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0. INTRODUCTION 

IN THIS paper we combine the methods of [S] with the continuously controlled algebra of 
[l] and the L-theory of additive categories with involution [22] to split assembly maps in 

K- and L-theory. Specifically, we prove the following theorems. 
Let I be a group with finite classifying space BT. Assume ET admits a compactification 

X (meaning X compact, and ET is an open dense subset) satisfying the following conditions, 
(denoting X - ET by Y). 

(i) The r-action extends to X. 
(ii) X is metrizable. 

(iii) X is contractible. 
(iv) Compact subsets of ET become small near Y, i.e. for every point YE Y, for every 

compact subset K c ET and for every neighborhood U of y in X, there exists 
a neighborhood V of y in X so that if g ET and gK n V # 8 then gK c U. 

Conditions of this type were first utilized by Farrell and Hsiang in [12]. Let R be a ring, 

and let K-“(R) denote the Gersten-Wagoner (non-connective) K-theory spectrum of R. 

Then we have the following theorem. 

THEOREM A. The spectrum BT+ A Kbm(R) is a split summand ofK-“(RT). 

Let R be a ring with involution, satisfying that K _ i(R) = 0 for sufficiently large i, and let 
[Lem(R) be the periodic L-theory spectrum of R with homotopy groups the Wall surgery 
obstruction groups [22]. Then we have the following theorem. 

THEOREM B. The spectrum BT+ A LWm(R) is a split summand in IL-“(RT). 

If Z,(R) = 0 for all i I 1, say for R = E we may replace II-” by IL”. In this case we get the 
following corollary. 

COROLLARY C. The spectrum BI’, A IL”(Z) is a split summand in L”(ZT). 

Novikov conjectured the homotopy invariance of higher signatures, and proved it for 
free abelian groups. It is well known that the Novikov conjecture for a group I is equivalent 
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to the rational split injectivity of the assembly map. In Sections 3 and 5, we identify the 
above splitting maps with the usual assembly map, so Corollary C verifies the Novikov 
conjecture for the class of groups considered here (actually a stronger integral version of the 
Novikov conjecture), see [22, Proposition 24.51 for a discussion of this. 

The condition that X be metrizable is not actually necessary. It is sufficient that X is 
compact Hausdorff. This is proved using a generalized Tech theory in a sequel to this paper 
[7], where we also give conditions to ensure splitting, depending intrinsically on the group. 
We choose to present a proof in the metrizable case since the proof is fairly easy, and it does 
cover a large class of groups, in particular by [2] the above conditions are satisfied for word 

hyperbolic groups. 
Jointly with W. Vogel1 and J. Roe respectively, we have extended the methods presented 

here to work in A-theory and topological K-theory as well [8,9]. 

A theorem similar to Theorem B has been announced by S. Ferry and S. Weinberger. 
Specifically, they replace the condition that the compactification is equivarianf by the 
condition that ET is compactified by Y, a Z-set. The definition of a Z-set is that there is 
a homotopy h, of the identity such that h,(Y) c ET for t > 0. 

Assembly maps and related problems have been studied for a long time by many 
mathematicians under various assumptions on the group, and with various conclusions 
such as rational splitting, integral splitting, integral isomorphism, and for various functors 
such as K-, L-, A-, or C*-theory, see e.g. [3-5, 10, 12-14, 17, 19, 21, 26, 281. 

1. CONTINUOUSLY CONTROLLED ALGEBRA 

In this section we recapitulate and extend results from [l]. 
Let E be a topological space, R a ring. We denote the free R-module generated by E x N 

by R[E]“. Here N denotes the natural numbers. Notice that a set mapf: E + F induces 
a map R[E]” + R[F]“, in particular if XCE, we have R[x]” a submodule of R[E]“. 

Dejinition 1.1. The category W(E; R) of finitely generated free R-modules parameterized 
by E has objects A, submodules of R[E]” such that denoting A n R[x]~ by A, 

(i) A = $A,. 
(ii) A, is a finitely generated free R-module. 

(iii) {x1,4, # 0} is locally finite in E. 

Morphisms are all R-module morphisms. 
Given a morphism 4 : A -P B and two points x, y E E we denote the component of 4 from 

A, to B, by 4;. Clearly, $J is determined by, and determines {4,X}. We call 4; the components 

of 4. 
Notice we have an isomorphism R [xl” x R [x]” g R [xl” sending ((x, i), 0) to (x, 2i) 

and (0, (x, i)) to (x, 2i - 1). 

Dejnition 1.2. Direct sum @ in the category W(E; R) is defined by 

1 

A, c R[x]” if B, = 0 
(A@@, = B, c R[xlm if A, = 0 

A,@B, t R[x]“@R[x]~ = R[xlm otherwise. 

The special case made when A, or B, is zero, ensures the convenient formulae 
A @ 0 = A = 0 0 A. With this direct sum we clearly have the following proposition. 
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PROPOSITION 1.3. a(~?; R) is a small additive category. 

Remark 1.4. The reader may find it artificial to require the objects of W(E;R) to be 
submodules of R [E] m, specially in view of the extra trouble in defining direct sum as above. 
The justification is that 99(E; R) is a small category with convenient equivariant properties 
as exemplified by the following proposition. 

PROPOSITION 1.5. Assume the group r acts freely, properly discontinuously on the space E. 
The induced action on R[E]” gives an action on W(E;R). We then have an equivalence of 
categories 

9J(E; R)r = W(E/I-; R [I-]). 

Proof The r-action on E induces an R [l-]-module structure on R [El”. A set theoretic 
section s : E/T + E induces an R Cl?]-module morphism 

m-[Ep-y -+ R[E]” 

which is an isomorphism with inverse Q, given by 

W(CxI, 4 = C4gsKxI), 4s. 
9 

An object A in B(E; R) fixed under the r-action is a submodule A c R [El” z RI’[E/r] m 
which is setwise fixed under the r-action, hence an Rr-submodule. We have 

A,,, = A n RT[ [xl]” = @ A,., 
!7er 

hence A,,, is a free Rr-module of rank the R-rank of A,, and the local finiteness of 
{x E E 1 A, f 0} and proper discontinuity of the r-action implies that ( [x] c E/T1 A,,, # 0} is 
locally finite in E/T. Obviously, A is generated by the {A,,,} as R r-modules. Morphisms of 
SJ(E; R), fixed under the r-action satisfy 

so they are Rr-module morphisms, so we have completed the proof. Notice the equivalence 
does depend on the set theoretic splitting E/T + E. 0 

We shall consider categories with various degrees of control on the morphisms. Exam- 

ples of this are bounded control as in [20] and continuous control as in [I], but also 
something that might be considered a mixture of the two. 

In the following definitions, let X be a topological space, Y a subspace, Tan open subset 
of X and p: T + K a map to a topological space K, which is continuous at points of Y n T. 
Denote X - Y by E. 

Definition 1.6. Let U be a subset of X and A an object in g(E). We define Al U by 
(A)U),=A,ifxEU- Yand(AIU),=OifxEX-U- Y. 

Definition 1.7. A morphism 4: A --) B in the category &f(E; R) is said to be continuously 
controlled at a point YE Y, if for every neighborhood U of y in X, there is a neighborhood 
V of y in X, so that 

$(AJV)cBIU and $(AIX-U)cB(X- V 

inotherwordsifaEV- YandbeX-U- Yimplies&=Oand&=O. 

This is the standard control definition in [l]. 
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LEMMA 1.8. If X is compact Hausdorf/; and 4: A -P B satisfies half the control condition at 
all points of Y, i.e. for every y E Y and every neighborhood U there is a neighborhood V so that 
#(Al V) c BI U, then 4 is continuously controlled. 

Proof Let y and U be given. Find V c V c U so that +(A 1 V) c BJ U. For ZE Y - U we 
may find a neighborhood W, so that c$(A[ W,) c BIX - I? Since X - U - u W, is 
compact we have AIX - U - U W, is a finitely generated R-module, so we can find 
a compact set K c X - Y so that &AIX - U - u W, ) c BIK, and we may replace V 
by V-K. 0 

The next definition deals with control, but only in the direction of a certain map, 
reminiscent of the long thin handles in [13]. 

Definition 1.9. A morphism I$: A + B in the category g(E; R) is said to be controlled in 

the p-direction or p-controlled at a point y E Y n T, if for every neighborhood U of p( y) in 
K, there is a neighborhood V of p(y) in K so that 

~(AIP-‘10) = BIP-‘(U) and +(A\X - p-‘(U)) c BjX -p-‘(V) 

inotherwordsifaEp_l(V)- YandbEX-p-r(U)- Ythen&=Oand@=O. 

Definition 1.10. The category .4I(X, Y;R) has the same objects as W(E;R), E = X - Y, 
but morphisms are required to be continuously controlled at all points of Y. 

These are the categories defined in Cl]. The reader should think of E = X - Y as an 
open dense subset of X. 

Definition 1.11. The category &9(X, Y, p; R) has the same objects as _SJ(E; R), E = X - Y 
but morphisms have to be continuously controlled at all points of Y - T, and p-controlled 
at all points of Tn Y. 

Example 1.12. The main examples we shall consider in this paper are the categories 

g(CX, CYu X, PX; N, W=, Z Y, PX; R) 

where X is a compactification of E F, Y = X - E F and px is the projection X x (0, I) + X. 

Finally, we need to introduce germs. Using notation as above let W be a (typically open) 
subset of Y. 

Definition 1.13. The category @(X, Y,p; R)“’ has the same objects as 9(X, Y,p;R), but 
morphisms are identified if they agree in a neighborhood of W. Specifically 4, $ : A + B are 
identified if there is a neighborhood U of W in X, so that I& = & when aE U - Y or 
bE U - Y. Similarly, the category .49(X, Y; R)w has the same objects as %7(X, RR), but 
morphisms are identified if they agree in a neighborhood of W. 

Following [l] we shall study the functoriality of &9(X, Y; R)w, but first let us recall 
categorical terminology. Two functors between categories F, G:& + a are naturally 
equivalent if there is a natural transformation from F to G which is an isomorphism for each 
object in z&‘. The categories & and 99 are equivalent if there are functors F :& + g and 
G:W + d and natural equivalences from FG to ld and from GF to l&. Two additive 
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categories are isomorphic when they are equivalent by functors which give a l-l corres- 

pondence of objects. We use the symbol = in case an isomorphism is the identity on 
objects. A functor between additive categories is called lax if it commutes with direct sum up 
to natural equivalence, sends 0 to 0 and induces a homomorphism of Horn-sets. 

DeJinition 1.14. A set mapf: (X, Y) + (X’, Y’) satisfying the following conditions is said 
to be eventually continuous at Y. 

(i) If K is a compact subset of X’ - Y’, thenf-‘(K) has compact closure in X - Y. 
(ii) f(X - Y) c X’ - Y’. 

(iii) f is continuous at points of Y. 

Definition 1.15. The support at infinity supp,(A) of an object A, in 99(X, Y; R) is the set 
of limit points of {x 1 A, # O}. 

Clearly, the support at infinity is a subset of Y. 
There is a slight problem getting induced morphisms from eventually continuous maps. 

We need to consider two cases, as to whetherfis manic on X - Y or not. Let (X, Y) and 
(X’, Y’) be compact Hausdorff pairs. 

PROPOSITION 1.16. An 
X - Y, induces a jiunctor 

sending A c R[X - Y]” 

eventually continuous map f: (X, Y) + (X’, Y’) which is manic on 

%7(X, Y; R) + 29(X’, Y’; R) 
r 

to A c R[X - Y]” 
‘a 

-R[X’ - Y’]“, and the map induced by 

the identity on morphisms. When f is not assumed to be l-l, we get a jiinctor by sending 
C = {C,} tof,C with 

U&)x, = Os(x)=x’Cx 

and choosing an embedding of(faQ8 c R[x’]“. The jiinctor is induced by the identity on 
morphisms. In this case fa is only well-defined up to natural equivalence. Iff sends Y - W to 
Y’ - w’ we get a functor 

93(X, Y; R)w +98(X’, Y’; R)w’. 

Proof. The case when f is l-l is clear, so consider the case when f is not necessarily l-l. 
Condition (i) ensures the direct sum is finite. We need to show that if 4 is a continuously 
controlled map in %9(X, Y, R), then fa+ is continuously controlled. Let y’ E Y’ and a neigh- 
borhood U’ be given. Assume by contradiction that we can find a sequence xi, y: E X’ - Y’, 
so that xi 4 U’, y: + y’ and fa4 has a nontrivial component between xi and y{. We then have 
xi, yi E X - Y SO that f (Xi) = x:, f ( yi) = yi and 4 has a nontrivial component between Xi 
and yi. Since X is compact Hausdorff { yi> has a convergent subsequence ( yj} with limit 
point y. The local finiteness condition on objects ensures that y must lie in Y. By continuity 

f(y) = y’, and we may find a neighborhood V of y, so that f (V) c v’. Clearly Xj 4 V and 
we have a contradiction. In the germ case note that two morphisms are identified if and 
only if the difference factors through an object A with supp,(A) c Y - W. But then 
supp, (f&4)) c Y’ - W’ because if f$(A),; # 0 and y{ + y’, then we can find yi such that 
Ayi # 0 and f ( yi) = yi. The set { yi} must have a limit point y. This point belongs to 
supp,(A) c Y - W. By continuity y’ = f ( y) so y’~ Y’ - W’. 0 
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Remark 1.17. When composing eventually continuous mapsfand g that are l-l in the 
interior, we do get &gr = (fg)#. When they are not 1-l in the interior we only get .&gr is 

naturally equivalent to (fg)$. 

PROPOSITION 1.18. Zffi and fi are eventually continuous maps (X, Y) + (X’, Y’) and 

fi 1 Y =f2 1 Y, thenf,# andf,, are naturally equivalent finctors. 

Proof: The natural equivalence is induced by the identity. q 

Remark 1.19. Given any set mapf we shall use the symbolf, as given in Proposition 

1.16. In any given case of course one needs to make sure that this does indeed define 
a functor. 

Remark 1.20. In case of a locally compact Hausdorff pair (X, Y), Y c X a proper 
inclusion, the obvious identification 

a(X, Y; R)’ = 99(X+, Y+; R)’ 

ensures that an eventually continuous mapf: (X, Y) + (X’, Y’) induces a functor 

&:33(X, Y; R)’ -, W(X’, Y’; R)” 

inf: (X + , Y+ ) + (X’+ , Y+ ) is an eventually continuous map, i.e. if fsatisfies an appropriate 

properness condition. 
Let C be a (typically closed) subset of Y. 

Definition 1.21. The full subcategory of @(X, K R) on objects with support at infinity 
contained in C, is denoted by a(X, F R),. Similarly we have B(X, Y,p; R),, .93(X, Y; R)F 

and a(X, Y,p; R)? as full subcategories of g(X, Y,p; R), 99(X, Y; R)w and W(X, Y,p; R)w, 

respectively. 

Let Y be a closed subset of X, C a closed subset of Y, S a closed subset of C (e.g. S = C). 

Then Y - C may be thought of as an open subset of Y/S. In case S = C then Y/S is just the 
one-point compactification of Y - C. 

LEMMA 1.22. We have 

99(X, y; R)‘-’ = 93(X/S, Y/S; R)Y’S-C’S. 

In particular, we have 

B(X, y; R)‘-’ = a(XfC, (Y/C - C/C)+; R)yIC-C’C. 

Proof: The identity induces a homeomorphism 

E = X - Y = X/S - Y/S. 

Hence, the objects on both sides are the objects of B(E; R). Any morphism has a representa- 
tive which is 0 except in a neighborhood of Y - C, and for such a representative the control 
conditions are the same, since Y - C is thought of as an open subset of Y as well as of 
Y/S. q 

We next reduce the dependency of X. 
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THEOREM 1.23. Let X be a compact metrizable space, Y a closed subset, so that X - Y is 
dense in X, CY denotes the cone on Y. We then have eventually continuous maps 
f:(X,Y)+(CY,Y)andg:(CY,Y)+(X,Y)so thatflY=g(Y= lr. 

Proof: We define the eventually continuous maps 

f:(X, Y)+(CY, Y) and g:(CY, Y)+(X, Y) 

so that fl Y = g( Y = 1 r. Choose a metric on X so that sup,,,(d(x, Y)) = 1. We orient the 
cone so that the conepoint is Y x 0. Given x EX there exists ye Y so that d(x, y) = d(x, Y). 
Choose one such y and definef(x) = ( y, 1 - d(x, Y)). If x E Y, obviouslyf(x) = (x, l), and if 
x is close to Y then f(x) will be close to (x, 1). Given ( y, t) E CY, we can find x so that 

4x7 Y) = sup({d(x, Y)ld(x,y) I 1 - 4, using the open denseness condition and compact- 
ness. Choose one such x and define g( y, t) = x. If t = 1 clearly g( y, t) = y and if t is close to 
1, g( y, t) must be close to y. q 

COROLLARY 1.24. There is a natural equivalence 

fg:&?(X, Y;R) z a(cY, r;R) 

natural in the sense that if h is an eventually continuous map h:(X, Y) +(X’, Y’), then the 
diagram 

9(X, Y; R) - .%?(CY, Y;R) 

1 1 

&9(X’, y’; R)--+ B(C y’, y’; R) 

commutes up to natural equivalence. 

Proof: Let f: (X, Y) + (C Y, Y) and g : (C Y, Y) + (X, Y) be chosen as in Theorem. 1.23. 
Then by Proposition 1.18, fa will be an equivalence of categories with inverse ga sincefand 
g are the identity on Y. Iff’ : (X’, Y’) --+ (CY’, Y’) is chosen as in Theorem 1.23 we have Ch *f 
and f. h agree when restricted to Y, so once again it follows from Proposition 1.18 that 
Ch, .fb and f#. h, are naturally equivalent. c 

If W is an open subset of Y, the above technique also yields the following theorem. 

THEOREM 1.25. &9(X, Y; R)w g W(CY, Y; R)w. 

Following Karoubi [16] we have the following definition. 

Dejnition 1.26. An additive category is Jlasque if it admits an endofunctor E” and 
a natural equivalence l@Z” z C”. 

Let & be a small additive category. We let K(d) be a functorial assignment of & to 
a spectrum whose homotopy groups are the K-groups of the symmetric monoidal category 
obtained from d by restricting to isomorphisms. It is well known (from the additivity 
theorem) that the K-groups of a flasque additive category are trivial. Following [20], we 

define %i( &) to be the category of d-objects parameterized by Z’ and bounded morphisms. 
The inclusion Z’ = Z’ x 0 c Z’+ ’ induces a map 

which is naturally homotopy trivial in two ways since it factors through the categories 
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parameterized by z’x 2, and Z’ x Z_, respectively, which have obvious natural flasque 
structures by Eilenberg swindle see e.g. [20]. This gives a functorial map 

We denote the homotopy colimit of 

K(d) + QK(9?l(d)) * ... + Q’(K(%‘i(&)) + **’ 

by K- “(~4). It follows from [20], see [S] for a more detailed explanation, that K- O”(&) is 
the nonconnective K-theory spectrum associated with the symmetric monoidal category 
obtained from d by restricting to isomorphisms. Clearly, Kmm is a functor from the 
category of small additive categories and lax functors to the category of spectra. 

Recall the notion of an d-filtered additive category 4?! [16]. 

DeJinition 1.27. Let d be a full subcategory of an additive category Q. Denote objects of 
d by the letters A-F and objects of 4? by the letters U-W. We say that 9 is d-filtered, if 
every object U has a family of decompositions {U = E,@U,}, so that 

(i) for each U, the decomposition form a filtered poset under the partial order that 
E,$U, 5 E,OU,, whenever U, G U, and E, c E,; 

(ii) every map A + U, factors A + E, -+ E&U, = U for some a; 

(iii) every map U --f A factors U = E,@ U, --+ E, --) A for some a; 

(iv) for each U, Y the filtration on U@ V is equivalent to the sum of filtrations 

{U = E&U,} and (V = F,& Va} i.e. to U@ V = (E,@FB)O(U,@ V,). 

Karoubi defines a’/& to be the category with the same objects as @, but with 4, 
$: U + V identified if 4 - $ factors through d. We have the following theorem [20, 
Corollary 5.71. 

THEOREM 1.28. K-m(&‘) + K-“(92) --, K-“(e/d) is a homotopyjbration. 

Proof: This follows from [20, Corollary 5.71. By taking the spectra that include the 
negative homotopy groups we avoid idempotent completions. 0 

Let X be a compact Hausdorff space, Y a closed subspace, so that X - Y is dense, 
C a closed subspace of Y, W an open subset of Y so that C c W. Put 49i = $S(X, Y; R), 
dr = .%‘(X, Y;&, eiz = g(X, Y;R)W, dz = 99(X, Y;R)F. Then we have the following 
lemma. 

LEMMA 1.29. $?/i is di-jiltered and 

4!X1/dl = 9(X, y; R)Y-C, %!2/dz = 93(X, Y; R)w-c. 

Proof: Direct from definitions. 

Theorem 1.28 gives the following corollary. 

COROLLARY 1.30. We havefibrations up to homotopy 

K-“)(W(X,Y;R)c)+K-“(W(X, r;R))-+K-“(&3(X, Y;R)Y-C) 

and 

0 

K-“(C@(X,Y; R)F) + K-“(SZI(X, Y; R)w) + K-“(99(X, Y; R)w-c). 
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LEMMA 1.31. Let X be a compact metrizable space, Y a closed subspace so that X - Y is 
dense in X, and * a point of Y. The natural map 

9I(X, Y;R) + 93(X, Y;R)Y-* 

induces an isomorphism on K-theory (i.e. a weak homotopy equivalence of K-theory spectra). 

Proof. Let d = 9(X, Y; R),. By Corollary 1.30 we shall be done if we can prove that 
K-‘“(d) is weakly contractible. Choose a metric on X and a sequence of points 

x0,-x1, * * f , in X - Y converging to *, and such that d(xi, Y) is strictly decreasing. This is 
possible since X - Y is open dense in X. Let d’ be the full subcategory of W(X, Y; R) with 
A, = 0 except for x E (xi}. Clearly d’ is a subcategory of &, but actually d and d’ are 
equivalent. One way is the inclusion. To get the other direction define a set map f: X + X by 
f(x) = Xi if d(x, Y) 2 d(xi, Y) and d(x, Y) < d(xi-1, Y), when x~X - Y, and f(y) = y for 
y E Y. This map is clearly continuous at * (and discontinuous at all other points of Y), but 
since objects of d are required to be 0 in a neighborhood of Y - *, we nevertheless get f, A, 

an object of d’ and an equivalence of categories. To finish off the proof of the lemma notice 
that d’ is flasque i.e. it admits an endofunctor U m : d’ + d’ so that 10 U” z U” (an 
Eilenberg swindle), and hence K - m (d’) is contractible. Specifically, U” is given by 

(Um(A))~i = Oj<iAxj. 

This completes the proof of Lemma 1.31. 0 

LEMMA 1.32. Let X be a compact metrizable space, Y a closed nowhere dense subset, and 
W an open subset of Y. Then 

B(X, Y; R)w = 93(X - (Y - W), W; R)‘+‘. 

‘Proof: The functor forgets the control along Y - W. The categories have the same 
objects, namely the objects of g(X - Y, R). If a morphism in a(X, Y, R)w becomes 0 in 
9(X - (Y - W), W; R)w, that means that the components of the morphism are 0 in 
a neighborhood of W, but that means the morphism is 0 in @(X, Y;R)“. This shows the 
functor is manic on Horn-sets. To see it is epic on Horn-sets, consider a morphism in 
9(X - (Y - W), W, R)w represented by 4 : A + B. We may assume A and B are 0 except in 
a neighborhood of W, so 4 is automatically controlled at interior points of Y - W. Hence, it 
is no loss of generality to assume that Y is the closure of W. We need to show that 4 is 
equivalent to a morphism which is controlled at points of a W. For every point z E W we find 
a neighborhood U, c B(z, 3 d(z, a W)) so that no non-zero component of 4 reaches from U, 
outside the ball B(z, id(z, 8 W)). We let U be the union of all the U$ and replace # by a map 
whose components are equal to 4s when two points are in U and 0 otherwise. Rechoosing 
4 to be this new representative, we claim 4 represents a morphism in W(X, Y; R)w i.e. that it 
is controlled at points of 8 W. Let y be a point in 8 Wand consider a &ball around y. We let 

V = B( y, 6/4). If a E V and 4: or 4: is different from 0, we must have a E U,, some z E W. We 
have 

d(z, y) I d(z, a) + d(a, y) c d(z, 8 W)/2 + 6/4 I d(z, y)/2 + 6/4 

so d(z, y) < 6/2. Since a E U, and df: or 4: is different from 0, we have b E B(z, $d(z, 8 W)) and 

d(b, y) I d(b, Z) + d(z, y) < d(Z, 8 W)/2 + 6/2 I d(z,y)/2 + 6/2 < 6. 

Hence a non-zero component of $ does not reach outside the &ball. Thus $J represents 
a map in W(X, Y)w and we have shown the functor is epic on Horn-sets. 0 
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Dejnition 1.33. A (reduced) Steenrod homology theory [ll, 151 is a functor from the 

category of component metrizable spaces and continuous maps, to graded abelian groups 
(with h,(pt) = 0), satisfying the following axioms: 

(i) h is homotopy invariant. 
(ii) Given any closed subset A of X there is a natural transformation 

a : h, (X/A) + h, - I (A) fitting into a long exact sequence 

(iii) Given a compact metric space, which is the countable union of metric spaces along 
a single common point (like Hawaiian earrings), VXi, then the projection maps 
pi : V Xi + Xi induce an isomorphism 

These axioms are sometimes called the Kaminker-Schochet axioms. 
Given any generalized homology theory, there is a unique Steenrod homology exten- 

sion. Uniqueness was proved by Milnor [ 183, existence by Kahn-Kaminker-Schochet and 
Edwards-Hastings [ll, 151. 

Definition 1.34. A functor k from compact metrizable spaces to spectra is called a Steen- 
rod finctor if it satisfies the following conditions: 

(i) k(CX) is contractible for any cone CX. 
(ii) If A c X is closed, then 

k(A) -, k(X) + k(X/A) 

is a fibration (up to natural weak homotopy equivalence). 
(iii) Given a compact metric space //Xi which is the countable union along a single 

point of metric spaces Xi, then the projections induce a weak homotopy equiva- 
lence k(V Xi) z I-j k(Xi). 

We have the following proposition. 

PROPOSITION 1.35. Let k be a Steenrod finctor. Then z+(k(X)) is the unique Steenrod 
homology theory associated with the spectrum k(SO). If X is ajnite CW-complex, then k(X) is 
weakly homotopy equivalent to X A k(S’). 

Proof: The maps X +XxIsendingxto(x,O)or(x,l)fitintoX-,XxZ+CXgiving 
homotopy invariance. The connecting homomorphism of the fibration gives the long exact 
sequence, and axiom (iii) gives the wedge axiom, hence X + x,(k(X)) is a Steenrod 
homology theory. We need to show that when we restrict to finite CW-complexes we get the 

homology theory associated to the spectrum k(SO). This however is proved in [27] (see 
Theorem 3.1 for the full statement). In particular it is proved in [27] that for any finite CW 
complex, X, there is a weak homotopy equivalence of spectra 

X A k(SO) E k(X), 

thus sz+(k(X)) restricts to the usual homology theory on the category of finite CW- 
complexes. 0 

Our definition of a Steenrod functor might be called a reduced Steenrod functor, since it 
sends a point to a contractible spectrum. We may of course get an unreduced Steenrod 
functor by the usual device of adding an extra basepoint. 
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THEOREM 1.36. Let X be a compact metrizable space, then K-OO(B(CX, X;R)) is a re- 
duced Steenrod functor with value Z,K -“(R) on So. In particular if X a finite CW-complex 
then f2K-m(4?(CX, X; R)) is weakly homotopy equivalent to X A Kern(R). 

Proof We need to prove conditions (i)-(iii) for the functor sending X to 
K-“(%J(CX,X,R)). (i) is proved in [1], and so is (ii), but not quite in this generality. 

Consider 

K-“(B(CX,X;R),)-+ K-“O(W(CX,X;R))+ K-“(99(CX,X)X-A). 

This is a fibration by Corollary 1.30. We first want to show that the inclusion 

W(CA, A; R) + W(CX, X; R)A 

is an equivalence of categories. Define a set map f from CX to CX to be the identity on X, 
and on CX - X a point x is sent some point a in CA such that d(x,a) realizes 
inf{d(x, a) 1 a E CA, d(a, A) 2 d(x, X)} . If this set is empty, send x to the cone point. Clearly 
f is continuous at points of A (and discontinuous at points of X - A), but since objects of 
B(CX,X;R)” are required to be 0 in a neighborhood of X - A, we still get a functor 

ff : B(CX, X; R)A - B(CA, A; R) 

which is an inverse to the inclusion up to natural equivalence. It follows from Lemma 1.22, 
Lemma 1.31 and Corollary 1.24 that K-*(9J(CX, X; R)X-A) is naturally weakly homotopy 
equivalent to K - O” (a(C(X/A), X/A; R)), so we have verified condition (ii). Finally, consider 
93(C( VXi), VXi;R). Let * denote the wedge point. We have 

K-“(B(C( VXi), VXi;R)) N K-“(B(C(VXi), VXi;R)Vx’-*) 

by Lemma 1.31. The category of germs W(C( VXi), V Xi;R)“‘,-• is equivalent to the 
product of the categories g(CXi, Xi; R)xi-* since only small neighborhoods of Xi- * matter, 
so there can be no interaction between the components at the germ. It is proved in [S, 61 
that K-” commutes with infinite products, so 

K-“(n(W(CXi,Xi;R)XI-‘)) N nK--(W(CXi,Xi;R)*‘-‘). 

Moreover, 

K-“(B(CXi,Xi;R)xI-‘) z K-“(B(CXi,Xi;R)) 

by Lemma 1.31, and we are done. The final remark follows from Proposition 1.35. 0 

We define Steenrod homology of a pair by h,(X, A) = h,(X/A). Combining Theorem 
1.36 with Corollary 1.24 we have proved the following. 

THEOREM 1.37. Let X be a compact metrizable space, Y a closed subspace so that X - Y is 
dense in X, W an open subset of Y. Then there is a natural isomorphism 

K;“(&‘(X,Y;R)W)~ h,_,(Y,Y- W;K-mR) 

where h, _ 1 ( - ; K-” R) denotes the Steenrod homology theory associated to the algebraic 
K-theory spectrum of the ring R (non-connective version). 

Remark 1.38. Notice that the proof of Theorem 1.36 identifies the map 

K-“(W(CX,X;R))-+ K-“(g(CX,X;R)X-A) 

with the Steenrod functor of Kern R applied to the collapse map X + X/A. 
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Definition 1.39. Let E be a locally compact space such that E+ , the one-point compact- 
ification is metrizable (e.g. E a finite dimensional CW-complex), and S a spectrum. We 
define 

hiJ.(E; S) = h”,‘(E+; S) 

where h”’ is the unique reduced Steenrod homology theory associated to the homology 
theory with spectrum s. 

THEOREM 1.40. Let E be a iocatfy compact space with metrizable one point compactifica- 
tion. Consider E = E x 1 c E x (0, 11. Then 

K;“(~(Ex(O,~],E;R)~)~~~~;~.~(E,K-~R) 

Proof: By Lemma 1.32, 

and by Lemma 1.31 &((E x (0, l])+, E+;R) and .@((E x(0,1])+, E+;R)e have the same 
K-theory. Finally, Theorem 1.37 shows that the K-theory of B((E x (0, l])+, E, ; R) is the 
reduced Steenrod homology of E, , with a shift in dimension. 0 

2. SPLITTING THE K-THEORY ASSEMBLY MAP 

Let I be a group. We shall consider a finite free I-CW complex E with a compactifica- 
tion X (meaning X compact, and E is an open dense subset). This compactification is 
supposed to satisfy conditions (i)-(iv) from Section 1. 

If E is an E I- with a compactification satisfying these conditions, (so in particular ET is 
a finite complex) the aim of this section is to show that the K-theory assembly map splits. 

THEOREM 2.1. BT, A K-“(R) is a split factor ofKmm (Rr). 

Some of the lemmas needed do not require all the conditions. The proof follows the 
strategy of [S], but replacing h’./. as well as bounded K-theory by continuously controlled 
K-theory, and the natural transformation by an induced map. In view of Theorem 1.40, 
what we are doing is of course using a continuously controlled model for h’. /.. Given 
a spectrum A with r-action, recall the definition of the homotopy fixed set 

Ahr = mapr(Er+,A+). 

The collapse map ET, -+ So induces a map from the fixed set Ar = Map,@‘, A+) to the 
homotopy fixed set. 

Remark 2.2. There’ is an important special case where the map from the fixed set to the 
homotopy fixed set is a weak homotopy equivalence. When A = nrB, and the r-action 
permutes the factors we have 

Ahr = (Map(l?+,B))hr = Map,(ET+,Map(T+,B)) = Map,((ETxr)+,B) 

= Mapr(T+,Map(Er+,B)) = Map(ET+,B) 2: B = Ar. 

Let CX be the cone of X, with X x 0 as the cone point, and identify X x 1 with X. We 
denote X - E by Y and the projection map Xx (0,l) +X by px, and consider the 
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I-equivariant functor induced by collapsing X, from CX to ZX: 

%%(CX, CY u x, px; R) + qzx, c Y, px; R). 

Notice that the modules on both sides are parameterized by E x (0, l), but the control 
conditions are quite different. Denoting QK-m(B(CX, CYu X,p,; R)) by S and 
S2K - “(%f(CX, Z Y, px; R)) by T, we study the diagram 

S - Tr 

1 1 
Shr - Thr 

and prove the following statements: 

(i) Sr N (E/T)+ A K-“(R), 
(ii) Tr 1: Kem(Rr), 

(iii) Sr 2 Shr, 
(iv) Shr N Pr. 

It is only (iv) that requires X to be contractible. 
The proof will be a sequence of lemmas. First consider Tr. 

LEMMA 2.3. 0K-m(9?(CX,CY,px;R))r ‘v K-“(RI-J 

Proof: Taking fixed sets and applying K - m clearly commutes, so we need to study the 

category @ZX, Z Y, px; R)r. We shall show that 

9#(C(E/l-), 0 u 1; RT) r a(z,o u 1; Rr). 

A priori we require control at 0 and 1 and along Y x (0, I), but only in the p,-direction. 
Control along Y x (0,l) is automatic by equivariance because of condition (iv). To see this 
let 4 : A + B be an equivariant morphism, ( y, t) E Y x (0,l) a point and U a neighborhood of 
y in X. We need to show that we can find a neighborhood V of ( y, t) in CX so that 

&4/V) = EI(U x(091)). 

Choose 0 < ai < t < c2 < 1 and a compact fundamental domain K c E (so E = UrsK). By 
compactness there are only finitely many R-module generators in K x [cl, c2], so we may 
find L c E compact and 0 < 6i < t < cS2 < 1 so that K c L and 

~(AIK~CEI,EZI)CBIL~CS~,~~I. 

By condition (iv) we may find a neighborhood W of y in X so that if gL n W # 8 then 
gL c U. We claim V = W x (Ed ,Q) will do: for any point a = (p, S)E V, p lies in some 
translate gK of K, hence gK n W # 8, but that means gL c U and by equivariance 

~(A,)c~(AIgKxC&~r&2l)~~IgLxC~~,~21c~I~x(O,1) 

and the proof that control is automatic along Y x (0,l) is finished by Lemma 1.8. Arguing as 
in Lemma 1.5 we thus get 

g(ZX, Z Y, px; R)r z g(C(E/T), 0 u 1; RT). 

Since E/T is compact Corollary 1.24 shows that 

.$9(Z(E/I-),O u 1; RT) z %@(I, 0 u 1; RT) 

TOP 34/3-Q 
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and by Theorem 1.36 RR- “($?(I, 0 u 1; RF)) is weakly homotopy equivalent to 
K-“(RI-). 0 

We now go on to study Sr. Thinking of E = E x 1 c E x (0, l] we get the following 
lemma. 

LEMMA 2.4. k@CX, C Y u X, px; R)E = ?4(E x (0, l],E; R)? 

Proof: We have g(CX, CY u X, px; R)E = S??(CX,CY u X; R)E and g(CX, CY u 
X; R)E = @(CX, X; R)E because the categories have the same objects as in LB(E x (0,l); R) 
and morphisms subquotients of the morphisms in @(E x (0,l); R). The equalities follow 
because any morphism has a representative which is 0 except for a neighborhood of E, so 
we may assume it is 0 in a neighborhood of C Y - Y, and control conditions along C Y - Y 
are thus automatically satisfied. Finally g(CX, X; R)E = 99(E x (0, 11, E; R)E is a direct 
consequence of Lemma 1.32. 0 

LEMMA 2.5. We have weak homotopy equivalences 

K-“(B(CX,CYuX,p,;R)) z K-m(L@CX,CY~X,px;R)E) 

Proof: Let & denote g(CX, C Y u X, px; R) cy. Clearly the quotient category 

S?(CX,CYuX,p,;R)/d =~~(CX,CYUX,~,;R)~ 

but d has a flasque structure, by an Eilenberg swindle shifting modules to the left as 
follows: choose a continuous function a : X + [ 1, co ) satisfying a(m) > 1 when m E E and 
a(Y)= l.Define U”:d+dby 

(urn(A)),,,,, = @&,.(?n)? 

where we let A(,,,) = 0 when s 2 1. This sum is clearly finite, and 

{(m,r)I(Um(A))(m,t) f O> 

is locally finite because A is 0 in a neighborhood of E. To get the statement on fixed sets, 
since K - m commutes with taking fixed sets, we need to consider the fixed category. Defining 
d = @(CX, CY u X, px; R),-u)r, the argument goes through as above, noting that an 
RF-module which is 0 in a neighborhood of E must be 0 in a neighborhood of X. 0 

Remark 2.6. This is the point where we need control along the map px. If we require 
continuous control, then equivariant maps could not have a non-zero component between 

(p, s) and (q, t) when s # t because such a component would be translated by the group to 
points close to Y x (0, l), contradicting control. Hence, d would not be flasque, because the 
flasque structure requires a natural transformation with a non-zero component between 
(p,s) and (q, t) with s # t. 

LEMMA 2.7. (&3(CX, CY u X, px; R)E)’ = (B(E x (0, 11, E; R)“)r. 

Proof Immediate from Lemma 2.4. 0 
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LEMMA 2.8. Assume r acts freely properly discontinuously on a space E. Then 

(B(E x (0, 11, E; R)E)r z B(E/T x (0, 11, E/T; R)E’r. 

Proof The map 

pp:RIElm -+ R[E/l-1” 

induced by projection induces an isomorphism 

RIElm oRrR + R[E/T]“. 

An RF-module A parameterized by E x (0,l) is sent to the R-module AOR,R. Going 
backwards, an R-module B parameterized by E/T is sent to pa l(B). Since we are taking 
germs at E and components of a morphism have to become small near E, there is only one 
choice when lifting a morphism. cl 

To finish off showing Sr = (E/T)+ A Kmm(R) we need the following theorem. 

THEOREM 2.9. Let E be a Jinite, free T-C W-complex. Then 

QK-m(.@(E x(0, l],E;R)E)r N (E/T)+ A K-“R. 

Proof: By Lemma 2.8, 

(SY(E x (0, l-J, E; R)E)r = @(E/T x (0, 11, E/I-; R)E’r. 

Lemma 1.32 shows that 

93(E/r x(0,1], E/l-; R)E’r 2 W(C(E/T), E/l- u *; R)E’r 

and Lemma 1.31 shows that 

K-“(B(C(E/T),E/l-u *;R)E’r) 1: K-“@(C(E/l-),E/l-u *;R)). 

Finally, Theorem 1.36 shows that 

ZZK-“(&?(C(E/I-), E/I-u *;R)) N (E/l-)+ A K-“R. 

COROLLARY 2.10. Sr z (E/T)+ A Kpm(R). 

Proof. Combine Lemmas 2.5 and 2.7 and Theorem 2.9. 

THEOREM 2.11. Let E be a finite free T-CW complex. Then 

K-m(.4!I(Ex(O,1],E;R)E)r+K-a,(S9(E~(O,1],E;R)E)hr 

is a weak homotopy equivalence. 

Proof The proof is by induction on the r-cells of E. To start the induction assume 
E = r. In this case the category 93(E x (0, 11, E; R)E is equivalent to the product category 
LET W(g x (0, 11, g: R)g. This follows since we take germs at E and demand control at points 
of E, so near E a component of a map cannot reach from one element in E = r to another. 
We have 

(9Y(E x (0, l-J, E; R)E)r = W((0, 11, 1; R)’ 

by Lemma 2.8. The projection maps induce a map 

K-” n ~(gx(O,ll,g;W 
9eT > -~K-m(~(gx(O,ll,g;R)B) 
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which is F-equivariant, in the action that permutes the factors, and a weak homotopy 
equivalence by [6]. The fixed set on the product is the diagonal, which may be identified 
with K- “(g((O, 11, 1; R)‘). Under this identification the map of fixed sets 

K - m (W(E x (0, 11, E; R)E)r -P 
( 

n K - “(@( g x (0, 11,s; R)g) 
!M 1 

r 

is the identity. On homotopy fixed sets we get a weak homotopy equivalence since the map 
is equivariant, and unequivariantly it is a weak homotopy equivalence. Finally, 

F K-“(%(O, 11,l;R)‘) fl 
r 

is a weak homotopy equivalence, see Remark 2.2. 
from N by attaching one free G-cell, e”. Consider 

> 

hT 

K-“W((O, ll,l;R)‘) 

Assume inductively that E is obtained 

?d(N x (0, 11, N;R)N 5 W(E x (0, 11, E; R)” “, S?$li x (0, 11, E;R)E-N. 

Let’s denote RK- a, applied to this sequence by A + B + C. The sequence Ar + Br + Cr is 

(N/l-)+ A K-” R+(E/l-)+ A K-“R-+(E/T)/(N/T) A K-“R 

by Theorem 2.9 and Remark 1.38, hence a fibration of spectra. The composite functor g/- 
factors through g(N x (0, 11, N; R)O which is equivariantly equivalent to the trivial category. 

Unequivariantly A + B + C is a homotopy fibration (a Steenrod functor applied to 
N + + E + + E, /N + ). Letting D denote the homotopy fibre of B + C we get an equivariant 
map from A -P D which unequivariantly is a weak homotopy equivalence, hence a weak 
homotopy equivalence of homotopy fixed sets. Since homotopy fibre and homotopy fixed 
sets commute we have shown that 

Ahr -+ Bhr + Chr 

is a fibration sequence. By our induction hypothesis we have Ar + Ahr is a weak homotopy 
equivalence, so to finish off the proof it suffices to show that Cr + Chr is a weak homotopy 
equivalence. However, this is entirely similar to the start of the induction. Since 
E - N = r x e” where e” is an open n-cell and we are considering germ categories we have 

~~(Ex(O,~],E;R)~-~ z n~(g.e~x(O,l],g.e”;R)B’” 

and the F-action permutes the factors, so this completes the induction step. 0 

COROLLARY 2.12. Sr g Shr. 

Proof: Consider the equivariant functor combining taking germs and forgetting control 

We want to show that when we apply K-* and take fixed and homotopy fixed sets, 
respectively, we get a weak homotopy equivalence. On fixed sets this follows from Lemmas 
2.5 and 2.4. On homotopy fixed sets it follows since the functor is equivariant, and 
unequivariantly it induces a weak homotopy equivalence by Lemma 2.5. The proof is now 
finished by Theorem 2.11. 0 

So far we have not used the assumption that X is contractible. However, that is needed 
to show that Shr + Thr is a weak homotopy equivalence. The proof of Theorem 2.1 will be 
completed once we have the following theorem. 
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THEOREM 2.13. 

K - m (L!#(CX, C Y u X, px; R))hr --* K - “(CB(CX, C Y, px; R))hr 

is a weak homotopy equivalence. 

Proof: Consider the diagram 

a(CX,CY u X;R) 5 9(ZX, I2 Y; R) 

1” 1’ 

a(CX, CY u X,p,;R) 7 &?(EX,EY,p,; R). 

We need to show that d induces a weak homotopy equivalence when applying K-” and 
taking homotopy fixed sets. Since d is equivariant it suffices to show that d induces a weak 
homotopy equivalence unequivariantly, we show this by showing that a, b, and c induce 
weak homotopy equivalences. We can conclude that a is a weak homotopy equivalence by 
the following three reasons. First 

K-“(@(CX,CY u X;R))-+K-“@(CX,CY u X;R)e) 

is a Steenrod functor applied to collapsing the contractible space CY, see Remark 1.38 and 

Theorem 1.25. Second, we have a weak homotopy equivalence 

K-“B(CX,CY u X,p,;R) -+K-“@(CX,CY u X,P,;R)~). 

by Lemma 2.5. Third, the categories a(CX, C Y u X; R)E and a(CX, C Y u X, px; R)E are 
equal by Lemma 2.4. Similarly, c induces a weak homotopy equivalence because Kmrn 
applied to W(CX, E Y; R) is a deloop of K-“(S?(X, Y, R)) by Theorems 1.23 and 1.36, but so 
is K- m (a(ZX, Z Y, px; R)) by an application of Theorem 1.28. Finally, b induces a weak 

homotopy equivalence because it is a Steenrod functor applied to collapsing the contract- 
ible subset X by Theorem 1.37. This completes the proof of Theorem 2.1. 0 

3. IDENTIFYING THE ASSEMBLY MAP 

In the previous section we have described a map 

BF, A K-“(R) --) K-“(R[I-I). 

We called it the assembly map. In this section we justify this by proving the map is the same 
as what is usually called the assembly map. This is based on results of Weiss and Williams 
[27]. To describe the result we need to recall some definitions from [27]. Let F be 
a homotopy invariant functor from finite complexes to spectra, sending the empty set to 
a contractible space. The functor F is called excisive if it sends a homotopy pushout of 
spaces to a homotopy pushout of spectra (i.e. if n,(F(B)) is a homology theory). 
Weiss-Williams prove the following theorem. 

THEOREM 3.1. Let G be a homotopy functor from finite CW-complexes to spectra, such 
that G(Q) is contractible. Then there is an excisive functor G” and a natural transformation 
G”(B) -+ G(B), which is the identity on a point. Zf F(B) + G(B) is a natural transformation 
from an excisive functor F which is a homotopy equivalence on a point, then F(B) Y G”(B) by 
a homotopy equivalence making F(B) = G”(B) + G(B) the given natural transformation. 
Furthermore, F(B) N G”(B) N B+ A F( *). 
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The natural transformation F(B) -+ G(B) is called an assembly map, and the theorem 
thus says that a homotopy invariant functor has an essentially unique assembly map. 

To apply this theorem, we need to describe two functors F and G. Let 

F(B) = RK- “(S?(B x (0, 11, B; R)B). 

Then F on the category of finite complexes is an excisive homotopy invariant functor to the 
category of spectra. We define G as follows. Let B be a finite complex, E a universal covering 
space for B, and I the group of covering transformations (so I is isomorphic to the 
fundamental group of B). Give E a length metric induced from B and let 4 be the projection 
on the second factor E x (0, l] + (0, 11. Notice that if X is a compactification of E satisfy- 

ing conditions (i) and (iv) of Theorem 2.1, then (W(E x (0, l],E, q;R)E)r and 
@(CX, CY u Y,p,; R)E)r are the same subcategories of 9l(E x (0,l)). Hence, we may try to 
define G by 

G(B) = RK - m ((.@f(E x (0, 11, E, q; R)E)r). 

The problem is that the assignment of E to B is not functorial without a basepoint. This 
however is solved by the following lemma. 

LEMMA 3.2. Let p: E + B be a universal covering and g : E + E a map so that pg = p. Then 
the induced map on &f(E x (0, 11, E, q; R)e fixes @(E x (0, 11, E, q; R)E)r. 

Proof: By covering space theory, g is multiplication by some element y. Hence g is 
equivariant with respect to the I-action and the r-action conjugated by y, but the fixed 
category with respect to the r-action and the conjugated r-action is the same. q 

We thus do have that G is a functor of B. Applying RK-” to the equivalence 

W(B x (0,l J, B; R)B 2 (Sf(E x (0, 11, E; R)E)r 

followed by the forget control map 

(g(E x (0, 11, E; WEJr -+ (NE x @,11, E, 4; WEI’ 

gives a natural transformation F(B) + G(B) which by the above mentioned results of 
Weiss-Williams is the assembly map, since it is the identity on a point. 

Remark 3.3. In the above discussion G(B) is homotopy equivalent to K - “(R[r]). This 
identification is of course not independent of choice of basepoint. 

Remark 3.4. The category S(E x (0, 11, E, q; R) is easily seen to be flasque, whenever E is 
noncompact, say E = ET with BT finite. It follows that W(E x (0, 11, E,q; R)E has trivial 
K-theory since A?(E x (0, 11, E, q; R)@ is also flasque. Hence, we obtain that whenever we can 

find a r-equivariant subcategory % c @E x (0, 11, E, 4; R)E containing (&‘(E x (0, 11, 
E, q; R)fi)r such that W(E x (0, 11, E; R)E + &9(E x (0, 11, E, q; R)E factors through Q by a func- 
tor inducing isomorphism in K-theory, we get a splitting of the assembly map. In this paper 
we choose 4 by continuous control in a compactification of ET. One may always try to let 
4! be the subcategory where morphisms also are required to be bounded. This remark 
recovers a result from [S], saying that if bounded K-theory with labels in ET is isomorphic 
to h'. f.(ET, Kern(R)), we get a splitting of the assembly map. 
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4. LTHEORY OF ADDITIVE CATEGORIES 

In this section we recall and expand various results due to Ranicki. Specifically, we 
prove the following theorem. 

THEOREM 4.1. Let % be an d-filtered additive category with involution preserving d, thus 

inducing an involution on SQ. Let K be the inverse image of K,(q) under K&B? h ) + 

Ko(Q h ). Then up to homotopy there is a jibration of spectra 

THEOREM 4.2. Let 9X be an d-jltered additive category with involution preserving d. 

Then up to homotopy there is a$bration of spectra 

[I-m(J3q + [L-“&q -+ e-m(%!/%!xI). 

To explain the terms in these theorems we recall Ranicki’s L-theory of additive 
categories with involution. Let % be an additive category. We shall consider chain com- 

plexes U, in %!. If not otherwise stated, the chain complexes are always supposed to be 
finite, i.e. Ui = 0 except for finitely many i, but we do not require UI = 0 in i < 0. 

An additive category with involution %, is an additive category together with a con- 
travariant functor *: Q + 4, sending U to U*, and a natural equivalence ** E 1. We shall be 
working with small categories and in our applications ** will be equal to the identity. 

Given a chain complex U,, the n-dual chain complex U"- * is defined by 
(U”-*), = U”-’ = (U,,_)*, and boundary ( - 1)’ times * applied to the boundary map. If 
U, and V, are two chain complexes, Hom(U,, I’,) is the chain complex of abelian groups 
which in degree r is @p+q=r Hom(U,, I’,). 

Let U, be a chain complex, then Hom(U*, U,) has a Z2 action given by 
T(f) = ( - l)pq f*, f: Up + U, and T the nontrivial element in Zz. Notice an n-cycle in 
Hom(U*, U,) is a chain map 4: U”-* + U,. 

Let W be the standard Z[Zz]-module resolution of Z: 

W: ... -+Z[&]IT.[iZJ1+T- H[E,]=+Z[Z,]. 

Define the Z[Z,]-module chain complex 

W%U = W&&Hom(U*, U,)). 

An n-chain + is a collection {tis E Hom(U *, U.+)n_s ) s 2 O}, so with an n-cycle II/ comes 
a chain map I,IQ~: U”-* + U,. Ranicki defines an n-dimensional quadratic complex in %‘, 
(U,, $) to consist of a chain complex U, in Q and an n-cycle $ E W,, U,. The quadratic 
complex is called Poincarb if the chain map (1 + T)$,: U”-* + U, is a chain homotopy 
equivalence. Similarly, Ranicki defines quadratic pairs, and quadratic PoincarC pairs, so 
that bordism and gluing operations are defined as in a manifold category. The n-dimen- 
sional quadratic Lh-group LfB) is defined to be the cobordism group of n-dimensional 
quadratic Poincare complexes. Notice that the (n + 4)-dual of the double suspension of 
a chain complex U,, is the double suspension of the n-dual of U,, and this together with the 
2periodicity of W gives a l-l correspondence between n-dimensional and (n + 4)-dimen- 
sional Poincare complexes. This correspondence is called double skew suspension, and it 
works in all dimensions (including n negative). 

Important for our purposes is that to a quadratic n-dimensional complex, a pair is 
assigned so that the pair is PoincarC specifically [23, Proposition 13.11. 
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PROPOSITION 4.3. There is a natural one-one correspondence between the homotopy 
equivalence classes of n-dimensional Poincark pairs in % and the homotopy equivalence classes 
of n-dimensional quadratic complexes in G2. 

This correspondence is given by sending the pair to the algebraic mapping cone. 
Roughly speaking, the algebraic mapping cone of the duality map of an n-dimensional 
quadratic complex is a null cobordant (n - I)-dimensional Poincart complex. 

Ranicki relates this categorical approach to the usual approach in the following 
theorems. Let R be a ring with involution. 

THEOREM 4.4. If & is the category offs. free R-modules, and involution given by duality, 
then Li(%) coincides with the usual L-groups L:(R). 

Idempotent completion enters as related to LP-groups. 

THEOREM 4.5. Let % be as above. If K is an involution invariant subgroup of Ko(Q h ), 
then Li(% * K, = L:(R). 

The L-groups being defined as bordism groups, Ranicki [22] defines a (Kan)d-set 
U_@/) where the n-simplexes are n-ads of (n + i)-dimensional Poincare complexes. This 
A-set is naturally based by the O-chain complex. A A-set model for the circle has one 
O-simplex, the basepoint, and two 1-simplexes, the basepoint and one more simplex. The 
A-set model for the loop space is determined by what that one-simplex is sent to, so 

nn_@!) = L:, I(%!) 

in the world of A-sets. Upon realization of the A-set there is a map 

which is a homotopy equivalence. The skew double suspension 

which is the double suspension of the chain complex, and the identity on the quadratic 
structure gives an isomorphism of A-sets. In Ranicki’s original treatment of algebraic 
Poincare complexes an n-dimensional Poincart complex was assumed to be concentrated 
between dimensions 0 and n. By giving that up, and only assuming chain complexes to be 
finite [22] the 4-periodicity becomes exact, and negative dimensional Poincare complexes 
make perfectly good sense. Realization of the A-sets [L!(S) now gives a four periodic 
spectrum. We denote this spectrum, with homotopy groups, the L-groups of % functorially 
assigned to 93 by e”(a). We wish to establish the analogue of Theorem 1.28 for this 
spectrum. 

Dejnition 4.6. Let & be a full subcategory of @. A chain complex U, is d-dominated if 
there is a chain complex C, in d and chain maps r : C, + U, and i: U, + C, such that ri is 
chain homotopic to the identity. 

Recall that the idempotent completion 9 A of an additive category Q has objects (u, p), 
p:u+ u,p2 = p and Hom((U, p), (V, q)) c Hom(U, V), the subset for which q4p = 4. If 
K c &,(S! A ) is a subgroup, we denote the full subcategory of 4 h with objects (A, p) so that 
the stable isomorphism class of (A, p) lies in K by Q h K. 

We have an inclusion of % in %! h as a full subcategory sending A to (A, 1”). Clearly this 
inclusion factors through % h ‘o(*). 
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PROPOSITION 4.7. Let Q be an &-filtered category. A chain complex V, in & is d- 
dominated if and only if the induced @J&-chain complex is contractible. 

Proof. Assume V, is d-dominated by C,. The induced @/&-complex of C, is isomor- 
phic to the O-chain complex, hence V, is @Id-homotopy equivalent to the O-chain 
complex, so contractible. If U, is d/@-contractible, we have maps i=i : Ui -+ UC + 1 in %?/a so 
that di+ 1 pi + l=- 1 di = 1 in 9!!!/&. Choose representatives Ti in % for Fi. Assume Vi = 0 for 
i > n. The map 1 - I-._ Id,: V, + V, factors through d, hence (since % is d-filtered) we 
may choose U, = A,@ I’,, so that 1 - r,_ Id, factors through A,. Next decompose 
U,._l = A,_l@V,_, so that d,JA, factors through A,-1 and 1 - d,r,_l - rn_2dn-1: 
V, . 1 + V,_ 1 factors through A,, _ 1. Continuing this process we get a chain complex A, in 
d which we claim dominates V,. We define r: A, + V, to be the inclusion and i: V, + A, 
to be 1 - l-d - dr. It is easy to see that i is a chain map and ri = 1 - Td - dI’ so r is 
a chain homotopy from ri to the identity. 0 

This is an algebraic analogue of the connection established in [25] between a proper 
homotopy equivalence and a finitely dominated space. 

We need the following lemma from [24]. 

LEMMA 4.8. Let d be a fill subcategory of %!, V, an d-dominated chain complex in 9. 
Let K be the inverse image of K,(a) under the induced map Ko(d A ) + Ko(@ h ), and let 
% ’ K be the full subcategory of %! h with objects (A, p)@ V, [(A,p)] E K. Then the induced 
chain complex in Q n K, under the inclusion @ + % A K is chain homotopy equivalent to a chain 
complex in J& h ‘. 

Proof. The explicit formulas in [24] show that V, is homotopy equivalent to an infinite 
chain complex of the form 

. . . ASA -=+-P’AA ‘-’ -ALA+A,_l + . . . +. 

But in dh this is homotopy equivalent to 

O~(A,p)~(A,_,,l)-*...~ 

and [(A, p)] E K&! A ) must map to an element of K,(9). 0 

We may now prove the main theorem of this section. Special cases of this theorem have 
been proved by Ranicki. 

Proof of Theorem 4.1. Let 9 A K be the full subcategory of 4?/ * with objects (A, p) @ V, 
where (A,p) is an object of d h K. Clearly % A K is d A K-filtered, and % A K/d ’ K is 
equivalent to a/&. By the bordism approach to L-theory we get a fibration 

We have hh(4Z) + iLh(Q A K, is a weak homotopy equivalence since any chain complex in 
@ h K is homotopy equivalent to a chain complex in %. Given a Poincark pair 
((A.,., +J + (V,, JIv)) with A, in d h K and U, in % A K, the quadratic chain complex 
(V,,$v) in gAK/dgK is Poincart, since chain complexes in z! A K are equivalent to the 
O-chain complex in % ’ K/& h K. Applying this to n-ads of Poincarb pairs induces a map 

iL(.d AK-+%AK)+B(%/d). G iven a chain complex u, in %!!/&, we want to find a chain 
complex U, in % such that the induced chain complex in &/& is isomorphic to t?, . Choose 
representatives pi : pi + Ui- 1 in % for the boundary morphisms. This may not be a chain 
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complex because pi_ 1 di is not necessarily 0. It factors through d, however, so we define U, 
inductively by U,, = UO, Ui = U1, and dI = d;. Write U, = A2 @ U2 so that &dl factors 
Uz@Az + A2 + U,,, and let d2 be Uz + U2@Az d2 U1. Then dzdl = 0 and renaming J3 
to be the composite U, + U, + Liz, we may decompose U, similarly, and by a finite 
induction we get the chain complex U,. Noting that the projection maps Vi + Ui induce 
isomorphisms in a!/&‘, it is clear that the induced chain complex in !&/& is isomorphic to 
U,. Similarly, a quadratic Poincare structure $ on 0, lifts to a quadratic structure on U,, 
by choosing representatives, but not necessarily to a quadratic Poincare structure. Since 
quadratic complexes are in l-l correspondence with Poincare pairs (the correspondence 
being the algebraic mapping cone) there is a Poincart pair (A, + V,) such that the 
algebraic mapping cone is homotopy equivalent to U,. In s/z!, U, is Poincare which is the 
same as saying that A, is contractible by Proposition 4.7. That in turn by Lemma 4.8 means 
that A, is homotopy equivalent to a chain complex in d h K, so we have found a Poincare 
pair in JZJ h K + %! h K mapping to U.,., hence 

L(d ^K+%hK)-+iL(%/Jz!) 

is an epimorphism on homotopy groups. A relative version of this argument shows it is 
a monomorphism. 

So far we have not discussed torsion. Following Ranicki, given an additive category 
% with involution, and a system of stable isomorphisms 4X, r : X + Y so that any composite 
which happens to be an automorphism represents OE K,(e), and given a *-invariant 
subgroup S of K,(q), one may define the groups L:(d) and the simple [I-spectra [LS(d). 
Slightly more generally, if we only require that any composite which happens to be an 
automorphism lies in a *-invariant subgroup H of Ki(&), IL;(d) may be defined for any 
*-invariant subgroup such that H c S. By methods entirely analogous to the above one 
obtains the following. 

THEOREM 4.9. Let 92 be an d-filtered additive category with involution. Assume d and 
B have compatible systems of stable isomorphisms. Then we have a quasijibration 

ILS(d) + es(s) + F(%!‘/&) 

where K = Im(K i(a) -+ K, (S/d)), and s refers to the trivial subgroup. 

Remark 4.10. Zf E is non-compact, it is usually quite easy to find a system of stable 
isomorphisms for the various subcategories of B(E; R), by Eilenberg swindle on the objects. 

In the above remark it is important to note that we only have Eilenberg swindle on the 
objects, not a functorial Eilenberg swindle, since this would imply that the L-theory of the 

category vanishes, as seen in the next lemma. 

Definition 4.11. An additive category d with involution is flasque if there is a functor 
;T;“:d -+ d and natural equivalences Cm* 2 *C” and l@Zw z C”. 

LEMMA 4.12. Zf d isjlasque then Li(d) = 0. 

Proof: Let (A,, v) be an element of Li(&). Then 

(X=‘A,,C=‘v) g (YAA.@A, Zmv@v) 

hence (A,, v) = 0. 
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Let ~i( - ) be the functor from small additive categories to itself with objects para- 
meterized by the [w’, and bounded morphisms. We recover a theorem due to Ranicki. 

THEOREM 4.13. 

and 

In particular, 

and 

Proof We prove the particular case, since the general case is entirely similar. Let JS? be 
the full subcategory of VI(@) with objects A such that there is an n with Ai = 0 for i > n 

sufficiently large. Clearly, d is flasque so 

shows that L~(%?,(&)) z L~(~r(%!)/&‘). Let %+ (@) be the full subcategory of %r(%) with 
objects A such that there is an n with Ai = 0 for i < n. The category %+(a) is flasque, and 
%+ (a) is &?-filtered, where 99 is the full subcategory of VI (%) with objects that are 0 both at 
large positive and negative values of the point in Iw. We thus get L:(B) s L”(%? + (%)/!%I) but 
$9 is equivalent to %! and %?+ (@)/9# is equivalent to %‘r(&)/~$ and we are done. 0 

Following Ranicki we make the following definition. 

De$nition 4.14. Let d be an additive category with involution 

LfYi(d) = L”,+i+2(gi+2td;4)) 

wherewewritesfor -iwhen -i=2,hfor -iwhen -i=l,andpfor -iwhen 
- i = 0. 

The point of Ranicki’s definition is that he shows it agrees with the usual definitions in 
case d is the category of finitely generated R-modules, R a ring with involution. 

LEMMA 4.15. If a functor f: SI + g of additive categories with involution induces isomor- 

phism on K-theory (when restricted to isomorphisms) and on L-theory with one decoration, 

then it induces isomorphism on L-theory with any decoration. 

Proof: This follows from Ranicki-Rothenberg exact sequences. 

Let & be an additive category and consider the inclusion 

qi(&) c gi+ 1 Cd). 

cl 
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The map on A-sets 

is homotopic to the constant map in two ways: the cellular chain complex of ([0, oo),O) 
obtained by subdividing at integral lattice points 

defines an element in symmetric L-theory 

L’(W@) + Vto,&)) 

and pairing with this element gives a map 

Lj(wi(d)) --* Ljh+l(gi+l(d)) 

which is a A-set homotopy from the inclusion to the constant map. (The element in 

L’(V,(Z) + g,o, a#)) is actually the generator under the isomorphism L’@?,(Z)+ 

%to,,,)(Z)) z Lo(Z) E Z). Similarly, pairing with the chain complex of [0, - cc ) gives a null 
homotopy, so combined we get a map 

cLh(~i(~)) + Lh(gi+l(d)) 

and hence 

and the composite 

Lh(~i(d)) + RLh(wi+ 1 (d)) 

ILh(Vi(.E4))-*RILh(Vi+,(d))~Rllh(~i+,(d)A) 

is a weak homotopy equivalence, since on homotopy groups this is exactly the map 
described in Theorem 4.13. 

Dejnition 4.16. The spectrum IL- “(&) is defined to be the homotopy colimit of 

Ilk(&) + RIFh(WS1 (Jd)) -+ Q2Lh(~*(Jd)) + . . . 

It is clear that IL-” is a functor from the category of small additive categories and lax 
involution preserving functors to the category of spectra. 

LEMMA 4.17. Let 9 be an additive category. If d is a full subcategory, inducing 
isomorphism on Ko, then 

Q4 + W) 

is a weak homotopy equivalence (any decoration on the L-theory). 

Proof We need to show the map induces isomorphism on homotopy groups, but any 
chain complex in 9Y is homotopy equivalent to a chain complex in d, so from this it follows 
that Lh(&‘) -+ Lh(A?) is an isomorphism, and since the inclusion induces isomorphism on 
K-theory Lemma 4.15 finishes off the proof. cl 

Finally, we are ready for the proof of Theorem 4.2. 
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Proof of Theorem 4.2. We get this result using Theorem 4.1. For any additive category 
with involution ‘3 we have IL”(%) N L”(V h ‘) by Lemma 4.17 above. Let 

Ki = ker(Ko(%i(@)) + Ko(%‘i(%/&))). 

Using Theorem 4.1, we then have fibrations 

Lh(%i(&) A “‘) + [Lh(%i(%)) + ~h(%i(%!)/%i(-c4)). 

Noting that %?i(%)/%‘i(&) is equivalent to %‘i(%/&) by an equivalence which is the identity 
on objects, the proof is completed by contemplating the diagram 

which shows that taking homotopy colimit of the upper row is the same as taking 
homotopy colimit of the lower row. 

5. THE LTHEORY SPLITTING 

In this section we apply the results of the last section to obtain a splitting of the L-theory 

assembly map. Throughout this section R will be a ring with involution satisfying 
K_,(R) = 0 for sufficiently large i. The proofs are extremely similar to the K-theory proofs, 
given the requisite techniques from the preceding section. First, however, we need to worry 
about the involution. Given an object of one of the categories W(X; R), 99(X, Y), . . ., we 
denote the full subcategory with objects A such that A, has a basis of the form {(x, i)} by 
3$,(X; R), .?&.(X, Y; R) ,.... All the results of Section 1 hold for these categories since they are 

cofinal and have the same Ko. 
If R is a ring with involution, we get an involution on Z&,(X; R) as follows. On objects, 

* is the identity. On a morphism C#J : A + B, we define 4* : B* + A * by (4 *)G: B: + A: is the 
map B, + A,, with matrix, the conjugate transpose of 4:: A, + B,. Here elements of the ring 
R are conjugated by the involution on the ring. 

Remark 5.1. We are identifying A, with its dual via the basis, and dual basis, and use the 
matrix description of the dual map. 

We shall prove L-theory results similar to the K-theory results, replacing Theorem 1.28 
by Theorems 4.1 and 4.2. 

Notice equivalent additive categories (with equivalence preserving the involution) have 
the same L-theory. 

As in K-theory we get the following lemma. 

LEMMA 5.2. Let X be a compact metrizable space, Y a closed subspace, so that X - Y is 
dense in X. Let C be a closed subset of Y, Wan open subset of Y with C c W. We then have 
Jibrations up to homotopy 

and 
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Proof: Direct from Lemma 1.29 and Theorem 4.2. 0 

LEMMA 5.3. Let X be a compact metrizable space, Y a closed subspace, so that X - Y is 
dense in X. The natural map 

2&,(X, y; R) + 2$(X, Y; R)‘- * 

induces an isomorphism in L-theory with any decoration. 

Proof The flasque structure on g*(X, Y; R), preserves the involution, so this follows 
from Lemma 4.12 and Corollary 5.2. 0 

THEOREM 5.4. Let X be a compact metrizable space, R a ring with involution. Then 
il+ “(.98t,(CX, X; R)) is a Steenrod functor, associated to the 4-periodic IL- m(R)-spectrum. 

Proof: We need to verify the conditions of Definition 1.34. In [l] it is proved that the 
K-theory B(CCX, CX; R) is 0 by showing one can write g(CCX, CX; R) as the union of 
flasque categories. If (C,, v) represents an element in L!#&,(CCX, CX; R)), the (C,, v) will 
have to be in one of these flasque categories, hence it must represent zero, so 
Lh(Br,(CCX, CX; R)) = 0, and hence so is L; m (&.(CCX, CX; R))- by Lemma 4.15. Assume 
di are additive categories with involution satisfying that there exists j independent of i, so 
that K_j(&i) = 0. It is clear that Li(II&i) Y IILl as A-sets since a quadratic Poincare 
complex in a product category is just a product of quadratic Poincare complexes and any 
quadratic Poincare complex is represented by a length one or two chain complex. Since 
these A-sets satisfy the Kan condition, we get a weak homotopy equivalence of spectra 
Ilh(IIdi) 2: lILh(di) upon realization. Combining with the K-theory result and Rothen- 
berg-Ranicki exact sequences we get 

It thus follows that 

[L-“(II&i) ‘v II%-m(&i)* 

L-“(B&(//X,), VX,; R)) z II-“(%(CXa,Xn;R)) 

since the K-theory proof only involved flasque subcategories and equivalences of categories. 
Finally, using Theorem 4.2, we get a fibration 

[L-m(93b(CX,X;R)A)+ II-“@+(CX,X;R))+ IL-“(9?I’b(CX,X;R)X-A) 

but then the proof is finished as in Theorem 1.36, using Lemma 5.3. 0 

We can now formulate and prove a splitting theorem in L-theory. 

THEOREM 5.5 Let r be a group satisfying the conditions in the introduction, and let R be 
a ring with involution so that K_,(R) = 0 f or sufhciently large i. Then BT, A Km(R) is 
a split factor of IL-“(RI-). 

Proof Having provided the requisite technical tools in Theorems 4.2 and 5.4, the proof 
proceeds formally as in the K-theory case. Apply RIL- m to 

%?(CX, C Y u X, px; R) + 9(ZX, Z Y, px; R) 

and call the resulting spectra S and T. We now study the diagram 

S’ + T= 

1 
9’ 
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and prove the statements 

(i) Sr 1: (E/T)+ A L-“(R), 

(ii) iT’ 2: [Iem( 

(iii) Sr N Shr, 
(iv) Shr N Thr. 

Statements (i) and (ii) follow from Theorem 4.2, (iii) is an inductive argument over the 
cells as in the K-theory case using Theorem 4.2, and the above mentioned fact that L-theory 
commutes with products. Finally, (iv) follows.because IL- co is a Steenrod functor, and we are 
collapsing a contractible subspace. El 

Finally, we need to identify the splitting map with the usual assembly map. 

THEOREM 5.6. The map ofspectra BT, A Km(R) + [L-“(R[r]) is the usual assembly 

map. 

Proof. This follows formally arguing as in Section 3. 0 

This is needed to see that our results imply the Novikov conjecture for the class of 

groups considered, see [22, Proposition 24.51. It also has the useful consequence that 
a diagram of assembly maps 

m, A [L4(R) + ~q(RCrl) 
1 1 

m-+ A [L-“(R) + IL-"(R[r]) 

will be commutative. Here q denotes any decoration. In particular if the decoration is 
chosen so that [L4(R) z [Lem(R) we obtain the splitting with other decorations than - co. 
This can also be proved more directly using Theorem 4.1. 

Remark 5.7. The analogue of Remark 3.4 holds in L-theory as well. 

Acknowledgements-The authors want to thank Ib Madsen and Jim Davis for many useful suggestions. 
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