Wu Invariants of Hermitian Forms

GUNNAR CARLSSON

Department of Mathematics, University of California, San Diego, La Jolla, California 92093

Communicated by A. Fröhlich

Received May 8, 1979

INTRODUCTION

In this paper, we consider the following question: given a Hermitian ϵ symmetric form (H, β) over a ring with involution Λ , when is (H, β) Witt equivalent to an *even* form, i.e. one where $\beta(x, x)$ is always of the form $\lambda + \epsilon \bar{\lambda}$? The answer is given by constructing a group $Q^{\epsilon}(\Lambda)$, functorial on the category of rings with involution, and a homomorphism $w: W^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda)$ so that (H, β) is equivalent to an even form if and only if $w(H, \beta) = 0$. The group $Q^{\epsilon}(\Lambda)$ is readily computable—it is the homology of a certain two-term chain complex defined over Λ . Furthermore, the homomorphism w is easily evaluated on any particular form. For example, in the case $\Lambda = \mathbb{Z}$, with trivial involution, $Q^{\epsilon}(\Lambda) = \mathbb{Z}/8$ and $w(H, \beta)$ is the reduction of the signature mod 8. This work is a generalization of the results of [1], in which $Q^{1}(\Lambda)$ was implicitly computed for $\Lambda = \mathbb{Z}_{2}\pi$, where π is a 2-group. $W^{1}(\Lambda)$ was then obtained directly. The definition of $Q^{1}(\Lambda)$ given here would have simplified many of the computations in the specific case [1], and would have simplified immensely the proof of the analogue to our Theorem IV.2.

This reformulation of the characteristic elements of [1] owes much to the work of Andrew Ranicki [6]. The argument in the proof of Theorem IV.2 makes use of the zero dimensional version of Ranicki's algebraic surgery on the Wu map ψ_{β} . Our invariant $w(H, \beta)$ is also the zero-dimensional version of the desuspension invariant introduced in [2].

In the final section, we apply these results to rederive the calculation of $W(\mathcal{O}_K)$, where K is an unramified extension of $\hat{\mathbb{Q}}_2$. We also produce invariants of W(K), where K is any field of characteristic 2 so that $[K: K^2] < \infty$, which detect the Witt classes, and compute the Witt group $W(\mathbb{Z}/2\pi)$, $\pi = (\mathbb{Z}/2)^i$, with trivial involution.

Section I contains preliminary material on rings with involution. Section II defines $Q^{\epsilon}(\Lambda)$, Section III prove the functoriality of Q^{ϵ} on the category of rings with involution, Section IV defines the natural transformation $w: W^{\epsilon} \to Q^{\epsilon}$,

and Section V proves the main theorem, Theorem V.2, which asserts that (H, β) is Witt equivalent to an even form if and only if $w(H, \beta) = 0$. Section VI contains the above-mentioned examples, namely $\Lambda = \mathbb{Z}$, $\Lambda = \mathcal{O}_K$, $\Lambda = K$, and $\Lambda = \mathbb{Z}/2\pi$. The invariants for K a field of characteristic 2, $[K: K^2]$ finite, are described in Theorem VI.3.

We remark that work has been done in the case of Dedekind rings on this problem (see [7] and [8]), and thank the referee for a number of helpful remarks.

I. PRELIMINARIES

Let Λ be a ring with involution —. Given a left Λ -module H, define

$$H^* = \operatorname{Hom}_{A}(H, \Lambda).$$

 H^* is given a left Λ -module structure by $(\lambda \cdot \phi)(h) = \phi(h)\overline{\lambda}, \ \phi \in H^*, \ h \in H, \ \lambda \in \Lambda$. If H is finitely generated projective, then so is H^* , and there is a natural isomorphism $i: H \to (H^*)^*$ of left Λ -modules, defined by $(i(x))(\phi) = \overline{\phi(x)}$. Given a homomorphism $f: H_1 \to H_2$, the dual map $f^*: H_2^* \to H_1^*$ is defined by $f^*(\phi)(x) = \phi(f(x))$. If $f: H \to H^*$, then $f^*: (H^*)^* \to H^*$. Composing with i, we get $f^* \circ i: H \to H^*$.

PROPOSITION 1. $(f^* \circ i(x))(y) = \overline{f(y)(x)}$.

Proof. Immediate from the definition (*).

We often suppress mention of *i*, implicitly identifying $(H^*)^*$ and *H*.

DEFINITION 2. $H^{\epsilon}(\Lambda) = \{\lambda \in \Lambda \mid \lambda = \epsilon \overline{\lambda}\}/\{\lambda + \epsilon \overline{\lambda}, \lambda \in \Lambda\}, \epsilon = \pm 1.$

 $H^{\epsilon}(\Lambda)$ is a $\mathbb{Z}/2$ -vector space. The following is also well known.

PROPOSITION 3. $H^{\epsilon}(\Lambda)$ becomes a left Λ -module under the action $\lambda \cdot \alpha = \lambda \alpha \overline{\lambda}$, $\lambda \in \Lambda$, $\alpha \in H^{\epsilon}(\Lambda)$.

At this point, we assume that $H^{\epsilon}(\Lambda)$ is finitely generated as a Λ -module and that Λ is a Noetherian ring. This hypothesis will apply throughout the paper.

If $\varphi: H \to H^*$ satisfies $\varphi = \epsilon \varphi^*$ (suppressing *i*), then the function $x \to \varphi(x)(x)$ is a Λ -homomorphism from *H* to $H^{\epsilon}(\Lambda)$.

DEFINITION 4. Given $\varphi: H \to H^*$, $\varphi = \epsilon \varphi^*$ we define $\hat{\varphi}: H \to H^{\epsilon}(\Lambda)$ by $\hat{\varphi}(x) = \varphi(x)(x).$

We refer the reader to [3] or [5] for the definition of Hermitian spaces and Witt groups. For us, $W^{\epsilon}(\Lambda)$ will denote the Witt group of ϵ -symmetric Hermitian forms over Λ , where the underlying modules and subkernels are required to be finitely generated and projective. We conclude with

PROPOSITION 5. If $\varphi = \Psi + \epsilon \Psi^*$, $\hat{\varphi} = 0$.

Proof. $(\Psi + \epsilon \Psi^*)(x)(x) = \Psi(x)(x) + \epsilon \Psi^*(x)(x) = \Psi(x)(x) + \epsilon \overline{\Psi(x)(x)}$ (by Prop. 1). This element is zero in $H^{\epsilon}(\Lambda)$.

II. The Group $Q^{\epsilon}(\wedge)$

Let $\mathscr{R} = \mathscr{P}_2 \to^{\partial} \mathscr{P}_1 \to^{o} H^{\epsilon}(\Lambda)$ be the first two stages of a projective resolution of $H^{\epsilon}(\Lambda)$, where \mathscr{P}_i is finitely generated and projective. Such a resolution exists since we assumed $H^{\epsilon}(\Lambda)$ to be finitely generated and Λ to be Noetherian. Define $A_1^{\epsilon}(\mathscr{R}) \subseteq \operatorname{Hom}_{\Lambda}(\mathscr{P}_1^*, \mathscr{P}_1)$ by

$$A_1^{\epsilon}(\mathscr{R}) = \{ arPsi \in \operatorname{Hom}_{\mathscr{A}}(\mathscr{P}_1^*, \mathscr{P}_1) \mid arPsi = \epsilon arPsi^* \}$$

Consider the group $\Gamma = \operatorname{Hom}_{\Lambda}(\mathscr{P}_{2}^{*}, \mathscr{P}_{2}) \oplus \operatorname{Hom}_{\Lambda}(\mathscr{P}_{2}^{*}, \mathscr{P}_{1}) \oplus \operatorname{Hom}_{\Lambda}(\mathscr{P}_{1}^{*}, \mathscr{P}_{2})$. The duality involution acts on this by $(\phi_{1}, \phi_{2}, \phi_{3}) \to (\phi_{1}^{*}, \phi_{3}^{*}, \phi_{2}^{*})$. Define $A_{2}^{\epsilon}(\mathscr{R}) \subseteq \Gamma$ by

$$A_2^{\epsilon}(\mathscr{R}) = \{(\phi_1\,,\phi_2\,,\phi_3) \mid (\phi_1\,,\phi_2\,,\phi_3) = \epsilon(\phi_1^*,\phi_3^*,\phi_2^*)\}$$

We define homomorphisms α_i and β_i from $A_i^{\epsilon}(\mathscr{R})$ to $\operatorname{Hom}_{\Lambda}(\mathscr{P}_1^*, H^{\epsilon}(\Lambda))$ by

Now define $B_i^{\epsilon}(\mathscr{R}) \subseteq A_i^{\epsilon}(\mathscr{R})$

$$B_i^{\epsilon}(\mathscr{R}) = \{ x \in A_i^{\epsilon}(\mathscr{R}) \mid \alpha_i(x) = \beta_i(x) \}.$$

There is a "boundary map" $\delta: B_2^{\epsilon}(\mathscr{R}) \to A_1^{\epsilon}(\mathscr{R})$, defined by $\delta(\phi_1, \phi_2, \phi_3) = \partial \phi_1 \partial^* + \phi_2 \partial^* + \partial \phi_3$. Since $\phi_3 = \epsilon \phi_2^*$, and $\phi_1 = \epsilon \phi_1^*$, $\delta(\phi_1, \phi_2, \phi_3) \in A_1^{\epsilon}(\mathscr{R})$.

PROPOSITION 1. $\delta(B_2^{\epsilon}(\mathscr{R})) \subseteq B_1^{\epsilon}(\mathscr{R}).$

Proof. We must show that the element $\partial \phi_1 \partial^* + \phi_2 \partial^* + \epsilon \partial \phi_2^* \in B_1^{\epsilon}(\mathscr{R})$, provided that $\rho \circ \phi_2 = \hat{\phi}_1$.

$$lpha_1(\partial\phi_1\partial^*+\phi_2\partial^*+\epsilon\partial\phi_2^*)(x)=lpha_1(\phi_2\partial^*)(x)\ =
ho\circ\phi_2\circ\partial^*(x)=lpha_2(\phi_1\,,\phi_2\,,\phi_3)\circ\partial^*(x)\ =
ho_2(\phi_1\,,\phi_2\,,\phi_3)\circ\partial^*(x)=\phi_1\circ\partial^*(x)\ =\phi_1(\partial^*(x))(\partial^*(x))=(\partial\circ\phi_1\circ\partial^*)(x)(x)\ =\widehat{\partial\circ\phi_1\circ\partial^*}(x)=eta_1(\partial\circ\phi_1\circ\partial^*)(x).$$

It only remains to show that $\beta_1(\phi_2\partial^* + \epsilon\partial\phi_2^*) = 0$. But $\partial\phi_2^* = (\phi_2\partial^*)^*$, so this follows from Prop. I.5.

Definition 2. $Q^{\epsilon}(\Lambda) = B_1^{\epsilon}(\mathcal{R})/\delta(B_2^{\epsilon}(\mathcal{R})).$

We must show that this definition of $Q^{\epsilon}(\Lambda)$ depends only on ϵ and Λ , not on the choice of resolution

$$\mathscr{P}_2 \xrightarrow{\partial} \mathscr{P}_1 \xrightarrow{\rho} H^{\epsilon}(\Lambda)$$

We define $C^{\epsilon}_{*}(\mathscr{R})$, where \mathscr{R} is a two-step resolution $\mathscr{P}_{2} \rightarrow^{\delta} \mathscr{P}_{1} \rightarrow^{o} H^{\epsilon}(\Lambda) \rightarrow 0$, to be the chain complex

$$0 \to B_2^{\epsilon}(\mathscr{R}) \xrightarrow{\delta} B_1^{\epsilon}(\mathscr{R}) \to 0$$

Thus, $H_1(C^{\epsilon}_*(\mathscr{R})) = Q^{\epsilon}(\Lambda).$

PROPOSITION 3. Let $f: \mathcal{R} \to \overline{\mathcal{R}}$ be any chain map covering the identity, where \mathcal{R} and $\overline{\mathcal{R}}$ are two-step resolutions of $H^{\epsilon}(\Lambda)$. Then f induces a chain map $C_{*}(f)$: $C_{*}(\mathcal{R}) \to C_{*}(\overline{\mathcal{R}})$.

Proof. Let $f_i: \mathscr{P}_i \to \overline{\mathscr{P}}_i$, i = 1, 2, be the components of f in dimensions 1 and 2. Then we define $C_*(f)$ by

$$C_{1}(f): B_{1}^{\epsilon}(\mathscr{R}) \to B_{1}^{\epsilon}(\overline{\mathscr{R}}),$$

$$C_{1}(f)(\varphi) = f_{1} \circ \varphi \circ f_{1}^{*}$$

$$C_{2}(f): B_{2}^{\epsilon}(\mathscr{R}) \to B_{2}^{\epsilon}(\overline{\mathscr{R}}),$$

$$C_{2}(f)(\varphi_{1}, \varphi_{2}, \varphi_{3}) = (f_{2} \circ \varphi_{1} \circ f_{2}^{*}, f_{1} \circ \varphi_{2} \circ f_{2}^{*}, f_{2} \circ \varphi_{3} \circ f_{1}^{*})$$

It is immediate that $C^{\epsilon}_{*}(f)$ takes $A_{i}^{\epsilon}(\mathscr{R})$ to $A_{i}^{\epsilon}(\mathscr{R})$, and that $C^{\epsilon}_{*}(f)$ is a chain map; we must show that $C_{i}^{\epsilon}(f)(B_{i}^{\epsilon}(\mathscr{R})) \subseteq B_{i}^{\epsilon}(\mathscr{R})$. We observe that it suffices, by the definition of B_{i}^{ϵ} , to check the commutativity of the following diagrams:

(I.)
$$A_i^{\epsilon}(\mathscr{R}) \xrightarrow{\alpha_i} \operatorname{Hom}_{A}(\mathscr{P}_i^{*}, H^{\epsilon}(\Lambda))$$

 $\downarrow^{c_i^{\epsilon}(f)} \qquad \qquad \downarrow^{\varepsilon_i}$
 $A^{i\epsilon}(\overline{\mathscr{R}}) \xrightarrow{\tilde{\alpha}_i} \operatorname{Hom}_{A}(\overline{\mathscr{P}}_i^{*}, H^{\epsilon}(\Lambda))$
(II.) $A_i^{\epsilon}(\mathscr{R}) \xrightarrow{\beta_i} \operatorname{Hom}_{A}(\mathscr{P}_i^{*}, H^{\epsilon}(\Lambda))$
 $\downarrow^{c_i^{\epsilon}(f)} \qquad \qquad \downarrow^{\varepsilon_i}$
 $A_i^{\epsilon}(\overline{\mathscr{R}}) \xrightarrow{\beta_i} \operatorname{Hom}_{A}(\overline{\mathscr{P}}_i; H^{\epsilon}(\Lambda))$

481/65/1-13

where $\xi_i(g) = g \circ f_i^*$. (I) $(i = 1) \bar{\alpha}_1(C_1^{\epsilon}(f)(\varphi)) = \bar{\rho} \circ f_1 \circ \varphi \circ f_1^* = \rho \circ \varphi \circ f_1^* = \alpha_1(\varphi) \circ f_1^*$ $= \xi_1(\alpha_1(\varphi)).$ (I) $(i = 2) \bar{\alpha}_2(C_2^{\epsilon}(f)(\varphi_1, \varphi_2, \varphi_3))$ $= \rho \circ f_1 \circ \varphi_2 \circ f_2^* = \rho \circ \varphi_2 \circ f_2^*$ $= \alpha_2(\varphi_1, \varphi_2, \varphi_3) \circ f_2^* = \xi_2(\alpha_2(\varphi_1, \varphi_2, \varphi_3)).$ (II) $(i = 1) \bar{\beta}_1(C_1^{\epsilon}(f)(\varphi))(x)$ $= \bar{\beta}_1(f_1 \circ \varphi \circ f_1^*)(x) = \widehat{f_1} \circ \varphi \circ f_1^*(x) = \hat{\varphi}(f_1^*(x))$ $= (\beta_1(\varphi) \circ f_1^*)(x) = \xi_1(\beta_1(\varphi))(x).$

Here $\langle , \rangle : \mathscr{P}_1^* \times \mathscr{P}_i \to \Lambda$ is the evaluation pairing.

(II)
$$(i = 2) \bar{\beta}_2(C_2^{\epsilon}(f)(\varphi_1, \varphi_2, \varphi_3))(x)$$

$$= \bar{\beta}_2(f_2 \circ \varphi_1 \circ f_2^*, f_1 \circ \varphi_2 \circ f_2^*, f_2 \circ \varphi_3 \circ f_1^*)(x)$$

$$= \widehat{(f_2 \circ \varphi_1 \circ f_2^*)}(x) = \langle x, f_2 \circ \varphi_1 \circ f_2^*(x) \rangle$$

$$= \langle f_2^*(x), \varphi_1 \circ f_2^*(x) \rangle = \hat{\varphi}_1(f_2^*(x))$$

$$= (\beta_2(\varphi_1, \varphi_2, \varphi_3) \circ f_2^*)(x) = \xi_2(\beta_2(\varphi_1, \varphi_2, \varphi_3))(x).$$

Thus, $C^{\epsilon}_{*}(f)$ induces a map $D^{\epsilon}(f): Q^{\epsilon}(\Lambda) \to \overline{Q}^{\epsilon}(\Lambda)$, where $\overline{Q}^{\epsilon}(\Lambda)$ is computed using $\overline{\mathscr{R}}$.

PROPOSITION 4. Let $\mathcal{R}, \overline{\mathcal{R}}$ be as in Prop. 3, and let $f, g: \mathcal{R} \to \overline{\mathcal{R}}$ be two coverings of the identity map of $H^{\epsilon}(\Lambda)$. Then $D^{\epsilon}(f) = D^{\epsilon}(g)$.

Proof. It will suffice to show that $f_1 \circ \varphi \circ f_1^* - g_1 \circ \varphi \circ g_1^* \in \overline{\delta}(B_2(\overline{\mathscr{R}}))$, for all $\varphi \in B_1^{\epsilon}(\mathscr{R})$. Since f and g are both coverings of the identity, $g_1 = f_1 + \overline{\partial} \circ \lambda$, where $\lambda \colon \mathscr{P}_1 \to \overline{\mathscr{P}}_2$ is a Λ -map. We compute: $g_1 \circ \varphi \circ g_1 = (f_1 + \overline{\partial} \circ \lambda) \circ \varphi \circ (f_1^* + \lambda^* \circ \overline{\partial}^*) = f_1 \circ \varphi \circ f_1^* + \overline{\partial} \circ \lambda \circ \varphi \circ f_1^* + f_1 \circ \varphi \circ \lambda^* \circ \overline{\partial}^* + \overline{\partial} \circ \lambda \circ \varphi \circ \lambda^* \circ \overline{\partial}^*.$ We must show that $\gamma \in \overline{\delta}(B_2^{\epsilon}(\overline{\mathscr{R}}))$, where $\gamma = \overline{\partial} \circ \lambda \circ \varphi \circ f_1^* + f_1 \circ \varphi \circ \lambda^* \circ \overline{\partial}^* + \overline{\partial} \circ \lambda \circ \varphi \circ \lambda^* \circ \overline{\partial}^*.$ $\overline{\partial} \circ \lambda \circ \varphi \circ \lambda^* \circ \overline{\partial}^*.$ But, $(\lambda \circ \varphi \circ \lambda^*, f_1 \circ \varphi \circ \lambda^*, \lambda \circ \varphi \circ f_1^*) \in B_2^{\epsilon}(\overline{\mathscr{R}})$, since

$$(f_1 \circ \varphi \circ \lambda^*)^* = \lambda \circ \varphi^* \circ f_1^* = \epsilon \lambda \circ \varphi \circ f_1^*,$$

and

$$\widehat{(\lambda\circ \varphi\circ\lambda^*)}(x)=\langle x,\,\lambda\circ \varphi\circ\lambda^*(x)
angle=\langle\lambda^*(x),\,\varphi\circ\lambda^*(x)
angle=\hat{arphi}(\lambda^*(x))\ =
ho\circ arphi(\lambda^*(x))=(ar{
ho}\circ f_1\circ \varphi\circ\lambda^*)(x).$$

The second to last equality follows since $\varphi \in B_1^{\epsilon}(\mathscr{R})$. Moreover $\delta(\lambda \circ \varphi \circ \lambda^*, f_1 \circ \varphi \circ \lambda^*, \lambda \circ \varphi \circ f_1^*) = \gamma$, which concludes the proof.

COROLLARY 5. $Q^{\epsilon}(\Lambda)$ is independent of the two-step resolution used to compute it; furthermore, if $Q^{\epsilon}(\Lambda)$ and $\overline{Q}^{\epsilon}(\Lambda)$ are computed using \mathcal{R} and $\overline{\mathcal{R}}$ respectively, then there is a distinguished isomorphism from $Q^{\epsilon}(\Lambda)$ to $\overline{Q}^{\epsilon}(\Lambda)$, characterized by the requirement that it be induced by a chain map $f: \mathcal{R} \to \overline{\mathcal{R}}$ covering the identity map of $H^{\epsilon}(\Lambda)$.

III. Functoriality of the Q-Groups

Let $f: \Lambda \to \Lambda'$ be a map of rings with involution.

PROPOSITION 1. Let \mathcal{P} be finitely generated and projective over Λ . Then the natural map

$$\Lambda' \otimes_{\Lambda} \mathscr{P}^* \xrightarrow{i} (\Lambda' \otimes_{\Lambda} \mathscr{P})^*$$

defined by $i(\lambda_1 \otimes \varphi)(\lambda_2 \otimes x) = \lambda_2 f(\varphi(x)) \overline{\lambda_1}$ is an isomorphism of Λ' -modules.

Proof. (Well-known).

Let \mathscr{P} be a finitely generated Λ -module, \mathscr{M} a finitely generated Λ' -module, and $g: \mathscr{P} \to \mathscr{M}$ a Λ -map, where \mathscr{M} is a Λ -module by restriction of scalars. Then there is a unique factorization

with \tilde{g} a Λ -module map.

We point out that there is a canonical map of abelian groups

$$\alpha(\mathscr{P}_1, \mathscr{P}_2) \colon \operatorname{Hom}_{A}(\mathscr{P}_1^*, \mathscr{P}_2) \to \operatorname{Hom}_{A'}(\Lambda' \otimes_{\Lambda} \mathscr{P}_1^*, \Lambda' \otimes \mathscr{P}_2)$$
$$\cong \operatorname{Hom}_{A'}((\Lambda' \otimes_{\Lambda} \mathscr{P}_1)^*, \Lambda' \otimes_{\Lambda} \mathscr{P}_2)$$

where the second isomorphism is that given by Prop. 1. Moreover, this map respects duality in that the diagram

commutes.

Let $C_*^{\epsilon}(\mathscr{R})$ and $C_{\epsilon}^*(\mathscr{S})$ be defined using resolutions $\mathscr{R}: \mathscr{P}_2 \to^{\widehat{o}} \mathscr{P}_1 \to^{\rho} H^{\epsilon}(\Lambda)$ and $\mathscr{S}: \mathscr{M}_2 \to^{\widehat{o}} \mathscr{M}_1 \to^{\rho} H^{\epsilon}(\Lambda')$, of Λ and Λ' -modules respectively. Note that there is a natural map of Λ -modules $\eta: H^{\epsilon}(\Lambda) \to H^{\epsilon}(\Lambda')$. Consequently, lifting η through the two-step resolutions, we obtain

$$\begin{array}{c} \mathcal{P}_2 \xrightarrow{g_2} \mathcal{M}_2 \\ \vdots & \vdots \\ \partial \downarrow & \partial \downarrow \\ \mathcal{P}_1 \xrightarrow{g_1} \mathcal{M}_1 \end{array}$$

where the g_i 's are Λ -module maps. Let \tilde{g}_i be the factorization defined above. Define β_{ij} : Hom_{Λ}($\mathscr{P}_i^*, \mathscr{P}_j$) \rightarrow Hom_{Λ'}($\mathscr{M}_i^*, \mathscr{M}_j$) by $\beta_{ij}(\varphi) = \tilde{g}_j \circ \alpha(\mathscr{P}_i, \mathscr{P}_j) \circ \tilde{g}_i^*$. β_{ij} commutes with duality in the same sense as α does. Form the complexes $C_{\epsilon}^*(\mathscr{R}), C_{\epsilon}^*(\mathscr{S})$ as in Section II.

PROPOSITION 2. There is a chain map $C^*_{\epsilon}(\mathscr{R}) \rightarrow^{\gamma} C^*_{\epsilon}(\mathscr{S})$, defined by $\gamma_1(\varphi) = \beta_{11}(\varphi), \gamma_2(\varphi_1, \varphi_2, \varphi_3) = (\beta_{22}(\varphi_1), \beta_{21}(\varphi_2), \beta_{12}(\varphi_3)).$

Proof. We first observe that $\gamma_i(A_i^{\epsilon}(\mathscr{R})) \subseteq \gamma_i(A_i^{\epsilon}(\mathscr{S}))$, since β_{ij} respects duality. We must show that $\gamma_i(B_i^{\epsilon}(\mathscr{R})) \subseteq \gamma_i(B_i^{\epsilon}(\mathscr{S}))$.

To prove this, it suffices to observe that the diagrams

$$\begin{array}{ccc} A_i^{\epsilon}(\mathscr{R}) & \xrightarrow{\gamma_i} & A_i^{\epsilon}(\mathscr{S}) \\ & & \downarrow^{\alpha_i,\beta_i} & & \downarrow^{\alpha_i,\beta_s} \\ & & & \downarrow^{\alpha_i,\beta_s} \end{array}$$
$$\operatorname{Hom}_{\mathcal{A}'}(\mathscr{M}_i^*, H^{\epsilon}(\mathcal{A}')) \xrightarrow{\sigma_i} & \operatorname{Hom}_{\mathcal{A}'}(\mathscr{M}_i^*, H^{\epsilon}(\mathcal{A}')) \end{array}$$

commute, where σ_i is the composite

$$\operatorname{Hom}_{A}(\mathscr{P}_{i}^{*}, H^{\epsilon}(\Lambda)) \to \operatorname{Hom}_{A'}((\Lambda' \otimes_{\Lambda} \mathscr{P}_{i})^{*}, \Lambda' \otimes_{\Lambda} H^{\epsilon}(\Lambda))$$
$$\to \operatorname{Hom}_{A'}(\mathscr{M}_{i}^{*}, H^{\epsilon}(\Lambda'))$$

the second arrow being defined by $h \to \tilde{\eta} \circ h \circ \tilde{g}_i^*$. The commutativity of the diagram is elementary, as is the fact that γ_* is a chain map.

Consequently, γ_* induces a map $Q^{\epsilon}(\gamma): Q^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda')$.

PROPOSITION 3. Let γ_* , γ'_* be chain maps $C^{\epsilon}_*(\mathscr{R}) \to C^{\epsilon}(\mathscr{S})$ associated with maps g, g', with g, g' inducing η . Then $Q^{\epsilon}(\gamma_*) = Q^{\epsilon}(\gamma'_*)$.

Proof. Since g, g' both induce η , we have that $g'_1 = g_1 + \partial \circ \lambda$, where $\lambda: \mathscr{P}_1 \to \mathscr{M}_2$ is a Λ -map. Consequently,

$$\begin{split} \gamma_1'(\varphi) &= \tilde{g}_1 \circ \alpha(\mathscr{P}_1 \ , \ \mathscr{P}_1)(\varphi) \circ \tilde{g}_1^* \\ &= (\tilde{g}_1 + \partial \circ \tilde{\lambda}) \circ \alpha(\mathscr{P}_1 \ , \ \mathscr{P}_1)(\varphi) \circ (\tilde{g}_1^* + \tilde{\lambda}^* \circ \partial^*) \\ &= Q^{\epsilon}(\gamma_*)(\varphi) + \partial \circ \tilde{\lambda} \circ \alpha(\mathscr{P}_1 \ , \ \mathscr{P}_1)(\varphi) \circ \tilde{g}_1^* + \tilde{g}_1 \circ \alpha(\mathscr{P}_1 \ , \ \mathscr{P}_1)(\varphi) \circ \tilde{\lambda}^* \circ \partial^* \\ &+ \partial \circ \tilde{\lambda} \circ \alpha(\mathscr{P}_1 \ , \ \mathscr{P}_1)(\varphi) \circ \tilde{\lambda}^* \circ \partial^*. \end{split}$$

We must show that the last three terms lie in $\delta(B_2^{\epsilon}(\mathscr{S}))$. Now set

$$\begin{aligned} x &= (\tilde{\lambda} \circ \alpha(\mathscr{P}_1, \mathscr{P}_1)(\varphi) \circ \tilde{\lambda}^*, \tilde{g}_1 \circ \alpha(\mathscr{P}_1, \mathscr{P}_1)(\varphi) \circ \tilde{\lambda}^*, \tilde{\lambda} \circ \alpha(\mathscr{P}_1, \mathscr{P}_1)(\varphi) \circ \tilde{g}_1^*) \in A_2^{\epsilon}(\mathscr{S}). \end{aligned}$$

It claim $x \in \mathbf{B}_{\epsilon}(\mathscr{S})$. For

It claim $x \in B_2^{\epsilon}(\mathscr{S})$. For,

$$egin{aligned} eta_2(x) &= \widehat{\lambda} \circ lpha(\mathscr{P}_1\,,\,\mathscr{P}_1)(arphi) \circ \widetilde{\lambda}^* = \widehat{lpha(\mathscr{P}_1\,,\,\mathscr{P}_1)(arphi)} \circ \widetilde{\lambda}^* = \sigma_1(\widehat{arphi}) \circ \widetilde{\lambda}^* \ &= \sigma_1(
ho \circ arphi) \circ \widetilde{\lambda}^* =
ho \circ \widetilde{g}_1 \circ lpha(\mathscr{P}_1\,,\,\mathscr{P}_1)(arphi) \circ \widetilde{\lambda}^* = lpha_2(x). \end{aligned}$$

 $\hat{\varphi} = \rho \circ \varphi$ since $\varphi \in A_1^{\epsilon}(\mathscr{R})$. Now,

$$egin{aligned} \delta(x) &= \partial \circ ilde{\lambda} \circ lpha(\mathscr{P}_1 \ , \mathscr{P}_1)(arphi) \circ ilde{g}_1^* + ilde{g}_1 \circ lpha(\mathscr{P}_1 \ , \mathscr{P}_1)(arphi) \circ ilde{\lambda}^* \circ \partial^* \ &+ \partial \circ ilde{\lambda} \circ lpha(\mathscr{P}_1 \ , \mathscr{P}_1)(arphi) \circ ilde{\lambda}^* \circ \partial^*. \quad \blacksquare \end{aligned}$$

COROLLARY 4. There is a canonical change of rings map $Q^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda')$, characterized by the requirement that it be induced by a Λ -module chain map from a Λ -resolution of $H^{\epsilon}(\Lambda)$ to a Λ' -resolution of $H^{\epsilon}(\Lambda')$, covering the Λ -map $\eta: H^{\epsilon}(\Lambda) \to H^{\epsilon}(\Lambda')$.

IV. The Map $w: W^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda)$

Let (H, β) denote an ϵ -symmetric Hermitian space over Λ . We will define an element $w(H, \beta) \in Q^{\epsilon}(\Lambda)$ as follows: let $ad(\beta): H \to H^*$ denote the adjoint map to the pairing $\beta: H \times H \to \Lambda$. It is an isomorphism, and $ad(\beta)^* = \epsilon ad(\beta)$. From Definition I.4, we have the map

$$\operatorname{ad}(\beta)$$
: $H \to H^{\epsilon}(\Lambda)$

Let $\mathscr{R} = \mathscr{P}_2 \to^{\partial} \mathscr{P}_1 \to^{\rho} H^{\epsilon}(\Lambda)$ be the first two stages of a resolution of $H^{\epsilon}(\Lambda)$, \mathscr{P}_i f.g. projective, as in Section II. Then since H is projective, the map $\widehat{\mathrm{ad}}(\beta)$ lifts to \mathscr{P}_1 . Let the lifting be denoted by $\psi_{\beta} \colon H \to \mathscr{P}_1$. We define $\xi_{\beta} \in \mathrm{Hom}_A(\mathscr{P}_1^*, \mathscr{P}_1)$ by

$$\xi_{\beta} = \psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}$$

Proposition 1. $\xi_{\beta} \in B_1^{\epsilon}(\mathscr{R}).$

Proof. Since $ad(\beta) = \epsilon ad(\beta)^*$, $ad(\beta)^{-1} = \epsilon(ad(\beta)^{-1})^*$. We compute:

$$\begin{aligned} \alpha_{1}(\xi_{\beta})(x) &= \alpha_{1}(\psi_{\beta} \circ (\operatorname{ad}(\beta)^{-1}) \circ \psi_{\beta}^{*})(x) \\ &= (\rho \circ \psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*})(x) = (\widehat{\operatorname{ad}(\beta)} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*})(x) \\ &= (\operatorname{ad}(\beta)(\operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x)))(\operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x)) \\ &= (\psi_{\beta}^{*}(x))(\operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x)) \\ &= x(\psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x)) = \epsilon(\psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x))(x) \\ &= \widetilde{\psi_{\beta}} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x) = \beta_{1}(\xi_{\beta})(x), \quad \text{so} \quad \xi_{\beta} \in B_{1}^{\epsilon}(\mathscr{R}). \end{aligned}$$

PROPOSITION 2. The residue class of ξ_{β} in $Q^{\epsilon}(\Lambda)$ is independent of the choice of ψ_{β} .

Proof. Given ψ_{β} and ψ'_{β} , liftings of $ad(\beta)$, we must show that the associated elements ξ_{β} and ξ'_{β} differ by an element in $\delta(B_2^{\epsilon}(\mathcal{R}))$. Since ψ_{β} and ψ'_{β} are both liftings of $ad(\beta)$, $\psi'_{\beta} = \psi_{\beta} + \partial \circ \chi$, where $\chi: H \to \mathscr{P}_2$. Thus,

$$egin{aligned} \xi_eta' &- \xi_eta &= \partial \circ \chi \circ \operatorname{ad}(eta)^{-1} \circ \psi_eta^* + \psi_eta \circ \operatorname{ad}(eta)^{-1} \circ \chi^* \circ \partial^* \ &+ \partial \circ \chi \circ \operatorname{ad}(eta)^{-1} \circ \chi^* \circ \partial^* \end{aligned}$$

Now, consider the element

$$\mu = (\chi \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*, \psi_\beta \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*, \chi \circ \operatorname{ad}(\beta)^{-1} \circ \psi_\beta^*)$$

in $A_2^{\epsilon}(\mathscr{R})$. We claim that $\mu \in B_2^{\epsilon}(\mathscr{R})$. To show this, we must have

$$ho\circ\psi_{eta}\circ\mathrm{ad}(eta)^{-1}\circ\chi^*=\chi\circ\mathrm{ad}(eta)^{-1}\circ\chi^*.$$

Now,

$$\begin{split} \rho \circ \psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*(x) &= \widehat{\operatorname{ad}(\beta)} \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*(x) \\ &= \operatorname{ad}(\beta)(\operatorname{ad}(\beta)^{-1} \circ \chi^*(x))(\operatorname{ad}(\beta)^{-1} \circ \chi^*(x)) \\ &= \chi^*(x)(\operatorname{ad}(\beta)^{-1} \circ \chi^*(x)) = x(\chi \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*(x)) \\ &= \epsilon(\chi \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*(x))(x) = \overbrace{\chi \circ \operatorname{ad}(\beta)^{-1} \circ \chi^*(x)}^{-1} \end{split}$$

 $\delta(\mu) = \xi'_{\beta} - \xi_{\beta}$, proving the result.

We have constructed an invariant in $Q^{\epsilon}(\Lambda)$ depending only on the isomorphism class of the space (H, β) , which we will call $w(H, \beta) \in Q^{\epsilon}(\Lambda)$. We will proceed to show that this invariant induces a homomorphism $w: W^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda)$.

PPROOSITION 3. If (H, β) is split, then $w(H, \beta) = 0$.

Proof. Let $K \subseteq H$ be a projective summand, with $K = K^{\perp}$ (={ $x \in H \mid \beta(x, K) = 0$ }), which exists since (H, β) is split. Since $\beta(k, k) = 0$ for $k \in K$, $\widehat{ad(\beta)}(k) = 0$ for $k \in K$, so we may choose the map ψ_{β} so that $\psi_{\beta} \mid K \equiv 0$, K being a direct summand of H.

Claim. $\operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x) \in K$, if ψ_{β} is chosen so that $\psi_{\beta} \mid K \equiv 0$. We show that $\beta(\operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x), k) = 0 \quad \forall k \in K$. This will suffice, since $K = K^{\perp}$.

$$\begin{split} \beta(\mathrm{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x), k) &= (\mathrm{ad}(\beta) \circ \mathrm{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x))(k) = \psi_{\beta}^{*}(x)(k) = x(\psi_{\beta}(k)) = 0.\\ \mathrm{Now}, \psi_{\beta} \circ \mathrm{ad}(\beta)^{-1} \circ \psi_{\beta}^{*}(x) = 0 \text{ since } \psi_{\beta} \mid K \equiv 0. \end{split}$$

LEMMA 4. $w((H_1, \beta_1) \perp (H_2, \beta_2)) = w(H_1, \beta_1) + w(H_2, \beta_2).$ *Proof.* $\widehat{ad(\beta_1 \perp \beta_2)} = \widehat{ad(\beta_1)} \perp \widehat{ad(\beta_2)}$, so we may take $\psi_{\beta_1 \perp \beta_2} = \psi_{\beta_1} \perp \psi_{\beta_2}.$

Proposition 3 and Lemma 4 taken together prove that w induces a homomorphism

$$w\colon W^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda)$$

 $w(H, \beta)$ will be called the Wu element of (H, β) .

PROPOSITION 5. w: $W^{\epsilon}(\Lambda) \to Q^{\epsilon}(\Lambda)$ is canonically defined; i.e., if $Q^{\epsilon}(\Lambda)$ and $\overline{Q}^{\epsilon}(\Lambda)$ are computed using resolutions \mathcal{R} and $\overline{\mathcal{R}}$, and w and \overline{w} are the associated Wu maps, then the diagram

$$W^{\epsilon}(\Lambda) \xrightarrow{w} Q^{\epsilon}(\Lambda)$$

$$\downarrow^{\bar{w}} \qquad \downarrow^{i}$$

$$\bar{Q}^{\epsilon}(\Lambda)$$

commutes, where i is the distinguished isomorphism of Cor. II.5.

Proof. Let ψ_{β} be a lift of $ad(\beta)$ to \mathscr{P}_1 , and $\nu: \mathscr{R} \to \overline{\mathscr{R}}$ a chain map. Then $\nu_1 \circ \psi_{\beta}$ is a lift of $ad(\beta)$ to \mathscr{P}_1 , so \overline{w} may be computed using $\nu_1 \circ \psi_{\beta}$. This readily gives the result.

PROPOSITION 6. w: $W^{\epsilon} \rightarrow Q^{\epsilon}$ is a natural transformation; i.e. if $\Lambda \rightarrow \Lambda'$ is a morphism of rings with involution, then the diagram

$$\begin{array}{c} W^{\epsilon}(\Lambda) \xrightarrow{W^{\epsilon}(f)} W^{\epsilon}(\Lambda') \\ \downarrow^{w} \qquad \downarrow^{w} \\ Q^{\epsilon}(\Lambda) \xrightarrow{Q^{\epsilon}(f)} W^{\epsilon}(\Lambda') \end{array}$$

commutes, where the lower horizontal map is the change of rings map defined in Section II.

Proof. Let (H, β) be a Hermitian space over Λ , $\psi_{\beta}: H \to \mathscr{P}_1$ a lift of $\operatorname{ad}(\beta)$, where $\mathscr{R}: \mathscr{P}_2 \to \mathscr{P}_1 \to H^{\epsilon}(\Lambda) \to 0$ is a two-step resolution. Let h be a Λ -module chain map from \mathscr{R} to \mathscr{S} covering $\eta: H^{\epsilon}(\Lambda) \to H^{\epsilon}(\Lambda')$, where $\mathscr{S}: \mathscr{M}_2 \to \mathscr{M}_1 \to$ $H^{\epsilon}(\Lambda') \to 0$ is a two step resolution of $H^{\epsilon}(\Lambda')$ over Λ' . It is easily verified that a choice for ψ_{β} , the lifting of $\operatorname{ad}(\beta')$, where $(H', \beta') = W^{\epsilon}(f)(H, \beta)$, is the composite $\Lambda' \otimes_{\Lambda} H \to^{1 \otimes \psi_{\beta}} \Lambda' \otimes_{\Lambda} \mathscr{P}_1 \to^{\hbar_1} \mathscr{M}_1$. Using the fact that h is a chain map $\mathscr{R} \to \mathscr{S}$, one may now verify the commutativity of the diagram, using this specific choice of ψ_{β}' to compute $W(H', \beta')$.

V. QUADRATIC FORMS

Recall from [3] or [6] the definition of the Wall group $L_0^{\epsilon,q}(\Lambda)$. This is the Grothendieck group of *quadratic* forms over Λ , factored by split quadratic forms. There is a natural map

 $L_0^{\epsilon,q}(\Lambda) \to W^{\epsilon}(\Lambda)$

which forgets the quadratic structure and regards the quadratic space (H, β, μ) as the Hermitian space (H, β) . The image of $L_0^{\epsilon,q}(\Lambda)$ is the subgroup $W_{\text{ev}}^{\epsilon}(\Lambda) \subseteq W^{\epsilon}(\Lambda)$ generated by even forms, i.e. by Hermitian spaces (H, β) so that $\widehat{\operatorname{ad}}(\beta)(x) = 0$ in $H^{\epsilon}(\Lambda)$ for all $x \in H$.

LEMMA 1. If $x \in W_{ev}^{\epsilon}(\Lambda)$, w(x) = 0.

Proof. It suffices to show $w(H, \beta) = 0$ for (H, β) even. But if (H, β) is even, $\widehat{ad(\beta)}(x) = 0 \quad \forall x \in H$, so ψ_{β} may be taken to be the zero map, hence $\xi_{\beta} = \psi_{\beta} \circ ad(\beta)^{-1} \circ \psi_{\beta}^* \equiv 0$.

It is the object of this section to characterize the kernel of w, i.e. to prove the converse of Lemma 1.

Theorem 2. $w(x) = 0 \Rightarrow x \in W_{ev}^{\epsilon}(\Lambda)$.

Proof. We recall from [3] or [5] that if (H, β) is a Hermitian space, and $K \subseteq H$ is a self-annihilating summand, (i.e. $\beta(x, y) = 0 \ \forall x, y \in K$), then K^{\perp}/K becomes a Hermitian space, by restricting the form β to $K^{\perp} \times K^{\perp}$. Also, an equivalent formulation for K to be self-annihilating is that the composite

$$K \to H \xrightarrow{\operatorname{ad}(\beta)} H^* \to K^*$$

be zero.

We suppose we are given a Hermitian space (H, β) with $w(H, \beta) = 0$ in $Q^{\epsilon}(\Lambda)$. We may suppose that the map $\psi_{\beta}: H \to \mathscr{P}_{1}$ is surjective, for if it is not, add on a split space (H', β') so that $\psi_{\beta'}$ is surjective. Since $w(H, \beta) = 0$, we have

$$\psi_{m{eta}} \circ \operatorname{ad}(m{eta})^{-1} \circ \psi_{m{eta}}^* = \partial \circ \chi + \epsilon \chi^* \circ \partial^* + \partial \circ \varSigma \circ \partial^*$$

where

$$\chi: \mathscr{P}_1^* \to \mathscr{P}_2, \Sigma: \mathscr{P}_2^* \to \mathscr{P}_2, \qquad \Sigma = \epsilon \Sigma^*, \qquad ext{and} \qquad \rho \circ \chi^* = \hat{\Sigma}$$

Form the Hermitian space $(H \oplus \mathscr{P}_2^* \oplus \mathscr{P}_2, \tilde{\beta})$, where $\operatorname{ad}(\tilde{\beta}): H \oplus \mathscr{P}_2^* \oplus \mathscr{P}_2 \to H^* \oplus \mathscr{P}_2 \oplus \mathscr{P}_2^*$ is given by the matrix

$$\begin{bmatrix} \mathrm{id}_H & 0 & 0 \\ 0 & -\Sigma & \mathrm{id}_{\mathscr{P}_2} \\ 0 & \epsilon \, \mathrm{id}_{\mathscr{P}_2^*} & 0 \end{bmatrix}$$

 $(H \oplus \mathscr{P}_2^* \oplus \mathscr{P}_2, \overline{\beta})$ is clearly Witt equivalent to (H, β) . Define an inclusion $i: \mathscr{P}_1^* \to H \oplus \mathscr{P}_2^* \oplus \mathscr{P}_2$ by $i(x) = (\mathrm{ad}(\beta)^{-1} \circ \psi_{\beta}^*(x), \partial^*(x), -\epsilon \chi(x))$.

Since $\psi_{\beta}: H \to \mathscr{P}_1$ is surjective, we find that the map *i* is an inclusion on a direct summand. Also, the summand $i(\mathscr{P}_1^*)$ is self-annihilating, for composite $i^* \circ \mathrm{ad}(\bar{\beta}) \circ i$ can be computed to be

$$\epsilon(\psi_{\beta} \circ \operatorname{ad}(\beta)^{-1} \circ \psi_{\beta}^{*} - \partial \Sigma \partial^{*} - \partial \chi - \epsilon \chi^{*} \partial^{*}) = 0$$

Thus, by the above, (H, β) is Witt equivalent to

$$(i(\mathscr{P}_1^*)^{\perp}/i(\mathscr{P}_1^*), \beta \mid i(\mathscr{P}_1^*)^{\perp} imes i(\mathscr{P}_1^*)^{\perp})$$

If we can prove that $\beta \mid i(\mathscr{P}_1^*)^{\perp} \times i(\mathscr{P}_1^*)^{\perp}$ is even, we will have proved the theorem. By the definition of $\overline{\beta}$,

$$\widehat{\operatorname{ad}(ar{eta})}(x,\,y,\,z)=\widehat{\operatorname{ad}(eta)}(x)+\hat{\mathcal{L}}(y),$$

for $(x, y, z) \in H \oplus \mathscr{P}_2^* \oplus \mathscr{P}_2$. By the restrictions on ψ_β and χ , however, we have

$$\widehat{\mathrm{ad}}(\beta)(x) = \rho \circ \psi_{\beta}(x), \qquad \rho \circ \chi^*(y) = \hat{\varSigma}(y)$$

It is clear that $i(\mathscr{P}_1^*)^{\perp} = \ker(\operatorname{ad}(\bar{\beta}) \circ i^*)$. $(\operatorname{ad}(\bar{\beta}) \circ i^*)(x, y, z) = \psi_{\beta}(x) - \partial E(y) - \epsilon \chi^*(y) + \partial(z)$. Applying ρ , we get $\rho \circ \operatorname{ad}(\bar{\beta}) \circ i^* = \rho \circ \psi_{\beta}(x) + \rho \circ \chi^*(y)$.

Thus, for $(x, y, z) \in i(\mathscr{P}_1^*(x))^{\perp}$, $\rho \psi_{\beta}(x) + \rho \circ \chi^*(y) = 0$, so $\operatorname{ad}(\beta)(x) + \hat{\mathcal{L}}(y) = 0$, and the form is even.

VI. Computing $Q^{\epsilon}(\Lambda)$

In this section, w compute $Q^{\epsilon}(\Lambda)$ in some examples, thereby obtaining new proofs for the description of the Witt groups involved in the classical examples, and invariants which detect the Witt group in some non-classical examples.

(a) $\Lambda = \mathbb{Z}, \epsilon = 1$, trivial involution.

In this case $H^1(\Lambda) = \mathbb{Z}/2$, so a resolution is given by $\mathbb{Z} \to^2 \mathbb{Z} \to \mathbb{Z}/2 \to 0$. Since the involution acts trivially, $A_1^1 = \mathscr{P}_1 = \mathbb{Z}$. $\Gamma = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, where the involution * permutes the last two factors and is trivial on the first

> $\alpha_1: \mathbb{Z} \to \mathbb{Z}/2$ is reduction mod 2 $\beta_1: \mathbb{Z} \to \mathbb{Z}/2$ is reduction mod 2.

By the above computation of Γ , $A_{2^1} = \{(x, y, z) \mid y = z\}$

$$egin{aligned} η_2(x,\,y,\,z)=x ext{ mod } 2(ext{Hom}(\mathscr{P}_2\,,\,\mathbb{Z}/2)=\mathbb{Z}/2) \ &lpha_2(x,\,y,\,z)=y ext{ mod } 2. \end{aligned}$$

Thus, $B_1^1 = A_1^1$, and B_2^1 is generated by the elements (1, 1, 1) and (2, 0, 0) in A_2^1 . Tracing through the definition of δ , one obtains

$$\delta(1, 1, 1) = 4 + 2 + 2 = 8, \quad \delta(2, 0, 0) = 8,$$

which gives

$$Q^{\mathbf{1}}(\mathbb{Z}) = \mathbb{Z}/8\mathbb{Z}.$$

By evaluating on the space $\langle 1 \rangle$, we observe that our invariant is the signature mod 8.

(b) Let \mathcal{O}_K denote the ring of integers in a finite unramified extension K of $\hat{\mathbb{Q}}_2$, $\epsilon = 1$, with trivial involution. Since the extension $\hat{\mathbb{Q}}_2 \subseteq K$ is unramified,

 $2 \cdot \mathcal{O}_K$ is a prime ideal in \mathcal{O}_K . Moreover, $H^1(\mathcal{O}_K) = \mathcal{O}_K/2\mathcal{O}_K$ is a finite field of characteristic 2, which we denote by \mathbb{F} . Note, however, that the module structure of $H^1(\mathcal{O}_K)$ is not that obtained by regarding \mathbb{F} as a quotient of \mathcal{O}_K ; rather, the module structure is given by the map $\rho: \mathcal{O}_K \to \mathbb{F}$

$$\rho(x) = x^2$$

The two module structures are isomorphic, under a non-trivial automorphism of \mathbb{F} as an abelian group, namely the inverse to the Frobenius. As in the case $\Lambda = \mathbb{Z}$, a resolution is given by

$$0 \to \mathcal{O}_K \xrightarrow{2} \mathcal{O}_K \xrightarrow{p} \mathbb{F} \to 0.$$

As above, $A_1^1 = \mathscr{P}_1 = \mathscr{O}_K$. $\Gamma = \mathscr{O}_K \oplus \mathscr{O}_K \oplus \mathscr{O}_K$, $(x, y, z)^* = (x, z, y)$, giving $A_2^1 = \mathscr{O}_K \oplus \mathscr{O}_K$.

For $x \in A_1^1$

$$\beta_1(x) = x^2 \mod 2, \qquad \alpha_1(x) = x \pmod{2}$$

For $(x, y) \in A_2^1 = \mathcal{O}_K \oplus \mathcal{O}_K$,

This gives $B_1^{1} = (1) + 2\mathcal{O}_K$, where (1) denotes the *additive group* generated by 1. To see this, note that if $x \in B_1^{1}$, $x \equiv x^2 \pmod{2}$. Consequently, the reduction of x must lie in the fixed field of the Frobenius automorphism, which is $\mathbb{Z}/2 \subseteq \mathbb{F}$. Similarly, B_2^{1} consists of $(x, y) \in \mathcal{O}_K \oplus \mathcal{O}_K$ such that $x \equiv y^2 \mod 2$. Therefore, B_2^{1} is generated by elements of the form (y^2, y) and $2 \cdot (\mathcal{O}_K \oplus \mathcal{O}_K)$. It remains to evaluate δ . It is immediate that $\delta(y^2, y) = 4y^2 + 4y$, $\delta(2x, 2y) = 8x + 8y$. We have, then, that $8\mathcal{O}_K \subseteq \delta(B_2^{1})$. The quotient group

$$(1) + 2\mathcal{O}_{K}/8\mathcal{O}_{K}$$

is $\mathbb{Z}/8 + (\mathbb{Z}/4)^{d-1}$, where $d = [K : \hat{\mathbb{Q}}_2]$. We must compute the quotient by the subgroup generated by elements of the form $4(y^2 + y)$.

$$4\mathcal{O}_K/8\mathcal{O}_K = \mathcal{O}_K/2\mathcal{O}_K = \mathbb{F}$$

so to obtain the quotient of $4\mathcal{O}_K/8\mathcal{O}_K$ by the subgroup generated by $4y^2 + 4y$, it suffices to compute the quotient of \mathbb{F} by elements of the form $y + y^2$. This is readily seen to be $\mathbb{Z}/2$, so we have an exact sequence

$$0 \to \mathbb{Z}/2 \to Q^{1}(\mathcal{O}_{K}) \to \frac{(1) + 2\mathcal{O}_{K}}{4\mathcal{O}_{K}} = \mathbb{Z}/4 \oplus (\mathbb{Z}/2)^{d-1} \to 0$$

In computing the extension, two cases appear:

(i) \mathbb{F} is an odd-degree extension of $\mathbb{Z}/2$. In this case, $1 = x^2 + x$ for any $x \in \mathbb{F}$, hence $4 \in 4\mathcal{O}_K$ represents a non-trivial element. In this case,

$$Q^{\mathbf{1}}(\mathcal{O}_{K}) = \mathbb{Z}/8 + (\mathbb{Z}/2)^{d-1}.$$

(ii) \mathbb{F} is an even degree extension of $\mathbb{Z}/2$. 4 is now trivial in $4\mathcal{O}_K/8\mathcal{O}_K + \{4(y+y^2) \mid y \in \mathcal{O}_K\}$. On the other hand, if $x \in \mathcal{O}_K$ is such that its mod 2 reduction represents the non-trivial element in $\mathbb{F}/\{y+y^2, y \in \mathbb{F}\}$, then 4x is non-trivial in $4\mathcal{O}_K/8\mathcal{O}_K + \{4(y+y^2) \mid y \in \mathcal{O}_K\}$. We obtain

$$Q^{1}(\mathcal{O}_{K}) = \mathbb{Z}/4 + \mathbb{Z}/4 + (\mathbb{Z}/2)^{d-2}.$$

Combining these calculations with the well-known facts that $W^1_{\text{ev}}(\mathcal{O}_K) = \mathbb{Z}/2$, that $W^1_{\text{ev}}(\mathcal{O}_K)$ is a summand in $W^1(\mathcal{O}_K)$, and that $W^1(K) = W^1(\mathcal{O}_K) + \mathbb{Z}/2$, we obtain, as in [4],

$$W(K) = \mathbb{Z}/8 + (\mathbb{Z}/2)^{d+1}$$
 in case (i)
 $W(K) = \mathbb{Z}/4 + \mathbb{Z}/4 + (\mathbb{Z}/2)^d$ in case (ii).

Remark. The restriction to unramified extensions is made only in the interest of simplicity. In the ramified case, the module $H^{\epsilon}(\mathcal{O}_{K})$ is no longer cyclic but is a direct sum of two cyclic modules, which makes the calculations more complicated, although not in principle more difficult. If one performs the calculations, one recovers the structure of $W^{1}(K)$ for any finite extension K of $\hat{\mathbb{Q}}_{2}$.

(c) Let $\Lambda = F$ be a field of characteristic two, so that $[F:F^2] = n < \infty$, where F^2 is the subfield of all squares in F. n is a power of two. We will see that the invariant constructed in this paper detects the Witt classes of symmetric bilinear forms over F. Let F be endowed with the trivial involution.

LEMMA 1. $W_{ev}^{1}(F) = 0.$

Proof. If $f \in F$, $f + \bar{f} = 2f = 0$. Thus, if $(H, \beta) \in W^{+1}_{ev}(F)$, $\beta(x, x) = 0$ for all $x \in H$, so (H, β) is split.

This shows that the map $w: W^{+1}(F) \to Q^{+1}(F)$ is injective, by Theorem IV.2. Since $[F:F^2] = n$, we obtain that

$$H^{+1}(F) \cong F^n$$

since the module structure on $\mathscr{P}_1 = F$ is given by

$$x \cdot f = x^2 f.$$

A resolution of $H^{+1}(F)$ is given by

$$0 \to F^n \to H^{+1}(F) \to 0$$

with $\mathscr{P}_2 = 0$. Accordingly, $B_1^1 \cong Q^{+1}(F)$. We find $\operatorname{Hom}_F(\mathscr{P}_1^*, \mathscr{P}_1) = \bigoplus_{1 \leq i, j \leq n} F_{ij}$, duality acts by permuting F_{ij} and F_{ji} , and acts trivially on F_{ii} . Thus,

$$A_1^{-1} \cong \bigoplus_{1 \leqslant i \leqslant j \leqslant n} F_{ij}$$

A direct calculation now gives

LEMMA 2. $B_1^1 \subseteq A_1^1$ consists of those vectors $(\alpha_{ij}) \in A_1^1$, $1 \leq i \leq j \leq n$, such that

$$lpha_{ii} = \sum_{j=1}^n lpha_{ij}^2 b_j$$

if $\{b_j\}_{j=1}^n$ is a basis for F over F^2 .

We now describe the map $w: W^{+1}(F) \to Q^{+1}(F)$. As above, let $\{b_j\}_{j=1}^n$ be a basis for F over F^2 . Let (H, β) be a symmetric bilinear form over F. Then

$$x \rightarrow \beta(x, x)$$

defines a homomorphism $\varphi: H \to H^+(F) = \bigoplus_{i=1}^n F_i$. This gives an *n*-tuple of linear maps $\varphi_i: H \to F_i$. Since the form β is non-singular, there exist unique elements $\chi_i \in H$ so that $\beta(x, \chi_i) = \varphi_i(x)$. Equivalently, there exists a unique collection of elements $\{\chi_1, \dots, \chi_n\}$ so that

$$\beta(x, x) = \sum_{i=1}^n \beta(x, \chi_k)^2 b_i$$

for all $x \in H$. The elements $w_{ij}(H, \beta) = \beta(\chi_i, \chi_j) \in F$ are now invariants of the isomorphism type of (H, β) . In fact, they depend only on the Witt class, and may be identified with the (i, j)-th coordinate of $w(H, \beta)$, if A_1^1 is identified with $\bigoplus_{1 \leq i \leq j \leq n} F_{ij}$, as above. The conclusion is, then,

THEOREM 3. The invariants $w_{ij}(H, \beta) \in F$, $1 \leq i \leq j \leq n$, detect the Witt classes of symmetric bilinear forms over F, i.e. (H, β) is stably split if and only if $w_{ij}(H, \beta) = 0$ for all i, j.

(d) We conclude the paper by computing Q^1 in the case $\Lambda = \mathbb{Z}/2\pi$, $\pi = (\mathbb{Z}/2)^i$, endowed with the trivial involution. Recall that $\Lambda = E(x_1, ..., x_i)$, the exterior algebra on *i* generators. Note that the square of every element *y* in Λ

is 0 or 1, depending on whether y is in the maximal ideal $m = (x_1, ..., x_n)$ or not. From this remark, it is immediate that

$$H'(\Lambda) \cong \bigoplus_{\mu} k_{\mu}$$

where μ runs over all non-zero monomials in the x_i 's (including 1), and k_{μ} denotes a copy of the cyclic module Λ/m . Thus, $\mathscr{P}_1 \cong \bigoplus_{\mu} \Lambda_{\mu}$, and

$$\operatorname{Hom}_{\Lambda}(\mathscr{P}_{1}^{*},\mathscr{P}_{1}) \cong \bigoplus_{\lambda,\mu} \Lambda_{\lambda\mu}$$

A straightforward computation identifies B_1^1 as the subgroup of $\bigoplus_{\lambda,\mu} \Lambda_{\lambda\mu}$ consisting of all vectors $(\alpha_{\lambda\mu})$ such that

$$lpha_{\lambda\lambda}+lpha_{\lambda\lambda}^2\lambda=\sum\limits_{\mu
eq\lambda}lpha_{\lambda\mu}^2\mu\;arga\lambda$$

and

$$\alpha_{\lambda\mu} = \alpha_{\mu\lambda} \, \forall \lambda, \, \mu$$

For $\lambda \neq 1$, the map $x \to x + x^2 \lambda$ is an isomorphism from Λ to itself, so for $\lambda \neq 1$, $\alpha_{\lambda\lambda}$ is determined by $\{\alpha_{\lambda\mu}\}_{\lambda\neq\mu}$. If $\lambda = 1$, the map $x \to x + x^2$ has kernel $\mathbb{Z}/2$, so α_{11} is determined up to an element of the subgroup $\{0, 1\}$ by $\{\alpha_{\lambda\mu}\}_{\lambda\neq\mu}$. Another direct computation shows that $(p \circ \delta)(B_2^{-1}) = m$. $\Gamma \subseteq \Gamma$, where $\Gamma \subseteq \bigoplus_{\lambda,\mu} A_{\lambda\mu}$, $\Gamma = \{(x_{\lambda\mu}) \mid x_{\lambda\mu} = x_{\mu\lambda}\}$, and $p: B_1^{-1} \to \Gamma$ is the projection. This gives

 $Q^{1}(\Lambda) \simeq \mathbb{Z}/2^{2^{i}(2^{i}-1)+1}$

Using the well-known fact that $W^1(\Lambda)$ is generated by one-dimensional spaces, one finds that on the image of w in $Q^1(\Lambda)$, the coordinates $\alpha_{1\lambda}$ are determined by $\{\alpha_{\lambda\mu}\}_{\lambda\neq\mu/\lambda,\mu\neq1}$. Thus, we obtain

$$\frac{W^{\mathbf{i}}(\Lambda)}{W^{\mathbf{i}}_{\mathrm{ev}}(\Lambda)} \cong \mathbb{Z}/2^{(2^{i}-1)(2^{i}-2)+1}$$

As in case (c) above, $W_{ev}^1(\Lambda) = 0$ for trivial reasons, so we obtain

PROPOSITION 4. $W^{1}(\Lambda) \simeq \mathbb{Z}/2^{(2^{i}-1)(2^{i}-2)+1}$. (This result was obtained by ad hoc methods in [1].)

References

- 1. G. CARLSSON, On the Witt group of a 2-adic group ring, to appear.
- 2. G. CARLSSON, On Desuspension in the Symmetric L-Groups, in "Proceedings of the Aarhus symposium on Algebraic Topology, 1978," in press.

- 3. G. CARLSSON AND R. J. MILGRAM, Some exact sequences in the theory of Hermitian forms, J. Pure Appl. Algebra, in press.
- 4. T. Y. LAM, "Algebraic Theory of Quadratic Forms," Benjamin, Reading, Mass., 1973.
- 5. J. MILNOR AND D. HUSEMOLLER, "Symmetric Bilinear Forms," Springer-Verlag, New York, 1973.
- 6. A. A. RANICKI, The algebraic theory of surgery, preprint, Princeton University, 1978.
- 7. C. BUSHNELL, "Modular quadratic and Hermitian forms over Dedekind rings, II," Crelle J. 288 (1976).
- 8. A. FRÖHLICH, On the K-theory of unimodular forms over rings of algebraic integers, Quart. J. Math. Oxford Ser. 2, 22 (1971).