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ABSTRACT. This paper extends the notion of localization to exact categories and
provides a homotopy fiber sequence which relates the K-theory of the category and
its localization.
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Introduction

In this work, it is given a new proof to the Mixed Localization Theorem by Levine,
[Lev83][Appendix], and hence, as a special case, to Quillen’s Localization Theorem
for abelian categories, [Qui72][pp. 113-116]. In the proof given by Levine the
calculations are carried out using the kind of techniques already used by Quillen for
his theorem. This forces, somehow, the existence of an ambient abelian category
inside of which computations make sense. In our context this is not absolutely
necessary and most of the proofs are done in a abelian-free enviroment. Moreover,
the algebraic calculations are given in terms of Waldhausen’s description of K-
theory instead of the @)-construction. This would allow in the future to state the
Main Theorem, 7.0.63 on page 51, in a more general setting.

Chapter 1 describes the basic results on simplicial sets and homotopy theory
on nerves of small categories necessary for Chapter 2.

In Chapter 2 Waldhausen’s version of K-theory is developed. It is based on
the concept of of category with cofibrations and weak equivalences. This chapter
also lists the most used theorems that allow to compare the K-theories of related
categories.

In Chapter 3 it is introduced the concept of exact category. Exact categories are
treated under a dual point of view: Bass’ as subcategories of abelian categories and
Quillen’s as additive categories satisfying some extra axioms. Though our preferred
point of view is Quillen’s, Bass’ one is very useful at the time of computations.

The localization axioms are described in Chapter 4. The axioms are described
in terms of the categories involved in the localization, 4 C Y. In some sense, they
are intrinsic. Then it is defined the exact category A =!I as the calculus of fractions,
two sided!, on U by the class of morphisms in &/ which ’have’ kernel and cokernel
belonging to A, whenever they exist. Calculus of fractions is briefly described on
appendix A. Some other technical results about the behavior of morphisms in the
localized category are given in this chapter. At the end of this chapter 4 a universal
property for the localizing functor is shown.

In Chapter 5, we construct the exact category of finite chain complexes on
another given exact category. It is shown it has a natural structure as category
with cofibrations and weak equivalences.

Chapter 6 contains an slightly improved version of [TT90, Theorem 1.11.7]
which identify the K-theories of an exact category and of the exact category of
its finite chain complexes. This improvement has already appeared in [CP97,
Proposition 6.1].
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The Main Theorem is set in chapter 7. Given exact categories A C U satisfying
the localization axioms, 4.0.35, then there exists an exact category A~'U, the
localized category, and a homotopy fibration

K(A) = KU) - K(A™'U) .

At the end, we describe a three step program for the proof of the theorem. Step ii)
is already done in Chapter 5.

Steps i) and iii) are done in Chapter 8. The proof of i) is a simple application
of the approximation theorem, 2.0.25. This allows to identify the K-theory of
A~U with the K-theory of C'(U), which is equivalent to that of I/, with a new set
of weak equivalences. These new set of weak equivalences is the reflected class of
quasi-isomorphisms in C'(A~12/). At this point, the generic fibration lemma, 2.0.23,
can be applied to

qCU) = qCU)

obtaining ¢C(U)? as homotopy fiber. Step iii) identifies in K-theory terms qC(U)?
and gC(A). This is done in two ways. The first one consists on taking a chain
complex in qC'(U)? and ’deformed’ it into one in qC(A). Using repeatedly the
additivity theorem, 2.0.20, and results on domination of chain complexes by [CP95]
or [Ran92] show the result.

The second one is based on Thomason’s proof of 6. We notice the simple fact
that the Euler characteristic of a chain complex in qC(i/)?, chain complexes with
homology in A, must lie in A like for those in C'(A). This allows us to show
that ¢gC(A) is the homotopy cofiber of iC(U)? — iC(U)?, which on the other was

qC(U)".

Finally Chapter 9 shows the equivalence between the Mixed Localization Theo-
rem ,9.0.2, and the Main Theorem, 7.0.63. Also, as a special case, implies Quillen’s
Localization Theorem, 9.0.6.

Appendix B describes the Gabriel-Quillen embedding i of an exact category
£ into the abelian category Ab(E) of left exact functors F : £ — Z — modules
given by i(E) = Homgz( , E). This result allows the double point of view of exact
categories.

On appendix C are developed the techniques which permit to replace an exact
category £ by a slightly larger one £ with some advantages and no consequences at
the K-theory level. We define the idempotent completion £ of the exact category
£ and its restricted version £, the full sub category of £ with objects having its
stable isomorphism class in Ko(£). € has the advantage of satisfying property
C.0.24 and still being k-theoretically equivalent to £. This fact is used very often

all along the text.
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CHAPTER 1
Simplicial Sets

Let A be the category of finite ordered sets. The objectsare [n] = {0 <1< ...<n}
for each n in N U {0} and morphisms are monotone maps « : [¢]——=[n] with
0<i<j<qand a(i) <a(j). We have the following basic monotone maps:

. Ca . U G A
1. monotone monic maps: 4}, : [n — 1]——=[n] given by ¢/,(j) = { i1 G>i
: ; : o Joog<a
2. monotone epic maps: ' : [n + 1]——=[n] given by ¢, (j) = i1 s
with the relations
gt =667 i<y oldti =60l i<y ol§t = §itlgl i>j+1

olot = gloit! i< oldt =1 = gisttl.
In fact, these basic monotone maps are the building blocks of any monotone map.
THEOREM 1.0.1. Every monotone map function « : [q]—[n] is composite:
o =" .. flagh gt

where iy > is > -+ > i; represents the elements not in the image of a and j; <
-+ < jp represents the repetitions a(jr) = a(jr+1)-

Denote by V(n) the standard affine simplex given by the convex hull of 4; =

(3 o
{0,...,0,1),0,...,0} for i = 0,...,n in R+ C R®. Let V(n) = {Xt;4;/1 #
t; #0 and Y t; =1} C V(n). Given any monotone map « : [g]——=[n], it can be
realized as |a| : V(¢)——=V(n) in the obvious way, such that |a8| = |a||3].

The next two results will be helpful on future calculations.

LEMMA 1.0.2. Vz € V(n) there is exactly one ¢ < n and only one u € V(q)
and one injective monotone map [q]—=[n] such that x = |a|(u).

LEMMA 1.0.3. «:[g]|——=[n] is determined by the value of |a| on just one
x € V(n).

DEFINITION 1.0.4. A simplicial set X is a functor
X 1 A%? —— Sets

from the category A°P which is the opposite of the category of finite ordered sets.
Alternatively, we can see X as a collection sets {X,,}°2,, where X, = X ([n]) is
called the set of n-simplices of X, with structure maps

di=X(;): Xp—=Xpn1 i=o0,...,n+1 faces,

si=X(0;) : Xy —= Xpta i=0,...,n degeneracies
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satisfying
didj = dj_ldi fori <y

sj_1d; fori<j
disj = 1 fori=j,j+1
sjdi—1 fori>j+1

S5iSj = Sj4+15¢ for 4 S]

We call a simplex x degeneracy if it can be written as x = s;y for some 7. If
x = d;y , it is called a face.

Hence, given a monotone map « : [q]——=[n] there is an induced X (o) : X,,——=X,.
In general, for a € Mor(A°P) we shall write o* for X (a) : X, = X specifying no
dimensions.

A simplicial map f: X——=Y is then a natural transformation between two
functors X and Y, or alternatively, a simplicial map is a collection of functions
f={fi: X;——=Y;} commuting with the d; and the s;.

We will say A is a simplicial subset of X, denoted by A C X, if A([n]) C X ([n])
for all n and Ya € Mor(A%) a*(A) C A, ie. d;i(A,) C A,—1 and s;(4,) C Apy
for all n. A simplicial set L is a subsimplicial set of X if for each n € N L, =
L([n]) € X, = X([n]) and L is closed under d; and s;.

If ¥ C X is a simplicial subset, we define Span(X) = U (). Inother

aEMor(Acr)

words, Span(X) is the simplicial set formed by all the faces and degeneracies able
to be obtained out of ¥. The n-skeleton of X is X" = Span(X,,). If X = X" we
say dimX < n.

Moreover, we can characterize the simplices.

LEMMA 1.0.5. If x and y are degenerate then [dx = dy = x = y].

THEOREM 1.0.6. Every simplex in a simplicial set X is canonically x = By
where 3 is epic and y is nondegenerate.

REMARK 1.0.7. Iterating the process described above, define simplicial sim-
plicial sets as functors X : A°? —  SimplicialSets, where SimplicialSets is the
category of simplicial sets. Theses are called bisimplicial sets, since they can be iden-
tified with functors X : A° x A°? — Sets. Via the diagonal map A% — A% x A°P
we can associate to the bisimplicial sets a simplicial set, the diagonal simplicial set
with (diag X )n = Xppn- Similarly multi-simplicial sets can be defined.

1.1. Some basic simplicial sets

Let us see some examples of simplicial sets. One way to produce simplicial sets
is the following, by products.

DEFINITION 1.1.1. Given simplicial sets X and Y we shall say X x Y is the
simplicial set with n-simplices (X x Y),, = X, x Y}, and faces and degeneracies
defined as follows:

di(z,y) = (diz,d;y) and s;(z,y) = (siz, s;y)

There is still another way to produce simplicial sets.
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DEFINITION 1.1.2. An abstract simplicial set K is an ordered finite set { Ao, ..., A},
the vertices of K, certain subsets of it and all the subsets of these, the simplices
of K. We associate to K the simplicial set ¥K with K ([n]) = (XK), the set of
those monotone maps from [n] to {Ay, ..., Ap} such that the vertices in the image
lie on some simplex in K.

Next it is the well-known prototype of simplex.

DEFINITION 1.1.3. For each n € N, the standard n-simplex A([n]) is the

simplicial set defined by A([n]); = {0 < a9 < -+ < ay < nja; € ZT} with

A
di(ag,...,aq) = (ag,...,a;,...,aq) and s;(ag,-..,aq) = (Ao, ..., 0i—1, Qi Qiy Qit1,-..,0q).
In other words, A([n]) = ¥((0,1,...,n)), where (0,1,...,n) € A([n]), is the ab-
stract ordered m-simplex, which we will denote by [n] as well. We can also say
A([n]) = Span([n]).

But also A([n]) can be described as Homa (—, [n]) : A% — Sets. Then by the
Yoneda Lemma there is a natural bijection between the simplicial maps A([n]) = YV
and Y,,, the set of n-simplices of Y. In particular, for each monotone map « : [¢] —
[n] corresponds a unique g-simplex in A([n]), namely a([q])-

A([n]) contains the simplicial subset boundary of A([n]), A([n]). The boundary
is just (A([n]))"!, the (n — 1)-skeleton of A([n]). It also contains the i-th horn

A
for each i = 0,...,n A([n]) = Span(dy([n]),di([n]),...,di([n]),...,dn([n])). An
specially important simplicial set is A([1]) which we denote by I. The following is
an useful notation for the simplices in the product of a simplicial set by I:

(A([n]) xI)q > (ao,...,aq),(0,0,...,O,1,...,12 = (a0, a1, -, 5,01 g, - -, ay)

where d; would mean to drop the i-th term and s; to repeat the i-th term.

Other basic simplicial sets are those given by the singular functor.
DEFINITION 1.1.4. The singular functor is

S. : Top —— Simplicial Sets
X—5X
where T'op is the category of topological spaces and continuous maps, Simplicial Sets
is the category of simplicial sets and simplicial maps. S.X is defined by S.X ([n]) =
SpX = Homr,p(V(n), X). It is verified that if ¥ C X, then S.Y C S.X, S (X U
YV)=(SXUSY)and S (X xY)=S5XxSY.

1.2. Homotopy

DEFINITION 1.2.1. A simplicial map H : X x I——=Y is called a simplicial

homotopy between F = ip X and G = ;Y. We shall say F — G, is simplicially
homotopic to G. Unfortunately this is not an equivalence relation (unless YV is a
Kan set, see remark bellow 1.2.2). Following Peter May’s,[May67], description H
can be seen as a collection of functions

Vq hq:{hi:Xq%Yq_kl}OSiSq
satisfying:
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(i) doho = F, dgs1hy = G,

(i)
dih]’ = hj_ldi 1<)
dj1hjt1 = djiih;
dih]‘ = hjdi,1 1>7+1
(iii)

sihj = hjpsi 1<
Sihj = hjsiJrl 1>7

REMARK 1.2.2. X is a Kan set if it satisfies the Kan condition:

Vf simplicial map ¥q ¥i 3f such that Ailg] ——> X
7

e
A(lg])
Given (A, X) and (B,Y) pairs of simplicial sets:
(i) when Y is Kan then homotopy X ——Y is an equivalence relation,
(ii) (X,A)——(Y, B) with Y and B being Kan, then homotopy is an equiva-
lence relation.

1.3. Geometric Realization Functor

Given X a simplicial set Xg, X1, ..., endowed with the discrete topology:
X=XoxVO)UX; x V(1)U ---UX, xV(n)U...
with the disjoint union topology,
U is open in X if and only if U N {z,} x V(g) is open for any z, € X, Vq.

Given (z,t) € X with z € X, t € V(q) and @ a monotone map, declare (a*,t) ~
(z, |ajt) related. This relation generates an equivalence relation ~. (z,t) is said to

]
be regular if z is non-degenerate and ¢ € V(q). The geometric realization of the
simplicial set X is the topological space:

I X|=X/~= HX” x V(n)/(a*z,t) ~ (z,|a|(t)).
Given z € X, the characteristic map of z is
Xz : V(q) — | X]|
t——— (z,1).
The topology on | X | happens to be the finest topology making all x, continuous. In
fact, it is enough to check the continuity on generating sets since xo+(2) = Xz © |-
LEMMA 1.3.1. If X generates X, then the realization of X
1X| = | xu(V(dim y))
yeY
THEOREM 1.3.2. Ifz = {|z,t| € |X| [t € V(¢)} C X then |[X|= |J =z as

z non-deg
sets.

__ Proor. For the proof it is enough to check the existence of a set map @ : X =
X satisfying:
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1. Y(z,t), ®(x,t) is regular,

2. if (z,t) is regular then ®(z,t) = (z,t),
3. ®(z,t) ~ (z,t) and

4. if (z,t) ~ (y, s) then ®(z,t) = D(y, s).

Given (z,t), t = |a|(u) where a is 1 — 1 and w is interior, then (z,t) ~ (a*,u).
There exists 8 onto and y non-degenerate such that a*z = f*y. We can define
®(z,t) = (y,|8|u). |B|u is interior, since u is interior and § is epi. Property 1 and
2 are trivially satisfied.

To check properties 3 and 4 it is enough to see that ®(y*x,t) = ®(x,|y|t). Let
t = |aju with & 1 — 1 and w interior. By lemma 1.0.2, a*y*z = Sfy1 where
is onto and y; non-degenerate. Then (y1,|81|u) = ®(v*z,t). By theorem 1.0.1,
ya = do where o is onto and 0 is 1 — 1. Now, |y|(t) = |ye|(u) = |do|(u) = |0]|o|(u)
hence |o|(u) is an interior point. We can write d*z = 3y, with 82 onto and ys
non-degenerate, then ®(x, |y|t) = y2,|B2|(Jo|(u))). We have o*(83y2) = o*0*z =
a*v*x = BTy1; v, B2, 1 are surjective, yi, yo are interior points. Hence S0 = £
and y; = y» because there is a unique way to write a simplex as an epimorphism
and a non-degenerate simplex. We are done. O

A simplicial map f : X — Y induce an obvious morphism f : X — Y, which
respects the equivalence relation ~ and hence inducing a map |f| : |X| — |Y].
Actually, |..| is a functor,the geometric realization functor from SimplicialSets to
Top. See 1.3.9 bellow for further details.

Following Goerss and Jardine’s book, [GJ], there is a quick way to define the
realization functor. Regard the simplex category A | X of a simplicial set X. The
objects in A | X are maps o : A([n]) — X, or simplices of X, 1.1.3. Morphisms in
A | X are commutative diagrams of simplicial maps

9
A([n]) ———=A(Im])
X /
X .
Recall 1.0.2 and 1.0.3, 6 is induced by a monotone map 6 : [m] — [n].

LeMMA 1.3.3 ([GJ],chapter I, Lemma 2.1). There is an isomorphism
X~ 11_r>n A([n]).

A(_[@?X

Then the realization is defined as the following colimit
[ X| = lim |A([n])]

Ao

in the category Top. | X]| is functorial, since any simplicial map f : X — Y induces
an obvious functor f, : A | X — A | Y. Moreover,

ProPOSITION 1.3.4 ([GJ],chapter I, Proposition 2.2). The realization functor
is left adjoint to the singular functor in the sense that there is an isomorphism

Homr,p,(|X1],Y) = Homg;gers(X, S.Y)

which is natural in simplicial sets X and topological spaces Y .
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Next we relate some properties of the geometric realization functor. First,
THEOREM 1.3.5. X[ : V(n) = [A([n])] is a homeomorphism.

PROOF.
1. X[n) 18 injective.
Let x[n)(t1) = X[n)(t2), ti = |a;|(u;) where a; is epic and u; is interior.
Now xn)(t:i) = |[n], ti| = [[n], |l (wi)| = |af[n],u — ]|, but it is a regular
representation hence u; = w2 and af([n]) = a3([n]). That means a3 = as
and therefore ¢t; = t5.
2. x is continuous by definition.
3. x is epic since A(n) is generated by [n].
4. |A(n)| is Hausdorff and compact.
X[n] is closed hence it is an homeomorphism. [l
From now on, we can identify V(n) and |A(n)|. Then if x, : §(n) — |X| is the
characteristic map for x € X
IXz| : V(n) =|A(n)] ——|X]|
t———|(x,t)|.
It is also verified that
THEOREM 1.3.6. f: X =Y is1—1if and only if |f|: |X|— |Y]|is1—1.

ProoF.
|z1,t1], |22, t2| € | X| z; non-degenerates and t; interior points.

|f(@1), t1] = |f(Jz1,t0)| = [fl|(z2,t2)| = |f(22), 2] £is 1 -1, hence f(z;) are
non-degenerate since x; is non-degenerate.

f(z;) = sjy implies f(d;x;) = d; f(z;) =y and hence f(s;d;jz;) = s;y = f(z;).
Being f 1 — 1 implies that z; = s;d;z;.
=

|flis 1= 1. f(z) = f(y); t € V; |[fI(l=,t]) = [f(2),t] = |f(y), t] = |f|(ly, t]) would
imply |z,t| = |y,t|. Let z = 8*z and y = v*z' with 8 and 7 monotone. On the
!

other hand, 2 3 y. (|7, t)) = |y, t| = |z, t| = x=(|8],t) € 2 but [Y] is a disjoint
union, hence z = 2. Since X is a homeomorphism |5t = |y|t with ¢ interior which
implies 3 = . Then z = y. O

ProposITION 1.3.7 ([FP90] Proposition 4.3). If A is a simplicial subset of X,
then |A| C | X]| is a closed subset.

PrOOF. Let U C |A] closed. Regard the characteristic map for x
Xz : V(n) — | X|
(.’L‘,t) — |$7t| = |y7t|

with y € A. Then for @ monic, z = a*y, t = |a|s. This means that x,1(U) =
Usszea la|(x5+,(U)). This union is finite. So it is closed iff each |a|(x5",(U)) is
closed, which is true. [l

Moreover,

PrOPOSITION 1.3.8 ([GJ],chapter I, Proposition 2.3). |X| is a CW-complex for
each simplicial set X .
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ProOF. We will apply a result by a JHC Whitehead. We need 0 # S, ..., S,
where Sy = {PY P!,..., P"} with the discrete topology; let P"~! and S,, # 0.

S, x V(n) —= P!

Sy X V() ——> pr

Let Sy, be the set of non-generate n-simplices in X. Then |X°| = Sj clearly (having
the discrete topology).

Let’s assume that | X"~!| = | X|*~!. For every non-degenerate x € X,,, we can
look at

6 V(n) — X7 = x|
We have p, . g« V(n)L.J|X”*1|_>>|Xn|’ h factors through | X|™ clearly.

® continuous

h: S, x V(n)UXnt—= X"
quotientlp
tinuous;ontol—1
| X"
We need to see it is open.
U C |X|™ open; it is enough to see that x; ' (U) for x non-degenerate n-simplex.
Xz L(U) = {x} x V(n) Np~1(U) which is open. |X| has the union topology. |X| =

X, x V(n)/ ~ but the topology is given by the characteristic maps. This implies
that |X"[——|X]| is continuous. O

REMARK 1.3.9. In particular |X| is a compactly generated Hausdorff space,
and so the realization functor takes values in the category CGHauss of all such.
We shall interpret |..| as a functor from SimplicialSets to CGH auss.

In this category we have the following result.

THEOREM 1.3.10. Let X and Y be simplicial sets and p; : X xY — XY
the corresponding projections. Then

p=Ipil X [p2|  [X X Y[ — |X] % [V
is a homeomorphism.

In this way, we avoid problems, since | X | X |Y| is not homeomorphic to | X x Y|
in general.

2 XXy

REMARK 1.3.11. | X|x|Y|is the finest topology making all the maps V(h) x V(I)——|X| x |Y|
continuous.

LeEMMA 1.3.12. For X = A(n), Y = A(q) the theorem above is true.
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1.4. Nerves

DEFINITION 1.4.1. Given a small category C, define nerve of C, or classifying
space, as the simplicial set N.C : A% — Sets, where (NC), is the set of functors
[n] — C, i.e. an element of (NC), is a sequence of n composable morphisms in C.

Nq.A:{A()—>A1—>"'—>Aq}

The degeneracies d; are given by composition and the faces s; by inserting identities.
This simplicial set is called the nerve of C, or classifying space, and its geometric
realization is denoted by BC. In the literature N.C is also denoted by BC, see [GJ].

1.4.2. Tt is clear that a functor F': 4 — B between small categories induces
a simplicial map N.F : N.A — N.B between the nerves. Moreover, a natural
transformation ¢ : F' — G induces a simplicial homotopy Nt : N.A x I — N.B by
regarding the ladder

G(4)) —=G(4;) — - ——=G(4))

t(AO)T t(Al)T t(Aq)T

F(Ao) F(A) - F(Ag)

for each g-simplex and hence,

Nt(Ag — --- = A, (0,...,01,...,1)) =

G
= (F(4d) —=F(A) — - ——=F(4;1)

(
\
F(A;

which is truly a simplicial homotopy. There has been then introduced certain idea
of homotopy in the category of small categories. We can say C is contractible if the
identity functor on N.A is homotopic to a constant functor.

From the discussion above, it is clear that N.(A x B) = N.A x N.B and hence
B(A x B) = B(A) x B(B) is a homeomorphism.

A1)

ExaMmPLE 1.4.3. If G is a group, let EG be the nerve of the category formed
by an object for each g € G and a map for each pair of non-equal elements. EG
is contractible since there is a natural transformation from the identity functor
id : EG — EG to the trivial functor, which sends every morphism to the identity.
This natural transformation induces a homotopy between the identity map on |EG|
and a contraction. Now let BG be the nerve of the category having a sole object x
and an endomorphism g : ¥ — * for each element g of G. Its geometric realization
|BG|, generally denoted by BG as well, is an Eilenberg-Mac Lane space of the form
K(G,1). There is an obvious simplicial map 7 : EG — BG induced by a functor.

ExampPLE 1.4.4. If A is a small category having either an initial or a final
object then N.A is contractible.

\
G(A;) — -+
)/
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Assume, for example, A has a final object x, then id4 is homotopic to

Gt A A
Ar——=c,(A) *

For each ¢, there are ladders

* * *
Ay Ay A,

which define a simplicial homotopy H : N.4 x I — N.A. This homotopy could be
seen as the collection:

Vg hi: NyA——= Ny A i=0,...,q

h02A0—>* * * *
hy: Ag —= A —— % * *
hl;:AO A1 A2 Aq *

clearly doho = ¢, and dy41hg =id4. Similarly for A having an initial object.

1.5. Notions of Homotopy Theory

As we saw in 1.2, we cannot reflect our concepts about homotopy from Top to
SiSets completely. On the other hand, we still have that the composed functors
|S. — | and S.|..| preserve homotopies, homotopy equivalences and contractibility,
see corollary 4.3.19 in [FP90], and that the geometric realization functor commutes
with products. This is enough for introducing a notion of homotopy. Hence here is
a bit more of terminology.

DEFINITION 1.5.1. A simplicial map f : X — X' is called a weak homotopy
equivalence if |f| is a honest homotopy equivalence. A bisimplicial map X.. —
Y.., in general a multi-simplicial map, is a weak homotopy equivalence whenever
(diag X..) — (diag Y..). is, recall 1.0.7. A simplicial set is said weakly contractible
if its geometric realization is contractible.

1.5.2. As we did before, we can transfer our homotopy ideas further towards
the categorical level. Two functors, F' and G, will be said homotopic if |N F| ~
|N.G|, F will be a homotopy equivalence if |N F'| is a homotopy equivalence and A
will be said contractible if |N A| is contractible.

LeEMMA 1.5.3 (Realization Lemma in [Wal78]). Let X — Y. be a map of
bisimplicial sets. Suppose that for every n, the map X, — Y, is a homotopy
equivalence. Then X — Y. is a homotopy equivalence.

DEFINITION 1.5.4. We say a map is constant if it factors through a terminal
object.

DEFINITION 1.5.5. A sequence of maps of topological spaces A - B — (' is
called a fibration up to homotopy if the composed map A — C is constant, and
the resulting map from A to the homotopy theoretic fiber of B — C' is a homotopy
equivalence.
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A sequence of multi-simplicial sets will be called a fibration up to homotopy if
the sequence of geometric realizations is.

1.5.6. Now, we can extend the notions of homotopy theory to the category of
small categories.

A functor F' : C — C' between small categories will be called a homotopy
equivalence whenever N.F : N.C — N.C' is a weak homotopy equivalence. A
natural transformation of F', induces a functor C x [1] — C’ and ,as we saw in 1.4.2,
this one induces a simplicial homotopy H : N.(C x [1]) = N.C x N.[]1] - N.C".
Clearly N.[1] = I and |[N.C x I| 2 |[N.C| x |I| = [N.C| x I. Therefore we end up
with a homotopy |H| : |[N.C| x I — |N.C'| in Top. In particular F' is an equivalence
of categories of of it has an adjoint, it is a homotopy equivalence. Using this chain
of constructions the ideas of homotopy at the category level, the small one, fit
perfectly with the regular notions of homotopy theory for topological spaces.

1.5.7. Next we give some criteria to detect homotopy equivalences and fibra-
tions up to homotopy. Further details in [Wal78].

Let F : C — C' be a map of small categories and X' an object in C’.

a) Denote by F|X’, the left fiber of F over X', the category whose objects are
the pairs (X, z) with X an object in C and z : F(X) — X' is a morphism
in C'; and whose morphisms from (X, z) to (Y,y) is amap f: X — Y such
that z =y o F(y).

b) A morphism m : X' — Y"' in C' induces a functor F|m : F|X' — F|Y".

c) Dually it can be defined the right fiber of F' over X'.

THEOREM 1.5.8 (Theorem A). Let F' : C — C' be a map of small categories.
Suppose that for every X' object in C' the category F|X' is contractible. Then F' is
a homotopy equivalence.

THEOREM 1.5.9 (Theorem A by Quillen). Let F : C — C' a map of small cat-
egories and X' an object in C'. Let F|X be the fiber of F over X', i.e. the category
with objects (X,z), F(X) 5 X', and morphisms f : X — Y such that

F(X) I—>X’

If for every object X' in C', F|X' is contractible then F is a homotopy equivalence.

LEMMA 1.5.10. Let X, = Y., = Z be a sequence of bisimplicial sets so that
X — Z._ is constant. Suppose that X ,, = Y., — Z ,, is a fibration up to homotopy,
for every n. Suppose further that Z ,, is connected, for every n. Then X — Y —
Z. is a fibration up to homotopy.

THEOREM 1.5.11 (Theorem B). Let F': C — C' be a map of small categories.
Suppose that for every morphism m : X' = Y" in C', the map F|m : F|X' —» F|Y’
is a homotopy equivalence. Then for every X' object in C', the square

FIX' —>¢

|

idc|X'—>C’
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is homotopy Cartesian. (IfC' is connected, then B(F|X') ~ hom fiber( BC . e ).
Dually, left fibers can be replaced by right fibers.
REMARK 1.5.12. A commutative diagram of topological spaces
A——B

L

C——=D
is homotopy Cartesian if the map from A to the homotopy theoretic fiber product
C xp D' xp B is a homotopy equivalence, whereas D! denotes the space of maps
from I to D.
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CHAPTER 2

Categories with cofibrations and weak
equivalences

In this section we present a quick review of Waldhausens K-theory of a small cat-
egory with cofibrations and weak equivalences [Wal85]. One example to keep in
mind is an additive category where the cofibrations are inclusions of direct sum-
mands up to isomorphism, and the weak equivalences are the isomorphisms. An-
other example is the category of finite chain complexes in an additive category with
cofibrations the degreewise inclusions of direct summands and weak equivalences
the homotopy equivalences. If, in this example, we take the weak equivalences to be
the isomorphisms, we get an example of an exact category (since exact sequences
are only degreewise split exact). In addition we recall the basic tools which will
allow us to decide when two categories have isomorphic K-theory.

Given any small category C with some extra structure described below, Wald-
hausen assigns functorially to C a topological space K (C), which we call K-theory
of C. The homotopy groups are defined to be the K-groups of C. This extends the
classical definitions of K-groups of a ring R by taking C to be the additive category
of finitely generated projective modules over R, with cofibrations inclusions of di-
rect summands, and weak equivalences isomorphisms, see below for the meaning of
these terms.

DEFINITION 2.0.13. [Wal85, Sections 1.1 and 1.2] A small category C with a
zero object is said to be a category with cofibrations and weak equivalences if it
has two distinguished subcategories, coC and wC, satisfying the following axioms:
a) coC axioms.

cof 1: Isomorphisms in C are cofibrations.
cof 2: For every A € C, x — A is a cofibration.
cof 3: Cofibrations admit cobase change:
a: If A — B is a cofibration and A — C any map, then the push out
exists in C.
b: C — CJ, B is a cofibration.

b) wC axioms.

weq 1: Isomorphisms in C are weak equivalences.
weq 2: (Gluing Lemma) If in the commutative diagram

Sy

~——A——C
A c

15
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the horizontal arrows on the left are cofibrations and all three vertical arrows
are in wC then
Bl Jc—B'|JC
A A
is in wC.

The two following axioms may, or may not, be satisfied by C.

Saturation axiom: If a, b are composable maps in C and if two of a, b, ab are
in wC then so is the third.

Extension axiom: Let

A——>B——>BJA

L

Al —— B —— B'JA'

be a map of cofibration sequences (B/A =xJ, B). If A -+ A" and B/A — B'/A’
are in wC then B — B’ is in wC as well.

Having fixed coC and wC, we have a simplicial category:

S.C : AP — (cat)
[n] — SnC
where S,,C is the category with objects composable cofibrations:
x> A > Ay =5 A,

with chosen quotients 4; ; = 4;/A;, 1 <i < j < n. We always have A;; = . The
morphisms in the category S,,C are maps A; — B; commuting with the cofibration
sequences. S.C is a simplicial category as follows: the degeneracy maps are given
by inserting identities, and the boundary maps d; by omitting the index ¢, for
1 < i <n. If dy were given by extending this recipe and omitting %, then the
construction would give the nerve of the category coC, which is contractible since
there is an initial object. Instead, dy prescribes taking all the quotients by A,
hence the necessity for including a choice of quotients from the beginning. The
category S,C is a category with cofibrations and weak equivalences, by defining a
map A — A’ to be a cofibration if
A; — A% and  Aj|JAj — A
Aj

are cofibrations in C for all j. An arrow A — A’ is defined to be a weak equivalence
if the arrow A;; — A} is a weak equivalence for each pair i < j. We thus
have that S. is a functor from categories with cofibrations and weak equivalences
to simplicial categories with cofibrations and weak equivalences. For more details

about this see sections 1.1, 1.2 and 1.3 in [Wal85].
We can think of:

wS.C : AP — (cat)
[n] — wS,,C
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as a bisimplicial set by taking the nerve of wS,,C

DEFINITION 2.0.14. [Wal85, Section 1.3] The Algebraic K -theory of the cat-
egory with cofibrations C, with respect to the category of weak equivalences wC is
given by the pointed space

K(C) =QuwS.C|.
The K-groups of C are the homotopy groups of K(C)
K.C = 1. (QuwS.C|) (= Tug1|wS.LC)).

Actually K-theory can be described as a spectrum rather than just a space. The
S.-construction extends namely, by naturality, to simplicial categories with cofibra-
tions and weak equivalences. In particular it thus applies to S.C to produce a bisim-
plicial category with cofibrations and weak equivalences, S.5.C = S.()C. Again the
construction extends to bisimplicial categories with cofibrations and weak equiva-
lences and so on. Therefore we get a spectrum whose n’th space is |wS.("C| The
structural maps are defined as the adjoint of the map ¥|wC| — |wS.C| which is
given as the inclusion of the 1-skeleton in the S.-construction, see [Wal85, page
329].

It turns out that this spectrum is an 2-spectrum beyond the first term (the
additivity theorem 2.0.20 below is needed to prove this). As the spectrum is con-
nective (the n-th term is (n-1)-connected) an equivalent assertion is that in the
sequence

|wC| = QuwS.C| = V*|wS.S.C| — ---
all maps except the first are homotopy equivalences. Hence K-theory of C could
equivalently be defined as the infinite loop space

0°°|wS.()C| = lim Q" wS."C|

We will refer to any of the three versions as the K-theory of C and denote it as
K (C). If it is necessary to emphasize the category of weak equivalences wC used to
define the K-theory of C, we will write K (wC) instead of K (C), by a slight abuse
of notation.

Now we recall criteria that determine when two categories have homotopy
equivalent K-theories. Some extra structure is required on the category. It is
necessary to have a notion of cylinder in order to define some kind of homotopy
theory.

DEFINITION 2.0.15. [Wal85, section 1.1] A functor F' : C — C’, between
categories with cofibrations and weak equivalences is said to be ezact if F' preserves
all relevant structures. Such a functor induces in a natural way a map

wS.F : wS.C - wS.C'

and therefore a map between the K-theories.

2.0.16. The properties of the product and the realization functor ensure that,
given a map (simplicial homotopy)

H:XxI—>Y
where X and Y are simplicial sets, there is an induced homotopy
H:|X|xI—=|Y|
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between |F| = |H|x|x{o1| and |G| = |H|x|x{1}|- This applies, in particular, to our
case when X and Y are the S.-constructions of categories C and C’.

Therefore we have a notion of homotopy between functors. To see more about
this we refer the reader to [Wal78, Section 5, Notions of homotopy theory].

DEFINITION 2.0.17. [Wal85, Section 1.6] A category C with cofibrations and
weak equivalences has a cylinder functor if there is a functor

T :ArC — DiagC

where ArC is the category of arrows of C and Diag(C is the category of diagrams in

C.

T(f:A—B) = A—T(f)<=—B
f

NA

B
satisfying:

Cyl 1: Front and back inclusion assemble to an exact functor

ArC —)Flc
(f:A—= B)=(AVB>T(f))
where F;C is the full subcategory of ArC whose objects are the cofibrations
in C.
Cyl 2: T(x - A) = A, for every A € C and projection and back inclusion are
the identity on A.

There is an additional axiom that is often satisfied:
Cylinder axiom: The projection T'(f) — B is in wC for every f: A — B.

DEFINITION 2.0.18. [Wal85, section 1.3] A cofibration sequence of exact func-
tors C — C' is a sequence of natural transformations F' — F — F" having the
property that for every A € C F'(A) — F(A) — F"(A) is a cofibration sequence
in C'.

One of the basic tools is the additivity theorem [Wal85, Theorem 1.4.2 and
Proposition 1.3.2], see also [McC93]. To state it we need a definition.

DEFINITION 2.0.19. [Wal85, section 1.1] Given a category with cofibrations
and weak equivalences C and subcategories with cofibrations and weak equivalences
A and B, we define the extension category E(A,C, B) to be the category with objects
cofibrations A — C' — B in C where A is an object of A, B an object of B and C
an object of C. This is a category with cofibrations and weak equivalences in an
obvious manner as a subcategory of S2C. We shall denote E(C,C,C) as E(C).

We can now state the additivity Theorem
THEOREM 2.0.20. The maps
(2.2.0.20.1) |wS.F| and |wS.(F' VvV F")]|

are homotopic.
This statement is equivalent to either of the following statements:



2. CATEGORIES WITH COFIBRATIONS AND WEAK EQUIVALENCES 19

(i) The map
(2.2.0.20.2) wS.E (A,C,B) —wS.A x wS.B
A—C— B+—(A4,B)
is a homotopy equivalence.
(1) The map
(2.2.0.20.3) wS.E (C) —wS.C x wS.C
A— C — B+——(A,B)
is a homotopy equivalence.
(11i) The two maps
(2.2.0.20.4) wS.E (C) —wS.C
A-C—-B+—C, AVB

are homotopic.

Let us see how the K-theories of a category and a subcategory relate to each
other.

DEFINITION 2.0.21. Let A be an exact subcategory of the exact category B.
A is said to be cofinal in B if 0 - A" - B — A" — 0 is exact in B with A’ and
A" in A, then so is B, and if for each B in B there is a B’ in B so that B & B’
is isomorphic to an object in A. (For simplicity we will assume A is isomorphism
closed in B. This does not change the K-theory of A).

The next theorem is known as the cofinality theorem.

THEOREM 2.0.22. [Sta85, Theorem 2.1] Let A be cofinal in B and G = Ko(B)/Ko(A).
Then there is a fibration sequence up to homotopy
K(iS.A) —» K(iS.B) — BG.
Notice wA = iA and wB = i3, where i denotes the isomorphisms, the minimal

possible choice.

In general, given a category C we will fix the cofibrations and then look at the
interplay of the two K-theories defined by two different notions of weak equiva-
lences. Let C be a category with cofibrations equipped with two categories of weak
equivalences, one finer than the other, vC C wC. Let C¥ denote the full subcategory
with cofibrations of C given by the objects A in C having the property * — A is in
wC. Tt inherits weak equivalences:

vC¥ =CY"NuC wC” =CYNuwC
Now recall the generic fibration lemma.

LEMMA 2.0.23. [Wal85, Theorem 1.6.4] If C has a cylinder functor, and the
coarse category of weak equivalences wC satisfies the cylinder aziom, saturation
axiom and extension azxiom, then the square:

vS.CY —— wS.C¥ (= *)

L

vS.C —wS.C

is homotopy Cartesian, and the upper right term is contractible.
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Next we recall the approximation theorem, a sufficient condition for an exact
functor F': A — B to induce a homotopy equivalence wS.4A — wS.B.

DEFINITION 2.0.24. Let F' : A — B be an exact functor of categories with
cofibrations and weak equivalences. We say it has the approximation property if it
satisfies:

App 1: An arrow in A is a weak equivalence in A if and only if its image in B

is a weak equivalence in B.
App 2: Given any object A in A and any map z: F(A) — B in B there exists
a cofibration a: A — A’ in A and a weak equivalence 2’ : F(A") - B in B

such that
F(a) l /
F(A")
commutes.

The approximation theorem says:

THEOREM 2.0.25. [Wal85, Theorem 1.6.7] Let A and B be categories with
cofibrations and weak equivalences. Assume wA and wB satisfy the saturation
aziom. Suppose A has a cylinder functor that satisfies the cylinder aziom. Let F':
A — B be an exact functor having the approzimation properties. Then wA — wB
and wS.A — wS.B induce homotopy equivalences.

REMARK 2.0.26. There is a sutile refinement of 2.0.25 in [TT90, page 263-
264]. Instead of require App 2 it is required:

App 2’: Given any object A in A and any map z: F(A) — B in B there exists
a morphism a: A - A’ in A and a weak equivalence 2’ : F(4') - B in B

such that
F (A) - . B
F(a) l /
F(A")
commutes.

App 2' may look weaker than App 2, but it actually implies the stronger
in presence of the rest of the hypothesis of the theorem 2.0.25. Given = =
x'F(a) as in App 2', apply the cylinder functor to a : A — A’ to factor
a = a"a" with A>—=A" =T(A), and a" the weak equivalence A" =
T(a) = A'. Then z" = z'F(a") : F(A") 5 B is a weak equivalence,
a': A>—=A" is a cofibration, and x = z"F(a’). Hence App 2’ implies
App 2.



CHAPTER 3

Exact Category

DEFINITION 3.0.27. An additive category Uis a small category with a zero
object 0, where Homy, (U, V') is abelian for all objects U, V. Moreover, composition
is bilinear with respect to this operation. Finite products and coproducts exist in
such category are isomorphic. We call them direct sum and write it as U @ V.

DEFINITION 3.0.28. An abelian category A is an additive category in which
each morphism has a kernel and a cokernel, every monic arrow is a kernel , and
every epi a cokernel. (Recall that f : B — C is called monic, or monomorphism, if
fe1 # feo for every ey # es : A — Bj it is called epi, or epimorphism, if g1 f # g2 f
for every g1 # go : C — D).

3.0.29. In an abelian category, we call a sequence A 5 B4 ¢ exact if ker g
equals Im f = {B — coker f}. A longer sequence is exact if it is exact at all places.
By short exact sequence in an abelian category A we mean an exact sequence of
the form: 0 - A’ - A — A" — 0.

DeFINITION 3.0.30. An additive functor T : &/ — V between additive cate-
gories are those which satisfy T'(f + f') = T'(f) + T'(f') for any pair of morphisms
fsf': U — V. Moreover, such a functor satisfies T(U ® V) =T(U) & T'(V).

For further details we refer to [Lan71] pages 192-193.
Following [Qui72] we define an exact category as follows.

DEFINITION 3.0.31. An exact category U is an additive category together with
a choice of a class of sequences { Ey>— FE> — F3 } said to be exact. This
determines two classes of morphisms:

1. admissible epimorphisms: FEi>—— FEy

2. admissible monomorphisms: F, ——s FEj

The exact category is to satisfy the following axioms:

a) The class of admissible monomorphisms is closed under composition and is
closed under cobase change by pushout along an arbitrary map E; — Ej.

b) Dually, the class of admissible epimorphisms is closed under composition
and under base change by pull-back along an arbitrary map E} — Es.

c) Any sequence isomorphic to an exact sequence is exact, and any split se-
quence

E>——>FEF®pF —F

is to be exact.
d) In any sequence E;>—— Ey —— F3 , the map FE;>—— FE5 is a kernel

for By —— FE5,and E, ——s> F3 is a cokernel for EFi>——> F5 .

21
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e) Let E 5 Fbea morphism in U/ which has a cokernel in . If there exists
amap F % G such that E—" G is an admissible monomorphism, then

E>—"> F is itself an admissible monomorphism.
f) Dually, if F % F has a kernel in U/ , and if there exists a G % F such that

G —%> E is an admissible epimorphism, then F —= E is an admissible
epimorphism.

Most of exact categories satisfy an stronger version of e) and f) , C, namely: If
f: E — F is a morphism in i/, and there is a morphism s : F' — E which splits f
so fs = 1, then f is an admissible epimorphism F ——s= F .

This property and its dual are satisfied, in presence of e) and f), if U as exact
category is idempotent complete, see appendix A of [TT90] for more details or the
appendix C.

3.0.32. There is an alternative, and equivalent, description of an exact cate-
gory due to Bass, see [Bas68]. We follow here Weibel’s version, [Wei].

An exact category is a pair (C,&), where C is an additive category and & is
a family of sequences in C satisfying that there is a full embedding of C as a full
subcategory of an abelian category A so that

(i) £ is the class of all short sequences in C which are exact in A;

(ii) C is closed under extensions in the sense that if 0 — B LHCo5Dsois
exact sequence in A with B, D € C then C € C.

£ is the class of short exact sequences of C. A morphism which occurs as the
monomorphism 4 (resp. as the epimorphism j) in some sequence in Ewill be called
admissible monomorphism (resp. admissible epimorphism).

As in Quillen’s definition, there is a property which many exact categories
satisfy: closure under kernels of surjections in A. C is closed under kernels of sur-
jections in A provided that whenever a morphism ¢ : B — C'in C is an epimorphism
in A then kerp € C. Again, if C is idempotent complete then it is closed under
kernels of surjections in A. Also, again see appendix A of [T'T90] for more details
or the appendix B.

This double point of view of the concept of exact category will be helpful:
Quillen’s version in order to check the exactness of a category, Bass’ to make
calculations with morphisms. We will use mainly Quillen’s definition but keep-
ing in mind that via the Gabriel-Quillen embedding the exact category U can be
seen as a full subcategory of an abelian category Ab(U) of the left exact func-
tors U°P — Z — modules. Once more see appendix A of [TT90] for a complete
description or appendix B for a fast review.

3.0.33. U is a category with cofibrations and weak equivalences.
U as an exact category has a natural structure of category with cofibrations
and weak equivalences. Let cold be the admissible monomorphisms and let wi/ be
the isomorphisms in /. Let us check Waldhausen’s axioms:

a)cold axioms.

cof 1: Isomorphisms are in cold since they are admissible monomorphisms.
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cof 2: YU € U+ — U is a cofibration since we always have the following split
sequence in U

>—>xPA—>>A.
cof 3: Cofibrations admit cobase change by axiom a) for exact categories.
b)wl axioms.

weq 1: Isomorphisms are in wi{ by definition.
weq 2: Gluing Lemma is easy to check by chasing in the following diagram:

3.0.34. The saturation axiom, 2.0.13, is satisfied trivially since we are dealing
with isomorphisms. The extension axiom can be verified by chasing in the diagram:

A>—>B—>>B/A
Al>——> B’ —>>B'/A'_

Recall that in an exact category U a morphism is an isomorphism if and only
if it has both kernel and cokernel and both are trivial, i.e. the zero object.
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CHAPTER 4

Localization for Exact Categories

4.0.35. Let U be an exact category and A C U an exact subcategory of U. We
shall say that A localizes U, if for each U in U there are families of exact sequences

{A>—>U—»—U’, U”>—>U—>>A’}

with A and A’ in A verifying:

(i) A is a Serre subcategory, i.e. the exact sequences are closed in A:
For A'>—— 4 —= A" A€ Aif and only if A, A" € A.
(ii) VA—> U, 3

(iii) VU — A, 3

U——A4A

UI

DEFINITION 4.0.36. A morphism U 4V in U will be called a A~ '-isomorphism
if there are exact sequences in U corresponding to U and V such that

UjA—2

U —2 >
0
—_—

|

o <— < <——<<|

and ® is an isomorphism.

25
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REMARK 4.0.37. If ¢ is an A~ '-isomorphism, then ¢ has kernel and cokernel,
both in A. The diagram above can be seen as

i(U)

kero>—"> U & U/kery z i(V) (V)

Imyp % cokeryp

A

by which 7(U) and i(V) are again A~ !-isomorphisms.
COROLLARY 4.0.38. Morphisms in A are A~!-isomorphisms.

PRrROOF. Let A %+ A’ be a morphism in A. Then by axiom ii), 4.0.35, there is
an a diagram like the following;:

A/ kera

o,
B

ker A'/Ima

We have that o can be factored as @n(a) with 7(«) an admissible epimorphism
and @ an admissible monomorphism. In fact, we have shown that every morphism
in A has kernel and cokernel, in A, and hence is an A~ '-isomorphism. O

REMARK 4.0.39. In fact Corollary 4.0.38 implies that A is an abelian category
inside of U. Abelian categories are additive categories where all morphisms have
kernels and cokernels, see [Weli].

Let us check the set of .4~!-isomorphisms verify the axioms A.0.8.

4.0.40. Let a, b be A~'-isomorphisms where a is a monomorphism and b is
an epimorphism. We have then the following diagram:

V/Ima

w(a)i(b
By 4.0.38, ker bl)li)cokera is factorized like,

ker 7(a)i(b)——> ker b —— ker b/ ker w(a)i(b) —Z> A—"> cokera KON coker m(a)i(b)

m(a)i(b)
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Hence the lower left corner is completed to

ker 7(a)i(b) - -
I i(b
ker b ®) Vv i W

T
- ﬂ,(;) \

A>——"— coker a — coker 7(a)i(b)

Since 7(a)i(b) = iw, we have that m(a)i(b)i = 0 which implies i(b)i factors through
a. Let us sayi(b)i = am. m is obviously a monomorphism in /. Actually m is an
admissible monomorphism. By property 4.0.38, we have

ker m(a)i(b) —>= A(U)—= U/ U(A)
\_/

where ¢ is an admissible monomorphism and hence a monomorphism. Since m is a
monomorphism as well, this implies s is a monomorphism. s is also an epimorphism.
This means s is an isomorphism and hence m is an admissible monomorphism.
We can perform this last step by using the ambient abelian category in which
the exact category U may be embedded. See chapter I. In the ambient abelian
category a morphism is an isomorphism if and only if it is an epimorphism and a
monomorphism.

Call V. = cokerm. Dually, 7(i)m(a) = Ib and by a dual argument to the
one above [ is an admissible epimorphism. Call W = kerl. Clearly , there is a
morphism V' — W. Once more by regarding 2/ embedded in an ambient abelian
category, it can be shown by chasing in the diagram that such morphism is in fact
an isomorphism.

4.041. Let a: U — V, B:V — W be two admissible epimorphisms which
are A~ !-isomorphisms as well, i.e. their kernels are in A.

ker o

U
| N
ker 3 i(3) v B W

By 3.0.31 there exists A pull back for i(3) and « which is an object in A for being
an extension of ker # and ker o, 4.0.35. By 3.0.31 S« is an admissible epimorphism.
Pull back properties imply that m is the kernel for fa. By uniqueness of kernels
m is an admissible monomorphism. Hence fa is an admissible epimorphism

which is also an A~ '-isomorphism.

4.0.42. Dually to 4.0.41 given a and 3 admissible monomorphisms and A~!-
isomorphism, it can be shown S« is of the same kind.
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4.043. Let « : U — V, 8 : V — W be two A '-isomorphisms. By
definition of A~!-isomorphism there exists the diagram that follows for Sa:

ker v V/Ima V/B45>Ir1i[3
. v |
U/kera“_>1ma/ \kerﬂ W/Im

~

Applying 4.0.40, 4.0.41 and 4.0.42 in combination to the diagram above we have
that Ba is again an A~ '-isomorphism.
This finishes the verification of axiom MS1, 4.0.35.

4.0.44. Lets us check M S2. Given
Z
ls
X ——=Y

with s an A~ l-isomorphism. This diagram can be rewritten to

lu
i(Y) m(Y)

i(z n(Z
) ) Im s Y coker s.

ker s Z —> Z/kers

»

Applying property property iii) of 4.0.35 to (Y )u, we find an exact sequence for

X factoring 7 (Y)u.
i(z) _ w(2) vy me L

ker s— Z — Z/ kers i Im s Y coker s.

S

Since 7(Y)u = 0, there is morphism u' : X(7(Y)u) — Ims. By axiom b) for

i(Z w(Z
exact categories, 3.0.31, we can pullback u’ along ker 5>Q> VA —(l> Z[kers .

We complete the diagram to

ker s>

|

N=<=—N

p.b. u’ lu l
w(Z v i(Y (Y
—(;—Z/kers Im s S8 Y &) coker s.

S
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Let W = Z and v, t be the morphisms indicated in the diagram above. It is clear
that t is an A~ !-isomorphism.

We have two remarks to do:

REMARK 4.0.45. (i) If u is a monomorphism so is u' and hence v.

(i) If s is a monomorphism (resp. epimorphism) besides being A~ !-isomorphism,
t would be a monomorphism (resp. epimorphism). In the case that s is a
monomorphism we shall say that X can be replaced by the ”smaller” W to
make the diagram commutative.

REMARK 4.0.46. Notice that the object Z obtained after completing the dia-
gram in MS2, satisfies the properties of a pull-back. Hence we will call to complete
such a diagram to pull backwards. Given morphisms ¢ : R - X and b: R — Z
such that wa = sb, there is a morphism @ : R — Z making the whole diagram
commutative.

N
b
=
=
£
e
B
A
=
£

/vl p.b.
i(Z w(Z
(%) 7 (2)

kexs— Z —> Z/ kers i Ims Y coker s.

. \//

S

Since au = sb then 7(Y)au = w(Y)sb = 0. This means R—">X —sA(n(Yu) is
zero and hence a factors through X (7 (Y)u), call it a’. It satisfies i(Y)u'a' = ua =
sb = i(Y)sn(Z)b. The morphism #(Y) is a monomorphism, then vw'a’ = s7(Z)b.
The diagram now is a truly pull-back in /. We have then the existence of @, our
dotted arrow.

The proof for M S2' is dual to the one for M S2, with dual remarks.

REMARK 4.0.47. (i) If w is an epimorphism so is u' and hence v.

(i) If s is a monomorphism (resp. epimorphism) besides being .A~!-isomorphism,
t would be a monomorphism (resp. epimorphism). In the case that s is a
epimorphism we shall say that X can be replaced by the ”smaller” W to
make the diagram commutative.

REMARK 4.0.48. Dually to remark 4.0.46, the object Z completing the dia-
gram in MS2’:

- >7
l A
X =Y

satisfies the properties of a push-out. We will call to push-forward to complete this
kind of diagram. The proof is also dual to that of remark 4.0.46.



30 4. LOCALIZATION FOR EXACT CATEGORIES

4.0.49. In order to check M S3 under our hypothesis, notice that since U is
an exact category, hence additive M S3 can be restated as:
Given h: X — Y, are equivalent

(a’) 3s:Y — Y' in S such that sh = 0.
(b’) 3t : X' — X in S such that ht = 0.

(a’)=(b’). Given

ker s coker s
T
b
Xt sy — oy
Y/kers §—> Im s

Since hs = 0, h factors through ker s. By 4.0.35, we find an exact sequence for X
and h':
A(h') ——kers

X Y

i(h")
X (B

Let X' = X (k') and t = i(h'), clearly i(h') is an A~!-isomorphism and i(h')h = 0.
(a’)<=(b’). Given

kert coker
oy
X —t—x Ly

|

X/kert—>? Im¢

Since ht = 0, h factors through cokert which is in A. By property iii) of 4.0.35 we
find an exact sequence for Y and h”.

coker t ——— A(h')

Xx—"' 2y
iﬂ(h”)
Y/A(h")

Let Y/ = Y/A(h") and s = w(h"), clearly w(h") is an A~ '-isomorphism and
hm(h') = 0.
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DEFINITION 4.0.50. We define the localized category AU as the category
with objects obj AU = objlif and morphisms

Hom 4-14¢(U,V) = lim Homy, (U', V")
Iy,Jv

~ ~

where Iy = {U' = U} and Jy = {V' = V} are the categories described in
appendix A. In other words, A=Y is the localization of ¢/ with respect to the set
of A~'-isomorphisms.

4.0.51. Hence by A A~'U is a category, in fact a small category since it has
the same set of objects U has.

Let us check it is an additive category, [Har66]. We will only give an sketch of
a proof. For further details we recommend [Wei94] page 383. There is an obvious
zero object, and the sum of objects will be given by the sum in .

Given f,g € Hom 4-14(U, V), let f be represented by

U<—10U'
fri
VI<—V

and g represented by

UéUU

gll l
VI <—1V.
Let U and V be, using calculus of fractions A, such that

o and v

commute.

We obtain the following commutative diagram:
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(4.4.0.51.1) T

The morphisms f,5 € Homy (U, V) are new representatives for f and g respec-
tively. We define f+g € Hom 4-1,(U, V') to be represented by f+g € Homy (U, V).
We would need to show this definition is good. It is clear from diagram 4.4.0.51.1
that by taking enough “pushouts” and “pull-backs” we would get that if f and f’
are equivalent and, g and ¢’ are equivalent then so are f + ¢g and f' + ¢'.

In a similar fashion the rest of the axioms for an additive category can be
checked.

An exact sequence 0 - M — N — P — 0 in A~'Y will be declared to be
short exact sequence in A~'Y if it is A~ '-isomorphic to a short exact sequence
M——N——=P in Y. We mean there is a commutative diagram in A~'¥/ as the
following one:

L o N—2 P
]
(V) =(P) 0

v

0 M

l
0 — =(M)

where u, v and w are isomorphisms in A~1U.

Before checking the axioms 3.0.31 for A~'U we are going to prove some easy
facts about morphisms in the localized category which may make things easier. Let
 and v be morphisms in U.

4.0.52 (a). It is verified that m(¢) = 0 if and only if ¢ factors through A.

It is clear that if ¢ factors through A then 7 (p) = 0. On the other hand, that
7(¢) = 0 means that 7(y) factors through the zero object x in A='U. The zero
object * in A~'l{ is represented by any object A in .A. We have then the next
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diagram in U:

—— A —
The upper half of the diagram might be rewritten then as

M4W>N

7 N
\A/

Take push forward, 4.0.48, on the left,

and now the pull-back, 4.0.46, on the upper right. This shows ¢ factors through

an object A in A.

j p.b. [ ]

_7
4.0.53 (b). Moreover, it is verified if (1) = 0 then there is a representative
@' for ¢, m(p) = 7(¢"), such that ¥y’ =0in U.
If 7(1pp) = 0, then by 4.0.52 there is an object A in A through which ¢
factors.

M—>N—>P

N
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Now, apply the localization axiom iii), 4.0.35, to the morphism from M to A,

Call ¢’ : M(A) — M to pi. Clearly ¢y’ = 0.
Dually, it can be shown that in the given conditions there is a representative

Y for ¢, m(') = m() with ¢ = 0.

4.0.54 (c). Kernels and cokernels persist in A~ 'U. Let M - N be a mor-

phism in & and K = M its kernel.

It is clear that m(i) is a monomorphism in A~'%. Let now f : M — X be
a morphism in AU such that 7(u)f = 0 in A7'%U. We shall show there is a
morphism §: X — X with 7(i)g = f in A™'U.

Since 7(u)f = 0 then by 4.0.53 there is a representative f' for f,i.e. 7(f') = f,
satisfying that wf’ = 0. Hence f’ factors through K = M, ie. f' = ig' for
g : X' = K. Call g =n(g"). Clearly 7(i)g = f in A~"U.

Apply a ‘dual’ argument for the ‘respective’ case of the cokernels.
This result implies that if ¢ has kernel and kerp € A, resp. cokernel and
coker ¢ € A, then ¢ is a monomorphism, resp. an epimorphism, in A~1U.

4.0.55. Let us check the axiom a) 3.0.31 for A~'l/. First, we shall see the
composition of admissible monomorphisms is again an admissible monomorphism.
For these computations it will be made use of the closure condition under kernels
of epimorphisms, see 3.0.32, for &/. We can assume this condition since it has no
K-theoretical repercussions, see C.4.3 on page 90.
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Leta:U — Vandb:V — W two admissible monomorphisms in .41/, which
we may represent as follows in U:

After the indicated pull-back and some simplifications, it becomes

W
ﬁ
— 7

U

Then we take push-forward and apply axiom a) 3.0.31 to the second admissible
monomorphism, as indicated bellow,

V“I’/. < W
: p-o
2< ..... T ﬁ
[e% E ~ p.f. TN
U——=V~<—

Since a is an A~ !-isomorphism, there is a decomposition like

ker a>—>U —> V / ker z Ima 14 coker a

\_/’

¢
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and composition of admissible monomorphisms is closed in U/, the diagram will be
reduced to

V/kera

~

=<l
~
=

V

S

ker v

Apply axiom (ii) of 4.0.35 to the lower right corner, which will decomposed as

Admissible epimorphisms are closed under composition, hence the doted arrow in
the diagram above is an admissible epimorphism. Call U to its kernel. There is

then an induced morphism from U to U whose cokernel is A;. Hence by axiom
e) of 3.0.31 this morphism is an admissible monomorphism. Moreover it is an
A~ '-isomorphism.

%

On the other hand, there is an induced morphism j : V' — Vj, which is obviously an
epimorphism. Here we apply the closeness condition to I/, having then the existence
of ker j. Now j is an admissible epimorphism by axiom f), 3.0.31.

The existence of this j induces a morphism from kera to U whose cokernel
happens to be ker j. Hence these morphisms, by axiom e), 3.0.31, is an admissible

monomorphism. Moreover the morphism from U to kerj is an A~!-isomorphism
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besides being an admissible epimorphism.

ker j % Vi
o
S SN A
U< ........... <kera—»A1
U

We have obtained the next morphisms

W
v

in U, whose composition is a admissible monomorphism in ¢/. kerj and W are
isomorphic in /"' A to U and W respectively through chains of .4~!-isomorphisms.
We obtained our purpose then.

Using dual arguments it can be sown that admissible epimorphisms in A~
are closed under composition.

Let us check that admissible monomorphisms are closed under cobase change
by push out along arbitrary morphisms.

Let a : A — B be an admissible monomorphism in A~/ and ¢ : A — C be
any other morphism in the localized category. After choosing representatives for
these morphisms, we have in U:

ker j>——

B
A———B

Below, in the diagram, we sketch the steps to perform. First get the pull back
out of A, then push forward from this newly pull-backed object. In this way, it is

obtained an object C' and a morphism from A to C' along which we push out the
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admissible monomorphism which represent a. That finishes the proof.

-~
p.o.

c
p.f.
A <——
A ~—A

~

B < “~ B

A dual argument would work for the base change of admissible epimorphisms in
A~'U by pull-back along arbitrary morphisms.

4.0.56. Finally let us check axioms e) and f) of 3.0.31. Let the following
diagram be in A~1U:

FE —ts F — cokeri

RN

G

Choosing the right representatives for E, F, G, say E, F and G respectively, and
possibly others; it is possible to construct the outer part of the next diagram in U
after some simplifications and after taking a few push-forwards and pull-backs.

—=F

1ZIAN

Call 7 the composite in the upper left corner and take push-out along E, then &
would factor through the push-out.
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= =/
Now take pull-back along k, ¢ factors through the pull-back.

AN

Hence we arrive to a situation similar to the one in axiom e) but in . We are

I-

G

FE

only left to prove 7 has a cokernel. Apply axiom a) of exact category, 3.0.31, to
E——>G along i.

But the existence of k implies that of a morphism I which splits 7, i.e. Ij = 1.
Result C.0.25 implies j is an admissible monomorphism, hence it has cokernel.

Since the diagram is a push-out then it is also the kernel for i. By property 4.0.54

this implies i has cokernel in A~'% and it is isomorphic in AU to coker i.
For the axiom f) we do similar calculations. Given a diagram

keri —>F ——>E

1

G

in A~'U. Choosing representatives for these morphisms in ¢{ and after simplifica-
tion as above we may have a commutative diagram like the following one:

F
e
A~

G—F

Take push-forward along & through which, as indicated above, i factors. We arrive
to

| X
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Now apply axiom b) of 3.0.31 to G——=F:

I Jj

F
~ p.b./ l“’
Y

G—>F
The existence of Z implies there is a morphism [ which splits j, ie. jl = 14

Property C.0.24 implies j is an admissible epimorphism and therefore has a kernel,
say ker j. By property 4.0.54 this implies that i has a kernel in A~ which is

isomorphic in A7'U to m(ker i). We are done since we have shown an admissible
epimorphism isomorphic in 471U to i.

We have then checked on A~'U all the axioms for an exact category, 3.0.31.
Hence, the localizing functor « is exact.

Since our localization is respect to the 4~!- isomorphisms we can obtain a few
more properties of the kind in A. These have been recollected from [Bas68]

vi) Let X =—— X' ! vy , with 2 and y A~!- isomorphisms. Then we

can construct the commutative diagram.

where 7 is a admissible monomorphism and y; is an admissible epimorphism.

PROOF. Since z is an A~ '-isomorphisms then by definition of .A~'-isomorphism,

X/Imzx <% ez

o] I

X<~—"—X'

i(X)l |

Imz <—i X'/ kerx
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where kerz, X/Imz are in A and 7 is an isomorphism. Now, fi: kerz — Y by ii)
of 4.0.35, factors as

ker x - > Al

.

X —Y
Y'/A

so 7' fi =0, hence 7' f factors through X'/ kerz via w. Call that morphism fj.

X/Im$<0—kera7 ................... > A’
W(X)T IZ Iir
T f Yy
X X' Y'! Y
Z(X)I iﬂ' iﬂ"
Imz <—2 X'/ kerzx LN Y'/A
Call yo = 7'y, which is an A~ !-isomorphism by saturation. Denote by X} =

X'/kerz and Yy =Y'/A".
We have also by definition the following diagram for yo,

Yy / Im yo <——— ker yo

WéT Ii(Y)

YO, Yo y

161 iﬂ'(Y)

Im yq o Y/ keryo .

~

Apply the axiom ii), to myfo : Xy = Yy /Imyp.

Al > Yy /Imyo

F

fo

Xy ———Y,
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So mh foio = 0, hence fyig factors through i, call it f;.
A6 ........... . YO’ /Imyg

ok

fo

Xy —I oy

1k

76 —>f1 Imyo

The final diagram is then,

x—t—x—t eyt ¥
’“”1 | i/
Imx<—iX’/ker$L>Y’/A’ w(Y)
Xo LA Yo io Y/ keryo

Let X] = Xo, Y/ = Imyp, X} = X'/kerz, Y] = Y'/A, a=m, B =7,y =
Yo (Y), B1 =if, an = ip, £1 = Tip and zo = . These choices satisfy the required
conclusions. [l

vii) Let
X, g X, _eo X,

Y2T>Y1—>Y0
1

be a commutative diagram in A~'%. Then there is a commutative diagram as
follows in U:

a1 ap
Xo—X; — X

To xr1 Zo
OZ’ OZ’
1 )r 0

f2 f1 fo
81 Bo
/ / /
YQ 1 0
Y2 Y1 Yo
B1

Here the verticals represent <2, 7; and 7y respectively, the z’s are admissible
monomorphisms, and the y’s are admissible epimorphisms. In particular, if aga;
and By, are zero then so also are aja) and 3j5]. To construct such a diagram
we start with vertical representations of the +’s so that the z’s are admissible
monomorphisms and the y’s are admissible epimorphisms, using vi) above. In or-
der to complete the construction we shall replace the initial choices of the X’s and
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Y’s by ”smaller” ones. Recall 4.0.45 and 4.0.47. For an X this means a smaller
subobject of X; such that the inclusion into X; is still in an .A4~! isomorphism. For
the Y;’s this means a smaller quotient of Y; such that the projection from Y; is still
an A~ '-isomorphism.

Stepl Make X and Y} smaller so that af and /3] exist making the upper right and
lower left rectangles, respectively commute.

Step2 Make X and Yy smaller so that «f, and §j exist, making the upper left and
lower right rectangles commute.

Step3 Make Y] still smaller so that the middle right rectangle commute.

StepJ Make Y] smaller so that the middle rectangle commutes.
It is easily seen that all of the above reductions are possible, and that each step
leaves intact the conditions achieved by the previous ones.

We obtain the following result:

THEOREM 4.0.57. Let U be an exact category and A exact subcategory of A
satisfying the azioms 4.0.35. Then there is an exact category A~'U and an ezact
localizing functor © : U — AU satisfying the following universal property:

Given an exact functor T : U — V such that TA =0 for all A in A, there is a
unique functor U : A~'U — V such that T = U o . Moreover U is exact.

PROOF. The proof follows after applying the universal property for calculus
of fractions,A.0.9, to our situation, since A~'U is U localized with respect to the
A~ l-isomorphisms. O
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CHAPTER 5

The category C(U) and its structures

Given an exact category U, we can define the category of finite chain complexes in
U, where objects are:

Cu:0C SC 15 5050

such that d? =0, i. e. d? factors through the zero object. Morphisms are chain maps
f:Cy — Dy, collection of morphisms f={f,: C, — D,} such that dpf = fdc .
We shall denote this category by C'(U). A chain homotopy in U

e:f~f:C—D

is a collection of morphisms {e: C,, — D,} such that dpe+edc = f'— f:C, —
D,.. A chain equivalence is a chain map f: C' — D which admits a chain homotopy
inverse, that is, a chain map g: D — C such that

Jh:gf~1:C—>Candk:fg~1:D—D.

As we have already seen in chapter 3 the exact category U can be thought fully
embedded in an abelian category, Ab(U), via the Gabriel-Quillen embedding, see
appendix B. From this point of view, we are able to talk about homology of chain
complexes in U. Obviously this homology takes values in Ab(l).

Given Cy with differential d denote: the kernel of d,, : C), = C,,_1 by Z,(C) =
Zn, the n-cycles of C; and the image of d,,+1 : Cpy1 — Cy by B,(C) = B, the
n-boundaries of C. Since dd=0, B, — Z,, — C,, are monomorphisms in Ab(i) for
all n. The nt"-homology of C is the quotient, in Ab(U), H,C = Z,/Bp.

A chain map f: Cy — Dy is called a quasi-isomorphism if the induced maps
fe : H,C — HpD are all isomorphisms in Ab(U). If f : Cx — Dy is null-
homotopic, i.e. homotopic to the zero chain map, then the maps f, : H,C — H,,D
are zero. Hence if f and g are homotopic, they induce the same maps H,C —
H, D. Tt is clear now that chain homotopy equivalences are quasi-isomorphisms. A
complete description on these topics is given in [Wei94, chapter 1].

5.0.58. C'(U) is an exact category.

The short exact sequences in C(U) will be the short sequences of chain com-
plexes which degree-wise are shot exact sequences in U. It is clear that C(U) wit
this family of short exact sequences is an exact category.

5.0.59. Moreover C(U) is a category with cofibrations and weak equivalences.
The cofibrations will be those chain maps which degree-wise are admissible monomor-
phisms. The weak equivalences will be the quasi-isomorphisms. The cofibrations
and weak equivalences axioms, 2.0.13, can be checked rapidly using simple construc-
tions.Also the saturation and extension axioms, 2.0.13, are easy to check: use long

45
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exact sequences in homology associated to the short exact sequences of complexes
and the 5-lemma, see [Wei94, pages 10-15] for further details.

5.0.60. C'(U) has a cylinder functor and satisfies the cylinder axiom, 2.0.17.
Given f: U — V a morphism, let T(f) be the chain complex (T(f)), =
Up ® Up—1 &V}, with boundary

dr -1 0
dy=10 —dy O
0 f dv
We have the following diagram:
U—>T()<"—V
x l” /
v

where 7; and j» are the obvious inclusions as direct summands. Degree-wise 7 is
defined as:

= (f,0, 1)
It is easy to check that Cyl 1 and Cyl 2 are satisfied. The cylinder axiom also
holds. To see this, we show that 7 is a chain homotopy equivalence and hence a
quasi-isomorphism, in this case a weak equivalence. The homotopy inverse is the
natural inclusion

0
ia=10
1
Degree-wise, all is given by the following matrices:
d -1 0 0 00
m™=(f,0,1) d,=10 —-d 0 r,=11 0 0
0 f d 0 00

It is easy to check now that I'ydpi1 + dpi2l'pr1 = tompy1 — 1 and mip = 1.



CHAPTER 6

K-theory of Chain Complexes

Let U be an exact category. U has a natural structure as a category with cofi-
brations and weak equivalences,3. Admissible monomorphims are cofibrations and
isomorphisms are weak equivalences. U is fully embedded in C(U), the category of
finite chain complexes with the degree-wise monomorphisms chain maps as cofibra-
tions and the quasi-isomorphisms as weak equivalences. C (i) can be given another
structure as category with cofibtrations and weak equivalences. Denote by C(U),
the category of finite chain complexes in &/ where the cofibrations are the degree-
wise split monomorphisms as weak equivalences, still, are the quasi-isomorphisms.
C(U), also verifies the saturation, extension and cylinder axioms, 2.0.13 and 2.0.17.
We have the following theorem in [TT90] which relates the K-theory of & and of
cU).

THEOREM 6.0.61. [TT90, Theorem 1.11.7]

Given U an exact category, let C(U) be its category of finite chain complexes.
Assume U and C(U) are given the usual ‘structures’ of categories with cofibrations
and weak equivalences as explained in sections 3.0.33 and 5.0.59. Then the embed-
ding U — C(U), as chain complezes of length 1, induces a homotopy equivalence
of K -theory spectra.

Moreover, the exact functor induced by the identity, C(U), — C(U), induces
also a homotopy equivalence of K -theory spectra.

PROOF. For the proof of the first part see [TT90, Theorem 1.11.7, pages 279-
282] or the proof to [CP97, Proposition 6.1]. In [CP97], though the proof is stated
in terms of additive categories with homotopy equivalences as weak equivalences,
the proof goes through for exact categories with the quasi-isomorphisms as weak
equivalences, under a minor change in one step.

It has to be remind that, as in Thomason’s proof, U/ is required to verify the
closure condition under kernels of epimorphisms in Ab({/). For this, it is enough to
hold property C.0.24, see B.0.19[b)]. This can be solved as we already did in the
proof of [CP97, Proposition 6.1].

If ¢ does not satisfy the property (P) then ¢ does, see C.1.6. Moreover, U is
cofinal in ¢/ and K(U) — K (U) is a homotopy equivalence by the cofinality theo-
rem since it is an isomorphism on Ky, see section C.3.2. Similarly iC(U) — iC(U)
and iC(U)? — iC(U)? are cofinal inclusions which are easily seen to induce isomor-
phisms on Ky, hence induce homotopy equivalences in K-theory by the cofinality
theorem.
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Consider the diagram

K(iCU)") — K(iCU)) — K(¢C(U))

| | l

K(C@)") — K(CW) — K(@C@) ~ KW =~ KU).

The top and bottom row are fibrations by the generic fibration lemma 2.0.23.
The two homotopy equivalences at the bottom are consequences of theorem 6.0.61
and cofinality 2.0.22. We have just argued that the vertical arrows on the left
and in the middle are homotopy equivalences , hence we can conclude that the
vertical arrow on the right is a homotopy equivalence. The right hand side diagram
commutes and therefore the theorem holds for arbitrary exact categories.

For the second statement, follow the proof to [TT90, Proposition 1.9.2]. Simply
apply the Approximation theorem, 2.0.25, under the conditions in remark 2.0.26 to
the inclusion C'(U), — C(U). Condition App 1 is obviously satisfied and App 2’
is trivially satisfied with a = z, 2’ = 1. O

REMARK 6.0.62. The second part of the theorem allows us to work, whenever
necessary, under the ‘simpler’ conditions of C'(i/), instead of those in C'().
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CHAPTER 7

Setting the Main Theorem

In this part we shall prove:

THEOREM 7.0.63 (Main Theorem). Given U, an exact category, A an ezact
subcategory satisfying azioms 4.0.35, and let A='U be the associated localized ezact
category, see chapter 4, then

A—U—"A"U
is a fibration, up to homotopy, of K -theory spectra.

Given the exact category A of U under the conditions of the Main Theo-
rem, 7.0.63, we have the localization functor 7 : &Y — A~'U. Consider the
associated category of finite chain complexes C'(A~1U) with its usual structure,
see 5. The localization functor induces the following diagram of categories:

cw) —22 c(a-1u)

.

u

AU,

We will use three different classes of weak equivalences on C'(U):

a) i, isomorphisms;

b) ¢, quasi-isomorphisms, morphisms inducing isomorphisms on homology; recall
the definition in chapter 5; it will also be used ¢ for the isomorphisms in
C(A U);

¢) @, quasi-isomorphisms in C(A™1YU) reflected on C(U) via , i.e. those chain
morphisms in C'(U/) which once considered in C(A~'U) are quasi-isomorphims,
induce isomorphisms on homology, in A~'U! More easily, dimension-wise the
induced homology maps in Ab(U/) have kernel and cokernel in A.

Having fixed the cofibrations in C'(U), we will denote by wC'(U) the choice of
weak equivalences made for C'(U), where w might be: i, ¢, § or any other class.
Applying Waldhausen’s generic fibration lemma, 2.0.23 on page 19, to the following
functor induced by the identity:

qCU) = qCU)

we obtain as homotopy fiber the K-theory of the category qC(Z/{)?. The theo-
rem, 7.0.63, will follow once we apply the following results:
i) The K-theory of gC'(U) is homotopy equivalent to that of ¢qC'(A~'1) and hence,
by 6.0.61 on page 47, to that of A~1U.
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52 7. SETTING THE MAIN THEOREM

ii) he K-theory of qC(U) is homotopy equivalent to that of ¢/. This is given
by 6.0.61 on page 47 directly.
iii) The K-theory of ¢C(U)? is homotopy equivalent to that of A.

REMARK 7.0.64. It will be repeatedly used along the proof the property that i/
is closed under taking kernels of surjections in the abelian category Ab(U). We can
assume U satisfies this property. By C.4.3 in case U does not satisfy the property,
it can be replaced by I{ with no K-theoretical consequences.



CHAPTER 8

Proof of the Main Theorem

8.1. Proof of i)

The localization functorr : U — AU, induces an exact functor:

which, obviously, factors as follows

qCU) ———qCU)

R
m\y

qC(A~U) .

PROPOSITION 8.1.1. The functor defined above R : gC(U) — qC(A™U) in-
duces a homotopy equivalence in K -theory.

PROOF. For the proof we will apply the Approximation theorem, 2.0.25, by
checking the conditions App 1 and App 2’ in 2.0.26. gC(U) has cylinder functor
from C'(U) and satisfies the cylinder and saturation axiom since g is the reflection
of the quasi-isomorphisms ¢ in C( A1) which satisfy those axioms, see 5.

App 1 is trivially hold by definition of g.

Let us check App 2°. Let A € C(U), B € C(A™'U) and = : A — B a chain
morphism in C'(A~'). A chain morphism between chain complexes which degree-
wise is given by A~!-isomorphisms will be called chain A~!-isomorphism. These
are isomorphisms in C'(A7'U) and hence are weak equivalences. The morphism
z is given by a collection {z, : A, — B,}o<r<, of morphisms in A~'U. (We are
assuming that A, = 0 = B, for < 0 and r > n). These morphisms z, can be
represented in U by diagrams {4, —< B,.} for all r, see property iii) in appendix
A. Since B is a chain complex in A~'U, its boundaries df : B, - B,_{ can
also be represented by diagrams {B, <—— B,_1} for all r. The complete diagram
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54 8. PROOF OF THE MAIN THEOREM

representing z : A — B in {{ may look like the following:

*) Ap ~— Bp<— ’
d2 /

Anq = B, 1< .

Ap_s — Bp_o<~—-

ds_, /

dgt /

Ag ——

By

Each of the diagrams in (*) are commutative diagrams in A, as morphisms
from A, to B,_1, for each r.

In a first step, we will replace B by a chain complex B in such a way that the
resulting morphism Z : A — B is realized by commutative squares in /.

Take push-forward at the upper right corner of the square at dimension n.

~ ~

n
dA D —1 p.f.

T ~ B

The resulting square at the left half is a gain a commutative diagram in .4~/ from
A, to D,,_1. By definition, see appendix A, this commutativity is expressed in U
by the existence of a diagram in U like the following:

Anfl

1

b
3
x|
3

d2 < 1

3
_ 5> S =

An—l

which can be rewritten as

C— D, —— D,

B,
~o4 / \

dn An—l
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By MS3, appendix A, there exists an A~ !-isomorphism D,, ; — B, _; such that

B
A/
}A

n \ o o
Dyy——=Dp 1 —= By
/

n—1

is commutative in &/. In the original diagram

n B, By,
d:: En_1 <= Dn—l p.f.
An 1 \ [ - anl
bn 1

now the left square is also commutative in Y. B, is A~'-isomorphic to B,, via by,
and B,,_; is A~ '-isomorphic to B,_; via, let us say b,_1.
Notice that

B, ~—~— B,
dnE anl df
Pn,1 <b— B,

n—1

is commutative in A~'%. The diagram (*) can be substituted by

(**) An B,
it dfl
An—l En—l - :
dn /
An72 = Bn72 — :
di s
di /
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The process described above can be repeated for the next dimension:
Anfl P

n—1 .
da ll %//////

An_g —> <— B, _»

Notice that B,_; and all the rest of data in higher dimensions is kept. The output
is a new diagram:

Ay ———B,

n—1
di_y dﬁll
An—Q En,Q =
dyy s

~

Ag ——

By
with the two upper squares commutative in U.

This process can be repeated down to dimension zero. We shall end up with
the following diagram:

(++%) 4, — =B,

n—1
iy, de_y
ai' ay
T —
AO —_— BO

where each of the diagrams is strictly commutative in U.

On one hand, we have described B = {B,, = B,,_1 — ... By}, a new chain
complex in AU which is isomorphic in the localized category to B via a chain
A~lisomorphism b : B — B. The diagram (***) represents a chain morphism
Z: A — Bin C(A~'U), which by the construction described above clearly factors
as T = bz.

As a second step we shall replace the chain complex B € C(A™'U) we have just
obtained by a ‘strict’ chain complex in C'(U) to which will be chain A~ !-isomorphic.
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Since B is in C(A™'U), dP_,dB = 0 in A~'U for all r. Let us start at the top
dimension n. dB_ dB = 0in A~'U, by 4.0.53, implies there is an A~ -isomorphism
¢ 5 :Bn_y 3 CL_, such that ¢ _,dB_,dB =0 in U. Now, take successive push-
forward using c},_, and its descendents in order to complete the diagram to a chain
complex:

) 1
B, Cn
dB ld;
n 1
anl Cn—l
dnf_l \ ld}’_l
— ~ 1
Bn72 Crn—5 Cn—Q
d?_, p.f. Edl _a
v
— ~ 1
Bn,3 e .3> Cn—3
dP_, p.f Ld)_g
Y
v
B s 1
BO co > CO .

So C}_5 is the push-forward to d2_; and c,_», C!_, the push-forward to d?_, and
¢n—3 and so on till dimension zero. We have B chain A~1-isomorphic to C' which
satisfies d',_ d% = 0, strictly in I/; the rest as in B. Now, d} ,d. ;=0 in A7'U.
By the same reasons, as above, there is an A~ !-isomorphism ¢2_, : C}_, = C2_,
such that ¢2_sd._od:_5 = 0 in Y. And, as before, take successive push-forward
using ¢2_5 and its descendents down to dimension zero in order to define C? and
dforr<n—4. Cal C?2 =C}, d> =d. forr >n—2; C2_5, d%_5 = c2_sd._,.
This new chain complex C? € C(A™1U) verifies d2_,d> =0 in U for r > n — 1 and
B 5 ' 3 (C?is an A™'-isomorphism.

Cn—2 Cn—3

Continuing with this process, we shall have finally a chain complex C?~! with
d:f:lldﬁ’l =0 in U for r > 2. In other words, C"~* € C(U), and, moreover there
is a chain of A~ '-isomorphisms , B = C* 5 ... 5 C"~!, between B and C™'.

Call this morphism z : B = C™!. Notice, that for the construction of C*~' we
have used operations in U/ using commutative diagrams. Hence A 5B 5 cnt
is a morphism in C'(U) and 27 = Tbx. Since 2 and b are .A~'-isomorphism in
C(A~'U) so is b, therefore a weak equivalence. Hence there exists its inverse
(zb)~!' : ¢»' - B in C(A~'U). Call a = 2T = zbx : A — C™'. Then in
C(A~U) it is true that (zb) 'a = b3 Zbe — . With this the verification of
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App 2’ is finished.
Az =B
a x ~=1

Cn—l T

B

8.2. Proof of iii)
In this section we shall try to identify the K-theory of qC(Z/{)ﬁ with that of A.

8.2.1. Domination. Before showing item iii), we recall the definition of dom-
ination of chain complexes, see [Ran92] or for further details.

Let A C U a full subcategory of an additive category . A chain complex U
in U is A-dominated if there is a chain complex A in A and chain mapsi:U — A
and r : A — U so that ri is homotopic to the identity. We need the following result
by 8.2.1.

LeEMMA 8.2.1. [CP95, Lemma 4.8] Let A be a full subcategory of U, Uy an
A-dominated chain complex in U. Let K be the inverse image of Ko(Ud) under the
induced map Ko(A") — KoU"), and let UNK be the full subcategory with objects
U (4,p), [(4,p)] € K.

Then the induced chain complex in UNE under the inclusion U — UNE is chain
homotopy equivalent to a chain complex in AMNK.

Let the full subcategory of C(U) with A-dominated objects be denoted by
C (Z/{)A. The lemma 8.2.1 would just say that C (Z/I)A and AME are K-theoretically
homotopy equivalent.

Under the hypothesis in the Main Theorem, 7.0.63 on page 51, A is an abelian
category, see 4.0.39 on page 26, and hence idempotent complete. The lemma 8.2.1

reduces then to the homotopy equivalence between the K-theories of C(U)* and
C(A).

8.2.2. For integers a < b, let [C(U)]° be the full subcategory of those com-
plexes C in C(U) such that C; =0 for i < a— 1 and for i > b+ 1.

Hence U = [C(U)]} and C(U) is the direct colimit of [C'(U/)]% as b goes to +oo
and a goes to —oo.

Set w[C(U)]2 = wCU) N [CU)]E, where w is the class of weak equivalences,

(whatever is the chosen one: isomorphisms, quasi-isomorphisms, etc) and co[C(U)]} =

coC(U) N [CU)]%. Then w[C(U)]? is a category with cofibrations and weak equiv-
alences. B B B
Similarly, wC'(U)? = lim w[CU)?]®. Recall C(U)? is the full subcategory of

b—+o0
a——00

objects in C'({) which are g-contractible. This means the objects C' in C(U)? are
acyclic in A7U, i.e. H.(C) € A for all r.

For each pair of integers a < b, consider [C(Z/{)g]z, the full subcategory of those
complexes C' in [C'(U)"]} such that H,C' = 0. As above, w[C'(U/)3]} becomes a

a
category with cofibrations and weak equivalences by inheritance.
From now on, the class of weak equivalences w are fixed to be the isomorphisms

1, unless otherwise denoted.
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8.2.3. For each pair of integers a < b, there is a ‘natural’ exact functor

v [C@), — B ([Ceik (e, e = A)

a’

which induces a homotopy equivalence on K-theory. In general, E(A,C,B) is the
category of cofibration sequences A~—=B——>C in C with A € A and B € B for
A and B subcategories of the C, see [Wal85][page 325] or 2.0.19.

In fact, ¥ is an equivalence of categories. Given C in [C'(U/)?]%, ¥ associates
the following extension

Q
Il

— ¥ CO)={C——C—=(C"}=

It is clear that C'is in [C(U)J]% and C" in [O(U)7]¢ = A.

a

REMARK 8.2.2. In order to have ¥ properly defined it is necessary to show the
existence of the following factorization in i/:

Oat1

(88221) ker8a+1 Ca+1 Ca HaC

N

Im 6a+1

We will justify this later on 8.2.4.

Theinverse to ¥, call it ¥ 1, is given by projecting the extension C'>—C—-s=C"’
onto the middle term C. By the Additivity Theorem,2.0.20, the map induced on

K-theory by ¥~ is homotopic to the sum of the maps induced on K-theory by
~—1
sending C%~——=C——=C" to C'" and C", call it ¥ . Hence the composition

( Cb W ( Cb _ Cb —_— %
9 X X
Cy_1 Ch_1 Cpo1 —*

CaJrl Ca+1 Ca+1 — %
Ba+1 8a+1
\ Ca J L Im aa—&-l C, H,C
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U-1¥(C) = Id(C) = C is homotopic to

” C, )
O
Ch—1
~—1
v oy(0) = >
c'a—&-l
X
L Im8a+1 ¢ H,C J

8.2.4. On the other hand, by the Additivity Theorem, 2.0.20, the categories
E ([CQORL, (O™, [C@)): = A) = [CEL x A

are K -theoretically equivalent. This together with the equivalence of categories ¥
and 8.2.3 yields the existence of a functor

T [CU)E S CUE x A,

given by
r Cy \
Oy
Ch-1
v(0)=(C,C") = ,H,C
Ca+1
L Im 8a+1 )

induces a homotopy equivalence on K-theory.
8.2.4.1. For each pair of integers a < b, there is a ‘natural’ functor

A [CEE — B (10 Tar, QO ICW) " 2 U)
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which induces a homotopy equivalence on K-theory. Actually, A is an equivalence
of categories. Given C in [C(U)3]2,

Cb — Cb *
Cy Ob Op
G Cy—1 Ch—1 ——*
Cp1
C= — AC)={7>——C—=7"} = l
Ca+2 Oa+2 — %
Ca+1 Qa2
Oat1 ker aa+1>—> Ca+1 —C,
L C. J Qa1 ~
\ * c,—C,
REMARK 8.2.3. The extension A(C)can be given thanks to the existence of the
Oa . .
short exact sequence ker 41 Cot1 . C, . This existence is argumented in

8.2.4, in the same way that it will be done for 8.2.2.

The inverse to A, say A~!, is given by the projection onto the middle term C
of 0>~——=C——>(C". By the Additivity Theorem, 2.0.20, the map induced on K-

theory by A~! is homotopic to the sum of the maps on K-theory induced by sending

O——>C—>C" to C and C', call it &71. Then A='A(C) is homotopic to
Cy

O

Ch-1

Ca+2

kerd,11 & C,

| A

\ Ca )
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8.2.5. On the other hand, by the Additivity Theorem, 2.0.20, the following
two categories

E (ICQU)" 4, [CQOIL, [CQTT 2 U) = [CU)oy x U
have homotopy equivalent K-theories. This together with 8.2.4.1 yields a functor
3:[Cangle — CU) oy x U

given by

O

+2

ker Og4+1

\ * J

which induces a homotopy equivalence on K-theory.

8.2.6. Combining 8.2.4 and 8.2.5 we can conclude that for each pair of integers
a < b there is a functor inducing homotopy equivalence on K-theory

= HAX HU

a+1

given by C <HH C, H Im 9; > Hence
a+1

ceor= (T[4 [T
a——00 a
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8.2.7. Combining 8.2.3 and 8.2.4.1, the identity functor on [C'(/)"]% is ho-
motopic to the functor defined by

([ Gy )
O
([ Gy )
]
C = Lo Casio x
l
ey kerOg+1  ImQ,yq
A
(| Im0ur1 @ H,C )

Iterating this process, we have that the identity functor on C'(¢/)7 is homotopic to
the functor p described below

HbC@ @Imab
( wa /
ab /

ker 6a+1 D Ha+10 @ Im anrl

| ¢, | /

L Im6a+1 ¢ H,C

-

Q
1l
I=

Q...

8.2.8. Applying the Generic Fibration lemma, 2.0.23, to
iCU)" = qoU)?
where 7 is the exact functor induced by the identity, we obtain that the homotopy

fiber is identified with the subcategory i[C(U/)"]? = iC(U)? of iC(U)".
Since we are talking of spectra, it can also be said that

iCU)T =5 qCU)?

is the homotopy cofiber map for iC'(U)? — iC(U)?. By 8.2.5, 7 is homotopic to
mo p. But mo p factors through the subcategory C(Z/I)A of C(U)?. Recall that
CU)™ is the full subcategory of .A-dominated objects in C(I/). Notice that for
C in CU)7, p(C) is clearly homotopy equivalent to a chain complex in A, hence
A-dominated.

Moreover,

iCU) —icU)” 2 qo )™
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is null-homotopic. Then qC(Z/{)A is the homotopy cofiber to iC'(U)? — iC(U)? and
the inclusion

gC U —qCU)"

induces a homotopy equivalence on K-theory. But by [CP95][Lemma 4.8], under
the right conditions on which we are, see below, C(U )A is equivalent to C(A).
Hence qC(A)—¢C(U)? is a homotopy equivalence on K-theory as required.

REMARK 8.2.4. In 8.2.2 and 8.2.3, we only need the existence of the kernels for
epimorphisms in Ab(U) in order to obtain the required exact sequences. Because
of C.4.3 on page 90, we can assume without K-theoretical consequences that U/
satisfies the closure property mentioned in 3.0.32: closed under kernels of epimor-
phisms in Ab(U).

8.3. Alternative proof for iii)

This section describes an alternative to the arguments in section 8.2.

Thomason’s proof of Theorem 1.11.7, shows that the inclusion & — C(£)
induces a homotopy equivalence of K-theories

iK(€) = ¢K(C(€)) .
The proof can be described by a diagram like the following;:

( 3\

o) & i

1
lj
. b
(8.8.3.0.1) L I e A 3

a— —oo

The diagram is homotopically commutative for each pair of integers a < b and the
final result is obtained at the limit. The exact functors heuristically work as follows:

i) p(C) = (Imdgy1,-..,Imay), which induces homotopy equivalence;
ii) ¥(C) = (C,,...,Ch), which also induces homotopy equivalence;
iii) jo(C) = (ImGut1,Im 01 ® IM By, ..., Im 1 ® Im Oy, Im 8;);
iv) X(Ca,.-.,Cp) = XL (=1)kCy, and
v) 1 is the inclusion as a chain complex of length 0.

The idea behind is that C(£) = , ligl i[C(£)]b, for weak equivalences w.
— 100

a— —oo

In our context, regard the diagram above for the exact subcategory A. Under
the hypothesis of the Main Theorem, 7.0.63 on page 51, the subcategory A is abelian
and hence satisfies the conditions required for the proof of the theorem 6.0.61 by
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Thomason. For our purposes it is enough to show that for integers a < b there
exists the following homotopy commutative diagram:

¥ b

(8.8.3.0.2) i[CA,

| A

b b

[TiA x T]iA

a a+1
The exact functors are defined as follows:

i) v the same one as above;

ii) ¢(C) = (H,C,Hy41C, ..., HyC) x Imyy1,-..,Imd) and
iii) $(C) = (HyC ®Imdyyy,ImOyyy D Hoyp1C ®ImOyys,. .., Imd, & H,C).
We already know by the proof for 6.0.61 on page 47 ¢ induces a homotopy equiva-
lence. Now, we justify the definition of the rest of the functors and the commuta-
tivity of the diagram.

In a first step, in order to define an iterative construction, we aim for the
existence of the following diagram:

Ch

Ch—1

Im 8a+2 ~ Ca+2

.
ker 0, 41>—= Cyy1 —= coker Oy 42

|1 N

H,,C Cp, =—<Im0y41

H,C
By the Additivity Theorem, 2.0.20, and the existence of the short exact sequence
Imd,y1>—>C, — H,C

can be deduced that the projection sending C to C, is homotopic to the sum of the
maps induced on K-theory by sending C' to Im 0,41 and to H,C.
Again, by the Additivity Theorem and the existence of short exact sequence

ker 8a+1 Ca+1 Im 8a+1
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the projection sending C' to C,y1 is homotopic to the sum of the maps induced
on K-theory by sending C' to Im 0,41 and to ker 9,41. Now, using the short exact
sequence

Im 9, 1o>—>kerdy4 1 —> Hy1C

we can say that that the map induced on K-theory by sending C to kerd,11 is
homotopic to the sum of the maps induced on K-theory by sending C' to Im 0,2
and to H,11C. Then, the map induced on K-theory by sending C' to Cy41 is
homotopic to the sum of the maps induced on K-theory by sending C to Im 0,41,
to Hy+1C and to Im 9, yo.

This process can be continued up to dimension b. Moreover, this process would
show that ¢ induces a homotopy equivalence on K-theory.

Hence ¢ would factor, on K-theory, up to homotopy, as X o ¢, i.e. the diagram
8.8.3.0.2 homotopy commutes.

Denote by X the map induced on K-theory by the composition of the exact
functors y o ¥. The diagram 8.8.3.0.1 on page 64, forgetting for a moment the limit
to the infinities, in our particular case is:

(8.8.3.0.3) i[C(A)7, —— ITiA

a+1 i .
|’ M\
/‘l’\
. p = by b b
i[C(A I:A [TiA x T]iA

a a a+1

iA

i

Since 8.8.3.0.2 is commutative, up to homotopy, then the homotopy fibers of x o ¢
N b

and of Y o ¥ o ¢ = X o ¢, which is iC(A)!(— lim []4A), must be the same.
s

Recall that when dealing with spectra homotopy fiber sequences and homotopy

cofiber sequences are the same.

In particular, on K-theory, we have that the alternated sum of objects in a
chain complex (the Euler Characteristic) induces a map which is homotopic to the
alternated sum of the homology of that chain complex.

Hence the homotopy fiber of X oq:iC(A) — iA is iC(A)?, ie.

iC(A)" i0(A) 22X i

is also a homotopy fibration.
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Let us come back to our problem. We have the following diagram

(8.8.3.0.4) iC(A)T — iC(U)" iC(U)*

|

iC(A) ——=icU)* ——iCU)

qC(A) — qC(U)T — qC(U)

FAC iu

14
where the vertical sequences are homotopy fibrations. Notice that iC'(U)? =i |C(U)*?
Based on the discussion above, the construction in the earlier section, 8.1, and the
proof for Thomason’s result, 6.0.61 or 8.8.3.0.1 on page 64, we can change the
diagram 8.8.3.0.4, up to limits when b — +00 and a — —o0, by the next one:

b b

I17A4 ITiuU

a+1 a+1

Ju
I AL \
b

b b b b
[TiA x [1iA — [liA x [ itd — [Jild

a+1 a+1
lXM

iA cofiber \° il

Since X, which gives the cofiber to X7, clearly factors through iA, the cofiber of X\

is the same as he cofiber for u? which K-homotopically is i.4. This would finish
the proof for iii).

X

=l

REMARK 8.3.1. Along this section, we have given for good the existence of
certain short exact sequences. The reason is the same that the one in 8.2.4: U/ is
assumed to satisfy closure property in 3.0.32 by application of C.4.3.
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CHAPTER 9

Applications

The Main Theorem, 7.0.63, is equivalent to the Mixed Localization Theorem by
Levine, [Lev83][Appendix A]. The setting and the proof are though completely
new.

THEOREM 9.0.2 (Mixed Localization Theorem). [Lev83]/pages 171-174] Let A

be a Serre subcategory of an abelian category M. Let H be an exact subcategory of
M containing A as an exact subcategory. We assume the following condition:

(*) If N is in M, N inH, and u: N' = N a monomorphism in M then u is

admissible in H, i.e. cokeru € H. Similarly, if ' : N — N' is an epimorphism in
M, then keru € H.

Then H /A is an exact subcategory of M /A, and BQA — BQH — BQH /A is

a fibration. In particular, there is a long exact sequence

REMARK 9.0.3. a) Waldhausen shows in [Wal85] that for an exact category £

with the usual cofibrations and weak equivalences, BQE is homotopy equivalent
to K(i€). The sequence BQA — BQH — BQH/A is just our K(iA) —
K(iH) = K(iA™'H).
At first, it may look that the definitions of A~'H in this text and that of Levine,
[Lev83][Appendix A], denote it as H/A are different. But in both cases it is
done calculus of fractions on H by the same class of morphisms. In case of
H/A, the class is of those morphisms f in H whose kernel and cokernel in M,
the ambient abelian category, are objects in 4. In case of A~'#, they are those
f for which exist a factorization in H

ker f M N coker f

N

Im

such that ker f and coker f are in A. Clearly this second kind are part of those
of the first kind.

Let us see now the other inclusion. Under our hypothesis, if f has ker f and
coker f, computed in M, in A then Axioms (ii) and (iii) imply the existence of
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the next diagram:

ker f coker f
\ f / ‘
ker f M N coker f

Im

a ker-coker factorization. Notice that actually the diagrams given by Axioms
(ii) and (iii) are unique, because of the uniqueness, up to isomorphisms, of the
ker-coker factorizations in abelian categories. Hence f is also of the second kind.

9.0.4. Given a morphism a : A — H, it has a unique ker-coker factorization
as morphism of the abelian category M.

a

kera A H coker a

~N 7

Ima

Since A is Serre, ker a and Im a are objects in A. By condition (*), cokera is in H.
So Im a&——H ——> cokera is exact in H. Axiom (ii) is satisfied.

Similarly, given a morphism a’ : H — A, it has a unique ker-coker factorization
as a morphism in the abelian category M.

a

kera' H A coker a’

~N

Ima’

Since A is Serre, cokera’ and Ima' are in A. Because of condition (*) kera' is in
‘H. Hence kera>~——=H——Tmd' is exact in H. Axiom (iii) is satisfied.
Under the conditions of 9.0.2 A localizes H, therefore by 7.0.63:

K(iA) = K(iH) » K(GiA™"H)
is a fibration up to homotopy. We have the conclusion of 9.0.2.

9.0.5. In particular, 7.0.63 implies Quillen’s Localization Theorem, [Qui72][page
113).

THEOREM 9.0.6 (Localization). Let B be a Serre subcategory of A, abelian cat-
egory, let A/B be the associated quotient abelian category, [Gab62] and [Swa68],
andlete: B —- A, s : A — B/A denote the canonical functors. Then there is a
long exact sequence

Since A is abelian, and B is Serre it is immediate that B localizes A. This can
be seen as for 9.0.2 in 9.0.4.

9.0.7. As we have mentioned in the remark above, the factorizations that
Axioms (ii) and (iii) provide are actually unique. This means that 9.0.2 implies
7.0.63.
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LetA C U be as in 7.0.63. Then let H = Ab(U) be the abelian category given
by the Gabriel-Quillen embedding theorem. It is only left to check condition (*) to
be under the hypothesis of 9.0.2. But this is verified because of the uniqueness we
have mentioned above.

If u: A — U is a monomorphism in M, then the diagram given by Axiom (ii)
must be

U/A
.
A U

N

Hence cokeru = U/A is in Y. Similarly for v’ : U — A an epimorphism in U.
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APPENDIX A

Calculus of Fractions

This appendix is a collection of results from and [Bas68][Chapter 8 paragraph 5].
DEFINITION A.0.8. Let C be a category and S a collection of arrows in C. S
is called a multiplicative system if it satisfies the following axioms:
MSL1 If f, g are in S then the composition fg exists and is in S. For any object
X inC,tdx isin S.
MS2 Any diagram
VA
ls
Y

X v
in C with s in S can be completed to

W ——

ll

X —

with ¢ in S.
MS3 If f,g : X — Y are morphisms in C, the following are equivalent:
(a) 3s:Y —» Y"in S such that sf = sg.
(b) 3t : X' — X in S such that ft = gt.
Or if it satisfies the axioms MS1, MS3 and MS2’, the dual to MS2,
MS2’ Any diagram
7
Ts
Y

u

in C with s in S can be completed to
W<~—12
X <2

with ¢ in S.

DEFINITION A.0.9. Let C be a category and S a multiplicative system. The
localization of C with respect to S (or calculus of fractions with respect to S) is a
category Cs (or S™1C), together with a functor

Q:C— S 'C
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such that:

a) @(s) is an isomorphism for every s € S.
b) Any functor F' : C — D, such that F(s) is an isomorphism for any s € .S,
factors through Q.

PROPOSITION A.0.10. S7IC (or Cs) can be obtained as follows:

ObjS~'C = 0bjC Homg-10(X,Y) = lim Home (X', Y)

—

where Ix is the category whose objects are morphisms s : X' — X in S and whose
morphisms are commutative diagrams

XI > XII

Furthermore, if C is an additive category, so is S~'C.

REMARK A.0.11. Homg-1.(X,Y) can also be obtained as lim Hom¢(X,Y")
—
Iy

where Jy = {s:Y - Y'/s € S}.

REMARK A.0.12. In case S verifies both MS2 and MS2’ Homg-1¢(X,Y’) could
be obtained as lim Hom(X',Y"). Hence if f : X — Y is a morphism in S71C it
—
IxJy
can be represented by a diagram

x<t o x Loy y

in C, which we will call a representation of f, with z,y € S. Moreover, if
Y T; XZ, fi Yil Yi Yy i=0,1

are two representations of f, then there is a commutative diagram

fo

Xo—Yg

whose middle row also represents f. Note that then a;,3; € S i =0, 1.
The two basic facts about 7 other than those in the theorem-definition A.0.9
are:
i) @ is bijective on objects.
ii) Every morphism in S~!C has a representation as we said above.
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We shall now derive some further properties.

iii) Let X <—— X' Loyt y represent f. Then we can form the commu-

tative diagram

Do fa v

X'——Y
fB
by using MS2 and MS2’. Since z,y € S it follows z’,y' € S. Consequently we have
new representations,
Do fa v b'b v
and
fB

XﬁXnﬁY

iv) Suppose X N Yy —L= 7 are two morphisms in S~'C with representa-
tions

x<t o x -ty ¥y

and
Y1 g9 z

Y X' A
respectively. Then we construct the diagram

Z,

X<“_Xl_f>yl

X" _JB 9B VAL

T
Yl $ ZI é Z

as in iii) and it is seen that

za' 98 fB 2z

X X" z" Z

represents H
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APPENDIX B

The Gabriel-Quillen embedding

This appendix is extracted from [TT90][Appendix A]. We only list the main results.

THEOREM B.0.13. Let £ be a small exact category. Then there is an abelian
category Ab(E), and a fully faithful exact functor i : E——Ab(E) that reflect ex-
actness. Moreover £ is closed under extensions in Ab(E).

Ab(E) may be canonically chosen to be the category of left exact functors £°P ——=7-modules,
and i : E——=Ab(E) to be the Yoneda embedding i(E) = Homg( , E).

Let B be the abelian category of additive functors F : £°P——Z-modules,
where Z-modules is the category of abelian groups. Limits and colimits exist in B,
and are formed pointwise, so (l}LnFa) (E) = {iLn(Fa (E)), etc. Then it is clear that
direct colimits in B are exact, i.e., Grothendieck’s axiom AB5 holds.

Also, B has a set of generators consisting of the functors yE = Hom( , E) for
E in £. The Yoneda embedding y : £——=1B is fully faithful by the Yoneda lemma.
Thus B is a Grothendieck abelian category as is well-known.

DEFINITION B.0.14. Let G : £2——=7Z-modules be an object of B. One says
G is separated if for all admissible epimorphisms E——=F in £, the induced map
G(F)——=G(E) is a monomorphism. One says G ”left exact” if for all admissible
epimorphisms E——s=F in £, then B.B.0.14.1 is a difference kernel, where the maps
D are induced by the two projections p: F xp E——=F:

dOIG(pO)
(B.B.0.14.1) G(F)—=G(E)—____ ~G(E xpE)
dl:G(Pl)

Thus G(F) is the kernel of d° — d* : G(E)——=G(E xp E).

B.0.15. Let Ab(E) be the full subcategory of B consisting of the ”left exact”
functors £°P——=Z-modules. Let j, : Ab()—=DB be the inclusion. It is ver-
ified that j, has a left adjoint j* so that j*j. = 14p(g). Then Ab(E) will be a
Grothendieck abelian category such that j* is an exact functor, and j, is left exact
(in the covariant abelian sense that j, preserves kernels).

B.0.16. The Yoneda embedding y : E——B factors through A, so y = j,i
for a functor i : E——=A.

Then it can be shown that:

PRroOPOSITION B.0.17. The Yoneda functor i : E——=Ab(E) of B.0.16 is fully
faithful and exact.

The next two lemmas are crucial for the restricted completions in C.2.

T
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LeEmMA B.0.18. Let e : E——F be a map in £. Theni(e) is an epimorphism
in Ab(E) if and only if there is a k: E'——=FE in £ such that ek : E'——F is
an admissible epimorphism.

More generally, for any A in Ab(E) and E in £, a map e: A——=i(F) in
Ab(E) is an epimorphism in Ab(E) if and only if there is a k : i(E')——=A (i.e. a
k € A(E")) such that ek : E'—=F is an admissible epimorphism in &.

LeEMMA B.0.19. (a) The embedding i : £ — Ab(E) reflects exactness.
(b) If £ satisfies the extra aziom C.0.24 on the next page, and if e is a map in £
such that i(e) is an epimorphism in Ab(E), then e is an admissible epimorphism

in E.
LeEMMA B.0.20. & is closed under extensions in Ab(E).

LEMMA B.0.21. Let f : E——=C&' be an exact functor between exact categories.
Then f preserves push outs along an admissible mono, and f preserves pullbacks
along an admissible epi.

PrOPOSITION B.0.22. Let f: E——=E&' be an exact functor between exact cat-
egories. Let i : E——=Ab(E) and i’ : E'——=A(E") be the Gabriel-Quillen embed-
dings into the categories of "left exact” functors.

Then there is a right exact additive functor f*: Ab(£)——=Ab(E') extending
f in that f*i =2 i'. This f* has an additive left exact functor right adjoint functor
frt AD(E)——=AD(E).

THEOREM B.0.23. Let £ be an exact category. Then

a) There is a Karoubian C additive category ' and a fully faithful additive func-
tor f : E——=C&' such that any additive functor from £ to a Karoubian addi-
tive category factors uniquely-up-to-natural-isomorphism through £ ——=¢&'.

b) Every object in &' is a direct summand in £' of an object in £. We say
a sequence in E' is exact if and only if it is a direct summand of an exact
sequence in £. This makes £ an exact category. This inclusion functor
f:E——=C&" is exact and reflects exactness, and £ is closed under exten-
sions in E'.

¢) K(&) is a covering spectrum of K(E'), in fact f induces an isomorphism
of Quillen K-groups Kn(g)—%>Kn(E') for n > 1, and a monomorphism
Ko(&) C Ko(E").



APPENDIX C

Exact Categories and Idempotent Completions

Many exact categories satisfy a stronger version of axioms €) and f), see 3, namely:

C.0.24. If f : E — F is a morphism in &, and there is a morphism s : ' — E
which splits f so fs = 1p, then f is an admissible epimorphism F ——s= F .

REMARK C.0.25. In an exact category &, the presence of C.0.24 implies its
dual.

We shall see that assuming £ having this property does not harm in K-theoretic
terms. Next we digress about additive categories U, but the results extend to exact
categories &.

DEFINITION C.0.26. An additive category satisfies property (P) if given maps
f:E — F and s: F — E such that fs = 1p, then there is an object G and an
isomorphism E 2 F & G under which f becomes projection on the first factor.

Property (P) obviously implies C.0.24. Hence, if property (P) is hold the exact
category £ would be closed under kernels of surjections in Ab(£), see 3.0.32 and
appendix B or [TT90][Lemma A.7.16 b)].

We do not wish to assume our categories satisfy property (P), and one of the
aims of this section is to be able to replace an additive category by an additive
category which does satisfy property (P) without changing its K-theory. This is
obtained by considering suitable subcategories of the idempotent completion of an
additive category.

The idempotent completion of an additive category U, denoted U”, is the ad-
ditive category with objects (U, p) with p = p2:U — U and morphisms f: (U,p) —
(V,q) satisfying f = qfp: U — V. The identity morphism of (U,p) in U" is
represented by p. We get an embedding of additive categories:

U—u’

sending U to (U, 1) which is full and cofinal. The morphisms f: (U,1) = (V,1) in
U" are precisely those in U, and for every (U, p) in U

(p,1-p)
(Ua p) ® (U7 1- p) (U7 1)

-

(lfp)

are isomorphisms expressing (U, p) as a direct summand of (U, 1) . By the cofinality
theorem 2.0.22 we have a fibration up to homotopy:

KwSU) — K(wSU") — Br
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where m = Ko(U") /Ko(U) . In particular, this implies
Ko(U) =— Ko(U").

LEmMMA C.0.27. Property (P) holds for U".

PRrROOF. Let

r

(C.0.28) U,p) —— (V,q)

8§

be such that rs = ¢. We have also
qrp =r p2:p psq = s 8228.

Now (sr)(sr) = s(rs)r = sqr = (psq)qr = psq®r = psqr = (psq)r = sr so (U, sr)
makes sense in 4" and moreover it is an idempotent for (U, p). Since A" is complete
by definition we have

(C.C.0.28.1) (U,p) =2 (U,p—sr)® (U, sr).

Moreover
r

U,sr) _—__— (V,q)

S

are isomorphic by those morphisms and therefore r in C.0.28 is an admissible epi-
morphism. [l

C.0.29. The isomorphism C.C.0.28.1 is true by the following argument.
If ¢: (U,p) — (U, p) is such that ¢?> = q, also pgp = ¢, then
(pgp)(pap) = (pap)

thus by the properties of the idempotent completion we have

(U,p) = (U,pap) ® (U,p — pap)
where the isomorphisms are given by the matrices

pap
and — .
<p o pqp> (pap, p — pap)

U" is Karoubian or equivalently idempotent complete. We say that an additive
category E is Karoubian if whenever p: E — E such that p?=p then there is an
isomorphism E = E' & E" under which p corresponds to the endomorphism 1 & 0.
It is easy to see that the category U satisfies a stronger property than property
(P).

LemMA C.0.30. If an exact category U is Karoubian, it satisfies the extra az-
iom C.0.24.

The proof can be seen in [TT90][Lemma A.6.2].
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C.1.
Now let A be a full subcategory of the additive category U.

DEFINITION C.1.1. Let K C Ky(A") be the inverse image of Ko({) under
the map Ko(A") — Ko(UU"). We shall denote the full subcategory of U with
objects U @ (A, p), where [(4,p)] € K by U . Notice that A" is embedded in
Uur, AN — Y.

U—— U
u/[lK

U is cofinal in UK and in U hence UMK is cofinal in U”. We thus obtain a
diagram of monomorphisms

Ko(U) Ko(U™)

Ko(UNE)
where the images of Ko(U) and Ko(U"¥) in Ko(U") are the same. Hence
Ko(U) = Ko(UMN)
is an isomorphism and therefore ¢/ and ¥ have homotopy equivalent K-theories,

by the cofinality theorem.

In a more general setting we give the following definition.

DEFINITION C.1.2. Given U an additive category and K a subgroup of Ko(U).
Let UK be the full subcategory of 4 with objects (U, p) so that  its stable isomor-
phism class lies in K. When K = Ko (i) we denote U by U,

ExampLE C.1.3. If U is the category of finitely generated free R-modules for
some ring R, then U” is equivalent to the category of finitely generated projective
R-modules, and I is equivalent to the category of finitely generated stably free
R-modules.

REMARK C.1.4. Notice the following

(i) The category I can be seen in terms of the first definition as /Ko by
taking the trivial subcategory A = U.

(ii) Using the same notation for /¥ in the two definitions above will not cause
confusion since in one situation K C Ky(A") and in the other K C Ko(U").

LeEMMA C.1.5. The inclusion U C U induces isomorphism in K-theory
PROOF. The category U is cofinal in I and therefore
Ko(U)=— Ko(U")

|

Ko(U)
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is a commutative diagram where all arrows are monomorphisms. By the same

argument as above, Ko(U) = Ky(U) is an isomorphism. Again, by the cofinality
theorem 2.0.22, i/ and I{ have homotopy equivalent K-theories. [l

LEMMA C.1.6. The category U satisfies property (P) and hence C.0.24.

ProoF. We can use an argument similar to the one used above for U, If we

have the diagram in ¢/
”

U,p) —<s_> (V. q)

with rs = ¢, it is also a map in &” and thus
(Ua p) = (Uap - ST) @ (Ua ST‘)
and
(U,sr) = (V. q).
But (U,p) and (V,q) are in I so by the properties of Ky and the definition of I/
we conclude (U, sr) and (U, p — sr) are in U. Hence r is an admissible epimorphism
and U satisfies the property (P). O

C.2.

Let £ be an exact category. Then the idempotent completion £ of £ can be
given an structure of exact category so that the inclusion £ < £” is exact and
reflect exactness. Moreover £ is closed under extensions in 7.

We will say a sequence in £ is exact if and only if it is a direct summand of an
exact sequence in £. In other words, A - B — (' a sequence in £ is exact if and
only if there are objects A’, B’ € £ so that A A~——=A'"© B C'—==C ¢ ('
is an exact sequence in £.

C.2.1. We follow once more [TT90]|[Appendix A, pages 407-408]. To show
that £ is an exact category consider the Gabriel-Quillen embedding & < Ab(E).
This induces a fully faithful functor between the idempotent completions, £ <
Ab(E)". By definition of exact sequence in the completion, and the fact & < Ab(E)
preserves and reflects exactness, the induced functor £ < Ab(E)" preserves and
reflects exact sequences. But as Ab(€) already has images of idempotents, Ab(E)"
is equivalent to the abelian category Ab(E).

We claim that £" is closed under extensions in Ab(£). For let 0 — A —
B — C — 0 be an exact sequence in Ab(E) with A and C in £*. Then there are
A" B" € £ so that A'® A and C' ® (' are isomorphic to objects of £. The sequence
0> APA—>AdBaC" - CodC'" — 0is exact in Ab(E), and shows that
A' ® B & (' is isomorphic to an object in &, since £ is closed under extensions in
Ab(E), see appendix B. Thus B is a summand of an object in £, hence is isomorphic
to the image of an idempotent in £, and hence is isomorphic to an object of £.
This proves the claim. Now, £” is an exact category by 3.0.32. As the functors
£ — Ab(E) and £N — AB(E)" preserve and reflect exactness, so does the functor
&= EMN

C.2.2. Alternatively to C.2.1 C.2 can shown in an abelian-free enviroment.
Before that, a clear fact.

LEMMA C.2.3. The embedding £ — E" preserves push outs along admissible
monomorphisms and pull backs along admissible epimorphisms.
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ProoF. We will just show the first part, the second is dually proven.
Let us have the following push out diagram in £ embedded in the usual way in
EN.

Let also (X, ) be an object in " and ¢: C = (C,1) - (X,z) and d: B = (B,1) -
(X, ) be morphisms in £ verifying that ca = db in £*. Then, by definition of
completed category, ¢ = xzc¢ and d = xd therefore db = xdb = xca = ca. Since P is
push out in &, there is a unique morphism r : P — X so that rp = ¢ and rq = d.
But r also verifies the universal property for zc and zd, xca = zdb. Hence zr = r,
i.e. r is a morphism in £", and P is a push out in /. O

C.2.4. Let us check the axioms 3.0.31 on page 21.

Axiom a). Let A % Band B % C be admissible monomorphisms correspond-

ing to the exact sequences A A BLYCandB L % Ein & There are
objects A',B',C'",E' in £" so that A'® A—>A' ®B®C'-—C® (' and

B ®B—5>B &@D®E X ~E®E are exact sequences in £, Let m : B' @
B — A'® B & (" be the morphism defined as the identity on B and the zero mor-

0 0 O
phisms on the rest, m = |0 1p 0| as a matrix. Since B'"® B and A'® B C’
0 0 O

are isomorphic to objects in £ and the embedding £ — £ is full and faithful,
the morphism m corresponds to a morphism in £”. Take the following push out
along m:

B’@B—"UA’@B@C’

p.o. :

v

BI e D sy El .................... > P
EoFE

This diagram has P as a push out in the category £, but the object A' & D &
C' ® E' also satisfies the universal property in the larger category £”. Since the
embedding £ <+ &£ is full;l and faithful, it preserves push outs and pull backs.
The object A’ & D & C' & E’ is isomorphic to P, an object in £. Moreover
AeBaC>——=AeDasC'E — E®FE' isexact in £&. Now the push
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out along [: A' @ B C'—=C d(C'.

Ao A——>AeBoC ——=CacC

g 7 p.o. :
AN v
A@D@Ujf;;;ﬁQ
EoFE .

Then @ is an object in & from which clearly splits off C' ® E' as objects in £,
Hence @Q can be written in £ as R® C' ® E'. Then mi is an admissible monomor-

phism in £ and @ is its cokernel. Therefore A’ & AT AN eDeC E—=Q=RaoC'®F

is exact in £. The sequence A % D - R can be recognized as a direct summand
of the exact sequence above. This proves that the admissible monomorphisms are
closed under composition. This is the first part of Axiom a).

Now, let A % B 2 C'bean exact sequence in £ and A 4 Dbe any morphism

in £. There are objects A’, C' and D' in £" so that A’ & A S APBaC' L0
is exact in £ and D' @ D is isomorphic to an object in £. Consider d : A’ ® A —
D' ® D the corresponding morphism in £ given by the matrix description in &7,

(8 2) We now take push out in & along d:

NG A—> A aBaC L>=Cac

gl o ﬁ////%

D' & D——Q

Consider a : D' ® D — D' & D given by the matrix a + <(1) 8) a is an

idempotent in £ and obviously the object (D’ & D,«) correspond to D' in £7.
Regard the following morphisms ai : D' & D — @, « and the zero morphisms
from A’ B C' to Q and to D' ® D. By the universal property for the push outs,
there are morphisms 8 : Q — Q and A : Q — D' ® D, making all the following
squares commutative:

A@A—>A@eBaC L>Cal

T ¢

D' @ D— Q

| AN

D'&D Q
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Notice that since a?> = a, % = . It is left to show (Q,A) is isomorphic to
(D' ® D,a) = D' in £*. For that regard the isomorphisms

(D'® D, ) <_—> @, 5)
in &N,

0 0 O
Similarly, let A: A'@BaC' - A ®B®C' begivenby A= [0 0 0
0 01

This defines an idempotent in £. Regard the following morphisms A, EA :
A" B9 C' - @ and the zero morphisms from D' & D to D' & D and to Q.
As before, the properties of the push out define morphisms p : @ — @ and
1:Q = A" ® B C' respectively, with p> = p, A =Id and p = dl. Then,

lp

@p) __—(AeBal, A)=C

aA
define isomorphisms in £*. Since the idempotents p and 3 are orthogonal, (p+4) is
also an idempotent of ). Moreover, it can be shown that (@, (p+)) is isomorphic
to(D'®D,a)d(A'®@BaC',A)=D"'®C'. This means @ splits as D' ® R C’
and in the exact sequence D' ® D———=D' P R® C'——=C ® (', the sequence
D — R — C can be seen as a summand. This shows that the exact sequences
are closed under cobase change by push out along an arbitrary map. This is the
second part of Axiom a).

Axiom b). The proof for Axiom a) dualizes for Axiom b).

Axiom c). This axiom is satisfied clearly because of the definition of an exact
sequence in EN.

Axiom d). Let A 2 B 2 C be exact in E. Let us see i is a kernel for J. Let
k : D — B be a morphism in £” such that jk = 0 in £*. There are objects A’,

C' and D' in £” so that A’ ® A @& B® C’j—»C @ C' is exact in £ and
D @ D' is isomorphic to an object in . Let k : D@ D' — A’ ® B ® C" be the

0 0
corresponding morphism in £ to the one given by the matrix | ¥ 0| in £*. In
0 0

1 0 .
the same way, ¢ can be described by the matrix [0 4 | and j by (0 J 0).
0 0

Then jk = 0, and hence there is a morphism [ : D @ D' — A’ © A so that i

The morphism I may be described by a matrix (gl §3> in &M
2 b4

~ 0 0 10\ ;1 I, I3
k=|k 0] =id=1|0 i (ll l3>: ily ily
0 0 0 o/ \? ™ 0 0

In particular, the morphism Is : D — A satisfies that ilo = k in £*. Hence i is a
kernel for j.
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Dually, it can be shown that j is a cokernel for i.

Axiom e). Let the following diagram be in £”.

E s F —— coker1

BN

G

We have to show that the horizontal line at the top is short exact in .

Let us call H the cokernel for ki. There are objects E', H', F' and K' in
ENso that E' @ B——FE' ®G ® H'—H ®© H' is exact in £ and F' & F and
K' & cokeri are isomorphic to objects in £. In the same spirit as above, it can be
described the following diagram:

EGE—SF@FGE GF —>cokeri 8 F' & E=1L

T, b

E'aGao H

\

HoH

The object we have called L is clearly a cokernel for 4 but so far in £". Take push
out in £ along i.

EoE—>FoFoE ok L

EleoGeH _ S P

TR

HoH

This diagram is also a push out diagram in £ by C.2.3. The existence of k induces

~ ~A

k, as already indicated above, which splits i: ki = 1grggqem . Hence P splits as
P=(EEaGa® H')® L in E". Therefore E' ® G & H') © L is isomorphic to an
object in £. It can be described then the following diagram:

E@E——»F@F@E%MMNE@G@HT—+&AME@G@Hﬁ

EeoGoe H

\

HaoH'

In this last diagram 7 is a cokernel for i'. We are now able to apply Axiom e) in
£ to this diagram. Then the horizontal top line is short exact in £. There it can
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be identified as a summand our original sequence E = F — cokeri, and hence it
is exact.

Axiom f). The proof for Axiom e) dualizes for Axiom f).

C.2.5. the exact category & is closed in £ under extensions.

Let A — B — C an exact sequence in £, where A and C are isomorphic to
objects in £. As the sequence is exact in £, there are objects A', C' in £ so
that A’ A~——=A"® Bd C'——==C & C' is an exact sequence in £. Since C is
isomorphic to an object in £, let ¢ : C — C & C"’ the corresponding morphism in £

to the inclusion into the first factor, ¢ = (é) Take pull back along ¢ in C.

AgA——AoBopC —=Co(C'

\T b T

Pp————(C

As pull backs made in £ persist in £/, C.2.3, P can be seen ,as a pull back in £", as
A’ ® B. Again, as A is isomorphic to an object in £, we can regard the morphism
projecting onto A from A’ ® A as representing a morphism a = (0,1) in £. Take
now push out in &£ along a in the diagram above.

ApA——A Bl —=CoC

a A" DB C

A Q

Once more, by C.2.3, push out in £ persist in £*. Then @ can be seen as a push
out in £, where it is simply B. Hence B is isomorphic to an object in £. This
proves our claim.

C.3.

In section C.1, we have seen that £ can be given an exact structure so that £
is fully embedded as an exact subcategory of its idempotent completion. Then the
full subcategory &, C.1.2 on page 81, of £ can also be seen as an exact subcategory
of M. £ is also fully embedded in £. Recall lemma C.1.6, &£ satisfies property (P)
and hence C.0.24.

LEMMA C.3.1. The ezact category £ is cofinal in £,

ProoF. In C.2.5 and in C.2.1, we have seen that &£ is closed under extensions
in £2. By definition of £*, see C, given (U,p) in £V, then (U,p) ® (U,1 — p) is
isomorphic to (U, 1), an object in £. Hence we satisfy the cofinality conditions,
2.0.22. There is then a fibration up to homotopy:

K(i.5.£) - K(i.S.£") = Br
where T = Ko(E™)/Ko(E). O

Moreover:
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LEMMA C.3.2. The inclusion of exact categories £ — £ induces isomorphisms
in K -theory.

ProOOF. From the proof above, it is clear that £ is also cofinal in £. As for the

proof of C.1.5, there is a commutative diagram

Ko(E)>— Ko(&£")

Ko(€)

where all the arrows are monomorphisms. The images of Ko(€) and Ko(&) in

Ko(EM) are the same. Therefore Ko(€) — Ko(€) is an isomorphism. The cofinality
theorem 2.0.22 on page 19 implies that £ and £” have homotopy equivalent K-
theories. O

C.4.
If A localizes U, then A also localizes I and U” as well. For this, we will need

the next two results.

LEMMA C.4.1. Let A—>B—2C be an exact short sequence in £ so that

there is an isomorphism @ : B — V ®W in £ such that pi = <8> witha: A —V

a morphism in EN. Then W can be splitted off, i.e. there are: an object R , a
morphism m : V. — R and compatible isomorphisms so that the given short exact
sequence is isomorphic to

T 0
i 01
A—5Svaew (—>W> )R oW

Hence

A>L> 174 T R
is an exact sequence in EN.

i jp!
PROOF. Given the exact sequence and the isomorphism ¢, then AL vewisc

is also exact in £”. Take push out in £" along a. Notice that (é) VaVoWw
induces an splitting of the the pushoutl: Q — V & W.

v—21 @

T“ ((1))Q,DI k

A——V oW —C
Since £” is idempotent complete, there is an isomorphism ¥ : Q — R& (V & W) so

0 0
that [T~ = (8 (1) ?) , the projection onto the VW factor, and ¥a’' = [ 1 0],
0 1

the injection into the second factor. This makes a’' an admissible monomorphism
with with cokernel isomorphic to R. Since the diagram is a push out, R is also
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a cokernel for a, and hence by Axiom e) for exact categories a is an admissible
monomorphism with R as cokernel. In other words

A>L>V—”»R

T 0 VoW — RO W is also a cokernel for
0 1w

@i. Therefore R ® W and C' must be isomorphic in the completed category. The
original sequence is then isomorphic to

. T 0
A= V@W—»(“W)R@W

is exact in £*. Notice that

There is also a dual lemma, with a dual proof.

LEMMA C.4.2. Let &%B—j»C be an exact short sequence in £ so that

0
b:V — C a morphism in EN. Then W can be splitted off, i.e. there are: an object
T, a morphism v : T — V and compatible isomorphisms so that the given exact
sequence is isomorphic to

there is an isomorphism ¢ : B — V @ W in " such that jo ! = <b> with

(5.%)

TeW——VaW £>> c
Hence
T—">V —">C
is an exact sequence in EN.

In order to verify the localization axioms, 4.0.35 on page 25, for U and U”, we
have to select certain family of short exact sequences.

Axiom (i) is satisfied since A is closed in I/ under extensions, because it localizes,
and I is closed in ¢/ and in 4", see C.2.1 on page 82 or C.2.5 on page 87.

Axioms (ii) and (iii) are dual. We will only check Axiom (ii).
Leta: A= (A,1) = (U, p) be amorphism in either &/ or 4" from an object A in

A. Then (U,p)® (U,1—p) is isomorphic to U. Let us say ¢ : (U,p)® (U,1—p) = U
is the isomorphism. Consider the composition:

A - (Uap) (0) (Uap)@(Ual_p)—Lp>U
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This is a morphism in i/, because U is fully embedded in /”. Since A localizes,
there is a short exact sequence associated to this morphism such that

(*) . U
(5) T

A= (U,p) =% (U,p) & (U,1 - p) ——>T

i
AI
this diagram is commutative. Since ¢ is an isomorphism, then

A (U, p) @ (U1 - p) —2= 1

is also exact in ¢ or in U”, depending on the case. From the diagram *, it is

0
j: A" = (U,p). Then by C.4.1, the vertical short exact sequence in * may be
written as

clear that i factors through (U, p) and hence ¢ ~'i can be written as <J ) for some

J T 0
AI>Q> (Uap) S (U7 1 _p)(o—l)» R D (U7 1- p)
for some R in U or in U”, depending on the case. Hence A’ EN (U,p) > R is exact
in U or in U, depending on the case, and

R

g

A—a> (Uap)

)

A

is commutative in U or in Y”. Axiom (ii) is satisfied. Similar considerations can
be made for Axiom (iii).

C.4.3. By lemma C.3.2, i and I have the ’same’ K-theory, A localizes U,
see C.4 on page 88, and U satisfies property (P), C.1.6 or C.3, therefore satisfies
C.0.24 and hence it is closed under kernels of epimorphisms in Ab({), see B.0.19[b)].
This last property is required along the text in many places. By these results, we
can replace from the beginning the exact category U by U, its restricted completion,
to facilitate the computations without changing the final results.
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