,.
(In case A this means just that M x —2cW,, M x2cW,.) Let C, denote the
cobordism obtained by attaching a handle to da = M. Clearly the map f!: M — X
extends to the normal cobordism C, — X where 0C,=M U M, . Similarly, let C,
denote the cobordism obtained by attaching a handle to 0§ = M ; again, f! extends
to a normal cobordism C, — X where 0C,=M U M,. It is easy to see that M,
is connected and simply-connected, and as M, was produced by surgery on a
free summand of K, (M), for the induced map M, — X K,(M/)=0 i<k, rank
(K, (M) =rank (K(M))~2, [KM].

Now attach C, x[1,2] to W xI', I'=[0, 1], along M x[1,2] x 1c W x 1 and
attach C,x[—2, —1] to WxI along Mx[—2,—1]x1cWx1. Call the
resulting manifold

T=WxI'Upxi-2, -1jx1omxir, 2121y (Ce X [=2, =170 €, x[1, 2]).

By the normal cobordism extensmn lemma [B2], the map f extends to a normal
cobordism F: T— Y, 0T=Wu W. We will show that W— Y is a homotopy equi-
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valence and that T is a normal cobordism with zero surgery obstruction in
L, +2 (m, (Y), w). Arguments similar to those employed in the proof of Lemma IL6,
and easy to check directly in the present instance, show that K;(T)=0fori<k+1;
also, K, ,,(T) is a free Z[=,(Y)] module on two generators E, F, with as da and
0P intersect in one-point and p,(e)=0 and ac W, A;(E, E)=0 and /IT(E F)=
for A, the intersection pairing of K, (7). But then the Hermitian pairing /I
is non-singular on K, ,(T) and hence [W2; Chapter V] W—Yisa homotopy
equivalence.

Now for dimension Y =3 (modulo 4), T has dimension a multiple of 4 and
hence under the assumptions about the orientations of elements of order 2 in
n,(Y) made in the hypothesis of Theorem 3, A;(E, E)=0 implies p;(E)=0 for
Uy the self-intersection form of T. Hence, E generates a subkernel [W2; Chapter V]
of K, ,(T) and thus the surgery obstruction of this normal cobordism is zero.
Lastly, note that the induced homotopy equivalence f: W—Y can be made
transverse to X < Y with f~1(X)=M - This completes the argument for k odd.

For the case (dimension Y)=1 (modulo 4), the above argument does not quite
work because under the assumptions made about the orientations carried by
elements of order 2 in the hypothesis of Theorem 3, 1, (E, E)=0 only implies that
ur(E)=0 or is represented by u (E)=1eZ[n (Y)]. Of course, if u (E)=0. The
argument is completed as above. If u(E)=1 we indicate a slightly different con-
struction of a normal cobordism 7T'. Using the method of [W2; p. 54] vary the
embedding of do x (—3/2) in M x [ —2, —1] to obtain a regular homotopy with
a single self-intersection point in M x[—2, —1] xI", I'"'=[0, 1], of da x(—3/2)
to a sphere y embedded in M x [—2, —1] x 1. Now define D as the manifold ob-
tained by attaching a handle to

yeMx[-2, —1]xI"
and set
T'=W -2 —1yomxr, PV Cpx[1,2].
Clearly K,(T")=0 i<k+1, K, ((T") is generated by E’, F’ where A..(E', E')=0,

Ap(E,F)=1 and pp.(E)=1+p (E) in Z[n, YJ{V +(—1)} V. Thus either T’
or T has zero surgery obstruction.

§2. A Remark on H=0

Even when the hypothesis on 2-torsion of Theorem 3 is not satisfied, if H=0
the method of IV § 1 still provides some useful information for n=2k. The con-
structions described there show that whenever H=0, n=2k, W is normally co-
bordant to a split homotopy equivalence by a normal cobordism whose surgery
obstruction is in the subgroup of L%, ,(G,w) generated by Hermitian forms
(V, A, u) where

(i) Vis a free Z[G] module on 2-generators E, F,

(i) A(E,F)=1, A(E, E)=0.
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In particular, such elements are easily seen to have order 2 in I, , , (G, w). Thus
even when the hypothesis of Theorem 3 is not satisfied, for H=0 and n=2k>4
there is always a normal cobordism, with surgery obstruction of order 2, of W to
a split homotopy-equivalent manifold.

Chapter V: Five-Dimensional Splitting
§ 1. P.1. and Differentiable Splitting for n=4

In this section, we prove Theorem 5 in the P.L. and differentiable case. The
extension to the topological case is proved in § 2.

Recall the method used in the proof of Theorems 5.1 and 4.1 of [CSI] to
derive 5-dimensional stable'® splitting theorems from high-dimensional splitting
theorems. In the proofs of 5.1 and 4.1 of [CS1] the stabilization procedure was
employed at two points in the argument. We show here that under the hypothesis
of Theorem 5 in both cases in [CS 1] in which the stabilization procedure is used
it can be avoided.

Stabilization is used the first time in the stable-splitting results of [CS1] to
get around the difficulty that it is not in general known f a normal map with
zero surgery obstruction to a 4-dimensional Poincaré-complex X is normally
cobordant to a homotopy equivalence. But, by [S3] when 7, (X)=0 and in general
by [W2; §16], this is always the case if X has the homotopy type of a closed
P.L. 4-manifold and H,(n,(X); Z,)=0.

Stabilization is used a second time in the proof of the stable splitting result of
[CS1] to get around the difficulty that it is not in general known if given a homo-
topy equivalence f: M*— X, M a closed 4-dimensional manifold, there is a nor-
mal cobordism of f realizing a given element of I% (, (X), w). However, this problem
does not arise if I%(n, (X), w)=0. More generally, if [XM; G/PL]— I’ (n,(X), w)
is surjective, every element of I% (n,(X), w) is realized by a normal cobordism of
f to itself.

Note that if H is a finite group of odd order, H,(H; Z,)=0and I;(H)=0[B4].
This completes the proof of our 5-dimensional splitting theorem in the P.L. or
differentiable case.

The proof of our h-splitting result in dimension 5 is very similar to the above
argument for S-dimensional splitting and we only give an outline of the argument.
Note first that if @ (z(f)) =0, Lemma I1.4 shows that W is h-cobordant to a manifold
W for which the induced homotopy equivalence f: W— Y satisfies ¢ (z(f))=0.
Thus, we may assume without loss of generality that ¢(z(f))=0. In that case, the
proof of our 5-dimensional h-splitting result proceeds with the same adaptation
of the methods of [CS1] indicated above but with the exact sequence (5.2) of
[CS1] replaced by that of Theorem 8 of [C3] and with the exact sequence of
p. 525 of [CS 1] replaced by that of Theorem 9 of [C 3].

16 In stable splitting problems we permit X to be replaced by the manifold X # k(S? x $?) obtained
by performing trivial ambient surgeries on X < Y. The reader should be warned that this is called
S-splitting in [CS 1], not to be confused with the s-splitting problem of the present paper
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§ 2. Topological Splitting for n=4

The proof of Theorem 5 in the topological case follows that given above in
the P.L. or smooth cases. Note first that the arguments of [W2; Chapter 16]
are easily modified to cover the topological case with G/Top [KS] replacing G/PL.

However, the argument employed in [CS1, p.517-519] uses transversality
in showing that (W,f) is normally cobordant, after stabilizing X, to a normal
map g: Q — Ywith g transverseto X < Y with g~ ! (X)— X ahomotopy equivalence.
(Here g need not be a homotopy equivalence.) As topological transversality is
not known in this dimension, we give, under the hypothesis of Theorem 5, a
different construction of g without stabilizing X. First observe that the homotopy
equivalence f: W—Y induces a lift of the Spivak normal bundle v,: Y- BG
to a map ¢: Y- B Top [B2] [KS].

B Top

/JV
Y—2* > BG

The composite map v, j: X — BG, j: X — Y the inclusion, is easily seen to be the
Spivak normal bundle for X and hence &j is a lift to B Top of the spivak normal
bundle of X. By the topological analogue of [W2; Chapter 16] if X has the homo-
topy type of a closed 4 dimensional topological manifold and if H, (n,(X), Z,)=0,
this lift of the Spivak normal bundle of X is, homotopic, by a homotopy h,:
X —>BTop,te[0,1],vh,j=v,j,toamap h,: X — B Top induced from a homotopy
equivalence h: M — X, M a closed 4-dimensional topological manifold. By the
homotopy extension principle, h, can be extended to a homotopy H,: — B Top
with vH,=v . Then as H, extends h,, using 5-dimensional topological trans-
versality [KS] the normal map h: M — X extends to a normal mapg: Q—Y.
From the construction (Q, g) and (W, f) represent homotopic lifts of v, to B Top
and hence are, suing 6-dimensional topological transversality [KS], normally
cobordant.

The remainder of the argument follows the adaptation of [CS1] indicated
in V§1. :

Chapter VI: Some Remarks on G=Z x , H

The Farrell-Hsiang splitting theorem, which is part (ii) of Corollary 6 for n+4,
is a special case of Theorem 2. This is immediate for n=2k. For n=2k—1, we
also need that for &;: H—J isomorphisms, i=1, 2, so that G=Z x_H, a=62‘1 &,
there is a decomposition

Nil (H,J; ¢,,¢,)=Nil (H, ) ® Nil (H, )
with the involution switching both copies of Nil (H, a). This is proved in [FH2];

it also follows easily from the general description of Nil (H,J; &, ¢,) of [W1]
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and the methods of Lemma 11.3 and II1.7. From this formula,

H"(Z,; Wil (H, J; &, &,)=0

for all n>1 when ¢, and £, are isomorphisms and thus in this case the invariant
0(f) takes values in the zero-group.

For n=4, Corollary 6 is essentially a special case of Theorem 5.

Actually, the nilpotent normal cobordism construction of I1§1 could be used
to obtain another very quick proof of Farrell-Hsiang splitting for n=2k, avoiding
all the algebra of I1§2 and the explicit computation of the intersection form (1)
in Lemma IL.6. A basis for the summand P ®,,Z[G] of K, , ((T) is represented
by spheres winding around T in the same direction and hence their mutual inter-
sections are zero. See the diagram below. By exercising greater care in the construc-
tion and using the fact that H contains all elements of order 2 in Z x, H, or alter-
natively adapting the method of handling self-intersections in the last part of IV §1,
we could also arrange for the self-intersections to vanish.

Construction of E; (see Lemma IL.6) in the Farrell-Hsiang case

For n=2k—1, note that when &,: H—J is an isomorphism, the surgeries
used to construct M,c W can be performed in W. Thus, in that case, if ®(z(f))=0
may assume that K;(M)=0 for i<k—1 and K, _,(M) is a free module. This idea
is used in [FH2].

Actually, in the general splitting problem for n=2k—1>3, HcG, (resp;
¢t H—J injective), if &(1(f))=0 and K,;(M)=0, i<k—1 and K,_,(M) is a free
module it is not hard to see that, even if H is not square closed in G=G, *,G,
(resp; G=J*y {t}), W is h-cobordant to a split manifold. Let C, and C,, be as in
Chapter IIL. Then, attaching CpxI and C,x1I to W x 1cW x [0, 1], we obtain

a normal cobordism of W to Vf’; here Vf/ is as in the proof of Lemma II1.6. Recall
the construction of the split homotopy equivalence W— Y in the proof of Lemma

I11.6 by performing surgery on a baosis for K, (M) @K, (M Q)CK,‘(Vf/). Thus, we
get a normal cobordism T of W to W where from the Mayer-Vietoris sequence of
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the decomposition up to homotopy of T,

T =(W, Uy Cy U handles attached to a basis of K, (M 2)
Upe (W, Uy Cp L handles attached to a basis of K, (M)

(resp; T=(W'uUy, Cyy, Cp)U(handles attached to a basis of
K, (M) ® K, (M,))/identify M, with M,

and Lemma IIL1, it follows that K(T)=0, i<k and K, (T)=K,_,(M; ZG).
Then, as K, (T) is a free Z[G] module and T is of dimension 2k + 1, surgery can be
performed on T 'to replace it by an h-cobordism of W to a split manifold.

Note that in the above 3-paragraphs on the Farrell-Hsiang splitting theorem,
we actually only used £,: H—J an isomorphism and &,: H—J injective. This
slight extension of Farrell-Hsiang splitting is not always covered by Theorem 2;
i.e. the conclusion of Theorems 1 and 2 is valid whenever &,: H—J is an iso-
morphism and ¢,: H—J is injective, even if £, (H) is not square-root closed in J.
This can be applied to compute the surgery groups of some groups containing
infinitely divisible elements.

Example. Let G be the group generated by o and B with the one relation a fa~! = aF,

p+0.Then G=J*,{t} where J=Z, H=Z, £, is just 1, and &, is multiplication by
p. When n,(Y)=G, mn,(X)=H, dimension X>5, the Farrell-Hsiang splitting
theorem applies only for p=+1 and Theorem 2 gives a splitting theorem for p
odd. The above remark, however, gives a splitting theorem for all p. Note that when
p+ +1, a is infinitely divisible in G.

Chapter VII: Square Root Closed Subgroups

Of the seven examples presented in the introduction of squareroot closed sub-
groups, only (3), (4) and (6) are not immediately obvious. The present chapter
verifies these three examples.

The following example is used in computing the surgery groups of all the funda-
mental groups of 2-manifolds, and of many three-manifolds, by using splitting
theorems.

Proposition VIL1. Let G be a free group and H a subgroup of G generated by a
non-square element of G. Then H is square-root closed in G.

Proof. Let h generate H. If ge G with g€ H, then the subgroup H’' generated by
{h, g} is, as it is a subgroup of G, a free-group, and since its abelianization is a
finite extension of H, H' is infinite cyclic. But as H = H' is a subgroup of index 1 or 2,
either H= H' and hence ge H, or his a square in H'.

Of course, it is trivial to check if a given word in a free group is a square element.

Example. Let M be a connected 2-dimensional manifold, with M not RP?, §* x §*,
the Moebius band or the Klein bottle. Then from Prop. VIL1, n,(M)=F, *, F,
where F,, F, are free groups and H=0 or Z is square-root closed in F, and F
and hence, by Prop. VII.2 below, is square-root closed in 7, (M).
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Proposition VIL2. Let £,: H— G, (resp; &;: H—J) i=1,2 be inclusions of groups.
Then H is square-root closed in G, %, G, (resp; in J*y{t}) if and only if £,(H) is
square-root closed in G, (resp; J) i=1,2.

Proof. Trivially, if H is square-root closed in G, then &,(H) is square-root closed
in G, (resp; J) i=1, 2. The other implication is not hard to show using covering
space theory or group theory. The following argument’s only virtue is that it
avoids introducing further notation.

Assume &;(H) is square-root closed in G, (resp; J) i=1, 2. Recall that this is
essentially all that is used in proving Lemma I1.8. Moreover, from the proof of
Lemma IL.8, for each ge{G—H}, G=G, *,G, (resp; J*,{t}) is an element of
Z [w] for some we F°. Also, as Z[w]isa Z[H] bimodule,ifge Z[w], Hg H = Z[w].
But then from the first paragraph of the proof of Lemma 11.9,if ge Z[w], g~ ' ¢ Z[w].
In particular, for all ge{G—H}, HgHNnHg 'H=@ and hence g?eH implies
geH.

Appendix I: The Z, Action on Wh(G, *, G,) and Wh(J ,{t})

The splitting theorem of the present paper has implications for the calculation of
Whitehead groups. In many geometric applications of Whitehead groups and in
computing surgery groups, it suffices to compute just the “symmetries modulo
norms”, i.e. H*(Z,; Wh(G)). We analyze here the contribution to this group
coming from the group of nilpotet maps of [W1].

Proposition A.1. Let H and G,,G, (resp; J) be finitely presented groups with
¢t H—G,; (resp; &: H—J) monomorphisms, i=1,2, and w;: G,—Z, (resp;
w:J—Z,, w,;: Z—Z,) homomorphisms, i=1,2, with £, w, =&, w, (resp; o, =
w¢,) determining (see Lemma II1.7 involutions on Nil (H;G,, G,) (resp; Nil (H,J;
&1, &), Then if E(H) is square-root closed in G, (resp; J) i=1,2,
H¥*'(Z,; Nil (H; G,, G,)=0, k>0.
(resp; H2*+1(Z,; Nil(H, J; &, &,)=0).
Conjecture. Under the same hypothesis, the even cohomology of Z, with coeffi-

cients in Nil should also vanish.
We briefly outline the proof of this proposition.

Proof of Proposition. Recall that Theorem 2(ii) for n odd was formally derived
from Theorem 2(i) and that in the process we obtained an obstruction to splitting
in H*%(Z,; Nil (H; G,,G,)) (resp; H**(Z,; Nil(H, J; ¢,,¢,)) and we observed
that every element of this group was in fact realized in this manner. An entirely
parallel argument shows that we could define and realize an obstruction to splitting
in HZ"“(ZZ;I\Ti’l(H; G,,G,)) (resp; H***'(Z,; Nil (H, J; &, &,). As no such
obstruction to splitting for n even arose in the proof of Theorem 2, we conclude
that this group is zero.
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The above proposition is particularly useful for relating surgery groups de-
fined relative to subgroups of the Whitehead group.

Corollary A2. Let H, square-root closed in G,,G, (resp; J), be as in Prop. A.l.
Then if

H**+Y(Z,, Wh(G,) @ Wh(G,))
Wh(H)
and

H**(Z,; Ker(K(H) > K, (G,) ®K,(G,)=0
(resp; H***1(Z,; Wh(J))/(&,,—&,,) Wh(H))=0

and
H?*(Z,: Ker(R (H) ==, R (J)))=0), k>0,
then

H2k+1(Zz§ Wh(G, *,G,))=0
(resp; H***'(Z,; Wh(J *,,{t}))=0).

Proof. This result is immediate from the description of Wh(G), G=G,*,G,
or G=Jxy,{t} of [W1], Prop. A.1. above, and Lemma I1.3.
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