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In t roduct ion 

In view of the recent s t r ides made in the computation of Wall groups 

(see e.g. [C-M], [Pardon], [Wa l l ] ) ,  the problem of determining which of the 

surgery obstruct ions occur as the obstruct ion of a degree one normal map of 

closed manifolds has become of increased importance. One approach to th i s  is 

by product formulae, i . e .  formulae which express the surgery obstruct ion of 

the degree one normal map 

M x N-----~X x N 

in terms of the obstruct ion of (M ~ X) and data derived from N. Morgan has 

recent ly  analyzed th is  problem for  the case nl(N) = O. (see [Morgan]). The 

problem reduces to a bordism problem, in fact  to the analysis of a b i l i nea r  

pai r ing 

~,(K(~I(N). I)) ® L,(~l(X) ) ~ L.(~l(X x N)). 
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In [Ranicki]  i t  is shown that th is  pair ing actua] ly factors through a 

pair ing 

L ('rrl(N)) ® L.('~I(X)) , L . ( ~ I ( X  x N ) ) ,  

where the 
v v  

[Miscenko] and [Ranicki l .  

computing the groups L 

Witt group of ~ ,  and 

L I ( ~ ) .  

sional 

the L 

L -groups are symmetric versions of the Wall-groups, defined in 

For purposes of computing product formulae, then, 

becomes of great in terest .  L 0 turns out to be the 

L 1 is quite closely t ied to the surgery group 

Secondly, there are skew suspension maps re lat ing the high-dimen- 

L -groups to the lower dimensional ones. The approach to calculat ing 

s, then, is to measure the cokernel of the skew-suspension maps, 

thereby reducing the problem to a Witt group problem, about which much is known 

(see [C]).  

The method for analyzing th is  cokernel is closely related to the method 

of character is t ic  elements, which one may use to calculate W(~2 ) , and a 

generalization of which was used in [C] to calculate W(~ 2) for ~ a 

2-group. 

§I defines the groups L , §II  defines the target groups for our 

invar iants,  § I I I  proves that the invar iants are well-defined, and §IV proves 

the main theorem, IV.3, which asserts that the defined invar iant  is the complete 

obstruction to desuspension. 
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I. Prel iminaries 

We recal l  from [Ranicki]  the de f in i t i on  of algebraic Poincar~ complexes 

over a r ing A with involut ion and the i r  bordism groups. Given a project ive 

module over A, le t  P denote i t s  dual module, HomA(P, A), endowed with a 

A-module structure in the usual way. 

Def in i t ion 1 An n-dimensional E-symmetric complex over A is a chain 

complex of project ive A-modules, having the chain homotopy type of an 

n-dimensional chain complex, {C., ~. } ,  together with a co l lec t ion of 

A-module maps @= {m s EHOmA(cn-r+s, Cr ) I r  E 7/,  S >_ 0},  so that 

r . ) = 0  (*) ~m~ + (- I )  ~s ~ + (- l )n+s-l(ms_l + (- I )  s+(n-r+s)r  * E ms_ l 

: C n-r+s-l ~ C r (s >_ O, m_l = 0). 

r cn-r+s (Of course, each m s real ly  stands for a col lect ion ms : , C r ,  Vr. 

We suppress the superscript for s impl ic i ty of notation) Here C k * = C k, and 

and denote the duals to the maps B and ms_ l ms_l . Note that mO is 

n-* 
thus a chain map from the complex {C , ~*} to the complex {C., a.} .  I f  

m 0 is a chain equivalence, the symmetric complex is said to be Poincar~. 

Defini t ion 2 Let (C., @) be an n-dimensional Poincar~ complex, and le t  

f : C ~ D be a chain map. where D is an (n+l) - dimensional chain complex 



of p ro jec t ive  A-modules. 

~. .s=n+l 
co l l ec t i on  ~ = L#s~s= 0 

so that  
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Then by surgery data for  f we w i l l  mean a 

of A-module homomorphisms, 9 s  : D n - r - t  ~ Dr+ s , 

a9 s + (- l ) r~s  ~* + (- I )  n+s (gs_ 1 + (- I )  s + ( n - r - l ) ( r + s )  Eg*  
s- l  ) 

+ (-  l )  n f *  f~s = O. 

We say that  the surgery data ~ is connected i f  the map D* ~ MC(f) 

induced by 40, where MC(f) denotes the a lgebraic  mapping cone on f ,  is 

su r jec t i ve  in O-dimensional homology. 

De f in i t i on  3 The Poincar~ complex C~ obtained from C, by surgery on 

the map f ,  usin 9 connected surgery data ~, is defined by 

C r' = D n-r+l  ~ Cr ~ Dr+l '  

d C, is given by the matr ix 

d D 0 

1 )n+l~of* d c 

l ) rgo  (- l ) r f  
!D] 



I = 

~0 
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[o  o o l 0 ~0 0 

.n - r  _ * (- I) r(n-r) (- I) Etml (- l)n-rE~ 

(C') n- r  = Dr+ 1 ~ C n-r  ~ D n-r+l = D n-r+l m C ~ 
~ Cr r Dr+l" 

I 

~Ps 

~s 

(- 1 ~n-rEf * ; ~s+l 1 )n-r+s E~/s-I 

( c , )n - r  cn-r Dn-r+l = Dn-r-s+l 
= Dr+ 1 ~ ~ ,~ Cr+ s "~ Cr+ s ® Dr+s+ I .  

The equivalence re la t ion  generated by al l  equivalences of the form 

(C.. @) ~ (C~, @'), where C~ is obtained from C. by surgery, and 

homotopy equivalence, is  cal led algebraic cobordism. The set of equivalence 

classes becomes group under d i rec t  sum becomes a group under d i rec t  sum of 

Poincar6 complexes, and is  denoted Ln(A, E). 

De f in i t i on  4 The skew-suspension of an n-dimensional E-symmetric Poincar~ 

complex (C., @) is an (n+2)-,dimensional Poincar~ complex (C., @), where 
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: C o :  Cn+  : 0 

@s : Ck ~ Cn+2-k+s 

m s : C k-I = ~ Cn+l_k+s. 

I t  is easi ly  ver i f ied  that  th is  defines a homomorphism 

: Ln(A, () , Ln+2(A, . () 

Remark 1 For the surgery groups Ln(7/~, E) the analogue to the double 

skew-suspension 2 : L n ( ~ ,  () ~ Ln+4(7/~, () may be iden t i f i ed  with the 

pe r iod i c i t y  isomorphism Ln(7/~, () x[Cp2]> L n + 4 ( ~ ,  E). In the case of /L n, 

however, ~ f a i l s  to be an isomorphism, and i t  is th is  f a i l u re  we shall 

analyze. 

Remark 2 For complexes C and D of pro ject ive A-modules, define the 

complex Hom^(C, D) by HomA(C, D) n = G HOmA(Cp, Dq), 
q-p=n 

dHomA(C,D)(f ) = dDf + ( -1)qfd  C. Note t h a t  d u a l i t y  provides  an i n v o l u t i o n  on 

HOmA(C*, C.) by f ÷ ( - I )  pq E f ; so the complex HomA(C*, C.) becomes a 

complex of 7/ [7/ /2] -modules.  Let W. denote the standard 7 / [ 7 / / 2 ] - r eso lu -  

/2 : n : 0 for  t ion of 7/ .  W n = 7/[77 ] .  Be n (I + ( - I )  T)en_ 1 , n >_ O, W n 
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n < O. Let Q (C, E) = Hom~[~/2] (W.,  Hom^(C*, C.) ) ,  where HomA(C*, C.) 

is acted on by ~ / 2  by T~ = (-1) pq (~*~ We may now observe that  choosing 

an E-symmetric structure on a complex C. amounts to choosing a cycle in 

Qn(c. () .  Note also that  Qn(C. E) is a functor  in C,. since given 

f : C. ~ D., we may define a map 

Qn(C, E) qn(f 'E)~ Qn(D, E) 

by le t t i ng  f : Hom^(C*. C.) ~ HomA(D , D.) denote the map ~ ~ - f ~ f  . 

and noting that  f is ~ / 2  - equivar iant.  Surgery data for  the map f 

consists of a choice of 9 E Qn+I(D, E) so that  ~ = Qn(f, E)(@), where 

is a cycle defining the symmetric structure on C.. 



182 

I I  The Groups ~n(A, E) 

AS in the previous sect ion,  l e t  a be a r ing wi th invo lu t ion ,  and l e t  

Q*(C, E) = Hom77[E/2](W., HomA(C*, C . ) ) ,  

as in remark 2, §I. 

Recall that  the abel ian group 

HE(77/2, A) : {), E AIX : EX}ITX.+ EX , X E A} 

becomes a A-module by 

= ~ ,  

for  ~ E A, ~ E H (77/2 , A), and that  i f  @ : M ~ M is an E-symmetric 

A-homomorphism ( i . e .  ~ = E~*) ,  we obtain a A-map ~ : M > HE(77/2, A) by 

x --+ <x, ~x> , where 

. 
: M ® M - ~ A .  

<,  > denotes the evaluat ion pa i r ing  < , > 

Let ~. = r~(A, E) denote a A-pro jec t ive  reso lu t ion  of HE(77/2, A), 

and l e t  ~ n )  denote i t s  n-skeleton.  We consider the two complexes 

Q ( ~ n ) ,  E) and e ( ~ n + l ) ,  E). Recall that  the n-cycles of Q ( ~ n ) ,  E), 

zn(R~ n),  E) cons is t  of co l l ec t i ons  ¢ = {m s } of A-homomorphisms, sa t i s f y ing  
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* • ~ s  + (° 1)q~s~* + (- l )n+s- l (~s- I  + (- l)s+pq E ~s_l ) = 0 : C p ~ Cq There- 

l )  n2 * = E * We obtain a homomorphism fore,  Qn + (- l ) n+ l ( -  E ~n : 0, or ~n ~n" 

* - - * H E ( ~ / 2  A). Secondly, ~0 provides a A-homomorphism ~(@) = ~n : ~n 

~0 : £~ ~ g0' which when composed with augmentation map q : £ 0 - - + H E ( ~ / 2 '  ^ 

from the resolut ion gives a second homomorphism 

£ * .  , HE(~ A) P(@) : n 12' 

These two correspondences define homomorphisms 

X, p : z n ( ~  n), E) , HomA(~ ~, HE(~/2, A)) 

Define ~n ~ zn(R~ n), E) by 

~n : {x E z n ( ~  n)  )Ip(x) = ~(x)} , • 

We now le t  Bn+ 1 denote the subgroup of the (n+l)-chains of 

Q(~n+ l ) ,  E) consist ing of those chains whose boundary is in the image of 

Q(~n) ,  E) in Q(~n+ l ) ,  E) under the natural inc lusion.  This means that  

an element of Bn+ 1 is a co l lec t ion  ~ = {gs } of A-module momomorphisms 

such that 9n+l : E 9n+l '  since 
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~n+l + (- l )n+2( -  l ) ( n + l ) 2  E ~n+l = O. 

This def ines a homomorphism 

= ikn+ 1 : Bn+ 1 , Hom^(~*+~,,, HE(2Z/2, ^) )  

A second homomorphism ~ is obtained by ~(~) = ~ o ~0' where 

: 40 ' HE(~ /2 '  A) is the augmentation. Define 

Bn+ 1 : {~Im(~) : ~(~)}  

Proposi t ion l a~n+ l c~n  

Pf. Let @ = a~. Then 

( i )  mO = ~90 + (- l )qgoa* 

( i i )  ~n (- l )n+l (a~n + (- l )n+ l  a* * = ~n - (~n-I + E~n-l))  

and since ~ E Bn+ I ,  

n a* )n+l 
( i i i )  0 : a~n+l + (- I )  9n+l + (~n + (- 1 ( ~ )  

Now, 

~n+l . E * a *  + (- l~n+l . 
a~ n + (- l j 9n a = a~n + ~/n J a~n+la 
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: * ~ *  
~n (- l)n+l (~gn + Egn - (gn-I + Egn-l)) + ~gn+l ~* 

The le f t  hand term in the sum is of the form ~ + E~ , so 

~n = agn+l ~ " 

Equation ( i )  asserts that ~Omo = q °90 ° a*' since qoa = O, and 

HE(~/2, A) is a ~/2-vector space. The condition ~(1) = ~(~) guarantees 

^ 

that qOgo = ~n+l' or ~o~0 °a*(x) = ; n+l(a*x) : agn+la*(x) = Gn(X), so 

~ n  °mO = Gn' which implies @ E Z . (*) 

and conclude this section by showing that 

is independent of the choice of resolution R. 

We now define 

~n(A, E ~) ~n , = Z / ~ B n +  1 , 

mn(A, (, ~) 

Proposition 2 I f  P~., 8. are two resolutions of HE(~/2'  A), then 

~n(A, E, R) ~ ~n(A, E, 8). We then define ~n(A, E) : ~n(A, E, ~) = ~n(A, E, g ) .  

Proof. We may assume that there is a chain map 8÷~  which is surjective 

in each degree, since in any event, there is a resolution ~ which maps 

surjectively in each degree to both ~ and 8. i t  is then easily seen that 

8 is isomorphic to C ~ ~, where C is a contractible complex. Since any 

sum of elementary complexes 
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id > 0 - - - - + 0  : P ) p ) 0 ) 0 ~ . . .  

with P pro ject ive,  we may assume that 

with a single elementary complex. 

The complex 

8 is obtained from R by addition 

HOmA((8 m R)*, (8 ~..~ R)) sp l i t s  as 

Hom^(8*, 8) e~ HomA(8*, R) m HOmA(R*, C) m Hom (R*, R), 

and the involut ion preserves the f i r s t  and fourth summands and permutes the 

middle two. Thus, Hom~[~/2](W . ,  Horn ((8 ~ R ) * ,  C mR)) sp l i t s  into three 

summands, 

HomT/[2Z/2](W . ,  HomA(c*, C)) 

H°m77 [7Z/2 ](W*' HOmA(8*' R) (9 HomA(R*, 8))  ea 

Hom77 [7/121(I'I . ,  Horn (R*, R)) 

Furthermore, the homomorphisms p and ~ vanish ident ical ly on the 

f i r s t  two of these, and X and ~ vanish ident ical ly on the middle summand. 

I t  is now easily verif ied that the middle term contributes nothing to 

~n(^, (, 8),  since any cycle Z in 
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H°mT/[77/2 ] ( t l * '  Hom (e*, ~(n)) Hom ( (R(n ) ) , ,  C)) 

is a boundary in 

H°mTz [7 / /2  ] (W,, Hom (C*, ~(n+l )) Horn ( (~ (n+ l ) ) * ,  C)) ,  

being cont rac t ib le ,  and the fact  that ~ vanishes i den t i ca l l y  on th is  

summand guarantees that  we may choose the chain x such that ~x = z with 

x E Bn+ I .  We must therefore check that the contr ibut ion of the f i r s t  

~ummand is also zero. Let zn(c) 

l e t  ~n(~) = {@ E zn(~)I~ n = y + E y * } .  

(n + l ) -chains x in Q(8, E) so that  ~x E Q(c(n), E), and le t  

Bn+l(C) = {T E Bn+ l(C) I~n+ l  = Y + E y* } .  I t  is easi ly  seen that 

~B~-n+l(8) c ~ n ( ~ ) ,  as in Proposit ion I .  Moreover, since p and ~ vanish 

i den t i ca l l y  on th is  summand, the cont r ibut ion of th is summand to ~n(A, E, ~) 

is isomorphic to 

be the group of n-cycles in Q(C, E) and 

Also, l e t  Bn+l(C) be the group of 

~n (c ) /  

~B~+I(C) 

I t  is now an easy ca lcu lat ion with the elementary complexes that  th is  

group is zero. ( * ) .  
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I I I  Def in in~ the Invar ian t  

We assume from now on that  a l l  Poincar~ complexes w i l l  in fac t  be 

n-dimensional compleses, i . e .  tha t  C. = 0 fo r  * < 0, * > n. This involves 

no loss of gene ra l i t y  since the complexes have the homotopy type of  an 

mn+l 

From the i d e n t i t y  (* )  

n-dimensional complex. 

Let (C., @) be an E-symmetric Poincar~ complex. 

in the d e f i n i t i o n  o f  Poincar~ complexes, we f ind  

a~n+ 1 + (- 1 ~r ~* + (-  I ) (~  n E ~ )  = 0 : C 2n-r J mn+l - ÷ C r .  Since C. is 

C 2n-r  = n-dimensional,  : 0 fo r  r < n, C r 0 fo r  r > n, so the map 

: 0, and we obtain ~n = E ~ .  Therefore,  we have the n-th "Wu class" 

^ 

map ~n : Cn - - * H E ( ~ / 2  ' A ) '  as in [Rani~k i ]  

Lemma 1 Let C. be a chain complex of p ro jec t i ve  A-modules, bounded below 

(C. : 0 fo r  * < 0) Then any homomorphism f : C O + M, where M is a 

A-module, may be extended to a chain map (unique up to chain homotopy) 

f : C. + ~. (M) ,  where R.(M) denotes a reso lu t ion  of the module M. 

Proof The usual argument fo r  maps of reso lu t ions  does not use the a c y c l i c i t y  

o f  C..  ( * )  

^ 

The map mn def ines a homotopy class of chain maps 

C ~ w : ~ ~.(HE(ZZ/2, ^)). 
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The invariant we construct will lie in the group 

~n(A, E) 

Since (C., @) is a Poincar~ complex, the chain map @0 : C - - *C .  is a 

chain equivalence. We choose ~0 to be a chain inverse to m0(the choice is 

unique up to chain homotopy). 

_ _ ,  . z n ( R ( n )  Proposit ion 2 The element {W~o~s@oW } ( , E) l ies  in zn(~ (n) ,  E). 

- -  - - . .  ~ ^ . . 

Pf. Let @ = {wm0~smOW }. Then >,(@)(x) = wm0@n~G w^ (x) = ~n(~0 w x) Also, 
^ 

p(@)(x) : ~w~-0m0~w*(x ). By the choice of w and m- 0, qw~0~ 0 = ~n' so 

^ . * 

p(~ ) (x )  = ~nC~o w x) = x ( ~ ) ( x ) .  (*) 

Let ~(C., @) ( ~n(A, () be defined by ~(C., @) = {w~0~sm0W- - *  * } .  

Proposit ion 3 ~(C., @) is independent of the choice of w and ~-0 wi th in  

homotopy classes. 

Pf. I f  w ~_ w' ,  @0 -~ ~0' W@o ~- W'~o' wo we suppose that  we have a chain 

homotopy h : w~0 ~w'@6 

According to [Rani~ki]  

1 )qh~os ~ * )q+l hms_l h* } - -  * * W  : {W~omsh + (- ~ ' + (-  1 
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-- --. * -- __* * 

a~ = {W~omsmoW } - {w'~'~<~s~Lu u w' } 

We must show that  ~ (Bn+l  c Bn+l" To v e r i f y  t h i s ,  i t  w i l l  su f f i ce  to 

show m(~) : ~(~). 

© @  m ( ~ )  : ~/n+l = ( -  l ) q + l  : ' 

the las t  equal i ty  since H((77/2, A) is a 77/2-vector space. 

•OmO h* #~* * . ~(~) = ~ ° 4  0 = ~ + (- l)qqh~ 0 w' : ~n+l --+~n+l" The second 

summand factors through a zero group, hence is zero. By the choice of m0 and 

w, we have 

~0~0 h* o = ~lw = mn SO 

~(~) : p(~). (*)  

Cor. 4 ~(C,,  @) is  independent of the homotopy type of C,. 

Pf. Clear. (*) 

Cor. 5. Let (C,, @) and (C~, @') be two Poincar~ complexes over A. Then 

c(c .  ~ c ; ,  { ~ ~ ' )  = ~(c. ,  ~ ) ~  ~(c. ,  ~ ' )  

^ ^ 

I i o Pf. Clear, since the homomorphism mn mmn is equal to ~n '~n (*) 
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~n : Ln(A' () - - ~ n  (^" E) and Desuspension in the 

In the previous section, i t  was shown that there is an invar iant  of the 

homotopy type of (C., @), ~(C., @). In th is section, we show that ~(C., @) 

is an invar iant  of the algebraic cobordism class of (C., @), and hence 

induces a homomorphism ~n : Ln(A' E) ~ ~n(A, E), in view of corol lary 

I I I .  5. 

Proposition 1 Let (C.. @) be a Poincar~ complex, f : C. ~ D. a chain 

map, and • = {~s } surgery data for f .  I f  (C', @') denotes the Poincar~ 

complex obtained by surgery on f ,  then ~(C~, ~')  = ~(C., @). 

Pf. We note that C~ is obtained by a double mapping cone construction on 

C.. That is ,  we f i r s t  form the algebraic mapping cone MC(f), and observe 

that surgery data for f determines a homotopy class om maps ~ : D* ~ MC(f), 

together with a Poincar~ structure on MC(~). In par t icu lar ,  the underlying 

chain complex of C. is MC(~). Simi lar ly  C'* ' , admits D as a subcomplex, 

as well as MC(f~ ). By the de f in i t i on  of the top Wu class of C~, ~nID. = O. 

Therefore, we may choose the chain map w from C' to ~ . (HE(~/2 ,  A)) SO 

that w vanishes on D. ~ C' Therefore, there is a s p l i t t i n g  of graded 

A-modules (not of chain complexes) 
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C~ ~-- D 9C. OD. 

9t  

C'* ~ D. e C ~!) D 

And the map w : C' ---~R.(HE(77/2, A)) has "matrix" (0, w', w"), 

where w' is a l i f t ing of the n-th Wu class of C. to ~*(HE(~/2' ^))" 

Consequently, the dual map w* has matrix 

(o) 
W,~- 

W.-k 

i Recall from §I that the map ~0 is given by the matrix 

0 0 

0 mO 

1 (- 1 ) (-q)+Pqf'@T 

(- l)q(n-q)Co 1 

( l)(n-q)+PqE#l 

Consequently, i f  mO is a chain inverse to mO' we find that the matrix of a 

chain inverse to m~ is given by. 

I * * I >  

0 mO 0 

(- l)q(n-q) ~ 0 0 
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where the * 's  represent certain maps, the values of which w i l l  not concern 

us. Now, W~o = 

(0 w' w") 

i 
0 ~0 

(- l)q(n-q)E 0 

= ((-  l )  q(n-q) Ew'', W'~o0, 0), so mO w has matrix 

lW~*w,.) 
~° ° 

Fina l ly ,  w~m 0 = (0, w'~@ O, w"), so Wmomo~oW = 

i,- l'q n-q  w" 1 w, o o 
' -  - *  * mO@smO w : WmomsCOoW , so the value of = w ~O~OOmO w . S imi lar ly ,  w~' ' - '  * * * 

~(c.,  ~) = ~(c. ,  ~). (*) 
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Applying the definition of the groups Ln(A, E) and Corollary 11.5, 

we have defined a homomorphism ~n : Ln(A' E) --~n(A, E) by 

~n(C,, @) = ~(C,, @). 

Proposition 2 ~n vanishes on the image of the skew-suspension map ~. 

Proof. I t  is immediate that the n-th Wu class map ~n is t r i v i a l  on a 

skew-suspension, since i t  is defined on a t r i v i a l  group. Thus, the chain map 

w may be taken to be zero. (*) 

I t  is shown in [Ranicki] that a chain complex is in the image of the 

skew-suspension i f  i t s  n-th Wu class vanishes. This allows us to prove the 

main theorem. 

Theorem 3. x E Ln(A, E) is in the image of the skew-suspension i f  and only 

i f  ~n(X) = 0. 

Proof. Consider a representative Poincar~ complex (C,, @) for x. We may 

suppose that the n-th Wu class map ~n is onto HE(~/2,A).  I f  not, we 

may add on some null-cobordant complexes for which Gn is onto. Now, i f  the 

invar iant  ~n(X) is t r i v i a l ,  there exists ~ E B~n+ 1 with a~ = @, where @ 

is a cycle representing ~n(X). ~ thus represents surgery data for the 

chain map C, w~0 ~R~ n+l) Thus, we form the chain complex (C~, @') by 
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I surgery on the map w O" I claim that the n-th Wu class ~n 

the n-dimensional cohomology of C~. To see th is ,  we analyze 

relevant dimensions, the complex may be represented by 

* ~0  . 
£2 / Cn-I ~ £n 

£ .z ~ f  C . ~  . ~I ~ J n ~n+l 

uv 0 ~ 

is t r i v i a l  on 

Hn(c). In the 

Note that since as a chain map, ~0 ~ '  and ~0~0 ~ i d ,  the map 

W~o~ 0 has the same e f f e c t  homologica l ly  as w. Thus i t  i s  s u r j e c t i v e  in 

cohomology, and we f ind 

Hn(Mc(w~-o~o )) ~ Ker(Wn : Hn(c*) ' HE(~/2 '  A)). 

The remaining dimensions are unchanged from C*, since £.  is acycl ic 

above dimension O. We conclude, then, that any cohomology class in Hn(c~) 

is represented by a pair  (x, y) E C* ~ * - * n Rn+l' so that Wmo@o(X) = - 9 (y) .  
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Applying the augmentation ~ : ~0 -'~ H~(77/2' A), we f ind TlW~o~o(X)- * = - ~ * ( x ) .  

Now by the const ruct ion of w and the above remarks about ~0' ~W~o~o(X) = 

^ 

• = ~I ~*) * * ~n(X). We also note that  ~l~ = q~O' for  40 -+ (~0 + ~ I  -+ -+ ~O~l~ow 

= ' ~* R* = 0 since B*IRn+I = O, and ~91  = 0 since Ha = O, 91 ~* O, ~I n+l 

w*iRn+ 1 = O, so iv 0 + 90" Again, since HE(77/2, ^) is a 77/2-vector  
^ 

space, q~/O = -+ qgO' so ~l~O = q~O" Now, since ~ E B'n+l' qgO = 9n+l '  
^ 

so - ~IV~(y) = 9n+ l (y ) ,  thus for  any cycle (x,y)  represent ing a c lass in 

^ j 

Hn(C*), ~n(X) + ~n+l(y)  = O. But the matr ix represent ing ~n is 

! o o 

~0 0 

* ~n+l 

^ 

, so m ~ ( x , y )  

: ~ n ( X )  + ~ n + l ( y )  = O. 

^ 

This proves that  ~n is i d e n t i c a l l y  zero on Hn(c ' ) .  I t  is shown in 

[Rani~ki ]  that  under these circumstances, one may perform a sequence of 

elementary surger ies to k i l l  Hn(c), leaving a complex C" wi th Hn(c ") = O. 

Such a complex is the homotopy type of a skew-suspension (again, see 

[Ran i~k i ] ) .  This concludes the proof ( * ) .  
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