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I N T R O D U C T I O N  

In  this paper, we consider the following question: given a Hermitian e- 
symmetric form (H, fl) over a ring with involution A, when is (H, fi) Witt  
equivalent to an even form, i.e. one where fi(x, x) is always of the form A + EA ? 
The answer is given by constructing a group Q~(A), functorial on the category 
of rings with involution, and a homomorphism w: W ¢ ( A ) ~  Q~(A) so that 
(H,/3) is equivalent to an even form if and only if w(H, fi) = O. The group 
Q~(A) is readily computable--i t  is the homology of a certain two-term chain 
complex defined over A. Furthermore, the homomorphism w is easily evaluated 
on any particular form. For example, in the case A z ~, with trivial involution, 
Q~(A) = Z/8 and w(H, fl) is the reduction of the signature mod 8. This work 
is a generalization of the results of [l], in which QI(A) was implicitly computed 
for A = ~w,  where w is a 2-group. WI(A) was then obtained directly. The 
definition of QI(A) given here would have simplified many of the computations 
in the specific case [1], and would have simplified immensely the proof of the 
analogue to our Theorem IV.2. 

This reformulation of the characteristic elements of [1] owes much to the 
work of Andrew Ranicki [6]. The argument in the proof of Theorem IV.2 
makes use of the zero dimensional version of Ranicki's algebraic surgery on 
the Wu map ~b~. Our invariant w(H, fi) is also the zero-dimensional version 
of the desuspension invariant introduced in [2]. 

In  the final section, we apply these results to rederive the calculation of 
W((gK) , where K is an unramified extension of 0 2 .  We also produce invariants 
of W(K), where K is any field of characteristic 2 so that [K : K 2] < or, which 
detect the Witt classes, and compute the Witt group W(77/2~r), ~r = (77/2) ~, 
with trivial involution. 

Section I contains preliminary material on rings with involution. Section I I  
defines Q'(A), Section I I I  prove the functoriality of Q" on the category of 
rings with involution, Section IV defines the natural transformation w: W " --+ Q', 
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and Section V proves the main theorem, Theorem V.2, which asserts that 
(H, fl) is Witt equivalent to an even form if and only if w(H,/3) = 0. Section VI 
contains the above-mentioned examples, namely A ~ 77, A = 0 g ,  A = K, 
and A ~ 77/2~. The  invariants for K a field of characteristic 2, [K : K 2] finite, 
are described in Theorem VI.3. 

We remark that work has been done in the case of Dedekind rings on this 
problem (see [7] and [8]), and thank the referee for a number of helpful remarks. 

I. PRELIMINARIES 

Let A be a ring with involution -- .  Given a left A-module H, define 

H* = H O m A ( H  , A) .  

H* is given a left A-module structure by ()~ "¢)(h) = $(h)~, ¢ e H*, h e H, 
e A. I f  H is finitely generated projective, then so is H*, and there is a natural 

isomorphism i: H--*  (H*)* of left A-modules, defined by (i(x))(¢) = ¢(x). 
Given a homomorphism f :  H 1 - + / / 2 ,  the dual map f * :  H* ---* H* is defined 
by f*(¢)(x) = ¢(f(x)) .  If  f: H--+ g* ,  then f * :  (H*)*--+ g * .  Composing 
with i, we get f *  oi: H--+H*.  

PROPOSITION 1. ( f *  oi(x))(y) = f ( y ) ( x ) .  

Proof. Immediate from the definition (*). 
We often suppress mention of i, implicitly identifying (/4*)* and H. 

DEFINITION 2. H~(A) = {~ e A I a = e~}/{a + e~, a E A}, e = :El. 

H~(A) is a 77/2-vector space. The following is also well known. 

PROPOSITION 3. H'(A) becomes a left A-module under the action ~t • ~ = ~tc~, 
a e A ,  ~ E H'(A). 

At this point, we assume that H~(A) is finitely generated as a A-module 
and that A is a Noetherian ring. This hypothesis will apply throughout the 
paper. 

I f  ~o: H -+  H* satisfies qo = eSo* (suppressing i), then the function x --+ ~o(x)(x) 
is a A-homomorphism from H to H'(A). 

DEFINITION 4. Given 9: H - +  H*, 9 ----- Eg* we define (v: H--+ H*(A) by 

~(x)  = ~(x)(x) .  

We refer the reader to [3] or [5] for the definition of Hermitian spaces and 
Witt groups. For us, W~(A) will denote the Witt group of E-symmetric Hermitian 
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forms over A, where the underlying modules and subkernels are required 
to be finitely generated and projective. We conclude with 

PROPOSITION 5. / f  ~o = I//_}_ e~r/,, ~ __~ 0. 

Proof. (7 t + ,T*)(x)(x) = W(x)(x) + ~T*(x)(x) = W(x)(x) + ,  W(x)Cx) (by 
Prop. 1). This element is zero in He(A). 

II .  THE GROUP g ' (A) 

Let  ~ = ~3 __~e ~x ___~o He(A) be the first two stages of a projective resolution 
of He(A), where ~ i  is finitely generated and projective. Such a resolution exists 
since we assumed He(A) to be finitely generated and A to be Noetherian. Define 
Ale(~) _C HOmA(~l*, -~)  by 

AI ' (~)  = { ~  ~ H°mA(~l*, ~1) [ k~t = EkP*} 

Consider the group/~ = HOmA(~* , ~2) 0 HOmA(~*, "~1) @ H°mA(~I*, #2)- 
The  duality involution acts on this by (¢1, ¢3 , ¢3)--+ (¢1", ¢z,¢9.).* * Define 

A2e(~) _C/" by 

A2e(~) = ((¢1, ~2, ¢3) ] (¢1, ¢2, ¢3) = "(¢1 ~, ¢~, ¢~)} 

We define homomorphisms a i and fli from A ( ( ~ )  to HOmA(~l*, H'(A)) by 

~1(¢) = p o ¢ #~(¢) = ¢ 

~ ( ¢ 1 ,  ¢3 ,  ¢~) = p ° ¢3 #~(¢1,  ¢3 ,  ¢~) = g~- 

Now define Bie(~) C Ai,(~ ) 

B , e ( ~ )  = {x ~ A : ( ~ )  I ~,(x) = #,(x)).  

There is a "boundary map" 8: B~'(~) --+ Ale(~), defined by ~(¢z, ¢2, ¢3) = 
e¢le* + ¢2~* + eCz. Since Ca = e¢2", and ¢1 = "¢~*, 8(¢1, ¢2, Ca) e AI"(~ ). 

PROPOSITION 1. ~(B2e(~)) ~ BI ' (~  ). 

Proof. We must show that the element ~¢1~* + ¢2~* q-each* e Ble(~), 
provided that p o ¢2 ~ ~1- 

~1(e¢1~* + ¢2~* + ,~¢~*)(x) = ~x(¢2e*)(x) 

= p o ¢~o e*(x) = ~3(¢~, ¢3, ¢~) o e*(x) 

= #~(¢1, ¢3,  ¢~) o e*(x) = 4~ ° e*(x) 

= ¢l(e*(x))(~*(~)) = (e o ¢1 o e*)(x)(~) 

= ~ o ¢1 ° e*(X) = ]~l(e o ¢1 o e*)(X), 
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It only remains to show that flt(¢~0* + e0¢~*) = 0. But 0¢* = (¢2~*)*, so this 
follows from Prop. 1.5. | 

DEFINITION 2. Q'(A) = Bt'(~t)/$(B~'(~)). 

We must show that this definition of Q'(A) depends only on E and A, not 
on the choice of resolution 

~2" ~ > ~1 - '~ H'(A) 

We define C~,(~), where ~ is a two-step resolution #2 ___~0 ~i~ t _ + o  H'(A) --+ 0, 
to be the chain complex 

O__.~B2~(~) a Bx,(~)._+O 

Thus, HtCC~,(~)) = Q~CA). 

PROPOSITION 3. Let f:  ~ ~ ~ be any chain map covering the identity, where 
and ~ are two-step resolutions of H'(A). Then f induces a chain map C . ( f ) :  

c , (~ )  ~ c , (~) .  

Proof. Let f~: # i  - ~ i ,  i = 1, 2, be the components o f f  in dimensions 1 
and 2. Then we define C , ( f )  by 

Cl(f):  Bt~(~2) --+ B, ' (~) ,  

Ct(f)(9) = f l  o ~ o f *  

C~(f): B2~(#~) ~ B~'(~), 

Cz(f)(~0t ~% ~0s)= ( f ~ o g x o f * , f l o  * , , 9~ of~ , f z  o 93  o f * )  

It is immediate that C~( f )  takes Ai ' (~  ) to A/'(~), and that C~( f ) i s  a chain 
map; we must show that C,'(f)(B,'(N))_C B?(~).  We observe that it suffices, 
by the definition of BiL to check the commutativity of the following diagrams: 

(I.) Ai'(~) ~" , Homa(~*, H'(A)) 

A"(~)  ~' > HomA(~*, H'(A)) 

(II.) A~'(~2) B, , HomA(~*, H~(A)) 

A((g) --B, > HomA(P, ; H'(A)) 

48x]65/I'I 3 
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(I) (i ----- 1) &I(CI'(f)(SO)) = / 3  o f l o  SO o f *  = p o ~0 o f *  = %(SO) o f  1* 

= ¢ ~ ( ~ ( s o ) ) .  

(I) (i = 2) &2(Cs~(f)(cpl, Sos, Sos)) 

= P ° f l °  SOs o f *  = p o SOs o f *  

= ~s ( so1 ,  Sos,  S o , ) o f *  = ~ s ( ~ s ( s o , ,  So=, So~)). 

( I I )  ( i  = 1) fll(C~*(f)(so))(x) 

= ~ l ( f l  o SO of*)(x) = f l  o SO o f l *  (X) 

= (x, f l  o SO of*(x)> = ( f*(x) ,  SO of*(x) )  = ~o(f*(x)) 

= ( ]~ I (SO)° f* l ) (X)  = ~I(~I(SO))(X) • 

Here  ( , ) :  ~ *  × ~ i  - +  A is the evaluat ion pairing. 

( I I )  (i = 2) ~s(Cs'(f)(so1, SOs, %))(x) 

= ~s(fso So1 of* ,  f~ o Sos o f* ,  f=o So, of*)(x) 

---- (fs ° SO1 ° fs*)(x) = (x,  f2o SO1 o f* (x )5  

* X  = (xfs  ( ) ,  SO1 of*(x )> = ~o~(f*(x)) 

= (fi=(SO1, SO2, SO3)o f*~)(x) = ¢2(fl~(SO1, SO=, SOs))(x) • 

T h u s ,  C~.(f) induces  a map  D ~ ( f ) :  Q~(A) --+ ~)~(A), where ~)'(A) is computed  
us ing  ~ .  

PROPOSITION 4. Let ~ ,  ~ be as in Prop. 3, and let f,  g: ~ --+ ~ be two coverings 
of the identity map of H~(A). Then D~(f)  = D*(g). 

Proof. I t  will suffice to show that  f l o  So o f *  - - g l o  SO og* e 8 ( B s ( ~ ) )  , for 
all SO e BI~(~). Since f and  g are bo th  coverings of the identi ty,  gl  = f l  + 8 o 2t, 
where 2t: ~ l  ~ g~s is a A-map .  W e  compute :  gl  o So o gl  = ( f l  + ~ o 2t) o So o 

( f *  + 2t* o ~*) = f~ o SO o f*  + ~ o 2t o SO o f *  + f ,  o SO o 2t* o ~* q- F o 2t o SO o 2t* o ~*. 
W e  mus t  show that  9' e 8(B2~(~)), where y = 8 o 2t o So o f *  + f l  ° So ° 2t* ° a* + 

o 2t o So o 2t* o ~*. But, (2to SO o 2t*,fx o So o A*, )l o SO o f * )  e Bs~(~), since 

( f l  o SO o 2t*)* = 2to So* o f *  = e2t o SO o f * ,  

and  

(2t o So o 2 t*) (x)  = ( x ,  2t o So o 2 t * ( x ) )  = ( 2 t * ( x ) ,  So o 2 t * ( x ) )  = ~ ( 2 t * ( x ) )  

= p o So(2t*(x)) = (~ o f ~ o  So o 2t*)(x). 
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The second to last equality follows .since 9 ~ BI~(~). Moreover ~(h o 9 o h*, 
fx ° ~o o h*, h o ~0 of*)  = y, which concludes the proof. | 

COROLLARY 5. Q*(A) is independent of the two-step resolution used to compute 
it; furthermore, if Q~(A) and Q~(A) are computed using ~ and ~ respectively, 
then there is a distinguished isomorphism from Q~(A) to Q~(A), characterized 
by the requirement that it be induced by a chain map f: ~ --+ ~ covering the identity 
map of H~(A). 

I I I .  FUNCTORIALITY OF THE Q - G R o u P s  

Let f :  A ---> A' be a map of rings with involution. 

PROPOSITION 1. Let # be finitelk generated and projective over A. Then the 
natural map 

A' @.4 ~* --~ (A' @A 3~) * 

defined by i(h 1 @ ~o)(a 2 @ x) = a2f(go(x)) ~1 is an isomorphism of A'-modules. 

Proof. (Well-known). | 

Let # be a finitely generated A-module, JA/a finitely generated A'-module, 
and g: ~ ~ d/{ a A-map, where d/{ is a A-module by restriction of scalars. 
Then there is a unique factorization 

A' @.4.~ 

with ~ a A-module map. 

, J / /  o 

We point out that there is a canonical map of abelian groups 

a ( ~ l ,  3~e): HomA(#*, ~2) -+ HomA,(A' @A ~*, A" @ ~2) 

~- HomA,((A' @A 3~1) *, A' @A 3~) 

where the second isomorphism is that given by Prop. I. Moreover, this map 
respects duality in that the diagram 

HOmA(~*, ~ )  ~x(~1'~$)' Homa((A' @A ~1)*, A' @A ~2) 

FlomA(~*, 3~1) "(~2'~1), HomA,((A' @.4 #2)*, A' @A 3~1) 

commutes. 
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Let C~(~) and C*(SP) be defined using resolutions ~ :  ~2 ___>a -~1 __+o H'(A) 
and dr: Mr' 2 ---~ M[ 1 ___>o H'(A'), of A and A'-modules respectively. Note that 
there is a natural map of A-modules ~: H~(A) -+ H'(A').  Consequently, lifting 
~7 through the two-step resolutions, we obtain 

~ 2  g2 --~ ~ 2  

where the gi's are A-module maps. Let gi be the factorization defined above. 
Define fl~: HomA(~*, ~ )  ~ HomA,(J//*, d/C'j) by flij(9) ~ gj°  ~x(~i, ~ ) °  g*i. 
fii~ commutes with duality in the same sense as c~ does. Form the complexes 
C*(~), 6',*(6 a) as in Section II.  

PROPOSITION 2. There is a chain map C*,(~) --~ C*~(Se), defined by 71(~o) = 

f111((P), 72(~01 , ~02, ~193) = (~22(91), fl21(~02), ~12((]93))" 

Proof. We first observe that 7i(A((~))C-Ti(Ai ' (~)) ,  since fliJ respects 
duality. We must show that 7i(Bd(~)) C_ 7i(BiE(df)). 

To prove this, it suffices to observe that the diagrams 

HomA(~*, HE(A)) ~' , HomA,(~*, HE(A')) 

commute, where ai is the composite 

RomA(~*, HE(A)) -+ HomA,((A' (~)A ~i)*,  A' (~)a H~(A)) 

--* HOmA,(J[*, HE(A')) 

the second arrow being defined by h --~ ~ o h o ~*. The commutativity of the 
diagram is elementary, as is the fact that 7 ,  is a chain map. | 

Consequently, 7 ,  induces a map Q~(7): QE(A) ~ Q'(A'). 

! E PROPOSITION 3. Let V , ,  7 ,  be chain maps C , ( ~ )  ~ C ' ( ~ )  associated with 
maps g, "' " ' g ,  with g, g' inducing ~. Then Q'(7,) = Q (7,). 
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t 
Proof. Since g, g '  both induce ~7, we have that gl = g l - [ - 8  o ~, where 

~: "~1 --~ J /~  is a A-map. Consequently, 

rX~ °) = gl o ~ ( ~ ,  ~1)(~) o ~* 

= ( ~  + ~ o ~) o ~ ( ~ ,  ~ ) ( ~ )  o ( F  + ~* o ~*) 

+ ~ o ~ o ~ ( ~ ,  ~1)(~) o X* o ~*. 

We must show that the last three terms lie in ~(B2~(~gv)). Now set 

X = (~ o 0~(~1 , ,~l)(~D) o X*, g l  o 0~(~1 , ~1)(~19) o X*, X o 0~(#1 , ~i~l)(~0 ) o gl*) ~ A 2 ~ ( ~ )  • 

It  claim x ~ B~(~gv). For, 

~ ( x )  = ~ o ~ ( ~ ,  ~ 1 ) ( ~ )  o X* = ~ ( # ~ ,  ~ 1 ) ( ~ )  o X* = ~1(@) o X* 

= ~l(P o ~) o X*  = p o~1 o ~ ( # ~ ,  ~ i ) ( , )  o X*  = %(x) .  

@ = p o (p since i0 e AI((~). Now, 

~(x) = ~ o X o ~ ( ~ 1 ,  ~ ) ( ~ )  o ~*  + ~1 o ~ ( ~ i ,  ~ ) ( ~ )  o ~ ,  o ~ ,  

+ ~ o f, o ~ ( ~ ,  ~ ) ( ~ 0 )  o ~ ,  o ~, .  I 

COROLLARY 4. There is a canonical change of rings map ~ ( A )  --+ °~l~ Q~(A'), 
characterized by the requirement that it be induced by a A-module chain map 
from a A-resolution of H~(A) to a A'-resolution of H~(A'), covering the A-map 
~: H~(A) -+ H~(A'). 

IV. THE MAP v: : W~(A) --~ Q~(A) 

Let (H, fi) denote an e-symmetric Hermitian space over A. We will define 
an element w(H, fi) E Q*(A) as follows: let adO3): H ~ H* denote the adjoint 
map to the pairing fl: H × H ~ A. It  is an isomorphism, and ad(fl)* = ~ ad(fl). 
From Definition 1.4, we have the map 

ad(fl): H--~ H~(A) 

Let ~ = #2--~a ~1 _+o H~(A) be the first two stages of a resolution of 
H~(A), #~ f.g. projective, as in Section II .  Then  since H is projective, the map 

ad(fl) lifts to ~1 -  Let the lifting be denoted by $~: H--~  ~ 1 .  We define ~:~ 
HomA('~l*,-~1) by 



196 GUNNAR CARLSSON 

PROPOSITION 1. ~B e Bz~(.~). 

Proof. Since ad(fi) = e ad(fi)*, ad( f l ) - '  = E(ad(fl)-l) *. 
W e  compute :  

= 

= 

PROPOSITION 2. 

II 

c~1(¢3 o ( a d ( f i ) - l ) o  ¢~:)(x) 

(p o ¢~o ad(fl)-I  o ¢~)(x)  = (ad(]3) o ad(fi) - t  o ¢~)(x) 

(ad(fl)(ad(fl) -1 o ¢~(x)))(ad(/3) - I  o ¢~<(x)) 

(¢*(x)) (ad(f i ) - '  o ¢~(x))  

x(¢Bo ad(f l )  -1 o ¢~*(x)) = e(¢t3 o ad ( f l ) - '  o ¢ * ( x ) ) ( x )  

CB o ad ( f l ) - '  o CB*(x) = fl,(~t~)(x), so ~ ~ B , ' ( ~ ' ) .  ( * )  

The residue class of ~ in Q~(A) is independent of the choice 

A 
Proof. Given  ¢~ and ¢~ ,  l i f t ings of ad(fl), we mus t  show tha t  the  associated 

e lements  s~B and ~ differ by  an e lement  in 8(B2~(~;~)). Since CB and ¢'s are bo th  
l i f t ings of ad(fl), ~ ~ $~ + 0 o X, where  X: H --* ~ 2 .  Thus ,  

~ - -  ~ = 0 o X ° ad(fi)  -1  o ¢ ~  q-  CB ° ad(fl)  -1  o X* o ~ *  

@ ~ o X o ad(f l )  - l o  X* o ~*  

Now,  consider  the e lement  

f f  = (XO ad(f i )  -1 o X*,  CB ° a d ( f i ) - '  o X*,  X ° ad(f i )  - 1 °  ¢~ )  

in .42~(~). W e  cla im tha t  ff e B2~(~). T o  show this, we mus t  have 

p o Cs o ad ( f i ) - '  o X*  = X o ad(f i )  -1 o X* .  

N o w ~  

A 
p o ¢• o ad(fi) -1 o X*(x) = ad(fi) o ad(fi) -1 o X*(x) 

= ad(fi)(ad(fl) -1 o X*(X))(ad(fi) -1 o X*(X)) 

= X*(x)(ad(13)-x o X*(X)) = x(x o ad(fi) -1 o X*(X)) 

= e(X ° ad(fl) -1 o X*(x))(x) = X o ad(fi) -1 o X*(x) 

8(if) = ~ - -  ~B, proving  the result .  | 
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We have constructed an invariant in Q~(A) depending only on the i somorphism 
class of  the space (H, fl), which we will call w(H, fl) ~ Q~(A). We will proceed 
to show that  this invariant induces a homomorph i sm  w: W~(A) -+ Q~(A). 

PPROOSITION 3. I f  (H, fl) is split, then w(H, fl) = O. 

Proof. Let  K_C H be a projective summand,  with K = K ± ( = { x  e H I 
fl(x, K )  = 0}), which exists since (H,/3) is split. Since/3(k, k) = 0 for k e K,  

ad(fl)(k) -----0 for k e K, so we may  choose the map ~b~ so that  ¢~]K--~ 0, 
K being a direct s u m m a n d  of  H.  

Claim. ad(fl) -1 o ~b*(x) c K,  if @~ is chosen so that  ~ I K ~ O. 
We show that fl(ad(fi) -1 o ~ ( x ) ,  h) = 0 Vk e K.  Th i s  will suffice, since 

K = K  z. 

fl(ad(fl) - t  o ~b*(x), k) = (ad(fl) o ad(fl)-I o $~(x))(k) = $~(x)(k) = x($~(k)) = O. 

Now,  ~b~ o ad(fl) -a o ~b*Cx) = 0 since ~b~ I K ~ 0. I 

LEMMA 4. w((H 1 , ill) -J- ( / t2 ,  f12)) = w ( n l ,  ill) -~- w(n2,  f12). 

Proof. ad(fl 1 _[_ 133) = ad(fll) ~_ ad(fl~), so we may  take ¢~1±t~ ~ = ~bs~ ~_ ~bt32 . | 

Proposi t ion 3 and L e m m a  4 taken together  prove that w induces a homo-  
morph i sm 

w: We(A)~ Q~(A) 

w(H, fl) will be called the Wu element of (H, fl). 

PROPOSITION 5. W: W~(A) ~ Q~(A) is canonically defined; i.e., if  Q*(A) and 
Q~(A) are computed using resolutions ~ and ~ ,  and w and ~ are the associated 
Wu maps, then the diagram 

W~(A) ___z~ Q~(A) 

~(AI 

commutes, where i is the distinguished isomorphism of Cor. II .5.  

Proof. Let  ~b~ be a lift of  ad(fl) to ~ i ,  and v: ~ - +  ~ a chain map.  T h e n  

v 1 o ~b B is a lift of  ad(fi) to 9zl ,  so ~ may  be computed  using v x o ~b~. This  readily 
gives the result. | 
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PROPOSITION 6. W: W" --~ Q, is a natural transformation; i.e. if A -~ A' is a 
morphism of rings with involution, then the diagram 

W~(A) *~('), W~(A') 

9"(A) °~( ' ,  W~(A ') 

commutes, where the lower horizontal map is the change of rings map defined 
in Section II .  

Proof. Let (H,/3) be a Hermitian space over A, ~h~: H --~ ~1 a lift of ad(fl), 
where ~ :  ~ -+  ~1 --~ H~(A) --~ 0 is a two-step resolution. Let  h be a A-module 
chain map from ~ to 5 f covering V: H~(A) --~ H*(A'), where 5f: j//~ -+  tit'1 -+  
H~(A ') --~ 0 is a two step resolution of  H~(A ') over A'. I t  is easily verified that 

a choice for ¢~, the lifting of ad(fl'), where (H',/3') == W~(f)(H, fl), is the 
composite A ' @ A H - + I ® O a A ' @ A ~ I - + ~ J / / 1 .  Using the fact that h is a 
chain map ~ - +  ~5 ~, one may now verify the commutativity of the diagram, 
using this specific choice of ~b~ to compute W(H', fl'). | 

V. QUADRATIC FORMS 

Recall from [3] or [6] the definition of the Wall group L~)'q(A). This is the 
Grothendieck group of quadratic forms over A, factored by split quadratic 
forms. There is a natural map 

Lo.q(A)-+ W~(A) 

which forgets the quadratic structure and regards the quadratic space (H,/3,/~) 
as the Hermitian space (H, fl). The  image of L~'q(A) is the subgroup W~v(A ) _C 
W~(A) generated by even forms, i.e. by Hermitian spaces (H,/3) so that 

ad(/3)(x) = 0 in He(A) for all x ff H. 

LEMMA 1. I f  X e Wev(A), w(x) = O. 

Proof. It  suffices to show w(H, fl) = 0 for (H, fl) even. But if (H, fl) is 

even, ad(fl)(x) = 0 Vx E H, so ¢~ may be taken to be the zero map, hence 
~B = ~bB° ad(/3) -1° ~ ~ 0. | 

It  is the object of this section to characterize the kernel of w, i.e. to prove 
the converse of Lemma 1. 
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THEOREM 2. w(x) = 0 ~ x e Wgv(A ). 

Proof. We recall from [3] or [5] that if (H,/3) is a Hermitian space, and 
K _C H is a self-annihilating summand, (i.e./3(x, y) = 0 Vx, y e K), then K ± / K  
becomes a Hermitian space, by restricting the form /3 to K 1 × K ' .  Also, 
an equivalent formulation for K to be self-annihilating is that the composite 

K ---> H .ad(B) ~- H* ~ K*  

be zero. 
We suppose we are given a Hermitian space (H, fl) with w(H,/3) = 0 in 

Q~(A). We may suppose that the map ¢~: H--~ ~1 is surjective, for if it is 
not, add on a split space (H', fi') so that ~ ,  is surjective. Since w(H, 3) = O, 
we have 

~b ooad(/3) -lo~b~ = O o x - } - e X * O O * + # o 2 : o O *  

where 

X: ~ *  --~ ~ ,  X: ~ *  --~ ~ ,  E = e l* ,  and p o X* = 2: 

Form the Hermitian space (H @ ~ *  @ ~2,/~),  where ad(fi): H @ ~ *  @ 
~ ,  ~ H*  @ ~2 @ ~ *  is given by the matrix 

idH 0 0 ] 

0 - - I  i E idle  d0J~ 

( H  @ ~ *  @ ~ 0 ,  ~) is clearly Witt equivalent to (H, fl). Define an inclusion 
i: ~ '  --~ H @ ~ *  @ ~2 by i(x) = (ad(/3) -1 o ¢*(x), ~*(x), --eX(X)). 

Since ~b~: H--~  ~1 is surjective, we find that the map i is an inclusion on 
a direct summand. Also, the summand i (~*)  is self-annihilating, for composite 
i* o ad(/~) o i can be computed to be 

E(¢o o a d ( f i ) - i  o ~b~' - -  ~ 2:  ~ *  - -  ~X - -  e X * ~ * )  = 0 

Thus, by the above, (H,/3) is Witt equivalent to 

( i (~* l ) ' / i (~ ) , /3  I i(g~*) ± × i (~* ) ' )  

If we can prove that fi I i (~*)  ± × i (~*)  z is even, we will have proved the 
theorem. By the definition of ~, 

A 
a d ~ ( x ,  y, z) = ad(fl)(x) + 2 (y ) ,  
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for (x, y, z) ~ H O ~ *  O ~ 2 -  By the restrictions on ¢~ and X, however, we have 

ad(fi)(x) = p o ~bt~(x), P° x*(Y) = 2 (y )  

I t  is clear that i (~*l)  x ---- ker(ad(/~) o i*). (ad(/J) o i*)(x,  y ,  z )  .~ $t3(x) - -  
~E(y) - -  eX*(y  ) + a(z).  Applying p, we get p o ad(/~) o i* = p o ¢t~(x) + p o X*(Y) .  

Thus,  for (x, y ,  z )  ~ i(#*~(x)) a, p~bt~(x ) + p o X*(Y)  -~ O, so ad(fi)(x) + ~ ( y )  = 0, 
and the form is even. | 

VL COMPUTING Q'(A) 

In  this section, w compute Q ' ( A )  in some examples, thereby obtaining 
new proofs for the description of the Witt  groups involved in the classical 
examples, and invariants which detect the Wit t  group in some non-classical 
examples. 

(a) A = ?7, • ~- 1, trivial involution. 

In  this ease H I ( A )  = ?7/2, so a resolution is given by 7/__+3 ?7 __+ ?7/2 --+ 0. 
Since the involution acts trivially, A11 = ~ l  = ?7. F ---- ?7 @ ?7 @ Z, where the 
involution * permutes the last two factors and is trivial on the first 

cxl: Z -+ ?7/2 is reduction rood 2 

ill: Z - ~  ?7/2 is reduction rood 2. 

By the above computat ion of F, A~ 1 = {(x, y, z) I Y = z} 

fl2(x, y ,  z )  = x rood 2 ( H o m ( ~ 2 ,  ?7/2) = ?7/2) 

~2(x, 3, z) = y rood 2. 

Thus,  B11 = A1 l, and B21 is generated by the elements (1, 1, 1) and (2, 0, 0) 
in A21. Tracing through the definition of 3, one obtains 

which gives 

3(1 ,1 ,1)  = 4 + 2 + 2  = 8 ,  3(2 ,0 ,0)  = 8 ,  

Q1(77) : 7//87/. 

By evaluating on the space (1) ,  we observe that our invariant is the signature 
mod 8. 

(b) Let  OK denote the ring of integers in a finite unramified extension K 
of Q~, • = 1, with trivial involution. Since the extension Q2 _C K is unramified, 
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2 • COx is a prime ideal in COx. Moreover, HI(COz¢) = COK/2COK is a finite field of 
characteristic 2, which we denote by ~:. Note, however, that the module structure 
of/-/a(COK) is not that obtained by regarding ~z as a quotient of CO x ; rather, the 
module structure is given by the map p: COx --~ Hz 

p(x) =x~.  

The  two module structures are isomorphic, under a non-trivial automorphism 
of U z a s a n  abelian group, namely the inverse to the Frobenius. As in the case 
A = 77, a resolution is given by 

0--~ O K - ~  COx -e+  ~z--" 0. 

As above, Ax 1 = : ~ x  =COK. F=COK@COK@COK, ( x , y , z ) *  = ( X , Z , y ) ,  
giving /421 = COK @ COK. 

For x ~ Ax 1 

fix(x) = x 2 mod 2, ~(x)  = x(mod 2). 

For (x, y)  ~ A2 1 = COK @ COx, 

~x2(x, y) = x f /32(x, y)  = y= in HomcK(COK, ~) = ~z. 

This  gives B11 = (1) -~ 2COK, where (1) denotes the addit ive group generated 
by 1. To  see this, note that if x ~ B1 1, x ~ x2(mod 2). Consequently, the reduc- 
tion of x must lie in the fixed field of the Frobenius automorphism, which 
is 77/2 C_ ~:. Similarly, B2 1 consists of (x, y)  E COK @ OK such that x = yZ mod 2. 
Therefore,  B2 x is generated by elements of the form (y~, y) and 2 • (COK @ 0x). 
I t  remains to evaluate 3. I t  is immediate that 3(y z, y) = 4y z -+- 4y, 3(2x, 2y) = 
8x + 8y. We have, then, that 8COK _C 3(B21). The  quotient group 

(1) + 2CO1c/8COx 

is 77/8 + (77/4) a-l, where d = [ K :  Q2]. We must compute the quotient by 
the subgroup generated by elements of the form 4(y  2 + y). 

4COx/80x = 0x/2ClC = g: 

so to obtain the quotient of 4CO~/8COx by the subgroup generated by @2 + 4y, 
it suffices to compute the quotient of D z by elements of the form y + y% This  
is readily seen to be 77/2, so we have an exact sequence 

0 -+ ~/e  --,- 9 ~ ( ¢ D - , -  (1) + 2¢,,  4cox - 77/4 @ ( z / 2 )  a-~ --+ 0 
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In  computing the extension, two cases appear:  

(i) F is an odd-degree extension of 77/2. In  this case, 1 = x ~ + x for any 
x ~ ~:, hence 4 ~ 4~K represents a non-trivial  element. In  this case, 

Q1(01c) = 77/8 + (77/2) a-1. 

(ii) H z is an even degree extension of 77/2. 4 is now trivial in 4d)K/8CI¢ + 
(4(y + y~) [ y ~ (gK}. On the other hand, i fx  ~ 0,c is such that its mod 2 reduction 
represents the non-trivial  element in [Z/{y + 3,2, y 6 0z}, then 4x is non-tr ivial  

in 40K/80,c + {4(y q- y=) l Y e #r}. We obtain 

Ql(Cr) = 77/4 + 77/4 + (77/2) e-2. 

Combining these calculations with the well-known facts that WXv(Cr) = 77/2, 
that Wlv(¢;~)is a summand in WI(0K), and that WI(K) = W~(0K) + 77/2, we 
obtain, as in [4], 

W(K)  = 77/8 @ (7//2) a+l in case (i) 

W(K) = 77/4 q- 77/4 -]- (77/2) e in case (ii). 

Remark. The  restriction to unramified extensions is made only in the interest 
of simplicity. In  the ramified case, the module H~(~K) is no longer cyclic but  
is a direct sum of two cyclic modules, which makes the calculations more 
complicated, although not in principle more difficult. I f  one performs the 
calculations, one recovers the structure of WI(K)  for any finite extension /~  

of 4=.  

(c) Let  A = F be a field of characteristic two, so that IF  : F 2] = n < ~ ,  
where F 2 is the subfield of all squares in F.  n is a power of two. We will see 
that the invariant constructed in this paper detects the Wi t t  classes of symmetric 
bilinear forms over F.  Let  F be endowed with the trivial involution. 

LEMMA l .  Welv(F) = 0. 

Proof. I f f ~ F ,  f + f  = 2f  = 0. Thus,  if (H, fl)~ W+~v(F), fi(x, x) = 0 for 
all x ~ H, so (H, fl) is split. | 

This  shows that the map w: W+I(F) ~ Q+I(F) is injective, by Theorem IV.2. 
Since [F  : F 2] = n, we obtain that 

H+I(F) ~_ F '~ 

since the module structure on ~1 ~- F is given by 

. - f  = x ~  
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A resolution of H+I(F) is given by 

0 --~ F"  ~ H+I(F) ~ 0 

with ~2 = 0. Accordingly, Bl1~---Q+I(F). We find Homv(~* , :~a )  = 
Gl<i,j<nFia, duality acts by permuting Fij and F~i, and acts trivially on F i i .  
Thus,  

~/11 ~ (~  F~ 
l~i<~j<n 

A direct calculation now gives 

LEMMA 2. B11 C_ A t  1 consists of those vectors (aiJ) ~ A11, 1 ~ i <~ j ~ n, 
such that 

2 
OQi : .  a i j b  j 

J=l 

if  {bj}~.= 1 is a basis for F over F ~. 

We now describe the map w: W+I(F)--~ Q+I(F). As above, let (b~.}51 be a 
basis for F over F ~. Let  (H, [3) be a symmetric bilinear form over F. Then  

x ~ [3(x, x) 

defines a homomorphism q~: H ~ H+(F) n F = (~i=1 i" This  gives an n-tuple of 
linear maps q~i: H ~ F i .  Since the form [3 is non-singular, there exist unique 
elements Xi e H so that [3(x, Xi) = q&(x). Equivalently, there exists a unique 
collection of elements {Xa ..... Xn} so that 

[3(x, x) = ~ [3(x, X,) ~ bi 
i=1 

for all x c H. The  elements wit(H, [3) = [3(X i ,  Xj) C F are now invariants of the 
isomorphism t y p e  of (H, 13). In  fact, they depend only on the Witt  class, and 
may be identified with the ( i , j )- th coordinate of w(H, fi), if A11 is identified 
with (~l<.i<j<.n Fi t ,  as above. The  conclusion is, then, 

THEOREM 3. The invariants wij(H, [3)6F, 1 ~ i ~ j  ~ n, detect the Witt  
classes of symmetric bilinear forms over F, i.e. (H, [3) is stably split i f  and only i f  
wi~(H, [3) -~ 0 for all i, j. 

(d) We conclude the paper by computing Q1 in the ease A - ~  Z/2rr, 
~r = (7//2) f, endowed with the trivial involution. Recall that A : E(x 1 ,..., xi), 
the exterior algebra on i generators. Note that the square of every element y in A 
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is 0 or 1, depending on whether y is in the maximal ideal m = (x 1 .... , x~) 
or not. F rom this remark, it is immediate that 

H'(A) ~--- @ k. 
t~ 

where /~ runs over all non-zero monomials  in the xi 's  (including 1), and k .  
denotes a copy of the cyclic module  A/m. Thus,  ~1  ---~ @ .  A . ,  and 

A straightforward computat ion identifies B11 as the subgroup of @a,.  Aa.  
consisting of all vectors (c~a.) such that  

and 

+ = .T_, 

aa. = a.~ VA, f f  

For  h :/: 1, the map x --~ x + x2h is an isomorphism from A to itself, so for 
h ~ 1, ~aa is determined by (~a.}a~. • I f  h = 1, the map x ~ x + x 2 has kernel 
7//2, so a l l  is determined up to an element of the subgroup {0, 1} by  {~a.}a~. • 
Another  direct computat ion shows that  ( p  o 8)(B2 1) = m. T'_C/1, where /'_C 
@a..  A a . ,  T' = {(:ca. ) [ xa. = x.a}, and p :  Bx x -+  T' is the projection. This  gives 

Ol(A) ~__ 7]/22i(2i-1)+1 

Using the well-kn0wn fact that WI(A) is generated by  one-dimensional 
spaces, one finds that on the image of w in QI(A), the coordinates axa are deter- 
mined by  {~a.}a~./a,.~l • Thus,  we obtain 

Wl(A) ~ 2~/2(~'-~)~2'-2)+1 
W e (A) = 

As in case (c) above, Weir(A) = 0 for trivial reasons, so we obtain 

PROPOSITION 4. WI(A) --~ 77/2 (~*-1)(~'-~)+1. (This result was obtained by ad hoc 
methods in [1].) 
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