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Introduction

LET A denote the 2-adic group ring Z,m, where = is a 2-group, endowed
with the ‘“‘orientable” involution §=g~'. In this paper we explicitly
calculate the Witt group W(A) of Hermitian forms over A with respect to
this involution. The difficult part of the calculation is the quotient
W(A)/ W*(A), where W (A) denotes the subgroup of even Hermitian
forms. To obtain W(A), one must observe that W*'(A)=2Z/2 and is a
direct summand of W(A). This was pointed out by W. Pardon.

The calculation is a generalization of the method of characteristic
elements, which one uses to compute W(Z)/ W< (Z)=12/8. (See [4].) There
one associates to every non-singular bilinear form over Z a characteristic
element y in the underlying free Z-module and observes that (y, x) is an
invariant of the isomorphism class of the form if reduced mod 8.
Moreover, this invariant vanishes on even forms, hence the above
isomorphism. In the case of A=Z,m, we find that we must associate a
collection of characteristic elements x;,..., xx, in the underlying free
A-module, one for each conjugacy class of involutions in 7. Furthermore,
the elements (x;, x;) are all invariants in suitable quotient groups of A,
and most of the work in this paper is the evaluation of the quotient
groups. These invariants detect all but a small subgroup of W(A)/ W*°(A),
i.e., the subgroup of Hermitian forms for which all these invariants vanish
is isomorphic to m,, ® Z/2, where m, is the commutator quotient
7f[m, 7).

Besides being of algebraic interest, this group is of topological interest
for two reasons. First, the composite

W(A) = W@, m) — L§*"%(m) —> L7(m)

(see [1] for definitions) is a surjection from W(A) to the kernel of the
forgetful map L1'%(w)-—> Li(m) which neglects quadratic structure. Thus
the image of W(A) is the collection of surgery obstructions which are zero
as “‘symmetric’”’ obstructions.

Secondly, W(Z,)=L°(,w), the 0-dimensional “algebraic cobordism
group”, as in [§] or [6]. One has the double skew-suspension map

L"(Z,m)— L2, m),
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and it seems likely that W(Z,w) should play an important role in
L“‘(zz‘”)-

The description of W(A) is given by Theorem 7 and Corollary 8. As a
particular consequence, we have

THeOREM. Let 11 be a 2-group, and suppose that all elements of order 2
are central. Then

W(Z,11) = Z/8 D (Z/4) DB (Z/2)"~ "
O (Mo @ Z/2) B (Z/2)

where r=#{Xell| X*=e, X# ¢} and I, =I1/[II, 11}, the commutator
quotient of I1.

The paper is organized as follows—§1 discusses generalities about
2-adic group rings. § II defines the ‘“‘off-diagonal” invariants, obtained by
evaluating distinct characteristic elements on each other, and computes
the target groups for these invariants. § Il defines the ‘“‘diagonal” in-
variants, obtained by evaluating characteristic elements on themselves,
and computes the target groups for them. § IV evaluates the image of
W(A) in the sum of the diagonal and off-diagonal target groups. § V
proves that W(A)/W*(A) is isomorphic to this, and concludes with the
structure theorem V. 7 for W(A).

Finally, we remark that the methods in this paper extend readily to the
non-orientable case; that we have not included that extension in the
interest of brevity. I would like to thank W. Pardon for pointing out the
structure of W*°(A) to me.

1. Preliminaries
Let A be a ring with involution —. Given a free left A-module H, define

H*=Hom, (H, A)

H* is given a left A-module structure by (A - ¢)(h) = ¢(h)A, ¢ € H*,
heH, A eA. )

DerFinmmioN 1. A Hermitian space over A is a pair (H, B), where
(i) H is a free A-module
(ii) B: Hx H— A is a pairing satisfying
(@ B(x,y)=8(y,x), x yeH
() B(A1x;+Azx3, y) = A, B8(xy1, )+ A2B8(xz, )
(c) ad(B): H— H* is an isomorphism, where (ad(B)(y))(x)=
B(x, y).

DerFINtTION 2. We say a Hermitian space (H, B) is split if there is a
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direct summand K< H, with K=K* (K*={he H|B(h, k)=0 Vk e K}).
We call such a K a kernel of (H, B).

Orthogonal direct sums of Hermitian spaces, (H,, 8,) L (H;, 8,), may
be formed in the evident way, so we obtain the commutative monoid of
isomorphism classes of Hermitian spaces over A, M(A, —). The split
spaces form a submonoid.

DerFINtTION 3. We define W(A, —), the Witt group of A, with respect to
the involution —, to be the quotient of M(A, —) by the submonoid of split
spaces. When no confusion can arise, we simply write W(A).

Lemma 4. W(A, ) is a group.

Proof. (H, B) L (H,—B) admits a kernel, namely A ={(h, h), h € H}, so
(H, —pB) is an inverse to (H, B).

Let A={AeA|A=A4}.

DerFiNITION 5. I(A)=A/{A + X, A € A}.

I(A) is a Z/2-vector space.

PROPOSITION 6. I(A) admits a left A-module structure by A - x = AxA, .
for xeA, AeA.

Proof. That 1-x=x, A-(x;+x)=A-x;+A-x;, and (AJA) - x=
Ap* (A; - x) are clear. We must only show that (Aj+A) x=Ax+A;- x

But, A - x= (A +A0x (A +A) = Ayxky + A,xh, + A xhy + Agxh,.
Now A xA,+A,xA; = A, xA,+ (A, xX,) =0 in I(A).

We say an element in A is even if it is of the form p+ fi, for some
w€A. We say a Hermitian space (H, B) is even if B(x, x) is even for all

x € H. We let W™ (A, —) be the subgroup of W(A —) generated by even
Hermitian spaces.

LemMA 7. Given a Hermitian space (H, B) over A, the function ¢: H—
I(A) given by ¢(x)=B(x, x) is a A-module homomorphism.

Proof. Clear, since B(Ax,Ax)=AB(x,x)A and B(x;+x; X;+x;)=
B(xy, x3)+ B(x,, x;) + B(xy, x) + B(x2, x1) = B(x;, x,)+ B(x,, x2) in I(A).

We now specialize to the case where A is the 2-adic group ring Z,m,
where  is a 2-group, and the involution is given by

Y ag=) ag

gew gex

We state a well-known result.
ProposITION 8. Let J denote the kernel of the augmentation A — Z/2,
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2 a,g—>Y a,. Then for some n, J*<2A. A is a complete local ring with
maximal ideal J.

Proof. See, e.g., [3].

Notation. Given a ring R and a set X, let R(X) denote the free
R-module on X. If X is a w-set, where r is a group, then R(X) becomes
an Rm-module in the evident way.

Given a finite group w, let X(1r) denote the set of involutions of =, i.e.,

X(m)={gew|g*=e).

X(m) becomes a w-set under the conjugation action by . If we let
C(7r) denote the set of conjugacy classes of involutions in , we have an
isomorphism of m-sets

X(@@m= U X, (%
aeC(m)

where X, is the collection of all elements in . Note that each X is a
transitive r-set.

LeMMA 9. I(A)=Z/2(X(m))= @D Z/2(X,), as A-modules.

aeC(m)

Proof. The second equivalence follows from (*) above. That the first is
true as an isomorphism of abelian groups is clear, since I(A) will be the
Z/2-vector space on the fixed points of the “inverse” map from = to
itself, g— g™, which are just the involutions of 7. Moreover, if we
calculate the action of a given basis element g in A, we find that
gxg = gxg~! for xe A, which gives the isomorphism as A-modules.

Let i: A— I(A) denote the projection, and let i, (x) denote the compo-
nent of i(x) in Z/2(X,). Thus i(x)= D i, (x).

We now have I(A) split as a direct sum of cyclic modules, one for each
conjugacy class of involutions in =. Given ae€C(w), if we select a
particular T, in X, we obtain a surjection

7.0 A= ZJ2AX,)

by g—gT.g~'. Let J, denote the left ideal which is the kernel of this
map.

Lemma 10. J, is generated as a left ideal by 2 and by elements of the
form (1—5), where s is in the centralizer of T,, which we henceforth call
N,

ac

Proof. Suppose an element ¥ a,geA is in J,. Then ¥ a,gT,g™' =0
gev

(mod 2). After modifying by multiples of 2, we see that the basis elements
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in this expansion must pair off and cancel. Thus, we must have a sum
L (gT.87" — 8iT.(8)7"), where gT g = giT.(g])"", so gi=gs, with 5, €
i

N,. This gives ¥ a,g=2-x—-Y gi(1—s5).
g

We conclude this section with

LemMma 11. Given any class in W(A), there is a representative for that
class which is diagonalizable, i.e., is isomorphic to a Hermitian space of the
form

(up) L(up) L -+ - L (),

where (u) is the Hermitian space with H=A - e, B(e,e)=u. Thus, u is a
unit of A and u=a.

Proof. Let (H, B) be a Hermitian space over A, and x € H be such that
B(x, x)=u is a unit in A. Then (H, B8)=(u) L (w)*, B | (u)* X (u)*). In-
ductively, we may show that (H, 8)=A L (H', 8'), where A=(u;) L --- L
(u), and B(x', x") e J for all x € H'. Pick x € H'. By the non-singularity of
B’, 3y € H' such that 8'(x, y)=1. x and y generate a summand L, and the
matrix of the form restricted to this summand with respect to the basis

{x,y} is (o;l alz)’ with a;,a,eJ Thus, (H,B)=(L,p’'|LxL)1L

(L*, B'| L* x L*). Thus, it suffices to prove that L(a;, a;) is equivalent to
a space of type (u,) L 1 (), Va,, a,€J, where L(ay, a,) has basis
{xl: xz}, ﬂ(xb xl) =a, ﬁ(xb x2) =1. We'll prove that <1) 1 L(ala aZ)a
(1) L {uy) L {us) for appropriate choices of w, i=1,2,3, ¥, a unit in A.
Thus L(a;, az)=(~-1) L (1) L L(ay, az)=(-1) L (u;) L (uy) L {(us).

Let z be a basis for the summand (1) in H=(1) 1L L(«a,, a;). Then
B(z+x,z+x)=1+a, and B(z—x;,z—x,)=1+a, are units, and
B(z+x,z—x)=1-1=0, so H=(1+a,) L{(1+a,) L (M*, B| M x M*),
where M is generated by z + x, and z —x,. Since M* is one-dimensional,
we are done.

II. Ofi-diagonal invariants
As in Section I, we choose elements T, € X, obtaining surjections
To: A= ZJ2(X,)

Let (H, B) be a Hermitian space over A, and let ¢: H— I(A) be the
homomorphism of Lemma 1.7. Note that ¢ splits as

¢=6D ¢,
a
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where ¢,(x) is the component of ¢(x) in the direct summand Z/2(X,).
Consider ¢,: H— Z/2(X,). Since H is free, there is a factorization ¢,
so that

H £ 7/2(X.)

commutes. Since the pairing B is non-singular (i.e., ad(B) is an isomorph-
ism), there is x, € H, called an a-characteristic element for (H, 8), so that

@a(x)=B(x, x.) Vxe H.

The choice of characteristic element depends on the choice of factoriza-
tion ¢,. However, we have

Lemma 1. If ¢, and ¢, are two factorizations of ¢, as above, and x,, and
X4 are the associated a-characteristic elements, then x, — x4 € J, - H, where

J. - H is the subgroup of H generated by all elements j, - h, j,€J,, he H.

Proof. Since 1,°¢, =7,°¢%., we find that B(x, x—xJeJ. VxeH.
Thus, ad(B)(x. — x.)€Hom, (H, J,)< H*. But with H* given the left
module structure from section I, Hom, (H, J,)=1J, - H*. Since ad(B) is
an isomorphism,

Xa—Xa€J, - H.

If a* o', this lemma shows that the value of B(x., x.) €A/, +T, is
independent of the choice of characteristic elements, and hence is an
invariant of the isomorphism class of (H, B). Let [, ,.= A/J,.+J,. These
clements are the off-diagonal invariants in the title of this section. We let
0.. denote the function from M(A,-) to T, .. obtained by setting

O aoalH, B) = B(Xa» Xa) El 0oy Where x,, X, are any choices of a- and
a’-characteristic elements respectively.

LemMa 2. o, . induces a homomorphism o, .. W(A)/W*(A)—>T, .

Proof. We first observe that o,, is a homomorphism from the
monoid M(A,-) to TI.,, ie., that o, .((H B)L(H,B)=
.. ((H, B)+o..((H,B"). But if x, and x, are a-characteristic ele-
ments for H and H' respectively, then (x., x.) is a-characteristic for
(H ﬁ)-L(ny B’)) SO Ua,a'((H’ B)-L(H,, B’))=B(Xa! Xa')+BI(X:;u X::')=
Toa((H, B)) +0..((H, B.

We note that o, ,- factor through W(A). To see this, we must show that
.. vanishes on a split space (H, 8). But if (H, 8) is split, it admits
a kemnel K, and the functions ¢, all vanish on K. Hence, the characteristic
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elements of H may be chosen to lie in K*. But K=K, hence the
characteristic elements may all be taken to lie in K, so B(x., x.)=0
Va, a’, which gives the result.

Finally, we must show that o, ,. vanishes on W*(A). But if (H, B)e
W*(A), B(x, x) is even for all xe H, hence ¢ =0, so all the characteristic
elements may be taken to be zero, which concludes the proof of the
lemma.

LemMa 3. T, .= Z/2[N,\7/N,.], where N,\n/N,. denotes the collection
of double cosets N, - x - N,..

Proof. By Lemma 1.10, I', . is the additive group of A factored by the
relations 2g=0, g=sg for seN,, and g=gt for teN,, hence I . =
zz[Na \W/Na']'

We now compute the image of W(A) in @ T',.. The involution of A

ava’

induces a natural isomorphism of abelian groups
- Fa.a’ d ra',cn

which carries o, ,(H, g8) to o, . (H, B). (In terms of the presentation
[oa=Z/2[N,\7N,], N, - xN,.=N,x"'N,). Therefore, we may order
the collection of conjugacy classes C(sr) in some way, and need only
consider the image of W(A) in @ I, ... For convenience, let the con-

a<a’
jugacy class of the identity be least in this ordering.
Each T, admits a natural augmentation, e,.: I',..— Z/2, by
£,.4(x)=1 for any double coset x. We first consider the image of
D €.0°00a: WA)> D Z2
a<a’ a<a’
By Lemma [.11, W(A) is generated by one-dimensional Hermitian
spaces (u), where u is a unit in A and u= . Let a basis for D Z/2 be

a<a’

given by e, .., and let e denote the conjugacy class of the identity.

Lemma 4. An element in the image of D €,.°0,, is completely

a<a’

determined by its image in D Z/2, and D e,0:°0,.: WA)—> D Z/2

a<a’ a<a’ a<a’
a>e a>e a>e

is a surjection, so im( D z»:,,_,,loa',,"‘,,r)E D z2.
a<a’ a<a’
a>e

Proof. We have pointed out that W(A) is generated by elements of the

form (u). I(w) admits an augmentation ¢: I(m)—> @D 2Z/2(e,). Since
aeC(w)
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u=u, we may consider e(u)e @ Z/2(e,), say e(u)= Z Color Cu €
aaC(w) aaC(w)
ZJ2. Then it is easy to verify that

@ ea,a'oa’a,a'((u>)= z Caca'ea,a"

a<a’ a<a’'
Since u is a unit in A, ) ¢, = 1. We now have that the image of (u) can
a

be identified with the subset of odd order of C(w) consisting of all those
a € C(7) with C, = 1. Consequently, generators of the image of D ¢, ,-°

a<a’

.. are given by gs, where S is a subset of C(w) of odd order, and

&= Y e,,. We claim that the set
a,a’'€S
a<a’

{g(e,al,a;._}i ay, aze C(’TT), ay, ay # e}

generates the image of €D ¢,,.°0,, . For if egS,

a<a’

8= Z 8{e.araz)

m<az
ay,m€8

and if e€ S,

&= Z 8le.ar,az)

a1 <az
a,azve

ay,a4S

To see this, note that in the first case,

Z 8learan} = Z ee.al+ee.az+ea|.az

ay,azeS oy,a26S
a<az ay<az

~#S-D(Z ea)t T wm=ts

ave ay<az
aj,az€e8
In the second case, if e€ S, then
2 g(c.cu,az) = Z €ea, + €e.az + €a,,a;
aj<az ay<az
ay,az@S ay,a2&S
ay,arte ajazve
= (#(S)_2) Z ec.a + Z eal.az = Z eﬂl.az= gs’
a>e ajy<az aj<az
@y, 168

ajavte
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Moreover, the set {g;. ., .} forms a basis for un( 37) €a,a'°0a.a') since

a<a’
they are linearly independent—note that each has only one non-zero
coordinate not involving e, namely e, .., and that they are all distinct.
Consequently, the image of @ ¢,,.°0,, is isomorphic to

a<a’

@ zz(ea,a')‘

a<a’
ave

We denote by I, .. the kernel of the augmentation €, ,: I', .- —> Z/2,
and remark that the augmentation filtration on A gives us a filtration on
Foo=AlJ,+7,, by

I‘f:.)a’ = (I(’)+ja +Ja')/ja +Ja’y
where J* denotes the sth power of the augmentation ideal J. As before,
Y, =0 for s sufficiently large.

Lemma 5. D Ia'a'gim( &b o;mr).

a<a’ a<a’

Proof. We will show that for any x €{),. (s=1) there is a Hermitian
space (H,B) so that o, ((H, B)=x (modT¢:V), and so that
oppel(H, B))=0if B<pB’, B# a, or B’'# a’. By an obvious argument, this
gives the lemma. Let T, and T,. be the chosen fixed elements in the
conjugacy classes a and a’, so 7,(1)= T, and 7,.(1)= T,.. Then consider
the Hermitian space whose matrix is

T. A
L AeJ®.
[ by Ta.] eJf

®g is zero unless B=a or a’, hence xz =0 unless B =a or a'.
We compute choices for the remaining characteristic elements, say

Xa = Y161t yz2¢; and  x, =2z,e,+25e;.
We must solve
{B(el’ Xa) = l(Ja +I('+1))

B(e2’ Xa) EO(Ja +'I('+1))
and

B(e]J Xa')EO(Ja’+J(‘+1))
{3(627 Xa') = l(Ja'+J('+l))'
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This gives
T, §,+ Ay, =1(J, +J**V)
Ay, + T 5, =0(J, +J&*D)
T, Z,+AZ,=0(J, +J**V)
Az + T, 2, =1(J, +J**)
SO y;= Ta,)t_y,, Z,=T,Az,, and we obtain
T.9,+ AT, Ay, = 1(J, +J¢+V)

and

T, Z,+ AT AZ,=1(J, + J¢*Y)
or

Vo= (T, + AT, A)"Y(J, +J¢*Y)
and

2= (T, + AT A) (I, +J¢*Y).
But note that (T,+AT,A)'= <1 + § (TAT AT, =T,(J, +J"“’)
(since TAT,AeJ?), so y,= Ta'(}:, +JC*Yy, Similarly, z,=
T, (J, +J¢* V). Therefore,

y2=T,, Ay, = T, AT,

Z,=TAZ,=TAT,(J, +J*).

We now compute o, .{(H, 8))(mod ['¢Y), which is
B(Xa» Xa) = B(y1€1 1 y202, 21, + 22€;)
=y1B(e1, €1)Z,+y,18(ey, €3)2, + y.B(es, €1) 2,
+y:8(e;, €3)2,.

Now y,=T,(J, +J**Y), y,=T,AT,(J, + J**V). We get
T.T.TAT, + TAT, + TAT, AT AT, + TAT,. T, T,

= T AT, + TAT, + TAT,. = T,AT,(j, +Jo. + J¢*),
Thus, if we let A = T,xT,., we obtain o, ((H, B))=x(J, +J,.+J**V), if

T,
{H, B) has matrix [ X" ,1{‘ }, which concludes the proof.

Now observe that if a =e¢, I,,-=0, since I', ,.=A/T+J,. = Z/2. Conse-
quently, applying Lemmas 4 and 5, we find that

im( @ 0..)= @ T,

a<a’ a<a’
age
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We now wish to study the kernel of the map € o,.. Let y=

a<a

ave
D o,
a<a'

ave

LEMMA 6. Given xe W(A) with y(x)=0. Then there is an element
(H, B) in the equivalence class x with

(H, B)=(u;) L (u) L - -~ L () L (H,B),
where u, =T, +A+A for some a and some A€ A, and (H, B) in W*(A).

Proof. Let x, be a-characteristic for (H, 8). We may assume that
B(Xa» Xo) is a unit for all a. If not, we may add a copy of the split space
(—T,) 1 (T,) to (H, B) and consider the a-characteristic element (1, x,) =
X in (T,) L (H, B). B(Xas Xo) = T + B(Xa» Xa ), Which is a unit if x, is not.
Furthermore, if (T,) L (H, B) is equivalent to a space of the desired form,
then so is (—T,) L (T,) L (H, B), so we may assume B(x,, X.) to be a unit
without loss of generality.

We are assuming that o, ,((H, B)) =0 for all a# a'. Consequently,

B(Xa’ Xa’)eja +J¢.' Va'.

Therefore, we find that there are elements h,.€ J,, jo€l, forall e’ =a,
a' e C(r), so that

B(Xm Xa’) = ha'+ja’ Va'.
Define a homomorphism f: H— A by splitting H as K® L, where K is
the direct summand generated by x,., a’'# a, L is any complementary
summand, and defining f by f(x.)=—h. Va'#a, and f|L=0. Thus
f(h)eJ, VheH, since h,-€J, Va'. By the non-singularity of the form,
there exists an element h € H so that

B(x, h)=f(x) VxeH.

Again by the non-singularity of the form, we may conclude that
hel, - H, since B(x,h)eJ, Vxe H Consequently, x,+h is another
legitimate a-characteristic element, and

B(Xa + b, Xa?) = BXas Xa?) + B(R, Xa?)
= ha'+ja’+B(Xa’) h) = ha’+ja'_ hu’=ja"

Thus we may suppose that B(x,, x.) €J,» Va'# a. Now, since B(Xa> Xa)
is a unit, there is an orthogonal splitting (H, 8)=(B(x., xo)) 1 (H, B),
where H' =(x,)* and B’ is B | H'x H'. By the definition of characteristic
elements, iy{B(Xa> Xa)) = B(Xa» Xa) Ta'BXas Xa) in Z/2(X,) < I(A). But
B(Xar Xo) €Jar V' # @, 50 iaAB(Xa» Xa)) =0 Va'# .
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This means that B(x., x.) € Z/2(X,)< I(A), and since B(Xa» Xa) 1S @
unit, a basis change will bring it to the form (T, + A +2).
(H', B") is now a Hermitian space, and since B(h’, x,)=0 Vh'e H, we
have
iL(BH,h)=0 Vh'eH'.

We now repeat the above procedure using another conjugacy class, until
we have exhausted them. We are now left with (u;) L (up) L -+ L () L
(H, B), where the u,’s are of the required form and B satisfies i(B(h, h)) =
0 VheH, so B(h, k) is even for all he H, so (H, B8) is in W*(A). This
proves the theorem.

IIL Diagonal invariants

Let y, be an a-characteristic element as in Section I. Let A, = A/K,,
where K, is the subgroup of A generated by elements of the form
Ja ¥ Ja+ jLX i Where o, jh€ T, satisfy iy (o Tuaja) = ia(faxit)-

Lemma 1. If x, and x., are two a-characteristic elements for (H, B), then

B(Xa Xa)=B(Xo X&)  (mod K,).
Proof. By Lemma IL.1, x, = x%.+ j., where j,€J, - H.
B(Xor Xa) = BOF Jar X+ J)
=B (Xar X+ B(Xar Ja) + Bjas X2+ Bas Ja)-

But the defining condition for an a-characteristic element guarantees that

ia(Bar XD TaB(Xa Ju)) = ia(B(u Ju)).  Hence,  B(xh, ju)+ B(ju X2+
B(j., j.) € K., which proves the lemma.

Hence, the value of B(x., x.) in A/K, is an invariant of the isomorph-
ism class of (H, B). This gives a function ¥_,: M(A, —)— A,. The same
proof as that of Lemma 1.2 gives

Lemma 2. ¥, induces a homomorphism ¥, : W(A)/W™(A)—A,.

We will now describe the group A,. If G is an abelian group with
involution, let

G={geG|g=3}
and
H*(G)={ge G|g=+g}{g+g ge G}.

Let Y, be the collection of double cosets N,\7w/N,. The involution
x — x~! acts in the natural way on Y,, hence on Z/2(Y,).
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Lemma 3. Let K, <A be defined by K, ={j, + |, j. € J.}. Then there is
an exact sequence

0— Z/2(Y,) > A/K, — Z/2(X(m)) — 0.

Moreover, the extension is given by 2- g =(g), where g€ X(m) and (g)
denotes the double coset containing g.

Proof. First, we have the natural projection
KIR, — AL + T, =Z12(Y,).
The kernel of this map is
T AT+ Ly=H U+ 1),

But this can be evaluated by considering the long exact homology
sequence associated to the short exact sequence of groups with involution

0 J +J, >A—>A/J +],—0.
For, we obtain
H A)-»H A +])->HU,+J)—>HA)—» H"A/I,+1,)

and H (A)=0, H (A/],+])=H(ZI2(Y,)=2Z2Z,), where Z,=
{yeY.|y=73}, H (A)=Z2(X(m)), and H*(A/],+],)=Z/AZ,).

Here the map Z/2(X(w))— Z/2(Z,) is the obvious one, taking
ge X(m) to (g), the double coset containing g Since H* (],+f¢,)
is a Z2-vector space, H*'(J,+],)=Z/2(Z,)®L, where L=
ker (Z/2(X(7)) > Z/2Z,)).

So far, we have an exact sequence
0— Z/2Z,)® L — AR, — Z/2(Y,).
We now note that for A €A, 2A em, and furthermore it lies in
ker (H*(J, +J,) = H*(A)).

Hence, in the exact sequence above, 2A lies in Z/2(Z,). We conclude
that L is a direct summand of A/K,, and we may rewrite our exact
sequence as

0 Z/2Z,)—>A/IK, - Z]2(Y, )DL —0.

Also, Z/2(Y )=Z/2(Z,)®E, where E={x+% | x € Y.}. Note 2(x + £) =
2x+2xeK,, so E is a direct summand of A/K_, and we obtain

0 Z/AZ,)®E—ANK, > Z2AZ,)DL—0.
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Observing that 2/2(Z,)® E=Z/2(Y.) and Z/2(Z,) ® L = Z/2(X(m)), we
have the promised exact sequence.
A moment’s reflection shows that the map

AIR, = ZJ2(X ()
can be identified with the projection
A/K, — Af{x +%, x € A} = Z/2(X(m))

and that the generators for Z/2(Y,) are all of the form x + %, x € A. Thus,
for (g)e Z/2(Z,) = ZJ]2(Y,), (g) represents the element g+ g eA. If gRE
X(m), (g) represents 2g € A. This gives the statement about the extension.

We continue the analysis of A,. Let L, denote the subgroup of A
generated by all elements of the form j.xj., where x€A, j, eJ.. Let
C, (1) denote the set of N, -conjugacy classes of involutions in r, i.e., the
set of orbits of X(7) under the action of N, by conjugation. Note that
each N,-conjugacy class is contained in a unique double coset N, - x - N,.

LemMma 4. There is an exact sequence

0— Z/2(Y,)—> A/K, + L, — Z)2(C,(m)) —> 0

Moreover, the extension is given by 2 x =(x), where x€ C,(m) and (x)
denotes the double coset in Z/2(Y,) containing X.
Proof. Note first that
Uatjo)xUatjo) = jaXia tiaXiet iaXjat jaXia

= juXia * JaXiat K,
where k€ K,, so to calculate the image of L, in A/K,, it suffices to
consider the subgroup generated by j.xj., where j, runs over a set of
generators for J, as an abelian group. By Lemma 1.10, such a set of
generators is given by elements of the form 2g and g(1-s), where s€ N,,.
Note that if x=A+A, then ]GX]a—]aA]a'i' jAj. € K,, so we need only
consider generators (1—s)gTg~'(1-s"'), where T>=¢ and seN,, and
4T, where T>=e. 4T€ K,, so only generators of the first type need be
considered. But (gTg~')>’=e if T>=e¢, so we need only consider
generators of the form (1-s)T(1-57"), seN,, T*=e.

Multiplying out, this generator is equal to T+ sTs™'—sT—Ts™'. But in
Zi2(Y,), sT+Ts'is equal to the generator (T), i.e., the double coset
N,-T- N, since seN,, which is also represented by 27T in A. Thus,
T+sTs '=2T, and we find that T=sTs"!, hence the result. The asser-
tion about the extension follows from Lemma 3.

We now consider a new homomorphism u from A to Z/2(X(w))=I(A),
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defined by
p(x)=i(x)+i(xT,x)

(Recall that i: A— I(A) is the usual projection.) Note that A is filtered by
A®=ANJ®, where J* denotes the sth power of the augmentation ideal
J. From Proposition 1.8, we know that

NJ®=0, so NA®=0.

I(A) inherits this filtration via the map i. We now wish to describe the
image of p in I(A).
We first point out the-splitting

I(A) = ZJ2(X(m))=Z/2(X,) D GB Z2(X,)).
Zj2(X,) and @D Z/2(X,) admit natural augmentations &,: Z/2(X,)—
Z{2 and a'va

g2 D Z2(X,)—> Z)2,

a'va

by
£,3a,ST, S ') =30,

&,Cax)=2a,.

LemMA 5. The image of p consists of all (x, y)e ZJ2(X,)® D Z/2(X,)
such that g,(x) = g,(y). ata
Proof. 1t is clear that the image of u lies in the subgroup described
above. Also, if 7' is the projection from I(A) to @ Z/2(X,), 7'u(x)=
a’'va
'(i(x)), x € A, since i(xT,x) € Z/2(x, ). Therefore, we have shown that the
composite 7'opu is surjective, and it only remains to show that any

element in ker(g,) is in the image of u. But Z/2(X,) inherits the
augmentation filtration from

- wep (detfn)

ker (A5 @ Z20%)) A,
a'va

AW =A'NJ*. Now, if xe A'®, then i(x)=u(x) (mod Z/2(X,)?"), since

if xeA"™, then xT,xeA’®. Consequently, given an element xe€

Zj2(X,)®, we may find an element £ in A'® so that u(f)=

x (mod Z/2(X,)?*). Since N Z/2(X,)* =0, the lemma is proved.
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Observe that there is a map g which makes the following diagram
commute:

)

- I(A) = Z12(X(m))

AR, +L, —*— ZJ2(C,(m))

(The right:hand vertical arrow is the evident projection.) For, u factors
through A?Z/2, since Z/2(C,(w)) is a Z/2-vector space, and by
Lemma 4,

NK, +L, § Z2=2ZJ2(C, (7)) D Z/2(Z,),

where 2! is the collection of double cosets N, - x - N, which do not
contain an involution. Thus, we have three types of basis elements.
I. [x]e C,(w), which is represented by the element x € A.
II. (x)+(x~1), where {(x) denotes the double coset N_xN,, with
N_xN, # N_x"'N,. This is represented by x+x"'€A.
III. (x), a double coset N_xN, with N,xN,=N,x"'N,, but so that
N,xN, does not contain an involution. This is represented by x + x ' € A.

To see that the map i exists, we must show

() If x’=8xS7!, x’=¢, SeN,, then u(x)=u(x).
(i) Xf x'=S,xS;, S;, S;€N,, then p(x+x7)=pu(x'+x").

To see (i), note that

p(x) =[x]+[xT,x]=[SxS™']+[SxT.xS7"]
=[SxS7']+[SxST T, SxS7'] = [x']+ [x' T.x'] = p(x),
where SeN,.
For (ii),
e+ x7) = T+ x0T T = (38, TS7 51+ (871 TS,
- =[81xS, T, 87" x7'87 "1+ [S2'x7' ST TS xS;]
=[x'Tx "+[x T x]=p(x'+x").

Thus, 4 exists.
We now want to determine the kernel of . Lemma 4 can be inter-



ON THE WITT GROUP OF A 2-ADIC GROUP RING 299

preted as saying that there is a direct sum splitting
AR, + L, =Z2(3)eQ,

where ), = Z/4(C,(m))/R, and R is the subgroup generated by elements
of the form 2([x,]+[x,]), where x; and x, belong to the same double
coset in N,\7n/N,. We will now calculate the kernel of i by first
calculating ker (i) N{},, then ker (d)/(ker () N(Y,), and finally the ex-
tension.

In what follows, let %, = N,\n/N, consist of those double cosets
containing an involution, and let (T, )eZ, denote the double coset
N,T,N..

Since the range of i is a Z/2-vector space, 2-Q, cker(a|Q,).
Q./2Q,=27J2(C,(7)), and we consider the induced map
a: Z)2ACu(m)) — Z/2(C, ().

Noting as before that for xeZ2(C,(m)®, i(x)=j(x)
(mod Z/2(C,(m))*"), we find that g restricted to Z/2(C,(m))" is an
isomorphism and that [T,] is in the kernel of &, hence that ker (2) N}, =
Z/M T, ]+ Zj2(2, —(T,)). Further, given any element z € Z/2(2%), there is
by the above remark an element ye{}, with a(z)=pi(y) (since
i(z)e ZJ2(C,(m)™).

Thus, we have an exact sequence

0— Z/4[T, 1+ Z/2(Z, —(T,)) - ker (&) = Z/2(3,) — 0

and standard arguments show that the extension is entirely determined by
the choice of y, which amounts to a homomorphism

Z/2(3L) = Z{2(C, (m)®,

namely,
Z/2(3) £ z2(C, (m)" £ Z/2(C, (m) D

where 7! is the inverse to [ restricted to Z/2(C,(w))". The composite
may be expressed as .

Alo a((x)+(x™M =Y [y(x)]+[yxx"],
j=1

with  y(x) defined inductively by »(x)=xT,x™', y(x)=
v_1(x)T,v_,(x)"". Here the sum is finite since  is a 2-group, hence is
solvable. To check that the formula above is actually correct for g 'op,

we need only check that

11( i [v,(x)]+[v,(x'l)]) =xT,x '+x 'T,x=v,(x)+v,(x71).
j=1
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But,
&( T o+ D)
j=1

= E il D01+ E D+ L)
=1 j=1
() (T e+ D))
f=1

= 1 I+ a0+ 3 0 T
+y(x N Ty(x™H ™)

= 3 i+ DN+ T a1+ )]

=lv-11(x)+ vi(x7h). -

What we have shown is

ProposITION 6. There is an exact sequence
0> Z/4[T, )+ Z/2(3, ~(T.) — ker (2) > Z/2(%,) =0
with extension given by 2((x)+(x~')) = E [ (x)]+ [y (x™)], v defined as
above.  Alternatively, ker (E)E(ZM[I;:]'FZ/Z(E, —(T.N+ZI4(ZD))/R,

where R is generated by elements of the form 2({(x)+{(x™")— T [y (x)]+

[ (x™ )], and (x)+(x~') is a typical generator in Z/2(27). '~!
Remark. We will not alter the isomorphism class of the group by

changing the extension by an automorphism of the kernel. Hence, to

simplify the calculation we could rewrite the extension as 2({(x)+(x"')) =
[xT,x"']+[x"'T,x]. Of course, this would rename the generators.

We are now prepared to compute A,. For, A, =A/K,, and we have a
commuting diagram

K"Ktl“ — MK, AR +L,
ek
0 r ZI2AW, (1)) —— ZI2(C, () ——0
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where W, ()= X, U U (X,/N,), X,/N, denoting the orbit space of X,
a'vva

by the conjugation action by N,, and K, + L /K, is readily seen to be

isomorphic to I" (which is defined by the exactness of the lower row) since

K, =ker (i | L, + K,). The map

Xa U g (X:'/Na) - Ca(’Tf) = LJ, (Xa'/Nu)
is the identity on X_./N, and projection on X,. Using the presentation for
ker () provided by Proposition 6, we obtain the following description of
A

o

ProposITION 7. A, =(ker (i) + Z/4(W,(m)))/S, where S is generated by
elements of the form 2g—(g), where g*=e, 2g€ Z/4 W, (7)), and (g)
represents the element N, gN, €2, so (g)e ZJAT, 1+2Z/2(Z, (T, )<
ker (1).

We have now completed the description of the groups A, and I, ...

IV. The image of W(A) in DA+ DT,

ave akra’
In Section II, we described the image of W(A) in @ I',,. and
ava'
characterized the kernel of @ o,,: W(A)— @ I',,.. Denote this
ara’ ava’
kernel by W(A). In this section, we will identify (@ ‘Ifa)(W(A))g b A,
ave ave
and describe the extension in the resulting exact sequence
0 (@ ¥, )W) »im (© ¥, ® ® o,
ave ave ava’
—im ( 23] Ua.a') —0. (%)
ava’

LEMMA 1. Let j be in the augmentation ideal J, so T, +] is a unit, and
suppose j = j, with i, (j)=0Va'# a. Then (T, +j)" is of the form T, + A +
A if and only if i,(j)=i,(jT.j).

Proof. i,(j) = i, (jT.j) implies that j+ jT,j is of the form A + A, since it is
easily verified that (T, +j)™" satisfies i,((T, +j)™") =0 Va’' # a. Since A is
a complete local ring, (T, +j)™' may be computed as a power series,
namely,

(T+)"'= L (T)' T =T+ L (T)' TG+ T.HT.GT)
(=0 i=0
=T, +A"+ X,

since j+jT,j is of the form A +A.
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Conversely, suppose (T, +j)™" is of the form T, + A + . We must show
that j=(T,+A+A)"'—T, is even. Let »=A + A, and note that

PRECEN s

=0

for some a €A, with z=2Z, x;€ A.

(To+v)'=3 (To)T., soji= Y (T)'T,
i=Q

i=1

and
+iTai= T (T T, + & (L) T, + £+
im] =1

= i (T.v)'T, +i (T IT, +E+E= i (TV)* T, +¢+¢.
j=1

f=1 j=1

But (T,v)* ' T, =(T v)' T vT,(vT,)""!, which is even since v is.

ProrosrrioN 2. The homomorphism @ Y, restricted to W(A) surjects

avke

onto the direct sum @D M,, where M, <A, is the kernel of the map

ave

f: Ay — Z12(W, (m)).

Proof. By Lemma IL6, if (H, B)e W(A), there is a Hermitian space
equivalent to (H, 8) of the form (u;) L{uy)Ll---1{(w) where u, =
T,. + A, +A,, for some a, € C() and A, € A. Therefore, since ¢, (1,)=0
for a'# a,, we need only consider the image of Hermitian spaces of the
form (T, +A+A) in A,, and the total image of W(A) will be the direct
sum of the images in the various factors.

The previous lemma shows that if x satisfies x=T, +j; j=j, jeJ, and
i.(j))=0 Va'# a, then x~'€ M, if and only if x is of the form T, +A +A.
Consequently, we must show that

Y (T, +A+A)=(T,+A+A)"".

Consider the Hermitian space (T, +A +A), with basis element e, so
B(e,e)=T,+A+A. Then ¢,(e)=T,, so a lifting ¢, may be chosen by
@, (e) = 1. Therefore, the a-characteristic element may be taken to be

Xa = (T, + 2 +A) e,
and
BXar Xa) = (Ta + A+ X) (T, + A+ AN (T, +A+A) 7' = (T, +A +A)7,

concluding the proof.
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To completely describe im(GB‘I'aQB D am,) we must analyze the

ave ava’
extension (»). Let P(mr)= @ M,, and Q(m)= D A,, so P(m)<c Q(w).
ave ave
The homomorphism @D V¥, ® @D o,, takes values in Q(m)®
ave ara’

im ( D UM,), and we have that the image of the kernel of @ o, - lies

avea’ ava’
in P(7) @ (0). Therefore, the extension (*) is completely determined by a
homomorphism

pi i @ o) > QUIP(m) + Q)

where Q(7), ={x e Q(m)|2x =0}, defined as follows: given an element

zeim( (e5) (ra,a.), pick an element x of W(A) with @ o, .{x)=z, and

ava’ ava

compute the image of D ¥,(x) in Q(m)/P(m)+ Q(m),.

are
» Q(m)
Proposition IIl.7 shows that —————=@ D,, where D, =
P(m)+ Q(m);  ame

2 )
%;M, and R is generated by all elements of the form ¥ v'(x)+
im0

v'(x7"), x € m, and we recall that v(x)=xT_x"", v' denotes the ith iterate
of v. Note that as an element in D,, v°(x)+v°(x")=x+x"" is zero.

Before describing the homomorphism p, we must analyze D, more
carefully.

Claim. Let R be the subgroup of Z/2(2.)/(T,) generated by all ele-

ments of the form ¥ v'(x), and x is an element of the form A +A. (To
i=0
apply v to an element x of A, set v(x)=xT,%x) Then R=R.
k k
To see this, we observe that v( Y x,) =Y w(x)+y, where y is even,
i=1 1

fo=

since
k k k
A2%) (5 %) (2, %)

im] =1 i=1

k k
=Y xT,%+ Y xT.5+xT.5= 2, v(x)+y.
f=1 1> t=1
DeFiNiTION 3. A collection of elements of =, {Sy}, _, is an R-

.....



304 GUNNAR CARLSSON

approximation of order n to x if

@ n n-k m(k)
Y=Y Y ¥ vNS,)+ v SE).
{=0 k=0 [=0 j=1

We say a sequence of R-approximations {S{)} of order t, t—l 2,... s
compatible if St ™ for k=<t w.

The remark precedmg the definition allows us to construct a compatible
sequence of R-approximations to x, if x is even. For, suppose we are
given an R-approximation

(n)
{Sk'] k=0,..,n
j=1,.., m(k)
to x of order n. Then
n m(k)
Vix)= L Y RS ST,
k=0 jm1

Therefore
v Hx)= v (x) T, " (x)

n m(k)
= Z i Vu+1—k(s(£j))+Vn+l—k(s(kr‘|])—l)+y

k=0 j=1

P
where y is even, say y= Y S,+S;'. Then if we set S{*"=S{) for k

=1
N+1, and S0} =S, so m(n+1)=p, we have constructed the required
R-approximation.
Now, if we are given a compatible sequence of R-approximations {S{}},
t=1,2,..., then x is in R, since

o oo mk)

Z Vi)=Y Y Y V(S +YSED,

i=0 k=01=0 j=1

where we may omit the superscript, since S{}= S{Y whenever both exist.

The above sequence is a finite sum of elements in R, since Y v'(S, Nt
=0

v'(Sy))€R, and since ¥ v'(x) is finite. This proves the claim.
i=0

Lemma 4. Let x,yeA. Then ¥ v'(x+y)= Y v'(x)+v'(y) in D,. In
=0 {=0

particular, if y=A+X, ¥ v'(y)eR, so ¥ v'(x+y)= T v'(x).

i=0 i=0

=0
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Proof. Define e, by

e; =vix+y)—-vix)—v(y)
e, =vi(x+y)—v"(x)— v"(y)—nz v""(e,).
J=1

e, is even, for
1

Pl x+y) = i x) H T () T v ),
j=1

Applying v to this, we obtain

n-1
Vix+y)= v (x+y)) = v (x) 0" (y)+ ) v 17 (e)
j=1
n—1
=" (x)+ v (y)+ Y v l(e)+A,
j=1
where A is even. But by definition, e, = A, so e, is even. Now

ao oo

Y vy =L )+ v+ L Y vie).

i=0 i=0 im0 jm1
The latter term is in R, so we have equality in D,.

In order to determine p, we perform the following calculation.

Lemma 5. Let (H, 8) be the Hermitian space over A represented by the
A T,

Then representatives for ¥,((H, B)), ¥,((H, B)), and o, .((H, B)) may
be taken to be, respectively, (T, = AT A)Y, (T, —AT,A)"Y, and (T,-
AT A) (A + AT, ATANT, — AT, A

Proof. We compute choices for characteristic elements. Say

symmetric matrix [ ], with basis e,, e,.

Xa = X6, T X285, Xa' = Y1611 Y262

Then B(elr Xa) = 1’ ﬂ(eh Xa) = Ov B(cl) Xa') = 0’ and B(CZ’ Xa') = 1’ y‘eldlng
the equations

T.x,+Ax,=1 4 T.y,.+Ay,=0
_ an ik
Ax;+T,%,=0 Ay +T,.5,=1
which we solve and obtain
Xa = (Ta -ATa’X)_l(cl - A’1-::|'e2)
Xo = (T, — XT,,/\)'I(ez - ;\-Tael)
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Y. ((H, B)) = B(Xa> Xa)
=(T, - AT, A)'B(e,—AT,es, e, — AT, .&;)(T, +AT,.A)?
=(T, — AT A) YT, — AT, AT, —AT,A)"!
=(T, - AT, A)™".
The other two follow similarly.

Notice also that (—A+AT,ATA)=(T, - AT AN-T,A)=(-AT,)x
(T,,—AT,A). Hence the representative for_aa‘a,(H, ) may be taken to be
either (—T_ANT, —ATA)"! or (T, — AT, A) {(=AT,).

We now expand (T, —AT,A)"' in a power series.

(T, = AT X)) ' =(A=TAT,A) T, = ), (TAT.A)'T,.

i=0

A straightforward manipulation of power series shows that this is equal to

Tﬂ + i i V‘((TakTa'X)ITaATa'XTa(ATa’XTa)I) (i)

im0 =0

where v(x)=xT,x as before. Lemma 4 showed that the map x —

¥ v'(x) induced a homomorphism w,: I(A)— D,. Letting A,.: A— I(A)
p

i=0
be given by A,(x)=xT,X, we obtain a composite homomorphism w, ©
A, A— D,. We claim that o, ° A, factors as

A—=2_. p

| A

ra.a' = A/ja + Ja'

For, if xeJ,., then A,(x)=0, so w, °A, vanishes on J,.. On the other

3

hand, if xeJ,, we have w, °A_(x)= w,(xT, %)= ¥ v'(xT,.%). But these
{=0

terms are all zero in D, since x € J,, and D, is a quotient of A/J, +J, =
Z/2(N,\7/N,).
Lemma 5 showed that one representative for o, .(H, B) is

- i (TAT, AYTAT,. “2” 2,
j=0
and the calculation (i) showed that
VY. (H, B) = w,(2T.-2) = w, ° A (2).
By the definition of p, this says that p=w,°A, - on I, .., at least on the
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augmentation ideal. A similar argument using the Hermitian space (1+
T, + T, shows that w, °A,. determines p on all of A/J,+J, =T,
We have shown:

ProrPOSITION 6. The extension is determined by the homomorphism

1m( 3] a-m.)—b @ D,, defined by p=w,°A,- on T,,

avra’ ave

V. Thekemelol@‘l’ +®0'

In this section, we characterize the set of Hermitian spaces (H, 8) for
which the invariants of the previous section vanish. We will show that
such a space is equivalent to a space in which the maps ¢,: H— Z/2(X,)
are all zero except for ¢.. We must first produce a convenient generating
set for K.

Lemma 1. K, is generated by elements of the form 1,8]‘., where S is an
involution not conjugate to T, and j, € J,, and of the form j,+j, + joTajas
Ju €0

Proof. Recall that K, is the subgroup of A generated by elements of
the form j, +j.+j.xj%, where x € A, and j,, j. € J, satisfy

o (JaTafo) = i (j2xj2)

If we let L, + K, be the group generated by all elements of the form
] +j, and j xj,, x €A, then K, is the kernel of the homomorphism

pr Ko+ L= Z/12(X,),  px)=x+xT,x.

We consider the quotient K,/%, where X is generated by JaSiar 1(S)=0,

and j, +j, + j.T.J., and show it is zero. We first claim that any element in

K,/ is equivalent to one of the form Y j+j, j€J, Vi For, if xe
1

L.+K, x= Zit Ji +Z JoXadsr Jo Js € Jun Zi+ ji is already of the required

form, and if za(x,) O ],x, 0 in K,,/E We must therefore show that
]gT g~'j is equivalent to j, +j, for some j, € J,, but clearly jgT,g™'g=
—(jg+g~"j) in K./X, which is of the required form We thus assume from

now on that x is of the form ¥ ji+ j, ji€J..
]

Next we show that 4x X for any x € A. This is clear if i,(x)=0, for
then 4x=2- x -2 which is a generator of %. Now let x be an arbitrary
generator for A. Then 4x=2x+2x=-4xT,x, so if i,(x)eZ/2(X,)",
iteration of this step will eventually show that 4x = 4x’, i,(x") = 0. Finally,
2+2+4T, is a generator for 2, so 4T, = —4, which shows 4x =0 in K, /.
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Also, 2(x+x)=2x+2x=-4xT,x=0, so 2(x+x)=0 in K_,/3. Now we
suppose we have x =Y j,+ j, with i, (xT,x) =0. Since 2(x + %) =0 in K,/Z,
i
we may suppose that x=Y (1-s)g;'+gr'(1-s7?"), with s;e€ N,. The
]
condition i, (xT,x) =0 says that the expression } gT.g;' +sgT.gsi' =0
!
in Z/2(X,). Using the relations in K./, we have
(1-s)g+g'(1-s7')
=-(1-s)gT.gr'(1-s")
=-gT.gr' —sgT.gi'si ' +s8 T8 + &g s’
=-gT.gi - sgT.gr'sr ' +2g T8 ' —(1-s)gT.gi ' — g T8 '(1-s7")
=gT.g" —sgT.gr s —(1-5)gT.8 ' — g Tag '(1-s7"),
SO

LA-s)g+gi' (-5
!
=2 gl - s T.gi'sr - (Z (-s)aTagr' +gTagi (1= s?‘)) :
i 1

But since ¥ gT.gi'+sg7T.gr'si' =0 in Z/2(X,), the basis elements in
]

Y gT.gr'—sigT.gr's;' can be made to cancel in pairs, provided we
]

change the signs of appropriate terms in Y j,+j,, which is permissible
_ ]
since 2(j; +j,)=0.
Thus, we have set the original sum equal to ¥ (1-s)gT.gi'+
t

gT.gr'(1—s7"), which is a sum of the same type as we started with,
except with g replaced by gT.g;'. The solvability of the group
guarantees that the sequence {x;} of elements of = defined by x,=g,
x+1=xT,x;! eventually stabilizes at T,, i.e., x;= T, for large j. There-
fore, the original element x is equivalent to one of the form

Z (l_sl)Ta-*-Ta(l—sTl), sleNa
1

But since T, € N, this is equivalent to an expression
LA-s)+A-si)=) 2—s5-s;".
1 i

2—5—s7'=(1-s5)(1-s7")eX, completing the proof.
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CoroLLARY 2. If x€Z, and i (x)=0 Vx'€ S, where S < C(r) satisfies
e, ag S, then x may be written as a sum

Z]Ts+j:+.ITlTaj:+Z j_lxljh XIEA,
s {
where i,(x)=0 Va'eS.
Proof. We have seen in Lemma 1 that x may be written as
x=z "T,+j,+£Taj,+Z flxljh X,EI.\.
] . 1 .

x; may be written as a sum

Zk: AetAe+ ) ["f? 8?'],

a'eC(r)t iml
where g is an involution in the conjugacy class a'.
ia,(z )«,‘+X,‘) =0 Va,
k
and
n(a”) ,
ia-([ Y g ])=0 if a"#a'.
i=1
Therefore, it will suffice to show that if
ia’(z j_lxljl> = 0,
i
and each x; is an element of order 2 in the conjugacy class a’, then we
may rewrite Y j,xj; as a sum of the form
I
Lt Td L e
3 t
with i,.(x,) =0 Va" # ¢, a. A further reduction as in the proof of Lemma 1
allows us to consider only sums of the form
x=) (1-s5)gT..g ' (1-s;"), s;€N,.
i
We assume that i .(x)=0, so
Y gT.gi +sgTugi'si' =0 in Z/2AX,).

(1-s)gT.gr'(1~s7)=gT, g ' +sgT, g 's;’
58T, g ' —gT.8'si".
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Now
gT.g ' —sgT. g s + gl g — T g s
+(gT. g —sgT. g V(& .8 — & T8 'si )
is of the form j+ j+ jT,j, hence we may subtract it and obtain
sgTagi'si' — 8T8 = T.j,

where jeJ, is the element gT,.g7'—gT..g 's;'. Since i,{(x)=0, we are
free to change the signs of some of the summands (1-5,)gT.g;'(1—-s7")
and make the terms conjugate to T_. cancel, completing the proof of the
corollary.

Lemma 3. Suppose xe W(A), @ o,,(x)=0 and @ ¥,(x)=0. Then x

ava’ ave
is equivalent in W(A)/ W™ (A) to an element of the form (u;) L (up) L -+ - L
(u), where u;=1+A,+A; for some A € A.

Proof. Let us order C(7r)—{e}, say as a;, a5, . . ., a,. Then Lemma IIL.6
q
asserts that a representative for x may be taken to be [] x;, where
j=1
The proof will be by induction, and the inductive step will be

(A) Suppose (H, B) is equivalent to (H’, B") where i, (B'(x,x))=0
VxeH', s<k, and ¥, (H, 8)=0. Then (H, B) is equivalent to (H", 8",
where i, (B"(x, x))=0 Vx € H", s<k + 1. This will imply the lemma, since
we assume ¥, ((H, B))=0 Vk. We now prove the inductive step. Suppose
we are given (H', B') with i, (B'(x, x))=0 Vxe H', s <k. If we form the
space

(-T.,) L(T,) L(H, B),

equivalent to (H', B8"), it will also satisfy the inductive hypothesis. Let
X« € H' be a, -characteristic, and consider the element (1, x,) in (T_,) 1
(H, B).

T,, + B(xx X&) is a unit, since ¥ (H', ") =0, so this element generates
a summand of the space (T, )1l (H',B"). Moreover, by Corollary 2,
T,, + B(xx, xx) may be written as a sum

k—1 m(s) _ _
Z B+ R + Zl Zl BT+ St Tt T
- = wm]

Form the Hermitian space

-1 m(s)

(H,B8)=(T,, )J-(H'B)J-HL,J.I_[ M, 1 U N,,

s=1 t=] wes]l
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where
(i) d is a generator for the (T, ) summand
(ii) L; is the space with basis e;, ¢, and matrix

5 o

1 0

(i) M,, is the space (T, ) L (—T, ) with basis f1*, f3*

(iv) N, is the space (T, ) L (—T,) with basis g}, g5.

(H, B) is equivalent to (T, ) L (H', B") since each of the summands we

added was split. To prove the lemma, we observe that the element

k—1 m(s)

)’=d+Xk+'Z ."-lxle‘1+jlelz+ Z Z J—vf;'
-1

gm=] (=]
+ f (1+).)g7+8%
wm]

is a,-characteristic for (H, ) and satisfies B(y, y) = T,,.

(H, B) therefore breaks up as a sum (H, 8)=(T, ) L (H", B"), where
H'=(y)*, and B" is B|H"XH". Since y was a,-characteristic,
I, (B"(x, x))=0 Vxe H", s<k +1, and we have that (H’, B') is equivalent
to (-T,,) L(T,) L (H", B"), from which the lemma follows since (—T,,) L
(T,,) is split.

We now complete the description of W(A)/W*(A) by analyzing the
subgrqup of W(A)/W*(A) generated by spaces of the form (1+A +A).

LEMMA 4. Let u, and u, be even. Then in W(A)/ W™ (A),
ED LM +p) LA+ p)=(1+p,+py)

Proof. Let a basis for the space (—1) L (14 p,) L (1+p,) be given by
e,, e;, e5. Then by considering the basis

e;tetes, (I+u e +e,, (1+puz)e +es,

we find that the given space is isomorphic to {1+ p,+ u,) L Y, where Y
has matrix

[(1+I-1-1)2_(1+I»‘-1) —(1+IJ'1)(1+I1'2)]
A+ p)(1+p,)  A+p)~1+py)

One now sees that it is sufficient to show that u? is even. To show this,
one need only check on generators s+s™'. But

(5+s )2 =2+s+s"'=(1+s)+(1+s7Y.
Lemma 5. There is a surjection from Z/8 ® 7, @ Z/2 to a subgroup of
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W(A)/ W (A) generated by elements (1+A+A) (m,, denotes the com-
mutator quotient wf(m, 7).

Proof. We define the map by requiring that the generator of the Z/8
summand go to the space (1), and if x € 7,, @ Z/2, then

x=2{-DLEDLEDLA+HE+ETY

where X is an element of = mapping to x. All that requires proof is that
the map restricted to m,, & Z/2 is well-defined.

To do this, we consider the map Z,m — m,, ® Z/2, defined by g — (g),
where (g) is the image of g in m,,. The function g—=>(-1) L (-1) L{(~1) L
(1+g+g™") defines a homomorphism 8: Z,m — W(A)/W™(A). Since

(I+g+g)(A+g7'+g)=3+g,+87 +8:+87 ' + 818+ (8.8 7",
(1)=(3+g,+87'+8,+87' +8:1827(8:182)7 "
in W(A)/W(A), and we have by Lemma 4 that

8(1)+ 8(g,) + 8(g2) + 8(g:182)
=P LA+ L+ g +8T ) L1+ g+ 82 ) L(1+818,+(8:182) 7D
=(-1D@WLA+2)L(1+g+gTNL(1+g,+g7 ) L{(1+g,8,+(8:8) "
=(-1)LB+g +g' +8+ 87" + 818 +(8:8)7)=0.

This means that we may factor & through Z,m/(1+g,+ g+ g182)-
Secondly, 8(1)=(-1)L{(-1)1L(-1)1(3)=0, so we further factor &
through Z,7/(1, (1+g,+ g,+ g:8,)). It is a standard calculation that this
group is isomorphic to J/J*==m,,. Finally, the relation 8(g)=8(g™")
guarantees that the map factors through =, ® Z/2.

PrOPOSITION 6. The group generated by elements (1+ A + ) is isomor-
phic to Z/8 D 7,, @ Z/2. It is a direct summand of W(A) W*(A).

Proof. We must produce a homomorphism from W(A)/W*(A)—
Z/8B 7, @ Z/2. To obtain the map to Z/8, simply take W(A)/ W*(A)—
W@,)/We(@,)=2/8. As for the map to m,®Z2, let A'=
Zj4(m,y, @ ZJ2), and consider W(A)/ W (A) - W(A')/W*(A"). There is a
determinant homomorphism

det: W(A) W (A)— U(A)/NT(A),

where U(A") denotes the group of units of A’ and N*(A") denotes the
subgroup of U(A") generated by units of the form ui, and 3.

Since the involution on A’ is trivial, this group is isomorphic to
U(A)® ZJ2. Now it is a straightforward check that the elements of the
form 1+2A'e U(A), A'e€A’, generate a direct summand isomorphic to
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7, & ZJ2, and that the composite
Ty @ Z2 > WA)/ WP (A) > 7, @ Z/2
is the identity. This completes the proof.
Finally, we recapitulate. Let the image of

WA)/W*(A) in A, BDT,,
ave ava’
be denoted by . o was completely described by Lemmas I1.4 and I1.5
together with Propositions II1.7 and IV.6.

THEOREM 7. W(A)/ W*(A)=x A D Z/8D 7, @ Z/2.
COROLLARY 8. WA)=xZ2DADZ/I8D m,, R Z/2.

Proof. As remarked in the introductign W (A)=Z/2, and it is seen to
be a direct summand, since it is in W(Z,).
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