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Preface 

This paper studies codimension one submanifolds of manifolds through the 
development of general splitting theorems. These results are applicable to the 
study and classification of manifolds with infinite fundamental group; they 
can be used in decomposing such manifolds into manifolds with simpler funda- 
mental groups. A subsequent paper will apply this to studying higher signatures 
of manifolds. 
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Introduction 

We shall be concerned with the following situation. Let Y be a connected closed 
(n+ I )  dimensional manifold (or Poincare complex) and X an n-dimensional 
connected closed submanifold (or sub-Poincare complex), j :  X c  Y, n z 4 ,  with 
n1 (X) + n1 (Y) injective. Moreover, we assume X satisfies any one of the following 
three equivalent conditions: 

(1) X cuts some neighborhood of itself in Y into two components. 

(2) The normal bundle of X in Y is trivial 

(3) j * w, (Y)=wl (X). Here o, denotes the first Stiefel-Whitney class. 
These conditions are trivially satisfied if both X and Yare orientable. 

Now, let W be a differentiable, piecewise-linear (P.1.) or topological manifold 
and f :  W+ Y a homotopy equivalence. The map f is said to be "splittable", or 
more precisely "splittable along X", if it is homotopic to a map, which we continue 
to call A transverse regular to X (whence f -'(X) is an n-dimensional submanifold 
of Y), with the restriction of f to f -'(X) -+ X, and hence also to f - ' ( Y  - X) --+ 

(Y-X), being homotopy equivalences. If (Y- X) has 2 components this means 
that f restricts to a homotopy equivalence to each. In the present paper, for a 
differentiable (respectively; P.L., topological) manifold, "submanifold" means a 
differentiable (resp; P.L. locally-flat, topological locally-flat) submanifold. 

h-Splitting Problem. When is W h-cobordant to a manifold W' with the induced 
homotopy equivalence f ' :  W'+ Y splittable along X ?  

s-Splitting Problem. When is f :  W+ Y splittable along X ?  

Corresponding to the number of components of Y- X, these problems have 
two cases. Let G = n1 (Y) and H = n, (X); as we assumed z ,  (X) -, n, ( Y )  injective, 
we have H c G. The following discussion and the methods of the present paper, 
also apply to  relative splitting problems. 

Case A. Y- X has two components. In this case, let Y, and Y2 denote the closures 
in Y of the two components of Y -  X, so that Y = Y, u, Y2. Set G, = z ,  ( y), i = 1,2;  
the inclusion X c x, induces ti: H + Gi with, as H c G, ti an inclusion, i = 1,2. By 
Van Kampen's theorem, G is the free product with amalgamation G = G, *, G,. 

Case B. Y-X has one component. In this case, let Y' denote the manifold or 
Poincare complex with boundary obtained by cutting Y' along X;  that is, the 
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boundary of Y' is X, u X,, XI r X ,  r X and Y is obtained from Y' by identifying 
X, with X,. Set J = n1 (Y)  Corresponding to the inclusions X ,  c Y', there are 
two maps H + J  which are injective as n,(X)cn,(Y). (To be more precise 
about basepoints, choose ~ G X  and correspondingly p,€X,, I = 1,2. Let ;. be a path 
in Y' from p, to p,. There is the obvious inclusion H =rc,(X,, p,) + n, (Y ' ,  p,) = J .  
Using the identification b] : n1 (Y', p,) + n,(Yf, p,) induced from y ,  we get another 
inclusion H = n1(X2, p2) + n1 (Yi, p,) rcl (Y', pl) = J .  The loop in Y, represents 
~ E G . )  Then from two applications of Van Kampen's theorem we get G z J  *, { t }  
where we have: 

Definition. For ti: H 4 J ,  i = 1,2, two injective group homomorphisms, let 

where Z is an infinite cyclic group generated by t .  As usual ({P)) denotes the 
smallest normal subgroup containing {P}. 

This J  *, { t }  notation [W 11 is concise. Note, however, that the group obtained 
depends on the inclusions (,. 

In applying the results of the present paper to studying manifolds of a given 
homotopy type, it is useful to note that if Y is a manifold of dimension greater 
than 4, and if n1 ( Y )  z GI * H  G2 (respectively n, (Y)E J *, { t } ) ,  then there exists a 
codimension one submanifold X of Y enjoying all the properties described in the 
discussion of case A (resp. case B) above. This follows easily from methods of I 4 3 
below. 

Case B was first considered in the setting of the fibration problem, the deter- 
mination of which high-dimensional manifolds fiber over a circle. Stallings [St 11 
obtained a result on this problem for three-dimensional manifolds. In high 
dimensions this problem was solved by Browder and Levine [BL] [B2] for 
G = Z. The fibration problem is related to the problem of deciding when an open 
high dimensional manifold is the interior of some closed manifold. This was 
solved in the simply connected case by Browder, Levine and Livesay [BLL] and 
in general by Siebenmann [S 11. Siebenmann's result implies a splitting theorem 
for certain open manifolds. A related result was obtained by Novikov [N] and 
applied by him to prove the topological invariance of rational Pontryagen classes. 
The high-dimensional fibration problem was solved by Farrell [F]. The related 
splitting theorem of Farrell and Hsiang solved the case B when G = Z  x H ,  n 2 5 
[FHl]. In the notation introduced above, this corresponds to both [, and 4, 
surjective, and G = Z x H corresponds to 5, = t, being surjective. In a special case, 
Shaneson extended Farrell-Hsiang splitting to n = 4 with G = Z [S 31. The result 
of [FHl]  was used by Shaneson and by Wall in obtaining a formula for the 
Wall groups of Z x H and in computing the Wall groups of free abelian groups 
[S 21 CW 21. 

Case A was solved by Browder [Bl] for Y,, Y, and X all simply connected, 
n 2 5. As a consequence of the development of relative non-simply connected 
surgery theory [W2], Wall showed that the problem could always be solved in 
case H = G, , and hence G, = G, n 2 5. R. Lee made an important advance when 
he solved the problem for the case 11 even and greater than five with H = O  and G 
without 2-torsion [L 11. 



All the above splitting theorems for compact manifolds are special cases of 
the general high-dimensional splitting results, Theorems 1 and 2, stated below. 
We treat cases A and B with the same geometric method. A further refinement, 
when X is simply connected, is presented in Theorem 3. Corollary 4 applies this 
to obtain a homotopy-theoretic criteria for a manifold to be a connected sum. 
Theorem 5, Theorem 3 and Corollaries 4 and 6 extend some of our splitting 
results to the case n=4. Corollary 6 restates the theorem of Farrell and Hsiang, 
together with an extension in some cases to  n =4. 

The results of this paper lead to Mayer-Vietoris sequences for Wall surgery 
groups and to the computation of the Wall groups of many infinite groups in- 
cluding free groups, fundamental groups of closed two-manifolds etc. [C4] [C 51. 
A general rational splitting principle will be used in [C4] in showing, for a very 
large class of fundamental groups, the Novikov higher signature conjecture. 
Using the results of the present paper and special low-dimensional methods, a 
stable splitting theorem for the case n=4 was proved by J .  Shaneson and the 
author [CSI]. 

Since the appearance of this paper in preprint form, we have found examples 
showing that restrictions of the kind used below in some cases on fundamental 
groups in order to obtain splitting theorems are necessary. See our examples of 
"non-splitting" in [C5] [C6]. A description of the extension of the methods of 
the present paper and a general manifold classification scheme for the fundamental 
groups in which there is an obstruction to splitting is given in [CS] [C9]. Cor- 
responding general results on the Wall surgery groups of any generalized free 
product of finitely presented groups are announced in [C7]. 

We introduce some algebraic notation: 

Definition. A subgroup H of a group G is said to be square-root closed in G if, 
for all ~ E G ,  g2 E H implies g~ H. 

In [C 11 such subgroups were characterized by an equivalent condition called 
"two-sided subgroup". The formulation of this definition in terms of square-root 
closed subgroups was suggested to us by C. Miller. 

Examples 

(1) If H is normal in G, H a  G, then H is square-root closed in G if and only if 
G/H has no elements of order 2. In particular, the trivial subgroup is square-root 
closed in G if and only if G has no elements of order 2. 

(2) Any subgroup of a finite group of odd order is square-root closed. In general, 
a subgroup H of a finite group G is square-root closed if and only if H contains 
all elements of G of 2-primary order. 

(3) H is square-root closed in G, *, G2 if and only if H is square-root closed in 
both G, and G,. 

(4)  Given inclusions 5,: H -. J ,  i = l , 2 ,  then H is square-root closed in J *, { t )  
if and only if both (,(H) and t2(H)  are square-root closed in J .  In particular, 
(or from (1) above): 
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(5) H is square-root closed in Z x, H .  
(6) Let G be a free group and H a subgroup generated by a non-square element 
of G. Then H is square-root closed in G. (This is used in computing in [C3] [C9] 
the Wall surgery groups of all two-manifolds.) 

(7) If H is square-root closed in G, Z x H is square-root closed in Z x G. 

Note that for X an n-dimensional submanifold with trivial normal bundle 
of the ( n +  1) dimensional manifold Y with Y-X having two components, 
Y =  Y, u, Y2 (respectively; one component with Y =  Yf/(identifying two copies 
of X) and with t i  : n, (X) -t n1 ( Y') the induced maps), n, (X) --t n, ( Y )  is injective 
with square-root closed image if and only if this is true for each of the induced 
maps n, (X) -t n1 ( x )  (resp; t i :  n, (X) 4 n, (Y')), i = 1,2. This follows from ex- 
ample 3 (resp; 4) of square-root closed subgroups above. 

We describe first, in Theorem 1, the fundamental groups for which we show 
that the h or s splitting problems can always be solved. For a group G, Wh(G) 
denotes the Whitehead group of G, and K,(G) denotes the reduced projective 
class group of the ring Z[G]. 

Theorem 1. Let Y be a closed manifold or PoincarP complex of dimetzsion n+ 1, 
n 2 5 with n, (Y) = G and X a closed subrnurl~fold or sub-PoincarP complex of 
dinzension rz of' Y ~.vith trivial normal bundle and n, (X) = H c G a square-root closed 
subgroup'. Assurne Y- X has r,vo rornporzerlts (respectively; one component) with 
fiirzdunzental groups Gi and t i :  H+G,  (resp; group J mnd ti: H-tJ ) ,  i =  l , 2  the 
induced maps. 

(1) !f t1 , - t2 , :  K,(H) + K,(G,)o K,(G,) (resp; <,*-t,*: K,(H)+ K,(J)) is 
injective or even just 

<, - : 2  

(resp: H"" (2,; K ~ ~ ( K , ( H )  --'-*-t K,(J)))=o) 

then ,for any hornotopj, equioalence f : W-. Y, W a closed manifold, W is 11-cobordant 
to u manifold W' vt>ith the induced hornotopy equicalence f ' :  W'+ Y splittable. 

(ii) If Wh(G,)@ Wh(G,)-t Wh(G) (resp; Wh(J)-, Wh(G)) is surjectizle, then 
ecery homotopy equivalence f :  W-, Y,  W a closed manifold, is splittable. 

Note that the hypothesis of (i) is always satisfied if one of the inclusions 
H -. Gi has a retraction. The hypothesis of (ii) is always satisfied for H a member 
of a class of groups constructed in [W 11. 

The rings Z[H] and Z [GI acquire, as usual, the involutions determined by 
g =w(g) g-', geG c Z  [GI, w :  G - t Z ,  = { $1) the orientation homomorphism. 
These involutions determine Z ,  actions [M 11 on Wh(G) and &(HI, which are 
referred to in (i) of Theorem 1. 

There is a relative form of Theorem 1, in which we begin with a splitting of 
2 W+ S Y along 2X and obtain similar results for the problem of extending to a 
splitting of W+ Y along X.  
.- 

' Or, assume H = G, and hence G, = G and Wh(G,) -, Wh(G) surjective. For simple homotopy 
equivalence this case is in [W I] 



Waldhausen,  extending results o f  [S t ]  [ B H S ]  [FH 21 showed that  

W h ( G l  *, G 2 ) / W h ( G l ) 0  W h ( G 2 )  (resp; W h ( J  *, { t ) ) / W h ( J ) )  

decomposes as a direct sum of 
r ,  -:2 

Ker (K0(H)+  K , , ( G ~ )  o K,,(G,)) (resp; I C e r ( k O ( f f )  2 K,(J) )  

and a group o f  Z [ H ]  linear nilpotent maps  [ W l ] .  For the projections t o  these 
summands we write 

@: W h ( G ,  *, G,) -. K ~ ~ ( K , ( H )  + K, (G , )@ K,(G,)) 

q :  W h i G ,  *, G,) + W h i G ,  *, G 2 ) / ( W h ( G l ) 0  W h ( G 2 )  

o Ker (K , (H)  -t & ( G I ) @  K,,(G,))) 
Ti  - i z  

(resp: @: W h ( J  *, { t ) )  + K ~ ~ ( K , ( H )  2 K,(J ) )  

11 : W h ( J  *, { t ) )  +Wh(J  *, { t } ) / ( W h ( J )  @ K e r ( ~ ,  ( H ) 3  K, (J) ) ) .  

For the 2, action defined above o n  W h ( G )  and K, (H) ,  Lemma 11.3 shows that  
@(x*)= - @(x) ,  X E  W h ( G ,  *, G,) or W h ( J  *, I t ) ) .  

For an  abelian group C equipped with a Z ,  action, x + x*, X E  C ,  we make  
the usual identification H k ( Z 2  ; C ) z  { X E  C / x = ( - l ) k ~ * ) / ( ( ~  +( - l ) k ~ *  / X E  C ) .  I f  
X E  W h ( G l  *, G,) (resp; X E  W h ( J  *, { t ) )  with x =(- l ) k + l  x* i n  W h ( G l  *, G2)/  
W h ( G l ) O  W h ( G 2 )  (resp; W h ( J  *, { t ) ) / W h ( J ) )  we write $ ( x )  for the element in 

<I - < 2  
(resp; Hk+l ( Z 2 ;  K ~ ~ ( K , ( H )  2 K,(J) ) ) )  

represented b y  @ ( x ) .  

Similarly, we write i j (x )  for the element in 

H k i Z 2 :  W h i G 1  *, G,)/Wh(G,)  O W h ( G 2 )  O K ~ ~ ( K , ( H )  --. K,(G,) @ K,(G,))) 

represented b y  q ( x ) .  

Theorem 2. Let Y be a closed manjfold or PoincarP-complex of dimensiorz n+ 1 ,  
n z 5  with ;rr, ( Y ) =  G ,  and X n closed subrtzan~fold or sub-PoincarP-c,omplex of' 
dimensiorz n of Y with trivial normal blttzdle arzd kvith 71, ( X )  = H ,  H c G a square- 
root closed subgroup. Assume Y -  X Izns two componetzts (respectively; otze conz- 
porzent) with jutzdurnental groups Gl arld G ,  (resp; group J with ti: H - + J ,  i = l , 2  
beitzg the induced maps). Assurne gicerl a Izomotopy equiz~alence , f :  W+ Y ,  W a 
closed manifold; denote its W7zitehead torsion by r ( f ) ~ W h ( G ) .  Then: 

(i) W is h-cobordant to  u manifold W '  kvith the induced homotopj equivuletzce 
f " :  W'+ Y splittable along X i f '  and orzly if 

< I  - 5 2  
(resp; & ( T ( ~ ' ) ) E H " + '  (Z , :  K ~ ~ ( K , ( H )  2 K,(J))))  
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(ii) 7he map f r ,  spl~ttable alorlg X i f  at~cd otzlj r f  the zi?zuge o f  T (  f )  rn 

Wh(G),/Wh(G,) + Wh(G,) (resp; Wh(G)lWh(Ji) 

1 7  zero arld further, for r z  odd, 

Q (  f ) E H " + ' ( Z ~ ,  Wh(G),'Wh(G,)@ w h ( G , ) @ ( K e r ( ~ , ( ~ ) - - t  K,(G,)o K,(G,))) 
:, - t 2  

(resp; HE+' (Z,: Wh(G):Wh(J) @ K ~ ~ ( K , ( H )  2 K,(J)))) 

is zero. 

In (ii) for tz odd and T (  f ' ) ~  Image Wh(G,) @ Wh(G,) + Wh(Gl *, G,) (resp: 
Wh(J)+ Wh(J  *, { t } ) ) ,  we define O(f')=ij(x), where x is the Whitehead torsion 
of any k-cobordism, which must from (i) above exist. of W to a split manifold. 
We show that O ( f )  is a well-defined invariant of the homotopy class o f f  and 
assumes for different choices off' all values in the given cohomology group. The 
group in whose cohomology it takes its value is isomorphic to Waldhausen's 
group of nilpotent maps. He showed that this group is zero for H a member of a 
large class of groups including free groups. free abelian groups twisted products 
of Z, fundamental groups of 2-manifolds, etc., and G,, G,, J any groups [Wl]. 
In fact, this group is zero for Z [HI  a regular ring, or just a coherent ring of finite 
global homological dimension. However, his conjecture on the vanishing of this 
group of nilpotent maps for H a member of a larger class of groups he constructed 
is not apparently known. However, Theorem 2 is used in an appendix of the 
present paper to show that, for H square-root closed in G, the odd cohomology 
of Z, with coefficients in this group of nilpotent maps is zero. 

There is also a relative form of Theorem 2 in which W is a compact manifold 
with boundary 2 Y a Poincare complex with boundary i: and the homotopy 
equivalence of pairs f ' :  ( W, i W) -+ ( X  2 Y) is split along 2 X c 2 Y The obstructions 
to producing an h-cobordism, fixed on i: W of MI to a manifold split along X, or of 
extending the splitting of i W+ i Y along i X to a splitting along X are the same 
as in the absolute case of Theorem 2. 

In an important special case, we weaken both the dimension and the square- 
root closed restraints. 

Theorem 3. Let ,f: W+ Y be a homotopy eqzriculerzce u.itl7 W LI clo.sei1 11 + 1 tlimerl- 
sional differeritiable or P. L. (resp: topologicnl) manlfolbld and Y a closed ?I + 1 dimen- 
siorlal Poirzcurt; complex, n >, 4. Let X he simply-connected closet1 c,odir?~ensiorl 1 
sub-Poi17ccrrt; coniples o f '  Y.  If 11 = 4  assurrle that X lzils [he  Iior?zoiopy tFpe of m 
P.L. (resp; topological) 4-dirr~etzsiorzal r.rrarlifold. 

Assume furrlzer that 

(i) 7tl (Y) hu) tio eleiner~ts of orrle~ 2 
0 1 '  

(ii) 17 = 2  h, arzri lettir~g to:  n, ( Y )  -, Z ,  = { 1 } [leilore tlze orrer~tutiorl horno- 
morphism, for. each2 g€7t1(Y) with g of orde12 ,  u ~ ( g ) = ( - l ) ~ + '  

It suffices to check this for each element g of r r ,  (Y,) and n,(Y,) (resp: n ,  ( Y ' ) )  
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or 
(iii) one of the componerlts o f  Y-X is simp11 connected. Then f is splittuble 

along X .  

Theorem 3 applies to both case A and case B. The examples of non-splitting 
we have constructed in LC51 [C6] (since writing the present paper) show that 
at least for n even the hypothesis on n, ( Y )  stated in (ii) or (iii) above are actually 
always needed. 

Note that the hypothesis of (ii) is always satisfied if Y is orientable of dimension 
4k+3.  If f is a simple homotopy equivalence, then under the hypothesis of 
Theorem 3, the split map will induce a simple homotopy equivalence of com- 
ponents. For n+4 there is also a relative form of Theorem 3. For n, (Y)=O with 
Y-X having two components, n + 4 ,  Theorem 3 was first proved by Browder 
[Bl] and this was extended to the case where only one of the two components 
of Y - X is assumed simply-connected, n + 4, by Wall [W 21. The case of Theorem 3 
with n even and not 4 with Y-X having two components and n, ( Y )  without 
elements of order 2 was proved by R. Lee [Ll]. 

Denote the connected sum of manifolds P and Q of the same dimension by 
P # Q ;  we call this a non-trivial connected sum if P and Q are not spheres. Simi- 
larly if P and Q are Poincare complexes of dimension n we define the connected 
sum P # Q  using the fact that an n-dimensional Poincare complex, n 2 4 ,  is 
homotopy equivalent to a complex with a single n-dimensional cell [W2]. 
Taking X = S n  in Theorem 3, we obtain the following 

Corollary 4. Connected Sum Hoinotop)~ Criteria: A P.L. (resp: topologicul) closed 
manifold W oj dimension n + 1, n 2 4, with either 

(i) 71, (W) has izo elements of' order 2 
or 

(ii) for dimension W=2 k + 1 and letting o: n, ( W )  -+ 2, = { + 1) denote the 
orientation homomorphisnz, ,for each element ggn, ( W) with g2 = 1, g =+ I ,  w (g )  = 

( -  Ilk+,, 

is a tzon-trivial P.L. (resp; topologicul) cotlnected-sum If' u~zrl otzlj. if there exist 
PoincarC complexes, P,  Q, not homotopy equivulerlt to spheres, with W homo top^. 
equi~alent to P # Q .  

Note that the above condition on n1 (W) is always satisfied if W is orientable 
of dimension 4 k + 3. In [C 51 [C6] we construct examples for rz even, when n, (Y) 
does not satisfy hypothesis (i) or (ii), of manifolds which are homotopy equivalent 
to nontrivial connected sums but are not themselves connected sums. 

The following also extends some of our results to the case n = 4. 

Theorem 5. f :  W-, Y ,  X c Y, H = n, ( X )  ar~d G us in Theorem 1 or Theorem 2 
but with n = 4. In addition assume 

(i) H is zero or is finite of odd order 

Or as in the footnote to Theorem 1 
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and 

(ii) if W is a differentiable or P.L. (resp; topological) nzanifold assume X has 
the homotop!. type o f  a P .L .  (resp; topological) four-manifold. Then we have the 
same conclusion as in Theorems 1 and 2. 

More generally, condition (i) may be replaced by H,(n,(X); Z,)=O and 
[CX; GiH] + Lh, (nl (A'). ti') surjective, H = P L  (resp; Top). Thus Theorem 5 also 
extends to the case W. X topological manifolds with n, (X)=Z.  

The following important special case of Theorem 2 was proved by Farrell 
and Hsiang [FH 11 for n > 4. The Farrell fibering theorem [F] could be derived 
from it. In a special case when 11 = 4  with H =0, the following was proved by 
Shaneson [S 31. Here for a group C equipped with an automorphism a we write 
C" for { x ~ C / x ( x ) = x ) .  

Corollary 6. Let Y be a closed Poincare conzples of' dimension n + 1, n 2 4, with 
n, ( Y ) =  Z x, H and with X a sub-Poincar6 complex of dimension n of Y with 
n, (X)= H .  Let f :  W- Y be a Izonzotopy equicalence, W a closed dijferenticible or 
P.L. (resp; topological) manifold. If' n=4 ,  assume that X has the homotopy type 
of a closed 4-dimensional P.L.  (resp; topological) manifold witlz H = O  or H Ji'nite 
qf'odd order (resp; or H =Z) .  Then, letting z ( f )  denote the Whitehead torsiovl o f f  

(i) W is h-cobordant t o  a mar~ifold W'  with the induced homotop!, equiualence 
f ': W'+ Y splittable along X f and only if $(t( f ) ) ~ H " + ' ( z , ;  K,(H)"*) I S  0. 

(ii) f is splittuble along X if and only if the image of z( f ) in Wh(Z x H),'Wh(H) 
ia 0. 

When n > 4, if H is not square-root closed in G, we still construct, if $ ( t ( , j ' ) )=O.  
in both case A and case B a normal cobordism of (W, f )  to a split homotopy- 
equivalence. Moreover, the surgery obstruction of this normal cobordism goes 
to O in the "surgery obstruction group" of the ring Z [+I [nl (Y)]. (This leads to 
general Mayer-Vietoris sequences for Wall groups of R [GI, G = GI *, G, or 
G = J *, { t ) ,  Z [%I c R c Q without the square-root closed restraint.) In the present 
paper the main technical use made of the square-root closed condition on H c G 
is in concluding, see Lemma 11.7, that as a Z [HI bimodule Z [GI z Z [HI @ E @  I?, 
where the involution on Z [GI sends E to E and I? to E. 

We briefly outline the proof of Theorems 1 and 2. First we try to produce a 
submanifold j '- ' (X) in Wn+'  homotopy equivalent to Xn by ambient surgery 
inside W. Using a procedure related to one used by Waldhausen [Wl] in his 
study of Whitehead torsion of chain complexes, this is carried out in Chapter I 
to fix up f -' (X) below the middle dimensions. In the middle dimensional range 
the geometry required to perform ambient surgery by handle exchanges cannot 
be directly carried out and the effect of such surgeries is more difficult to assess. 
So for n = 2 k ,  we go as fdr as we can up to the middle dimension o f f  (X), and 
measure the remaining difficulty in terms of certain Z [HI-linear nilpotent maps 
of projective Z [HI-modules. Then working outside of W, we construct in Chap- 
ter 11, by a procedure we call the nilpotent normal cobordisnl construction a 
cobordism of W to a homotopy equivalent split manifold. Of course, we want 
to replace this cobordism by an s-cobordism or h-cobordism. We compute the 



obstruction to doing just that, as a surgery obstruction, in terms of the Z [ H ] -  
linear nilpotent maps. If the subgroup n, (X) is square-root closed in n, ( Y ) ,  we 
show algebraically that any surgery obstruction constructed in this way from 
nilpotent maps is in the image of Ln+2 (nl ( Y -  X)) + L,+2(rr, (Y)) .  It can therefore 
be changed to zero by a further normal cobordism without affecting the splitting4. 

For 11 =2 k - 1, we could get a weak form of the result of the present paper by 
crossing with a circle to get into a dimension in which the splitting problem has 
already been solved. Of course, this employs the observation that if H  is square- 
root closed in G, Z x H  is square-root closed in Z x C .  Wc could then try to split 
along S1 x X and use the Farrell-Hsiang theorem to removc the extraneous circle. 
However, the obstructions which would arise in this use of the Farrell-Hsiang 
theorem are difficult to relate to our initial data. Hence this would only suffice to 
prove Theorem 1 and not Theorem 2. 

Instead of this, we use for n = 2 k -  1, a direct geometric construction. After 
working in Wto improve f ' - ' ( X )  below the pair of middle dimensions, we con- 
struct an explicit geometric splitting of S' x W using the construction already 
developed for n = 2 k .  We then measure explicitly the obstruction to removing 
the circle factor and show it vanishes under the hypothesis of Theorem 2. 

The extension of our results from the differentiable and P.L. cases to topo- 
logical manifolds makes use of topological transversality [KS] and surgery 
CL21 CKSI. 

Chapter I : Below the Middle Dimension 

tj 1. Ambient Surgery below the Middle Dimension 

This chapter begins the proof of Theorem 2 and of its special case. Theorem 1. 
Notation which will be used repeatedly is introduced in $ 2  and $4. T?ie square- 
root closed Izypothesis is not used in this chapter. 

Lemma 1.1, the main result on ambient surgery below the middle dimension, 
and Lemma 1.2 are stated in the present section. Section 2 reviews well-known 
material on covering spaces, normal form for elements of G = C ,  *,G, or 
G = J *, {t} (which is less familiar) and corresponding descriptions of Z  [GI .  The 
derivation of normal form and its geometric meaning is recalled in more detail 
in the appendix to Chapter 1. The technique of handle-exchanging, used to per- 
form ambient surgery below the middle dimension, is recalled in $3. It is applied 
there to the special problems encountered in low dimensional surgery. 

Section 4 contains computations relating the homology groups of various 
components of the universal covers of W and Y. Nilpotent maps and upper- 
triangular filtrations are used to describe the images of some of these homology 
groups in each other. Using this, the proof of Lemma 1.1 is completed by an 
induction in 5 5. 

When n, (X) is not square-root closed in n , ( Y )  we have since writing the present paper shown how 
to use these nilpotent maps to define the general codimension 1 splitting obstruction in our UNil 
groups [CTj [C9]. The surgery obstructions arising from the nilpotent normal cobordism then can 
be in general reinterpreted as being in the image of a natural map from U Nil groups to sorgery groups. 
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The main result of 5 4, Lemma 1.10 is derived algebraically from the preceding 
computations of homology groups. It can also be demonstrated, along the lines 
suggested in the remarks of Section 4, by a geometric argument which uses a 
detailed description of universal covers as in the appendix to Chapter I. The 
uniqueness of normal form, employed in the proof of Lemma 1.10, contains 
implicitly geometric facts about covering spaces. 

Lemma 1.1. Let Y b e  an n + 1 dinzerzsiclnal closed rnarrifolcl (or  Poirzcurd conzplex) 
arzd X a codimension ovle closed submanifold (o r  sub-Poincare complex) with 
trivial rzormal bundle iiz Y uizd with nl (X) + n, (Y)  injectitie. Let W be atz n + 1 
dimensioiiul closed manifold with f :  W-+ Y a Izonzotopy equivalence, 11 2 5. As- 
suine given in < ( n  - 1)/2: therz f is hornotopic to a map, which we co~~ t inue  to  call f ,  
ivhich is trarzsoerse regular to X (whence f -' X is a codime~zsion orle s~ibirzarzifold 
of W) and with the restriction of' f to f - ' ( X ) + X  inducing isotnorphisms 
ni(.f-1(x))+7ci(x), i5171. 

For m = O  and in = 1 this is proved in 9 3 and the proof for w7 > 1 is completed 
by induction in 5 5. Of course, there is also a relative form of Lemma 1.1. 

The role of Lemma 1.1 as a first step in the proof of Theorem 2 is indicated 
by Lemma 1.2. If f is transverse regular to X c Y, write .\I for f -'(X); M is a 
codimension one submanifold with trivial normal bundle of X. Write f' ! : M -, X 
for the map obtained by restricting f .  Corresponding to  the decomposition in 
case A (respectively: case B) Y= Y, u, Y, (resp; Y =  Y1,iidentify X, with X, where 
XI z X, EX) we get decompositions by cutting W along M ,  W= W, u, W, 
(resp; W= W'lidentify M ,  with M, where M, 2 M ,  2 M ) .  Thus J' induces maps 
f ' ! :  PV+ (resp; f ' !  W ' L  Y' with f !  (M,)cXi ) ,  i = l ,  2. 

Lemma 1.2. Hj.potlzesis as irz Leinnza 1.1 ': then, 
(i) l f '  (f'!),: ni(lLI) -t n,(X) is an isomorphisnt for  0 5 i s  rn, thetz in case A 

(.f !),: ni(Wj) + ni(T), j=  l , 2  and in case B ( f ' ! ) , :  ni(W1) -' ni(Yf) are isor?lorphisms 
jbr O i i s m .  

(ii) If ni(M) 4 n,(X) is urz isomorphisnl , for  0 5 i 5 n/2 then f is split. 

Part (i) of Lemma 1.2 will be proved for m = 0 and m = 1 in 5 3 and the proof of 
Lemma 1.2 will be completed in 9: 4. 

The reader may find it useful when reading this chapter to concentrate on 
case A, while taking note of the modifications of the notation in case B. 

5 2. Review of Covering Space Theory and Related Algebra 

Apart from the introduction of notation for various components of covering 
spaces of Y and the main purpose of this section is to recall the uniqueness 
of normal form for elements of G = GI *, G,  [K I ]  or G = J *, { t }  (the geometric 
facts corresponding to this are described in the appendix to Chapter I), and the 
corresponding description of the integral group ring of G. For any group H we 
write Z [ H ]  or just ZH to denote the integral group ring of H. 

If W is a P.L. or differentiable manifold. this lemma and its proof is valid for 11 1 4  ' Lemma 1.2, and its proof, are actually valid for all ti 



For any connected space I/ equipped with basepoint p ~ l !  write for the 
universal cover of Vwith covering projection n,: P-t  Vand let jj denote a basepoint 
of with ny(jj)=p. 

Choose a basepoint for X and Y, p~ X c Y; recall that nl (X) -. n, (Y) is injec- 
tive. Let P denote the cover of Y with covering projection 2,: ?+ Y and with 
basepoint j3 lying over p and with (fiy),(n, (P)) =image(n,(X) + n, (Y)). Assume 
that the basepoint $ E ?  has been chosen to lie over 6. The inclusion X + Y lifts 
to a unique basepoint-preserving inclusion X c I;: Whenever X is referred to as a 
submanifold of 2 this inclusion is meant. Similarly, there is a unique basepoint- 
preserving inclusion k c  P lying over X c  Y or X c  2 While other inclusions 
of k in p will be employed, when we write k c  2 unless otherwise indicated, the 
unique basepoint-preserving inclusion is meant. Of course n;'(X) consists of 
copies of k .  (However, unless nl(X) is a normal subgroup of nl(Y), the various 
components of f i ; ' (X)  may not be homeomorphic.) From the definitions, the 
preferred inclusions X c & 2 c ? induce isomorphisms of fundamental groups. 

It is easy to see that (E- 2)  and ( P -  X) both have precisely two components. 
Trivially, they have at  most 2 components and if ?-2 (respectively; P- X) had 
one component, then ~ ~ ( 2 )  +HI  (I') (resp; H ,  (X) $: H,  ( P)), contradicting n, (2) = 

n1 (E) (resp; 71, (X) = n, (Y) ) .  
In case A, (respectively; case B) Y= Y, U, Y, (resp; Y =  Y1/identifying XI 

with X,,  XI r X, 2 X) and give YI. the basepoint p~ X c (resp ; give the spaces y ' ,  
where Y ' z  q' the basepoint p i € X i c  y' corresponding to  EX) i=  1,2. Let 
(resp; t ' )  denote the cover of I: (resp; y ')  with basepoint i~ (resp; ii€ t') lying 
over p (resp; pi) and with covering projection fiY2: % +  r, (resp: n,;: trr XI) 
satisfying 

(resp; (fi,.),(nl ( t ' ) )  = image nl (Xi, pi) + n1 ( y l ,  pi)), i = 1 ,2 .  

Similarly, construct the basepointed universal covers ( t ,  b) (resp; ( K t ,  Pi)) with ,ij 
(resp; pi) lying over f i  (resp; i i ) ,  i =  1,2. (Note: Of course, in case B, Y,'z pi but this 
obvious homeomorphism will not preserve basepoints. In general, there may not 
be a basepoint-preserving homeomorphism of Y; and Y;.) There are unique 
basepoint-preserving inclusions ?, + P (resp; t'-t P) lying over + Y Iresp-; 
F'+ Y), i = l,2. Similarly, there are unique basepoint preserving inclusions I:+ Y 
(resp; 7 ' 4  F) lying over I: + Y (resp; Y'+ Y). Thus when we write c p (resp; 
p'c P )  it is always this inclusion that is meant. Similarly, unless stated otherwise, 
when we write c P (resp; t'c E) this basepoint preserving inclusion is meant, 
i =  1,2. Of course, the composites of the preferred, i.e. basepoint preserving, 
inclusions x + X + ~  k+t-.I' (resp; x ~ x ~ + X ' + ~  k ~ k , - + Y , ~ 4 Y ) ,  
i = l , 2  are again the preferred inclusions. 

The closure of the component of ?- k containing the interior of t (resp: E r )  
will be called YR for i = 1 and Y, for i = 2. Thus P=  Y, ux YR. Similarly, the closure 
of the component of P -2  containing the interior of (resp; t ' )  will be called 
Y, for i =  1 and I; for i = 2. Hence ?= I; ug Y,. The action of n, (X) on 9 restricts 
to actions on 2, and % (resp; q' and Y;), Y, and YR with the quotient spaces 
being X, and P2 (resp; Y,' and pi), E; and Y,. 
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For a subgroup C of a group D, let [D; C] denote the left cosets of C in D 
and let [D; C] = [D; C] - {C). For a €  [D; C], g(a) denotes some fixed choice 
of an element g ( a ) ~ r  c D. Note that if C, c C, c D are groups and a, E [D; C,], 
there is a unique element a,€ [D; C,] with al c a,. The set {g ( a ) l a~  [D; C]} is a 
basis for the free left Z [C] module structure of Z[D]. 

We consider an explicit description of Fin terms of F, and F2 (resp; Y;' and pi), 
[W 11 the corresponding explicit decomposition of G, *, G, (resp; J *, {t)) in 
terms of GI, G, (resp; J ,  5, and 5,) and H, [K] [W 11, and the corresponding 
explicit description of Z [G, *, G,] (resp; Z [J *, {t}]) in terms of Z [G,], Z [G,] 
(resp; Z[J], 5,: Z[H] + Z[J], i =  1,2) and Z[H] [W 11 [St]. 

For a subset S of Fand g ~ n , ( Y ) ,  Sg  denotes the image of S under the covering 
translation corresponding tog.  Thus adopting the conventions of [W2], S(g, g,) = 

(Sg,) g,, g,, g , ~  G. Recall that writing H = nl (X), G, = n,(Y,) (resp; J = n1(Yf, p , )  
with 5,: n1 ( X ) +  J the two inclusions induced from X, + Y') we have G = n,(Y) = 
G, *, G, (resp; J *, { t ) ,  as explained in more detail below). 

n 

Y in case A Y in case B 

Diagram of ? in case A:  

Diagram of p in case B: 

' The corresponding convention for multiplication in x , ( X )  is that for loops a and p, a p  denotes 
first tracing the loop fl followed by that of ct 
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In case A, recall the preferred embeddings of f',, p2, 8 in I; with Fl n F2 = k. 
Then 

Here, for cc~[G; H I  and p the unique element of [G; G,] with x c p ,  k g ( a ) c  
c'y g(fl), i = l , 2 .  In particular 

Thus, we have the above picture of 2 (The reader may find it useful to recall the 
universal covering space of the figure "eight" with basepoint at the intersection 
of the two circles. For further details see the appendix to Chapter I.) 

In case B, recall the preferred inclusions of 2 ,  q and y; in and of 8, in 7. 
Wehavein Y;'nP;=2, = 8 , = 8 . ~ e t  ~ = n , ( Y ; , p , ) a n d t a p a t h i n  Y,'=Yrfrom 
p, to p,. Of course, t represents an element of n1 (Y, p). Then, image of 7c, (Y;, p,) -+ 
n l ( x  p )  is t J t r l .  Setting H=n, (X)  we have the inclusions 5,: H = n , ( X ) =  
nl(Xl) + n1 (YJ = J ,  and 5, : H = n, (X) = n, (X,) + n, (YJA J where c(u) = t-' s t .  

Then <,(x)= t[,(x)t-' and ~ , ( Y ) = G =  J *,it) = Z  * J , ' { t l  <,(x)t[,(x)-I, ~ E H } .  
Thus 

(4) ~ i t h Y ; ' ~ ( x ) = F ; ~ ( f l )  for p=@t- l  

Moreover, in the decompositions of of (3), we have in addition to that of (4) the 
following further identifications. 

Let U E  [G; t1 (H)] = [G; t 52(H)t-1], and let pl denote the unique element of 
[G; J] with x c p ,  and hence X,g(cc)c Y; 'g(~,)L Similarly, let p, denote the unique 
element of [G; t J t r l ]  with cc c fl,, and hence X, g(u) c Y;g(fl). Then 

(5) 2, g(a) as a subset of Y;g(fl,) is identified with 

2, g(cc) as a subset of F;g(p,). 

Explicitly, the boundary of t' is given by, i = l , 2 ,  

In these two decompositions, every component of 2 ( t ' )  labeled k, k, keG lies 
over XI for the covering projection t'+ t'= Y', i =  l ,2 .  Similarly, every compo- 
nent of a(%') labeled 2, k, some k, lies over X,, i=  1,2. 

(8) Note that from (4) above, Pi = qt-' and thus (7) can be obtained by applying 
t-' to (6). 

In the geometry of Chapters I, 11,111, we adopt a convenient slightly different 
notation to describe case B. As t, ( H ) c  J = n, (Y;) and t t,(H) t- '  c t J t r l ,  5, (H) = 
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t ( , (H) t - '  in G, it is natural to simply identify X E H  with ( , ( x ) = t ~ , ( x ) t p l .  Thus 
we can write H c J ,  H c t J t r l  and the map of H = n , ( X ) 4  n , ( Y ) = G  is the 
inclusion H c G. Note that as, p[ c the map of J = nl  (Y,') -4 n ,  ( Y )  = G also is 
injective. Tlius in our new notation we have the inclusions 

and Eqs. (6) and (7) can be conveniently rewritten 

Again note that in (9) and (10)  the components of i:z' labeled y j k  lies over X j  in 
the projection it'+ p'. Eq. (10)  can be obtained, see (4), by applying t-' to both 
sides of (9). 

We recall the unique normal form for elements of G=G,*,G, [ K l ]  and 
G= J *,  { r ) .  This can be derived from a description of using trees as recalled 
and outlined in the appendix to Chapter I. The geometric significance of the 
normal form is discussed there. 

Proposition. Ecerj element g€  G cat? be writtetz uniquely in tlie form h = h k ,  , k ,  . . . k,, 
where l z ~  H and 

-- 
(i) for G= GI *, G,, k,=g(cx), for. sorne a € [ G I  ; HI u [G,: H I ,  1 5 i s n  and 

{ k i , k i + , ) Q [ G j ; H ] ,  1=1 ,2  for 1 5 i 5 n - l [ K l ] ;  

(ii) for G= J* ,  ( t ) ,  k ,  hus the form g(a)  or g(P) or g(y) t  or g(6)t- '  for s ( E [ J ;  H I ,  
[ tJ t - I  ; H I ,  ; ' ~ [ t J t - '  : HI S E  [ J ;  H I ,  1 5  i s  r z ,  and i f  k, has the form g(a)  or 

g(6)t- '  (resp; g(P) or g (y ) t )  tlzerz k,_, has the form g(P) or g(6)t-I  (resp; g(a)  or 
&;)t). 

Example. If J = H = t J t - '  so that G = Z x H ,  Z generated by t ,  then [ J ;  HI = 
[ t J t - ' ;  H]=gand[J, H ] = [ t J t - ' I = { % )  wherea=Handwemaytakeg(a )= l~H.  
Hence, in this case uniqueness of normal form asserts that every element g of 
Z x H can be written uniquely as either g = It ti  or as h t -', i 2 1 or as g = h, h~ H. 

Lastly, consider a description of the ring Z [GI ,  G = G I  *, G ,  or G = J *, { t )  
corresponding to the description of elements of G in the normal form. Note first -- 
that a fixed choice of elements g ( a ) ~ a  for a €  [GI  ; HI u [G,; HI (resp; a c [ J ;  HI u 
[ t J t r l ;  HI determines a choice g ( b ) ~ p  for all P E [ G ;  H I .  In fact, let g (p )  be the 
unique element of f l  which can be written in normal form with h = 1. This choice 
of elements g(P) provides a basis, called the normal form basis for the left Z H  
module structure of Z G .  

Now in case A, define z [ G I  (also written z%,) to be the additive subgroup of 
Z [GJ generated additively by g€ {G ,  - H }  c Z [Gi],  i = 1,2. Of course, using the 
ring inclusion Z [HI  c Z LCi], Z [Gi] is a bimodule over Z [HI  and, as {Gi - H }  c Gi 
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is invariant under left and right multiplication by H, z [c] is a Z [HI sub-bimodule 

of Z [G,]. In fact, as a Z [HI bimodule, Z [G,] r Z [HI @ z [q]. The bimodule 

z[<] is free as a left Z[H] module; {g(cc)/cr~ [G,; HI} is a basis. Similarly, Z [c] 
is free as a right Z [HI module (though, if H is not normal in Gi there may not be 
a set which is simultaneously a left and right basis). Of course, any tensor product 
over Z [a of Z [a bimodules is again a Z[H] bimodule. We claim that as a 
Z [HI bimodule 

More precisely, let A,, Bi, Ci, Di be defined inductively by the following: 

Obviously for any i, two of the terms Ai, B,, Ci, Di are zero. A, (resp; B,; C,; D,), 
when not zero, consists of a tensor product with i-terms beginning on the right 

with ZG, (resp; zZ,; z%,; zZ,), with the terms alternating in z%, and z%,, 

and ending on the left with z%, (resp; 2 2 , ;  z%,; z!,). Clearly such a tensor 
product exists only for i odd (resp; even; odd; even). The multiplication in ZG 
induces a map of Z H  bimodules, which is an isomorphism [St] : 

This is immediate from the uniqueness of normal form for elements of Gl *,G, 
and examination of the normal form basis for ZG. Note that the normal form 
basis is a union of bases for Z[H], A,, B,, Ci, Di, iz 1. The tensor products A,, B,, 
Ci, Di will be identified with their images in Z [GI *, G,]. 

h/ 

We give a parallel analysis, in case B, of Z [J *, {t)]. Let Z [J] denote the 
additive subgroup of Z [J] generated additively by g~ { J  - H} c Z [J]. Then, as 

h/ /V 

in case A, as a Z [HI bimodule, Z [J] r Z [HI @ Z [J] and Z [J] is free as a right 
and as a left module. In fact, as a left Z[H] module, {g(a)lcc~ [J;  HI} is a basis for 
h/ 

Z[J]. Similarly, use the inclusion of groups H c t J t r l  to give Z[tJt- '1 the - 
structure of a Z [ m  bimodule. Letting Z[tJt-'1 be the additive subgroup of - 
Z[tJt-'1 additively generated by g ~ { t J t - ~ - H } c Z [ t J t - ~ ] ,  Z [ t J t r l ]  is a 
Z[Hl bimodule, free as both a left and as a right Z H  mocule. A basis for the left 
module structureis given by {g(p) Ip~[ t J t - l ;  HI}. (Note that in the (,,(,notation, 
this bimodule is isomorphic to the Z [(,(H)] bimodule generated by the elements 
of (J-t,(H))cZCJl.) 
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The additive subgroup Z  [ t J ]  of Z  [ J  *, { t } ]  generated additively by elements 
of the form (tg), ~ E J  is also a Z [ H ]  bimodule. The right module structure is 
obvious from H c J  and the left bimodule structure is obvious from H c t J t - I .  
(In the g 1 ,  t2  notation, as a right module Z  [ tJ]  is isomorphic to the obvious right 
Z  [ti (H)] module structure on Z  [ J ] ;  as a left module it is isomorphic to the left 
Z[t , (H)]  module structure on Z [ J ] ) .  Similarly, Z I J t r l ] ,  the additive subgroup 
of Z  [ J  *, { t } ]  generated additively by J t r 1  c Z  [ J  *, { t ) ]  is a Z [HI sub-bimodule 
of Z[J* ,  { t ) ] .  (In the t l ,  t2 notation, the left module structure is isomorphic 
to the left Z  [( ,(H)] module structure of Z  [ J ]  and the right module structure is 
isomorphic to the right Z[( , (H)]  module structure of Z[J] . )  Both Z [ t J ]  and 
Z [ J t - ' ]  are free as left and as right Z [ H ]  modules. A basis for the left module 
structure of Z [ t J ]  is given by {g(y)tl y ~ [ t J t - ' ;  HI} and for Z[Jt - '1  by 
{ g ( d ) t - ' l S ~ [ J ;  H I ) .  -- 

Summing up, Z  [J] ,  Z CtJt-'I, Z  [ tJ] ,  Z  [ J  t- 'J are Z  [HI bimodules, free 
as left and as right modules. Thus their tensor products, over Z [ H ]  are again 
Z [HI bimodules. Moreover, using the ring structure of Z [ J * ,  { t ] ] ,  there is an 
obvious map of any such tensor product to Z[J  *, { t } ] .  We claim that as a Z  [HI  
bimodule: 

@terms with 3 tensor products @... 

More precisely, define A,, B,, C,, Di inductively as follows 

Then, 
4 OC m m 

Z [ J * , { ~ ) I Z Z H @  1 A ~ O  C B ~ O  C c i @  C D ,  
i = l  i = l  i = l  i = l  

as a ZH bimodule. 
This is immediate from examination of the normal form basis of Z  [ J  *, ( t ) ] .  

Note that the normal form basis is, as in case A, a union of bases for ZH, A,, Bi, 
Ci, D,, i z  1. 

The geometric interpretation of the decompositions of Z  [GI, G = GI *, G, 
or G= J*, { t )  as a left Z [ H ]  module into the summands Z [ H ] ,  A,, B,, C,, D ,  is 
described in the appendix to Chapter I. 
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In both case A and case B, the inductive definition of Ai+ ,  , Bi+, , Ci+,  , Di+, is 
summed up by: 

From this an easy induction shows that for i z  1, 

5 3. Handle Exchanges and Low Dimensions 

Before proving Lemmas 1.1 for m= 0 and m = 1, f will be made transverse 
regular to X in the following prescribed manner. As f is varied by homotopies, 
where no confusion will result, the new map obtained will continue to be called f :  

Let C' be a finite CW 2-skeleton for Y - N ,  N a tubular neighborhood of 
X c Y and let /3 be a cellularly embedded arc in Y, intersecting X transversally in 
one point and with /3 n C' =endpoints of P. Set C = C' u P and denote by i the 
inclusion i: C + Y. Letting g denote a homotopy inverse for 1; g i is, as dim Y >  
2 dim C, homotopic to an embedding h:  C -t W Hence, as f h -  f g i -  i, by the 
homotopy extension principle [Sp] f can be varied by a homotopy to achieve 
fh=i.  Then f is homotopic, by a homotopy fixed on h(C),  to a map transverse 
regular to X .  Write M = f  - ' ( X ) ;  M is a codimension one submanifold of W 
with, as the normal bundle of X in Y is trivial, a trivial normal bundle in W Below, 
as f is varied by homotopies to  obtain maps still transverse to X, we continue to 
denote f - ' ( X )  by M .  

For Va subspace of Y, the restriction of f t o  U = f  - ' (V)  will usually be denoted 
by f !: U  + I.: The cover of W corresponding to the image of 71, ( X )  -+ n1 ( Y )  r n1 ( W )  
is denoted by w and the covering projection by 6,: W+ W The induced map 
covering f will be denoted by f :  W+ P and the map induced by f on the unversal 
covers will be denoted by f :  w-t ? For the maps induced by restrictions of f  
and f on f - ' ( ~ )  -t S,  S c  Yor f - ' ( ~ )  + ?; T c  we write{! and f !  respectively. 

Recall the notation W,, W, in case A and W' in case B employed in the state- 
ment of Lemma 1.2 and the maps f ! on these spaces. Similarly, define W, =f -' (Y,), 
wL=[-'(yL), y= f -'(I:),  w= f - I ( ? )  and in case A q=f-'(t), and in case B w'= f -'(TI). It will be convenient in case B to employ a slight terminological 

In  the topological case, this uses [KS] 
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abuse and refer to Y' as a subspace of Y; this is of course possible as Y' may be 
identified with the complement of a tubular neighborhood of X in I.: Similar 
remarks apply to W ' c  W 

We proceed to make the map f !: M -. X increasingly connected. The sub- 
manifold M will be modified ambiently in W by surgeries corresponding to 
"handle exchanges". This procedure is based upon the following essentially well 
known technique: 

Lemma 1.3. Handle-exchanging 
(i) Let a ~ n ~ ( y . ,  M) (resp; ni(W1, Mj)) with ( f  !),(a)=O in ni(Yj, M) (resp; 

ni(Yr, Xj) ) ,  j = l  or 2. Then if 2i<n+ 1, a can he represented by an embedding 
X :  (Di, S1-') x Dn+ l - i + ( q . ,  1l4)  (resp; (W', Mj)). 

(ii) Gicen at1 embedding a :  (Di, Si-') x Dn+ I - ' +  (Wj, M) (resp; (W', hlj)) 
j= 1 or 2. Let T denote a neighborhood of M u  (image(2)). R e n  f is homotopic to 
a map f ', by a homotopy fixed outside of T vvith f ' -'(Y,) = Wku image(a) k =+ j 
(resp; with, letting W be the manifold obtaiized by cutting Y along f' - ' ( X ) ,  

W" = ( W' - interior (image (a)) us, - , ., + , -, DZ ~ n + 1  - i  

Here the mup St-' x Dn+'-' + M, c ( W' -interior (image (a)) corresponds, under 
the iderztificatiotz of  M ,  with M,, k + j ,  to 2a.) In particular, f '  -'(X) = M', where iM' is 
obtained porn M bj9a surgery on the restriction of cr to 2%: S'-' x Dn+'-' + M .  

In the differentiable case, the corners of a in part (ii) of Lemma 1.3 should be 
rounded [CF]. 

Case A Case B 
oc n 

Proof of' Lemma 1.3. We briefly outline this standard exercise in general position, 
for part (i), and in the homotopy extension principle, for part (ii). [FH 11 [ W 2 ] .  
The class rxeni(?, M) is represented by an embedding a :  (Di, Si-')+(Wj; M) 
as 2 i < dimension W= n + 1. Moreover as the normal bundle of a(Di) is trivial the 



map extends to an embedding x :  (Di, Si-') x Dn+ l - i+ (y ,  M). As f a  is, as a map 
of pairs, null-homotopic, we have a null-homotopy, relative to the boundary, 
of the restriction of ,f to image (a). Extending this by the homotopy extension 
principle, we construct f ' .  (resp: the proof in case B is similar; we omit further 
details.) 

Prooj of LemniaI.1 for m=O. As f is transverse to X c  Y with T/t: X, Y compact, 
M has a finite number of components. We show how, if hrl has more than one 
component, to reduce the number ofthem. It suffices, using Lemma 1.3, to construct 
an arc in case A a :  (I, 21) + (W,,  M), (resp; in case B, a :  (I, 21) + (W', ,2rl,)),j = 1 or 2, 
a joining two components of M and with f !(a)~rr,(YJ, X) (resp; rr,(Y1, X,)) the 
trivial element. Varying a by a homotopy, we may further assume that 
a(]) n h(C) =g. Clearly, a handle exchange on x reduces the number of components 
of M  and we may assume that we still have f 12 = 1 .  

Diagram of W 

To construct an arc cc with the prescribed properties, it will be convenient to 
describe the decomposition of W -  M into components by means of a tree 7: 
Let T have one vertex for each component of W-M and one edge for each 
component of M;  the incidence relation is defined by having an edge corre- 
sponding to a component M, of M join the vertices corresponding to the compo- 
nents of W- M  whose closures contain M,. 

The graph T is connected. To see this, observe that there is easily constructed 
embedding T+ W sending each vertex v to a point in the component of W- M 
corresponding to v ;  as there is also a retraction W+ T and W  is connected, T is 
connected. (In a sense, T is a kind of "dual cell'' complex to M c W )  

Corresponding to the component of M  which intersects h(B), there is an 
edge d of 7: (Note that in case B, from the construction of C' and P, the two end- 
points of d are the same point.) As h(C1) is contained in the components of W -  M  
corresponding to the endpoints of d, the fundamental groups of these two (resp; 
in case B, one) components go onto rr, (Y,) and rr, (Y,) (resp; rr, (Y')). 

If T has more than one edge, that is if M has more than one component, 
there is in particular, as T is connected, an edge d' with d r + d ,  d ' n a  contains 
a vertex v, of d and d'. 

In case A let V denote the closure of the component of W -  M corresponding 
to v,; let a' be an arc in V connecting the component of M corresponding to d' 
to the component of M  corresponding to d.  Then, from the construction of h(Cf) 
and d, n1(v) -'l'-t n , ( ~ , ) ,  j=  1 or 2 is surjective. As n l ( q )  + n,(l.;., X) is also 
surjective, replacing a' by a, the sum of a' and a loop representing an appropriately 
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chosen element of n,(V) ,  we may assume that f !,(a)cn,(Yj; X )  is trivial. This 
completes the proof of Lemma I. 1 for m = 0 in case A. 

In case B, let Vdenote the component of W' corresponding to c,. Recall the 
notation W', MI, M, of 9: 1 .  From the construction of C', C and d .  there corre- 
sponds to d a component a, in ?V n .MI and M ,  in 2 V n  M , .  Moreover, d' corre- 
sponds to at least one component IV' of c"K 2Vc12. f~  u;\.l,. Say that M 1 c M j ,  
j= 1 or 2: let r' be an arc in V from M' to .hl;.. From the construction of h(C'), 
n1 ( V )  + n1 ( Y ' )  is surjective and as n, ( Y ' )  -t n, ( Y ' .  X j )  is surjective, by replacing 
r' by x ,  the sum of x' and a loop representing an appropriately chosen element of 
nl (V), we may assume that ( f '  ! , ) ( a ) ~ n ,  (5 ,  X )  is trivial., 

Proof of' Lernnza 1.2, part ( i ) ,  ,for m =O. If M is connected, conclude that Wl and W2 
(resp; W ' )  are connected by examining a part of the Mayer-Vietoris sequence of 

W = W, u, W2 (resp; W = W'i'lM, = M,) 

H,(M) -+ H,(Wl)@ H,( W,) -+ Ho( W )  (resp; and in case B, 

Proof of' Lem~na 1.1 ,for m= I. By Lemma 1 for m=O, we may assume that IM is 
connected. As f '  is a homotopy equivalence, the induced map f ' ! :  M -t X is of 
degree one [B 31. Hence, f !, : nl ( 1 2 1 )  -t n ,  ( X )  is surjective. (This standard fact 
about degree 1 maps is proved by observing that f !  factors through the cover 
of X corresponding to ,I !,(n, (1Z.l)) c TC, (X).) We need the following standard 
result to complete the argument. 

Lemma 1.4. Let 4: G  -t H be un epi~yzorphism of groups with G  a finitelv getrerated 
and H a ,finitely preserzted group; thetl Ker4 is the normal closzrre of a finitely 
generated subgroup. 

Proof: Let g,, ..., gr be generators for G and h,, ..., h, generators for H with 
wj(hl ,  . .. , h,), 15Bs t words in I f , ,  ..., 12, which generate the relations of H .  As $ is 
surjective, choose h ; ~  G  with $(/I;) = hi, 1 5 i s  s. As {hi) generates H, we can write 
$(gj) = ej(h,, . . . , h,), 1 g j s  r where cj  are words in {hi} .  Now let K  be the subgroup 
of G generated by the finite set {wi(h;,  . . ., h,), cj(h;,  . .., h:)g,: } l< i<t ,  = = l g j s r .  

Clearly K c K e r 4  and the argument will be completed by showing that the 
projection p: G - t G / ( K )  is a $ ,  o a map H + G / ( K ) .  Let o(h,)=p(h;); as 
o(wi(hl , . . . , h,)) = p(wi(hI, . . . , h;)), o is a well-defined homomorphism. Moreover, 
o $(gi)  = o ej (hl ,  . . . , h,) = cj(/1;, . . . , hi) = p(g,)  and hence p = o 4. 

As n ,  (M) and n , (X)  are fundamental groups of compact manifolds (or possibly 
X a compact PoincarC complex), they are finitely presented groups. Hence, by 
Lemma 1.4, there are elements cr,, ..., cr ,~Ker( f  !,: n , (M)  + lr,(X)) with Ker(j'!,) 
= (a , ,  . . . , r,) in n1 (M). 



From the diagram induced by ,f 

as n, (X) + nl (Y) is injective, 3 Dl €n2(% M )  with = a l .  Represent a, by an 
embedded disc D c  W which meets M transversally. Then D n  W consists of a 
finite union of disjoint circles in D. We give a procedure for reducing the number 
of these circles, while replacing M with M'= f -'(X), where nl(ll.I') is a quotient 
of rr, (M). 

Choose an innermost circle among the circles of D n M cD; that is. a circle 
bounding a disc D' in D with (interior D') n M =$. The disc D' represents a class 
in n 2 ( q ,  M) (resp; in case B, n,( W', M,)),  i = 1 or 2. Moreover, in the diagram 
induced by f 

Case A 

Case B 

the map f !,: n,(Y)+ n2(x)  (resp; n2(Wf) + n,(Yr)) is, as f h ( C ' ) = i ( C f ) c  Y- N, 
surjective. Hence, by an elementary diagram chase, there is a 2-disc D" in ( Y ,  M )  
(resp; (W', Mi)) with aDf'= 2D1 in M and f' !, (D1')en2 ( q ,  X) (resp; n2 (Y ' ,  Xi)) is 
trivial. Now the disc D = ( D  - D') u D" has the same boundary as D. Perform 
using Lemma 1.3 a handle-exchange on D" to obtain M' by a surgery on M. As 
dim DU=2, it is easy to see that n, (M') is a quotient of n, (M). Note that as 
dim D +dim C = 4 <dim W, all these discs can be chosen to not intersect C;  hence 
we still have f h = i .  Moreover, D" n M' =@ and thus, n M' has one less com- 
ponent than D n M. 

Proceeding in this manner, after eliminating all the components of (in- 
terior D) n M, the above procedure produces a disc with boundary cr, on which 
a handle-exchange, again as above varying the disc, can be performed. Thus, 
handle-exchanges can be performed to "kill" the classes a, , a,, etc. Finally, we 
construct a homotopy of f t o  a map f '  with n, (Sf-' (X)) --. n, (X) an isomorphism. 

Proof' of Lemma 1.2, part (i) for m = 1. By Lemma 2 for m = 0 and the hypothesis 
M, W,, W2 (resp; W') are connected. Now we show that f !,: n, (?) -t n, (31, 
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j =  1,2 (resp; n1 (W') + n, (Y'))  are isomorphisms. These homomorphisms, as they 
are induced from the degree 1 maps f !  : 4 5 (resp; f ! : W' -. Y'), are surjective. 
Moreover, in the commutative diagram 

all the maps other than n, (]\.I) 4 n, (W) are already known to be injective: hence 
n1 (M) --+ n1 (W) is injective. Hence n, (M) + n, (v) (resp; n, (Mi) 4 n, (W')), i = 1,2 
are injective. Then, by Van Kampen's Theorem [Sp], nl  ( W) = n, ( Wl) *nl,,, n, ( W,) 
(resp; n1 (W) = n1 (W') *nl { t ) )  and in particular n, ( y) -t n, (W) (resp; 
n1 (W') + n1 (W)) is injective. But this factors through n, (Wj) + n, (5)  (resp; 
n, (W') + n, (Yi ) )  which is therefore also injective. We conclude that n, ( y )  z n, (7 )  
(resp; n1 ( W') =nl  (Y ' ) ) .  

From this point onwards, we may assume that ]\.I, W, and W2 (resp; W') are 
connected and n, (M) 4 n, (X), n1 (Wj) -+ n1 (Yj) ,  j  = l , 2  (resp; n, ( W') + n, (Y')) 
are isomorphisms. Thus, we may now write q=f-'(?) (resp; q'=,f -'(?')). In 
fact the analyses of the universal cover. qf' Y, ntalie in Sectiot? 2 now applies to 
the u,liz]er.srrl corer qj' n/; I/t: For example, the boundary of (resp: q') is described 
by equations similar to (2) of 5 1 (resp; (9), (10) of $1). 

fj 4. Homology Computations 

For a connected space V with basepoint p~ V ,  P denotes the universal cover of 
V, n v :  V--t V the covering projection, p some fixed choice of a basepoint in P 
with n,,(p) =p.  Standard notions about cell complexes (and Poincare complexes) 
will first be recalled. (See [W 21 for further details.) If V is a cell complex, P has a 
unique covering cell structure. If T is a subcell complex of V,  n;'(T) is a subcell 
complex of V. The chain complex of cellular chains of V, modulo the cellular 
chains of n;' (T) is denoted C,(V, T). As usual, using the action induced from 
the covering translations, this is a complex of free based right Z n ,  V modules. 
Here Z n ,  V denotes the integral group ring of n, V. If V is a (compact) differenti- 
able, P.1. or even topological [KS] manifold, it has the structure of a (finite) 
cell complex, (and even that of a simple Poincare complex [W 21). If T is a sub- 
manifold of V, the inclusion of T i n  V may be taken to be cellular. In particular, 
for V, T compact manifolds, or Poincare complexes, C, (V, T) consists of finitely 
generated Z n, V modules. 

The manifold structure of If determines a homomorphism, explicitly given 
by the first Stiefel-Whitney class of V,  n, V+ Z 2  = { & 1) .  As usual, this is used 
to define a conjugation on Z n ,  V by the formula g =  gl, gEn, V c Z n ,  V. 
For B a right Zn ,  Vmodule, define homology and cohomology with coefficients 
in B by 

H f ( V ,  T ;  B)=H,(C,(V, T)C3,n1, B). 
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In the second of these expressions, B is given the structure of a left Z n ,  V module 
structure by the formula l,c = c i ,  1.eZ7r1 T I ,  C E  B. (For a discussion of Poincare 
duality in this general setting, see, for example, [W 21.) An important special case 
is B = Z n ,  V, in which case we may omit explicit reference to B. 

Assume now that T is a connected submanifold, or subcell complex, of V. 
A submanifold can in particular be taken to be a subcell complex. It will often 
be convenient to give T and V the same basepoint. If n, (T) -. n, (V) is injective, 
there is a unique basepoint preserving inclusion ?4 lying over the inclusion 
T-, V. Of course, n;' (T)  consists, if n, (T)  + n, (V), of many copies of 7. In fact, 
observing that C,(n;' T) is, using the covering translations corresponding to 
n, V, a right Z x,V module, there is an isomorphism of right Z n ,  V chain complexes 

Here Zn,  V is given the structure of a left Zn,  T module using the inclusion 
Z n ,  T+Zn,  V. Moreover, as Z n l  V is a free Z n l  T module and denoting the 
homology of C* (n; T) by Hf (T;  Z n ,  V), we have the isomorphism of Z n l  V 
modules 

Now let T be a submanifold of V, S a submanifold of U, li and V connected 
manifolds. Let g: U+ V be a map, assumed proper if these spaces are not com- 
pact, and boundary preserving if these spaces have boundary, of degree orze. 
Then if g is transverse regular to T c  V and S =g- '  (T), the induced maps 

H,(U, S: Zn ,  V)+ Hi(V, T; Z n l  V) 

is surjective for all i [W2]. Denote 

K,(U, S)=Kernel (Hl(U, S ;  Z n ,  V)+ Ht(LT, ', Z n ,  V)) 

and 

Ki(S; Z n ,  V)=Kernel(fl(n;'S; Z n ,  V))-+H:(T;  Z n ,  V)) 

The notation Ki(U, S) omits a reference to g and to the image of g, which will 
usually be apparent from the context. The group Ki(U, S) can be described as 
the ( i  + 1) homology group of the quadrad 

S-T 

* 4 
u-v 

Proof of Lemma 1.2; Part ( i ) .  For in =U, 1 Lemma 2 was demonstrated in $3. 
Under the hypothesis of part (i) by Lemma 1.4, Kj(,ZI)=O, j g m .  We show that 
this implies Kj(Wl), K,(W,) (resp Kj(W1)) are zero, Bsm, and, by the Hurewicz 
theorem this will complete the argument. 
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Corresponding to the decomposition, similar to that expressed in (1) of 9 2 
(resp; (3) of 4 2) for p, of  there is a Mayer-Vietoris exact sequence of ZG modules 

.+K,+ , (W) -+K, (M;  Zn, W) 

+K,(Wl; Zn, W)OKi(W,; Zn, W ) + K ~ ( W ) +  ... 

(resp; in case B, ... +K,+,(W)+ Ki(M; Zn,  W)+Ki(Wf; Zn,  W)+ K,(W)+ ...). 
But as f is a homotopy equivalence, Ki(W)=O for all i. Also. 

Ki ( M ;  Z n1 W) = K, (M) BZnl Z n, W 

KiiWJ; Zn1 W ) = K , ( q )  O Z n , W , Z ~ ,  W, j= 1'2 

Hence, we have the isomorphisms of ZG modules 

As ZG is a free module over ZG,, ZG, (resp; ZJ)  clearly if Ki(M)=O, then 
K,(W,)=K,(W,)=O (resp; Ki(Wf)=O). 

Proof of Lemma 1.2, Part (ii). By Lemma 1.2, part (i), W, and W, (resp; W') are 
connected with n1 (Wl)= n1 (y), nl (W,) = nl (Y,) (resp; n, (W1)= n, (Y')). More- 
over, by Poincare duality ([W 21) if Ki(M) = 0 for i 5 4 2 ,  then Ki(M) = 0 for i 5 n. 
Then from part (i) of Lemma 2 Ki (H;) = 0, j= 1,2  (resp; Ki(  W') = O), for all i and 
hence by the Whitehead theorem, f is split. 

Thus, to prove Lemma 1.1 it suffices to produce an inductive procedure for, 
given M connected with n,(M)+n,(X) an isomorphism and with Ki(M)=O, 
i 5 j - 1, varying M to further achieve Kj(M) = 0, j  < (n - 1)/2. This will require a 
more detailed description of the groups K j (w)  (resp; Kj(W1)) than that of Eq. (1) 
above. For the remainder of this section j i s  some fixed integer, 1 <j .  Later on in 
this section j  will be further restricted to satisfy Ki(M)=O, i < j .  

Recall that the group n, (M), acting as a group of covering translations, acts 
on M, W,, W,, W= W,U,~ W, with the quotient spaces being M, W,, 4, W= 
W,u, 4. Corresponding to this decomposition of W, we therefore have the 
Mayer-Vietoris sequence of Zn,  M modules 

But as $is a homotopy equivalence, K ~ ( w ) =  K,(w)=o, for all i  and hence there 
is the isomorphism, induced by inclusions of spaces, of Zn ,  M modules 

K j ( M ) A  K j ( ~ ) @ K j ( W , ) ,  all j. 

Consider now the exact sequence of the pair (k M). As K,(w)=o all i, this 
reduces to the isomorphism, for all j, K j ( M ) z K j + , ( ~ ,  M). But, by excision, 
Kj+1(~7MM)~Kj+1(W,,M)OKj+1(4,M). Thus there are isomorphisms of ZH 
modules 
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Moreover the composite maps Kj,, ( y ,  M) 4 K,(W) and K,,, (W,, M) + Kj(Wr) 
are, as the composites of consecutive maps in the exact sequences of the pairs 
(W,, M), v = r ,  I, zero. In particular, K,,, (q, M) + K,(W,) and Kj+,  (W,, M) -t 
Kj(w)  are isomorphisms of Z H  modules and the two decompositions of K j ( M )  
in (2) coincide. 

Define: 

Thus Kj (M)=P@Q.  

Recall the description in Eq. (2) (resp; 9 and 10) of 5 2 of 2 w1 and i: w2 (resp; 
i;q and i: w;) in case A (resp; case B). Correspondingly, we have the decomposi- 
tions of the complements of the interiors of and W, (resp; W,' and W;) 

Hence, we have the identifications 

C, ( W-int R) r C, ( W,) OZH ZG, of ZG, modules 

C, ( W-int w,) r C, ( w,) @,, ZG, of ZG, modules 

(resp; c,(w-int q) z C,(W,) @,,ZJ@ C,(W,)@,,Z[tJ] 

c,(w-int w;)% C,(WR)@,,Z[t~t-'] @ C,(WL)@,,Z[~t-']). 

Correspondingly, as ZG, and ZG, (resp; ZJ ,  Z[t~t-'], Z[tJ], Z[Jt-'1) are free 
Z H  modules 

isomorphisms of ZG, modules; 

isomorphisms of ZG, modules; 

(5) (resp; K,(w-int T.t;')r K~(w,)@,,zJ@K~(w,)@,,z[~J] 

% P@,,ZJ@Q@,,Z[tJ] 

Geometrically, these identifications can be seen directly by considering, for example, W-int di: 
as E - ' ( w -  W,) where Wis the cover of W with n, (w)= GI and E :  W +  W is the covering projection 
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isomorphisms of Z J  modules; 

(6) and Kj(w-int W;)E K,.(W,)@,,Z [ t J t l ]  @K~(w,)@,,z[J~-'] 

~ Q @ Z H Z [ t J t - l ] @ ~ @ Z H ~ [ ~ t - l ] ,  

isomorphisms of Z [tJt-'1 modules. 
Eq. (6) can also be obtained by applying t-' to ( 5 ) . )  
Corresponding to the decomposition W= u?,,(w-int q), where ?Ti/, = 

n i l  ( M )  (resp; W= @' U , ~ : ( W -  Ti/,'), where ?Ti/,'= x;'(M, u M,)) there are Mayer- 
Vietoris exact sequences 

... + Kj(?@)--t Kj(W)@ Kj(w-int T.i/,)+ Kj(W) -t ... 

(resp; ... - t ~ ~ ( c ' ~ ' ) + ~ ~ ( T i / , ' ) @ ~ ~ ( ~ - i n t T i / , ' ) - - t K ~ ( W ) + . . . )  . As K,(W)=O for 
all s, there are isomorphisms 

(8) (resp; K,(?@') 1 K , ( ~ ' ) @  ~ , ( w - i n t  q')). 
But from Eq. (2) (resp; (9) and (10)) of 6 2 

(9) K,(?Ti/,') z K , ( M ) @ ~ ~ Z G ,  

2 ( P O  Q) OZH ZG, 

2P@,,ZG,@Q@,,ZG,, 

(10) (resp; K,(?w[)E K,(M)@,~zJ@ K, M@,,Z[tJ] 

z ( P @ Q ) @ Z H Z J @ ( P @ Q ) @ Z H Z [ t J ]  

~ ( P O ~ H Z J @ Q O ~ H Z [ t J 1 ) @ ( Q @ Z H Z J @ P @ Z H Z [ t J ] ) ,  

(11) and K,(iw;)z K,(M)@,,z[~J~- '10 K,(M)@,,z[J~-'1 
=(P@Q)@,,Z[~J~-']  @(P@Q)@,,z[J~-'] 

z ( Q @ Z H Z [ t J t - l ] @ P @ Z H Z [ ~ t - l ] )  

o ( ~ ~ ~ , z [ t ~ t - ~ 1 ~ ~ ~ , ~ z [ ~ t - ~ 1 ) .  
These computatlons lead to: 

Lemma 1.5. In case A, 

(12)  Kj(Wl) 2 Q gZHZGl  as a ZG, module 

(13) Kj(W2) z P@,,ZG, as a ZG, module 

and in case B, 

(14) Kj(W,')z Q@,,ZJ@ P@,,Z[tJ] as a Z J  module 

( 1 5 )  K j ( W ; ) z P @ z H Z [ t J t - l ] @ Q @ z H Z I J t - l ]  

as a Z[tJt-'1 module. ( E q .  (15) is just obtained by applying t-' to both sides 
of (14), see Remark 1 below.) 
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Proot We show in detail only (121, which is proved by substituting (9 )  for i= 1 
and (3)  in (7). Eq. (13) is proved by similarly substituting (9)  for i = 2 and (4)  in (7) .  
Similarly (14) is shown by substituting (10)  and (5)  in (8) for i =  1 and ( 1 5 )  is shown 
by substituting (1  1) and (6)  in (8 )  for i  = 2. 

We concentrate on Eq. (12). First by substituting using (9 )  and (3) in Eq. (7 )  
we get the isomorphism 

By showing that one of the "components" of the isomorphism of (16) is the zero 
map and another is l P O Z H Z G l  we will obtain (12). This isomorphism of (16) is 
induced from the inclusion 

But from (2)  above, the map 

Q OZH ZG1 + ~ ~ ( i p - i n t  q) =PO, ,  Z G ,  

is zero and the map 

is the identity. Hence, from (16) the map Q @,,ZGl + K j ( W l )  is an isomorphism. 

Remark 1. Eq. (15) can be derived directly from (14) by recalling (8)  of $ 2  
W; = WL t - ' ,  and applying t r l  to both sides of Eq. (14). That this identification 
of K,(W;) with P O Z H Z [ t J t - ' ] @ Q ~ , , Z ~ t - ' ]  is the same as that of (15) 
follows because (15) is derived from equations, each of which is geometrically seen 
to be obtained by applying t-' to the corresponding equation for J%y. 
Remark 2. We briefly outline the geometric meaning of the next few lemmas. The 
map PO,,ZG, -, K j ( W l ) ,  which is a "component" of the isomorphism of (16) 
and corresponds geometrically to 

where i  is induced from inclusions, need not necessarily be zero. A class in P 
"dies" in W,  but does not necessarily "die" immediately in W,. This situation 
will be studied below in greater detail for j the smallest integer with Kj(hl )+O,  
j l 2 .  We shall show that if cc€Kj(M)  goes to zero in K j ( W l ) ,  then cc is the boundary 
of some class (not unique!) in Ker(nj+, (W, ,  M )  + X)) and Lemma 1.3 
can be used to perform a handle exchange on P. Hence, we will need to determine 
when a class a € K j ( M )  goes to zero in K j ( W l )  or Kj(W,). Of course, if cc goes to 
zero in Kj (Wl ) ,  it goes to zero in Kj (Wr)  and thus U E P .  Therefore, we are concerned 
with finding a useful description of the map P --t K j ( W l )  and similarly Q -, Kj(W,) 
(resp; in case B, P+ Kj(W,') and Q --t Kj(W;)) .  For example, if these maps were 
zero a handle exchange could be performed, if j  <(n - 1)/2, to produce an ambient 
surgery in Won any class of P or of Q. The maps p, and p, are introduced below 
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to describe these maps of P and Q. As the proofs given are formulated algebraically, 
the reader may find it helpful to keep in mind the following picture. A class c r ~ P  
bounds a disc D in W, (as j is the smallest index for which KJ(M)+O) but in general 
D+ wl. Hence Dl+' may cross the boundary of I/t;. The class p,(a) described 
formally below measures how the disc D crosses ?w,. In fact, p,(a) is a sum of 
classes in K,(?R - M) as in the following picture: 

For the remainder of this section j is assumed to be an index for which Ki(M) = 0 
for i<j  and j> 1 .  

Lemma 1.6. Kj(lM), P and Q are finitely generated Z H  modules. 

Proof: P O  Q E Kj(M). But Kj(M) is the first non-vanishing homology kernel map 
of the degree one map M + X .  A standard argument [W2] shows that such a 
group is finitely generated. 

Now we consider in detail the map of ZH modules, 

Lemma 1.7. (i) In case A the map P 4 Kj(M) 4 Kj(Wl) E Q @,,ZG, is given by  - - 
P 4 Q O,, ZG, = Q OZH ZG1 where the inclusion Q O,, ZG, c Q OZHZGl is 

N 

induced from ZG, c ZG, . The map Q 4 Kj(M) + Kj(W2) E POZHZG2 is giuen by  

Q ~ P O ~ , Z % ~ C P O , , Z G , .  

(ii) In case B, the map P -+ Kj(M) 4 Kj(W;)z QOZHZJ@P@,,Z [tJ] is given - 
by P ~ Q O ~ , Z J O P O , , Z [ ~ J ] ~ Q O , , Z J ~ P O ~ , Z [ ~ J ] .  The map 

Q 4  Kj(M)+Kj(W;)%P@,,Z[tJt-']@Q@,,Z[J~-'1 
/LZ-l 

is gi~len by Q 3  P @ z H Z [ t J t - l ] @ Q @ z , Z I J t - l ] .  
(iii) In particular, x€KJ(M) goes to zero in K,(W,) (resp; Kj(W2); K,(W;); 

Kj(W;)) if and only if X E P  (resp; Q; P :  Q) and p,(x)=O (resp; p,(x)=O; p,(x)=O; 
p2(x) = 0). 
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Pro05 We consider, for example, the map from P. The lemma then is immediate 
from the definition of p, and p,, the identification of Kj+l  (W,) with Q @,,ZG, 

(resp; K,,, (W1) with Q Q,,Z"J@PO~,Z [tJ] in case B) and the commutative 
diagram in case A 

(resp; and in case B, the same diagram with W, replaced by W'). 
Note, that if xeKj(M) goes to zero in Kj(Wl), then as c W,, x goes to zero 

in Kj(WR) and hence x e K e r ( ~ ~ ( ~ )  + Kj(WR))= P. 

Example. In case B if J = H = t J t r l  and G = Z  x H, which was considered by - 
Farrell and Hsiang, z [3 = Z [t J t  -'I = 0 and hence in that case 

Now in case A by applying OzHZG for G = G, *, G, to P Q @,, El and 
w 

as multiplication in ZG induces a map ZG, O,,ZG -+ ZG, we get an extension 
p; of p,, pi : PQ,,ZG -, QOzHZG. The map pi is an extension of p,, indeed 
the unique ZG linear extension of p, as the following diagram commutes: 

Extend pi to a map, still called pi, of (P @ Q) O,, ZG 

by setting it equal to 0 on Q OzHZG and the given map pi on P@,,ZG. Similarly, - 
extend Q PO,, ZG, to pi  : Q OzHZG -, P O,, ZG and hence, extending 
trivially, to the ZG linear map 

Using a parallel construction in case B for G = J * ,  {t}, apply @,,ZG to both 

sides of P A  Q Q, ,~@PQ, ,z  [ t ~ ]  and using the multiplication in ZG to 
define maps 23OZH ZG -, ZG and Z [ t  J] OzH ZG -+ ZG we get p; : P O,, ZG -+ 

Q@zHZG@P@zHZG. The map pi is an extension, indeed the unique extension 
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to a Z G  linear map, of p, in that the following diagram commutes: 

We extend pi to a map of (P@Q)@,,ZG + (P@Q)O,,ZG by setting 
p;(Q@,,ZG)=O. Similarly, we extend p, to pi : Q@,,ZG-+ P@,,ZG@Q@,,ZG 
and, extending further trivially to p; : ( P  @ Q )  @,, Z G  4 ( P  @ Q )  @,, ZG.  

Now define p : ( P  @ Q )  @,, ZG -+ ( P  @ Q)  a,, Z G  a Z G  linear map, in both 
case A and case B by the formula p =pi  + p i .  

Remark. We briefly explain the geometric interest of the map p. As was observed 
in a remark above, for an element x € P c K j ( M )  bounding a disc D in W,, p,(x) 
"represents" in case A, the homology class obtained by "D n (8% - M)" as a 
class in ICj(?w1 - M). Then for a class x e K j ( M )  bounding a disc D in Ti! p(x )  can 
be thought of as the class "represented" by 

y = " ~ n ? ( ~ u . ~ C i / ; ) "  in K ~ ( ? ( w , u ~ w ~ ) ) .  

Note that the disc D gives us a "cycle" " D n ( ~ - 3 ( %  uv w,))" with boundary 
"D n ?(% uAa w,)". Now we can use this cycle to "compute" p(y) by the same 
method by which D with boundary x was used to compute p(x). Proceeding 
inductively we use D, or rather pieces of it, to "compute" pyx) ,  s?  0. But D, being 
compact, intersects only finitely many copies of and W, in Hence, we expect 
that pyx )  = 0 for s sufficiently large. 

We call the finite filtrations of Z H  modules 

p = e 3 e 3 8 3 . . . 3 e = o  
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an upper-triangular filtration of (P ,  Q) if 
(i) each ZH submodule T: and Qi is finitely generated, i 2 0,  and 

(ii) in case A, 

and 
P , ( Q ~ ) ~ ~ + ~ O , ~ Z ~ , ,  i 2 0 .  

In case B, 

and 

Lemma 1.8. (i) The map p is nilpotent; i.e. 3 N 2 0  with pN(x)=O for all 
~ E ( P O Q ) O ~ H Z G .  

(ii) 7here exists an upper-triangular filtration of (P ,  Q).  

Before examining the proof of Lemma 1.8 the reader may wish to read $ 5  
to see how it leads to the completion of the proof of Lemma 1.1. The proof of 
Lemma 1.8 given below derives it as a formal consequence of homology compu- 
tations demonstrated above. It may also be proved by referring back again 
directly to the geometric situation. 

Proof of Lemma 1.8. Using Lemma 1.9 below, the proof of Lemma 1.8 is reduced 
to showing that I + p is an isomorphism for I the identity map of ( P  @ Q ) O Z H  ZG. 
We proceed to prove this. 

First consider case A. Recall the Z G  isomorphism of (1) above in case A 

which is induced, as a Z G  linear map, from the Z H  linear maps induced from 
M c  W,, M c W,, i.e. from K j ( M )  -+ K j ( W l )  and K j ( M )  4 Kj(W2) .  Moreover, 
K j ( M )  = P O Q and hence 

(18) K j ( M )  O z H Z G = ( P O  Q ) O z H Z G ,  

(12) and from Lemma 5 K j ( W l ) r  Q O z H Z G , ,  

(19) K j (W, )  OZGl Z G  r Q OzH ZGl OzGl Z G  = Q QzH Z G  

(13) and lastly from Lemma 5 Kj(W2)  z P O z H  ZG,, 

Combining (19) and (20) we get 

(21) Kj(Wl)OzG,ZGOKj(W2)OzGIZG~(POQ)OzHZG. 

Then substituting for the left hand side of (1) using (18) and for the right hand 
side of (1) using (21), the map b induces an isomorphism, which we continue to 
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denote by b, 

We claim b = I + p ;  in particular, I + p is therefore an isomorphism. This will 
be shown by examining each of the four components of the map b corresponding 
to the decomposition of (PO,,  ZG)  O (Q O,, Z G )  into the given two summands. 
First, as the component of ( b )  of (1) 

is induced from the inclusion P -t K j ( M )  -t K,(W,), as is the isomorphism of (13), 
it follows that the component map PO,,ZG -t P O z H Z G  of the map b  of (22) is 
l P O Z H Z G .  Similarly the component map QO,,ZG+Q@,,ZG of the map (b) 
of (22) 1s l Q B Z H Z G .  However, the component P O Z H Z G  -+ Q @,,ZG of the map (b)  
of (22) is induced from 

and hence is given by p, on P. Similarly the component Q @,,ZG -+ P O Z H Z G  
of the map (b)  of (22) is induced from 

and hence agrees with p, on Q. Thus on 

POQ=(POQ)Oz,ZHc(POQ)OzHZG, 

b=I+p.But  as bothbandZ+pareZGlinear ,b=I+ponal lof(P~Q)@,,ZG. 
We similarly show in case B that I + p is an isomorphism. Recall from earlier 

in this section the form of the isomorphism (1) in case B, with G = J  *, { t )  

(14) From Ixmma 5 ,  Kj(W') Z Q O,, Z J O  P  @,, Z  [t  J ]  and hence 

(23) K j ( W ; ) O Z J Z G  g ( Q O z H Z J @  Po,,z [~J])o,,zG 

=QO,,ZG@PO,,ZG 

making the identification of O,,Z[tJ] O Z J Z G  with @,,ZG as tG=G. Then 
substituting using (8) on the left-hand side and (23) on the right hand side of ( I ) ,  
we obtain the isomorphism 

We claim as in case A, that b = I + p .  It suffices to check this on P O Q  as b and 
I + p  are Z G  linear. Since the map b of (1 )  is given by a Mayer-Vietoris sequence, 
it is given on K j ( M )  by 
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(See (14), (15) and Remark 1 after Lemma 1.5.) We consider the components of 
this map, which are maps of P and of Q to (Q@,,ZJ@P@,,Z[tJ] and to 
(P@, , z [ t~ t - ' I  O QBZ,Z [Jt-'1). The map Q c K j ( M )  -+ Kj(W;)  is induced 
from the inclusion of M c ~ ( w J  and the map of (14) 

was also produced by restricting the map of ~ , ( d f l ) - - +  Kj (W;)  induced from 
Jw; c w;. Therefore we have the commutative diagram 

and hence the component map Q --+ K j ( M )  -+ K j ( W ; ) r  Q@,,ZJ@P@,,Z [ t J ]  
is just the inclusion Q = Q @,,ZJc Q @,,ZJ@P@,,ZEtJ]. Similarly the 
component map P -+ P@,,z [ t J t  -'I @ Q Q,,ZCJ~-'] is just the inclusion 
P = P@,,zH c P@,,z [t J t  -'I @ Q @ZH z [ ~ t  - ' I .  On the other hand, the com- 
ponent map P c K j ( M )  -t Kj(W;)= Q @ z H Z J @ P @ z H Z [ t J ]  was the definition of 
the map p, and the component map 

was the definition of p, . Hence on P @ Q, b = I + p. 
The remainder of this section contains no further geometry and proves two 

algebraic lemmas employed in the proof of Lemma 1.9. 

Lemma 1.9. Let P,  Q be finitely generated Z [HI modules and p: ( P O  Q)@,,ZG -, 

( P O  Q)@,,ZG a ZG linear map, where 

satisfying 

(1) I + p is an isomorphism, I the identity map of (P  @ Q) Q,, ZG 

(2) case A: p ( p ) c  Q@,,z%,, p ( ~ )  c P @ , , Z ~ ~ ,  

Then (i)  p is nilpotent and 

(ii) Witing p, for the restriction of p to P and p, for the restriction of p to Q, 
(P, Q) has an upper-triangular filtration. 
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Proof of Part ( i )  of Lemma 1.9. Write, for aE[G;  HI ,  Z [ a ]  to denote the left ZH 
module generated by g E a  c G c Z  [GI. Then as 

as a left Z H  module 

Z [ G ]  = @ Z [ a ]  
ae[G; HI 

and 

Write P, for P Q,, Z [a] and Q,  for Q Q,, Z [a] ,  K ,  = P,O Q, and set 

K =  @ K,=(P@Q)QzHZG.  
ae[G;  HI 

For S a subset of [G; HI write K s  for O K , .  Write K ,  for K{,, = P O  Q. Now define 
aeS  

T ( i ) c [ G ; f l  by T(O)={H) and T ( i ) = { a e [ G ;  H ] ( a c A i ,  B,, C,or D i ) , i z  1. From 
the description of A,, B i ,  C i  and Di in 5 2, [ G ;  HI is the disjoint union of the T(i), 
i 2 0 .  

Now we show that p"K,)cK,(,,. The proof of Part (i) of Lemma 1.9 is then 
completed by Lemma 1.12, with T = [ G ;  HI .  In fact, we show somewhat more 
and will demonstrate that in both case A and case B, for s 2 1, 

For s= 1, this is just a restatement in terms of the A,, B,, C i ,  Di notation intro- 
duced in 42 of the hypothesis. Assuming these formulas for s, we inductively 
derive them for s + 1 : 

c P @ z n D s + 1  @ Q @ z H A ~ + I  - 
Similarly, 

P"+' ( Q ) = P ( P Y Q ) ) ~ P ( Q  Q Z H B s O  P  Q.z, C,) 

~ P ( Q ) B , O  P ( P )  Cs  

c(QB,+PC,)B,O(PD,+QA,)Cs 

cQ(B ,B ,+A,  C,)@P(C,B,+D, C,), 

c Q B,,, @ PC,,, , from the definition of B,,, and C,,, 

c Q Q z H B S + ,  @ P @ z ~ c , + , .  
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Lemma 1-10. Let T be a set equipped with a transititre action of a group G. Assume 
given corresponding to each element d~ T, an abelian group K ,  with K = @ K d  

de T 

a finitely generated Z G  module and with Kdg  c K d g  for ~ E G  c Z G .  Assume gicen 
a decomposition of T into the disjoints sets T(n),  n 2 0 with T (0 )  = { e l ,  e e  T. If 
p: K - t K  is a Z G  linear map satisfying 

(i) I + p is an isomorphism, I the identity map of K ,  

Then p is a nilpotent map. 

Proof. First observe that as K d g c  (Kdg)g- '  g c K d g ,  K d g  = Kdg.  Then, for d ' ~  T, 
writing d' = eg, for some g e  G,  

and T is the disjoint union of the sets T(s )g ,  s2O.  Hence, we can define X =  
( I - p - P 2 - p 3 - . . . ) :  @ K d +  fl K d .  Let @: @ Kd+ n Kd denote the usual 

dsT  d e  T d s  T de  T 

inclusion. Clearly x(I+P)=@ and in particular, as I + p  was given in (i) as in- 
vertible, Image (X)cImage(e() and thus x(K,)c Image (@. Hence for X E K , ,  d e  T,  
only finitely many terms of p' ( x ) ,  p2 ( x ) ,  p3 (x ) ,  . . . are non-zero. It follows that for 
any X E K ,  for no sufficiently large pnO(x)=O, if K is generated over Z G  by { z , } ~  5 i s ,  

with pnt(zi) = 0, then letting n = max ni,  1 5 i s  r, pn = 0 .  

Proof l o  of Part ( i i )  of Lemma 1.9. Recall the normal form basis for the left Z H  
module structures of A i ,  Bi, Ci ,  Di, Z G ,  defined in 8 2. Correspondingly we have 
decompositions, 

Here the elements g(u), g(P), g(y), g(6) are given by the normal form basis. There 
are obvious isomorphisms 

and these maps are trivially extended to 

by setting them equal to  zero on the other summands. 

' O  This algebraic argument can be interpreted geometrically using the geometric interpretation of 
normal form outlined in the appendix to Chapter I 
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From (24) and (25), for X E P  we get 

and for XEQ, 

Define &P, Q, = Q, and for s > 0, P, = the Z - H submodule generated by &,(p"P)), 
for ~ E [ G ;  HI,  6 c D, and by &,(ps(Q)) for y E[G; HI, y c Cs, Q, = the Z H  submodule 
generated by E ~ ( P ~ ( P ) ) ,  for C I E [ ~ ] ,  CIC AS and by eB(p"Q)) for P E [ ~ ] ,  PCB,. 

As P and Q are finitely generated, say with generating sets {p,, ... , p,}, 
{q,  , . . . , q,} respectively and from (26) and (27) for only finitely many 6, ~ ~ ( 4 )  are 
non-zero, 15 is r,  and similarly for a, P, y we conclude that P, and Q, are finitely 
generated. Moreover, as p" 0 for s sufficiently large, P, = Q, = 0 for s sufficiently 
large. 

Next, we check that in case A, p, ( 4 ) c  Qi+, OzH z%, and in case B, 

p1 ( 4 ) c  Qi+l QZH ZNJ @ e+, QZH Z[t J]. By the same method, we can also check 

that in case A, p, (Q,)c e+, Q,, z%, , and in case B 

Taking s = i in the definition of P, ,  4 is generated by E, (pi (P)), E, (pi(Q)); hence, 
it suffices to check that (i) p,(&,(pi(P))) and (ii) p,(&,(pl(Q))) are included in 

Q i + l @ Z H ~ ~ l  in caseA, and included in Q i + l O , H ~ @ ~ + , Q z H Z [ t J ]  in 
case B. We check only (ii), by examining Eq. (27); (i) follows by the same discussion 
applied to (26). Taking Eq. (27) for s =  i ,  and applying p to both sides, we get 
for XEQ, 

+ . . . + . . . , from (26) and (27). 

But the elements g(dl)g(y) together with the similarly constructed elements 
g(yl) g(P), y ' ~  [G; HI ,  y ' c  Cl , are the normal form - basis for Ci+, ;  similarly 
g(al) g(y) and the similarly constructed g(K)g(P), PE [G; H I ,  P c  B1 are the normal 
form basis for Bi+, . Hence Eq. (28) is Eq. (27) for s =  i +  1. In particular, 
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and thus 

and hence pl ( y ) ~ < + ,  @,,Dl @ Qi+, @,, A,. In case A, this asserts that 

P ,  (cY ( p i ( p ) ) c  Q ~ + ~  s,, ~ 3 ,  
and in case B that 

as was to be shown. 
Lastly, we check that 4 3 4+, , and similarly we get Qi 3 Qi+,  . <+, is generated 

by &,(pi+'(P)) and &,(pi+'(Q)), y,6 as above. We check for example, that 
&,(pi+' ( Q ) ) c  4 ;  the corresponding argument for &,(pi+' ( P ) )  is entirely similar. 
Now, g ( y ) ~  Ci+l and Ci+] = Di O,, Cl  @ Ci @,, Bl . From the construction of 
the normal form basis for Ci+, , we have that g(y) is of the form g(6)g(y1)  or 
g(P)g(B') for 6, y', ~ , . P ' E [ G ;  HI, 6 c D i ,  y ' c  C 1 ,  g @ ) c  C i ,  g (P ' )c  B,. Say, for ex- 
ample, that g(yo)=g(60) g(yb). 

For X E Q ,  

+...+..., from (26). 

Eq.  (29) is again an expression with the coefficients in Z [ G ]  being members of 
the normal form basis and thus is essentially (27) for s =  i + 1. In particular, for 
x.Q, 

EY0 (pi+' (4) = Eao ( P ~ ( E ~ ~ ( x ) ) )  

E &do (pi  (P))  

€ 4  as was to be shown. 

§ 5. Completion of Proof of Lemma 1.1 

Proceeding inductively, we assume that Lemma 1.1 has already been verified 
n-1 

for m=j-  12 1, m_I-. We show Lemma 1.1 for m=j. By the inductive hypo- 
2 
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thesis, we may assume that M  is connected, z, ( M )  = x ,  ( X ) ,  and that j is the smallest 
integer for which Kj (M)+O.  Hence the entire discussion of $4, in particular 
Lemma 1.8, is applicable. 

Now let 

be upper-triangular filtrations of (P,  Q), K j ( M )  = P  @ Q .  These, by Lemma 1.8, 
certainly exist. Let r be the number of non-zero terms in the sequence 
{Po, Q o ,  P, , Q,, . . . , P , ,  Q,}. In this section, we construct a map f ', homotopic to f ,  
with f '  transverse regular to X ,  and writing M'= f ' - ' ( X ) ,  M' connected with 
n1 (MI) = n1 ( X ) ,  K i  (MI) = 0, i < j and K j ( M f )  = P' @ Q' with (P', Q') having an upper 
triangular filtration with at  most r -  1 non-zero terms. By decreasing induction 
on r,  the proof of Lemma 1.1 will then be complete. 

Let s be the largest index for which P, @ Q, 4 0.  Say, for example, P, + 0.  Then 
p,(P,)=O. Let z , ,  z,, ... , z ,  be a finite set of generators of 4 as a Z H  module. 
By Lemma 1.9, z i e K e r ( K j ( M )  + Kj (W, )  in case A and zieKer ( K j ( M 1 )  -+ Kj (W; )  
in case B. 

Consider the diagram in case A 

' j + l ( K , M ) + n j ( M ) - ~ j ( ~ ;  Z n ,  M )  

where O' is the quadrad, 
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and in case B, the diagram 

nj+2(@) 
+ 'j+l(Xl ,MI) -nj+1 (q, &'I 

I i I 

where fl is the quadrad 

Here the upper rows and left-hand columns are exact, and h is the Hurewicz iso- 
morphism (see $4). From this commutative diagram in caseA (resp; case B) 
zi can be lifted to Z : E T C ~ + ~  (X, M) (resp; zj+, (XI, MI)), and as zi goes to zero in 
Xj+, (Y,, W,), (resp; nj+, (Y;, W;), it can be lifted to an element zjf in nj+,(@. But, 
letting yi denote the image of zi' in zj+,  (W, , M), (resp; nj+, (W;, M,)), we have 
t h a t ~ ~ ~ K e r ( ~ ~ ~ + ~ ( W , ,  M)-+nj+,(Y,, X)),(resp;Ker(nj+,(W;, M,)+ TC~+,(Y;,X,)) 
and yi is represented by (D'+', s') 2.L ( Wl , M), (resp ; ( W;, MI)) with yi (Sj) 

representing r i  c Kj  (M) c Hj (M; Z n, M). As handle exchanges can be 
L 

performed on the classes yi, by Lemma 1.3, to obtain f '  homotopic to f and with 
M'= f '-'(X) produced from M by surgeries on embedded spheres representing 
zi. Then, as this is surgery below the middle dimension, a standard argument 
[W 21, (which is essentially reproduced in the proof of Lemma 1.1 I), shows that 
M' is connected, TC, (MI) = TC, (X) and Ki (M') = 0, i < j ,  

Kj(M')gKj(M)l{zi)l s i su=(P@ Q)l{zi> =pl{ziI @ Q .  
We will need to be more explicit in our description of Kj(M1). Using the de- 
composition Kj(Mf) = P' @ Q' defined in $4, and writing p; , p; for the associated 
maps defined in $ 4 we have: 

Lemma 1.1 1. P' = P/{zi), Q' r Q and in case A diagrams 

+ P' 
v 

N P1 A Qf Qz: Z%l Q' -A P' QzH ZG, 

commute. 
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In case B,  the diagrams 

and 

commute. 

Using Lemma 1.1 1 we complete the proof of Lemma I. 1. Let 4'  = Image (4 + P'), 
Q: = Image(Qi+ Q'). Then from Lemma 1.13, 

is easily seen to be an upper triangular filtration of (P', Q') with K j ( M i )  = P' @ Q'. 
But as P,'=P,/{z,} =0, this filtration has at most r - 1 non-zero terms, as was to 
be shown. 

Proof of Lemma 1.1 1. Let X  x I c with X  x 0  = X .  Let C  be the cobordism, 
C  c W, , formed by attaching handles corresponding to yi to M  so that 8 C  = M  u M'. 
They by Lemma 1.3, using handle exchanges f is homotopic, by a homotopy fixed 
on W,, and restricting to a homotopy from W, to Y, to f '  with f ' ( C ) c  X  x  I ,  
f ' ( M 1 ) c X x l  and f 1 ( W - C ) c Y , - X x I .  Set C o = C - M i .  

As j< (n - 1)/2, K i  ( M )  = K i ( M 1 )  = K i  ( C )  = 0  for i < j. Moreover, the inclusion 
M'+ C  induces isomorphisms K j ( M 1 ) =  K j ( C )  and the inclusion M  -t C ,  as C  
is formed by attaching ('j+ 1) dimensional discs to M ,  induces an isomorphism 
K j ( M ) / { z i }  2 Kj(C) .  

Corresponding to the decompositions 

there are Mayer-Vietoris decompositions. Comparing these, and recalling that 
K , ( w ) = O  for all i, 
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Here the vertical maps are induced from the inclusions of spaces. The lower three 
vertical maps are isomorphisms as K j ( M 1 )  + K j ( C )  is. Moreover, Kj(WL U ,  C )  2 
Kj(T/t;)/{zif as C is formed by attaching handles to  the classes zi. In particular, 
decomposing K j ( M 1 )  = P' @ Q', we get that 

Q ' Z  Kj(Wr - C , ) z  K j (  W r ) z  Q ,  and 

P 1 s K j ( T / t ; u ,  C ) Z K ~ ( W , ) I I Z ~ )  =P/(z i ) l  s iz , .  

Now, corresponding to the decompositions of I?/; using 

there are the isomorphisms discussed in 5 4 

K j ( W ,  U, C ) Z Q ' @ ~ ~ Z G ~  and K j ( W 2 -  C,)Z P1@,,ZG2. 

The maps of Pt@,,ZG2 to Kj(W2 - C,) and of Q1@,,ZG2 to K j ( W ,  u, C )  are 
induced from the inclusions of - - 

a(w2 - c,) = U M' g(a)  + (w, - C,) and 
a ~ [ G 2 ; H l  

Similarly, using W = ( W ,  u, C )  u, Wl we get 

with the maps again induced from the inclusions of subspaces. 
Thus, we have the commutative diagrams 
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and 

( 1 ( P  

I I I I 

Q' % Kj+, (W, u, C, M ' )  c Kj(M1) ---+ Kj(W2 u ,  C) A P1@,,ZG2 

Hence the lemma has been proved. 

Appendix to Chapter I 

Geometry of Normal Form for G, *, G, and J *, {t) 

In this appendix we study in more detail the universal cover of Y and interpret 
geometrically the normal form for elements of GI *, G,, which is familiar, and of 
J * ,  { t } .  The use of trees for this purpose, standard for G = G, *,G2 and suggested 
also for G = J *, { t )  in [W 11 is technically refined below by using oriented trees. 

Recall, a tree is a connected and simply connected graph. The tree T,, used 
to describe Band P=Tc;'(x), is defined as follows. To each connected component 
of ?-n;'(X) there corresponds a unique vertex of T, and two vertices are con- 
nected if the closures of the corresponding components of ? - n ; ' ( ~ )  have non- 
trivial intersection. Such an intersection is a connected component of x;'(X) 
and hence each edge corresponds to a connected component of n;l(X). That 
T, is actually a tree follows immediately from the connectedness and simple- 
connectedness of ? (In fact, it is easy to construct an embedding T,+ ? with the 
image of each vertex lying in the corresponding component of ? - - n ; l ( ~ )  and 
with a retraction P-+ T,.) For an edged of T,, write Xd to denote the corresponding 
component of n;l(X). The edge corresponding to X c  ? will be denoted do and 
will be called the base edge. 

Given a tree T with some edge do of T called the base edge, define inductively 

Letting IT1 denote the set of edges of T as T is a tree, IT1 is the disjoint union of 
the sets C,(T), n 2 0. 

A tree will be called oriented if every edge is given an orientation. No com- 
patibility condition on the orientations of different edges is assumed. The orien- 
tation of an edge is described by stating in what direction it is "pointing"; i.e., by 
ordering its endpoints. 

In deriving uniqueness of normal form, it is useful to orient the tree T, by the 
following procedure. In case A, let e: T, + S be the unique graph map (sending 
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vertex to vertex, edge to edge, preserving incidence relations) of Ty to the graph S ,  
consisting of two vertices v ,  and v, with one edge d connecting v ,  to v,, and with 
e(v)=v,, for v the vertex of T, corresponding to R. Now orient d to point towards 
a, and give Ty the unique orientation making e orientation preserving. Thus, 
Ty has been oriented so that each edge points to its endpoint corresponding to a 
component of n;' (Y,). 

In case B, intuitively we want to orient Ty so that the edge d points to the 
vertex corresponding to the component of Y- n;'(X) for which Xd is a boundary 
component lying over X, c Y'. Precisely, to orient T, in case B,  let E denote the 
cover of I: E= U Yt(n)/X;(n) = Xi (n - I), Y1(n)z Y'. The infinite cyclic group Z 

niz 
acts on E with, for ~ E Z ,  m(Y'(n)) = Y1(n + m), and Y= P/Z. This is the usual 
"paving-stone" normal covering space of I.: (If G = Z x a  H, p= 2) Write it: 9-r X 
5 :  P--, E for the covering maps. Thus, it 7i. = n,. 

Now define a graph Ti, as follows. Corresponding to each connected component 
of E-it-'(x) there is one vertex of Tf and two of these are joined by an edge if 
the closures of the corresponding components of k-it-'(x) have non-trivial 
intersection. Thus, each edge corresponds to a connected component of it-'(X). 
Orient each edge to point from the component corresponding to Y(n - 1) to that 
corresponding to Y(n). Hence, Ti. is simply a line with all edges pointed in the 
same direction. 

The action of the group of covering translations Z on E induces an orientation- 
preserving action of Z on TF. Now, let e: Ty --, Ti, be a graph map with for d E 1 Ty \, 
e(d) an edge corresponding to z(Xd). Now give Ty the unique orientation making e 
orientation-preserving. 

The tree Ty may, following [W 11, be described algebraically and we indicate 
how this is done; we also describe the orientations algebraically. The reader may 
find the following schematic diagrams, which describe a neighborhood of do 
in Ty, helpful. 
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r , ~  [GI ; HI, Pi€ [G, ; HI, do corresponds to 2 c ? 
I. Diagram of neighborhood of do in T, in case A. (See Eq. (2) of 4 1.) 

x i e [ m ] ,  P i€[ t J t r l ;  HI, y i€[ t J t r l ;  HI, ~ E [ J ;  HI, do corresponds to 2c 2 
11. Diagram of neighborhood of do in T, in case B. (See Eq. (81, (9), (10) of $ 1.) 

The action of the group G on and on n;'(X) induces an action of G on Ty. 
This action is clearly transitive on IT,[ with isotropy subgroup H=nl(X)cnl(Y)=G. 
Moreover, this action is orientation-preserving. This is trivial in case A, and in 
case B follows from the action of the covering translation group Z on T? being 
orientation-preserving. 

Following [W 11, the (oriented) tree T, will be described algebraically as 
follows. In case A, the set of vertices of Ty corresponds to [G; GI] u [G; G,] and 
the set of edges of T, corresponds to [G; HI. (See (1) of $1.) An edge d corre- 
sponding to UE[G; HI joins the vertex v ,  corresponding to P,E[G; GI] to the 
vertex v, corresponding to /3, e [G; G,] if u c Dl and a c P, . The edge d is oriented 
to point towards v,. The action of G on T, is, in this formulation, the obvious one 
induced from the action of G on [G; GI], [G; G,], [G: HI. Note that as this 
action is transitive on [G; HI, that is, on the set of edges of Ty, a "neighborhood" 
of any edge d of T, is carried, by an orientation-preserving graph map sending d 
to do to the neighborhood of do described in schematic diagram I. 

We briefly recall how this is used to obtain uniqueness of normal form for 
elements of G = G, *, G,. If d~ ITy ( with d i d , ,  as Ty is a tree, there exists a unique 
series of edges (dl, d,, . . . , d,), d, = d with di intersecting di+, , 0 5  i s  s - 1 in one 
point. Then, using the action of G on T, and the description of the oriented 



neighborhood of do, it follows that d can be described by 
- - 

(1) d=d0 g(a1) g(a2) . . . g(a,), a,€ [GI ; HI v [G, ; HI 1 5 i $ s, 

In fact, di+l =dig(ai+,), O $ i s s -  1. 
Conversely, using the fact that every edge of Ty has a neighborhood iso- 

morphic, by an orientation-preserving isomorphism, to that described above 
of do, it follows that for any edge d written in the form of (1) above, the series 
(dl, . . ., dJ defined by di+l =di g(ai+,), 0 s  i s s -  1 has d, intersecting di+, in one 
point, 0s iss- 1. The point of this is that we have shown that each d€ITYI, d+d0,  
can be written uniquely in the form of Eq. (1). As G acts on ITy[ with isotropy 
subgroup H, it follows that any element geG can be written uniquely as 

This is the standard uniqueness of normal form for elements of G1 *, G,. Note 
that for g written in this form, dog€ C,(Ty). 

Now the tree Ty will be described algebraically in case B. In that case, the set 
of vertices of T, corresponds to [G; J] (see (3) of $1) and the set of edges, ITyI, 
corresponds to [G; HI (see (5) of $ 1). An edge d corresponding to a€ [G; HI joins 
ul corresponding to b, E [G; J] to u, corresponding to B2 E [ G ;  J], and points 
towards o,, if and only if a c PI, t -' a c /I, (see (5) and (8) of 5 1). With this description 
of T,, the action of G on Ty is induced from the action of G on [G; J] and [G; HI. 
This action is transitive on [G; HI and hence on ITy 1 ; thus as in case A, each edge 
is carried by an orientation preserving graph map to the neighborhood of do, 
described in schematic diagram 11. For d E 1 Ty 1, constructing (dl, . . . , d,) and 
arguing as in case A, it follows that every element gcG = J *, {t} has the following 
unique normal form [W 11 : 

g=hk, k, ... k,, ki=g(ai) or g(bi) or g(yi)t or g(6)t-' 

for a , ~ [ w ] ,  & ~ [ t J t - l ;  HI, yi€[tJt-l; HI  

+[J; Hjl and if kj+, is of the form g(aj+,) or g(dj+,) t-I (respectively g(Pj+?) 
or g(yj+,)t) then kj is of the form g(Bj) or g(dj)t-' (resp; g(aj) or g(yj)t. As in 
case A, for g in this form, dog€ C,(Ty). 

From the uniqueness of normal form, we have that in case A, for Gi c G, *, G,, 
i=1,2,H=GlnG2andincaseB,forJ,tJt-1cJ*H{t},H=Jnt~t-1inG. 

From the discussion of normal form in both case A and case B it is obvious 
that the summand of Z [GI, A, 0 B, 0 C, $ Di, defined in 5 1, is generated as a left 
Z [HI module by {geGJd0 g~ Ci(Ty)}. 

The reader may check, though we do not explicitly use this in the present 
paper, that for g~ Gl *, G, or g e J  *, { t )  
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g~C~forsomei i f fY,gcY, ,  YRg+YR 

g~D~forsomeiiffY,gcY,,  y,g+Y' 

~ E H  if YRgc YR and YLgc Y,. 

Chapter I1 : The Odd-Dimensional Case 

5 1. The Nilpotent Normal Cobordism Construction 

This chapter completes the proofs of Theorems 1 and 2 for n = 2 k and also develops 
material that will be used in Chapter I11 to complete the argument for n = 2 k + 1. 
Without using the square-root closed hypothesis on H c G, this section constructs, 
if n = 2 k > 4 and $(z( f )) = 0 by a procedure we call the nilpotent normal cobordism 
construction a normal cobordism of W to a homotopy equivalent split manifold. 
The intersection form of this 2k + 2 dimensional normal cobordism (denoted L 
in the terminology of [W2, Chapter V]) is computed in Lemma 11.6 in terms of 
the maps p,, p, and p defined in Chapter I, $4. The self-intersection form (p  in 
the notation of [W2, Chapter V]) of this normal cobordism could also be studied 
by similar methods. However, for the application we make of Lemma 11.6 to the 
square-root closed case, this is not needed and is not discussed below. 

In $2 Lemma 11.10, which uses the square-root closed assumption on H c G, 
is used to show that the surgery obstruction of the nilpotent normal cobordism 
constructed in $ 1 lies in a certain subgroup of the surgery group of G. This leads 
directly to the construction under the assumptions of Part (i) of Theorems 1 and 2 
of an h-cobordism, and under the assumptions of Part (ii) of Theorems 1 and 2 
of an s-cobordism, of W to a split manifold. 

For P finitely generated projective right module over the integral group-ring 
ZD of a group D, [PI denotes the element of R,(D), the reduced projective class 
group of the ring ZD, represented by P. 

Lemma 11.1. Let n = 2 k, W a closed mangold and Y a closed mani$old (or Poincark 
complex) of dimension n + 1. Assume given X a closed subman$old (or sub-Poincart 
complex) of dimension n of Y with trivial normal bundle and with H = xl (X) -, n, (Y) 
injective. Assume further that f :  W-+ Y is a homotopy equivalence transverse 
regular to X with, writing M = f -'(X), M connected and xl (M) -, xl (X) an iso- 
morphism and Ki(M) = 0, i < k. Then letting Kk(M)= P @ Q denote the decomposition 
of ZH modules defined in 1.4, 

(i) Kk(M) is a stably free Z H  module and [PI = - [Q]. Moreover, in case A 

[PI EK~~(K, (H) -+  ~ o ( G l ) ~ ~ o ( G , ) ) ;  

in case B, 

(ii) Any finite set of elements of P (respectively; Q) cirn be represented by 
embedded disjoint framed spheres in M for k>2. 7he intersection pairing [W2; 
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Chapter Vl of Kk(M) is triuial when restricted to P (resp; Q) and QZ P". Thus, 
[PI = - [P*]. 

(iii) If [PI = 0, f is homotopic to a map f '  with M'= f '-'(X) -+ X k-connected 
and with, writing Kk(M1) = P'@ Q'for the decomposition of 1.4, P' and Q' free Z H  
moduIes. 

Thus from (ii), if P is a free module P and Q are, in the terminology of [W2; 
Chapter V] subkernels of the Hermitian form defined on K,(M) by intersections 
and self-intersection. This can be used to show that if [PI = 0 the surgery problem 
of M -+ X induced by the homotopy equivalence f can be solved to obtain a 
homotopy equivalence. 

Proof of Lemma 11.1 ; Part (i). As Ki(M) = 0, i < n/2 = k, n = dimension M, Kk(M) 
is a stably free finitely generated module [W2; Chapter V]. Hence its summands 
P and Q are finitely generated projective modules and [PI = - [Q]. Moreover, 
in case A from Lemma 1.5 the image of [PI under the map K,(H)-, K(G,) is 
[Kk(W,)] and the image of [Q] in K,(G,) is [K,(W,)]. In particular, K k ( y )  are 
projective ZGj modules for j= 1,2. But K,(?)=O for i+k by Lemma 1.5. Hence 
as the chain complex of (Yj ,  Wj) is a free finitely generated ZGj complex whose 
only non-zero homology group is the projective module Kk(y), by a standard 
argument [W2] Kk(y) is stably free. 

Similarly, in case B, 

(Recall from 1.1 that as a left ZH module Z [tJ] is isomorphic to the left Z[<,(H)] 
module structure of Z [J].) Again by Lemma 1.5 

[P OZH Z J O  Q OZHZ Ct JII = ITKk(Wt)I 

and the rest of the argument for case B is exactly as in case A. 

Proof of Part (ii). Recall from the definition of P and Q in 1.4, any element 
v ~ P c  K,(M) is represented by dcr for some ~~EK,+,(W,,  M). In particular, for a 
finite set { y )  1 s  i s s ,  of elements of P, there are {cci} with ami = 1 =<is s. Now as 
Kj+, (W,, M) c Kj(M) = 0 for j < k and, see I 0 1, n, (M) = n, (W,), {uj} is represented 
by maps which we denote simply ccj: (D~+ ' ,  Sk)+(WI, M). But as n, M = n ,  W,, 
the standard piping argument (see for example [W2; p. 411) shows that {cci} can 
be represented by immersions with {dcc,) framed embedded and disjoint spheres. 

Thus the non-singular intersection form of Kk(M) [W 2;  Chapter V] is trivial 
when restricted to P, or  to  Q, and hence its adjoint [W2; p. 441 induces the iso- 
morphisms P z Q*, Q z P*. 

Proof of Part (iii). If [PI =0, then by performing trivial ambient surgeries on 
M c W to stabilize P, it may be assumed free. As Q r P*, Q will then also be free. 

The map 4 is defined and Lemma II.2(i) is proved in [W 1 ; 5 51. Part (ii) of 
Lemma 11.2 just quotes for the case of manifolds a result of [W 1; 561; there the 
modules P and Q are defined by an  analogous procedure to that used in 1.4 in the 
general setting of a CW-complex splitting problem. 
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Lemma 11.2. (i) In case A, 

tl - C2 (resp; in case B, 4 :  Wh(J *, {t)) -+ Ker(R,(H) 4 R,(J)) is surjective. 
(ii) Hypothesis as in Lemma 11.1. Then [PI =$(z( f)), r ( f )  the Whitehead 

torsion off. 

Of course Lemma 11.2 and the following result, Lemma 11.3, are not needed if 

R,(H) -+ K,(G,)@ K,(G,) (resp; K,(H) C1*-C2* > &(J)) are injective. Lemma 11.3 
describes the behavior of the usual Z, action on Whitehead groups and projective 
class groups in Waldhausen's exact sequence for Wh(G), G= G, *, G, or G= J *, { t ) .  

Lemma 11.3. Let H c Gi (resp; t i :  H -+ J) be inclusions of groups, i =  l ,2,  and set 
G=Gl *,G, (resp; G= J*, {t). Assume given homomorphisms w,: H + Z ,  and 
wi: Gi -+ Z,  (resp; w,: J - tZ ,  and w,: Z -+ Z,, Z generated by t) with wi restricting 
to w, (resp; with w, t i=  w,) for i =  1,2. Let w: G -+ Z, denote the unique extension 
of w, and w, (resp; w, and w,) to G. Let x -+ x* denote the Z, action on Wh(G) 
and on K,(H) determined by the involutions of Z H  and ZG defined in the usual way 
using w, and w. Then for xeWh(G), $(x*)= -4(x)*. 

The proof of Lemma 11.3 is technical and is deferred to the end of§ 1. Lemma 11.4 

is also trivial if K,(H) -+ K,(G,)@ K,(G,) (resp; R,(H) ' 1* -C2*  + R,,(J)) is 
injective. 

Lemma 11.4. Let Y be a closed manifold or Poincark complex of dimension n + 1, 
n 2 4, with n, ( Y )  = G, G = GI *, G, (resp; G = J *, {t)). Then if 

& ~ ( f  ))EH"+'(Z~;  Ker(K,iH) - + R O ( G l ) ~ ~ , ( ~ , ) ) )  

(resp; eHn+ ' (Z2;  Ker(R,(H) 51-- t 2 -  

+ R,(J))) 
is zero, there is an h-cobordism (V; W', W) with, writing f ' j  Y for the induced 
homotopy equivalence, 4(z( f '))= 0. 

Proof: Observe first that as f is a homotopy equivalence of closed (n+ 1) dimen- 
sional manifolds, r (  f )  = ( -  1)" r (  f)*. Hence by Lemma 11.3, $(z( f )) = 

( -  I)"+' $(z( f ))* and thus determines an element $(t( f )) of 

(resp; Hn+'(Z,; Ker(R,(H) 51,-<2* 

+ R,(J)))). 

Now suppose $(r( f )) = 0. Then there 

<I -C2  3 X E K ~ ~ ( K , ( H )  + K,(G,)@K,(G,)) (resp; K~~(I?,(H) R,(J))) 

with g)(r(f))= v+(- I)"+'v*. Choose, using Lemma II.2(i) P E  Wh(G) with 4(B)= c 
and let (V; W, W') be an h-cobordism with torsion f l  [MI]. Then 

and hence 4 ( z ( f 1 ) ) = $ ( s ( f ) ) + ( - v + ( - l ) " v * ) = O  by LemmaII.3. 
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We proceed to construct if $(z(f))=O, and hence also by Lemma 11.4 if 
&(z( f))=0, a normal cobordism T of W to a split manifold homotopy equivalent 
to Y and compute the intersection form of T This geometric construction will be 
referred to as the nilpotent normal cobordism construction. 

If 4(z( f )) = 0, by Lemma 11.2 (ii) and Lemma I. 1 (iii) we may assume that 
P and Q are free ZH modules. Let I' denote the closed interval [-2,2] and let 
M x I' denote a tubular neighborhood of M x 0 = M c W constructed so that 
extending thelift o f M  to m t o a l i f t o f  ~ x l ' w e g e t  Mx( -2 )cCt ; ,Mx2cWr .  
(In case A, this last condition is equivalent to M x ( -2 )c  W,, M x 2 c  W,). Let 
lei} 1 5  i s d  denote a fixed choice of a basis for the free ZH module P and let 
{c$~) 1 j  i s d  denote a dual basis for Q under the intersection pairing A of Kk(M). 
Choose (ei} 1 5  i s d  disjoint framed embedded spheres in M representing {ci), 
and {A} 1 5 i 6 d disjoint framed embedded spheres in M representing 1 j i 5 d. 
Clearly, from the given intersection data on {ci} and {C$i} we may assume that 
e, nfj = 4, i + j, and ei and A, intersect in one point, 1 i 5 d .  

Performing surgery on the spheres {e,} 1 5  i j d  representing a basis of the 
subkernel P of Kk(M) produces a normal cobordism C, of M to a manifold 
M,, Mp homotopy equivalent to X. [W2; Chapter V]. Similarly, performing 
surgery on the spheres {A} 15 i 5 d  representing a basis of the subkernel Q of 
Kk(M) produces a normal cobordism CQ of M to a manifold MQ, MQ homotopy 
equivalent to X. 

Let I denote the interval [0, I]. Attaching Cp x [-2, - 11 along 

and similarly attaching CQ x [I, 21 to 

produces an (n+2) dimensional manifold T. One component of aT is just 
W= W x 0 and the other is denoted by W. See the diagram. 

Diagram of the construction of T 

Using the standard normal cobordism extension lemma [B4], the normal 
map induced by the homotopy equivalence f: W-, Y extends to a normal map 
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Of course covering bundle maps are part of the structure of this normal map F 
[B3J [W2] though they are not explicitly indicated in our notation. Write 
f :  W+ Y for the restriction of F to ~c T. There is an obvious inclusion 
C,  u, CQ c w and the restriction of fs, f !  : C p  uM CQ + X is a homotopy equiva- 
lence as, up to homotopy, C,  u, C ,  is obtained by attaching cells to spheres 
representing a basis of P O Q = K,(M). 

Lemma 11.5. The map f: W+ Y constructed above is a homotopy equivalence and 
is homotopic to a split map. 

Remark. The explicit computation performed below of the intersection form of 
K,+,(T)  and the observation that it is a non-singular form leads to another 
proof of Lemma 11.5. 

Proof of Lemma 11.5. In case A, from the construction of T ,  see the diagram, 

and M, + X ,  M,  4 X ,  C ,  u C + X  are homotopy equivalences. Thus the 
@ .Q 

Mayer-Vietoris sequence of W gives just 

K~(w)=K,.(w,  u, C,; Z G ) @ K j ( W ,  u, C,; Z G ) .  

But K j ( W 2  uM C,; Z G ) = K j ( W ,  u ,  C p ) Q Z G 2 Z G  and as Kj(W2)=0,  j + k ,  and 
by LemmaI.5 K,(W,)=PQ,,ZG, and as C,  is formed, up to homotopy, by 
attaching cells to a basis of P, K,(W, u ,  C,) = 0. Similarly K,(W, u, C,) = 0 and 
thus K ~ ( w )  = 0 for all j .  

Similarly in case B, w = (c, uM2 W '  u,, CQ) u,?" M Q  ( C ,  u, C,) and arguing 
as in case A, it suffices to show that K j ( C p  uM2 W u,, Cp)=O. But Kj(W1)=O 
for j f k  and by LemmaI.5 K , ( W ' ) = Q Q z H Z J @ P Q z H Z [ t J ] .  But as 
C,  uM2 W '  uM1 C ,  is formed up to homotopy by attaching on W '  cells on spheres 
representing generators of Q c K,(M,) and Pt c K,(M,) the result follows as in 
case A. 

From the construction the map f is clearly homotopic to a map with 
f - ' ( X ) = M ,  and M, +X is a homotopy equivalence. Thus f  is a splittable 
homotopy equivalence. 

Let L be the (- l),+l Hermitian pairing to Z [GI defined on ( P O  Q)  O,, Z G ,  
G = G, *, G, in case A and G = J *, { t }  in case B, by 

L(x,  y)=iL(x,y) if X E P  and Y E P ,  or X E Q  and ~ E Q ,  or X E P  and ~ E Q .  

Here A denotes the intersection form of K,(M). 
Thus, L(x,y)=O if x , y ~ P  or x , y ~ Q  and 

L ( y , x ) = ( - l ) k + l L ( x , y ) = ( - l ) k + ' R ( x , y )  for XEP, ~ E Q .  

The form L thus has subkernels P QzH Z G  and Q QzH Z G .  

Lemma 11.6. lie normal cobordism T constructed above is connected, 71, T-+ n, Y 
is an isomorphism, K i ( T ) =  0 i* k +  1, and K,+, ( T ) r ( P  Q)  OzH Z G .  With this 
identification, the intersection form A,  of K,+,(T) is given by A,(x, y)= 
L(( l  + p + p2 + p3 + -..) x,  y), p the nilpotent map defined in I $4. 



Proof: T is homotopy equivalent to W u ,  ( C ,  u, (CQ) and hence T  is connected, 
nl T = n1 Y and the Mayer-Vietoris sequence of W U ,  ( C ,  u, CQ) gives 

But as W-i  Y and C ,  u C  -r X are homotopy equivalences, this exact sequence 
M .  Q reduces to the isomorphism 

K k + , ( T ) z K k ( M ;  Z G ) ,  K,(T)=O, i + k + l .  

Moreover, K,(M;  Z G )  z K,(M)  O,, Z G  =(P  @ Q) a,, Z G  and thus 

Lastly we compute the intersection form [ W 2 ]  A, of K,+,(T).  The map p  
defined in Chapter 1.4 was shown there to be nilpotent. Thus, 1 + p  + p2 + p3 + ... 
exists and in fact 1  + p  + P 2  + p3 + . . . = ( 1  - p ) - l .  Thus the proof of Lemma 11.6 
will be completed by showing that 

(1)  iT ( ( l -p )x ,  y )=L(x ,  y)  for X E P  Y E P ,  or X E Q  y € Q ,  or X E P  ~ E Q .  

For x ,  y E P  or x ,  y EQ,  this reduces to showing that & ( ( I  - p )  x ,  y )  = 0. 
We demonstrate ( 1 )  geometrically by constructing immersed spheres E,, Fj 

representing E~ and +j  in K,+, ( T ) = ( P  @ Q)  O,, Z G  and spheres I?,, 5 represent- 
ing (1 - p)q and (1  - p ) 4 j  in Kk+,  (T) .  We will count the intersections of E, and & 
with E, and F,, . 

From the construction of C,, the spheres ei representing ci in K k ( M )  z(P @ Q) 
bound framed embedded disjoint discs (handle-cores) D,, in C,; similarly the 
spheres fj bound framed embedded disjoint discs Ff, in C,. Pushing these slightly 
in a normal direction, we obtain disjointly embedded discs D,; in C,, Df; in CQ 
with aD,, =el c M ,  aDfj  = A ' c  M .  Clearly el represents E , ,  fjl represents d j  and 
we may assume that the classes {e,)  {ej)  are all disjointly embedded, as are (4)  (6). 
However, in M  we have e ,  n fj' = ej n fj = 4 if i + j  and e, and A', and ei and f i  , 
intersect respectively in one point. 

Recall that the class represented by ei x  0  x  0 c  M  x  I' x  O c  W  x  O c  T  is 
trivial in W  x  0  and bounds an immersed disc in W  x  O c  T. Call this disc 6 , .  
We join 8 ,  and D ,  along ei to form Ei.  Precisely, set 

Ei=D,,x -3 /2u, ,x-3 ,2xl  e i x  [ - 3 / 2 , 0 1 x 1 u , , x o x l  e i x O x [ O ,  11 

u e i X O x O D e i ,  i S i S d .  

Similarly, choose D ~ ,  an immersed disc in W  x  0  with 3 ~ ~ ~  =A x 0  x  0  and set 

lsisd; that is, 
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Construction of E ,  

We proceed with the construction of E! and <. First note that, letting PI denote 
a lift of el to M, PI bounds a disc D,: in V where in case A, 

and in case B, 

For, recall from Lemma 1.5 that K,(wl) = Q OzH ZG, (resp; in case B, K,(w;) = 
Q O,, Z J  @ P OzH Z [t J]) and the image of e: representing ,si€ P c K,(M) under 
the map K,(M)+Kk(Wl) (resp; Kk(M)+Kk(W;)) is given, see LemmaI.7, by 

P ( E ~ ) E Q  RZH ZZ1 (resp; Q @,, 5 @ P @,,Z[tJ]). Moreover, from the con- 
struction of V, clearly 

in case A, Kk(V)= K,(W,)/Q gZH zz1 
and 

in case B, K,(v) = K,(w;)/Q @,, fi @ P @,, z [ t  J] 

Thus PI bounds an immersed disc D,;. Now as 

R=(K x ~ - M x [ O , ~ ) X $ U ~ ~ ~ ~ ~ M X ~ ~ [ ~ , ~ ] U ~ ~ ~ ~ ~ C ~ C T  

(resp; in case B, 

~=(~'x~--~x[0,2)x$u,~~.+Mx2x[~,1]u,.~.,C,~T) 

is homeomorphic to W, u, CQ (resp; W'u,; C,) there is an obvious projection 
map V + R  induced from V C R .  Let D,; be the image of D,; under this map. 
Thus, we may take D,; to be an immersed disc with boundary eI x 2 x$.  The 
sphere Ei is formed by joining D,; with D,; along el. Precisely, set 
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Construction of E, 

Similarly, construct 

and from this get, as above, D,; in 

bounding i; 'x -2 x i .  Form the sphere 8 by joining D,; with D,; along / ; I ;  

precisely, as above, set 
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From the constructions, 

~ , n ~ ~ = e : x O x ~ n e ~ x O x ~ = d ,  

& n ~ , = f , ' x O x i n f , ' x O x i = ~  

and 
1 ~ ~ n ~ , = e : x O x $ n f , x ~ x ~ .  

Thus choosing orientations for M and W at a basepoint [W2; Chapter V] to 
define i,, the intersection form on K,+,(T),  we get that 

A ~ ( E , , F , ) = ~ ( ~ ~ , A ) = I ,  i T ( ~ ,  E ~ ) = o ,  I.,.(<, F ~ ) = o ,  

l s i s d ,  1 s j g d .  Thus, to complete the proof of (1) it suffices to show that E i ,  F , ,  
Ei, 4 represent c i ,  ( b i ,  (1 - p)ci and ( 1  - p)di  respectively in 

We first check that Ei represents E ~ ;  an entirely parallel argument checks that 
represents d i .  As the isomorphism K,,, ( T ) r  K , ( M ;  Z G ) r  (P @ Q )  @,,ZG 

is induced from the Mayer-Vietoris sequence of T, which is homotopy equivalent 
to Wu,(CP U ,  CQ), we have the commutative diagram 

K,+, (Cpu, CQ, M ;  Z G )  

Clearly Ei in K,,, ( T )  goes to (D,, , ei)  in 

Kk+i  (CPuM CQ, M ;  Z H ) c K k + ,  ( C p u  CQ, M ;  Z G )  

and hence to eie K,(M; Z G )  representing ei 
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Lastly we verify that Ei represents (1 -p)ci under the isomorphism Kk+,  ( T ) z  
(P O Q) O,, ZG; an entirely parallel procedure checks that 6 represents (1 - p)$i. 
From the construction of Ei as the union of D,; and Dei along ei, where D,; lifts 
to 6,; in V, the sphere Ei lifts to a map to Vun c,; thus, recalling the definition 
of V, under the map 

excision 
Kk+~(T) - tKk+~(T ,  W ) A K ~ + ~ ( C ~ U ~  CQ, M;  ZG), 

Ei goes to a class in Kk+,(C,, M ) O  Kk+ ,(CQ, M)OzHZGl (respectively; in case B, 
~k+l(C,,M)OKk+l(Cp,M)~ZHZJOKk+l(Cp,M)OZHZ[tJ] )withthecorn- 
ponent in Kk+,  (C,, M) representing (DeI, ei). Thus under the following composed 
map, which is the Mayer-Vietoris isomorphism 

zi goes to ci + VE(P O Q) QZH ZG where in case A, v~ Q OZH z%, and in case B, 
N 

V E  Q QzH Z J  O P O,, Z [t J]. Furthermore, from the commutative diagram 

K k + l  ( ' ~ 2  ep) 
1 

+Kk+l (TI 

1 J 
K,+, (Vukep ,  ~ 

I 
E excision 

E~ + v is represented by an element of Image 

(for case B, in the above sentence and diagram, replace Wl by W;). Thus ti + v 
goes to zero under the map Kk(dW,)+ Kk(Wl) (resp; Kk(8 W,'-+Kk(W,')). But as 

E ~ E P  and VEQ OZ, z%, (resp; Q O,, 5 o P Q,, z [ t  J]) by Lemma 1.7 and 
the preceding discussion, v = - pl (si). 

Remark. Lemma 11.4 can also be demonstrated by a less geometric computation 
of the adjoint of A, in terms of 3. and p. 

Note that if $(z( f ))=O, W is, by Lemma 11.4, h-cobordant to a manifold w 
with the induced homotopy equivalence f :  W+ Y satisfying 4(z(f))= 0. Then, 
performing the nilpotent normal cobordism construction of T described above, 
we obtain a normal cobordism of W to a split homotopy equivalence. 

Proof of Lemma 11.3. We first prove Lemma 11.3 for case A, G = GI *, G,, and 
then briefly indicate the variation of notation for case B, G = J *, { t } .  

For 1 and 6 two stable bases of a free Z [Dl module, D a group, let (i) devote 

the element of Wh(D) represented by the automorphism carrying y to 6. Note that 
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G) = - (g) . For P a finitely generated right projective Z[H] module with 

let a(P) denote an element of a coset of 

Image (Wh(Gl) O Wh(G,) -t Wh(Gl *, G,)) 

defined as follows. Choose a projective module Q with [PI + [Q] = 0. Thus there 
is a stable Z[H] basis for P @ Q and choose such a basis a, .  We also write a, 
for the induced basis of (P  @ Q) O,, ZG. However, PO,, ZG, is a stably free 
ZG, module and Q O,,ZG, is a stably free ZG, module. A choice of stable 
bases for these two modules also determines a choice a, of a stable basis for 
P OZH ZG1 OZGl ZG @ Q OZH ZG, OZG2 ZG = (P @ Q) OZH ZG. Thus we get 

(E:) ~ w h ( G ) ,  which however. is only well defined, because of the choices" made 

in its construction, modulo Image (Wh(G,)@ Wh(G,) -+ Wh(G, *, G,)). Let 

The a;gment of [W 1; 5.81 shows that every element X E W ~ ( G )  has a (not 
unique) representative of the form1, 

h/ 

where A is a matrix with coefficients in ZIGl], B is a matrix with coefficients 

in z%,, C is a matrix with coefficients in ZG, and D is a matrix with coefficients 

in Z G ,  Here /*) is the matrix form of the element of Wh(G) given by an 

element of Waldhausen's reduced group of nilpotent maps %I(H; GI, G,) and I 
denotes the identity map. (Note that we are here using the fact that for an element 

of the reduced group I%(H; GI, G,) we may choose a representative (P, Q, p,, p,) 
with, by stabilizing, P and Q free modules of the same rank.) Waldhausen shows 
that for x in this form, $(x)= [PI. 

Now clearly, as Wh (G) is abelian, 

where for a matrix M€GL(n, Z[G]), M denotes the conjugate transpose of M 
(see [M 11). Moreover, it is easy to see that in WhG), [M 11 

" This corrects slightly the statement of [W 1, 5.73 
l 2  This expression for x indicates the relationship between the results of [W 11 and the Higman 
process of [St] 
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Also, Lemma 1.11 shows that (s) - represents an element of Waldhausen's 

reduced group of nilpotent maps %(H; GI, G,). Writing y* to denote a dual 
basis of N* for y a basis for a free module N7 we also get 

" = - or(P*) modulo (Image(Wh (G,) O Wh (G,) 4 Wh (GI *, G,)) . (:;I = - d:) 
Hence, writing x* in the form 

x* = a(- [PI*) (*) .IDt 

we get $(x*) = - [P*] . 
The argument in case B is similar. For 

let u(P) denote a representative in the coset of Wh(J) in Wh(J *, {t}) constructed 
as follows. Again choose Q with [PI O [Q] = 0 and choose a stable basis a, for 
PO Q and hence for ( P  @ Q) OZHZG. Using 

(51, - 52*) CP1 = CP @z[& HI ZJ@ Q @Z[r2H]zJl 9 

choose a stable basis over Z J  of 

P @ z [ ~ l ~ ] Z J @  Q @ Z [ < ~ H ] ~ ~ '  

This induces a stable basis of 

P @ ~ ~ Z J O ~ ~ Z [ J * ~ { ~ ) I @ Q @ ~ [ ~ ~ H ] ~ J @ Z J Z [ J * H { ~ ~ ~ ~  

But as there is an obvious isomorphism of 

Q@z[<~H]ZJ@ZJZ CJ*H {tII 

with 

Q@zHzCtJt-'I @z,tJt-llZIJ*H {t}], 

this induces a basis or, for 

P @ Z H Z J @ ~ J Z G @ Q @ ~ H Z [ ~ J ~ - ' ]  Q ~ ~ , ~ , - ~ ~ Z [ G ]  S(P@Q)@,,ZG. 

Now set or(P)= , which is well defined modulo Im(Wh(J)-t  Wh(J*, {t})). c: 1 
Again, 5.8 of [W l jshows that every element x of Wh(J  *, {t)) can be represented, 
for some P, by 
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where A (resp; B ;  C; D ;  E )  is a matrix with entries in Z J  (resp; Z [ Z - ' 1 ;  Z [ t J ] ;  
Z [ J t -  '1; Z [ J ] )  and for x in this form, 4(x) = [PI .  The remainder of the argument 
is as in case A. 

5 2. Completion of the Argument for n = 2 k 

Lemma 11.10 below, the main algebraic result of this section, is used in the 
completion of the proof for n = 2 k at the end of this section to  analyze the surgery 
obstruction of the nilpotent normal cobordism construction. Lemma 11.7 indicates 
the role that is played by the square-root closed condition. Lemma 11.8 is a 
necessary technical exercise; the reader may wish to look at its proof only after 
reading the remainder of the chapter. Lemma 11.9 plays a crucial role in the proof 
of Lemma 11.10. 

Lemma 11.7. Let H be a square-root closed subgroup of a group D. Let w :  D + Z ,  
be a homomorphism determining as usual an involution of Z [ D ] .  Then as a Z [ H ]  
bimodule Z [ D ] Z Z [ H ] O E @ E  where E =  { Z I X E E ) .  

Proof of Lemma 11.7. First observe that the only double coset HdH of H in D, 
 ED, equal to its inverse double coset ( H d H ) - ' = H d P 1 H  is the trivial double 
coset13; i.e., ~ E H .  For if hldh2=h,d- 'h , ,  for h,, h, ,  h,, h,eH,  ED, then 
dh; 'h,d= h , h ; ' ~ H  and thus (dh;' ~ , ) , E H  and hence as H is square-root 
closed in D, d h; ' h, E H and d E H. 

Then we can construct T a union of double cosets of H in D with D - H the 
disjoint union of T and T - ' =  { x l x - ' E T } .  Now let E be additively generated by 
the elements of 7: 

Using Lemma 11.7, if H is square-root closed in Gl and G, (resp; in J and 
t J t - ' )  we may write: 

ri 

(1) Z G ,  = A, @ A,, A ,  = A, 

Of course, these decompositions are in general not unique but we choose one and 
keep it fixed for the remainder of this section. 

In 1.1, Z [GI for G = Gl *, G ,  (resp; G = J *, { t } )  was described as a Z [ H I  
bimodule as a sum of Z [ H ] ,  A, ,  B,, C,, Di where each of these last 4 is a tensor 

product over Z H  of z%, and ~^i;, (resp; 5, ~ [ z - ' ] ,  Z [ t J ]  and z [ J t - ' 1 .  
Correspondingly, using the Z H  bimodule decompositions (1) and (2) (resp; (3) 

l 3  In our earlier paper [C 11 and also in [CS 11 this was used as a definition of square-root closedness 
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and (4)) above, Z[G] may be described in terms of sums of tensor-products of 
the Z H  bimodules A,, A,, B,, B, (resp; and Z[tJ] and Z[J~- ' I .  To make this 
precise, we introduce the following notation. Let F denote the free associative 
monoid in case A on the symbols a,, a,, 4 ,  P, (resp; and also y and 6 in case B). 
Let F i c  F denote the subset of words of length i, i 2 1. Call a word W E  F admissible 
if none of the pairs ai aj, Pi Bj, i = 1,2, j = 1,2 (resp; and also y ai, pi y, 6 Pi, yi 6, y 6, 
6 y in case B) occurs as a consecutive pair in w. For example, a, P, a, and a, y 7 0,6 
are admissible, but P, a, a, B, and P, a, 6 are not admissible. Write F0 for the 
subset of admissible words of F and set 4' = F O ~  F , .  For a word W E F O  c F in a,, 
a,, P1 and P2. (resp; and 1; and 6 in case B), let Z [w] denote the corresponding 
tensor product over ZH of the Z H  bimodules A,, A,, B,, B, (resp; and Z[tJ] 
and Z I J t r l ]  in case B). The precise definition is given by setting: 

(resp; and also in case B Z [y] = Z [tJ], Z [dl = Z [Jt-'1) and for x WEFO, Z [x w] = 

Z [XI OZH Z [w], x = a,, a,, B1, 8, (resp ; or x = y ,  6 in case B). 
Using the inductive definition of A,, Bi, Ci, Di of 1.1 we show the following 

when H is square-root closed in G. 

Lemma 11.8. As Z [HI bimodules, 

weFO 

(ii) A,@Bi@Ci@D,z  2 Z[W]. 
wsFf 

At least for small values of i, the reader may check Part (ii) of this lemma using (I), 
(2), (3), (4) and the inductive definition of Ai, B,, Ci, Di to decompose the left-hand 
term. The precise proof we give sums up this decomposition process by induction 
arguments. 

Proof of Lemma 11.8. Recalling the formula of 1.1 

Part (i) follows immediately from Part (ii), which we proceed to prove. Define 
subsets of F, &(a), F,(b), F;,(c), q(d)  for i 2 1 by the following inductive procedure: 

In case A, Fl (b) = 4 (d) = q5. 

In  case^, ~ , (b )={6 ) ,  ~ , (d )={y )  
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We claim that 

For i = 1, this is immediate from (I), (2) ,  (3), (4), and the definitions of A,,  Bl . C, , 
Dl in case A and in case B. For i >  1, this is shown by an easy induction which 
compares the inductive definition of A,, B,, Ci, Di with the similar inductive 
definition of F,(a), ?(b), F,(c), F,(d). Details are left to the reader. 

Hence, it suffices to show that for all i, 

(Notice that the terms on the right hand side are disjoint as otherwise Ai, Bi, Ci, 
D, would not be disjoint.) It is trivial to check that 

Now let w be a word of the shortest length with ~ € 4 '  but 

As w is admissible we may write, for example, w=cc,P, w'; the other cases 
w =  r,P, w"=P1 r2 w' etc. are treated by the same method we employ here. Then 
p, w' is admissible and hence, by assumption is in F,-I (a) u F,_ ,  (b) u F , _ ,  (c) u F,', (d). 
But checking definitions of these last 4 sets, only 6-,(c) and Fi-,(d) have terms 
ending on the left in P, or P,. Hence Dl w ' ~ ~ _ , ( c )  u F,-,(d); but ci,F,-,(c)cE;(b), 
a,&-,(d)cF;(a), whence w~F,(b)uF,(a).  

Similarly, suppose \ v ~ < ( a )  u E;(b) u F;.(c) u F,(d) is a word of smallest length 
with MJ$F;.O. Then, for example, w=a,crl w'. But a, w', as it ends on the left in 
a, or a, must be in F , - ,  (a) or F , - ,  (b) and examination of the definitions shows that 
a, (a)  +&(a) or F,(b) or <(c) or F,(d) and similarly for r, F, _, (b), contradicting 
our assumption on w. The other cases, w = P 1  P, w', w = ~6 w' etc. are handled 
similarly and are left to the reader. 

We now define some terms used in stating Lemma 11.9, which is used in 
proving Lemma 11.10. Let Z[F] denote the integral monoid-ring of the asso- 
ciative monoid F defined above. Of course, as an additive group 

where Z [F,] denotes formal linear sums of words of length i. Define an involution 
x -t Z on Z [F] by the formulas xy=jX, x i = . ?  ++!: for x, YE F, if, =a,, Z, =r, , 
8, = P,, $, = Ijl. (resp; and 7 = 6, 8= y). Let I denote the ideal in Z [F] additively 
generated by the elements of F-F0 and let A be the quotient ring Z [F]/I. As 
I = 1, A inherits an involution from Z [F]. Also as I is homogeneous in the decom- 
position of (5), we get the additive group decomposition A = Z @  1 A,, where 

121 
A, = Image(Z [el +A). Write Z [FO] for the additive subgroup of Z [F] consisting 
of linear sums of elements of F0 and Z [eO] for the linear sums of elements of F;.'. 
The restriction of Z [F] 4 A gives additive involution-preserving isomorphisms 



Lemma 11.9. For i 2 0, 3 oi E C Aj with, setting t = 1 - (a, +a2  + PI + p2) (resp; in 

Proof of Lemma 11.9. Observe first that for wcFO, w B 9 .  We check this first in 
case A. Recall that w is a word in a,, a,, PI and /I2. If it has an odd number of 
factors, clearly the middle factors of w and E are different. If it has an even number 
of terms, as w is admissible the factors alternate between a, or u2 and P, or P2. For 
example, - if w with an even number offactors is of the form w = ail ,  Bi2, ui2 . . . aij _, Pij, 
E=Pi,Eij-, . . . Pi, tii1 and pi, =PI or P2 and so E =k w. Similarly, if the first factor 
on the left of w is pi,, we get E =k w. 

In case B, for a word w, let cp(w) denote the word obtained by delecting all the 
factors y and 6. It is easy to see from the definition of - admissibility that if w is 
admissible, so is cp(w). Moreover, if w = 9, then q ( w )  = cp(w). Hence if w = E, q(w) 
is the null word and hence w is a word in y and 6. But as w is admissible, it does 
not contain as consecutive pairs y 6 or 6 y. Hence w = 6' or w = yi. But also 8'= yi, 
7' = hi and as in case A we conclude that w =k 9. 

As an additive group with involution, Z [ 4 O ]  z Ai and hence from the above 
demonstration that w =km, we get that if xeAi satisfies x=T, then there exists 
y€Ai with x =  y + j .  

Inductively, define v as follows. Set Vo = 0. Assume v satisfying the conclusion 
of the lemma has been defined; we proceed to define q+, . From 

t - ( l + q ) ( l +  q ) = C + C + d ,  CEA,,,, d~ 1 Aj. 
j > i + l  

Now set q + , = q + C  

Then, t - ( l + ~ + l ) ( l + ~ + , ) = t - ( l + ~ + ~ ) ( l + ~ + ~ )  

The main algebraic result of this section used to study the Hermitian pairing 
A, of the nilpotent normal cobordism construction of I1 5 1, is the following: 

Lemma 11.10. Let H c G,, i = 1,2 (resp; H c J, H c t J t -  I) be inclusions of H as a 
square-root closed subgroup. Let w :  G -+ 2, be a homomorphism of G= G, *,G2 
(resp; G = J  *, i t ) )  and also denote the restrictions of w to subgroups of G by w. Let 
X E  Lh, k +  2(G, W )  be represented by the (-  l)k+l Hermitian form (N, 4, p) where: 
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(i) There are free Z H  modules P, Q with N = ( P O  Q)O,,ZG. 
(ii) There are Z H  linear maps, nilpotent in the sense of 1.4, 

N 

p1 : P + Q O z H Z G l  

(iii) There is a non-singular (- l)k+l Hermitian pairing L :  (P@Q) x ( P O Q )  + Z H  
with L(x ,  y) =O for x ,  Y E P  or x ,  y EQ and, letting L also denote the extension of this 
to a Hermitian pairing L :  N x N -+ ZG,  with d ( x ,  y)= L((1-  p)-' x ,  y). Here. 
p denotes the ZG linear map p :  N -+ N induced by pl and p, (see 1.4). 

Then, if H is a subgroup of H containing all elements of order 2 in H,  

Remark. In the present section we use this only for H =  H .  

Proof of Lemma II.10: For a ZG linear map s: N --+ N, let S denote the map 
3:  N --+ N satisfying 

L(sx ,y )=L(x ,Sy ) ,  x y ~ N .  

We first show that to prove the lemma it suffices to produce a Z [ G ]  linear map 
V :  N+N with ( I - ~ ) = ~ T / .  ~ e t  e l ,  ..., e, denotea basis for P ,andf , ,  ..., L a d u a l  
basis for Q so that 

L(e i , f i )= l ,  l g i s r .  
- - 

Set el = V(ei) ,  f;' = V ( f i ) ,  1 5 i 5 r.  Then 
- - - - 

4(eI, e(i)=d(Vei, V e j ) = L ( ( l  -P)- '  Ve , ,  V e j )  

= L( ( I / v ) - 'V~ , ,V~~)  
= L(V-' e i , v e j )  

Similarly, $ ( f i l , f ; )  =0, and also if i + j +(el,&) = L(ei , f , )  =O.  But, qh(ei,fil) = 

L(ei,fi)= 1, l s i s r .  
Moreover, as H is square-root closed in G, H and hence also H ,  contain all 

elements of order 2 in G. Thus, as 



p(ei), and similarly y( f,') take values in Z [H]/{u -(- l)k+l i i J u ~ Z  [HI) (see [W 2; 
Chapter V]). Expressing the Hermitian form (N, 4, y) with respect to the basis 
given by { e ; ,  e;, . . . , ei,f;, . . . , f : }  it is clearly obtained from a Hermitian form 
over Z [ H I  by just extending coefficients. 

It remains only to check the claim that there is a map V with (1 -p)= V V  
Corresponding to the decompositions (1) and (2) (resp; (3) and (4)) above, we may 
decompose the ZH linear maps p, and p,, 

(resp; in case B, 

and write p l = a l @ x 2 , p 2 = f l , @ ~ ,  ( r e ~ p ; p , = a ~ @ x 2 @ ~ ~  ~ , = P i @ P 2 @ ' ) 9  

Now as 

we get (1 - p) = 1 - p and in particular, 

Denote the extensions of ul u,, p,, p, (resp; and y and 6) in the usual way (see the 
procedure in 1.4 for extending p, and p,) to ZG linear maps of N to itself by the 
same symbols. Then14, p = p; + p; = u, +a2  + P, + P, (resp; p = pi +p i  = a, + u, 
+ y +PI + 6). This decomposition expresses the components of the restriction of 
the map p to 

As p=p,  E,+E,+P, + ~ , = ~ ~ + c c , + ~ ~  +P2  (resp; i i , + ~ , + ~ , + ~ , + ~ + 6 =  
a, +a2+8, + P 2 + ~ + 6 ) .  

l4 Recall the notation of 1.4. The maps pi and p i  denote the extensions of p ,  and p,  to ZG linear maps 
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Comparing domains and ranges, we get 

(resp; and also 7 = 6. 8 = y). 
For example, L(x, El  y) = L(a ,  x, y). Hence, as a,  ~ E Q  OzH A, ,  L ( x ,  E l  y) = 0 for 

JEQ. Moreover, for YEP,  L(x, El J ) =  L ( r ,  x, y ) ~  A,  for ~ E P  and thus 

Now to complete the proof of Lemma 11.10 we wish to apply Lemma 1.7 with 

t = 1 - p =  1-(a,  +a,+B,+/));) 

(resp; t = 1 - p = 1 - ( r ,  +ct,+B, +P2+y+6)) .  

Note first that if w is a word in a, ,  a,, p, , P ,  (resp; and 7 and 6 )  which is not 
admissible. then by comparing domains and ranges we see that the composite 
map of N to itself represented by w is trivial. For example, a, a ,  = O  because 

and z ,  (Q) = 0 .  
Thus, from Lemma 11.9, there exist maps 1 + with (1  - p )  - (1 + I/;) ( i  + V,) 

a map represented by a sum of words of length greater than i in a,, a,, P,, P ,  
(resp; and y and 8). The proof will therefore be completed by showing that the 
nilpotency condition on p implies that the composite functions obtained by 
sufficiently long compositions, in any order, of the maps a,  , r , ,  /?, ,/)), (resp; 
and y and 6 )  are zero. 

As p = r ,  +a,+p, + P z  (resp; p=a, +r,+p, +P,+y+6) pi=(a, +r,+P, +/)) , I i ,  
i 2 1 (resp; pi = (a,  +a ,  + /)), + P ,  + y + 6) ')  and thus pi = x M'. But, as observed 

w e F ,  

above, if w is not an admissible word in a , ,  a,, P,, p, (resp; and y and 6),  the map 
represented by w is 0. 

Hence, (6) pl= 1 w, iz 1. But also, by (24) and (25) of 1.4, 
w.F? 

and by Lemma 11.8 we get from this 

Moreover, beginning with the fact that this is obviously true if MI has length 1 
the same kind of induction as that used in Section 1.5 above shows that 
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Hence, from (6), (7), and (8), on P @ Q, 

and hence as, by Lemma 1.11, pi=O for i sufficiently large, we get that for i suf- 
ficiently large and W E ~ O ,  the map 

Completion of the Proofs of Theorems 1 and 2 for n = 2 k ;  Part ( i ) .  We first show, 
for all n, the necessity of the condition +(T(  f )) = 0 .  The proof of Lemma 11.4 
shows that 4(z(  f ))= (- l)"+' 4(z(  f))* and thus 4 (T(  f )  determines an element 

(resp; Hn+' (Z, ; Ker (KO (H) 51,-<2* 

KO (~1))). 

If there is an h-cobordism with torsion v (V; W, W) with the induced homotopy 
equivalence f: W+ Y split along X, then [M 11 

Moreover, the split map f" induces a Mayer-Vietoris decomposition of the chain 
complex of the acyclic pair (Y, w), from which ~ ( 4 )  is computed, 

Case A. 

O-, c , ( x , M ) o ~ ~ z G +  c * ( q ,  @ ) Q ~ ~ , Z G O  c*(Y, I / eZ)0zG2~~  - C*(Y, w)-+o .  

Case B. 

0 C )  G "*-"* . C, (Y., wl) m,, ZG -, c,(y,  ci.1- 0 

and, all the chain complexes in the above sequences being acyclic, and comparing 
their torsions we get [M 11, 

z (f) E image ( ~ h  (G,) @ Wh (G,) -, Wh (G)) 

(resp; 7 ( f " ) ~  Image (Wh(J) -+ Wh(G)). 

But, then by [Wl], 

Hence from (4) and (5 ) ,  

and hence by Lemma 11.3, 

4 ( z ( f ) )=4 (4+( -  1)" 4(v)* 
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which asserts that in 

(resp; Hn+  (Z, ; Ker (K, (H) < I * - < 2 *  

*K,(J)))) &(f))=O. 

To prove sufficiency, assume $(z( f))=O. Using Lemma 11.4, it suffices to 
prove the result if +(z(f))=O. In that case, the nilpotent normal cobordism 
construction of I1 9 1 produced a normal cobordism T of W to a split homotopy 
equivalence f :  W+ Y. Moreover, the surgery obstruction X E  Lh,,+2 (G, W) of this 
normal cobordism, by Lemma 11.6, satisfies the hypothesis of Lemma 11.10 for 
H = H .  Hence. x~ I rnage (Lh , ,+ , (H ,w)+L~~~+ , (G ,~~) ) .  

Furthermore the inclusion H + G factors through Gl = nl (W,), (resp; J = 

n1 (Y')). Hence a normal cobordism with surgery obstruction in Lh2,+,(Gl, w) 
(resp; Lh2,+, (J, M')) going to ( A X )  under the map Lh,,+, (GI, MI) + L!',,+* (G, W) 

(resp; Lh,,+,(J, n)-.Lh,,+,(F, w)) can be constructed [W2] on the homotopy 
equivalence Wl + (resp; W1+ Y' ) ,  fixed on 8 w1 (resp; 2 w'). Attaching this to 
T along (resp; W') we get a normal cobordism with 0 surgery obstruction of 
W to a split homotopy equivalent manifold. 

Then, surgery can be performed on this normal cobordism to obtain the required 
h-cobordism. 

Proof of Theorems 1 and 2 for n = 2 k ;  Part ( i i ) .  

The proof of the necessity of 

(resp; z ( f  ) E  Im (Wh (J) + Wh(G)) 

is the same as the argument in the first part of the above completion of the proof 
for part (i) showing z ( f )  is in this Image. 

Part (i) constructed for n = 2 k an h-cobordism of W to a split manifold. To 
complete the proof of part (ii), we show that beginning with the sharper control 
on torsion given in the hypothesis of part (ii), the geometric constructions em- 
ployed in the proof of part (i) can be used to give an s-cobordism. Then the s- 
cobordism theorem [K3] [M 11 will complete the argument. 

To prove this, it will be convenient to use, generalizing the surgery groups 
L",(G, w) and Lh,(G, w), surgery groups L;(G, W) where B is a subgroup of Wh(G) 
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satisfying B = B* for B* = { x  E Wh (G) 1 x* E B )  . The group L: (G, w) is defined 
precisely as L",(G, w) is defined, but with torsions evaluated in Wh(G)/B. For 
example, a simple isomorphism modulo B of based free Z [GI modules means an 
isomorphism with torsion in B .  In particular, fi!,O1(G, w)=E,,(G, w) and 
LTh(G)(G, W) = Lh,(G, w). These generalized Wall groups were introduced in [C 11 ; 
see [C3] and also [CS 11 for examples of applications and see [Rl]  for further 
algebraic generalizations. 

Assume now that 

(resp; t (f ) E  Image (Wh(J) -r Wh(G)) 

so that f is a modulo B simple homotopy equivalence for 

B = Image (Wh(G,) @ Wh(G2) -r Wh(G)) 

(resp; B = Image (Wh(J) -+ Wh (G)) 

The nilpotent normal cobordism construction of 11.1 gave a normal cobordism 
T of f :  W+ Y to f :  w-+ Y with f split. Hence, by an argument employed above 
in the proof of necessity in part (i), T ( f ) ~  1m ( ~ h  (G,) @ ~h (G,) + ~h (G)) 
(resp; T ( ~ ) E I ~ ( w ~ ( J ) +  w ~ ( G ) ) .  Thus, f is a modulo B simple homotopy- 
equivalence and the normal cobordism T has a surgery obstruction x in 
L<,+,(G, W) represented by a modulo B based Hermitian form (K,,, (T), 4, p) .  
Moreover, the basis E , ,  ... , E , ,  4 , ,  ... ,+,  which corresponds geometrically to the 
spheres producted from the handle cores El ,  ..., E , ,  F, ,  . . .  , Fr represents the 
modulo B equivalence class of bases for K, +, (T) [W 21. 

As in part (i), we complete the argument by showing that 

For, in that case, by the same argument as that employed in part (i), there is a 
"modulo B s-cobordism", i.e., an h-cobordism with torsion in 

B = Image (Wh (GI) @ Wh(G2) -, Wh (G)) 

(resp; B = Image (Wh(J) -r Wh(G)), 

of W to a split manifold W. Attaching to this h-cobordism an h-cobordism of 
and @ (resp; of w') we can obtain an s-cobordism of W to a split homotopy 

equivalent manifold [M 11. 
To show that x E Image (Lh2 , + , (H) -r L< + (G, w)), we use the same argument 

as that employed in the proof of Lemma 11.10, but we must now also check that 
the automorphism induced on (P @ Q) O,, ZG by (1 + q), for i sufficiently large, 
is simple modulo B. 

To see this, recall from [Wl] the construction of Grothendieck groups of 
reduced nilpotent objects (P, Q, p, , p,) with P, Q free Z H  modules. From the 
homotopy equivalence f :  W-r 'y; we constructed in 1.4 an element of this group 
with P @ Q = K , ( M ) .  Waldhausen [W I] shows, in the general setting of a C W 
complex splitting problem that if z (f )E Image (Wh (G, @ Wh (G,) 4 Wh(G)) 
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(resp; z (f ) E  Image (Wh(J) + Wh (G))) then this (P, Q, p, , p,) represents the 
0-object in the group of nilpotent objects. Moreover, the map 1 + was con- 
structed formally, when H is square-root closed in G and using Lemma 11.9, as 
a non-commutative polynomial in the components x, , a,, 0, , 8, (resp; and y 
and 6) of p, and p,. As this definition can clearly be extended, using the same 
formal polynomial T/;, to any object (P, Q, p, , p,), it defines a map (1 + T/;) 
(P, Q, p l ,  pz) of (P @ Q) @,, ZG -+ (P @ Q) @,, ZG. Moreover as y is a sum of 
monomials each having 1 or more factors of x, , a,, PI ,  f l ,  (resp; and y and 6), 
see Lemma 11.9, T/;' for r large is a sum for maps represented by words of length 
greater than or equal to r in a, ,  r,, P,, P, (resp; and y and 6). The argument used 
in the proof of Lemma 11.10 shows that for r sufficiently large, r = 0  and hence 
(1 + y)  (P, Q, p,, p,) is invertible and thus determines an element of Wh(G). 
Hence, inducing addition in Wh(G) by the direct sum construction, the formal 
polynomial 1 + I/; determines a homomorphism 

(resp; 1 + I/;: G ( H ;  J ,  t , ,  (,)+ Wh(G)). 

This follows immediately from the definition of 6% as a Grothendieck group. 
In particular, for (P, Q, p,, p,), constructed as in our present situation from a 
homotopy equivalence with 

(resp; T (  f ) ~ I m  (Wh(J) 4 Wh(G)) 

and hence representing the 0-element of %I(H; G, , G,) (resp; GI (H; J, 5, , t,), 
(1 + V,) (P, Q, p,  , p,) is a simple isomorphism. 

Renzurk. This argument involves choosing i large enough so that for the given 
p, Q, p,, p, p~oduced from f :  W+ Y, the map induced from 1 + satisfies 
(1 -p)=( l  + Q ( 1 +  y) (see the proof of Lemma 11.10). In fact, the argument could 
be made uniform by observing that in the construction of y+,  in the proof of 
Lemma 11.9 I/;+, - T.; is a sum of words of length i .  Hence for any (P, Q, p,, p,), 
for i sufficiently large, (1 + T/;) (P, Q, p, , p,)=(l + T/;+,!(P? Q, p, , p,! and we could 
define (1 + V)(P, Q, p,, p,) this may obtained is the limit" as i gets large. 

Remurks. 1) I f f  is a simple homotopy equivalence, the above argument shows 
that the nilpotent normal cobordism construction is a normal cobordism o f f  
to a split simple homotopy equivalence. Moreover, for H a subgroup of H con- 
taining all elements of order 2 in H and H square-root closed in G the above 
argument shows that for XEL',~+, (G, W) denoting the surgery obstruction of the 
nilpotent normal cobordism, X E  Image (L",,,, (H, o) LS2,+, (G, w)). 

2) Even if H is not square-root closed in G the surgery obstruction of the 
nilpotent normal cobordism construction is easily seen to go to zero in the Wall 
group of the ring R [GI, Z [ t ]  c R c G. Over the ring R [GI in place of Lemmas 11.7, 
11.8 and 11.9 which led to the construction of I + I/i by using square-root closedness 
to decompose p , ,  p, in terms of a,, a,, 0, , 0, (resp; and y and S in case B) just use 
the decomposition p, = 112 p, + 1/2p1, p, = 1/2p2 + 1/2p2. From this, it follows 
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using homology surgery theorem [CS2] that even when H c G  is not a square- 
root closed subgroup, if @(r (f )) = 0, n = 2 k > 4, there is a " homology h-cobordism " 
of W to a split "homology-equivalent manifold ", where homology is taken using 
local coefficients in Z [i] [nl ( Y ) ] .  This can be directly applied to compute the 
Wall groups of the ring R [GI *, G,], Z [i] c R c Q, even when H is not square- 
root closed in Gl and G,. 

3) If n z 6  and H = GI,  even if H is not square-root closed in G, and in fact 
even if H -, G, is not injective, any homotopy equivalence f :  W+ Y is splittable. 
For f a simple homotopy equivalence this is Theorem 12.1 of [W2]. Essentially the 
same proof, but using the surgery theory associated to the homotopy equivalence 
problem in place of that for simple homotopy equivalences, shows that W is 
h-cobordant to a split manifold. But if H = GI,  then G = GI *, G, = G, and in 
particular, Wh(G,) -+ Wh(G) is surjective. From this, the h-cobordism to a split 
homotopy equivalence is easily replaced by an s-cobordism to a split homotopy 
equivalence. 

Chapter 111 : The Even-Dimension Case 

8 1. Splitting in a Covering Space 

The present chapter completes the proofs of Theorems 1 and 2 for n = 2 k - 1, that 
is for dimension Y even. The results of Chapters I and I1 are heavily used below. 

In many cases, for example when K , ( H )  is zero, the results of the present 
chapter could be derived quite easily from those of Chapter 11. However, in the 
general case considered here considerable effort is needed, when n = 2 k - 1, 
to establish the relationship between the projective modules arising in the proof 
and the initial data on the Whitehead torsion of f: This is accomplished in 
Lemma 111.4. 

We briefly outline the argument of the present chapter. In $1,  we consider the 
problem of splitting the map of covering spaces 5 W+ P along X c P. Lemma 111.2 
shows that the only obstruction is an element of K,(H). In $ 2, this obstruction 
is shown to depend only on r(f). Using the results of $ 1, we carefully construct 
a submanifold V c W x S1, with V a transverse inverse image of X x S1 c Y x S1 
and with V-X x S' a k connected map. This is the situation which was studied 
in Lemma 11.1 and we perform the nilpotent normal cobordism construction of 
Chapter 11. The main result of $ 2, Lemma 111.6 shows that when @ ( T (  f)) = 0 
this produces a nilpotent normal cobordism of W x S1 to a manifold U ,  with 
w c U and w-, Y  a split homotopy equivalence. In $ 3 results of Chapter I1 are 
used to replace this normal cobordism by an s-cobordism of W x S1 to U' ,  with 
w c U'. Hence w c W x S1 and we complete the proof of the h-splitting theorem 
by showing that this implies Wand ware  h-cobordant. The s-splitting result for 
n=2  k -  1 is derived from the h-splitting result. 

The assumption that H is square-root closed in G is not used in 8 1 and 8 2. 
It is used in 4 3 in replacing a nilpotent normal cobordism by an s-cobordism. 
In particular, even if H is not spare-root closed in G the results of 8 2 show that if 
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6 ( r  ( f ) )  = 0, ( W ,  f )  is normally cobordant to a split homotopy equivalence, n = 

2 k - 1. For n = 2 k  this was proved in Chapter 11. 
To begin the argument, note that from Lemma 1.1: when n =  2 k - 1 we may 

assume that the homotopy equivalence f :  W - t  Y is transverse to X c Y with, 
setting as usual M = f -  ' ( X ) ,  f !  : M -t X inducing isomorphisms of fundamental 
groups and Ki(M)=O,  i+ k -  1. k .  Unfortunatelly. unlike the situation studied 
in Chapter 11, K,_ ,  (M) and K k ( M )  will not, in general, be free or even projective 
modules lS over Z [ H I .  

Recall the decomposition defined in I $ 4 ,  K k - , ( M ) = P @ Q  where P 2 

Kk(Wr ,  M )  and Q z K k _ , ( w .  M) are by Lemma 1.6 finitely generated Z [ H ]  
modules. Let a, ,  . . .  , a, be a Z [ H ]  module generating set for P and let PI ,  ..., b, 
be a Z [ H ]  module generating set for Q. These elements are represented by dis- 
joint embedded ( k -  1) dimensional spheres in M ~ , - ' .  In the middle-dimension 
under consideration here, we cannot apply Lemma 1.3 to perform handle exchange 
on M c W  However, as we shall see below handle-exchanges, on discs with 
boundaries the spheres a,: ... , a,, P I ,  . .. , P,, can be performed on M c L?! 

Let M x I, I=[- 1,1]  be a neighborhood of M x O =  M in W; lifting to a 
neighborhood M x I of M in w with M x 1 c q, M x - 1 c w .  Recall from 
Chapter I that Ki+ ' (W, .  M ) @ K i + , ( W .  M ) z  K i ( M )  and hence Ki(W, ,  M)=O for 
i  < k. Hence as nl (iM) = n,  ( W,) = n,  (6) by the relative Hurewicz theorem each 
class of K,(W,, M )  is represented by an immersed disc (Dk,  sk-') + ( W r ,  M ) .  In 
particular, let ai : (Dk,  Sk - I )  4 (M{, M )  be an immersed disc with dEi = a i .  Similarly 
there are immersions pi : (Dk,  sk-') 4 ( , M) with dBi =Pi. As n ,  ( M ) =  71, (W,) a 
standard piping argument (see [ Z ,  Lemma 481, [M2, p. 711. [ W 2 ,  p. 391) shows 
that the immersions {a,) 15 is,. ark regularly homotopic to disjoint embeddings 
in (W,, M).  Similarly, the immersions {Bi} 1 l i l s  are regularly homotopic to 
disjoint embeddings in ( y  . M ) .  

Thus, we may assume that { a i ]  1 5 i 5 r ,  { P j )  1 5,js s are disjointly embedded 
discs in (I/i! M). Thickening M and the discs E i  c W,, 1 5 is r,  we obtain a cobordism 
C, of M to a manifold M, c W,. 

Similarly, thickening up the discs pi ,  1 j iss, produces a cobordism CQ in & of 
M t o M , c W . T h e n  C = C , u , C Q c ~ i s a c o b o r d i s m o f ~ , t o  Mp. 
- 
I In fact, if K , ,  (]\.I) is a projective module and K J H )  =O it is not too difficult to construct, without 
using the square-root closed condition or any condition on elements of order 2 in x , ( Y ) ,  an h-cobordism 
of W to a split homotopy equivalent manifold. See in this connection the discussion on Farrell-Hsiang 
splitting in Chapter VI 



The map f̂ : ~4 P restricts, after being varied by a homotopy, to r!:  C  4 X x I ,  
X x I a neighborhood of X in 2 Let R =closure of W ,  - C,, L  =closure of i4( - C ,  
in & 

The following result is proved by a method similar to that used in proving 
Lemma 4.1 of [FH I]. 

Lemma 111.1. Ki(Mp)=O, Ki(MQ)=O for i+k-  1, k. K k - l ( M p ) ,  K k -  l ( M Q ) ,  
K k ( M p )  and K k ( M Q )  are finitely generated projective Z[H] modules. Ki(C)=O 
for i+k  and K k ( M p ) @ K k ( M Q ) +  K k ( C )  is an isomorphism of stably free Z[H] 
modules. Ki(R)=O, Ki(L)=O for i + k -  1 and Kk-,(M,) + Kk- , (R) ,  Kk- , (Me)  4 

K k - ,  ( L )  are isomorphisms of Z[H] modules. Also K k ( M Q )  -+ Kk(Wr U, C,) and 
K k ( M p )  + Kk(i4( u, C,) are isomorphisms, and Ki(Wr u, C,) =0,  Ki(i4( u, C,)= 0  
for i 4 k. 

Proof We will need to employ in this proof the cohomology cokernel groups 
K i ( C )  and K'(C,  c"C) associated to the maps C  + X x I. Such groups are dis- 
cussed in a more general setting in [ W 2 ;  Chapter 111. 

First note that up to homotopy, C  was produced by attaching k-dimensional 
cells to a generating set for PO Q = K k - ,  ( M ) .  Hence, K j ( C )  = 0  for j + k. Moreover, 
we claim that K k + ' ( C ;  B)=O, B  any Z[H] module, and hence by a standard 
argument [ W 2 ;  p. 261 K k ( C )  is a stably free Z[H] module. To show the vanishing 
of K k + l ( C ;  B) recall that by Poincare duality, K k + ' ( C ;  B ) z  Kk- l  ( C ,  2 C ;  B )  and 
we have the exact sequence 

K k W 1 ( C ;  B)+Kk- , (C ,  d C ;  B)+ K k - 2 ( d C ;  B). 

Moreover, aC= M ,  u M Q  with M ,  and M Q  obtained from M  by surgeries on 
(k - 1)-dimensional spheres and hence as K j ( M ;  B )  = 0  j < k - 1, we get Kj(5  C ;  B)  = 
K j ( M p ;  B)  @ K j ( M Q ;  B )  = 0  for j < k - 1. Thus, K k ( C )  is a stably free finitely 
generated Z[H] module. 

We proceed to relate K k ( C )  to K k ( M p ) @  K k ( M Q ) = K k ( d C ) .  In the exact 
sequence 

by Poincare duality Kk+, (C ,  d C ) r  K k - ' ( C )  = 0. Hence 
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in C using these embedded discs, we obtain a cobordism C; of M ,  to M' with 
c; c C. 

We claim that M'+ X is a homotopy equivalence. Actually, it is a standard 
fact that surgery on a free Z [ H ]  module basis for Kk- , (Mgk- I )  produces a 
homotopy equivalence, but for completeness we give in the present case a direct 
argument. Clearly n, M' = n, X .  Moreover, C; = d(R uMp C;) and as K i ( R )  = 0 ,  
i+k-1  and Cb is up to homotopy, produced by attaching cells to a basis of 
Kk-,(M,), Kj(C;) --t K J ( M p )  is an isomorphism for j+ k - 1. But this map factors 
through Kj(C;) --t Kj(C;) which is onto for j S  k - 1 as 

KJ+'(C',, d C ; ) g  K,k-j- l(C;)=O for j+ k -  1. 

Hence as dC= M ,  u M i ,  Kj(M1)=O for j S  k -  1 and using Poincare Duality, we 
conclude that K i ( M f )  = 0 for all i. 

We will show below in Lemma 111.4 that @(z( f )) = [K,(M,)] E R,(H) and 
hence from Lemma 111.2 if @(t( f )) = 0 ,  f^ is homotopic to a map split along X c ? 

To proceed with the proof in § 2 we will need to be more careful in our choice 
of a basis for P and Q and correspondingly in the construction of C ,  and C Q .  
Using Lemma 1.8, we may choose finite Z [ H ]  module generating sets x l ,  . . . , a, 
for P,  p,, . .. , P, for Q with pl(al)=O, p2(Pl)=0, p(ai) and p(Pi) elements of the 
Z [ H ]  submodule of ( P  @ Q) O,, Z G  generated by a,, . . . , zi-  ,, P I ,  . . . , pi- 
1 < i j u. The corresponding construction of C ,  and CQ given above constructed 
embedded discs tii, pi, 1 j i j u  with 2Ei, c'pi being spheres in M representing xi 
and pi respectively. Note that these embedded discs { E l ,  a,, ..., tii, pi, ..., Di) 
can be chosen so that their images in W are in general position and thus, as 
dimension W = 2 k ,  have only isolated points of self-intersection. (For example, 
given an embedding ?ii: (Dk, Sk - I )  + (w, M )  by varing the image of ti in W by a 
small regular homotopy fixed on Sk-' this image may be put in general position. 
The lift of this homotopy is a regular homotopy of a to a map, which if the regular 
homotopy was chosen sufficiently small, will still be an embedding.) 

We may impose one further restraint on the choice of the discs Ei, pj .  Filter 
the space C, by setting 

C P q i = M  x [0, I ]  u handles obtained by thickening El, ti,, . .. , Bi 

so that C,= C,, ,,= C,, ,-, , . . . , C,, , = M x [O, 11. Similarly, filter CQ by setting 

cQ, = M x [0, - I ]  u handles obtained by thickening P,, . . . , Pi. 

We state the condition first in case A, that is Y-X has 2 components. Note that 
& uM Wl is the covering space of W corresponding to the subgroup n ,  (W,) c 
n l ( W )  and similarly W, Y, W, is the covering space of W corresponding to 
n 1 ( W 2 ) c n 1 ( W ) .  Let n,: W +  &uM W,, n,: W+ W2 uM W, denote the obvious 
covering space maps corresponding to H c G, and to H c G ,  . Now we claim that 
the discs Ei, pi can be chosen inductively so that 

(2)  tii+, cclosure (n;' (W, uM CQ, i ) -  cQ, i )  in % 
(2) pi + , c closure (n; ' ( W' uM C,, i )  - C p ,  i) in fi 
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Also, the disc E i c l  (resp; p,+,) is to be chosen so that its image represents the 
zero element of ~ ~ ( 8 ,  X) (resp; zk(P2, X)). 

Essentially the same arguments as those employed in 1 5 5  show that the 
discs a i ,  pi may be inductively chosen to satisfy this condition. The point is again, 
see Lemma 1.7. cci and p(sc,)~Q OzHZH1 represent essentially from the definition 
of p the same element of K,-, (W,). But from our choice of generating sets, p ( x , ) ~  
{Dl, . . . , Pi-,} OZH zZl where {Dl, . .. , Di-,) is the Z H  submodule of Q generated 
by Dl, . . . ,D,-,  and 

Hence as in the arguments of Lemma 11.6 cci bounds a disc in (nr-'(W, u, CQ, i) - 
CQJ and as observed above this disc ri may be taken to be embedded and with 
its image in W having only point self-intersections. 

Note that as C,, i + l  is obtained from C,, by attaching a handle obtained by 
thickening 3, +, , we may inductively construct C,, +, so that 

C,, i +  c closure (n; ' (W, u, CQ. i )  - CQ, i) in @ 

Similarly, we may assume that 

CQ. i + ,  c closure (71,- (W2 uM CP,  i )  - CP, i )  in @ 

We now briefly state the corresponding condition which we may impose in 
case B on the choice of the discs ri and pi. Note that wu,, W1uM2 W,, with 
basepoint the basepoint of M , ,  is the covering space of W corresponding to 
J c  J *, { t ) .  If we pick as the basepoint of uMl W' uM2 W, the basepoint of M , ,  



this is the covering space of W corresponding to t J  t-' c J*, {t). Let 

nl: w-+ PquM1 Wf u,, W,, n,: I+-+ yuy, W'u,; W, 
be the covering projections corresponding to H c J and H c t J  t-I with n,(M)= 
MI ,  nl(M)= M,. Then arguing exactly as in case A, we may inductively choose 
the discs %,+, , pi+, so that 

(3) E i+ ,  c closure (n;'(CQ, u,, W' u,, C P  i) - C,, i) in ii! 
(3) pi + e closure (n; '(CQ, uMl W' uyl CP, i) - CP, i) in w 
and correspondingly 

CP, i +  1  closure (71; ' (CQ, i uM1 W' uM2 CP, i) -  Car i), 

C,, i +  c closure (n; '(C,, u,, W' uy2 cP, i) - cP, i) in T;t: 

8 2. A Nilpotent Normal Cobordism on W x S' 

Lemma 111.6, which is proved in this section using the results of I11 $1, con- 
structs a nilpotent normal cobordism of W x S' to a manifold U ,  with wc U 
and W +  Y a split homotopy equivalence. This, together with the results of 
Chapter 11, is used to complete the argument in 4 3. 

Recall that the nilpotent normal cobordism construction of I1 $ 1 began with 
the construction, see Lemma 11.1, of a codimension one transverse inverse image 
on which the homotopy equivalence restricts to a map connected below the 
middle dimension. Such a submanifold V c W x S1 is explicitly constructed in 
proving Lemma 111.3. The submanifold V is constructed by performing handle- 
exchanges relative to the boundary on M x I c  W x I, I=[O, I], to  obtain V , c  
W x I with avo = M x 0 u M x 1. We will then set V= V,/identify M x 0 with 
M x 1, a codimension one submanifold of W x S1 = W x Ilidentify W x 0 with 
W x 1. Of course, corresponding to the ambient surgeries on M x I c W x I there 
are ambient surgeries on M x 1 c w x I and it will be convenient to begin with 
a discussion of surgery in w x I. 

Clearly, ambient surgery can be performed on the spheres a, x 114, a, x 
114 ,..., a,x1/4, Plx3/4,  P2x3/4 ,..., P,x3/4 in M x I ,  M X I ~ W X I  using 
handle-exchanges on the discs tii x 114, Pi x 314, 1 5 i 5 u, I = [0, I]. Here Ei , pi, 
1 5 isu are the discs constructed in I11 5 1. These handle-exchanges, see Lemma 1.3, 
correspond to a homotopy, fixed on the boundary, off x 1,: w x I -, P x I to a 
map g', where 

Let Vo = C, u,, C uMQ Cp and so : Vo -, w x I this inclusion so that so(V,) = 

g'-'(X x I). 
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We proceed to construct an embedding Vo c W x I. The proof of the following 
result uses the observation that it is easier to embedded a disc in W x I than in FV 

Lemma 111.3. The mup f x 1,: W x I + Y x I ,  I = [O, 11,  is hornotopic, b j  (1 homo top^^ 
fixed on ?(W x I), to u map go: W x 1 + Y x 1 trrrnsverse to X x 1 c Y x 1 and 
lvitlz V ,  z (go)- ' ( X  x I )  and. letting s, : V, --, w x I denote a lift of 

\\it11 s, isotoplc to s, by an isotopy f zxed on iV,. 

Proof: We begin with some generalities about embedding discs in a "mani- 
fold x I ". Let L be a 2 k dimensional manifold, k > 2, and N a codimension 1 
submanifold of L with trivial normal bundle in L. Let 7 :  (Dk, Sk-I)+ (L,  N )  be 
an immersion with d y :  Sk-' + N an embedding, and with y (interior D) n N = @  
and y in general position, that is with only point self-intersections, having inverse 
images p,, .... p,€Dk. Let p :  (L. N )  x I + ( L ,  N )  denote the projection, I = [O,l]. 
Then the immersion y o :  (Dk, Sk - ' )  + ( L ,  N )  x I, yO(x)=(y(x),  1/2) is easily seen to 
be regularly homotopy to an embedding y ,  by a homotopy y , :  (D, S) + (L ,  N )  x I. 
O~t~1fixedonSandwithpy,=y.Infact,ifgl:Dh+[1/2-~,1/2+~],O<~<1/'4, 
is a smooth function with gl(pi)+gl(pj)  for pi+pj, 1s is r,  1 s  j J c ,  and g,: D+ I,  
0 5  t s  1 ,  is a smooth homotopy of g, to go,  g,(x)= 1/2 for X E D ,  just set y,(x)= 
(.;(x), g,(x)). We refer to this as a "handle-pushing" procedure. 

We proceed to show that in a covering space in which ;I lifts to an embedding. 
the lift of y ,  is unique up to isotopy. Precisely, assume further that n:  l: + L is a 
covering space and that N' is a component of n - ' ( N )  and that y lifts to an em- 
bedding 1;': (D, S)+(C, N') ,  i.e. nyr=y. Write & for the embedding y b :  (D, S)+ 
(C, N ' )  x I, &(x )  = (i"(x), 112). Then if y ,  as above is an embedding, y, : (D, S )  --, 
(L.  N )  x I with p y ,  = y  and with y,(x)=(y(x), 112) for x e S ,  then letting y;  denote a 
lift of p, to y;  : (D, S)+ (C, N ' )  x I. ( n  x 1,) y ;  = y ,  and with (y; / S)=(rb I S). y;  is 
isotopic to & by an isotopy y j :  (D, S)  -t (C. N ' )  x I ,  0 s  t J  1, with (yj I S)=(yb I S)  
and with p' 7 ;  = y', p': C x 1 -. C the projection. In fact, choosing a smooth 

homotopy h,: (D, S) - I ,  OJ t s  1, with hi the composite, for i=O or 1 ,  D 3 E x 
I -. I ,  set yj(x) = (y1(x), h,(x)). Notice that here y;  = (y', h,) because they are both 
lifts of 7, and they coincide on S. 

Using this handle-pushing procedure, we describe an inductive process for 
performing handle exchange on M x I c W x 1 using discs which have boundary 
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ai x 114 c M x 114, Pi x 314 c M x 3/4, 1 5 i s  u. The discs El and pi with i3Ei = 

a i x  1/4, 8pi=Pix 3/4 will be constructed inductively to satisfy p(hl)=AW(Ei), 
p(pj)=AK(pi), p: W x I +  W the projection and A,: @+ W the covering space 
map, hi, Pi as in I11 8 1. Recall from the discussion at the end of I11 § 1, that A,(&,) 
and $,(pi), while not necessarily embedded, will be in general position and have 
only point self-intersections. 

We adapt our notation in the following inductive construction to case A; 
modifications of the notation for case B are briefly described afterwards. To start 
the argument, recall from (2) of I11 § 1, A(E,) c W, , $(Dl) c W2 and 2, and Dl were 
constructed so that $(El) and $(Dl) would be immersions with isolated self-inter- 
section points. Therefore, using the handle-pushing procedure described above, 
A(hl) x 1 /4c  Wl x I, $ ( D l )  x 3 /4c  W2 x I may be perturbed slightly to get em- 
bedded discs ?ii and with i3E; = a, x 114, dp; = 8, x 114, p(E;) = A,(E,), p(&) = 
A,(P,). Now perform handle-exchanges on M x I c W x I using thickenings of 
the discs ti;, pi.  

We proceed to the similar general inductive step. Assume that handle-ex- 
changes have been performed on M x I c W x I using the discs ti;, Pi, . . . , El,  PI, 
with boundaries a, x 114, P, x 314, . . . , ai x 114, Pi x 314, and with 

(4) pEi=ffwEj, p8;.=A,Pj, 1 s j s i .  

To construct Pi,,, notice first that W2 x 0 u, . , M x [O,1/4] u (thickenings of the 
handles hi, h; , . . . , hi) Z W2 u, C,, is included in the component of W x I which 
is, after the performance of these first 2 i handle-exchanges, the inverse image of 
Y2 x I c Y x I ;  in fact, a copy of W2 x 0 u, C,, is included in the boundary of 
this subspace of W x I. Pushing slightly M x [O,1/4] into the interior of this 
inverse image of Y2 x I c Y x I, we can arrange from the inductive assumption 
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of (4)  that the composite map W2 u, C,, -+ W x I  + W is the same as 

Here the inclusion W2 unl C,, is that given in I11 4 1. 
Now as Pi+,  in A4 was constructed to be disjoint from a,, ..., c y i ,  P I ,  ..., P i ,  

P i+l  x 314 is trivially seen to be isotopic to the sphere P i + ,  x 114 in the manifold 
obtained from Ail x I  by performing surgery on 

In fact we will see easily below that it suffices to construct a disc pi'+, with boundary 
P i x  114 and with ppi'+l =fi,p,+,. But p i+ ,  x 1 / 4 c M  x 114 is in the image of the 
embedding of W2 u, C,, c W x I constructed above. Moreover, from the (2) of 
111 § 1, the composed map Dk b W* W was D~ W2 uM CP, + W where 

is the composite D" W +  (covering space of W corresponding to G2 c G). 
Hence, as f l  was constructed to be in general position with only point self-inter- 
sections, we may use the handle-pushing procedure described above to obtain 
an embedding p;'+, in a neighborhood of W2 u, C,, with pP~ '+l  =%,(Pi+,). 

Clearly the effect ofthese ambient surgeries on x ,  x 114, . . . , a, x 114, PI x 314, . .. , 
Dux 314 is to produce an embedding V,c W and the homotopy equivalence 
f x 1, : W x I  + Y x I ,  from Lemma 1.3 and the construction of a,, ti2, . . . , D l ,  . . . , B,, 
can be varied by a homotopy to obtain g, homotopic to f x l,, , go: W x I +  Y x I 
with g i l ( X  x I)? V,. Now recall that the selfintersections of Di+,, and its inter- 
sections with all the p j ,  are isolated points which may be taken to be outside of 
p i+ ,  ( V ) ,  V a neighborhood of ?Dk+' in Dk+'. Let h :  Dk+'- t  f = interior I be a 
smooth map with h(i?Dk+')=3/4 and hl(Dk+'- V )  the composite 

NOW set pi+, = ( f i w p i + , ,  h ) .  

W, x 1 M x l  W, x 1 

Moreover, as @,, . . . , E,, P,, ... , f lu were constructed in I11 4 1 to be embedded 
in w x I ,  from the remarks at the beginning of this proof on the uniqueness up 
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to isotopy of the handle-pushing procedure in covering spaces, the lifts of &; and 
& to w x I are isotopic to Zi x 1/4 and f l  x 3/4,15 i s u .  Hence, the lift of Vo + W x I 
to sl : V, + w x 1 is isotopic to so : V ,  + W x I .  

This completes the proof of the lemma in case A. The argument in case B is 
entirely similar and the modifications of the notation are left to the reader. Note 
that in case B, (3) of I11 1 must be used in place of (2) of I11 $1 and the role of 
W2 x 0 u, , , M x [O,1/4] and of Wl x 1 u, . , M x [3/4,1] in the above argument 
is taken by a copy of W' in W' x I with boundary M x 114 u M x 314. The discs 
ti;, Pi ,  E ; ,  &, . . . , & in case B are constructed to be disjoint from this copy of W'. 

Setting W x S1 = W x Ilidentify W x 0 with W x 1, and V= Vo/identify M x 0 
with M x 1, we have V c W x S1 and f x Is,: W x S' + Y x S1 is homotopic to a 
map g transverse to X x S1 with V =g- ' (X x S1). From this and Lemma 111.3 
we will also deduce the following: 

Lemma 111.4. @(zCf)) = [K, (M,)] E K,(H). 

Proof: We employ again, as in the proof of Lemma II.Z(ii), the geometric inter- 
pretation of @(TO) given in [W 1; § 51. Recall this involves construction of a 
CW complex splitting problem with torsion r(j) and with homology kernel 
group non-zero in only one dimension. Clearly the homotopy equivalence 
f x lD2:  W x D2+ Y x D2 has Whitehead torsion zCf) and we will construct a 
homotopy of f  x ID, to a map e, extending the homotopy constructed above of 
f x I,, to g, with e-'(X x D 2 ) z  C x I .  

In the proof of Lemma 111.3, we constructed inductively a series of handle 
exchanges to produce ambient surgeries on M x S1 c W x S1. Corresponding 
to these handle exchanges, we may inductively perform a corresponding exchange 
in W x D2 using a neighborhood in W x D2 of each of these handles in W x S1. 
This produces a codimension one submanifold of W x D2 and from the last part 
of Lemma 111.3 and its proof, the decomposition this induces of w x D2 can be 
identified with 

W x D 2  
= { ( w  x x2-neighborhood (C, x 314)) u closure of a neighborhood C, x 1/43 
u {(W, x D2-neighborhood (C, x 114)) u closure of a neighborhood CQ x 3/41 

Here, as in the proof of Lemma 111.3, C, x 114 c w x 114 c e x  St = 2( w x D2), 
CQ x 314 c w x 314 c w x S1 = d ( ~  x D2). But the removal of a neighborhood 
of a subcomplex in the boundary of a manifold does not change the homotopy 
type and thus these two components of w x D2 are homotopy equivalent to 
I.t; u, C, and W ,  U, CQ respectively. But by Lemma 111.1, K,(W u, C,)= 0, 
Ki(W, U, CQ)= 0 for i =I= k and K k ( y  u, C,) and Kk(W, U, C,) are projective 
Z[H] modules. But then by [Wl ;  $51, @(TUX lD , ) )= [Kk(~u ,CP) ] .  But 
@(zCfx lD2))= @(rCf)) and by Lemma 111.1, K k ( w  uM C,)z K,(M,). Hence, 
@(r 0) = [Kk (Mp)I . 

Thus, from Lemma 111.4 and Lemma 111.2 when @(tU))=O, we may assume 
that K,(M,) and K,-I (M,) are free Z[H] modules. As from Lemma 111.1, 
[Kk(M,)] = - [Kk(MQ)] when @(r Cf)) = O  we may also assume that Kk(MQ) 
and K,-, (Mp) are free Z [HI modules. 



A Splitting Theorem for Manifolds 149 

The proof of the main result of this section, Lemma 111.6 below, involves 
constructing explicitly the nilpotent normal cobordism of Chapter I1 on the homo- 
topy equivalence W x S1 + Y x S' with V c W x S1, then inverse image of X x S1 c 

Y x S', taking the role of the codimension one submanifold studied in Lemma 11.1. 
This construction uses a description, provided in Lemma 111.5, of the decomposi- 
tion defined in I 4 and used in Lemma 11.1, 

where P, and Q, are Z [nl (X x s')] modules, nl(X x S1)= H x Z. (Warning on 
notation: Below, we always use Pv and Q, to denote the summands of Kk(V), 
instead of the P,  Q notation of Lemma 11.1; the symbols P, Q are already being 
used here to denote the summands of K,_, (MI.) 

Recall from Lemma 11.2 that when Kk(M,) is a free Z[H] module. the map of 
f ' C = C, u, C,---+ X x [- 1, 11 is homotopic to a map transverse to X x 0 with 

the inverse image M' of X x 0 homotopy equivalent to X. Write Cb for the closure 
of the component of C - M' which contains M ,  and write Ch for the closure of the 
component of C- M' which contains M,. Thus, 

Hence, 

V = VJidentify M x 0 with M x 1 
= C ,  uMp C uMQ CQjidentify M x 0 with M x 1 
= C u,, CQ uM C,/identify the two copies of M, in the boundary 
= Cb u,, C; uMQ C(e u,. Cblidentify the two copies of M, in the boundary 
= (Cb u,, C;) u,. (Cb uMp Cb)/identify the two copies of M' in the 

boundary. 

Moreover, the map V- X x S1 restricts to maps Ch uMQ c;-x x 1'. If an 
interval in S' and C', uMp Cb 3 X x Zit, I" an interval in S1. Note that 

and we construct in the proof of Lemma 111.5. (ii) an extension of hl to C; x I' + 

X x 1'. Thus, we may make use of the map Kk(Ch u , ~ ,  Ch)+ K,(C;). Similar 
remarks applied to C, will produce a map Kk(CbuMp C b ) 4  K,(Cb). Also, there 
are obvious maps of Kk(M,), Kk(MQ), Kk(C'b uMp Cb), Kk(Ch uMQ Ch) to K,(V) 
induced from the inclusions of subspaces in V. 

Lemma 111.5. Let I/ be us uboce with Kk(Mp) a free Z [HI module. 

i K(V)=O for i + k .  
(ii) Ker(Kk(Cb uMQ Ch) -. Kk(Cb)) z Kk-' (Ma) 

Ker(Kk(CbuMp C;)+Kk(C;))= Kk-l (M,). 
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also denote the corresponding neighborhood of V  in w x S1,  V  x 2 (resp; V  x - 2) 
is in the component of w x S1 - V  x O which is the inverse image under g of 

x S1 (resp; Y, x S'). We now perform the nilpotent normal cobordism con- 
struction of Chapter I1 using V c  W x S1 and the given bases for P, and Q,. 
Precisely, attach hanaes to spheres, embedded in (Ch  u, Ch)  x 2 c V  x 2 c W x S1, 
representing the basis of Ker (K,(Ch uMQ c;) - K,(c$) and attach handles to 
spheres, embedded in a neighborhood of M p  x 1 in V x I c W  x S1,  representing 
the basis for K,(M,). Also, attach handles to spheres, embedded in (CI, uMp C') x 
- 2 c V x - 2 c W  x S1, representing the basis of Ker (K,(CI, uMp Cb)+ Kk(CL)) 
and lastly attach handles to spheres, embedded in a neighborhood of MQ x - 1 in 
V  x - 1 c W  x S'. This constructs the nilpotent normal cobordism of Chapter I1 
for the problem of splitting f x I,,: W x S1+ Y x S' along X x S1. Let a :  UZk+l+ 
Y x S1 denote the homotopy equivalence of ( 2 k +  1) dimensional manifolds ob- 
tained by these surgeries on W x S1. 

To complete the proof of LemmaIII.6, we construct a submanifold 

kc W  x S1 with M ' c  $ and with. after varying f x  I,, by a homotopy, & the 

inverse image of Y x p c Y x S1. However, &+ Y x p will not be a homotopy 

equivalence. But, from b c W x  S1 we construct w c U with W = a-'(Y x p) 
and W-t  Y x p a homotopy equivalence split along X x p c Y x p. We proceed 

with the construction of k c W  x 1 and hence of w c W  x S'. 

Recall that 

and in particular this gives a fixed embedding M' c Vo . This M' c V, corresponds 
to a component of the boundary of Ch uMQ Ch and of CL uMp C)P in V= Vo x I /  
identify M ,  x 0 with M x 1. 

W,x 1 M x l  W,xl 

n 
W C W x l In case A 

* 
Now in case A, set W  = W, x O u, Vo u, Wl x 1 ,  as in the diagram. (Resp; Recall 
that in case B, Vo was constructed in W x 1 disjoint from a copy of W' with for * 
Z W ' = M l u M , , M l  going to MxOand  M ,  to M x l .  Now set W=this copy of 
Wtu,wxo"MxlVo.) 
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The map f x l,,: W x S1 + Y x S1 is easily varied by a homotopy to obtain 

6' as the inverse image of Y x p c Y x s', p a fixed choice of a point in s'. From 
* 

M' c Vo c W ,  M' is the inverse image of X x p.  

Note that M ,  c Vo c and M a c  V, c h .  From the construction of U ,  U 

contains the manifold w obtained from 6 by surgery on the basis of K,(M,) 
and K k ( M Q )  and after varying cx by a homotopy, w = up' ( Y  x p). As M ,  and M ,  
are disjoint from M ' c  W ,  we get M ' r c r - ' ( X  x p ) .  The proof of Lemma 111.6 
is completed by showing that W- Y is a homotopy equivalence. Clearly, it suffices * 
to show that Ki(W)=Ofor  i  < k and that the basis for K,(M,) and K k ( M Q )  generate 

a subkernel of ~~(6') [W 2; Chapter V ] .  We will show this in case A ;  the argument 
in case B is entirely similar, with apropriate changes of notation. 

Recall that Ki(Wl)=O, i+ k-  1, k ,  Ki(W2)=0,  i* k -  I, k. Then, as C ,  was 
constructed by attaching discs to spheres representing a generating set for P and 
C,  was constructed by attaching discs to a generating set for Q, by Lemma 1.5, 
Ki(Wl  u, C,) = 0 for i =k k and K ,  (W2 u, C,) = 0 for i + k. Recall also from Lemma 
111.1 that Ki(Mp)=O, Ki(M,)=O for i* k -  1, k and Ki(C)=O for i +  k ,  K k ( M p )  63 
K,(M,)+ K,(C)  is injective. Hence the Mayer-Vietoris sequence for 

reduces to 

We show below that K ,  (M,; Z [GI)  -+ K ,  ( W, v, C,; Z [GI)  and that 

are isomorphisms. Hence, as K k ( M p )  O K ,  (M,) + K,(C)  is an isomorphism, and 
Z ( G )  is a free Z [ H ] ,  module, this Mayer-Vietoris sequence gives the short exact 
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sequence 

But then, as K,(M,), K,(M,), K,- , (M,), K,-I (M,) are free Z [HI modules, and 
as by Poincare duality rank K,(M,) = rank K,_ ,(M,), and K,(I1fQ) = rank K,- ,(Ma),  
the basis of K,(M,) and K,(MQ) generate a free Z[G] summand of rank 

i(rank ~ ~ ( 6 ' ) )  in ~ ~ ( $ 1 .  Moreover. as from the construction of w U surgery 
* 

could be performed on the basis of this summand. it is a subkernel of ~ ~ ( 6 ' ) .  
It remains only to check the fact used above, K,(M,) @ZIHIZ[G2]-. 

K,(W, u, C,) is an isomorphism. An entirely similar argument also shows that 
K ,  ( M a )  Z [G,] --' Kk(Wl u, C,) is an isomorphism. 

Recall, as in Lemma 111.1, the construction of C ,  c W,, W, = R uMp C,. Clearly, 

But then as K i ( W )  = 0,  for all i, the Mayer-Vietoris sequence of this decomposition 
of w gives 

From Lemma 111.1, K,(R)  = 0 and hence 

As Z[G] is a free Z [G,] module, this gives the isomorphism 

Proof of Lemma 111.5. As V E C u ,,p,,Q, C and by Lemma 111.1 K,(C)=O, i +  k 
and K,(M,)=O, K,(M,)=O for i < k -  1, the Mayer-Vietoris sequence for this 
decomposition of V shows that K i ( V )  = 0 ,  i 5 k - 1. Hence, by Poincare duality, 
K,(V)=O for i $  k .  This proves part (i). 

The embedding V-W x S1 lifts to an embedding V ~ ( W  x S1), extending 
the lift of M -t W to M -t W. From the last part of Lemma 111.3, this embedding 
can after an isotopy be identified with the embedding V+ ii' x S1 = w x  Ilidentify 
w x 0 with w x 1 given by 

C x 314 uMp M ,  x [3/4, 11 with M ,  x 0 identified with M ,  x 1. 
Note that 
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and thus Ch uMQ Ch + X extends to Ch x [1/4,3/4]. Moreover, as Ch u,. C> = C 
and Ki(C) = 0 for i f k and Ki(M1) = 0 for all i, Mayer-Vietoris sequences show that 
Ki(C;2) = 0 for if k. Thus, the sequence of the pair (Ch x [1/4,3/4], Ch uIwQ Ch) 
gives the exact sequence 

and thus 

But by PoincarC Duality, and as 

2(Ch x [1/3,3/4])- interior (Ch uMQ Ch) = M' x [1/4,3/4] 

Kk+'  (ch x [1/4,3/4], Ch uMQ Ch)= Kk(Ch x [1/4,3/4], M' x [1/4,3/4]) 
z ~ ~ ( c h ,  MI) 

r K,(Ch, Me). 

But, as above, the Mayer-Vietoris sequence of C = Cb u,, Cb shows as Ki(M1) =O 
for all i that K,(C)= Kk(Ch) O Kk(Cb). Recall also from Lemma 111.1, Kk(C) = 
Kk(Mp) O K,(MQ). Hence, M, -+ C; and MQ + Ch induce isomorphisms Kk(Mp) + 

Kk(C;), Kk(M,)4Kk(C1,). Then, the exact sequence of the pair (Ch, M,) gives 
as Kk-, (Cb)=O K,(Ch, M Q ) ~ K k - , ( M Q ) .  

We conclude that 

An entirely similar result for M ,  completes the demonstration of Part (ii). 
To prove part (iii) of Lemma 111.5, recall from I §  4 that the decomposition 

K,(V) = Pv @ Qv is defined using the decomposition of i% x S1, the covering space 
of W x S' corresponding to n, (X x S1) c n, ( Y  x S1), given by 

Here we denote by (W x S1), (resp; (W x S1),) the closure of the component of 
w x S1 - V which is the inverse image of x S' (resp; (t x S')) under the lift of 
the map g. 
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The definition of P in I 5 4 gives 

Pv=Image (Kk+l((W x S1),, V)-tKk(V)) 
2 Kk+, ((W x S1)r> V). 

But, see the above diagram, for R as in Lemma 111.1 we may decompose 

where set 

H ,  =(RuVpC)  x [1/4, 3/41 

H , = ( ( ( R U , ~ ~ C )  x 1 /4uRXl  4R x [O. 1/4])u((R L J , ~ C )  x 314 
uR x 3  , R x [3/4. l]))/identify R x 0 = R x 1 . 

Correspondingly, decompose 

where 

Fl=c;X 1 / 4 ~ . ~ , ~ , , ~ M ~ x C 1 / 4 ~ 3 / 4 I u , ~ . 3 , 4 C ( , x 3 / 4  
r c; u,, c; 

F2 = ((Mp x CO, 1/41 u,wp. 1 4 Ck x 1/41 u (Ck x 3/'4 u.wpx 3 4 

M, x [3/4, l]))/identify M, x 0 = M, x 1 

2 cl, uMp Cl,. 

Note that Fl c H, . F, c H ,  . Thus as, see the proof of Lemma 111.2, K,(W, u, Cl,. M') 
=O for all i, the Mayer-Vietoris sequence for ((R x St), V) = (HI, F,) u (F,  , H,) 
gives 

But by excision, 

Kk+,(H2,F2;  Z[nl(X X S1)])gKk+l(R, Mp; Z[nl(XXS1)l) 
2 Kk(Mp; Z [n, (X x s')]) by Lemma 111.1 

2 Kk (Mp) OqH1 Z CH x ZI  . 

We now proceed to complete the description of P, by computing 

First note that 
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and as Ki(M1) = 0, for all i, and from the proof of Lemma 111.2, Ki  (R uM Ck) = 0, 
for all i, the Mayer-Vietoris sequence of this decomposition gives 

This last expression was described in proving part (ii) above. This completes the 
computation of P, and entirely similar methods give the description of Q, in 
Lemma 111.5. 

Notice that from the above description of P, and Q, it is easy to obtain an 
explicit description of the intersection pairing on K,(V). Let el, . . . , e, be spheres 
representinga basis for K,(M,) and let el, . . . , e: represent a dual basis for Kk-,  (M,). 
Similarly, let f, , . . . ,f, be a basis for K, (MQ) and 8, . . . , f: a dual basis for Kk-,  (Ma). 
Then, a basis for P, (resp; Q,) is given by el, e,, ..., e,, f;',fil, ... , K 1  (resp; 
f,, f2, . . . ,fs, e;', e;', . . . , e:); here J'  (resp; el') is explicitly constructed by the follow- 
ing procedure. The sphere J (resp; el) bounds a disc in Ch (resp; Cb); taking the 
double of this disc we get the sphere x' (resp; ej') in Ch uMQ Ch (resp; C; uMp C',). 
Clearly this sphere bounds a disc in Ch x I, where Ch uMQ C h c  a(Ch x I) (resp; 
Ck x I, where Cb uMp Cb c o"(Cb x I)). As V= (C', uMp C;) uM, M. (Cb.uMQ Ch) the 
intersection form /, on K,(V) = P, @ Q, is easily seen to be given explicitly by 

i.(ei, ej)=i.(ei,f;")=R(e,,f,)=EbK1,fj")=AV;", ejl)=i(f.  I '  f.)=/,y;, J e;i) 
= i(ej', e;') = 0 for all i, j. 

3.(ei,e;l)=0 for i + j  and i (ei ,e j l )=l ,  l s i s r  
iLV;.,fj")=0 for i + j  and i.Cf;,Kf)=l, lsiss. 

Remark. Even if H c G is not a square-root closed subgroup, the normal cobordism 
of W to w which can be obtained from Lemma 111.6 shows that when @ (7 (f )) = 0 
and n > 5, ~ - - f - t  Y is normally cobordant to a homotopy equivalence split along 
X c Y. For n even this was proved in Chapter 11. 

3. Completion of the Argument 

Proof of Theorem 1 for n = 2 k - 1, Part (i). The necessity of the condition &(t( f )) = 0 
was shown for all n in the completion of the proof of part (i) for n = 2 k in Chapter 11. 

Assume now that 6(z( f))=O. Then by Lemma 11.4, W is h-cobordant to a 
manifold w for which the induced homotopy equivalence r :  W+ Y satisfies 
@(z(r))=O. Thus, in proving part (i), we may assume without loss of generality 
that @(t( f))=O. Then Lemma 111.6 constructs a nilpotent normal cobordism of 

/ x ~ s '  WxS1-YxS1 to a :  U - + Y x S 1  with W ~ U ,  W + Y  a homotopy equi- 
valence split along X. 

But as H is square-root closed in G, Z x H is square-root closed in Z x G ;  
moreover, H contains all elements of order 2 in Z x H. Now as f is a homotopy 
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equivalence, f x I,,: W x S1 -t Y x S1 is a simple homotopy equivalence [KwS]. 
Hence, using Remark 1 at the end of Chapter 11, the surgery obstruction v of the 
nilpotent normal cobordism of Lemma 111.6 is in 

Image (P2,+,(H, w)-tG,+,(Z x G,w)). 

Hence, as H c G = nl (Y x S1 - Y x p) = .nl (U - w), we may attach a normal 
cobordism along U - w realizing a surgery obstruction whose image in 

is (-1)) [W2]. This produces a normal cobordism with zero surgery obstruction 
in E2,+,(z x G, o) off x I,, : W x S1 -. Y x S1 to a simple homotopy equivalences 
a': U r - t  Y x S1, xrp1(Y x p) = i& Then, W x S1 is s-cobordant to U' and so 
f x I,,: W x S1 -t Y x S1 is homotopic to a map transverse to Y x p with w the 
inverse image of Y x p. Passing to the covering space W x R, R = ( -  a, E), we 
have corresponding to W c W x S1 and w c W x S1 that W c W x R and w c 
W x R. Applying a covering translation of the covering space W x R -. I.I! we 
may assume that W and w are embedded disjointly in W x R. Let D denote the 
compact submanifold of W x R with 2D = W u  i& We claim that (D; W) is an 
Iz-cobordism. In fact, we may regard D as gp'(Y x [p, q]) for g: W x R -. Y x R 
a proper hom!topy-equivalence property homotopic tof  x 1. with g-I ( Y  x p) = I.I! 
g-'(Y x q) = W Then as g is split along Y x p and Y x q the methods of Lemma 
1.2.(i) show that D + Y x [p, q] is a homotopy equivalence. This completes the 
proof of part (i). 

Notice that part (ii) of Theorem 1 is an immediate consequence of part (i). 
If Wh(Gl) @ Wh(G,) 4 Wh(G) (resp; Wh(J) + Wh(G)) is surjective, it is easy to 
replace the h-cobordism of W to a split manifold by an s-cobordism to a split 
manifold. Before completing the proof of part (ii) of Theorem 2 for n = 2 k - 1 we 
need some preliminary results on h-cobordant splitting problems. 

Recall the maps defined in [W 11 

Wh(Gl *, G,) 5 Ker (R,(G) -t K,(G,) @ K,(G,)) 
Q 51 - :2 

( r e v ;  Wh(J *, { t } )  - Ker (K,(H) a K,(J))) 

Wh (GI *, G,) _1_, E l  (H; GI, G,) 

(resp; W ~ ( J  *, { t ) ) L  $1 (H, J;  t,, t,)) 
where 

Wh(Gl*, G,)/(Wh(GI) + Wh(G,)) 
~ K e r  (R,(H) +R,(G,)@ R,(G,))@ E l  (H; GI, G,) 

E r  - < 2  - 
E Ker (K,(II) K,(J)) @ Nil (H, J ;  <,, t,). 

As usual, a fixed homomorphism G j Z , ,  restricting to H +Z,  determines Z, 
actions on Wh(G) and K , ( H ) .  The following result is a refinement of Lemma 11.3. 
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Lemma 111.7. Let 
G= GI *, G, (resp; 
involution on 

G, H and G,, G, (resp; 5,: H 4 J ,  i = l ,  2) be as above with 
G = J *, { t ) ) .  Then the involution x -, x* on Wh(G) induces an 

Wh(G)/(Wh (GI) + Wh (G2)) 
~ K e r  (R,(H) -, K,(G,) @ R,(G,)) O K l  (H;  G,, G,) 

(resp ; on Wh (G)/Wh (J) 

r Ker (R,(H) + K,(J)) @ GI (H, J ;  (, ; t,)) 
which restricts to the negative of the usual involution on 

Ker (K,(H)+R,(G,) O K,(G,)) ~ R , ( H )  
<I*--<2* 

(resp ; on Ker (R,(H) + Ro(J)) Ro(H)) 

and to an inuolution on %l (H; GI, G,) (resp; E l  (H, J;  5,. 5,)). 

Proof: This has essentially the same proof as that used to show Lemma 11.3. 

Remark. Actually, the proof of Lemma 11.3 could be used to show a stronger 
result, not needed below. The splitting 

K l  (H; G,, G, ) -+  w ~ ( G )  (resp; GI (H,J; 5 , ,  2,)- w ~ ( G ) )  

commutes with the 2,-actions. 

Lemma 111.8. Let Y be a closed Poincard complex of dimension n + 1, n 1 5  with 
Y =  Y ,  u, Y ,  (resp; Y =  Y'jidentify X, with X,, i3Y1=X,  u X,), X a closed codi- 
mension one sub-Poincari complex of I! Assume 

H=n,(X)+n,(YJ=G, ( r e ~ p ; 5 ~ : H = 7 ~ , ( X ) - , n , ( Y ) = J )  

are injective, i= l ,2.  Let W be a closed maniJbld and f :  W- Y a homotopy equi- 
valence split aiong X .  Then, given 

tl - t 2  

X E  Ker (K,(H) -+ R,(G,) @ K,(G,)) (resp; x~ Ker (K,(H) K,(J)) 

with x = ( -  1)" x*, there is an h-cobordism (I/; T/C: W )  with torsion t' satisfying 
v(u)= 0, @(v) =x  and with the induced homotopy equivalencef: w-+ Ysplit along X. 

We defer the proof of Lemma 111.8 and use it to show the following. 

* 
Lemma 111.9. Let f :  W+ Y be split as in Lemma 111.8. If ( D ;  I.T/; W) is an h- 
cobordism with torsion d satisfying d = ( - l)"+' d* in 

Wh(G)/(Wh(G,) + Wh(G,)) (resp in Wh(G)/Wh(J)), G = n, ( Y ) ,  

and if ij(d), the element represented by ~ ( d )  in 

Hn+'(Z,; $1 (H; G I ,  G,)) (resp; in Hn+'(2,;  GI (H, J;  5 , ,  5 , ) )  
* * 

is zero, then the induced homotopy equivalence f: W -  Y is split along X .  
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Proof: From the hypothesis and Lemma 111.3, @(d)=(-  1)" @(dl*. Then, let V be 
as in Lemma 111.8 with x = ( -  1)" @(d)* and let D' = D u, V so that ( D l ;  & k) 
is an h-cobordism with torsion denoted tl and with fi+ Y split. Then as W-+ w 
splits, it has torsion, see I1 9 2, in Image 

((Wh (GI) O Wh(G2)) -1 Wh (G)) (resp ; (Wh ( J )  + Wh(G)? 

and the torsion u of (Dl; T;i! i t / )  is ( -  1)" L.* + d  in 

Wh(G)/(Wh(G,) + Wh(G2)) (resp; in Wh(G)/Wh(J)). 

Then, 

and q(u) = q ( ( -  1)" c*) + d  = ~ l ( d ) .  In particular, @(u) = O  and V(u) = 0. 

Thus in proving Lemma 111.9. we may assume without loss of generality that 
V(d)=O and @(d)=O. But then d represents the zero element of 

Hn+ ' (z ,  ; Wh(G))/(Wh(G,)+ Wh(G2))) (resp; of H n + ' ( z 2 ;  W h ( ~ ) / w h ( ~ ) ) )  

and hence there is an h-cobordism, relative to the boundary, of D to an 12-cobordism 
(D"; T.T! W )  whose torsion represents zero in 

Wh(G)/(Wh(G,) + Wh(G,)) (resp; Wh(G),IWh (J)). 

But then by attaching along W- f - ' ( X )  a further h-cobordism we obtain an 
s-cobordism of w to a split manifold. 

The proof of Lemma 111.8, is based on a realization procedure, in the relative 
case, using an infinite process trick for the Siebenmann obstruction to con- 
structing a boundary for an open manifold. 

Proof of Lemrna 111.8. Let M = f - ' ( X ) ,  where from the hypothesis of Lemma 111.8, 
M + X is a homotopy equivalence. Let X E  K,(H) with x =  ( -  1)" x*. We construct 
a proper homotopy equivalence of open manifolds g: (7; dT) -1 (M x I x I- M x 
21 x interior I?  M x 1 x - 1 u M x 1 x 1), I = [- l ,1],  with ?T= M x 1 x - 1 u V,  
( g I ( M x I x  -1))=1,,,,-, and g!: V - t M x I x l  a proper homotopy equi- 
valence split along M x 0 x 1 and with, setting N =g-'(M x 0 x I), g transverse 
to M x 0 x 1 with: 

(i) f o r 1 ~ = 2 k ~ , ( ~ ) = 0 i $ . k a n d x = [ ~ , ( ~ - ' ( M x  [0, 11 X I - M x  1 x( -1 ,  I)))] 
(ii) for n = 2 k - 1, Ki(N) = 0 i + k - 1, k, Kk- ,  (N) and Kk(N) are projective 

Z[H] modules with K,(N) -, K , ( ~ - ' ( M  x [0, 11 x I - M x 1 x ( -  1, 1))) an iso- 
morphism and x = [K,(N)]. 

We defer the construction of T to the end of the argument. 
Now, attach T along M x 1 x - 1 c T to the boundary component W x - 1 

of W x [-2, -11. If 

x ~ K e r  (K,(H) j R , ( ~ l )  @ K,(G,)) 
;I - <2 

(resp; x ~ K e r  (K,(H) 2 K,(J))) 
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from [S 11 the resulting manifold is the interior of an h-cobordism of W to some 
manifold @ V c  k From the geometric description of q and @ of [Wl;  $51, 
letting o denote the Whitehead torsion of this h-cobordism, q(c) = 0 and @ ( v ) =  x. 
Moreover, as V c  & w-, Y is split. 

It remains only to construct 7: For n=2 k- 1, let P be a finitely generated 
projectiv Z[H] module with [PI = x  and P O P *  a free module. Introduce on 
P @ P* the obvious Hermitian form structure and [W 2; $51 realize this by a 
normal cobordism C of M to the homotopy equivalent manifold M'. Now to 
M x R x [- l,1], R =(a, co) attach along a neighborhood of M x n x 1 in M x 
R x 1, for each ~ E Z  c R, the manifold C x [- n + 6, n + E] to get H. Let P, denote 
the copy of P in Kk(C x (n +E)) and P,* denote the copy of P* in Kk(C x (n-E)). 
Then attach to H handles corresponding to a basis of @ ( P ,  @ P,:,). From the 

n s Z  

resulting manifold remove all the boundary other than a closed neighborhood 
of M and one of M'; this is T 

The argument for n = 2 k is similar. Let [PI = x with a :  P -+ P* an isomorphism. 
Let Q be a finitely generated Z[H] module with P O  Q free and P :  Q + Q* an 
isomorphism. Then cr O lQ (resp; 1, O B) extends in the obvious manner to deter- 
mine an automorphism E (resp; F) of the obvious Hermitian form on 

Let C, (resp; C,) denote a realization of this by a normal cobordism of M to M' 
[W2; § 61, Kk(CE) r Q* r Q (resp; Kk(CF) r  P* r P). Now attach to M x R x 
[- 1,1] in a neighborhood of each M x 2 k x 1 a copy of C, x [2 k-E, 2 k + E ]  

and to a neighborhood of each copy of M x (2 k + 1) x 1 attach a copy of C, x 
[2k+1-E, 2k+1+&] just ... u ( C E u  C F ) u ( C E u  CF)u . . .  and as Kk(CEu  C,)? 
Q O P, is a free module perform surgery on each copy of K,(C, u C,). From the 
resulting manifold remove all the boundary other than a closed neighborhood 
of M and M' to get 7: 

Completion of the Proof of Theorem 2 for n=2 k- 1, Part (ii). The necessity of 
the condition 

~ ( S ) E  Image ((Wh(G,) O Wh(G,)) -, Wh(G)) 
(resp; Image (Wh (J) + Wh(G)) 

was proved in Chapter 11. We defer to the end of the argument the proof that 
8( f ) =  ij(u), u the Whitehead torsion of an h-cobordism, which must by part (i) 
exist, of W to a split manifold, depends only on f: Assuming this, clearly O( f )  = 0 
is a necessary condition for splitting; iff splits, we could use the trivial h-cobordism 
to define B( f ). 

Assume now that f satisfies r (  f )E Image (Wh (GI) @ Wh (G,) -+ Wh (G)) (resp; 
Wh(J)+ Wh(G)). Then, as @(r(f))=O, by part (i) of Theorem 2, there exists an 
h-cobordism of W to a split manifold. Letting u denote the torsion of this h- 
cobordism, as e( f )  = ij(u), from Lemma 11.9 if e( f )  = 0, f is splittable. 

It remains only to check that when r (  f ) ~  Image (Wh(Gl)@ Wh(G,) + Wh(G)) 
(resp; Wh(J)-t  Wh(G)), 8(f) is well-defined. Recall that from part (i), with this 
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assumption on z ( f )  there is an h-cobordism (T/,, W, W )  of W to @ WL Y 
split and let v, denote the torsion of this h-cobordism. As f is split, 

T ( ~ ) E  Image (Wh(G,)O Wh(G,) + Wh(G)) (resp; Wh(J)+Wh(G)). 

by a result of Chapter 11. Hence c, + ( -  1)" vT = ~ ( f ) -  z ( f )  represents 0 in 

and so q(ol) represents an element tj(v,) in Hn+ '  (z,; $1 (H; G,, G,)) (resp; 

Hn+'(Z, : $1 (H, J ;  gl, (,))I. Now, let (V, ; W, W) be another h-cobordism of W 
to a manifold T.T! I/t+ Y split; denote its torsion by c,. The proof is completed 
by showing F/(cl)= tj(c,). 

Using Lemma 111.8, exactly as it is used in the first paragraph of the proof of 
Lemma 111.9, we may assume without loss of generality that @(c,) = 0 and @(c,) = 0. 
But then (I: u, V,; @, Lk) is an h-cobordism with torsion q satisfying @(q)=O 
and q(q)= L>, - c,. By the relative form of part (i) of Theorem 2, there is an h- 
cobordism of I/;u, Vi to a map split ulong X x I, and so letting z denote the 
Whitehead torsion of this 11-cobordism 

= z + ( -  I)"+' z* modulo (Wh(Gl) + Wh (G,)) (resp; Wh(J)). 

Hence cl - c, represents the zero element of 

Hn+'(z , ;  G I ( H ;  GI, G,)) (resp; Hn+'(z , ;  %(H, J; 5 , ) ) .  

Remark. If HZk(Z,; $1 (H;  GI, G,)) (resp; HZk(z , ;  %I (H, J ;  t l ,  t,)) is not trivial, 
then Q(f )  takes all values in this group.To realize an element in this group, just 
construct an h-cobordism, with torsion representing this element, on a split 
manifold. 

Chapter IV : Another Splitting Theorem 

tj 1. Another Result when H = 0 

Theorem 3 will be proved in this section. Note first that for n odd or if nl(Y) has 
no 2-torsion. Theorem 3 is just a special case of part (ii) of Theorem 1. In case A 
this uses the fact that Wh(G,) @ Wh(G,) -t Wh(Gl * G,) is surjective [St]; in 
case B note that for H =0, J *, { t )  = J * Z and as Wh(Z) = 0 [BHS], Wh(J) + 

Wh(J * Z) is surjective. 
We give below a proof of Theorem 3 for n= 2 k ,  n+4. The extension to the 

case n = 4  follows from the method used in the proof of Theorem 5 in Chapter V 
to derive five-dimensional splitting results from the corresponding high-dimen- 
sional results. Note also that as a consequence of the results on Whitehead groups 
quoted above, it suffices to show that W is h-cobordant to a manifold w for 
which the induced homotopy equivalence W +  Y is splittable. 

We return to the conclusion of Lemma 11.1. Recall we may assume that as 
n = 2 k  and H = 0, TC, M = 0, K i ( M )  =O i < k and there is the splitting K,(M) = 
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P @  Q, P and Q finitely generated projective Z[H] modules. In the case under 
consideration here as H = O  P and Q are free finitely generated abelian groups. 
Assume that Kk(M)+O. The proof will be completed by constructing a normal 
cobordism, with zero surgery obstruction, of W to a manifold w with the induced 
homotopy equivalence f :  w-+ Y transverse to X c  Y and with M =f- '(X) con- 
nected and simply-connected and with K,(M) = 0 i < k, rank (K,(M))  < rank 
(K,(M)). Repeating this construction, we finally get a normal cobordism with 
zero surgery obstruction of W to a split homotopy-equivalent manifold and hence 
W is h-cobordant to a splitting. 

To construct @ recall from Lemma 1.8 that there is an upper-triangular 
filtration 

Let s denote the largest number for which P, @ Q, $: 0. Then clearly pl ( P , )  = 0 and 
p2(Qs)=0. Thus, p, or p, has a non-zero kernel. We will assume that p, has a 
non-zero kernel; the argument of p, has a non-zero kernel is entirely similar. 
As the Image (p,) c Q @,Z[G,] (resp; Q @, Z[J] @ P @, Z[t J]) is a subgroup 
of a free abelian group, it is also free. Hence Ker (p , )  is a direct summand of P 
and thus P contains a free direct summand of rank 1 generated by an element e 
with p, (e )  = 0. From Lemma 11.1 (ii) we may choose f~ Q with E.(e, f )  = l for i 
the intersection form of K,(M). The arguments of I 8 5 show that we may represent 
e by du where a: (Dkfl,  Sk) -+(y, M) (resp; W', M,)) is an immersion. As Q z  
Kk+,  ( K ,  M), f may be represented by d p  for an immersion P :  (Dkfl,  Sk) + 

(W M) lifting to f l :  ( D ~ + ' ,  Sk) +(W,  M)c(% M). From Lemma 11.1 (ii) we may 
assume that da and d B  are embedded spheres, with trivial normal bundles, which 
intersect in one point . .~he idea of usingsuch pairs 2cc and d B  is due to Ronnie Lee 
in rL 11. - - 

We complete the argument first for k odd, that is for (dimension Y)-3 
(modulo 4). Let M x I c I = [ - 2,2] denote a neighborhood of M x 0 = M c W 
constructed so that if this inclusion is lifted to M x - 2 c y ,  M x 2 c W ,  . 
(In case A this means just that M x - 2 c W,, M x 2 c W, .) Let Ce denote the 
cobordism obtained by attaching a handle to c?cr c M. Clearly the map f ! : M -t X 
extends to the normal cobordism Ce -t X where d C, = M v Me. Similarly, let CJ 
denote the cobordism obtained by attaching a handle to d p  c M ;  again, f !  extends 
to a normal cobordism Cf -+ X where dCf = M u Mf. It is easy to see that MJ 
is connected and simply-connected, and as Mf was produced by surgery on a 
free summand of K,(M), for the induced map Mf -t X Ki(Mf)=O i <  k, rank 
(Kk(MJ)) = rank (Kk(M)) - 2, CKMI. 

Now attach Cf x [I, 21 to W x It ,  I' = [O,l], along M x [I, 21 x 1 c W x 1 and 
attach C,x[-2, -11 to W x I '  along Mx[ -2 ,  - l ] x  l c W x l ,  Call the 
resulting manifold 

By the normal cobordism extension lemma [B2], the map f extends to a normal 
cobordism F: T-t Y, dT= W u  W. We will show that W-t Y is a homotopy equi- 
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valence and that T is a normal cobordism with zero surgery obstruction in 
L)l+ 2 (nl(Y), w). Arguments similar to those employed in the proof of Lemma 11.6, 
and easy to check directly in the present instance, show that Ki(T)= 0 for i < k + 1 ; 
also, K,,, (T) is a free Z[nl(Y)] module on two generators E, F, with as dcc and 
dp intersect in one-point and p,(e) = 0 and ac W,, /1,(E, E) = 0 and A,(E, F) = 1: 
for A, the intersection pairing of K,+,(T). But then the Hermitian pairing A, 
is non-singular on K,+,(T) and hence [W2; Chapter V] W+ Y is a homotopy 
equivalence. 

Now for dimension Y - 3 (modulo 4), T has dimension a multiple of 4 and 
hence under the assumptions about the orientations of elements of order 2 in 
nl(Y) made in the hypothesis of Theorem 3, i,(E, E) = O  implies p,(E) = 0 for 
p, the self-intersection form of T. Hence, E generates a subkernel [W2; Chapter T/1 
of K,+,(T) and thus the surgery obstruction of this normal cobordism is zero. 
Lastly. note that the induced homotopy equivalence f̂ : W+ Y can be made 
transverse to Xc Y with f - l (X)= Mf. This completes the argument for k odd. 

For the case (dimension Y) - 1 (modulo 4), the above argument does not quite 
work because under the assumptions made about the orientations carried by 
elements of order 2 in the hypothesis of Theorem 3, i.,(E, E)=O only implies that 
p,(E)=O or is represented by p,(E) = 1 E Z [ ~ ~ ( Y ) ] .  Of course, if pT(E) = 0. The 
argument is completed as above. If p,(E) = 1 we indicate a slightly different con- 
struction of a normal cobordism T'. Using the method of [W2; p. 541 vary the 
embedding of 2ct x ( -  312) in M x [- 2, - 11 to obtain a regular homotopy with 
a single self-intersection point in M x [ -  2, - 11 x I", I"= [0, 11, of c?cr x (-  312) 
to a sphere 7 embedded in M x [-2, - I] x 1. Now define D as the manifold ob- 
tained by attaching a handle to 

and set 

Clearly K,(Tf) = 0 i < k + 1, K,,, (T') is generated by E', F' where i,, (E', E') = 0, 
i, (E', F1)= 1 and pT,(E')= 1 +p,(E) in Z[nl Y]/{V +(- l)k l/}. Thus, either T' 
or T has zero surgery obstruction. 

5 2 .  A Remark on H = O  

Even when the hypothesis on 2-torsion of Theorem 3 is not satisfied, if H=O 
the method of IV 3 1 still provides some useful information for n = 2 k. The con- 
structions described there show that whenever H =0, n = 2 k, W is normally co- 
bordant to a split homotopy equivalence by a normal cobordism whose surgery 
obstruction is in the subgroup of L!'',+,(G, w) generated by Hermitian forms 
(V, i ,  p) where 

(i) V is a free Z [ G ]  module on 2-generators E, F, 
(ii) R(E, F)=  1, i (E,  E)=O. 
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In particular, such elements are easily seen to have order 2 in G,+,(G, w). Thus 
even when the hypothesis of Theorem 3 is not satisfied, for H = 0 and n = 2 k > 4 
there is always a normal cobordism, with surgery obstruction of order 2, of W to 
a split homotopy-equivalent manifold. 

Chapter V : Five-Dimensional Splitting 

5 1. P.1. and Differentiable Splitting for n = 4 

In this section, we prove Theorem 5 in the P.L. and differentiable case. The 
extension to the topological case is proved in 5 2. 

Recall the method used in the proof of Theorems 5.1 and 4.1 of [CSl] to 
derive 5-dimensional stablei6 splitting theorems from high-dimensional splitting 
theorems. In the proofs of 5.1 and 4.1 of [CS 11 the stabilization procedure was 
employed at two points in the argument. We show here that under the hypothesis 
of Theorem 5 in both cases in [CS 11 in which the stabilization procedure is used 
it can be avoided. 

Stabilization is used the first time in the stable-splitting results of [CS 1) to  
get around the difficulty that it is not in general known f a normal map with 
zero surgery obstruction to a 4-dimensional Poincare-complex X is normally 
cobordant to a homotopy equivalence. But, by [S 31 when n, (X) = 0 and in general 
by [W2; 8 161, this is always the case if X has the homotopy type of a closed 
P.L. 4-manifold and H, (n, (X); Z,) = 0. 

Stabilization is used a second time in the proof of the stable splitting result of 
[CS I] to get around the difficulty that it is not in general known if given a homo- 
topy equivalence f: M ~ - + X ,  M a closed 4-dimensional manifold, there is a nor- 
mal cobordism off realizing a given element of I!!! (x, (X), w). However, this problem 
does not arise if (x, (X), w)= 0. More generally, if [CM; GIPL] +Lh, (TC, (X), w) 
is surjective, every element of Lh, (IT, (X), W) is realized by a normal cobordism of 
f to itself. 

Note that if H is a finite group of odd order, H,(H; Z,) = 0 and I!!!(H) = O  [B4]. 
This completes the proof of our 5-dimensional splitting theorem in the P.L. or 
differentiable case. 

The proof of our h-splitting result in dimension 5 is very similar to the above 
argument for 5-dimensional splitting and we only give an outline of the argument. 
Note first that if ~ ( T V ) )  =0, Lemma 11.4 shows that Wis h-cobordant to a manifold 
w for which the induced homotopy equivalence f :  W+ Y satisfies $(5Cfq)=O. 

Thus, we may assume without loss of generality that ~ ( T V ) ) = O .  In that case, the 
proof of our 5-dimensional h-splitting result proceeds with the same adaptation 
of the methods of [CS 11 indicated above but with the exact sequence (5.2) of 
[CS 11 replaced by that of Theorem 8 of [C3] and with the exact sequence of 
p. 525 of [CS 11 replaced by that of Theorem 9 of [C 31. 

l 6  In stable splitting problems we permit X to be replaced by the manifold X#k(S2 x S2) obtained 
by performing trivial ambient surgeries on X c  Y. The reader should be warned that this is called 
S-splitting in [CS 11, not to be confused with the s-splitting problem of the present paper 
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tj 2. Topological Splitting for n = 4 

The proof of Theorem 5 in the topological case follows that given above in 
the P.L. or smooth cases. Note first that the arguments of [W2; Chapter 161 
are easily modified to cover the topological case with GjTop [KS] replacing GIPL. 

However, the argument employed in [CS 1, p. 517-5193 uses transversality 
in showing that (W,f) is normally cobordant, after stabilizing X, to a normal 
map g : Q + Y with g transverse to X c Y with g-I (X) + X a homotopy equivalence. 
(Here g need not be a homotopy equivalence.) As topological transversality is 
not known in this dimension, we give, under the hypothesis of Theorem 5, a 
different construction of g without stabilizing X. First observe that the homotopy 
equivalence f :  W+ Y induces a lift of the Spivak normal bundle v,: Y+BG 
to a map 5: Y+ B Top [B 21 [KS]. 

B Top 

YA BG 

The composite map v,j: X--, BG,j: X +  Y the inclusion, is easily seen to be the 
Spivak normal bundle for X and hence 5 j  is a lift to B Top of the spivak normal 
bundle of X. By the topological analogue of [W 2;  Chapter 161 if X has the homo- 
topy type of a closed 4 dimensional topological manifold and if H, (n,(X), Z,) = 0, 
this lift of the Spivak normal bundle of X is, homotopic, by a homotopy h,: 
X -t B Top, t~ [O,l], c h,j = v g j ,  to a map h, : X + B Top induced from a homotopy 
equivalence h : M + X, M a closed Cdimensional topological manifold. By the 
homotopy extension principle, h, can be extended to a homotopy H,: +B Top 
with aH,=v,. Then as HI extends h, ,  using 5-dimensional topological trans- 
versality [KS] the normal map h :  M+X extends to a normal mapg: Q-. Y. 
From the construction (Q, g) and (qf) represent homotopic lifts of v, to B Top 
and hence are, suing 6-dimensional topological transversality [KS], normally 
cobordant. 

The remainder of the argument follows the adaptation of [CS 11 indicated 
in vg1 .  

Chapter VI : Some Remarks on G = Z x , H 

The Farrell-Hsiang splitting theorem, which is part (ii) of Corollary 6 for n+4, 
is a special case of Theorem 2. This is immediate for n = 2 k. For n = 2 k - 1, we 
also need that for ti: H + J isomorphisms, i = 1,2, so that G = Z xe  H, a =  5;' t, , 
there is a decomposition 

with the involution switching both copies of %1 (H, r). This is proved in [FH2]; 

it also follows easily from the general description of $1 (H, J; 5 , ,  5,) of [W 11 
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and the methods of Lemma 11.3 and 111.7. From this formula, 

for all n > l when 5, and 5, are isomorphisms and thus in this case the invariant 
ey) takes values in the zero-group. 

For n = 4, Corollary 6 is essentially a special case of Theorem 5. 
Actually, the nilpotent normal cobordism construction of I1 8 1 could be used 

to obtain another very quick proof of Farrell-Hsiang splitting for n = 2 k, avoiding 
all the algebra of I1 $2 and the explicit computation of the intersection form (2) 
in Lemma 11.6. A basis for the summand P O,,Z[G] of Kk+,(T) is represented 
by spheres winding around Tin  the same direction and hence their mutual inter- 
sections are zero. See the diagram below. By exercising greater care in the construc- 
tion and using the fact that H contains all elements of order 2 in Z x, H, or alter- 
natively adapting the method of handling self-intersections in the last part of IV § 1, 
we could also arrange for the self-intersections to vanish. 

Construction of E, (see Lemma 11.6) in the Farrell-Hsiang case 

For n =  2 k -  1, note that when 5, : H -+ J is an isomorphism, the surgeries 
used to construct M, c w can be performed in W. Thus, in that case, if @(z 0) = 0 
may assume that Ki(M)= 0 for i < k  - 1 and Kk-, (M) is a free module. This idea 
is used in [FH 21. 

Actually, in the general splitting problem for n = 2  k  - 1 > 3, H c G, (resp; 
t i :  H -+J injective), if @(zy))=O and K,(M)=O, i < k  - l and Kk-,(M) is a free 
module it is not hard to see that, even if H is not square closed in G = G, *, G, 
(resp; G = J*, {t)), W is h-cobordant to a split manifold. Let C, and Cp be as in 
Chapter 111. Then, attaching C, x I and CQ x I to W x l c  W x [O,l], we obtain * * 
a normal cobordism of W to W; here W is as in the proof of Lemma 111.6 Recall 
the construction of the split homotopy equivalence W-t Y in the proof of Lemma * 
111.6 by performing surgery on a basis for K,(M,) @ K,(MQ)cKk(W). Thus, we 
get a normal cobordism T of W to I@ where from the Mayer-Vietoris sequence of 
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the decomposition up to homotopy of T, 

T = (W, u, CQ u handles attached to a basis of Kk(MQ)) 
u,(W, u, Cp u handles attached to a basis of Kk(Mp)) 

(resp; T = (W' u,, CQ uM2 C,) u (handles attached to a basis of 
Kk(Mp) @ Kk(MQ))/identify Ml with M 2  

and LemmaIII.l, it follows that K,(T)=O, i < k  and K, (T)rKk- , (M;  ZG). 
Then, as K,(T) is a free Z [GI module and T is of dimension 2 k + 1, surgery can be 
performed on T to replace it by an h-cobordism of W to a split manifold. 

Note that in the above 3-paragraphs on the Farrell-Hsiang splitting theorem, 
we actually only used 5, : H + J an isomorphism and 5, : H + J injective. This 
slight extension of Farrell-Hsiang splitting is not always covered by Theorem 2; 
i.e. the conclusion of Theorems 1 and 2 is valid whenever 5,: H +  J is an iso- 
morphism and 5, : H + J is injective, even if t2(H) is not square-root closed in J. 
This can be applied to compute the surgery groups of some groups containing 
infinitely divisible elements. 

Example. Let G be the group generated by cc and with the one relation a/3aP' = aP, 
p $: 0. Then G = J *, { t )  where J E Z, H Z  2, 5, is just 1, and 5, is multiplication by 
p. When n, ( Y )  = G, n, (X) = H, dimension X 2 5, the Farrell-Hsiang splitting 
theorem applies only for p= f 1 and Theorem 2 gives a splitting theorem for p 
odd. The above remark, however, gives a splitting theorem for all p. Note that when 
p =I= 5 1, cc is infinitely divisible in G. 

Chapter VII : Square Root Closed Subgroups 

Of the seven examples presented in the introduction of squareroot closed sub- 
groups, only (3), (4) and (6) are not immediately obvious. The present chapter 
verifies these three examples. 

The following example is used in computing the surgery groups of all the funda- 
mental groups of 2-manifolds, and of many three-manifolds, by using splitting 
theorems. 

Proposition VII.1. Let G be a free group and H a subgroup of G generated by a 
non-square element of G .  Then H is square-root closed in G. 

ProoJ Let h generate H .  If g e G  with g 2 € H ,  then the subgroup H' generated by 
{h ,  g} is, as it is a subgroup of G, a free-group, and since its abelianization is a 
finite extension of H ,  H' is infinite cyclic. But as H c H' is a subgroup of index 1 or 2, 
either H = H' and hence g~ H ,  or h is a square in H'. 

Of course, it is trivial to check if a given word in a free group is a square element. 

Example. Let M be a connected 2-dimensional manifold, with M not RP2, S' x S', 
the Moebius band or the Klein bottle. Then from Prop. VII.l, n,(M)=F, *,F2 
where F, , F2 are free groups and H = 0 or Z is square-root closed in Fl and F2 
and hence, by Prop. VII.2 below, is square-root closed in n, (M). 



Proposition VI1.2. Let 5,: H -, Gi (resp; t i :  H -+ J )  i = 1,2 be inclusions of groups. 
7hen H is square-root closed in G, *,G, (resp; in J*,{t)) if and only if ti(H) is 
square-root closed in Gi (resp; J) i=  I, 2. 

Proof: Trivially, if H is square-root closed in G, then ti(H) is square-root closed 
in Gi (resp; J) i= l ,2. The other implication is not hard to show using covering 
space theory or group theory. The following argument's only virtue is that it 
avoids introducing further notation. 

Assume <,(H) is square-root closed in GI (resp; J )  i =  l ,2 .  Recall that this is 
essentially all that is used in proving Lemma 11.8. Moreover, from the proof of 
Lemma 11.8, for each g~ {G - H), G = Gl *,G, (resp; J*, { t ) )  is an element of 
Z [w] for some w E FO.  Also, as Z [w] is a Z [HI bimodule, if g E Z [w], H g H c Z [w]. 
But then from the first paragraph ofthe proof of Lemma 11.9, if g~Z[w],  g-' #Z[w]. 
In particular, for all g~ {G - H}, H g H n Hg-' H =% and hence gZ E H implies 
g~ H. 

Appendix I : The Z ,  Action on Wh(C, *, C,) and Wh(J *, {t)) 

The splitting theorem of the present paper has implications for the calculation of 
Whitehead groups. In many geometric applications of Whitehead groups and in 
computing surgery groups, it suffices to compute just the "symmetries modulo 
norms", i.e. H*(Z,; Wh(G)). We analyze here the contribution to this group 
coming from the group of nilpotet maps of [W 11. 

Proposition A.1. Let H and GI, G, (resp; J) be finitely presented groups with 
5,: H -+ G, (resp; 5,: H -+ J) monomorphisms, i = 1,2, and mi: Gi + Z, (resp; 
o : J -t Z, , o,: Z -+ Z,) homomorphisms, i = 1,2, with 4, w, = 4, o, (resp; o 4, = 

o4,) determining (see Lemma 111.7 involutions on %l (H; G,, G,) (resp; g l  (H, J ;  
t l ,  4,)). ?hen if (,(H) is square-root closed in Gi (resp; J) i = 1,2, 

(resp; HZk+l  (Z,; %(H, J ;  t l ,  5,))=0). 

Conjecture. Under the same hypothesis, the even cohomology of Z, with coeffi- 

cients in 6 should also vanish. 
We briefly outline the proof of this proposition. 

Proof of Proposition. Recall that Theorem 2(ii) for n odd was formally derived 
from Theorem 2(i) and that in the process we obtained an obstruction to splitting 

in H'~(Z,; I% (H; GI, G,)) (resp; H,~(Z,;  s l ( ~ ,  J ;  4,, 5,))) and we observed 
that every element of this group was in fact realized in this manner. An entirely 
parallel argument shows that we could define and realize an obstruction to splitting 

in H ~ ~ + ~ ( Z ~ ;  G ~ ( H ;  G1, G,)) (resp; HZk+ ' (z2 ;  G l  (H, J ;  11, 5,)). AS no such 
obstruction to splitting for n even arose in the proof of Theorem 2, we conclude 
that this group is zero. 
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The above proposition is particularly useful for relating surgery groups de- 
fined relative to subgroups of the Whitehead group. 

Corollary A 2  Let H, squnre-root closed in GI, G, (resp; J), be ( I S  in Prop. A.1. 
Trlerz if 

H Z k ( z 2 :  K ~ ~ ( K , ( H ) + K , ( G , ) @  K,(G,))=o 

(resp; H z k L 1  (ZZ; Wh(J), ((t1,-t2,) Wh(H))) = O  

f f ? k + l  (Z2 ; Wh (GI * H  GZ)) = 0 
(resp: H ~ ~ + ' ( Z ~ ;  w / ~ ( J * ~ { t ) ) ) = o ) .  

Proof. This result is immediate from the description of Wh(G), G = GI *"G2 
or G= J *, ( t }  of [W 11. Prop. A.1. above, and Lemma 11.3. 
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