Desuspension in the Symmetric L-groups

bу

Gunnar Carlsson

Introduction

In view of the recent strides made in the computation of Wall groups (see e.g. [C-M], [Pardon], [Wall]), the problem of determining which of the surgery obstructions occur as the obstruction of a degree one normal map of <u>closed manifolds</u> has become of increased importance. One approach to this is by product formulae, i.e. formulae which express the surgery obstruction of the degree one normal map

$M \times N \longrightarrow X \times N$

in terms of the obstruction of $(M \rightarrow X)$ and data derived from N. Morgan has recently analyzed this problem for the case $\pi_1(N) = 0$. (see [Morgan]). The problem reduces to a bordism problem, in fact to the analysis of a bilinear pairing

$$\Omega_{\star}(K(\pi_{1}(N), 1)) \otimes L_{\star}(\pi_{1}(X)) \longrightarrow L_{\star}(\pi_{1}(X \times N)).$$

In [Ranicki] it is shown that this pairing actually factors through a pairing

$$L^{*}(\pi_{1}(N)) \otimes L_{*}(\pi_{1}(X)) \longrightarrow L_{*}(\pi_{1}(X \times N)),$$

where the L^{*}-groups are symmetric versions of the Wall-groups, defined in [Miščenko] and [Ranički]. For purposes of computing product formulae, then, computing the groups L^{*} becomes of great interest. L⁰ turns out to be the Witt group of $\mathbb{Z}\pi$, and L¹ is quite closely tied to the surgery group L₁($\mathbb{Z}\pi$). Secondly, there are skew suspension maps relating the high-dimensional L^{*}-groups to the lower dimensional ones. The approach to calculating the L^{*}'s, then, is to measure the cokernel of the skew-suspension maps, thereby reducing the problem to a Witt group problem, about which much is known (see [C]).

The method for analyzing this cokernel is closely related to the method of characteristic elements, which one may use to calculate $W(\hat{\mathbb{Z}}_2)$, and a generalization of which was used in [C] to calculate $W(\hat{\mathbb{Z}}_2)$ for π a 2-group.

I defines the groups L^* , I defines the target groups for our invariants, I proves that the invariants are well-defined, and I proves the main theorem, IV.3, which asserts that the defined invariant is the complete obstruction to desuspension.

I. Preliminaries

We recall from [Ranicki] the definition of algebraic Poincaré complexes over a ring \wedge with involution and their bordism groups. Given a projective module over \wedge , let P^* denote its dual module, $\operatorname{Hom}_{\Lambda}(P, \wedge)$, endowed with a \wedge -module structure in the usual way.

$$(*) \ \partial \varphi_{5}^{i} + (-1)^{r} \varphi_{5} \partial^{*} + (-1)^{n+s-1} (\varphi_{5-1} + (-1)^{s+(n-r+s)r} \in \varphi_{5-1}^{*}) = 0$$
$$: \ C^{n-r+s-1} \longrightarrow C_{r} \ (s \ge 0, \ \varphi_{-1} = 0).$$

(Of course, each φ_s really stands for a collection $\varphi_s^r : C^{n-r+s} \longrightarrow C_r, \forall r$. We suppress the superscript for simplicity of notation) Here $C^k = C_k^*$, and ϑ^* and φ_{s-1}^* denote the duals to the maps ϑ and φ_{s-1} . Note that φ_0 is thus a chain map from the complex $\{C^{n-*}, \vartheta^*\}$ to the complex $\{C_*, \vartheta_*\}$. If φ_0 is a chain equivalence, the symmetric complex is said to be <u>Poincaré</u>.

<u>Definition 2</u> Let (C_*, Φ) be an n-dimensional Poincaré complex, and let f : C \rightarrow D be a chain map. where D is an (n+1) - dimensional chain complex of projective \wedge -modules. Then by surgery data for f we will mean a collection $\Psi = \{\psi_{S}\}_{S=0}^{S=n+1}$ of \wedge -module homomorphisms, $\psi_{S} : D^{n-r-1} \longrightarrow D_{r+s}$, so that

$$\partial \psi_{s} + (-1)^{r} \psi_{s} \partial^{*} + (-1)^{n+s} (\psi_{s-1} + (-1)^{s+(n-r-1)(r+s)} \in \psi_{s-1}^{*})$$
$$+ (-1)^{n} f_{\phi_{s}} f^{*} = 0.$$

We say that the surgery data Ψ is connected if the map $D^* \longrightarrow MC(f)$ induced by ψ_0 , where MC(f) denotes the algebraic mapping cone on f, is surjective in 0-dimensional homology.

<u>Definition 3</u> The Poincaré complex C_{\star}^{+} obtained from C_{\star}^{-} by surgery on the map f, using connected surgery data Ψ , is defined by

$$C'_r = D^{n-r+1} \oplus C_r \oplus D_{r+1}$$

 $d_{C'}$ is given by the matrix

$$\begin{bmatrix} (-1)^{r} d_{D}^{*} & 0 & 0 \\ (-1)^{n+1} \varphi_{0} f^{*} & d_{c} & 0 \\ (-1)^{r} \psi_{0} & (-1)^{r} f & d_{D} \end{bmatrix}$$

$$\varphi_{0}' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \varphi_{0} & 0 \\ (-1)^{r(n-r)} & (-1)^{n-r} \in f_{\varphi_{1}}^{\star} & (-1)^{n-r} \in \psi_{1}^{\star} \end{bmatrix}$$

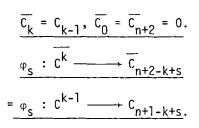
:
$$(C')^{n-r} = D_{r+1} \oplus C^{n-r} \oplus D^{n-r+1} \longrightarrow C_r = D^{n-r+1} \oplus C_r \oplus D_{r+1}$$

$$\varphi_{S}' = \begin{bmatrix} 0 & 0 \\ 0 & \varphi_{S} \\ 0 & (-1)^{n-r} \epsilon f \varphi_{S+1}^{*} & (-1)^{n-r+s} \epsilon \psi_{S-1}^{*} \end{bmatrix}$$

: $(C')^{n-r} = D_{r+1} \oplus C^{n-r} \oplus D^{n-r+1} \longrightarrow C_{r+s} = D^{n-r-s+1} \oplus C_{r+s} \oplus D_{r+s+1}.$

The equivalence relation generated by all equivalences of the form $(C_*, \Phi) \sim (C_*, \Phi')$, where C_* is obtained from C_* by surgery, and homotopy equivalence, is called algebraic cobordism. The set of equivalence classes becomes group under direct sum becomes a group under direct sum of Poincaré complexes, and is denoted $L^n(\wedge, \epsilon)$.

Definition 4The skew-suspension of an n-dimensional \in -symmetric Poincarécomplex(C_*, Φ)is an (n+2)-dimensional Poincaré complex $(\overline{C_*}, \overline{\Phi})$, where



It is easily verified that this defines a homomorphism

$$\sigma: L^{n}(\wedge, \epsilon) \longrightarrow L^{n+2}(\wedge, -\epsilon)$$

<u>Remark 1</u> For the surgery groups $L_n(\mathbb{Z}\pi, \epsilon)$ the analogue to the double skew-suspension $\sigma^2 : L_n(\mathbb{Z}\pi, \epsilon) \longrightarrow L_{n+4}(\mathbb{Z}\pi, \epsilon)$ may be identified with the periodicity isomorphism $L_n(\mathbb{Z}\pi, \epsilon) \xrightarrow{\mathbf{x}[\mathbb{C}P^2]} L_{n+4}(\mathbb{Z}\pi, \epsilon)$. In the case of L^n , however, σ fails to be an isomorphism, and it is this failure we shall analyze.

<u>Remark 2</u> For complexes C and D of projective \wedge -modules, define the complex $\operatorname{Hom}_{\Lambda}(C, D)$ by $\operatorname{Hom}_{\Lambda}(C, D)_{n} = \bigoplus_{q-p=n} \operatorname{Hom}_{\Lambda}(C_{p}, D_{q}),$ $d_{\operatorname{Hom}_{\Lambda}(C,D)}(f) = d_{D}f + (-1)^{q}fd_{C}.$ Note that duality provides an involution on $\operatorname{Hom}_{\Lambda}(C^{*}, C_{*})$ by $f \neq (-1)^{pq} \in f^{*}$; so the complex $\operatorname{Hom}_{\Lambda}(C^{*}, C_{*})$ becomes a complex of $\mathbb{Z}[\mathbb{Z}/_{2}]$ -modules. Let W_{*} denote the standard $\mathbb{Z}[\mathbb{Z}/_{2}]$ -resolution of \mathbb{Z} , $W_{n} = \mathbb{Z}[\mathbb{Z}/_{2}], \quad \operatorname{ae}_{n} = (1 + (-1)^{n}T)e_{n-1}, n \geq 0, \quad W_{n} = 0$ for n < 0. Let $Q^*(C, \epsilon) = \operatorname{Hom}_{\mathbb{Z}} [\mathbb{Z}/_2]^{(W_*, \operatorname{Hom}_{\Lambda}(C^*, C_*))}$, where $\operatorname{Hom}_{\Lambda}(C^*, C_*)$ is acted on by $\mathbb{Z}/_2$ by $T_{\varphi} = (-1)^{pq} \epsilon_{\varphi} \star$: We may now observe that choosing an ϵ -symmetric structure on a complex C_* amounts to choosing a cycle in $Q^n(C, \epsilon)$. Note also that $Q^n(C, \epsilon)$ is a functor in C_* , since given $f : C_* \longrightarrow D_*$, we may define a map

$$Q^{n}(C, \epsilon) \xrightarrow{Q^{n}(f, \epsilon)} Q^{n}(D, \epsilon)$$

by letting \hat{f} : Hom_{Λ}(C^* , C_*) \longrightarrow Hom_{Λ}(D^* , D_*) denote the map $\varphi \longrightarrow f \varphi f^*$, and noting that \hat{f} is $\mathbb{Z}/_2$ - equivariant. Surgery data for the map f consists of a choice of $\psi \in Q^{n+1}(D, \epsilon)$ so that $\partial \psi = Q^n(f, \epsilon)(\varphi)$, where φ is a cycle defining the symmetric structure on C_* . <u>II The Groups</u> $w_n(\Lambda, \epsilon)$

As in the previous section, let \land be a ring with involution, and let

$$Q^{*}(C, \epsilon) = \operatorname{Hom}_{\mathbb{Z}}[\mathbb{Z}/2]^{(W_{*}, \operatorname{Hom}_{\wedge}(C^{*}, C_{*}))},$$

as in remark 2, §I.

Recall that the abelian group

$$H_{\epsilon}(\mathbb{Z}/_{2}, \Lambda) = \{\lambda \in \Lambda | \lambda = \epsilon \lambda\}/\{\lambda + \epsilon \lambda, \lambda \in \Lambda\}$$

becomes a *A*-module by

 $\lambda \alpha = \lambda \alpha \overline{\lambda},$

for $\lambda \in \Lambda$, $\alpha \in H(\mathbb{Z}/_2, \Lambda)$, and that if $\varphi : M^* \longrightarrow M$ is an \in -symmetric Λ -homomorphism (i.e. $\varphi = \in \varphi^*$), we obtain a Λ -map $\hat{\varphi} : M^* \longrightarrow H_{\varepsilon}(\mathbb{Z}/_2, \Lambda)$ by $x \longrightarrow \langle x, \varphi x \rangle$, where \langle , \rangle denotes the evaluation pairing \langle , \rangle : $M^* \otimes M \to \Lambda$.

Let $\mathfrak{R}_{\star} = \mathfrak{R}_{\star}(\Lambda, \epsilon)$ denote a \wedge -projective resolution of $\mathbb{H}_{\epsilon}(\mathbb{Z}/_{2}, \Lambda)$, and let $\mathfrak{R}_{\star}^{(n)}$ denote its n-skeleton. We consider the two complexes $\mathbb{Q}(\mathfrak{R}_{\star}^{(n)}, \epsilon)$ and $\mathbb{Q}(\mathfrak{R}_{\star}^{(n+1)}, \epsilon)$. Recall that the n-cycles of $\mathbb{Q}(\mathfrak{R}_{\star}^{(n)}, \epsilon)$, $\mathbb{Z}^{n}(\mathfrak{R}_{\star}^{(n)}, \epsilon)$ consist of collections $\Phi = \{\varphi_{S}\}$ of \wedge -homomorphisms, satisfying $\partial \varphi_{s} + (-1)^{q} \varphi_{s} \partial^{\star} + (-1)^{n+s-1} (\varphi_{s-1} + (-1)^{s+pq} \in \varphi_{s-1}^{\star}) = 0 : \mathbb{C}^{p} \longrightarrow \mathbb{C}_{q}.$ Therefore, $\varphi_{n} + (-1)^{n+1} (-1)^{n^{2}} \in \varphi_{n}^{\star} = 0$, or $\varphi_{n} = \varphi_{n}^{\star}.$ We obtain a homomorphism $\lambda(\Phi) = \varphi_{n} : \Re_{n}^{\star} \longrightarrow \mathbb{H}_{\epsilon}(\mathbb{Z}/_{2}, \Lambda).$ Secondly, φ_{0} provides a Λ -homomorphism $\varphi_{0} : \Re_{n}^{\star} \longrightarrow \Re_{0},$ which when composed with augmentation map $\eta : \Re_{0} \longrightarrow \mathbb{H}_{\epsilon}(\mathbb{Z}/_{2}, \Lambda)$ from the resolution gives a second homomorphism

$$\rho(\Phi) \ : \ \mathfrak{K}_{n}^{\star} \longrightarrow H_{\epsilon}(\mathbb{Z} /_{2}, \wedge)$$

These two correspondences define homomorphisms

$$\lambda, \rho : \mathbb{Z}^{n}(\mathbb{R}^{(n)}_{\star}, \epsilon) \longrightarrow \operatorname{Hom}_{\Lambda}(\mathbb{R}^{\star}_{n}, \mathbb{H}_{\epsilon}(\mathbb{Z}/_{2}, \Lambda))$$

Define $\widetilde{Z}^n \subseteq Z^n(\mathfrak{A}^{(n)}_{\star}, \epsilon)$ by

$$\widetilde{Z}^{n} = \{ x \in Z^{n}(\widehat{\kappa}^{(n)}_{\star}, \epsilon) | \rho(x) = \lambda(x) \}.$$

We now let B_{n+1} denote the subgroup of the (n+1)-chains of $Q(\alpha_{\star}^{(n+1)}, \epsilon)$ consisting of those chains whose boundary is in the image of $Q(\alpha_{\star}^{(n)}, \epsilon)$ in $Q(\alpha_{\star}^{(n+1)}, \epsilon)$ under the natural inclusion. This means that an element of B_{n+1} is a collection $\Psi = \{\psi_{s}\}$ of \wedge -module momomorphisms such that $\psi_{n+1} = \epsilon \psi_{n+1}^{\star}$, since

$$\psi_{n+1} + (-1)^{n+2} (-1)^{(n+1)^2} \in \psi_{n+1}^* = 0.$$

This defines a homomorphism

$$\alpha = \psi_{n+1} : B_{n+1} \longrightarrow \operatorname{Hom}_{\wedge}(\mathfrak{k}_{n+1}^{\star}, H_{\in}(\mathbb{Z}/_{2}, \wedge))$$

A second homomorphism β is obtained by $\beta(\Psi) = \eta \circ \Psi_0$, where $\eta : \Re_0 \longrightarrow H_{\epsilon}(\mathbb{Z}/_2, \Lambda)$ is the augmentation. Define

$$B_{n+1} = \{\Psi \mid \alpha(\Psi) = \beta(\Psi)\}$$

<u>Proposition 1</u> $\partial \tilde{B}_{n+1} \subseteq \tilde{Z}^n$

<u>Pf.</u> Let $\Phi = \partial \Psi$. Then

(i) $\varphi_0 = \partial \psi_0 + (-1)^q \psi_0 \partial^*$ (ii) $\varphi_n = (-1)^{n+1} (\partial \psi_n + (-1)^{n+1} \psi_n \partial^* - (\psi_{n-1} + \epsilon \psi_{n-1}^*))$ and since $\Psi \in B_{n+1}$,

(iii)
$$0 = \partial \psi_{n+1} + (-1)^n \psi_{n+1} \partial^* + (\psi_n + (-1)^{n+1} \in \psi_n^*)$$

Now,

$$\partial \psi_{n} + (-1)^{n+1} \psi_{n} \partial^{*} = \partial \psi_{n} + \epsilon \psi_{n}^{*} \partial^{*} + (-1)^{n+1} \partial \psi_{n+1} \partial^{*}$$

$$\varphi_{n} = (-1)^{n+1} (\partial \psi_{n} + \epsilon \psi_{n}^{*} \partial^{*} - (\psi_{n-1} + \epsilon \psi_{n-1})) + \partial \psi_{n+1} \partial^{*}$$

The left hand term in the sum is of the form $\beta + \epsilon \beta^*$, so $\hat{\phi}_n = \partial \psi_{n+1} \partial^*$.

Equation (i) asserts that $\eta \circ \phi_0 = \eta \circ \psi_0 \circ \partial^*$, since $\eta \circ \partial = 0$, and $H_{\epsilon}(\mathbb{Z}/_2, \wedge)$ is a $\mathbb{Z}/_2$ -vector space. The condition $\alpha(\Psi) = \beta(\Psi)$ guarantees that $\eta \circ \psi_0 = \hat{\psi}_{n+1}$, or $\eta \circ \psi_0 \circ \partial^*(x) = \hat{\psi}_{n+1}(\partial^* x) = \partial \psi_{n+1}\partial^*(x) = \hat{\phi}_n(x)$, so $\eta \circ \phi_0 = \hat{\phi}_n$, which implies $\Phi \in \widetilde{Z}^n$. (*)

We now define

 $w_n(\Lambda, \epsilon, R) = \widetilde{Z}^n / \partial \widetilde{B}_{n+1}$, and conclude this section by showing that $w_n(\Lambda, \epsilon, R)$ is independent of the choice of resolution R.

<u>Proof</u>. We may assume that there is a chain map $S \rightarrow \Re$ which is surjective in each degree, since in any event, there is a resolution \Im which maps surjectively in each degree to both \Re and S. it is then easily seen that S is isomorphic to $\mathcal{E} \oplus \Re$, where \mathcal{E} is a contractible complex. Since any sum of elementary complexes

S0

 $\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow P \xrightarrow{id} P \longrightarrow 0 \longrightarrow 0 \longrightarrow \dots$

with P projective, we may assume that S is obtained from R by addition with a single elementary complex.

The complex

$$\operatorname{Hom}_{\Lambda}(\mathcal{E}^{*}, \mathcal{E}) \oplus \operatorname{Hom}_{\Lambda}(\mathcal{E}^{*}, \mathcal{R}) \oplus \operatorname{Hom}_{\Lambda}(\mathcal{R}^{*}, \mathcal{E}) \oplus \operatorname{Hom}(\mathcal{R}^{*}, \mathcal{R}),$$

and the involution preserves the first and fourth summands and permutes the middle two. Thus, $\operatorname{Hom}_{\mathbb{Z}}[\mathbb{Z}/_2]^{(\mathbb{W}_*, \operatorname{Hom}((\mathcal{E} \oplus \mathfrak{R})^*, \mathcal{E} \oplus \mathfrak{R}))}$ splits into three summands,

$$\begin{array}{l} \operatorname{Hom}_{\mathbb{Z}} \left[\mathbb{Z} /_{2} \right]^{(\mathbb{W}_{\star}, \operatorname{Hom}_{\Lambda}(\varepsilon^{\star}, \varepsilon)) \oplus} \\ \operatorname{Hom}_{\mathbb{Z}} \left[\mathbb{Z} /_{2} \right]^{(\mathbb{W}_{\star}, \operatorname{Hom}_{\Lambda}(\varepsilon^{\star}, \varepsilon)) \oplus} \operatorname{Hom}_{\Lambda}(\mathfrak{R}^{\star}, \varepsilon)) \oplus} \\ \operatorname{Hom}_{\mathbb{Z}} \left[\mathbb{Z} /_{2} \right]^{(\mathbb{W}_{\star}, \operatorname{Hom}_{\Lambda}(\mathfrak{R}^{\star}, \varepsilon))} \end{array}$$

Furthermore, the homomorphisms ρ and β vanish identically on the first two of these, and λ and α vanish identically on the middle summand.

It is now easily verified that the middle term contributes nothing to $w_n(\Lambda, \epsilon, s)$, since any cycle Z in

$$^{\text{Hom}}\mathbb{Z}\left[\mathbb{Z}/_{2}\right]^{(\mathbb{W}_{*}, \text{ Hom }(\varepsilon^{*}, \mathfrak{a}_{*}^{(n)}) \text{ Hom }((\mathfrak{a}^{(n)})^{*}, \varepsilon))$$

is a boundary in

$$\operatorname{Hom}_{\mathbb{Z}}[\mathbb{Z}/_{2}]^{(\mathbb{W}_{*}, \operatorname{Hom}(\varepsilon^{*}, \mathfrak{a}_{*}^{(n+1)}) \operatorname{Hom}((\mathfrak{a}^{(n+1)})^{*}, \varepsilon)),$$

 ε being contractible, and the fact that α vanishes identically on this summand guarantees that we may choose the chain x such that $\partial x = z$ with $x \in \widetilde{B}_{n+1}$. We must therefore check that the contribution of the first summand is also zero. Let $Z^{n}(\varepsilon)$ be the group of n-cycles in $Q(\varepsilon, \epsilon)$ and let $\widetilde{Z}^{n}(\varepsilon) = \{\Phi \in Z^{n}(\varepsilon) | \phi_{n} = \gamma + \epsilon \gamma^{*}\}$. Also, let $B_{n+1}(\varepsilon)$ be the group of (n + 1)-chains x in $Q(\varepsilon, \epsilon)$ so that $\partial x \in Q(\varepsilon^{(n)}, \epsilon)$, and let $\widetilde{B}_{n+1}(\varepsilon) = \{\Psi \in B_{n+1}(\varepsilon) | \psi_{n+1} = \gamma + \epsilon \gamma^{*}\}$. It is easily seen that $\partial \widetilde{B}_{n+1}(\varepsilon) \subseteq \widetilde{Z}^{n}(\varepsilon)$, as in Proposition 1. Moreover, since ρ and β vanish identically on this summand, the contribution of this summand to $w_{n}(\wedge, \epsilon, s)$ is isomorphic to

$$\widetilde{Z}^{n}(\varepsilon)/{\partial \widetilde{B}_{n+1}(\varepsilon)}$$

It is now an easy calculation with the elementary complexes that this group is zero. (*).

III Defining the Invariant

We assume from now on that all Poincaré complexes will in fact be n-dimensional complexes, i.e. that $C_* = 0$ for * < 0, * > n. This involves no loss of generality since the complexes have the homotopy type of an n-dimensional complex.

Let (C_*, Φ) be an ϵ -symmetric Poincaré complex. From the identity (*) in the definition of Poincaré complexes, we find

 $\partial \phi_{n+1} + (-1)^r \phi_{n+1} \partial^* + (-1)(\phi_n - \epsilon \phi_n^*) = 0 : C^{2n-r} \to C_r$. Since C_* is n-dimensional, $C^{2n-r} = 0$ for r < n, $C_r = 0$ for r > n, so the map $\phi_{n+1} = 0$, and we obtain $\phi_n = \epsilon \phi_n^*$. Therefore, we have the n-th "Wu class" map $\hat{\phi}_n : C^n \to H_{\epsilon}(\mathbb{Z}/_2, \wedge)$, as in [Ranički]

Lemma 1 Let C_* be a chain complex of projective \wedge -modules, bounded below ($C_* = 0$ for * < 0) Then any homomorphism $f : C_0 \rightarrow M$, where M is a \wedge -module, may be extended to a chain map (unique up to chain homotopy) $f : C_* \rightarrow \mathcal{R}_*(M)$, where $\mathcal{R}_*(M)$ denotes a resolution of the module M.

<u>Proof</u> The usual argument for maps of resolutions does not use the acyclicity of C_{+} . (*)

The map $\hat{\phi_n}$ defines a homotopy class of chain maps

 $\mathbb{W} : \mathbb{C}^* \longrightarrow \mathfrak{R}_*(\mathbb{H}_{\epsilon}(\mathbb{Z}/_2, \wedge)).$

188

The invariant we construct will lie in the group

Since (C_*, Φ) is a Poincaré complex, the chain map $\varphi_0 : C^* \to C_*$ is a chain equivalence. We choose $\overline{\varphi}_0$ to be a chain inverse to φ_0 (the choice is unique up to chain homotopy).

Proposition 3 $\xi(C_*, \Phi)$ is independent of the choice of w and $\overline{\phi}_0$ within homotopy classes.

<u>Pf</u>. If $w \simeq w'$, $\overline{\phi}_0 \simeq \overline{\phi}_0'$, $w\phi_0 \simeq w'\phi_0'$, we we suppose that we have a chain homotopy $h : w\phi_0 \simeq w'\phi_0'$

According to [Ranički]

$$\Psi = \{w \overline{\phi}_0 \phi_s h^* + (-1)^q h_{\phi_s} \overline{\phi}_0^{\dagger *} w^{\dagger *} + (-1)^{q+1} h_{\phi_{s-1}} h^*\}$$

satisfies

$$\partial \Psi = \{ w \overline{\phi}_0 \phi_s \overline{\phi}_0^* w^* \} - \{ w' \overline{\phi}_0' \phi_s \overline{\phi}_0'^* w'^* \}$$

We must show that $\Psi \in \widetilde{B}_{n+1} \subseteq B_{n+1}$. To verify this, it will suffice to show $\alpha(\Psi) = \beta(\Psi)$.

$$\alpha(\Psi) = \hat{\psi}_{n+1} = (-1)^{q+1} h \phi_n h^* = h \phi_n h^*,$$

the last equality since $H_{\epsilon}(\mathbb{Z}/_{2}, \wedge)$ is a $\mathbb{Z}/_{2}$ -vector space. $\beta(\Psi) = \eta \circ \psi_{0} = \eta w \overline{\phi_{0}} \phi_{0} h^{*} + (-1)^{q} \eta h \phi_{0} \overline{\phi_{0}}^{*} w^{*} : \Re_{n+1}^{*} \rightarrow \Re_{n+1}$. The second summand factors through a zero group, hence is zero. By the choice of $\overline{\phi_{0}}$ and w, we have

$$\eta w \overline{\varphi}_0 \varphi_0 h^* = \hat{\varphi}_n \circ h^* = h \circ \varphi_n \circ h^*, \text{ so}$$

 $\alpha(\Psi) = \beta(\Psi).$ (*)

Cor. 4 $\xi(C_*, \Phi)$ is independent of the homotopy type of C_* . Pf. Clear. (*)

<u>Cor. 5.</u> Let (C_*, Φ) and (C'_*, Φ') be two Poincaré complexes over \wedge . Then $\xi(C_* \oplus C'_*, \Phi \oplus \Phi') = \xi(C_*, \Phi) \oplus \xi(C_*, \Phi')$

<u>Pf.</u> Clear, since the homomorphism $\varphi_n \oplus \varphi_n^i$ is equal to $\hat{\varphi}_n \oplus \hat{\varphi}_n^i$. (*)

IV The Homomorphism $w_n : L^n(\Lambda, \epsilon) \to w_n(\Lambda, \epsilon)$ and Desuspension in the <u>L-groups</u>

In the previous section, it was shown that there is an invariant of the homotopy type of $(C_*, \Phi), \xi(C_*, \Phi)$. In this section, we show that $\xi(C_*, \Phi)$ is an invariant of the algebraic cobordism class of (C_*, Φ) , and hence induces a homomorphism $w_n : L^n(\Lambda, \epsilon) \longrightarrow w_n(\Lambda, \epsilon)$, in view of corollary III. 5.

<u>Proposition 1</u> Let (C_*, Φ) <u>be a Poincaré complex</u>, $f : C_* \longrightarrow D_*$ <u>a chain</u> map, and $\Psi = \{\Psi_S\}$ surgery data for f. If (C', Φ') denotes the Poincaré complex obtained by surgery on f, then $\xi(C'_*, \Phi') = \xi(C_*, \Phi)$. <u>Pf</u>. We note that C'_* is obtained by a double mapping cone construction on C_* . That is, we first form the algebraic mapping cone MC(f), and observe that surgery data for f determines a homotopy class om maps $\tilde{f} : D^* \to MC(f)$, together with a Poincaré structure on $MC(\tilde{f})$. In particular, the underlying chain complex of C'_* is MC(\tilde{f}). Similarly, C'^* admits D as a subcomplex, as well as $MC(f\phi_0^*)$. By the definition of the top Wu class of $C'_*, \phi'_n|D_* = 0$. Therefore, we may choose the chain map w from C'^* to $\Re_*(H_{\epsilon}(\mathbb{Z}/_2, \Lambda))$ so that w vanishes on $D_* \subseteq C'^*$. Therefore, there is a splitting of graded \wedge -modules (not of chain complexes)

$$C_{\star}^{!} \cong D^{\star} \oplus C_{\star} \oplus D_{\star}$$
$$C^{!\star} \cong D_{\star} \oplus C^{\star} \oplus D^{\star}$$

And the map $w : C'^* \to \Re_*(H_{\epsilon}(\mathbb{Z}/_2, \wedge))$ has "matrix" (0, w', w"), where w' is a lifting of the n-th Wu class of C_* to $\Re_*(H_{\epsilon}(\mathbb{Z}/_2, \wedge))$. Consequently, the dual map w* has matrix

$$\left(\begin{array}{c}
0\\
w^{**}\\
w^{**}
\end{array}\right)$$

Recall from §I that the map $\,\,\phi_0^{\,\prime}\,\,$ is given by the matrix

$$\begin{bmatrix} 0 & 0 & (-1)^{q(n-q)} e \\ 0 & \phi_0 & 0 \\ 1 & (-1)^{(-q)+pq} f_{\phi_1}^{\star} & (-1)^{(n-q)+pq} e^{\psi_1} \end{bmatrix}$$

Consequently, if $\overline{\phi}_0$ is a chain inverse to ϕ_0 , we find that the matrix of a chain inverse to ϕ_0' is given by.

$$\begin{pmatrix} \star & \star & 1 \\ 0 & \varphi_0 & 0 \\ (-1)^{q(n-q)} \in & 0 & 0 \end{pmatrix}$$

where the *'s represent certain maps, the values of which will not concern us. Now, $w\overline{\phi_0}$ =

$$\begin{pmatrix} 0 & w' & w'' \end{pmatrix} \begin{pmatrix} \star & \star & 1 \\ 0 & \overline{\varphi_0} & 0 \\ (-1)^{q(n-q)} \in & 0 & 0 \end{pmatrix}$$

= $((-1)^{q(n-q)} \in w'', w'\overline{\varphi_0}, 0)$, so $\overline{\varphi_0}^* w^*$ has matrix

Finally, $w\overline{\phi}_0\phi_0 = (0, w'\overline{\phi}_0\phi_0, w'')$, so $w\overline{\phi}_0\phi_0\phi_0^*w^* =$

$$(0, w'\overline{\varphi}_{0}\varphi_{0}, w'') \left(\begin{pmatrix} (-1)^{q(n-q)} \in w'' \\ w'\overline{\varphi}_{0} \\ 0 \end{pmatrix} \right)$$

= $w'\overline{\phi}_{0}\phi_{0}\overline{\phi}_{0}^{*}w^{*}$. Similarly, $w\overline{\phi}_{0}'\phi_{s}'\overline{\phi}_{0}'w^{*} = w\phi_{0}\phi_{s}\phi_{0}^{*}w^{*}$, so the value of $\xi(C_{*}, \Phi) = \xi(C_{*}, \Phi)$. (*)

Applying the definition of the groups $L^{n}(\wedge, \epsilon)$ and Corollary II.5, we have defined a homomorphism $w_{n} : L^{n}(\wedge, \epsilon) \rightarrow w_{n}(\wedge, \epsilon)$ by $w_{n}(C_{\star}, \Phi) = \xi(C_{\star}, \Phi).$

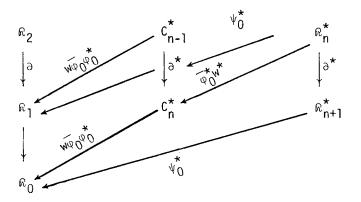
<u>Proposition 2</u> w_n vanishes on the image of the skew-suspension map σ .

<u>Proof</u>. It is immediate that the n-th Wu class map $\hat{\varphi}_n$ is trivial on a skew-suspension, since it is defined on a trivial group. Thus, the chain map w may be taken to be zero. (*)

It is shown in [Ranički] that a chain complex is in the image of the skew-suspension if its n-th Wu class vanishes. This allows us to prove the main theorem.

<u>Theorem 3</u>. $x \in L^{n}(\Lambda, \epsilon)$ is in the image of the skew-suspension if and only <u>if</u> $w_{n}(x) = 0$.

<u>Proof</u>. Consider a representative Poincaré complex (C_*, Φ) for x. We may suppose that the n-th Wu class map $\hat{\varphi}_n$ is onto $H_{\epsilon}(\mathbb{Z}/_2, \wedge)$. If not, we may add on some null-cobordant complexes for which $\hat{\varphi}_n$ is onto. Now, if the invariant $w_n(x)$ is trivial, there exists $\Psi \in \widetilde{B}_{n+1}$ with $\partial \Psi = \Phi$, where Φ is a cycle representing $w_n(x)$. Ψ thus represents surgery data for the chain map $C_* \xrightarrow{W\phi_0} R_*^{(n+1)}$. Thus, we form the chain complex (C'_*, Φ') by surgery on the map w $_{0}$. I claim that the n-th Wu class φ'_{n} is trivial on the n-dimensional cohomology of C'_{*}. To see this, we analyze Hⁿ(C). In the relevant dimensions, the complex may be represented by



Note that since as a chain map, $\phi_0 \simeq \phi_0^*$, and $\overline{\phi}_0 \phi_0 \simeq \mathrm{id}$, the map $w \overline{\phi}_0 \phi_0^*$ has the same effect homologically as w. Thus it is surjective in cohomology, and we find

$$\mathrm{H}^{n}(\mathrm{MC}(\mathrm{w}_{\overline{\phi}}_{0} \varphi_{0})) \cong \operatorname{Ker}(\mathrm{w}_{n} : \mathrm{H}^{n}(\mathrm{C}^{\star}) \longrightarrow \mathrm{H}_{\epsilon}(\mathbb{Z} /_{2}, \wedge)).$$

The remaining dimensions are unchanged from C^* , since \Re_* is acyclic above dimension 0. We conclude, then, that any cohomology class in $H^n(C_*^+)$ is represented by a pair $(x, y) \in C_n^* \oplus \Re_{n+1}^*$, so that $w_{\overline{\phi}_0} \phi_0^*(x) = -\psi_0^*(y)$. Applying the augmentation $\eta : \mathfrak{k}_0 \to H_{\varepsilon}(\mathbb{Z}/_2, \wedge)$, we find $\eta w \overline{\phi}_0 \phi_0^*(x) = -\eta \psi^*(x)$. Now by the construction of w and the above remarks about $\phi_0^*, \eta w \overline{\phi}_0 \phi_0^*(x) = \hat{\phi}_n(x)$. We also note that $\eta \psi_0^* = \eta \psi_0$, for $\psi_0^* = \pm (\psi_0 \pm \partial \psi_1 \pm \psi_1 \partial^*) \pm \overline{\phi}_0 \phi_1 \overline{\phi}_0^* w^*$ $\eta \partial \psi_1 = 0$ since $\eta \partial = 0, \psi_1 \partial^* = 0, \psi_1 \partial^* | \mathfrak{k}_{n+1}^* = 0$ since $\partial^* | \mathfrak{k}_{n+1}^* = 0$, and $w^* | \mathfrak{k}_{n+1}^* = 0$, so $\psi_0^* = \pm \psi_0$. Again, since $H_{\varepsilon}(\mathbb{Z}/_2, \wedge)$ is a $\mathbb{Z}/_2$ -vector space, $\eta \psi_0 = \pm \eta \psi_0$, so $\eta \psi_0^* = \eta \psi_0$. Now, since $\Psi \in \widetilde{B}_{n+1}, \eta \psi_0 = \hat{\psi}_{n+1},$ so $-\eta \psi_0^*(y) = \hat{\psi}_{n+1}(y)$, thus for any cycle (x,y) representing a class in $H^n(C^*), \hat{\phi}_n(x) + \hat{\psi}_{n+1}(y) = 0$. But the matrix representing ϕ_n^* is

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & \phi_0 & 0 \\ 0 & \star & \psi_{n+1} \end{bmatrix}, \text{ so } \hat{\phi}'_n(x,y) = \hat{\phi}_n(x) + \hat{\psi}_{n+1}(y) = 0.$

This proves that $\hat{\varphi}_n$ is identically zero on $H^n(C')$. It is shown in [Ranički] that under these circumstances, one may perform a sequence of elementary surgeries to kill $H^n(C)$, leaving a complex C" with $H^n(C") = 0$. Such a complex is the homotopy type of a skew-suspension (again, see [Ranički]). This concludes the proof (*).

> Department of Mathematics University of California at San Diego La Jolla, California 92037

Bibliography

- 1.) Carlsson, G. On the Witt Group of a 2-adic Group Ring. (to apper)
- 2.) Carlsson, G., and Milgram, R.J. <u>The Structure of Odd L-groups</u>. (to appear, Proceedings of Waterloo Conference on Algebraic Topology).
- Miščenko, A.S. <u>Homotopy Invariants of Non-Simply Connected Manifolds III</u>. <u>Higher Signatures</u>, Izv. Akad. Nauk. SSSR, ser. mat. 35, pp. 1316-1355 (1971).
- 4.) Morgan, J. A.M.S. Memoirs, Vol 201.
- 5.) Pardon, W. <u>The Exact Sequence of a Localization for Witt Groups II:</u> <u>Numerical Invariants of Odd-dimensional Surgery Obstructions</u> (Preprint)
- 6.) Ranički, A.A. The Algebraic Theory of Surgery, I.H.E.S. Notes.
- 7.) Wall, C.T.C. <u>On the Classification of Hermitian Forms VI. Group Rings</u> Ann. of Math. 103, 1-80 (1976).