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by
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Introduction

In view of the recent strides made in the computation of Wall groups
(see e.g. [C-M], [Pardon}, [Wall]), the problem of determining which of the
surgery obstructions occur as the obstruction of a degree one normal map of

closed manifolds has become of increased importance. One approach to this is

by product formulae, i.e. formulae which express the surgery obstruction of

the degree one normal map
MxN—>XxN

in terms of the obstruction of (M - X) and data derived from N. Morgan has
recently analyzed this problem for the case n1(N) = 0. (see [Morgan]). The
problem reduces to a bordism problem, in fact to the analysis of a bilinear
pairing

2 (K(my (N), 1)) ® Ly(my (X)) —— Ly(m (X x ).

1
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In [Ranizki] it is shown that this pairing actually factors through a

pairing
L™ (m () @ Ly(m (X)) — Ly(m (X x W),

where the L*-groups are symmetric versions of the Wall-groups, defined in
[Mi;Eenko] and [Ranigki]. For purposes of computing product formulae, then,
computing the groups L* becomes of great interest. L0 turns out to be the
Witt group of Zw, and L] is quite closely tied to the surgery group
L](Zn). Secondly, there are skew suspension maps relating the high-dimen-

*
sional L -groups to the lower dimensional ones. The approach to calculating

the L* s, then, is to measure the cokernel of the skew-suspension maps,
thereby reducing the problem to a Witt group problem, about which much is known
(see [C]).

The method for analyzing this cokernel is closely related to the method

of characteristic elements, which one may use to calculate w(ﬁzg, and a

generalization of which was used in [C] to calculate w(ﬁz) for 7 a
2-group.

§I defines the groups L*, §II defines the target groups for our
invariants, §III proves that the invariants are well-defined, and §IV proves
the main theorem, IV.3, which asserts that the defined invariant is the complete

obstruction to desuspension.
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I. Preliminaries

We recall from [Ranizki] the definition of algebraic Poincaré complexes
over a ring A with involution and their bordism groups. Given a projective

module over A, let P* denote its dual module, HomA(P, A), endowed with a

a-module structure in the usual way.

Definition 1  An n-dimensional €-symmetric complex over A is a chain

complex of projective A-modules, having the chain homotopy type of an

n-dimensional chain complex, {Cy, 3.}, together with a collection of

-r+s

A-module maps &= {o eHomA(Cn s Cr)lr €Z,S =0}, sothat

+5-1 +{n-r+
(%) oy + (= DVpga* + (= NN p_y + (- SITIIegr 1y 20
P g (520, 04 = 0).
{0Of course, each ®g really stands for a collection ¢Z : C"'r+S — Cr’ yr.

We suppress the superscript for simplicity of notation) Here Ck = C:, and

*

*
3 and P

denote the duals to the maps o and Ps_1 Note that o is

%
thus a chain map from the complex {Cn s a*} to the complex {C,, a,}. If

@ is a chain equivalence, the symmetric compliex is said to be Poincaré.

Definition 2 Let (C,, ¢) be an n-dimensional Poincaré complex, and let

f:C-+D be a chain map. where D is an (n+l) - dimensional chain complex
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of projective A-modules. Then by surgery data for f we will mean a

collection ¥ = {y }Sin+] of A-module homomorphisms, V_ : "t b .,
— s-s=0 s r+s

so that

oy, + (- 1)rWsa* + (- 1) (Voq * (- 1)s+(n-r-1)(r+s) ¢ W:_])

+ (- M) fo f* = 0.

We say that the surgery data ¥ 1is connected if the map D* — MC(f)
induced by WO’ where MC(f) denotes the algebraic mapping cone on f, is

surjective in 0-dimensional homology.

Definition 3  The Poincaré complex C, obtained from C, by surgery on

the map f, using connected surgery data V¥, is defined by

c' = Dn'r+] ®@C @D
r r

r+1°
deo is given by the matrix
(- D" dy 0 0
n+1 *
f
( 1 ) (PO dC 0
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eq = 0 0 0
0 (PO 0
- - * - *
O O e O A
V\N-r _ n-r n-r+l _ ~n-r+]
(ch) —DY_HtBC @D Cr-D @Cr @Drﬂ.
o, = |0 0
0 Pg
n-r _, * n-r+s_ x
0 (- " "etol (- e
yn-r _ L AD-r n-r+l n-r-s+l o
(c") = Dr+1 @ C @D Cr+s =D D Cr+s ) Dr+s+1‘

The equivalence relation generated by all equivalences of the form
(Cxs @) ~ (Cy, '), where C, is obtained from C, by surgery, and
homotopy equivalence, is called algebraic cobordism. The set of equivalence
classes becomes group under direct sum becomes a group under direct sum of

Poincaré complexes, and is denoted L"(a, €).

Definition 4 The skew-suspension of an n-dimensional ¢-symmetric Poincaré

complex (C,, ®) is an (n+2)-dimensional Poincaré complex (C,, ®), where




G Cere G 7 G = O
kT
¥s - n+2-k+s
- . k-1
"o C Cotl-kes.

It is easily verified that this defines a homomorphism

n+2(

o Ln(A, €) — L Ay = €)

Remark 1  For the surgery groups Ln(Zn,e) the analogue to the double

skew-suspension 02 : Ln(Z11, €) — L (Zn, €) may be identified with the

nt4

2
periodicity isomorphism Ln(Z1T, €) x[epe], Ln+4(l1w, €). In the case of /L",

however, o fails to be an isomorphism, and it is this failure we shall

analyze,

Remark 2  For complexes C and D of projective a-modules, define the
complex Hom (C, D) by Hom (C, D) = é}) Hom (C_, D ),
A A n q-p<n A |

d (f) = dpf + (-1)qfdc. Note that duality provides an involution on

HomA(C,D)
* pq * *

HomA(C » Co) by o> (-1)"1 e f; so the complex HomA(C » C,) becomes a

complex of Z[Z /2]-modu1es. Let W, denote the standard Z[Z /2]-r‘esolu—

. _ ‘ n -
tion of Z, W, = Z[le], oe, = 1+ (-1) T)en_], n=0, W =0 for
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*

* *
n<0. LetQ(C, €)= Homl [z /Z-I(w*, HomA(C » C.))s where HomA(C » )
is acted on by 22/2 by To = (~1)P9€¢*. We may now observe that choosing
an ¢-symmetric structure on a compiex C, amounts to choosing a cycle in

Q"(C, €). Note also that Q"(C, ¢) s a functor in C,, since given

f: Ce — Dy we may define a map
n
Q"(¢, &) HLLE g7(p, )

A * *
by letting f : HomA(C s Cp) — HomA(D*, D,) denote the map ¢ — fof ,

and noting that f s 22/2 - equivariant. Surgery data for the map f

n+]

consists of a choice of v € Q' (D, €) so that ay = Q"(f, €)(p), where o

is a cycle defining the symmetric structure on C,.
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II The Groups wn(A, €)

As in the previous section, let A be a ring with involution, and let
* N *
Q¥(C, €) = Hom., [1/2](1«!*, HomA(C » Ced)s

as in remark 2, §I.

Recall that the abelian group
H(Z/5, A) = {h € afd = Y/ Nt ex , A € n]

becomes a A-module by

for N €A, a €H (2/2, A), and that if ¢ : M* —+ M is an ¢-symmetric
~ *
A-homomorphism (i.e. ¢ = €¢*), we obtain a aA-map o : M — HE(Z'/Z’A) by
X — X, ox), where <(, ) denotes the evaluation pairing «( , )
*

M M AL

Let R, = R (A, €) denote a A-projective resolution of HG(ZZ/Z, A),
and let ai") denote its n-skeleton. We consider the two complexes

(n+1)

Q(R&n), €) and Q(Rr, , €)}. Recall that the n-cycles of Q(ﬁ&n), €),

Zn(Rﬁn), €) consist of collections ¢ = {o } of A-homomorphisms, satisfying



30 + (- D%a* + (- N o 1+ (- 1)TPI e ol 1) =05 P oL There-

s-1

2
fore, o, * (- 1)"+](- N o« @: =0, or o, = 6@:. We obtain a homomorphism

o) = o R: —»—HG(Z!/Z, A). Secondly, provides a A-homomorphism

n €0

¢ * &: —~+-R0, which when composed with augmentation map n : g — HE(ZZ/Z, A

from the resolution gives a second homomorphism

*
o(®) : R, — HE(Z /2./\)

These two correspondences define homomorphisms

A P Z“(RS("), €) — Hom (R%, H (Z/5:n))

= x e @MY, O lplx) = Ax)T

We now let Bn+1 denote the subgroup of the (n+1)-chains of

Q(R£n+1), €) consisting of those chains whose boundary is in the image of

Q(ﬁ&n), €} in Q(R£n+1), ¢} under the natural inclusion. This means that

an element of Bn+1 is a collection V¥ = {ws} of A-module momomorphisms

such that vy ., = € W:+], since
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2 *
by * (- D (D7 €4y = 0.

This defines a homomorphism
- - *
o = \l{n+.| . Bn+-| —_— HOmA(ﬁn+]9 HE(Z/Z’ A))

A second homomorphism B is obtained by B(¥) = 7 ° ¥y where

n iRy —»HE(Z/Z, A) is the augmentation. Define

B4y = (¥lay) = 8(¥))

. . ~o Nn
Proposition 1 aBn+1 cZ

Pf. Llet ¢ = 3Y. Then

(1) oy = avg + (- )%

- ™y, + (- ™yt -

. *
(i) ®n n n-1 71 E‘l/n—l))

and since Y ¢ Bn+1’

(111) 0 = aypyq + (- Dy 0%+ (y + (- D™ ey

Now,

)n+]

v, + (- Ny % = ey eyt + (- 1)"+1a¢n+]a*
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so
= (. n+} * % *
®n (-1 (avn tey 9 - (Wn_] + GWn_])) + ooV ®
The Teft hand term in the sum is of the form g + EB*, S0
8, = a\ynﬂa*.

Equation (i) asserts that ° 0 =MV, o 3%, since moa =0, and

HE(Z/Z’ A) is a Z /,-vector space. The condition a(¥) = g(¥) guarantees

~ A

that T] OWO = \Iln+'l’ or T]O\VO ° a*(x) = \V n+'l(a*x) = a\l’n'f']a*(x) = (Dn(x)’ SO
negy = $n, which implies & € 7. (*)

We now define

w (A, € R) = 7"/3B

n N+’ and conclude this section by showing that

wn(A, €, R) is independent of the choice of resolution R.

Proposition 2 If Ry, 8§, are two resolutions of HE(ZI/Z, A), then

wn(A, €, R) = wn(A, €, 8). We then define wn(A, €) = wn(A, €, R) = wn(A, €, 8).

Proof. We may assume that there is a chain map 8-+ & which is surjective
in each degree, since in any event, there is a resclution J which maps
surjectively in each degree to both & and §. it is then easily seen that
S is isomorphic to & ® R, where €& 1is a contractible complex. Since any

sum of elementary complexes
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id

vie —> 00— 0 — P - P 0 ~ 0

with P projective, we may assume that & 1is obtained from R by addition
with a single elementary complex.

The complex

Hom, ((e @ R)*, (e ® R)) splits as
Hmk@*,e)®HMM@*,R)@Hmkm*,3)@Hm1m*,RL
and the involution preserves the first and fourth summands and permutes the
middle two. Thus, Hom (W,, Hom ((e ®R)*, € ®R)) splits into three
1[72/2] *
summands,
*
HomzZ [z /2](14*, HomA(e ,e)) @
* *
HomzZ [z /2](w*, HomA(a L, R) ® HomA(R ,e)) ®

Homz [Z /2‘](H*s Hom (Q*Q R))

Furthermore, the homomorphisms p and B vanish identically on the

first two of these, and A and o vanish identically on the middle summand.

It is now easily verified that the middle term contributes nothing to

wn(A, €, 8), since any cycle Z in
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Homz [l /2](1‘1*3 Hom (8*, R’(\—I’l)) Hom ((R(n))*, 8))
is a boundary in

n+1)) (n+1))*

Hom ((g » €)),

*
Hom, [z /2](11*, Hom (e™, R,

& being contractible, and the fact that o vanishes identically on this
summand guarantees that we may choose the chain x such that ax = z with

X € §h+]. We must therefore check that the contribution of the first
summand is also zero. Let Z"(e) be the group of n-cycles in Q(e, €} and

let () = {3 ¢ Zn(a)lwn =y +¢v*}. Also, let B__,(e) be the group of

n+l

{n + 1)-chains x in Q(e, €) so that ax ¢ Q(a(n), €), and let

s

Bpyp(€) = {¥ € B (e}l V g = v+ € ¥*}. It is easily seen that
é§;+](e) < 7€), as in Proposition 1. HMoreover, since p and B vanish

identically on this summand, the contribution of this summand to wn(A, €, 8)

is isomorphic to

"(e)/

~s

3B, 41 (€)

It is now an easy calculation with the elementary complexes that this

group is zero. (*).
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II1  Defining the Invariant

We assume from now on that all Poincaré complexes will in fact be
n-dimensional compleses, i.e. that C, =0 for * <0, * > n. This involves
no loss of generality since the complexes have the homotopy type of an
n-dimensional complex.

Let (C,, &) be an e-symmetric Poincaré complex. From the identity (*)
in the definition of Poincaré compiexes, we find

2n- . -
dopyy ¥ (- 1)r®n+]a* (- o, - ¢ @3) =0 : ¢ C.. Since C, fis

2n

n-dimensional, C Tep for r<n, Cr =0 for r>n, so the map

Pntq = 0, and we obtain o, = € w;- Therefore, we have the n-th "Wu class”

~

map ¢ : Cn—»HE(Z/Z,A), as in [Ranicki]

n

Lemma 1 let C, be a chain complex of projective a-modules, bounded below

(C. =0 for * < 0) Then any homomorphism f : C, > M, where M is a

0
A-module, may be extended to a chain map (unique up to chain homotopy)

f i Cy > Re(M), where R,(M) denotes a resolution of the module M.

Proof The usual argument for maps of resolutions does not use the acyclicity

of C,. (*)

The map ;n defines a homotopy class of chain maps

Yo c*——»a*(HE(ZZ/Z, A)).
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The invariant we construct will lie in the group

(A, €)

*
Since (C,, ) 1is a Poincaré complex, the chain map 9q C —¢C, is a

chain equivalence. We choose Eb to be a chain inverse to wo(the choice is

unique up to chain homotopy).

Proposition 2  The element {W56¢§56W*} € Zn(w(n)’ €) lies in Zn(R(n), €).

N

Pf. Llet &= {w&b@§$6w*}. Then A (&)(x) = w5b¢656 w* (x) = &n(GSW*x) Also,

~

o(@){x) = nw&bwdESW*(x). By the choice of w and 66, nw&bmo = ¢, SO
pl)(x) = o (ogu™) = M) (x). (*)

Let &(Cys @) € b (A, €) be defined by &(C,, @) = {w56¢;53w*}.

Proposition 3  £(C,, ¢) 1is independent of the choice of w and 56 within

homotopy classes.

Pf. If woaw', 56 Y Wpy = W'g), WO we suppose that we have a chain

homotopy h : Woy = W'og

According to [Ranicki]

i T 1* +1
¥ = fogosh™ + (- Doy + (- )T ho 0™}
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satisfies

_— —% % — — % *
3y = {WQOQS@OW } - {w'oéwswé Wl

~s

We must show that V ¢ Bn+1 < Bn+]' To verify this, it will suffice to

show oY) = g(¥).

- g+1 //f\\; _ 7y
- 1) h@nh =

a(\lf) = \l/n+] = ( h@nh*a

the last equality since HE(Z/Z’ A) is a Z/z-vector space.
= = " * _I* l* .
B(¥) = n °¥g T Wegegh” + (- 1)qnh¢0¢0 W'oiR . R, The second
summand factors through a zero group, hence is zero. By the choice of 56 and

W, we have

an_)oq)oh = (Pn ° h* = h o _© h*, SO

a(¥) = p(¥). (*)

Cor. 4 z(C,, &) 1is independent of the homotopy type of Ch

Pf. Clear. (*)

Cor. 5. Let (C,, ®) and (Ci, ') be two Poincaré complexes over A. Then

E(Cp @ Chy 2@ 8") = £(Cy, @) ®E(Cy, ')

Pf. Clear, since the homomorphism o, @ ¢6 is equal to o © o (*)
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IV The Homomorphism e, Ln(A, €) —*'wn(A, €) and Desuspension in the
L-groups

In the previous section, it was shown that there is an invariant of the
homotopy type of (C,, @), £(C,, ®). In this section, we show that £(C,, $)

is an invariant of the algebraic cobordism class of (C,, €), and hence

induces a homomorphism W L"(a, €) ——*—wn(A, €), 1in view of corollary

ITI. 5.

Proposition 1 let (C4, ®) be a Poincaré complex, f : C, —- D, a chain

map, and V¥ = {ws} surgery data for f. If (C', ') denotes the Poincaré
complex obtained by surgery on f, then £(C,, &') = z(C,, &).
Pf. Ue note that C, 1is obtained by a double mapping cone construction on

C,. That is, we first form the algebraic mapping cone MC(f), and observe
that surgery data for f determines a homotopy class om maps f : D* - MC(f),
together with a Poincaré structure on MC(f). In particular, the underlying

chain complex of C, is MC(F). Similarly, c'” admits D as a subcomplex,

as well as Mc(f@S). By the definition of the top Wu class of C,, ¢ [Ds = O.
*

Therefore, we may choose the chain map w from C' to R*(HE(Zi/z, A)) so

*
that w vanishes on D, = C' . Therefore, there is a spiitting of graded

A-modules (not of chain complexes)
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*
CL=D 2C, ®D,

| * *
C'"=D,oC &b

And the map w : C'* —+-R*(HE(Zi/2, A)) has "matrix" (0, w', w"),
where w' s a 1ifting of the n-th Wu class of C, to Ru(H(Z/,, A)).

Consequently, the dual map w* has matrix

0
w'*

W'

Recall from §I that the map ¢6 is given by the matrix

0 0 (- ])Q(n'Q)g
0 9 0
1 (- 1y{-a*pag (- 1y{n-a)pacy

Consequently, if $b is a chain inverse to ®gs We find that the matrix of a

chain inverse to wé is given by.

(- 1ya(n-ale 0 0
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where the *'s represent certain maps, the values of which will not concern

us. Now, WEE =

(0 w' w") * * 1
0 g 0
(- 1)Q(”"Q)E 0 0

= ((- ])q(n-q) ew", w'@B} 0), so '56 w* has matrix

Finally, wEbwo = (0, w'$b¢0, w"), so w@bmdQSW* =

(0, W'EOQ)O,W") (- ])q(n-q) ew"
W (po

0

= w'Eb@dEBW*. Similarly, ww0¢5¢0w* = W¢0¢S¢6w*, so the value of

E(Cis @) = E(Cys @), (*)
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Applying the definition of the groups Ln(A, ¢} and Corollary II.5,

we have defined a homomorphism W, Ln(A, €) —»—un(A, €) by

wn(c*, ®) = £(Cy, @).

Proposition 2 W, vanishes on the image of the skew-suspension map o.

Proof. It is immediate that the n-th Wu class map $n is trivial on a

skew-suspension, since it is defined on a trivial group. Thus, the chain map

w may be taken to be zero. (*)

It is shown in [RaniEki] that a chain complex is in the image of the
skew-suspension if its n-th Wu class vanishes. This allows us to prove the

main theoren.

Theorem 3. x € Ln(A, €) 1is in the image of the skew-suspension if and only

if w,(x) = 0.

Proof. Consider a representative Poincaré complex (C,, ®) for x. We may
suppose that the n-th Wu class map $n is onto HE(Z‘/Z’A)' If not, we
may add on some null-cobordant complexes for which én is onto. Now, if the
invariant mn(x) is trivial, there exists ¥ ¢ §h+] with &Y = &, where ¢
is a cycle representing wn(x). Y thus represents surgery data for the

Yo (nt+1)

chain map C, —— R, Thus, we form the chain complex (Ci, ') by
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surgery on the map w I claim that the n-th Wu class @6 is trivial on

0
the n-dimensional cohomology of C,. To see this, we analyze Hn(C). In the

relevant dimensions, the complex may be represented by

*

Ry

P
*
Rt

N

x ¥5
2 Cn-]/
x
la “‘QQ&Q la* /*\vik
/ %9
*
R] Cn
X
l @QQQQ
*
Yo
g

Note that since as a chain map, ®q = wa, and Ebwo ~ id, the map
WEG@S nas the same effect homologically as w. Thus it is surjective in

cohomology, and we find

K" (MC(wggo,)) = Ker(u H(C™) —— H(Z 7,0 N)).

The remaining dimensions are unchanged from C°, since R, 1is acyclic

above dimension 0. We conclude, then, that any cohomology class in Hn(C;)

. . * .k — % =_~k
is represented by a pair (x, y) ¢ C, ®R .y, sO that W¢0¢0(x) Wo(y)-
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Applying the augmentation = : Ry — HE(Z/Z’ A), we find nwgocpa(x) = - ¥ (x).

Mow by the construction of w and the above remarks about wa, nwaowa(x) =

A

on(x). We also note that myy = my,, for wa =t (ygtavg ¢ ¥13") t eperepn”
= . = * = * * = . * * -
ndy; = 0 since ma = 0, ¥;2 0, V2 anH 0 since @ IRnH 0, and

w*IR;ﬂ =0, so0 \]/6 = +Yy- Again, since H(Z/,, A) isa Z/,-vector

space, nwo = % nwo, SO nwa = nvo. Now, since Y ¢ §h+], nwo = Wn+1’

~

so - ﬂWS(Y) = ¢n+](y), thus for any cycle (x,y) representing a class in

H(c*), én(x) + @n+](y) = 0. But the matrix representing ¢ﬁ is

0 0 0
0 ®0 0 , SO q;,',(x,y)
0 * \l/n+'| = (pn(x) + \l/n.'.'l( ) = 0

This proves that &n is identically zero on Hn(C'). It is shown in
[Ranicki] that under these circumstances, one may perform a sequence of
elementary surgeries to ki1l H"(C), leaving a complex C" with H'(c") = 0.
Such a complex is the homotopy type of a skew-suspension (again, see

[Ranicki]). This concludes the proof (*).
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