ON THE WITT GROUP OF A 2-ADIC GROUP RING

By GUNNAR CARLSSON*

[Received 30 September 1978]

Introduction

LET Λ denote the 2-adic group ring $\hat{\mathbf{Z}}_2 \pi$, where π is a 2-group, endowed with the "orientable" involution $\bar{g} = g^{-1}$. In this paper we explicitly calculate the Witt group $W(\Lambda)$ of Hermitian forms over Λ with respect to this involution. The difficult part of the calculation is the quotient $W(\Lambda)/W^{ev}(\Lambda)$, where $W^{ev}(\Lambda)$ denotes the subgroup of *even* Hermitian forms. To obtain $W(\Lambda)$, one must observe that $W^{ev}(\Lambda) \cong \mathbb{Z}/2$ and is a direct summand of $W(\Lambda)$. This was pointed out by W. Pardon.

The calculation is a generalization of the method of characteristic elements, which one uses to compute $W(\mathbf{Z})/W^{ev}(\mathbf{Z}) \cong \mathbf{Z}/8$. (See [4].) There one associates to every non-singular bilinear form over \mathbf{Z} a characteristic element χ in the underlying free \mathbf{Z} -module and observes that $\langle \chi, \chi \rangle$ is an invariant of the isomorphism class of the form if reduced mod 8. Moreover, this invariant vanishes on even forms, hence the above isomorphism. In the case of $\Lambda = \hat{\mathbf{Z}}_2 \pi$, we find that we must associate a collection of characteristic elements χ_1, \ldots, χ_k , in the underlying free Λ -module, one for each conjugacy class of involutions in π . Furthermore, the elements $\langle \chi_i, \chi_j \rangle$ are all invariants in suitable quotient groups of Λ , and most of the work in this paper is the evaluation of the quotient groups. These invariants detect all but a small subgroup of $W(\Lambda)/W^{ev}(\Lambda)$, i.e., the subgroup of Hermitian forms for which all these invariants vanish is isomorphic to $\pi_{ab} \otimes \mathbb{Z}/2$, where π_{ab} is the commutator quotient $\pi/[\pi, \pi]$.

Besides being of algebraic interest, this group is of topological interest for two reasons. First, the composite

$$W(\Lambda) \rightarrow W(\hat{\mathbb{Q}}_2 \pi) \rightarrow L_0^{+, \operatorname{tor}, q}(\pi) \rightarrow L_1^{-, q}(\pi)$$

(see [1] for definitions) is a surjection from $W(\Lambda)$ to the kernel of the forgetful map $L_1^{-,q}(\pi) \rightarrow L_1^{-}(\pi)$ which neglects quadratic structure. Thus the image of $W(\Lambda)$ is the collection of surgery obstructions which are zero as "symmetric" obstructions.

Secondly, $W(\hat{\mathbf{Z}}_2 \pi) \cong L^0(\hat{\mathbf{Z}}_2 \pi)$, the 0-dimensional "algebraic cobordism group", as in [5] or [6]. One has the double skew-suspension map

$$L^{n}(\hat{\mathbb{Z}}_{2}\pi) \rightarrow L^{n+4}(\hat{\mathbb{Z}}_{2}\pi),$$

* Supported in part by NSF Grant MCS-77-01623.

Quart. J. Math. Oxford (2), 31 (1980), 283-313

and it seems likely that $W(\hat{\mathbf{Z}}_2 \pi)$ should play an important role in $L^{4k}(\hat{\mathbf{Z}}_2 \pi)$.

The description of $W(\wedge)$ is given by Theorem 7 and Corollary 8. As a particular consequence, we have

THEOREM. Let Π be a 2-group, and suppose that all elements of order 2 are central. Then

$$W(\hat{Z}_2\Pi) \cong Z/8 \bigoplus (Z/4)' \bigoplus (Z/2)^{r(r-1)/2}$$
$$\bigoplus (\Pi_{ab} \otimes Z/2) \bigoplus (Z/2)$$

where $r = \#\{X \in \Pi \mid X^2 = e, X \neq e\}$ and $\Pi_{ab} = \Pi/[\Pi, \Pi]$, the commutator quotient of Π .

The paper is organized as follows—§I discusses generalities about 2-adic group rings. § II defines the "off-diagonal" invariants, obtained by evaluating distinct characteristic elements on each other, and computes the target groups for these invariants. § III defines the "diagonal" invariants, obtained by evaluating characteristic elements on themselves, and computes the target groups for them. § IV evaluates the image of $W(\wedge)$ in the sum of the diagonal and off-diagonal target groups. § V proves that $W(\wedge)/W^{ev}(\wedge)$ is isomorphic to this, and concludes with the structure theorem V. 7 for $W(\wedge)$.

Finally, we remark that the methods in this paper extend readily to the non-orientable case; that we have not included that extension in the interest of brevity. I would like to thank W. Pardon for pointing out the structure of $W^{ev}(\wedge)$ to me.

I. Preliminaries

Let Λ be a ring with involution –. Given a free left Λ -module H, define

$$H^* = \operatorname{Hom}_{\Lambda}(H, \Lambda)$$

 H^* is given a left Λ -module structure by $(\lambda \cdot \phi)(h) = \phi(h)\overline{\lambda}, \ \phi \in H^*$, $h \in H, \ \lambda \in \Lambda$.

DEFINITION 1. A Hermitian space over Λ is a pair (H, β) , where (i) H is a free Λ -module

- (ii) $\beta: H \times H \rightarrow \Lambda$ is a pairing satisfying
 - (a) $\beta(x, y) = \overline{\beta(y, x)}, x, y \in H$
 - (b) $\beta(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 \beta(x_1, y) + \lambda_2 \beta(x_2, y)$
 - (c) $ad(\beta): H \to H^*$ is an isomorphism, where $(ad(\beta)(y))(x) = \beta(x, y)$.

DEFINITION 2. We say a Hermitian space (H, β) is split if there is a

direct summand $K \subseteq H$, with $K = K^{\perp}$ $(K^{\perp} = \{h \in H \mid \beta(h, k) = 0 \forall k \in K\})$. We call such a K a kernel of (H, β) .

Orthogonal direct sums of Hermitian spaces, $(H_1, \beta_1) \perp (H_2, \beta_2)$, may be formed in the evident way, so we obtain the commutative monoid of isomorphism classes of Hermitian spaces over Λ , $M(\Lambda, -)$. The split spaces form a submonoid.

DEFINITION 3. We define $W(\Lambda, -)$, the Witt group of Λ , with respect to the involution -, to be the quotient of $M(\Lambda, -)$ by the submonoid of split spaces. When no confusion can arise, we simply write $W(\Lambda)$.

LEMMA 4. $W(\Lambda, -)$ is a group.

Proof. $(H, \beta) \perp (H, -\beta)$ admits a kernel, namely $\Delta = \{(h, h), h \in H\}$, so $(H, -\beta)$ is an inverse to (H, β) .

Let $\tilde{\Lambda} = \{\lambda \in \Lambda \mid \lambda = \bar{\lambda}\}.$

DEFINITION 5. $I(\Lambda) = \tilde{\Lambda} / \{\lambda + \bar{\lambda}, \lambda \in \Lambda\}.$

 $I(\Lambda)$ is a Z/2-vector space.

PROPOSITION 6. $I(\Lambda)$ admits a left Λ -module structure by $\lambda \cdot x = \lambda x \overline{\lambda}$, for $x \in \overline{\Lambda}$, $\lambda \in \Lambda$.

Proof. That $1 \cdot x = x$, $\lambda \cdot (x_1 + x_2) = \lambda \cdot x_1 + \lambda \cdot x_2$, and $(\lambda_1 \lambda_2) \cdot x = \lambda_1 \cdot (\lambda_2 \cdot x)$ are clear. We must only show that $(\lambda_1 + \lambda_2) \cdot x = \lambda_1 \cdot x + \lambda_2 \cdot x$. But, $(\lambda_1 + \lambda_2) \cdot x = (\lambda_1 + \lambda_2) x (\overline{\lambda_1} + \overline{\lambda_2}) = \lambda_1 x \overline{\lambda_1} + \lambda_2 x \overline{\lambda_2} + \lambda_1 x \overline{\lambda_2} + \lambda_2 x \overline{\lambda_1}$. Now $\lambda_1 x \overline{\lambda_2} + \lambda_2 x \overline{\lambda_1} = \lambda_1 x \overline{\lambda_2} + (\overline{\lambda_1} x \overline{\lambda_2}) = 0$ in $I(\Lambda)$.

We say an element in $\overline{\Lambda}$ is even if it is of the form $\mu + \overline{\mu}$, for some $\mu \in \Lambda$. We say a Hermitian space (H, β) is even if $\beta(x, x)$ is even for all $x \in H$. We let $W^{ev}(\Lambda, -)$ be the subgroup of $W(\Lambda, -)$ generated by even Hermitian spaces.

LEMMA 7. Given a Hermitian space (H, β) over Λ , the function $\varphi: H \rightarrow I(\Lambda)$ given by $\varphi(x) = \beta(x, x)$ is a Λ -module homomorphism.

Proof. Clear, since $\beta(\lambda x, \lambda x) = \lambda \beta(x, x) \overline{\lambda}$ and $\beta(x_1 + x_2, x_1 + x_2) = \beta(x_1, x_1) + \beta(x_2, x_2) + \beta(x_1, x_2) + \beta(x_2, x_1) = \beta(x_1, x_1) + \beta(x_2, x_2)$ in $I(\Lambda)$.

We now specialize to the case where Λ is the 2-adic group ring $\mathbb{Z}_2 \pi$, where π is a 2-group, and the involution is given by

$$\sum_{\mathbf{g} \in \mathbf{\pi}} \alpha_{\mathbf{g}} g = \sum_{\mathbf{g} \in \mathbf{\pi}} \alpha_{\mathbf{g}} g^{-1}$$

We state a well-known result.

PROPOSITION 8. Let J denote the kernel of the augmentation $\Lambda \rightarrow Z/2$,

 $\sum \alpha_{g}g \rightarrow \sum \alpha_{g}$. Then for some n, $J^{n} \subseteq 2\Lambda$. Λ is a complete local ring with maximal ideal J.

Proof. See, e.g., [3].

Notation. Given a ring R and a set X, let R(X) denote the free R-module on X. If X is a π -set, where π is a group, then R(X) becomes an $R\pi$ -module in the evident way.

Given a finite group π , let $X(\pi)$ denote the set of involutions of π , i.e.,

$$X(\pi) = \{ g \in \pi \mid g^2 = e \}.$$

 $X(\pi)$ becomes a π -set under the conjugation action by π . If we let $C(\pi)$ denote the set of conjugacy classes of involutions in π , we have an isomorphism of π -sets

$$X(\pi) \cong \bigcup_{\alpha \in C(\pi)} X_{\alpha}, \qquad (*)$$

where X_{α} is the collection of all elements in α . Note that each X_{α} is a transitive π -set.

LEMMA 9.
$$I(\Lambda) \cong \mathbb{Z}/2(\mathbb{X}(\pi)) \cong \bigoplus_{\alpha \in C(\pi)} \mathbb{Z}/2(\mathbb{X}_{\alpha}), \text{ as } \Lambda\text{-modules.}$$

Proof. The second equivalence follows from (*) above. That the first is true as an isomorphism of abelian groups is clear, since $I(\Lambda)$ will be the Z/2-vector space on the fixed points of the "inverse" map from π to itself, $g \rightarrow g^{-1}$, which are just the involutions of π . Moreover, if we calculate the action of a given basis element g in Λ , we find that $gx\bar{g} = gxg^{-1}$ for $x \in \tilde{\Lambda}$, which gives the isomorphism as Λ -modules.

Let $i: \Lambda \to I(\Lambda)$ denote the projection, and let $i_{\alpha}(x)$ denote the component of i(x) in $Z/2(X_{\alpha})$. Thus $i(x) = \bigoplus i_{\alpha}(x)$.

We now have $I(\Lambda)$ split as a direct sum of cyclic modules, one for each conjugacy class of involutions in π . Given $\alpha \in C(\pi)$, if we select a particular T_{α} in X_{α} , we obtain a surjection

$$\tau_{\alpha}: \Lambda \to Z/2(X_{\alpha})$$

by $g \rightarrow gT_{\alpha}g^{-1}$. Let J_{α} denote the left ideal which is the kernel of this map.

LEMMA 10. J_{α} is generated as a left ideal by 2 and by elements of the form (1-s), where s is in the centralizer of T_{α} , which we henceforth call N_{α} .

Proof. Suppose an element $\sum_{g \in \pi} \alpha_g g \in \Lambda$ is in J_{α} . Then $\sum \alpha_g g T_{\alpha} g^{-1} = 0$ (mod 2). After modifying by multiples of 2, we see that the basis elements

in this expansion must pair off and cancel. Thus, we must have a sum $\sum_{i} (g_i T_{\alpha} g_i^{-1} - g'_i T_{\alpha} (g'_i)^{-1})$, where $g_i T_{\alpha} g_i^{-1} = g'_i T_{\alpha} (g'_i)^{-1}$, so $g'_i = g_i s_i$, with $s_i \in N_{\alpha}$. This gives $\sum_{g} \alpha_g g = 2 \cdot x - \sum g'_i (1 - s_i)$.

We conclude this section with

LEMMA 11. Given any class in $W(\Lambda)$, there is a representative for that class which is diagonalizable, i.e., is isomorphic to a Hermitian space of the form

$$\langle u_1 \rangle \perp \langle u_2 \rangle \perp \cdots \perp \langle u_k \rangle$$

where $\langle u \rangle$ is the Hermitian space with $H = \Lambda \cdot e$, $\beta(e, e) = u$. Thus, u is a unit of Λ and $u = \overline{u}$.

Proof. Let (H, β) be a Hermitian space over Λ , and $x \in H$ be such that $\beta(x, x) = u$ is a unit in Λ . Then $(H, \beta) \cong \langle u \rangle \perp ((u)^{\perp}, \beta \mid (u)^{\perp} \times (u)^{\perp})$. Inductively, we may show that $(H, \beta) \cong \Delta \perp (H', \beta')$, where $\Delta = \langle u_1 \rangle \perp \cdots \perp \langle u_k \rangle$, and $\beta(x', x') \in J$ for all $x \in H'$. Pick $x \in H'$. By the non-singularity of $\beta', \exists y \in H'$ such that $\beta'(x, y) = 1$. x and y generate a summand L, and the matrix of the form restricted to this summand with respect to the basis $\{x, y\}$ is $\begin{pmatrix} \alpha_1 & 1 \\ 1 & \alpha_2 \end{pmatrix}$, with $\alpha_1, \alpha_2 \in J$. Thus, $(H', \beta') \cong (L, \beta' \mid L \times L) \perp (L^{\perp}, \beta' \mid L^{\perp} \times L^{\perp})$. Thus, it suffices to prove that $L(\alpha_1, \alpha_2)$ is equivalent to a space of type $\langle u_1 \rangle \perp \cdots \perp \langle u_s \rangle$, $\forall \alpha_1, \alpha_2 \in J$, where $L(\alpha_1, \alpha_2)$ has basis

 $\{x_1, x_2\}, \ \beta(x_i, x_i) = \alpha_i, \ \beta(x_1, x_2) = 1.$ We'll prove that $\langle 1 \rangle \perp L(\alpha_1, \alpha_2) \cong \langle 1 \rangle \perp \langle u_2 \rangle \perp \langle u_3 \rangle$ for appropriate choices of u_i , $i = 1, 2, 3, u_i$ a unit in Λ . Thus $L(\alpha_1, \alpha_2) \cong \langle -1 \rangle \perp \langle 1 \rangle \perp L(\alpha_1, \alpha_2) \cong \langle -1 \rangle \perp \langle u_1 \rangle \perp \langle u_2 \rangle \perp \langle u_3 \rangle$.

Let z be a basis for the summand $\langle 1 \rangle$ in $H = \langle 1 \rangle \perp L(\alpha_1, \alpha_2)$. Then $\beta(z + x_1, z + x_1) = 1 + \alpha_1$ and $\beta(z - x_2, z - x_2) = 1 + \alpha_2$ are units, and $\beta(z + x_1, z - x_2) = 1 - 1 = 0$, so $H \cong \langle 1 + \alpha_1 \rangle \perp \langle 1 + \alpha_2 \rangle \perp (M^{\perp}, \beta \mid M^{\perp} \times M^{\perp})$, where M is generated by $z + x_1$ and $z - x_2$. Since M^{\perp} is one-dimensional, we are done.

II. Off-diagonal invariants

As in Section I, we choose elements $T_{\alpha} \in X$, obtaining surjections

$$\tau_{\alpha} \colon \Lambda \to \mathbb{Z}/2(X_{\alpha})$$

Let (H, β) be a Hermitian space over Λ , and let $\varphi: H \to I(\Lambda)$ be the homomorphism of Lemma I.7. Note that φ splits as

$$\varphi = \bigoplus_{\alpha} \varphi_{\alpha},$$

where $\varphi_{\alpha}(x)$ is the component of $\varphi(x)$ in the direct summand $Z/2(X_{\alpha})$.

Consider $\varphi_{\alpha}: H \to Z/2(X_{\alpha})$. Since H is free, there is a factorization $\tilde{\varphi}_{\alpha}$ so that

commutes. Since the pairing β is non-singular (i.e., $ad(\beta)$ is an isomorphism), there is $\chi_{\alpha} \in H$, called an α -characteristic element for (H, β) , so that

$$\tilde{\varphi}_{\alpha}(x) = \beta(x, \chi_{\alpha}) \,\forall x \in H.$$

The choice of characteristic element depends on the choice of factorization $\tilde{\varphi}_{\alpha}$. However, we have

LEMMA 1. If $\tilde{\varphi}_{\alpha}$ and $\tilde{\varphi}'_{\alpha}$ are two factorizations of φ_{α} as above, and χ_{α} and χ'_{α} are the associated α -characteristic elements, then $\chi_{\alpha} - \chi'_{\alpha} \in \bar{J}_{\alpha} \cdot H$, where $\bar{J}_{\alpha} \cdot H$ is the subgroup of H generated by all elements $\bar{J}_{\alpha} \cdot h$, $\bar{J}_{\alpha} \in \bar{J}_{\alpha}$, $h \in H$.

Proof. Since $\tau_{\alpha} \circ \tilde{\varphi}_{\alpha} = \tau_{\alpha} \circ \tilde{\varphi}'_{\alpha}$, we find that $\beta(x, \chi_{\alpha} - \chi'_{\alpha}) \in J_{\alpha} \forall x \in H$. Thus, $ad(\beta)(\chi_{\alpha} - \chi'_{\alpha}) \in \operatorname{Hom}_{\Lambda}(H, J_{\alpha}) \subseteq H^*$. But with H^* given the left module structure from section I, $\operatorname{Hom}_{\Lambda}(H, J_{\alpha}) = \overline{J}_{\alpha} \cdot H^*$. Since $ad(\beta)$ is an isomorphism,

$$\chi_{\alpha} - \chi_{\alpha}' \in \overline{J}_{\alpha} \cdot H.$$

If $\alpha \neq \alpha'$, this lemma shows that the value of $\beta(\chi_{\alpha}, \chi_{\alpha'}) \in \Lambda/J_{\alpha'} + \bar{J}_{\alpha}$ is independent of the choice of characteristic elements, and hence is an invariant of the isomorphism class of (H, β) . Let $\Gamma_{\alpha,\alpha'} = \Lambda/J_{\alpha'} + \bar{J}_{\alpha}$. These elements are the off-diagonal invariants in the title of this section. We let $\sigma_{\alpha,\alpha'}$ denote the function from $M(\Lambda, -)$ to $\Gamma_{\alpha,\alpha'}$ obtained by setting $\sigma_{\alpha,\alpha'}(H, \beta) = \beta(\chi_{\alpha}, \chi_{\alpha'}) \in \Gamma_{\alpha,\alpha'}$, where $\chi_{\alpha}, \chi_{\alpha'}$ are any choices of α - and α' -characteristic elements respectively.

LEMMA 2. $\sigma_{\alpha,\alpha'}$ induces a homomorphism $\sigma_{\alpha,\alpha'}$: $W(\Lambda)/W^{ev}(\Lambda) \to \Gamma_{\alpha,\alpha'}$.

Proof. We first observe that $\sigma_{\alpha,\alpha'}$ is a homomorphism from the monoid $M(\Lambda, -)$ to $\Gamma_{\alpha,\alpha'}$, i.e., that $\sigma_{\alpha,\alpha'}((H,\beta) \perp (H',\beta')) = \sigma_{\alpha,\alpha'}((H,\beta)) + \sigma_{\alpha,\alpha'}((H',\beta'))$. But if χ_{α} and χ'_{α} are α -characteristic elements for H and H' respectively, then $(\chi_{\alpha}, \chi'_{\alpha})$ is α -characteristic for $(H,\beta) \perp (H',\beta')$, so $\sigma_{\alpha,\alpha'}((H,\beta) \perp (H',\beta')) = \beta(\chi_{\alpha}, \chi_{\alpha'}) + \beta'(\chi'_{\alpha}, \chi'_{\alpha'}) = \sigma_{\alpha,\alpha'}((H,\beta)) + \sigma_{\alpha,\alpha'}((H',\beta'))$.

We note that $\sigma_{\alpha,\alpha'}$ factor through $W(\Lambda)$. To see this, we must show that $\sigma_{\alpha,\alpha'}$ vanishes on a split space (H, β) . But if (H, β) is split, it admits a kernel K, and the functions φ_{α} all vanish on K. Hence, the characteristic

elements of H may be chosen to lie in K^{\perp} . But $K = K^{\perp}$, hence the characteristic elements may all be taken to lie in K, so $\beta(\chi_{\alpha}, \chi_{\alpha'}) = 0$ $\forall \alpha, \alpha'$, which gives the result.

Finally, we must show that $\sigma_{\alpha,\alpha'}$ vanishes on $W^{ev}(\Lambda)$. But if $(H, \beta) \in W^{ev}(\Lambda)$, $\beta(x, x)$ is even for all $x \in H$, hence $\varphi = 0$, so all the characteristic elements may be taken to be zero, which concludes the proof of the lemma.

LEMMA 3. $\Gamma_{\alpha,\alpha'} \cong Z/2[N_{\alpha} \setminus \pi/N_{\alpha'}]$, where $N_{\alpha} \setminus \pi/N_{\alpha'}$ denotes the collection of double cosets $N_{\alpha'} \cdot x \cdot N_{\alpha'}$.

Proof. By Lemma I.10, $\Gamma_{\alpha,\alpha'}$ is the additive group of Λ factored by the relations 2g = 0, g = sg for $s \in N_{\alpha}$, and g = gt for $t \in N_{\alpha'}$, hence $\Gamma_{\alpha,\alpha'} \cong Z/2[N_{\alpha} \setminus \pi/N_{\alpha'}]$.

We now compute the image of $W(\Lambda)$ in $\bigoplus_{\alpha \neq \alpha'} \Gamma_{\alpha,\alpha'}$. The involution of Λ induces a natural isomorphism of abelian groups

$$-:\Gamma_{\alpha,\alpha'}\to\Gamma_{\alpha',\alpha},$$

which carries $\sigma_{\alpha,\alpha'}(H, \underline{\beta})$ to $\sigma_{g',\alpha}(H, \beta)$. (In terms of the presentation $\Gamma_{\alpha,\alpha'} \cong Z/2[N_{\alpha} \setminus \pi/N_{\alpha'}]$, $N_{\alpha} \cdot xN_{\alpha'} = N_{\alpha'}x^{-1}N_{\alpha}$). Therefore, we may order the collection of conjugacy classes $C(\pi)$ in some way, and need only consider the image of $W(\Lambda)$ in $\bigoplus_{\alpha < \alpha'} \Gamma_{\alpha,\alpha'}$. For convenience, let the con-

jugacy class of the identity be least in this ordering.

Each $\Gamma_{\alpha,\alpha'}$ admits a natural augmentation, $\varepsilon_{\alpha,\alpha'}$: $\Gamma_{\alpha,\alpha'} \rightarrow Z/2$, by $\varepsilon_{\alpha,\alpha'}(x) = 1$ for any double coset x. We first consider the image of

$$\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha, \alpha'} \circ \sigma_{\alpha, \alpha'} : W(\Lambda) \to \bigoplus_{\alpha < \alpha'} Z/2$$

By Lemma I.11, $W(\Lambda)$ is generated by one-dimensional Hermitian spaces $\langle u \rangle$, where u is a unit in Λ and $u = \bar{u}$. Let a basis for $\bigoplus_{\alpha < \alpha'} Z/2$ be given by $e_{\alpha,\alpha'}$, and let e denote the conjugacy class of the identity.

LEMMA 4. An element in the image of $\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha, \alpha'} \circ \sigma_{\alpha, \alpha'}$ is completely

determined by its image in
$$\bigoplus_{\substack{\alpha < \alpha' \\ \alpha > e}} Z/2$$
, and $\bigoplus_{\substack{\alpha < \alpha' \\ \alpha > e}} \varepsilon_{\alpha,\alpha'} \circ \sigma_{\alpha,\alpha'}$: $W(\Lambda) \to \bigoplus_{\substack{\alpha < \alpha' \\ \alpha > e}} Z/2$
is a surjection, so $\operatorname{im}\left(\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha,\alpha'} \circ \sigma_{\alpha,\alpha'}\right) \cong \bigoplus_{\substack{\alpha < \alpha' \\ \alpha > e}} Z/2$.

Proof. We have pointed out that $W(\Lambda)$ is generated by elements of the form $\langle u \rangle$. $I(\pi)$ admits an augmentation ε : $I(\pi) \rightarrow \bigoplus_{\alpha \in C(\pi)} Z/2(e_{\alpha})$. Since

 $u = \bar{u}$, we may consider $\varepsilon(u) \in \bigoplus_{\alpha \in C(\pi)} Z/2(e_{\alpha})$, say $\varepsilon(u) = \sum_{\alpha \in C(\pi)} c_{\alpha}e_{\alpha}$, $c_{\alpha} \in C(\pi)$ Z/2. Then it is easy to verify that

$$\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha, \alpha'} \circ \sigma_{\alpha, \alpha'}(\langle u \rangle) = \sum_{\alpha < \alpha'} c_{\alpha} c_{\alpha'} e_{\alpha, \alpha'}.$$

Since u is a unit in Λ , $\sum_{\alpha} c_{\alpha} = 1$. We now have that the image of $\langle u \rangle$ can be identified with the subset of odd order of $C(\pi)$ consisting of all those $\alpha \in C(\pi)$ with $C_{\alpha} = 1$. Consequently, generators of the image of $\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha, \alpha'} \circ$ $\sigma_{\alpha,\alpha'}$ are given by g_S , where S is a subset of $C(\pi)$ of odd order, and $g_S = \sum_{\alpha, \alpha' \in S} e_{\alpha, \alpha'}$. We claim that the set

$$\{g_{\{e,\alpha_1,\alpha_2\}}, \alpha_1, \alpha_2 \in C(\pi), \alpha_1, \alpha_2 \neq e\}$$

generates the image of $\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha,\alpha'} \circ \sigma_{\alpha,\alpha'}$. For if $e \notin S$,

$$g_{S} = \sum_{\substack{\alpha_{1} < \alpha_{2} \\ \alpha_{1}, \alpha_{2} \in S}} g_{\{e, \alpha_{1}, \alpha_{2}\}}$$

and if $e \in S$,

α α

$$g_{S} = \sum_{\substack{\alpha_{1} < \alpha_{2} \\ \alpha_{1}, \alpha_{2} \neq e \\ \alpha_{1}, \alpha_{2} \notin S}} g_{\{\epsilon, \alpha_{1}, \alpha_{2}\}}.$$

To see this, note that in the first case,

$$\sum_{\substack{\alpha_1,\alpha_2 \in S \\ \alpha_1 < \alpha_2}} g_{\{e,\alpha_1,\alpha_2\}} = \sum_{\substack{\alpha_1,\alpha_2 \in S \\ \alpha_1 < \alpha_2}} e_{e,\alpha_1} + e_{e,\alpha_2} + e_{\alpha_1,\alpha_2}$$
$$= (\#(S) - 1) \left(\sum_{\alpha \neq e} e_{e,\alpha}\right) + \sum_{\substack{\alpha_1 < \alpha_2 \\ \alpha_1,\alpha_2 \in S}} e_{\alpha_1,\alpha_2} = g_S.$$

In the second case, if $e \in S$, then

$$\sum_{\substack{\alpha_1 < \alpha_2 \\ \alpha_1, \alpha_2 \in S \\ \alpha_1, \alpha_2 \neq e}} g_{\{\epsilon, \alpha_1, \alpha_2\}} = \sum_{\substack{\alpha_1 < \alpha_2 \\ \alpha_1, \alpha_2 \in S \\ \alpha_1, \alpha_2 \neq e}} e_{\epsilon, \alpha_1} + e_{\epsilon, \alpha_2} + e_{\alpha_1, \alpha_2}$$

$$= (\#(S) - 2) \sum_{\substack{\alpha > e \\ \alpha > e}} e_{\epsilon, \alpha} + \sum_{\substack{\alpha_1 < \alpha_2 \\ \alpha_1, \alpha_2 \in S \\ \alpha_1, \alpha_2 \in S}} e_{\alpha_1, \alpha_2} = \sum_{\substack{\alpha_1 < \alpha_2 \\ \alpha_1, \alpha_2 \in S \\ \alpha_1, \alpha_2 \in S}} e_{\alpha_1, \alpha_2} = g_{S}$$

290

.

Moreover, the set $\{g_{\{e,\alpha_1,\alpha_2\}}\}$ forms a basis for $\operatorname{im}\left(\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha,\alpha'} \circ \sigma_{\alpha,\alpha'}\right)$ since they are linearly independent—note that each has only one non-zero coordinate not involving e, namely e_{α_1,α_2} , and that they are all distinct. Consequently, the image of $\bigoplus_{\alpha < \alpha'} \varepsilon_{\alpha,\alpha'} \circ \sigma_{\alpha,\alpha'}$ is isomorphic to

$$\bigoplus_{\alpha < \alpha'} Z/2(e_{\alpha,\alpha'}).$$

We denote by $I_{\alpha,\alpha'}$ the kernel of the augmentation $\varepsilon_{\alpha,\alpha'}$: $\Gamma_{\alpha,\alpha'} \rightarrow Z/2$, and remark that the augmentation filtration on Λ gives us a filtration on $\Gamma_{\alpha,\alpha'} = \Lambda/\overline{J}_{\alpha} + J_{\alpha'}$, by

$$\Gamma_{\alpha,\alpha'}^{(s)} = (J^{(s)} + \bar{J}_{\alpha} + J_{\alpha'})/\bar{J}_{\alpha} + J_{\alpha'},$$

where $J^{(s)}$ denotes the sth power of the augmentation ideal J. As before, $\Gamma_{\alpha,\alpha}^{(s)} = 0$ for s sufficiently large.

Lemma 5.
$$\bigoplus_{\alpha < \alpha'} I_{\alpha, \alpha'} \subseteq \operatorname{im} \left(\bigoplus_{\alpha < \alpha'} \sigma_{\alpha, \alpha'} \right).$$

Proof. We will show that for any $x \in \Gamma_{\alpha,\alpha'}^{(s)}$ $(s \ge 1)$ there is a Hermitian space (H, β) so that $\sigma_{\alpha,\alpha'}((H, \beta)) \equiv x \pmod{\Gamma_{\alpha,\alpha'}^{(s+1)}}$, and so that $\sigma_{\beta,\beta'}((H, \beta)) = 0$ if $\beta < \beta'$, $\beta \neq \alpha$, or $\beta' \neq \alpha'$. By an obvious argument, this gives the lemma. Let T_{α} and $T_{\alpha'}$ be the chosen fixed elements in the conjugacy classes α and α' , so $\tau_{\alpha}(1) = T_{\alpha}$ and $\tau_{\alpha'}(1) = T_{\alpha'}$. Then consider the Hermitian space whose matrix is

$$\begin{bmatrix} T_{\alpha} & \lambda \\ \overline{\lambda} & T_{\alpha'} \end{bmatrix} \qquad \lambda \in J^{(s)}.$$

 φ_{β} is zero unless $\beta = \alpha$ or α' , hence $\chi_{\beta} = 0$ unless $\beta = \alpha$ or α' .

We compute choices for the remaining characteristic elements, say

$$\chi_{\alpha} = y_1 e_1 + y_2 e_2$$
 and $\chi_{\alpha'} = z_1 e_1 + z_2 e_2$.

We must solve

$$\begin{cases} \beta(e_1, \chi_{\alpha}) \equiv \mathbf{1}(J_{\alpha} + J^{(s+1)}) \\ \beta(e_2, \chi_{\alpha}) \equiv \mathbf{0}(J_{\alpha} + J^{(s+1)}) \end{cases}$$

and

$$\begin{cases} \beta(e_1, \chi_{\alpha'}) \equiv 0(J_{\alpha'} + J^{(s+1)}) \\ \beta(e_2, \chi_{\alpha'}) \equiv 1(J_{\alpha'} + J^{(s+1)}). \end{cases}$$

This gives

$$\begin{aligned} T_{\alpha}\bar{y}_{1} + \lambda\bar{y}_{2} & \cong 1(J_{\alpha} + J^{(s+1)}) \\ \overline{\lambda}y_{1} + T_{\alpha'}\bar{y}_{2} & \cong 0(J_{\alpha} + J^{(s+1)}) \\ T_{\alpha}\bar{z}_{1} + \lambda\bar{z}_{2} & \cong 0(J_{\alpha} + J^{(s+1)}) \\ \overline{\lambda}z_{1} + T_{\alpha'}\bar{z}_{2} & \equiv 1(J_{\alpha} + J^{(s+1)}) \end{aligned}$$

so $\bar{y}_2 = T_{\alpha'} \overline{\lambda y_1}$, $\bar{z}_1 = T_{\alpha} \lambda \bar{z}_2$, and we obtain

$$T_{\alpha}\bar{y}_{1} + \lambda T_{\alpha'}\overline{\lambda y}_{1} \equiv \mathbb{1}(J_{\alpha} + J^{(s+1)})$$

and

$$T_{\alpha'}\bar{z}_2 + \bar{\lambda}T_{\alpha}\lambda\bar{z}_2 \equiv \mathbb{1}(J_{\alpha} + J^{(s+1)})$$

or

$$\bar{\mathbf{y}}_1 \equiv (T_{\alpha} + \lambda T_{\alpha'} \bar{\lambda})^{-1} (J_{\alpha} + J^{(s+1)})$$

and

$$\bar{z}_2 = (T_{\alpha'} + \bar{\lambda} T_{\alpha} \lambda)^{-1} (J_{\alpha} + J^{(s+1)})$$

But note that $(T_{\alpha} + \lambda T_{\alpha'}\bar{\lambda})^{-1} = \left(1 + \sum_{i=1}^{\infty} (T_{\alpha}\lambda T_{\alpha'}\bar{\lambda})^{i}T_{\alpha} = T_{\alpha}(J_{\alpha} + J^{(s+1)})\right)$ (since $T_{\alpha}\lambda T_{\alpha'}\bar{\lambda} \in J^{(2s)}$), so $\bar{y}_{1} \equiv T_{\alpha}(J_{\alpha} + J^{(s+1)})$. Similarly, $\bar{z}_{2} = T_{\alpha'}(J_{\alpha} + J^{(s+1)})$. Therefore,

$$\bar{y}_2 = T_{\alpha}, \qquad \lambda y_1 = T_{\alpha'} \lambda \bar{T}_{\alpha},$$

 $\bar{z}_1 = T_{\alpha} \lambda \bar{z}_2 = T_{\alpha} \lambda T_{\alpha'} (J_{\alpha} + J^{(s+1)}).$

We now compute $\sigma_{\alpha,\alpha'}((H,\beta)) \pmod{\Gamma_{\alpha,\alpha'}^{(s+1)}}$, which is

$$\beta(\chi_{\alpha}, \chi_{\alpha'}) = \beta(y_1e_1 + y_2e_2, z_1e_1 + z_2e_2)$$

= $y_1\beta(e_1, e_1)\bar{z}_1 + y_1\beta(e_1, e_2)\bar{z}_2 + y_2\beta(e_2, e_1)\bar{z}_1$
+ $y_2\beta(e_2, e_2)\bar{z}_2$.

Now $y_1 = T_{\alpha}(\bar{J}_{\alpha} + J^{(s+1)}), y_2 = T_{\alpha}\lambda T_{\alpha'}(\bar{J}_{\alpha} + J^{(s+1)})$. We get $T_{\alpha}T_{\alpha}T_{\alpha}\lambda T_{\alpha'} + T_{\alpha}\lambda T_{\alpha'} + T_{\alpha}\lambda T_{\alpha'}\lambda T_{\alpha}\lambda T_{\alpha'} + T_{\alpha}\lambda T_{\alpha'}T_{\alpha'}$ $= T_{\alpha}\lambda T_{\alpha'} + T_{\alpha}\lambda T_{\alpha'} + T_{\alpha}\lambda T_{\alpha'} = T_{\alpha}\lambda T_{\alpha'}(\bar{j}_{\alpha} + J_{\alpha'} + J^{(s+1)}).$

Thus, if we let $\lambda = T_{\alpha} x T_{\alpha'}$, we obtain $\sigma_{\alpha,\alpha'}((H,\beta)) \equiv x(\overline{J}_{\alpha} + J_{\alpha'} + J^{(s+1)})$, if (H,β) has matrix $\begin{bmatrix} T_{\alpha} & \lambda \\ \overline{\lambda} & T_{\alpha'} \end{bmatrix}$, which concludes the proof.

Now observe that if $\alpha = e$, $I_{\alpha,\alpha'} = 0$, since $\Gamma_{e,\alpha'} = \Lambda/J + J_{\alpha'} = Z/2$. Consequently, applying Lemmas 4 and 5, we find that

$$\operatorname{im}\left(\bigoplus_{\alpha<\alpha'}\sigma_{\alpha,\alpha'}\right)\cong\bigoplus_{\substack{\alpha<\alpha'\\\alpha\neq\epsilon}}\Gamma_{\alpha,\alpha'}.$$

We now wish to study the kernel of the map $\bigoplus_{\substack{\alpha < \alpha' \\ \alpha \neq e}} \sigma_{\alpha,\alpha'}$. Let $\gamma = \bigoplus_{\substack{\alpha < \alpha' \\ \alpha \neq e}} \sigma_{\alpha,\alpha'}$.

Ψυ_{α,} α<α' α≠ε

LEMMA 6. Given $x \in W(\Lambda)$ with $\gamma(x) = 0$. Then there is an element (H, β) in the equivalence class x with

$$(H,\beta) \cong \langle u_1 \rangle \perp \langle u_2 \rangle \perp \cdots \perp \langle u_k \rangle \perp (H,\beta),$$

where $u_i = T_{\alpha} + \lambda + \overline{\lambda}$ for some α and some $\lambda \in \Lambda$, and $(\overline{H}, \overline{\beta})$ in $W^{ev}(\Lambda)$.

Proof. Let χ_{α} be α -characteristic for (H, β) . We may assume that $\beta(\chi_{\alpha}, \chi_{\alpha})$ is a unit for all α . If not, we may add a copy of the split space $\langle -T_{\alpha} \rangle \perp \langle T_{\alpha} \rangle$ to (H, β) and consider the α -characteristic element $(1, \chi_{\alpha}) = \tilde{\chi}_{\alpha}$ in $\langle T_{\alpha} \rangle \perp (H, \beta)$. $\beta(\tilde{\chi}_{\alpha}, \tilde{\chi}_{\alpha}) = T_{\alpha} + \beta(\chi_{\alpha}, \chi_{\alpha})$, which is a unit if χ_{α} is not. Furthermore, if $\langle T_{\alpha} \rangle \perp (H, \beta)$ is equivalent to a space of the desired form, then so is $\langle -T_{\alpha} \rangle \perp \langle T_{\alpha} \rangle \perp (H, \beta)$, so we may assume $\beta(\chi_{\alpha}, \chi_{\alpha})$ to be a unit without loss of generality.

We are assuming that $\sigma_{\alpha,\alpha'}((H,\beta)) = 0$ for all $\alpha \neq \alpha'$. Consequently,

$$\beta(\chi_{\alpha},\chi_{\alpha'})\in \overline{J}_{\alpha}+J_{\alpha'} \qquad \forall \alpha'.$$

Therefore, we find that there are elements $h_{\alpha'} \in \overline{J}_{\alpha}$, $j_{\alpha'} \in J_{\alpha'}$, for all $\alpha' = \alpha$, $\alpha' \in C(\pi)$, so that

$$\beta(\chi_{\alpha}, \chi_{\alpha'}) = h_{\alpha'} + j_{\alpha'} \qquad \forall \alpha'.$$

Define a homomorphism $f: H \to \Lambda$ by splitting H as $K \oplus L$, where K is the direct summand generated by $\chi_{\alpha'}$, $\alpha' \neq \alpha$, L is any complementary summand, and defining f by $f(\chi_{\alpha'}) = -\bar{h}_{\alpha'} \quad \forall \alpha' \neq \alpha$, and $f \mid L \equiv 0$. Thus $f(h) \in J_{\alpha} \quad \forall h \in H$, since $h_{\alpha'} \in \bar{J}_{\alpha} \quad \forall \alpha'$. By the non-singularity of the form, there exists an element $h \in H$ so that

$$\beta(x, h) = f(x) \qquad \forall x \in H.$$

Again by the non-singularity of the form, we may conclude that $h \in \overline{J}_{\alpha} \cdot H$, since $\beta(x, h) \in J_{\alpha} \quad \forall x \in H$. Consequently, $\chi_{\alpha} + h$ is another legitimate α -characteristic element, and

$$\beta(\chi_{\alpha} + h, \chi_{\alpha'}) = \beta(\chi_{\alpha}, \chi_{\alpha'}) + \beta(h, \chi_{\alpha'})$$
$$= h_{\alpha'} + j_{\alpha'} + \overline{\beta(\chi_{\alpha'}, h)} = h_{\alpha'} + j_{\alpha'} - h_{\alpha'} = j_{\alpha'}.$$

Thus we may suppose that $\beta(\chi_{\alpha}, \chi_{\alpha'}) \in J_{\alpha'} \, \forall \alpha' \neq \alpha$. Now, since $\beta(\chi_{\alpha}, \chi_{\alpha})$ is a unit, there is an orthogonal splitting $(H, \beta) \cong \langle \beta(\chi_{\alpha}, \chi_{\alpha}) \rangle \perp (H', \beta')$, where $H' = (\chi_{\alpha})^{\perp}$ and β' is $\beta \mid H' \times H'$. By the definition of characteristic elements, $i_{\alpha'}(\beta(\chi_{\alpha}, \chi_{\alpha})) = \beta(\chi_{\alpha}, \chi_{\alpha'}) T_{\alpha'}\beta(\chi_{\alpha'}, \chi_{\alpha})$ in $Z/2(\chi_{\alpha'}) \subseteq I(\Lambda)$. But $\beta(\chi_{\alpha}, \chi_{\alpha'}) \in J_{\alpha'} \, \forall \alpha' \neq \alpha$, so $i_{\alpha'}(\beta(\chi_{\alpha}, \chi_{\alpha})) = 0 \, \forall \alpha' \neq \alpha$.

This means that $\beta(\chi_{\alpha}, \chi_{\alpha}) \in \mathbb{Z}/2(X_{\alpha}) \subseteq I(\Lambda)$, and since $\beta(\chi_{\alpha}, \chi_{\alpha})$ is a unit, a basis change will bring it to the form $\langle T_{\alpha} + \lambda + \overline{\lambda} \rangle$.

 (H', β') is now a Hermitian space, and since $\beta(h', \chi_{\alpha}) = 0 \forall h' \in H'$, we have

$$i_{\alpha}(\beta(h', h')) = 0 \quad \forall h' \in H'.$$

We now repeat the above procedure using another conjugacy class, until we have exhausted them. We are now left with $\langle u_1 \rangle \perp \langle u_2 \rangle \perp \cdots \perp \langle u_k \rangle \perp$ $(\bar{H}, \bar{\beta})$, where the u_i 's are of the required form and $\bar{\beta}$ satisfies $i(\bar{\beta}(\bar{h}, \bar{h})) =$ $0 \forall \bar{h} \in \bar{H}$, so $\bar{\beta}(\bar{h}, \bar{h})$ is even for all $\bar{h} \in \bar{H}$, so $(\bar{H}, \bar{\beta})$ is in $W^{ev}(\Lambda)$. This proves the theorem.

III. Diagonal invariants

Let χ_{α} be an α -characteristic element as in Section I. Let $\Delta_{\alpha} = \tilde{\Lambda}/K_{\alpha}$, where K_{α} is the subgroup of $\tilde{\Lambda}$ generated by elements of the form $j_{\alpha} + \bar{j}_{\alpha} + \bar{j}'_{\alpha} \times j'_{\alpha}$, where $j_{\alpha}, j'_{\alpha} \in J_{\alpha}$ satisfy $i_{\alpha}(\bar{j}_{\alpha}T_{\alpha}j_{\alpha}) = i_{\alpha}(\bar{j}'_{\alpha}xj'_{\alpha})$.

LEMMA 1. If χ_{α} and χ'_{α} are two α -characteristic elements for (H, β) , then

$$\beta(\chi_{\alpha},\chi_{\alpha}) \equiv \beta(\chi_{\alpha}',\chi_{\alpha}') \pmod{K_{\alpha}}.$$

Proof. By Lemma II.1, $\chi_{\alpha} = \chi'_{\alpha} + \overline{j}_{\alpha}$, where $\overline{j}_{\alpha} \in \overline{J}_{\alpha} \cdot H$.

$$\begin{split} \beta(\chi_{\alpha},\chi_{\alpha}) &= \beta(\chi_{\alpha}'+\bar{j}_{\alpha},\chi_{\alpha}'+\bar{j}_{\alpha}) \\ &= \beta(\chi_{\alpha}',\chi_{\alpha}') + \beta(\chi_{\alpha}',\bar{j}_{\alpha}) + \beta(\bar{j}_{\alpha},\chi_{\alpha}') + \beta(\bar{j}_{\alpha},\bar{j}_{\alpha}). \end{split}$$

But the defining condition for an α -characteristic element guarantees that $i_{\alpha}(\beta(\bar{j}_{\alpha}, \chi'_{\alpha})T_{\alpha}\beta(\chi'_{\alpha}, \bar{j}_{\alpha})) = i_{\alpha}(\beta(\bar{j}_{\alpha}, \bar{j}_{\alpha}))$. Hence, $\beta(\chi'_{\alpha}, \bar{j}_{\alpha}) + \beta(\bar{j}_{\alpha}, \chi'_{\alpha}) + \beta(\bar{j}_{\alpha}, \chi'_{\alpha}) = K_{\alpha}$, which proves the lemma.

Hence, the value of $\beta(\chi_{\alpha}, \chi_{\alpha})$ in Λ/K_{α} is an invariant of the isomorphism class of (H, β) . This gives a function Ψ_{α} : $M(\Lambda, -) \rightarrow \Delta_{\alpha}$. The same proof as that of Lemma II.2 gives

LEMMA 2. Ψ_{α} induces a homomorphism Ψ_{α} : $W(\Lambda)/W^{ev}(\Lambda) \rightarrow \Delta_{\alpha}$.

We will now describe the group Δ_{α} . If G is an abelian group with involution, let

$$\tilde{G} = \{g \in G \mid g = \bar{g}\}$$

and

$$H^{\pm}(G) = \{g \in G \mid g = \pm \bar{g}\} / \{g \pm \bar{g}, g \in G\}.$$

Let Y_{α} be the collection of double cosets $N_{\alpha} \setminus \pi/N_{\alpha}$. The involution $x \to x^{-1}$ acts in the natural way on Y_{α} , hence on $Z/2(Y_{\alpha})$.

LEMMA 3. Let $\bar{K}_{\alpha} \subset \tilde{\Lambda}$ be defined by $\bar{K}_{\alpha} = \{j_{\alpha} + \bar{j}_{\alpha}, j_{\alpha} \in J_{\alpha}\}$. Then there is an exact sequence

$$0 \to \widetilde{Z/2(Y_{\alpha})} \to \tilde{\Lambda}/\bar{K}_{\alpha} \to Z/2(X(\pi)) \to 0.$$

Moreover, the extension is given by $2 \cdot g = \langle g \rangle$, where $g \in X(\pi)$ and $\langle g \rangle$ denotes the double coset containing g.

Proof. First, we have the natural projection

$$\tilde{\Lambda}/\bar{K}_{\alpha} \to \tilde{\Lambda}/J_{\alpha} + \bar{J}_{\alpha} \cong \widetilde{Z}/2(\widetilde{Y_{\alpha}}).$$

The kernel of this map is

$$\widetilde{J_{\alpha}+\bar{J}_{\alpha}}/\{j_{\alpha}+\bar{j}_{\alpha}\}\cong H^+(J_{\alpha}+\bar{J}_{\alpha}).$$

But this can be evaluated by considering the long exact homology sequence associated to the short exact sequence of groups with involution

$$0 \to J_{\alpha} + \bar{J}_{\alpha} \to \Lambda \to \Lambda/J_{\alpha} + \bar{J}_{\alpha} \to 0.$$

For, we obtain

$$H^{-}(\Lambda) \to H^{-}(\Lambda/J_{\alpha} + \bar{J}_{\alpha}) \to H^{+}(J_{\alpha} + \bar{J}_{\alpha}) \to H^{+}(\Lambda) \to H^{+}(\Lambda/J_{\alpha} + \bar{J}_{\alpha})$$

and $H^{-}(\Lambda) = 0$, $H^{-}(\Lambda/J_{\alpha} + \overline{J}_{\alpha}) \cong H^{-}(\mathbb{Z}/2(Y_{\alpha})) \cong \mathbb{Z}/2(\mathbb{Z}_{\alpha})$, where $\mathbb{Z}_{\alpha} = \{y \in Y_{\alpha} \mid y = \overline{y}\}, H^{+}(\Lambda) \cong \mathbb{Z}/2(\mathbb{X}(\pi))$, and $H^{+}(\Lambda/J_{\alpha} + \overline{J}_{\alpha}) \cong \mathbb{Z}/2(\mathbb{Z}_{\alpha})$.

Here the map $Z/2(X(\pi)) \to Z/2(Z_{\alpha})$ is the obvious one, taking $g \in X(\pi)$ to $\langle g \rangle$, the double coset containing g. Since $H^+(J_{\alpha} + \bar{J}_{\alpha})$ is a Z/2-vector space, $H^+(J_{\alpha} + \bar{J}_{\alpha}) \cong Z/2(Z_{\alpha}) \oplus L$, where $L = \ker (Z/2(X(\pi)) \to Z/2(Z_{\alpha}))$.

So far, we have an exact sequence

$$0 \to Z/2(Z_{\alpha}) \oplus L \to \overline{\Lambda}/\overline{K_{\alpha}} \to \widetilde{Z/2(Y_{\alpha})}.$$

We now note that for $\lambda \in \overline{\Lambda}$, $2\lambda \in \widetilde{J_{\alpha} + J_{\alpha}}$, and furthermore it lies in

$$\ker (H^+(J_{\alpha} + \overline{J}_{\alpha}) \to H^+(\Lambda)).$$

Hence, in the exact sequence above, 2λ lies in $Z/2(Z_{\alpha})$. We conclude that L is a direct summand of $\tilde{\Lambda}/\bar{K}_{\alpha}$, and we may rewrite our exact sequence as

$$0 \to \mathbb{Z}/2(\mathbb{Z}_{\alpha}) \to \tilde{\Lambda}/\bar{K}_{\alpha} \to \mathbb{Z}/2(\mathbb{Y}_{\alpha}) \oplus L \to 0.$$

Also, $\overline{Z/2(Y_{\alpha})} \cong Z/2(Z_{\alpha}) \oplus E$, where $E = \{x + \bar{x} \mid x \in Y_{\alpha}\}$. Note $2(x + \bar{x}) = 2x + 2\bar{x} \in \bar{K}_{\alpha}$, so E is a direct summand of $\bar{\Lambda}/\bar{K}_{\alpha}$, and we obtain

$$0 \to Z/2(Z_{\alpha}) \oplus E \to \tilde{\Lambda}/\tilde{K}_{\alpha} \to Z/2(Z_{\alpha}) \oplus L \to 0.$$

Observing that $Z/2(Z_{\alpha}) \oplus E \cong \overline{Z/2(Y_{\alpha})}$ and $Z/2(Z_{\alpha}) \oplus L \cong Z/2(X(\pi))$, we have the promised exact sequence.

A moment's reflection shows that the map

$$\tilde{\Lambda}/\bar{K}_{\alpha} \to Z/2(X(\pi))$$

can be identified with the projection

$$\tilde{\Lambda}/\bar{K}_{\alpha} \to \tilde{\Lambda}/\{x+\bar{x}, x \in \Lambda\} \cong \mathbb{Z}/2(X(\pi))$$

and that the generators for $\widetilde{Z/2(Y_{\alpha})}$ are all of the form $x + \bar{x}$, $x \in \Lambda$. Thus, for $\langle g \rangle \in Z/2(Z_{\alpha}) \subseteq \widetilde{Z/2(Y_{\alpha})}$, $\langle g \rangle$ represents the element $g + \bar{g} \in \bar{\Lambda}$. If $g \in X(\pi)$, $\langle g \rangle$ represents $2g \in \Lambda$. This gives the statement about the extension.

We continue the analysis of Δ_{α} . Let \underline{L}_{α} denote the subgroup of $\hat{\Lambda}$ generated by all elements of the form $\overline{j}_{\alpha} x j_{\alpha}$, where $x \in \tilde{\Lambda}$, $j_{\alpha} \in J_{\alpha}$. Let $C_{\alpha}(\pi)$ denote the set of N_{α} -conjugacy classes of involutions in π , i.e., the set of orbits of $X(\pi)$ under the action of N_{α} by conjugation. Note that each N_{α} -conjugacy class is contained in a unique double coset $N_{\alpha} \cdot x \cdot N_{\alpha}$.

LEMMA 4. There is an exact sequence

$$0 \to \widetilde{Z/2(Y_{\alpha})} \to \tilde{\Lambda}/\bar{K_{\alpha}} + L_{\alpha} \to Z/2(C_{\alpha}(\pi)) \to 0$$

Moreover, the extension is given by $2 \cdot x = \langle x \rangle$, where $x \in C_{\alpha}(\pi)$ and $\langle x \rangle$ denotes the double coset in $\overline{Z/2(Y_{\alpha})}$ containing X.

Proof. Note first that

$$(\overline{j_{\alpha}} + \overline{j'_{\alpha}}) x (j_{\alpha} + j'_{\alpha}) = \overline{j_{\alpha}} x j_{\alpha} + \overline{j'_{\alpha}} x j'_{\alpha} + \overline{j_{\alpha}} x j'_{\alpha} + \overline{j'_{\alpha}} x j_{\alpha}$$
$$= \overline{j_{\alpha}} x j_{\alpha} + \overline{j'_{\alpha}} x j'_{\alpha} + \kappa,$$

where $\kappa \in \bar{K}_{\alpha}$, so to calculate the image of L_{α} in $\bar{\Lambda}/\bar{K}_{\alpha}$, it suffices to consider the subgroup generated by $\bar{j}_{\alpha}xj_{\alpha}$, where j_{α} runs over a set of generators for J_{α} as an abelian group. By Lemma I.10, such a set of generators is given by elements of the form 2g and g(1-s), where $s \in N_{\alpha}$. Note that if $x = \lambda + \bar{\lambda}$, then $\bar{j}_{\alpha}xj_{\alpha} = \bar{j}_{\alpha}\lambda j_{\alpha} + \bar{j}_{\alpha}\lambda j_{\alpha} \in \bar{K}_{\alpha}$, so we need only consider generators $(1-s)gTg^{-1}(1-s^{-1})$, where $T^2 = e$ and $s \in N_{\alpha}$, and 4T, where $T^2 = e$. $4T \in \bar{K}_{\alpha}$, so only generators of the first type need be considered. But $(gTg^{-1})^2 = e$ if $T^2 = e$, so we need only consider generators of the form $(1-s)T(1-s^{-1})$, $s \in N_{\alpha}$, $T^2 = e$.

Multiplying out, this generator is equal to $T + sTs^{-1} - sT - Ts^{-1}$. But in $\widetilde{Z/2(Y_{\alpha})}$, $sT + Ts^{-1}$ is equal to the generator $\langle T \rangle$, i.e., the double coset $N_{\alpha} \cdot T \cdot N_{\alpha}$, since $s \in N_{\alpha}$, which is also represented by 2T in $\tilde{\Lambda}$. Thus, $T + sTs^{-1} = 2T$, and we find that $T = sTs^{-1}$, hence the result. The assertion about the extension follows from Lemma 3.

We now consider a new homomorphism μ from $\bar{\Lambda}$ to $Z/2(X(\pi)) \cong I(\Lambda)$,

defined by

$$\mu(\mathbf{x}) = i(\mathbf{x}) + i(\mathbf{x}T_{\alpha}\mathbf{x})$$

(Recall that $i: \tilde{\Lambda} \to I(\Lambda)$ is the usual projection.) Note that $\tilde{\Lambda}$ is filtered by $\tilde{\Lambda}^{(s)} = \tilde{\Lambda} \cap J^{(s)}$, where $J^{(s)}$ denotes the sth power of the augmentation ideal J. From Proposition I.8, we know that

$$\bigcap_{s} J^{(s)} = 0, \quad \text{so} \quad \bigcap_{s} \tilde{\Lambda}^{(s)} = 0.$$

 $I(\Lambda)$ inherits this filtration via the map *i*. We now wish to describe the image of μ in $I(\Lambda)$.

We first point out the splitting

$$I(\Lambda) = Z/2(X(\pi)) \cong Z/2(X_{\alpha}) \bigoplus_{\alpha' \neq \alpha} Z/2(X_{\alpha'}).$$

 $Z/2(X_{\alpha})$ and $\bigoplus_{\alpha'\neq\alpha} Z/2(X_{\alpha'})$ admit natural augmentations $\varepsilon_1: Z/2(X_{\alpha}) \rightarrow Z/2$ and

$$\varepsilon_2: \bigoplus_{\alpha' \neq \alpha} Z/2(X_{\alpha'}) \to Z/2,$$

by

$$\varepsilon_1(\Sigma \alpha_s S T_\alpha S^{-1}) = \Sigma \alpha_s$$
$$\varepsilon_2(\Sigma \alpha_s x) = \Sigma \alpha_s.$$

LEMMA 5. The image of μ consists of all $(x, y) \in \mathbb{Z}/2(X_{\alpha}) \bigoplus_{\alpha' \neq \alpha} \mathbb{Z}/2(X_{\alpha'})$ such that $\varepsilon_1(x) = \varepsilon_2(y)$.

Proof. It is clear that the image of μ lies in the subgroup described above. Also, if π' is the projection from $I(\Lambda)$ to $\bigoplus_{\alpha' \neq \alpha} Z/2(X_{\alpha'}), \pi'\mu(x) = \pi'(i(x)), x \in \tilde{\Lambda}$, since $i(xT_{\alpha}x) \in Z/2(x_{\alpha})$. Therefore, we have shown that the composite $\pi' \circ \mu$ is surjective, and it only remains to show that any element in ker (ε_1) is in the image of μ . But $Z/2(X_{\alpha})$ inherits the augmentation filtration from

$$\ker\left(\tilde{\Lambda}\xrightarrow{\pi'\cdot\mu}\bigoplus_{\alpha'\neq\alpha} Z/2(X_{\alpha'})\right)^{(\text{defn.})}\tilde{\Lambda}',$$

 $\tilde{\Lambda}^{r(s)} = \tilde{\Lambda}' \cap J^{(s)}$. Now, if $x \in \tilde{\Lambda}^{r(s)}$, then $i(x) \equiv \mu(x) \pmod{Z/2(X_{\alpha})^{(2s)}}$, since if $x \in \tilde{\Lambda}^{r(s)}$, then $xT_{\alpha}x \in \tilde{\Lambda}^{r(2s)}$. Consequently, given an element $x \in Z/2(X_{\alpha})^{(s)}$, we may find an element \tilde{x} in $\tilde{\Lambda}^{r(s)}$ so that $\mu(\tilde{x}) \equiv x \pmod{Z/2(X_{\alpha})^{(2s)}}$. Since $\bigcap Z/2(X_{\alpha})^{(s)} = 0$, the lemma is proved.

Observe that there is a map $\bar{\mu}$ which makes the following diagram commute:

(The right-hand vertical arrow is the evident projection.) For, μ factors through $\Lambda \bigotimes Z/2$, since $Z/2(C_{\alpha}(\pi))$ is a Z/2-vector space, and by Lemma 4,

$$\tilde{\Lambda}/\bar{K}_{\alpha} + L_{\alpha} \bigotimes_{z} Z/2 \cong Z/2(C_{\alpha}(\pi)) \oplus Z/2(\Sigma_{\alpha}'),$$

where Σ'_{α} is the collection of double cosets $N_{\alpha} \cdot x \cdot N_{\alpha}$ which do not contain an involution. Thus, we have three types of basis elements.

I. $[x] \in C_{\alpha}(\pi)$, which is represented by the element $x \in \tilde{\Lambda}$.

II. $\langle x \rangle + \langle x^{-1} \rangle$, where $\langle x \rangle$ denotes the double coset $N_{\alpha} x N_{\alpha}$, with $N_{\alpha} x N_{\alpha} \neq N_{\alpha} x^{-1} N_{\alpha}$. This is represented by $x + x^{-1} \in \tilde{\Lambda}$.

III. $\langle x \rangle$, a double coset $N_{\alpha} x N_{\alpha}$ with $N_{\alpha} x N_{\alpha} = N_{\alpha} x^{-1} N_{\alpha}$, but so that $N_{\alpha} x N_{\alpha}$ does not contain an involution. This is represented by $x + x^{-1} \in \tilde{\Lambda}$.

To see that the map $\bar{\mu}$ exists, we must show

(i) If $x' = SxS^{-1}$, $x^2 = e$, $S \in N_{\alpha}$, then $\mu(x) = \mu(x')$. (ii) If $x' = S_1 x S_2$, $S_1, S_2 \in N_{\alpha}$, then $\mu(x + x^{-1}) = \mu(x' + x'^{-1})$.

To see (i), note that

$$\mu(x) = [x] + [xT_{\alpha}x] = [SxS^{-1}] + [SxT_{\alpha}xS^{-1}]$$

= [SxS^{-1}] + [SxS^{-1}T_{\alpha}SxS^{-1}] = [x'] + [x'T_{\alpha}x'] = \mu(x'),

where $S \in N_{\alpha}$.

For (ii),

$$\mu(\mathbf{x} + \mathbf{x}^{-1}) = [\mathbf{x}T_{\alpha}\mathbf{x}^{-1}] + [\mathbf{x}^{-1}T_{\alpha}\mathbf{x}] = [\mathbf{x}S_{2}T_{\alpha}S_{2}^{-1}\mathbf{x}^{-1}] + [S_{2}^{-1}\mathbf{x}^{-1}T_{\alpha}\mathbf{x}S_{2}]$$

= $[S_{1}\mathbf{x}S_{2}T_{\alpha}S_{2}^{-1}\mathbf{x}^{-1}S_{2}^{-1}] + [S_{2}^{-1}\mathbf{x}^{-1}S_{1}^{-1}T_{\alpha}S_{1}\mathbf{x}S_{2}]$
= $[\mathbf{x}'T_{\alpha}\mathbf{x}'^{-1}] + [\mathbf{x}'^{-1}T_{\alpha}\mathbf{x}'] = \mu(\mathbf{x}' + \mathbf{x}'^{-1}).$

Thus, $\bar{\mu}$ exists.

We now want to determine the kernel of $\bar{\mu}$. Lemma 4 can be inter-

preted as saying that there is a direct sum splitting

$$\tilde{\Lambda}/\bar{K}_{\alpha} + L_{\alpha} \cong \widetilde{Z/2(\Sigma'_{\alpha})} \oplus \Omega_{\alpha}$$

where $\Omega_{\alpha} = Z/4(C_{\alpha}(\pi))/R$, and R is the subgroup generated by elements of the form $2([x_1]+[x_2])$, where x_1 and x_2 belong to the same double coset in $N_{\alpha} \setminus \pi/N_{\alpha}$. We will now calculate the kernel of $\bar{\mu}$ by first calculating ker $(\bar{\mu}) \cap \Omega_{\alpha}$, then ker $(\bar{\mu})/(\ker(\bar{\mu}) \cap \Omega_{\alpha})$, and finally the extension.

In what follows, let $\Sigma_{\alpha} \subseteq N_{\alpha} \setminus \pi/N_{\alpha}$ consist of those double cosets containing an involution, and let $\langle T_{\alpha} \rangle \in \Sigma_{\alpha}$ denote the double coset $N_{\alpha}T_{\alpha}N_{\alpha}$.

Since the range of $\bar{\mu}$ is a Z/2-vector space, $2 \cdot \Omega_{\alpha} \subseteq \ker(\bar{\mu} \mid \Omega_{\alpha})$. $\Omega_{\alpha}/2\Omega_{\alpha} \cong Z/2(C_{\alpha}(\pi))$, and we consider the induced map $\bar{\mu}: Z/2(C_{\alpha}(\pi)) \rightarrow Z/2(C_{\alpha}(\pi))$.

Noting as before that for $x \in Z/2(C_{\alpha}(\pi))^{(s)}$, $i(x) \equiv \bar{\mu}(x)$ (mod $Z/2(C_{\alpha}(\pi))^{(2s)}$), we find that $\bar{\mu}$ restricted to $Z/2(C_{\alpha}(\pi))^{(1)}$ is an isomorphism and that $[T_{\alpha}]$ is in the kernel of $\bar{\mu}$, hence that $\ker(\bar{\mu}) \cap \Omega_{\alpha} = Z/4[T_{\alpha}] + Z/2(\Sigma_{\alpha} - (T_{\alpha}))$. Further, given any element $z \in Z/2(\overline{\Sigma}'_{\alpha})$, there is by the above remark an element $y \in \Omega_{\alpha}$ with $\bar{\mu}(z) = \bar{\mu}(y)$ (since $\bar{\mu}(z) \in Z/2(C_{\alpha}(\pi))^{(1)}$).

Thus, we have an exact sequence

$$0 \to Z/4[T_{\alpha}] + Z/2(\Sigma_{\alpha} - \langle T_{\alpha} \rangle) \to \ker(\tilde{\mu}) \to \widetilde{Z/2(\Sigma_{\alpha}')} \to 0$$

and standard arguments show that the extension is entirely determined by the choice of y, which amounts to a homomorphism

$$\widetilde{Z/2(\Sigma'_{\alpha})} \to Z/2(C_{\alpha}(\pi))^{(1)},$$

namely,

$$\widetilde{Z/2(\Sigma'_{\alpha})} \xrightarrow{\vec{\mu}} Z/2(C_{\alpha}(\pi))^{(1)} \xrightarrow{\vec{\mu}^{-1}} Z/2(C_{\alpha}(\pi))^{(1)}$$

where $\tilde{\mu}^{-1}$ is the inverse to $\bar{\mu}$ restricted to $Z/2(C_{\alpha}(\pi))^{(1)}$. The composite may be expressed as

$$\tilde{\mu}^1 \circ \tilde{\mu}(\langle x \rangle + \langle x^{-1} \rangle) = \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})],$$

with $\nu_i(x)$ defined inductively by $\nu_1(x) = xT_{\alpha}x^{-1}$, $\nu_i(x) = \nu_{i-1}(x)T_{\alpha}\nu_{i-1}(x)^{-1}$. Here the sum is finite since π is a 2-group, hence is solvable. To check that the formula above is actually correct for $\tilde{\mu}^{-1} \circ \mu$, we need only check that

$$\tilde{\mu}\left(\sum_{j=1}^{\infty} \left[\nu_{j}(x)\right] + \left[\nu_{j}(x^{-1})\right]\right) = xT_{\alpha}x^{-1} + x^{-1}T_{\alpha}x = \nu_{1}(x) + \nu_{1}(x^{-1}).$$

But,

$$\begin{split} \tilde{\mu} \bigg(\sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] \bigg) \\ &= \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] + \bigg(\sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] \bigg) \\ &\cdot (T_{\alpha}) \cdot \bigg(\sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] \bigg) \\ &= \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] + \sum_{j=1}^{\infty} [\nu_j(x) T_{\alpha} \nu_j(x)^{-1}] \\ &+ [\nu_j(x^{-1}) T_{\alpha} \nu_j(x^{-1})^{-1}] \\ &= \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})] + \sum_{j=1}^{\infty} [\nu_{j+1}(x)] + [\nu_{j+1}(x^{-1})] \\ &= \nu_1(x) + \nu_1(x^{-1}). \end{split}$$

What we have shown is

PROPOSITION 6. There is an exact sequence

$$0 \to Z/4[T_{\alpha}] + Z/2(\Sigma_{\alpha} - \langle T_{\alpha} \rangle) \to \ker(\bar{\mu}) \to \overline{Z/2(\Sigma_{\alpha}')} \to 0$$

with extension given by $2(\langle x \rangle + \langle x^{-1} \rangle) = \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})], \nu_j$ defined as above. Alternatively, $\ker(\bar{\mu}) \cong (Z/4[T_{\alpha}] + Z/2(\Sigma_{\alpha} - \langle T_{\alpha} \rangle) + Z/4(\Sigma'_{\alpha}))/R$, where R is generated by elements of the form $2(\langle x \rangle + \langle x^{-1} \rangle) - \sum_{j=1}^{\infty} [\nu_j(x)] + [\nu_j(x^{-1})],$ and $\langle x \rangle + \langle x^{-1} \rangle$ is a typical generator in $Z/2(\Sigma'_{\alpha})$.

Remark. We will not alter the isomorphism class of the group by changing the extension by an automorphism of the kernel. Hence, to simplify the calculation we could rewrite the extension as $2(\langle x \rangle + \langle x^{-1} \rangle) = [xT_{\alpha}x^{-1}] + [x^{-1}T_{\alpha}x]$. Of course, this would rename the generators.

We are now prepared to compute Δ_{α} . For, $\Delta_{\alpha} \cong \tilde{\Lambda}/K_{\alpha}$, and we have a commuting diagram

where $W_{\alpha}(\pi) = X_{\alpha} \cup \bigcup_{\alpha' \neq \alpha} (X_{\alpha'}/N_{\alpha}), X_{\alpha'}/N_{\alpha}$ denoting the orbit space of X_{α} , by the conjugation action by N_{α} , and $\bar{K}_{\alpha} + L_{\alpha}/K_{\alpha}$ is readily seen to be isomorphic to Γ (which is defined by the exactness of the lower row) since $K_{\alpha} = \ker(\bar{\mu} \mid L_{\alpha} + \bar{K}_{\alpha})$. The map

$$X_{\alpha} \cup \bigcup_{\alpha' \neq \alpha} (X_{\alpha'}/N_{\alpha}) \to C_{\alpha}(\pi) = \bigcup_{\alpha'} (X_{\alpha'}/N_{\alpha})$$

is the identity on X_{α}/N_{α} and projection on X_{α} . Using the presentation for ker $(\bar{\mu})$ provided by Proposition 6, we obtain the following description of Δ_{α} .

PROPOSITION 7. $\Delta_{\alpha} \cong (\ker(\bar{\mu}) + Z/4(W_{\alpha}(\pi)))/S$, where S is generated by elements of the form $2g - \langle g \rangle$, where $g^2 = e$, $2g \in Z/4(W_{\alpha}(\pi))$, and $\langle g \rangle$ represents the element $N_{\alpha}gN_{\alpha} \in \Sigma_{\alpha}$, so $\langle g \rangle \in Z/4[T_{\alpha}] + Z/2(\Sigma_{\alpha} - \langle T_{\alpha} \rangle) \subseteq \ker(\bar{\mu})$.

We have now completed the description of the groups Δ_{α} and $\Gamma_{\alpha,\alpha'}$.

IV. The image of $W(\Lambda)$ in $\bigoplus_{\alpha \neq c} \Delta_{\alpha} + \bigoplus_{\alpha \neq \alpha'} \Gamma_{\alpha,\alpha'}$

In Section II, we described the image of $W(\Lambda)$ in $\bigoplus_{\alpha \neq \alpha'} \Gamma_{\alpha,\alpha'}$ and characterized the kernel of $\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}$: $W(\Lambda) \rightarrow \bigoplus_{\alpha \neq \alpha'} \Gamma_{\alpha,\alpha'}$. Denote this kernel by $\overline{W(\Lambda)}$. In this section, we will identify $\left(\bigoplus_{\alpha \neq \alpha} \Psi_{\alpha}\right)(\overline{W}(\Lambda)) \subseteq \bigoplus_{\alpha \neq \alpha} \Delta_{\alpha}$, and describe the extension in the resulting exact sequence

$$0 \to \left(\bigoplus_{\alpha \neq \epsilon} \Psi_{\alpha}\right) (\bar{W}(\Lambda)) \to \operatorname{im} \left(\bigoplus_{\alpha \neq \epsilon} \Psi_{\alpha} \bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}\right)$$
$$\to \operatorname{im} \left(\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}\right) \to 0. \tag{(*)}$$

LEMMA 1. Let j be in the augmentation ideal J, so $T_{\alpha} + j$ is a unit, and suppose $j = \overline{j}$, with $i_{\alpha}(j) = 0 \forall \alpha' \neq \alpha$. Then $(T_{\alpha} + j)^{-1}$ is of the form $T_{\alpha} + \lambda + \overline{\lambda}$ if and only if $i_{\alpha}(j) = i_{\alpha}(jT_{\alpha}j)$.

Proof. $i_{\alpha}(j) = i_{\alpha}(jT_{\alpha}j)$ implies that $j + jT_{\alpha}j$ is of the form $\lambda + \overline{\lambda}$, since it is easily verified that $(T_{\alpha} + j)^{-1}$ satisfies $i_{\alpha'}((T_{\alpha} + j)^{-1}) = 0 \quad \forall \alpha' \neq \alpha$. Since Λ is a complete local ring, $(T_{\alpha} + j)^{-1}$ may be computed as a power series, namely,

$$(T_{\alpha}+j)^{-1} = \sum_{i=0}^{\infty} (T_{\alpha}j)^{i}T_{\alpha} = T_{\alpha} + \sum_{i=0}^{\infty} (T_{\alpha}j)^{i}T_{\alpha}(j+jT_{\alpha}j)T_{\alpha}(jT_{\alpha})^{i}$$
$$= T_{\alpha} + \lambda' + \bar{\lambda}',$$

since $j + jT_{\alpha}j$ is of the form $\lambda + \overline{\lambda}$.

Conversely, suppose $(T_{\alpha} + j)^{-1}$ is of the form $T_{\alpha} + \lambda + \overline{\lambda}$. We must show that $j = (T_{\alpha} + \lambda + \overline{\lambda})^{-1} - T_{\alpha}$ is even. Let $\nu = \lambda + \overline{\lambda}$, and note that

$$\left(\sum_{i=0}^{\infty} x_i\right) z\left(\sum_{i=0}^{\infty} \bar{x}_i\right) = \sum_{i=0}^{\infty} x_i z \bar{x}_i + \alpha + \bar{\alpha},$$

for some $\alpha \in \Lambda$, with $z = \overline{z}$, $x_i \in \Lambda$.

$$(T_{\alpha}+\nu)^{-1}=\sum_{i=0}^{\infty}(T_{\alpha}\nu)^{i}T_{\alpha}, \qquad \text{so } j=\sum_{i=1}^{\infty}(T_{\alpha}\nu)^{i}T_{\alpha},$$

and

$$j + jT_{\alpha}j = \sum_{i=1}^{\infty} (T_{\alpha}\nu)^{i}T_{\alpha} + \sum_{i=1}^{\infty} (T_{\alpha}\nu)^{i}T_{\alpha}(\nu T_{\alpha})^{i} + \xi + \bar{\xi}$$
$$= \sum_{i=1}^{\infty} (T_{\alpha}\nu)^{i}T_{\alpha} + \sum_{j=1}^{\infty} (T_{\alpha}\nu)^{2j}T_{\alpha} + \xi + \bar{\xi} = \sum_{i=1}^{\infty} (T_{\alpha}\nu)^{2i-1}T_{\alpha} + \xi' + \bar{\xi}'.$$

But $(T_{\alpha}\nu)^{2i-1}T_{\alpha} = (T_{\alpha}\nu)^{i-1}T_{\alpha}\nu T_{\alpha}(\nu T_{\alpha})^{i-1}$, which is even since ν is.

PROPOSITION 2. The homomorphism $\bigoplus_{\alpha \neq e} \Psi_{\alpha}$ restricted to $\overline{W(\Lambda)}$ surjects onto the direct sum $\bigoplus_{\alpha \neq e} M_{\alpha}$, where $M_{\alpha} \subseteq \Delta_{\alpha}$ is the kernel of the map $\bar{\mu}: \Delta_{\alpha} \to Z/2(W_{\alpha}(\pi)).$

Proof. By Lemma II.6, if $(H, \beta) \in \overline{W(\Lambda)}$, there is a Hermitian space equivalent to (H, β) of the form $\langle u_1 \rangle \perp \langle u_2 \rangle \perp \cdots \perp \langle u_i \rangle$ where $u_s = T_{\alpha_s} + \lambda_s + \overline{\lambda}_s$, for some $\alpha_s \in C(\pi)$ and $\lambda_s \in \Lambda$. Therefore, since $\varphi_{\alpha'}(u_s) = 0$ for $\alpha' \neq \alpha_s$, we need only consider the image of Hermitian spaces of the form $\langle T_{\alpha} + \lambda + \overline{\lambda} \rangle$ in Δ_{α} , and the total image of $W(\Lambda)$ will be the direct sum of the images in the various factors.

The previous lemma shows that if x satisfies $x = T_{\alpha} + j_{\beta} \quad j = \overline{j}, \quad j \in J$, and $i_{\alpha}(j) = 0 \quad \forall \alpha' \neq \alpha$, then $x^{-1} \in M_{\alpha}$ if and only if x is of the form $T_{\alpha} + \lambda + \overline{\lambda}$. Consequently, we must show that

$$\Psi_{\alpha}(\langle T_{\alpha} + \lambda + \bar{\lambda} \rangle) = (T_{\alpha} + \lambda + \bar{\lambda})^{-1}.$$

Consider the Hermitian space $\langle T_{\alpha} + \lambda + \overline{\lambda} \rangle$, with basis element *e*, so $\beta(e, e) = T_{\alpha} + \lambda + \overline{\lambda}$. Then $\varphi_{\alpha}(e) = T_{\alpha}$, so a lifting $\tilde{\varphi}_{\alpha}$ may be chosen by $\tilde{\varphi}_{\alpha}(e) = 1$. Therefore, the α -characteristic element may be taken to be

$$\chi_{\alpha} = (T_{\alpha} + \lambda + \bar{\lambda})^{-1} e,$$

and

$$\beta(\chi_{\alpha},\chi_{\alpha}) = (T_{\alpha} + \lambda + \bar{\lambda})^{-1}(T_{\alpha} + \lambda + \bar{\lambda})(T_{\alpha} + \lambda + \bar{\lambda})^{-1} = (T_{\alpha} + \lambda + \bar{\lambda})^{-1}$$

concluding the proof.

To completely describe $\operatorname{im}\left(\bigoplus_{\alpha \neq e} \Psi_{\alpha} \bigoplus_{\alpha \neq a'} \sigma_{\alpha,a'}\right)$ we must analyze the extension (*). Let $P(\pi) = \bigoplus_{\alpha \neq e} M_{\alpha}$, and $Q(\pi) = \bigoplus_{\alpha \neq e} \Delta_{\alpha}$, so $P(\pi) \subseteq Q(\pi)$. The homomorphism $\bigoplus_{\alpha \neq e} \Psi_{\alpha} \bigoplus_{\alpha \neq a'} \sigma_{\alpha,a'}$ takes values in $Q(\pi) \oplus$

The homomorphism $\bigoplus_{\alpha \neq a} \Psi_{\alpha} \bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}$ takes values in $Q(\pi) \bigoplus$ im $\left(\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'} \right)$, and we have that the image of the kernel of $\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}$ lies in $P(\pi) \bigoplus (0)$. Therefore, the extension (*) is completely determined by a homomorphism

$$p: \operatorname{im}\left(\bigoplus_{\alpha\neq\alpha'}\sigma_{\alpha,\alpha'}\right) \to Q(\pi)/P(\pi) + Q(\pi)_2,$$

where $Q(\pi)_2 = \{x \in Q(\pi) \mid 2x = 0\}$, defined as follows: given an element $z \in \operatorname{im}\left(\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}\right)$, pick an element x of $W(\Lambda)$ with $\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}(x) = z$, and compute the image of $\bigoplus_{\alpha \neq \epsilon} \Psi_{\alpha}(x)$ in $Q(\pi)/P(\pi) + Q(\pi)_2$.

Proposition III.7 shows that $\frac{Q(\pi)}{P(\pi) + Q(\pi)_2} = \bigoplus_{\alpha \neq \epsilon} D_{\alpha}$, where $D_{\alpha} \cong \frac{Z/2(\Sigma_{\alpha})/\langle T_{\alpha} \rangle}{R}$, and R is generated by all elements of the form $\sum_{i=0}^{\infty} \nu^i(x) + \nu^i(x^{-1})$, $x \in \pi$, and we recall that $\nu(x) = xT_{\alpha}x^{-1}$, ν^i denotes the *i*th iterate of ν . Note that as an element in D_{α} , $\nu^0(x) + \nu^0(x^{-1}) = x + x^{-1}$ is zero.

Before describing the homomorphism p, we must analyze D_{α} more carefully.

Claim. Let \tilde{R} be the subgroup of $Z/2(\Sigma_{\alpha})/\langle T_{\alpha} \rangle$ generated by all elements of the form $\sum_{i=0}^{\infty} \nu^{i}(x)$, and x is an element of the form $\lambda + \bar{\lambda}$. (To apply ν to an element x of Λ , set $\nu(x) = xT_{\alpha}\bar{x}$.) Then $\tilde{R} = R$.

To see this, we observe that $\nu\left(\sum_{i=1}^{k} x_i\right) = \sum_{i=1}^{k} \nu(x_i) + y$, where y is even, since

$$\nu\left(\sum_{i=1}^{k} x_{i}\right) = \left(\sum_{i=1}^{k} x_{i}\right) T_{\alpha}\left(\sum_{i=1}^{k} \bar{x}_{i}\right)$$
$$= \sum_{i=1}^{k} x_{i} T_{\alpha} \bar{x}_{i} + \sum_{i>j} x_{i} T_{\alpha} \bar{x}_{j} + x_{j} T_{\alpha} \bar{x}_{i} = \sum_{i=1}^{k} \nu(x_{i}) + y.$$

DEFINITION 3. A collection of elements of π , $\{S_{k,j}\}_{\substack{k=0,...,n \ j=1,...,m(k)}}$ is an R-

approximation of order n to x if

$$\sum_{i=0}^{\infty} \nu^{i}(x) = \sum_{k=0}^{n} \sum_{l=0}^{n-k} \sum_{j=1}^{m(k)} \nu^{l}(S_{k,j}) + \nu^{l}(S_{k,j}^{-1}).$$

We say a sequence of R-approximations $\{S_{k,j}^{(t)}\}$ of order t, t = 1, 2, ... is compatible if $S_{k,j}^{(t)} = S_{k,j}^{(w)}$ for $k \le t$, w.

The remark preceding the definition allows us to construct a compatible sequence of R-approximations to x, if x is even. For, suppose we are given an R-approximation

$${S_{k,j}^{(n)}}_{k=0,...,n}$$

 $j=1,...,m(k)$

to x of order n. Then

$$\nu^{n}(x) = \sum_{k=0}^{n} \sum_{j=1}^{m(k)} \nu^{n-k}(S_{k,j}^{(n)}) + \nu^{n-k}(S_{k,j}^{(n)-1}).$$

Therefore

$$\nu^{n+1}(x) = \nu^{n}(x)T_{\alpha}\overline{\nu^{n}(x)}$$
$$= \sum_{k=0}^{n} \sum_{j=1}^{m(k)} \nu^{n+1-k}(S_{k,j}^{(n)}) + \nu^{n+1-k}(S_{k,j}^{(n)-1}) + y$$

where y is even, say $y = \sum_{s=1}^{p} S_s + S_s^{-1}$. Then if we set $S_{k,j}^{(n+1)} = S_{k,j}^{(n)}$ for k N+1, and $S_{n+1,j}^{(n+1)} = S_j$, so m(n+1) = p, we have constructed the required R-approximation.

Now, if we are given a compatible sequence of R-approximations $\{S_{k,l}^{(t)}\}$, t = 1, 2, ..., then x is in R, since

$$\sum_{i=0}^{\infty} \nu^{i}(x) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{j=1}^{m(k)} \nu^{l}(S_{k,j}) + \nu^{l}(S_{k,j}^{-1}),$$

where we may omit the superscript, since $S_{k,j}^{(t)} = S_{k,j}^{(w)}$ whenever both exist. The above sequence is a finite sum of elements in R, since $\sum_{l=0}^{\infty} \nu^{l}(S_{k,j}) + \nu^{l}(S_{k,j}^{-1}) \in R$, and since $\sum_{i=0}^{\infty} \nu^{i}(x)$ is finite. This proves the claim.

LEMMA 4. Let $x, y \in \overline{\Lambda}$. Then $\sum_{i=0}^{\infty} \nu^i (x+y) = \sum_{i=0}^{\infty} \nu^i (x) + \nu^i (y)$ in D_{α} . In particular, if $y = \lambda + \overline{\lambda}$, $\sum_{i=0}^{\infty} \nu^i (y) \in R$, so $\sum_{i=0}^{\infty} \nu^i (x+y) = \sum_{i=0}^{\infty} \nu^i (x)$.

Proof. Define e_n by

$$e_{1} = \nu(x + y) - \nu(x) - \nu(y)$$

$$e_{n} = \nu^{n}(x + y) - \nu^{n}(x) - \nu^{n}(y) - \sum_{j=1}^{n-1} \nu^{n-j}(e_{j}).$$

 e_n is even, for

$$\nu^{n-1}(x+y) = \nu^{n-1}(x) + \nu^{n-1}(y) + \sum_{j=1}^{n-1} \nu^{n-1-j}(e_j).$$

Applying ν to this, we obtain

$$\nu^{n}(x+y) = \nu(\nu^{n-1}(x+y)) = \nu(\nu^{n-1}(x) + \nu^{n-1}(y) + \sum_{j=1}^{n-1} \nu^{n-1-j}(e_j))$$
$$= \nu^{n}(x) + \nu^{n}(y) + \sum_{j=1}^{n-1} \nu^{n-j}(e_j) + \lambda,$$

where λ is even. But by definition, $e_n = \lambda$, so e_n is even. Now

$$\sum_{i=0}^{\infty} \nu^{i}(x+y) = \sum_{i=0}^{\infty} \nu^{i}(x) + \nu^{i}(y) + \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \nu^{i}(e_{j}).$$

The latter term is in R, so we have equality in D_{α} .

In order to determine p, we perform the following calculation.

LEMMA 5. Let (H, β) be the Hermitian space over Λ represented by the symmetric matrix $\begin{bmatrix} T_{\alpha} & \lambda \\ \overline{\lambda} & T_{\alpha'} \end{bmatrix}$, with basis e_1, e_2 .

Then representatives for $\Psi_{\alpha}((H,\beta))$, $\Psi_{\alpha'}((H,\beta))$, and $\sigma_{\alpha,\alpha'}((H,\beta))$ may be taken to be, respectively, $(T_{\alpha} - \lambda T_{\alpha'}\overline{\lambda})^{-1}$, $(T_{\alpha'} - \overline{\lambda} T_{\alpha}\lambda)^{-1}$, and $(T_{\alpha} - \lambda T_{\alpha'}\overline{\lambda})^{-1}(-\lambda + \lambda T_{\alpha'}\overline{\lambda}T_{\alpha}\lambda)(T_{\alpha'} - \overline{\lambda} T_{\alpha}\lambda)^{-1}$.

Proof. We compute choices for characteristic elements. Say

$$\chi_{\alpha} = x_1 e_1 + x_2 e_2, \qquad \chi_{\alpha'} = y_1 e_1 + y_2 e_2$$

Then $\beta(e_1, \chi_{\alpha}) = 1$, $\beta(e_2, \chi_{\alpha}) = 0$, $\beta(e_1, \chi_{\alpha'}) = 0$, and $\beta(e_2, \chi_{\alpha'}) = 1$, yielding the equations

$$\begin{cases} T_{\alpha}\bar{x}_1 + \lambda\bar{x}_2 = 1\\ \overline{\lambda}x_1 + T_{\alpha'}\bar{x}_2 = 0 \end{cases} \quad \text{and} \quad \begin{cases} T_{\alpha}\bar{y}_1 + \lambda\bar{y}_2 = 0\\ \overline{\lambda}y_1 + T_{\alpha'}\bar{y}_2 = 1 \end{cases}$$

which we solve and obtain

$$\chi_{\alpha} = (T_{\alpha} - \lambda T_{\alpha'} \overline{\lambda})^{-1} (e_1 - \lambda T_{\alpha'} e_2)$$
$$\chi_{\alpha'} = (T_{\alpha'} - \overline{\lambda} T_{\alpha} \lambda)^{-1} (e_2 - \overline{\lambda} T_{\alpha} e_1)$$

$$\Psi_{\alpha}((H,\beta)) = \beta(\chi_{\alpha},\chi_{\alpha})$$

= $(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}\beta(e_1 - \lambda T_{\alpha'}e_2, e_1 - \lambda T_{\alpha'}e_2)(T_{\alpha} + \lambda T_{\alpha'}\bar{\lambda})^{-1}$
= $(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}$
= $(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}$.

The other two follow similarly.

Notice also that $(-\lambda + \lambda T_{\alpha'}\bar{\lambda}T_{\alpha}\lambda) = (T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})(-T_{\alpha}\lambda) = (-\lambda T_{\alpha'}) \times (T_{\alpha'} - \bar{\lambda}T_{\alpha}\lambda)$. Hence the representative for $\sigma_{\alpha,\alpha'}(H,\beta)$ may be taken to be either $(-T_{\alpha}\lambda)(T_{\alpha'} - \bar{\lambda}T_{\alpha}\lambda)^{-1}$ or $(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}(-\lambda T_{\alpha'})$. We now expand $(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1}$ in a power series.

$$(T_{\alpha} - \lambda T_{\alpha'}\bar{\lambda})^{-1} = (1 - T_{\alpha}\lambda T_{\alpha'}\bar{\lambda})^{-1}T_{\alpha} = \sum_{i=0}^{\infty} (T_{\alpha}\lambda T_{\alpha'}\bar{\lambda})^{i}T_{\alpha'}$$

A straightforward manipulation of power series shows that this is equal to

$$T_{\alpha} + \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \nu^{i} ((T_{\alpha} \lambda T_{\alpha'} \bar{\lambda})^{j} T_{\alpha} \lambda T_{\alpha'} \bar{\lambda} T_{\alpha} (\lambda T_{\alpha'} \bar{\lambda} T_{\alpha})^{j})$$
(i)

where $\nu(x) = xT_{\alpha}\bar{x}$ as before. Lemma 4 showed that the map $x \to \sum_{i=0}^{\infty} \nu^{i}(x)$ induced a homomorphism $\omega_{\alpha} \colon I(\Lambda) \to D_{\alpha}$. Letting $\lambda_{\alpha'} \colon \Lambda \to I(\Lambda)$ be given by $\lambda_{\alpha'}(x) = xT_{\alpha}\bar{x}$, we obtain a composite homomorphism $\omega_{\alpha} \circ \lambda_{\alpha'} \colon \Lambda \to D_{\alpha}$. We claim that $\omega_{\alpha} \circ \lambda_{\alpha'}$ factors as

For, if $x \in J_{\alpha'}$, then $\lambda_{\alpha'}(x) = 0$, so $\omega_{\alpha} \circ \lambda_{\alpha'}$ vanishes on $J_{\alpha'}$. On the other hand, if $x \in \overline{J}_{\alpha}$, we have $\omega_{\alpha} \circ \lambda_{\alpha'}(x) = \omega_{\alpha}(xT_{\alpha'}\overline{x}) = \sum_{i=0}^{\infty} \nu^{i}(xT_{\alpha'}\overline{x})$. But these terms are all zero in D_{α} since $x \in \overline{J}_{\alpha}$, and D_{α} is a quotient of $\Lambda/\overline{J}_{\alpha} + J_{\alpha} = Z/2(N_{\alpha} \setminus \pi/N_{\alpha})$.

Lemma 5 showed that one representative for $\sigma_{\alpha,\alpha'}(H,\beta)$ is

$$-\sum_{j=0}^{\infty} (T_{\alpha}\lambda T_{\alpha'}\bar{\lambda})^{j}T_{\alpha}\lambda T_{\alpha'} \stackrel{\text{(defo)}}{=} z,$$

and the calculation (i) showed that

$$\Psi_{\alpha}(H,\beta) = \omega_{\alpha}(zT_{\alpha'}\bar{z}) = \omega_{\alpha} \circ \lambda_{\alpha'}(z).$$

By the definition of p, this says that $p = \omega_{\alpha} \circ \lambda_{\alpha'}$ on $\Gamma_{\alpha,\alpha'}$, at least on the

augmentation ideal. A similar argument using the Hermitian space $\langle 1 + T_{\alpha} + T_{\alpha'} \rangle$ shows that $\omega_{\alpha} \circ \lambda_{\alpha'}$ determines p on all of $\Lambda/\overline{J}_{\alpha} + J_{\alpha} = \Gamma_{\alpha,\alpha'}$.

We have shown:

PROPOSITION 6. The extension is determined by the homomorphism $p: \operatorname{im} \left(\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'} \right) \rightarrow \bigoplus_{\alpha \neq e} D_{\alpha}$, defined by $p = \omega_{\alpha} \circ \lambda_{\alpha'}$ on $\Gamma_{\alpha,\alpha'}$.

V. The kernel of $\bigoplus_{\alpha \neq a} \Psi_{\alpha} + \bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}$

In this section, we characterize the set of Hermitian spaces (H, β) for which the invariants of the previous section vanish. We will show that such a space is equivalent to a space in which the maps $\varphi_{\alpha}: H \rightarrow Z/2(X_{\alpha})$ are all zero except for φ_e . We must first produce a convenient generating set for K_{α} .

LEMMA 1. K_{α} is generated by elements of the form $\overline{j}_{\alpha}Sj_{\alpha}$, where S is an involution not conjugate to T_{α} and $j_{\alpha} \in J_{\alpha}$, and of the form $\overline{j}_{\alpha} + j_{\alpha} + \overline{j}_{\alpha}T_{\alpha}j_{\alpha}$, $j_{\alpha} \in J_{\alpha}$.

Proof. Recall that K_{α} is the subgroup of $\tilde{\Lambda}$ generated by elements of the form $\tilde{j}_{\alpha} + j_{\alpha} + \tilde{j}'_{\alpha} x j'_{\alpha}$, where $x \in \tilde{\Lambda}$, and j_{α} , $j'_{\alpha} \in J_{\alpha}$ satisfy

$$\mathbf{i}_{\alpha}(\overline{j}_{\alpha}T_{\alpha}j_{\alpha}) = \mathbf{i}_{\alpha}(\overline{j}_{\alpha}'\mathbf{x}j_{\alpha}')$$

If we let $L_{\alpha} + \bar{K}_{\alpha}$ be the group generated by all elements of the form $\bar{j}_{\alpha} + j_{\alpha}$ and $\bar{j}_{\alpha} x j_{\alpha}$, $x \in \bar{\Lambda}$, then K_{α} is the kernel of the homomorphism

$$\mu: \ \bar{K}_{\alpha} + L_{\alpha} \to Z/2(X_{\alpha}), \qquad \mu(x) = x + xT_{\alpha}x$$

We consider the quotient K_{α}/Σ , where Σ is generated by $\overline{j}_{\alpha}Sj_{\alpha}$, $i_{\alpha}(S) = 0$, and $\overline{j}_{\alpha} + j_{\alpha} + \overline{j}_{\alpha}T_{\alpha}j_{\alpha}$, and show it is zero. We first claim that any element in K_{α}/Σ is equivalent to one of the form $\sum_{l} j_{l} + \overline{j}_{l}$, $j_{l} \in J_{\alpha} \forall i$. For, if $x \in$ $L_{\alpha} + \overline{K}_{\alpha}$, $x = \sum_{l} j_{l} + \overline{j}_{l} + \sum_{s} \overline{j}_{s}x_{s}j_{s}$, j_{l} , $j_{s} \in J_{\alpha}$, $\sum_{l} j_{l} + \overline{j}_{l}$ is already of the required form, and if $i_{\alpha}(x_{s}) = 0$, $\overline{j}_{s}x_{s} = 0$ in K_{α}/Σ . We must therefore show that $\overline{j}gT_{\alpha}g^{-1}j$ is equivalent to $\overline{j}_{\alpha} + j_{\alpha}$ for some $j_{\alpha} \in J_{\alpha}$, but clearly $\overline{j}gT_{\alpha}g^{-1}g =$ $-(\overline{j}g + g^{-1}j)$ in K_{α}/Σ , which is of the required form. We thus assume from now on that x is of the form $\sum_{j} j_{l} + \overline{j}_{l}$, $j_{l} \in J_{\alpha}$.

Next we show that $4x \in \Sigma$ for any $x \in \overline{\Lambda}$. This is clear if $i_{\alpha}(x) = 0$, for then $4x = 2 \cdot x \cdot 2$ which is a generator of Σ . Now let x be an arbitrary generator for $\overline{\Lambda}$. Then $4x = 2x + 2x = -4xT_{\alpha}x$, so if $i_{\alpha}(x) \in \mathbb{Z}/2(X_{\alpha})^{(1)}$, iteration of this step will eventually show that 4x = 4x', $i_{\alpha}(x') = 0$. Finally, $2+2+4T_{\alpha}$ is a generator for Σ , so $4T_{\alpha} = -4$, which shows 4x = 0 in K_{α}/Σ . Also, $2(x + \bar{x}) = 2x + 2\bar{x} = -4xT_{\alpha}\bar{x} = 0$, so $2(x + \bar{x}) = 0$ in K_{α}/Σ . Now we suppose we have $x = \sum_{l} j_{l} + \bar{j}_{l}$ with $i_{\alpha}(xT_{\alpha}x) = 0$. Since $2(x + \bar{x}) = 0$ in K_{α}/Σ , we may suppose that $x = \sum_{l} (1 - s_{l})g_{l}^{-1} + g_{l}^{-1}(1 - s_{l}^{-1})$, with $s_{l} \in N_{\alpha}$. The condition $i_{\alpha}(xT_{\alpha}x) = 0$ says that the expression $\sum_{l} g_{l}T_{\alpha}g_{l}^{-1} + s_{l}g_{l}T_{\alpha}g_{l}s_{l}^{-1} = 0$ in $Z/2(X_{\alpha})$. Using the relations in K_{α}/Σ , we have

$$(1-s_{l})g_{l} + g_{l}^{-1}(1-s_{l}^{-1})$$

$$= -(1-s_{l})g_{l}T_{\alpha}g_{l}^{-1}(1-s_{l}^{-1})$$

$$= -g_{l}T_{\alpha}g_{l}^{-1} - s_{l}g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1} + s_{l}g_{l}T_{\alpha}g_{l}^{-1} + g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1}$$

$$= -g_{l}T_{\alpha}g_{l}^{-1} - s_{l}g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1} + 2g_{l}T_{\alpha}g_{l}^{-1} - (1-s_{l})g_{l}T_{\alpha}g_{l}^{-1} - g_{l}T_{\alpha}g_{l}^{-1}(1-s_{l}^{-1})$$

$$= g_{l}T_{\alpha}g_{l}^{-1} - s_{l}g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1} - (1-s_{l})g_{l}T_{\alpha}g_{l}^{-1} - g_{l}T_{\alpha}g_{l}^{-1}(1-s_{l}^{-1}),$$

so

$$\sum_{i} (1-s_{i})g_{i} + g_{i}^{-1}(1-s_{i}^{-1})$$

= $\sum_{i} g_{i}T_{\alpha}g_{i}^{-1} - s_{i}g_{i}T_{\alpha}g_{i}^{-1}s_{i}^{-1} - \left(\sum_{i} (1-s_{i})g_{i}T_{\alpha}g_{i}^{-1} + g_{i}T_{\alpha}g_{i}^{-1}(1-s_{i}^{-1})\right).$

But since $\sum_{l} g_{l}T_{\alpha}g_{l}^{-1} + s_{l}g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1} = 0$ in $Z/2(X_{\alpha})$, the basis elements in $\sum_{l} g_{l}T_{\alpha}g_{l}^{-1} - s_{l}g_{l}T_{\alpha}g_{l}^{-1}s_{l}^{-1}$ can be made to cancel in pairs, provided we change the signs of appropriate terms in $\sum_{l} j_{l} + \overline{j}_{l}$, which is permissible since $2(j_{l} + \overline{j}_{l}) = 0$.

Thus, we have set the original sum equal to $\sum_{l} (1-s_l)g_lT_{\alpha}g_l^{-1} + g_lT_{\alpha}g_l^{-1}(1-s_l^{-1})$, which is a sum of the same type as we started with, except with g_l replaced by $g_lT_{\alpha}g_l^{-1}$. The solvability of the group π guarantees that the sequence $\{x_i\}$ of elements of π defined by $x_1 = g_l$, $x_{j+1} = x_jT_{\alpha}x_j^{-1}$ eventually stabilizes at T_{α} , i.e., $x_j = T_{\alpha}$ for large *j*. Therefore, the original element x is equivalent to one of the form

$$\sum_{l} (1-s_l) T_{\alpha} + T_{\alpha} (1-s_l^{-1}), \qquad s_l \in N_{\alpha}$$

But since $T_{\alpha} \in N_{\alpha}$, this is equivalent to an expression

$$\sum_{l} (1-s_{l}) + (1-s_{l}^{-1}) = \sum_{l} 2-s_{l} - s_{l}^{-1}.$$

 $2 - s_l - s_l^{-1} = (1 - s_l)(1 - s_l^{-1}) \in \Sigma$, completing the proof.

COROLLARY 2. If $x \in \Sigma$, and $i_{\alpha'}(x) = 0 \quad \forall x' \in S$, where $S \subseteq C(\pi)$ satisfies e, $\alpha \notin S$, then x may be written as a sum

$$\sum_{s} \overline{j}_{s} + j_{s} + \overline{j}_{s} T_{\alpha} j_{s} + \sum_{l} \overline{j}_{l} x_{l} j_{l}, \qquad x_{l} \in \tilde{\Lambda},$$

where $i_{\alpha'}(x_l) = 0 \quad \forall \alpha' \in S$.

Proof. We have seen in Lemma 1 that x may be written as

$$\mathbf{x} = \sum_{\mathbf{s}} \bar{j}_{\mathbf{s}} + j_{\mathbf{s}} + \bar{j}_{\mathbf{s}} T_{\alpha} j_{\mathbf{s}} + \sum_{l} \bar{j}_{l} \mathbf{x}_{l} j_{l}, \qquad \mathbf{x}_{l} \in \tilde{\Lambda}.$$

 x_i may be written as a sum

$$\sum_{k} \lambda_{k} + \bar{\lambda_{k}} + \sum_{\alpha' \in C(\pi)} \left[\sum_{i=1}^{n(\alpha')} g_{i}^{\alpha'} \right],$$

where $g_1^{\alpha'}$ is an involution in the conjugacy class α' .

$$i_{\alpha'}\left(\sum_{\mathbf{k}} \lambda_{\mathbf{k}} + \bar{\lambda}_{\mathbf{k}}\right) = 0 \qquad \forall \alpha,$$

and

$$i_{\alpha} \cdot \left(\left[\sum_{i=1}^{n(\alpha')} g_i^{\alpha'} \right] \right) = 0 \quad if \quad \alpha'' \neq \alpha'.$$

Therefore, it will suffice to show that if

$$i_{\alpha'}\left(\sum_{l} \bar{j}_{l} x_{l} j_{l}\right) = 0,$$

and each x_i is an element of order 2 in the conjugacy class α' , then we may rewrite $\sum_{i} \overline{j_i} x_i j_i$ as a sum of the form

$$\sum_{\mathbf{s}} \overline{j}_{\mathbf{s}} + j_{\mathbf{s}} + \overline{j}_{\mathbf{s}} T_{\alpha} j_{\mathbf{s}} + \sum_{t} \overline{j}_{t} x_{t} j_{t},$$

with $i_{\alpha}(x_t) = 0 \quad \forall \alpha'' \neq e, \alpha$. A further reduction as in the proof of Lemma 1 allows us to consider only sums of the form

$$\mathbf{x} = \sum_{i} (1-s_i) g_i T_{\alpha} \cdot g_i^{-1} (1-s_i^{-1}), \qquad s_i \in N_{\alpha}.$$

We assume that $i_{\alpha'}(x) = 0$, so

$$\sum_{i} g_{i}T_{\alpha'}g_{i}^{-1} + s_{i}g_{i}T_{\alpha}g_{i}^{-1}s_{i}^{-1} = 0 \quad \text{in} \quad Z/2(X_{\alpha'}).$$

$$(1-s_{i})g_{i}T_{\alpha}g_{i}^{-1}(1-s_{i}^{-1}) = g_{i}T_{\alpha'}g_{i}^{-1} + s_{i}g_{i}T_{\alpha'}g_{i}^{-1}s_{i}^{-1}$$

$$- s_{i}g_{i}T_{\alpha'}g_{i}^{-1} - g_{i}T_{\alpha'}g_{i}^{-1}s_{i}^{-1}$$

Now

$$g_{i}T_{\alpha}g_{i}^{-1} - s_{i}g_{i}T_{\alpha'}g_{i}^{-1}s_{i}^{-1} + g_{i}T_{\alpha'}g_{i}^{-1} - g_{i}T_{\alpha'}g_{i}^{-1}s_{i}^{-1} + (g_{i}T_{\alpha'}g_{i}^{-1} - s_{i}g_{i}T_{\alpha'}g_{i}^{-1})T_{\alpha}(g_{i}T_{\alpha'}g_{i}^{-1} - g_{i}T_{\alpha'}g_{i}^{-1}s_{i}^{-1})$$

is of the form $j + \bar{j} + \bar{j}T_{\alpha}j$, hence we may subtract it and obtain

$$s_i g_i T_{\alpha'} g_i^{-1} s_i^{-1} - g_i T_{\alpha'} g_i^{-1} - \overline{j} T_{\alpha} j,$$

where $j \in J_{\alpha}$ is the element $g_i T_{\alpha'} g_i^{-1} - g_i T_{\alpha'} g_i^{-1} s_i^{-1}$. Since $i_{\alpha'}(x) = 0$, we are free to change the signs of some of the summands $(1 - s_i)g_i T_{\alpha} g_i^{-1}(1 - s_i^{-1})$ and make the terms conjugate to $T_{\alpha'}$ cancel, completing the proof of the corollary.

LEMMA 3. Suppose $x \in W(\Lambda)$, $\bigoplus_{\alpha \neq \alpha'} \sigma_{\alpha,\alpha'}(x) = 0$ and $\bigoplus_{\alpha \neq e} \Psi_{\alpha}(x) = 0$. Then x is equivalent in $W(\Lambda)/W^{ev}(\Lambda)$ to an element of the form $\langle u_1 \rangle \perp \langle u_2 \rangle \perp \cdots \perp \langle u_k \rangle$, where $u_i = 1 + \lambda_i + \overline{\lambda_i}$ for some $\lambda_i \in \Lambda$.

Proof. Let us order $C(\pi) - \{e\}$, say as $\alpha_1, \alpha_2, \ldots, \alpha_q$. Then Lemma III.6 asserts that a representative for x may be taken to be $\prod_{i=1}^{q} x_i$, where

$$\mathbf{x}_{i} = \langle u_{1}^{i} \rangle \perp \cdots \perp \langle u_{n(i)}^{j} \rangle, \qquad u_{i}^{j} = T_{\alpha_{i}} + \lambda_{i}^{j} + \overline{\lambda_{i}^{j}}.$$

The proof will be by induction, and the inductive step will be

(A) Suppose (H, β) is equivalent to (H', β') where $i_{\alpha_*}(\beta'(x, x)) = 0$ $\forall x \in H', s < k$, and $\Psi_{\alpha_k}(H, \beta) = 0$. Then (H, β) is equivalent to (H'', β'') , where $i_{\alpha_*}(\beta''(x, x)) = 0 \forall x \in H'', s < k + 1$. This will imply the lemma, since we assume $\Psi_{\alpha_k}((H, \beta)) = 0 \forall k$. We now prove the inductive step. Suppose we are given (H', β') with $i_{\alpha_*}(\beta'(x, x)) = 0 \forall x \in H', s < k$. If we form the space

$$\langle -T_{\alpha_{k}} \rangle \perp \langle T_{\alpha_{k}} \rangle \perp (H', \beta'),$$

equivalent to (H', β') , it will also satisfy the inductive hypothesis. Let $\chi_k \in H'$ be α_k -characteristic, and consider the element $(1, \chi_k)$ in $\langle T_{\alpha_k} \rangle \perp (H', \beta')$.

 $T_{\alpha_k} + \beta(\chi_k, \chi_k)$ is a unit, since $\Psi_{\alpha_k}(H', \beta') = 0$, so this element generates a summand of the space $\langle T_{\alpha_k} \rangle \perp (H', \beta')$. Moreover, by Corollary 2, $T_{\alpha_k} + \beta(\chi_k, \chi_k)$ may be written as a sum

$$\sum_{l=1}^r \overline{j}_l(\lambda_l+\overline{\lambda}_l)j_l+\sum_{s=1}^{k-1}\sum_{l=1}^{m(s)}\overline{j}_lT_{\alpha,j_l}+\sum_{w=1}^p j_w+\overline{j}_w+\overline{j}_wT_{\alpha,k}j_w.$$

Form the Hermitian space

$$(\tilde{H}, \tilde{\beta}) = \langle T_{\alpha_k} \rangle \perp (H', \beta') \perp \coprod_{l=1}^{r} L_l \perp \coprod_{s=1}^{k-1} \coprod_{t=1}^{m(s)} M_{s,t} \perp \coprod_{w=1}^{p} N_w,$$

where

- (i) d is a generator for the $\langle T_{\alpha_k} \rangle$ summand
- (ii) L_1 is the space with basis e_1 , e_2 and matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- (iii) $M_{s,t}$ is the space $\langle T_{\alpha_t} \rangle \perp \langle -T_{\alpha_s} \rangle$ with basis $f_1^{s,t}$, $f_2^{s,t}$ (iv) N_w is the space $\langle T_{\alpha_t} \rangle \perp \langle -T_{\alpha_k} \rangle$ with basis g_1^w , g_2^w .

 $(\tilde{H}, \tilde{\beta})$ is equivalent to $\langle T_{\alpha_k} \rangle \perp (H', \beta')$ since each of the summands we added was split. To prove the lemma, we observe that the element

$$y = d + \chi_k + \sum_{l=1}^r \bar{j}_l \lambda_l e_1^l + j_l e_2^l + \sum_{s=1}^{k-1} \sum_{l=1}^{m(s)} \bar{j}_l f_1^{s,l} + \sum_{w=1}^p (1 + \bar{j}_w) g_1^w + g_2^w$$

is α_k -characteristic for $(\tilde{H}, \tilde{\beta})$ and satisfies $\tilde{\beta}(y, y) = T_{\alpha_k}$.

 $(\tilde{H}, \tilde{\beta})$ therefore breaks up as a sum $(\tilde{H}, \tilde{\beta}) = \langle T_{\alpha_k} \rangle \perp (H'', \beta'')$, where $H'' = (y)^{\perp}$, and β'' is $\tilde{\beta} \mid H'' \times H''$. Since y was α_k -characteristic, $i_{\alpha}(\beta''(x, x)) = 0 \forall x \in H'', s < k + 1$, and we have that (H', β') is equivalent to $\langle -T_{\alpha_k} \rangle \perp \langle T_{\alpha_k} \rangle \perp (H'', \beta'')$, from which the lemma follows since $\langle -T_{\alpha_k} \rangle \perp$ $\langle T_{\alpha} \rangle$ is split.

We now complete the description of $W(\Lambda)/W^{ev}(\Lambda)$ by analyzing the subgroup of $W(\Lambda)/W^{ev}(\Lambda)$ generated by spaces of the form $(1 + \lambda + \lambda)$.

LEMMA 4. Let μ_1 and μ_2 be even. Then in $W(\Lambda)/W^{eo}(\Lambda)$,

$$\langle -1 \rangle \perp \langle 1 + \mu_1 \rangle \perp \langle 1 + \mu_2 \rangle = \langle 1 + \mu_1 + \mu_2 \rangle$$

Proof. Let a basis for the space $\langle -1 \rangle \perp \langle 1 + \mu_1 \rangle \perp \langle 1 + \mu_2 \rangle$ be given by e_1 , e_2 , e_3 . Then by considering the basis

$$e_1 + e_2 + e_3$$
, $(1 + \mu_1)e_1 + e_2$, $(1 + \mu_2)e_1 + e_3$,

we find that the given space is isomorphic to $(1 + \mu_1 + \mu_2) \perp Y$, where Y has matrix

$$\begin{bmatrix} (1+\mu_1)^2 - (1+\mu_1) & -(1+\mu_1)(1+\mu_2) \\ -(1+\mu_2)(1+\mu_1) & (1+\mu_2)^2 - (1+\mu_2) \end{bmatrix}$$

One now sees that it is sufficient to show that μ_i^2 is even. To show this, one need only check on generators $s + s^{-1}$. But

$$(s+s^{-1})^2 = 2+s+s^{-1} = (1+s)+(1+s^{-1})$$

LEMMA 5. There is a surjection from $Z/8 \oplus \pi_{ab} \otimes Z/2$ to a subgroup of

 $W(\Lambda)/W^{ev}(\Lambda)$ generated by elements $\langle 1+\lambda+\bar{\lambda}\rangle$ (π_{ab} denotes the commutator quotient $\pi/[\pi,\pi]$).

Proof. We define the map by requiring that the generator of the Z/8 summand go to the space $\langle 1 \rangle$, and if $x \in \pi_{ab} \otimes Z/2$, then

$$\mathbf{x} \to \langle -1 \rangle \perp \langle -1 \rangle \perp \langle -1 \rangle \perp \langle 1 + \tilde{\mathbf{x}} + \tilde{\mathbf{x}}^{-1} \rangle$$

where \tilde{x} is an element of π mapping to x. All that requires proof is that the map restricted to $\pi_{ab} \otimes Z/2$ is well-defined.

To do this, we consider the map $\hat{\mathbb{Z}}_2 \pi \to \pi_{ab} \otimes \mathbb{Z}/2$, defined by $g \to (g)$, where (g) is the image of g in π_{ab} . The function $g \to \langle -1 \rangle \perp \langle -1 \rangle \perp \langle -1 \rangle \perp \langle -1 \rangle \perp \langle 1 + g + g^{-1} \rangle$ defines a homomorphism $\delta: \hat{\mathbb{Z}}_2 \pi \to W(\Lambda)/W^{ev}(\Lambda)$. Since

$$(1+g_1+g_2^{-1})(1+g_1^{-1}+g_2) = 3+g_1+g_1^{-1}+g_2+g_2^{-1}+g_1g_2+(g_1g_2)^{-1},$$

$$\langle 1 \rangle = \langle 3+g_1+g_1^{-1}+g_2+g_2^{-1}+g_1g_2+(g_1g_2)^{-1} \rangle$$

in $W(\Lambda)/W^{ev}(\Lambda)$, and we have by Lemma 4 that

$$\begin{split} \delta(1) + \delta(g_1) + \delta(g_2) + \delta(g_1g_2) \\ &= \langle -1 \rangle^{(12)} \perp \langle 1+2 \rangle \perp \langle 1+g_1+g_1^{-1} \rangle \perp \langle 1+g_2+g_2^{-1} \rangle \perp \langle 1+g_1g_2+(g_1g_2)^{-1} \rangle \\ &= \langle -1 \rangle^{(4)} \perp \langle 1+2 \rangle \perp \langle 1+g_1+g_1^{-1} \rangle \perp \langle 1+g_2+g_2^{-1} \rangle \perp \langle 1+g_1g_2+(g_1g_2)^{-1} \rangle \\ &= \langle -1 \rangle \perp \langle 3+g_1+g_1^{-1}+g_2+g_2^{-1}+g_1g_2+(g_1g_2)^{-1} \rangle = 0. \end{split}$$

This means that we may factor δ through $\hat{\mathbb{Z}}_2 \pi/(1+g_1+g_2+g_1g_2)$. Secondly, $\delta(1) = \langle -1 \rangle \perp \langle -1 \rangle \perp \langle -1 \rangle \perp \langle 3 \rangle = 0$, so we further factor δ through $\hat{\mathbb{Z}}_2 \pi/(1, (1+g_1+g_2+g_1g_2))$. It is a standard calculation that this group is isomorphic to $J/J^2 \cong \pi_{ab}$. Finally, the relation $\delta(g) = \delta(g^{-1})$ guarantees that the map factors through $\pi_{ab} \otimes Z/2$.

PROPOSITION 6. The group generated by elements $\langle 1 + \lambda + \overline{\lambda} \rangle$ is isomorphic to $Z/8 \oplus \pi_{ab} \otimes Z/2$. It is a direct summand of $W(\Lambda)/W^{**}(\Lambda)$.

Proof. We must produce a homomorphism from $W(\Lambda)/W^{ev}(\Lambda) \rightarrow Z/8 \oplus \pi_{ab} \otimes Z/2$. To obtain the map to Z/8, simply take $W(\Lambda)/W^{ev}(\Lambda) \rightarrow W(\hat{\mathbb{Z}}_2)/W^{ev}(\hat{\mathbb{Z}}_2) \cong Z/8$. As for the map to $\pi_{ab} \otimes Z/2$, let $\Lambda' = Z/4(\pi_{ab} \otimes Z/2)$, and consider $W(\Lambda)/W^{ev}(\Lambda) \rightarrow W(\Lambda')/W^{ev}(\Lambda')$. There is a determinant homomorphism

det:
$$W(\Lambda)/W^{ev}(\Lambda) \rightarrow U(\Lambda')/N^{+}(\Lambda')$$
,

where $U(\Lambda')$ denotes the group of units of Λ' and $N^+(\Lambda')$ denotes the subgroup of $U(\Lambda')$ generated by units of the form $u\bar{u}$, and 3.

Since the involution on Λ' is trivial, this group is isomorphic to $U(\Lambda') \otimes Z/2$. Now it is a straightforward check that the elements of the form $1+2\lambda' \in U(\Lambda')$, $\lambda' \in \Lambda'$, generate a direct summand isomorphic to

 $\pi_{ab} \otimes \mathbb{Z}/2$, and that the composite

$$\pi_{ab} \otimes \mathbb{Z}/2 \to \mathbb{W}(\Lambda)/\mathbb{W}^{ev}(\Lambda) \to \pi_{ab} \otimes \mathbb{Z}/2$$

is the identity. This completes the proof.

Finally, we recapitulate. Let the image of

$$W(\Lambda)/W^{ev}(\Lambda)$$
 in $\bigoplus_{\alpha \neq e} \Delta_{\alpha} \oplus \bigoplus_{\alpha \neq \alpha'} \Gamma_{\alpha,\alpha'}$

be denoted by \mathcal{A} . \mathcal{A} was completely described by Lemmas II.4 and II.5 together with Propositions III.7 and IV.6.

THEOREM 7. $W(\Lambda)/W^{ev}(\Lambda) \cong \mathcal{A} \oplus \mathbb{Z}/8 \oplus \pi_{ab} \otimes \mathbb{Z}/2.$

COROLLARY 8. $W(\Lambda) \cong Z/2 \oplus \mathcal{A} \oplus Z/8 \oplus \pi_{ab} \otimes Z/2$.

Proof. As remarked in the introduction $W^{rv}(\Lambda) \cong Z/2$, and it is seen to be a direct summand, since it is in $W(\hat{\mathbf{Z}}_2)$.

REFERENCES

- 1. G. Carlsson and R. J. Milgram, Some Exact Sequences in the Theory of Hermitian Forms, to appear. J. of Pure and App. Algebra.
- 2. G. Carlsson and R. J. Milgram, Torsion Witt Rings for Orders and Finite Groups, to appear, Proceedings of Northwestern Symposium on Algebraic Topology, Springer Verlag, Berlin.
- 3. L. Dornhoff, Group Representation Theory, M. Dekker. (pt. B), New York, 1971-1972.
- 4. J. Milnor and D. Husemoller, Symmetric Bilinear Forms. Springer Verlag, Berlin (1973).
- 5. A. S. Mischenko, Homotopy Invariants of Non-Simply Connected Manifolds. III. Higher Signatures. Izv. Akad. Nauk. S.S.S.R. ser. mat. 35 (1971).
- 6. A. Ranicki, The Algebraic Theory of Surgery. I.H.E.S. Notes (1976).

Department of Mathematics University of Chicago Chicago, Illinois USA