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The functors Kl and KO and more recently the lower K-theoretic

functors K 5 of Bass have become useful in several contexts in

. algebraic topology. Typically one has a topological space with

| fundamental group G and some property of this space is measured by

4n invariant which takes values in a K-group (or a quotient of a

i

. g=-group) of the integral group ring ZG of G. The first examples

o

§ of this are J. H. C. Whitehead's work on simple homotopy types and

¢ T. C. Wall's yesults on finiteness of CW- complexes. references

§for these and other applications may pe found in Milnor {61, page X-.

plication of the lower K-groups OCCUrS in

#he first topological ap

.

_ anderson and Hsiang's work on pseudo—isotopies of PL-manifolds(l}.

Clearly calculation of the groups K*(%(ﬂ is of interest not

4;0nly for its own sake (e.g., when G is finite, as & branch of

1(generalized algebraic number theory), but because immediate

.
__topological applications exist.

This paper concerns computational techniques for the groups

¥ ,, and is an exposition of some of the ideas in the author's

thesis[3]. specifically, we derive the expected localization
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sequence for the lower K-theory, (which for some reason seems not
to have surfaced previously in the literature), and indicate how
this sequence may be applied in the calculation of lower K-groups

for group rings and orders. The complete story of localization

is as follows:
Theorem 1: Let R be a commutative ring and let S be a multipli-
cative set of elements of R. Let A be an R~algebra on which
multiplication by any s in S is injective. Let:ES(A) denote the
category of S-torsion left A-modules which admit a finite resolu-
tion by finitely generated projective left A-modules. Then the

. . -1 . .
localization y:A > S A gives rise to a long exact sequence

¥

Yy -1 * -1
(s ") ﬁ»Kans(A)) ﬁ-Kn(A) - Kn(S A)

Kn+l(A) v Kn+l
(for all integers n).
The relative groups K_ngs(A)) will be defined in section 1.
For the application of theorem 1 to group rings, it will be
convenient to introduce some notation. Suppose R is a (commuta-
tive) integral domain with fraction field K and suppose A is an
R-algebra on which multiplication by any non-zero element of R is
If A denotes

injective. K @R A, we shall write

]

12 (A) ker (K_(A) -~ K_(A))
n n n

K (A) = K _(a)/im K_(A)
n n n

for the kernel and cokernel of the inclusion - induced map.

With these notations we have
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%Theorem 2: Let R be a Dedekind ring with fraction field K, let

? A be a noetherian R-algebra which is R - torsion - free, and for

§each maximal ideal P of R let R KP denote the corresponding

PI

Then for all integers n

P~ adi i A =R_8&_ A
§§§\P adic completions and \P » 2

| there is an exact sequence

A & K (A ) +~ 0O
¢ n+l(LP) - Kn(A) - i n(“p

+® K

here P ranges over all maximal ideals of R.
When R is the ring of integers in a number field and A = RG

i& the integral group ring of a finite group, the above result

Let R be the ring of integers in an algebraic number

Theoren 3:

RG denote the integral group ring of a finite

.

§field K and let A =

~ group G of order n. Let A denote the group algebra KG and for P

any maximal ideal of R let RP’ KP, AP, AP denote the corresponding

gg?—»adic completions. Then there is an exact sequence

0 - Kocz) > .8 KO(AP) > K_l(A)—*O

K KO(AP)eKO(A) - @
P|nR P

lnR

. which is a free Z-resolution of K—l(A)' Furthermore, K—i(A) = 0

for all i > 1.

k_,r.)

Keeping the notations of theorem 3, let k (resp. p'p

Corollary:
denote the number of isomorphism classes of irreducible K (resp.

K_,R/P) representations of G. Then K l(/\) is a finitely generated
P -

abelian group and
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606 CARTER??;;
| éécur if G is finite abelian ([2}, p. 695 , theorem 10.6 ). We

rank K _(A) =1 - k+ ) (k -z.)). ‘ ' A
- P P ~ hope to be able to deal with questions of torsion in K . (ZG)
P |nR . -1

__in a future paper; at present, questions of this sort are rather

Remark: In particular, it follows that the expression appearing on  poorly understood except in somewhat isolated cases.

the right hand side of the above equation is greater than or equal

i
o

to zero. §1. The Localization Sequence

To determine whether torsion is present in K_l(RG) it is In this section we shall set up the machinery necessary to

generally necessary to analyze in detail the map discuss localization theory for lower K-theory and then give a

proof of "the unknown half" of theorem 1.

6 K (AP)G)KO(A) +> & K (A) Suppose R is a commutative ring and S is a multiplicative

P |nR P |nr P

 sét of elements of R. It will be convenient to denote by A(R,S)

of theorem 3. We shall not present this analysis here, the details. the category whose objects are R-algebras on which multiplication

by any s in S is injective and whose morphisms are exactly those

of which appear in [3], but content ourselves to remark that the

localization maps KO(AP) > KO(AP) are closely related to the R-algebra homomorphisms A > I for which T is flat as a right

"Brauer decomposition maps” GO(KPG) > Go((R/P)G) which arise in A-module. We shall be concerned with various functors from A(R,S)

the modular representation theory of finite groups (for a partic- £b abelian groups. Examples of such functors are of course the

ularly good discussion the reader is referred to Serre (81), and Grothendieck groups K_ and G, the Whitehead groups K, and G, and

o} 0
that the P-adic completion maps KO(A) > KO(AP) depend on consider- three related functors KOS_l, KlS-l, KOHS which we define as follows:
ations of Schur indices and the theory of splitting of simple
. -1 -1 .
algebras. K. S (n = Ki(S Ay ,i=0,1

.

Using such information one can make an effective calculation

]

. K H (D) = Ko (H )

of K lCKG) for G finite whenever adequate information about the

(ordinary and modular) representation theory of G is available. .
L

. i t beli o be vi d as
These calculations have been done by the author for the symmetric Of course any functor from rings to abelian groups may be Viewe

S a functor from é(R,S). Oon the other hand, notice that KOHS is a

groups S and SS' and for all p-groups. We note in passing

3' T4’
\ . . . tai ly tho
that torsion can occur in K_lGZG) . this happens for example if G funictor on Q(R,S) exactly because é(R,S) contains only se arrows

.

is the generalized quaternion group of order 16, [3]; it does not
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A -+ T for which the operation I'® s is guaranteed to take left . ; -1 i -1
. K . =LK . K_.8 = =LK (i > 0).

A-modules of type FP to left I-modules of type FP.

Let F be a functor from A(R,S) to abelian groups. Then we
1f F and G are contracted functors, one says that a natural

may define another such functor, denoted LF, by
Shsformation o : F > G is a morphism gg_contracted functors if

1 -1 @ . respects the natural splittings, i.e. if for all A the square
LE(A) = coker (F(A[t]) @ F(A[t 1) » F(AlE,® 1))

e

r(y + FOEETD

where the indicated map is induced by the obvious inclusions
La ¥ ¥ o

(localizations). Mapping F(A) into F(A[t]) @ F(ALE Y] via —1
LG (M) —  GALE,£ D)

% > (i.(x), -j,(x)), where i (resp. j) denotes the usual inclusion
* ]*

-1
A > Alt]l (resp. A > Aflt "1), we get a chain complex
commutes. The following result is standard

- -1
0 > F(A) » F(A[ED) @ F(ALE T1) » F(ALE,t ] » LE(A) >0
femma 1.1 (Bass, [2], p. 661, prop. 7.2) Let a: F > G be a
(e)
:morphism of contracted functors from R-algebras to abelian groups.

. R . | Mhen ker (o) and coker (o) are contract da f t t t
and we say that F is acyclic if the complex (e) is exact for all \ (o) ta) < unctors on the category

. . . . 0 - . icul i .
objects A of A(R,S), and contracted if also the projection of R-algebras In particular, LF 1is a contracted functor

-1 . . \ .
F(A[t,t 1) > LF(A) has a natural splitting. The following im-—

. Remark: The proof makes use of the augmentation arrow

i

portant result is known as the Fundamental Theorem of Algebraic

§ A[t]l -~ A ,(t > 1), whence the requirement that F and G be
K-theory .

%\functors on the category of R-algebras rather than just on A(R,S).

Theorem (Bass [2], p. 663, thm. 7.4) KO and Kl are contracted

The key to our proof of the lower localization sequence

functors. Moreover, there is a natural isomorphism LKl = KO

by the following result:

. . -1 -1 \
Of course it follows from this that the functors KOS and KlS .
-1  lemma 1.2 Let 0 >F ~G>H~>0 be a short exact sequence

-1
are also contracted, and that LKlS KOS . As a consequence

fle

i;éé
: . . . . © tors fro to abelia ro and s} that F
of these isomorphisms, one is led to introduce the notation ] - £ functors from A(R,S) € n groups. suppose @
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and H are contracted functors on the category of R-algebras. befinition 1.3: K_i(ES(A)) _ LlKOHS(A).

Then there is a short exact sequence 0> LF > 1G ~1H >0
With this machinery in hand, we turn to the localization

(with LF and LH contracted functors on the category of
sequence (theorem 1). Some historical remarks are in order: the

R-algebras) and G 1is acyclic.

Ki— KO localization sequence (the case n = 0 of theorem 1) is due

: i . his result appears in [2] n. 494, theorem
proof Apply the snake lemma to the diagram ‘ - to Bass (circa. 1960); PP 21, F

6.3. Quillen's generalization to the higher K-theoretic groups

o 0 0 (the cases n > 0) was announced in [7], page 86. Proofs were
l subsequently furnished by Gersten [4], and (somewhat later) by
+ + v .
. Grayson [5], p. 233. We shall now complete the proof of theorem 1
F(A) ker ¢ H (A)
{the cases n < 0), assuming the Kl-KO result of Bass.
¥ ¥ M

_ -1 -1 roof of lower localization sequence As observed above, K K
o o FALED) BE(AE L)) » G(ALED ®G(ALETT]) > H(AIED) @ H(ATE 1) » (f E=m =2 r Kor Ky
=1 -1
KOS , and KlS are known to be contracted functors on the
v o ¥
category of R-algebras. The Kl-Ko localization seguence now
-1 -1 ; -1
0 - FAle,t7]) > Gt t 7 - BHGAE,e )~ asserts that there is an exact sequence:
¥ ¥ ¥ .
i o -1 B y & -1 F
0 - ker a > Kl > KlS - KOHS -+ KO - KOS -+ coker § »> O.
LF (A) LG () LH(A) .
. N We may decompose this into short exact sequences as follows:
¥
i
0 ~» ker o > K > coker 1 »> 0
0 0 0 1
.G -1
0 - coker i Kls ~> coker a > 0
o
. . N . t : [
where ¢ is induced by the usual inclusions, and observe that since 0 > coker a E KOHS I xer§ - 0
G(A) injects into ker y (the five lemma), and since 5
0~ ker § - KO +~ ker P » O
0 -+ F(A) + G(A) > H(A) -~ 0 is exact, it follows that G(A) =ker y
1%
-1
(so G is acyclic) and that the connecting homomorphism H(A) LF(A)C . 0 + ker p ~> KOS > coker § + 0
is zero. That LF and LH are contracted has already been asserted
- -1
. Now by lemma 1.1 ince XK t
by 1 a 1.1, ‘ )4 , since 17 KlS ’ KO’ KOS are contracted, so are

ker o, coker a, ker &, and coker &, and thus so are coker i and
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ker p. The lower localization sequence now follows by iterating proof Functoriality of @ RI{P provides the map
lemma 1.2 and splicing the resulting sets of five short exact HGmA(M,N)ngip > Hom, (MP,NP). We must check that this map is
i
P
sequences back together. This completes our discussion of theorem an isomorphism when M is finitely presented.
1. Let Fl - FO + M - 0 be a free presentation of M with Fl’ FO

§2. Eliminating the Relative Groups
The aim of this section is to prove theorem 2
gives a local-global approach to the calculation of Kn for

noetherian algebras over Dedekind rings. The key trick will be

to make use of P-adic completions to get rid of the relative
This

groups Kn(gs(A)) which occur in the localization sequence.

beautiful technique is due to Wilson [10}. Observe that our

theorem 2 generalizes Wilson's calculations in two directions:
first, we extend his calculations of KO to Kn for all integers
n; second, we consider noetherian (rather than finite) algebras

over Dedekind rings.

Lemma 2.1: Let R be a commutative noetherian ring, and for P a

prime ideal of R let RP denote the P-adic completion. Let A be

any R-algebra, and suppose that M, N are left A-modules with M

ini . t t
finitely presented Le AP' M, NP denote RPQ RA, RPQ RM,

P

RPQ RN respectively. Then there is a natural isomorphism

Hom,K (M,N) & -+ H M_,N_).
ol A( ,N) R RP omAP( o’ P)

(above), which

:finitely generated. Then we have the commutative exact diagram

O - Hom,(M,N)® R _ ~ Ho F_,N
AT R P mA( o’ )QRRP*HOI“Aml’N)gRRP
¥ ¥ ¢
o -+ Hom, (M_,N_) -+ Hom F
e AP( o'V 7 HomAP(Flp’NP)

from which one sees immediately that-it suffices to prove the lemma

for ¥ a finitely generated free left A-module. But since Hom

commutes with finite direct sums, it suffices to prove the lemma
for M = A, and this case is obvious.

Let A be a noetherian R-algebra, R a Dedekind ring,

and let F denote a finitely generated left A-module. Then F is

Aeprojective if and only if for all maximal ideals P of R

=R ; _ . .
= RE‘ is AP projective.

\\‘\§

proof

If F is A-projective then trivially FP is AP—projective

Jxﬁor all P. To prove the converse, we show that HomA(F, ) is exact.
o 1 "
let 0> N >N ->N -0 be a short exact sequence of left

A-modules. Applying HomA(F,_) we have an exact sequence
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0 > HomA(F,N el HomA(F,N) > HomA(F,N )y - C >0

where C denotes the cokernel. Applying _®@ RRP to this sequence

and invoking lemma 2.1 we have the exact sequence

.
0 ~ Hom F_,N >~ H N - Ho F_,N > ->
A Fpr p’ omy (Fpr p) my (Fpr p) TG 70
P P P
But CP = 0 for all P since FP is Ap—projective. Thus it follows
that C = 0, whence HomA(F,_) is exact.

Lemma 2.3: Let A be a noetherian R-algebra, R a Dedekind ring.

Let S denote the multiplicative set of nonzero elements of R,
and for P any maximal ideal of R let RP denote the P-adic com-

(A)

pletion and AP = RPQ RA. ES -

Then the map gS(A%* ll
P

induced by the P-adic completions is an equivalence of categories.

Then M is the direct sum

proof Let M be an element of §S(A).

of its P-primary components

e
{n€n | AnnR(m) =p ™}

=
i

(obgserve that MP is in fact a sub-A-module), and clearly

R B _ M=

> B o M. This shows that gS(A) is a subcategory of_&# Ho (ML)

CARTER | 10WER ALGEBRAIC K-THEORY
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If N # 0 it follows that

et N be an element of ES(AP).

knnR(N) = PC for some e > 0 since N is finitely generated. But

herefore any set of AP-generators for N is also a set of

. Aemodule.

Suppose that hdA (N) = n. Since A is noetherian, we may

P

“hoose finitely generated free left A-modules FO,-~-, F

h
n-l suc

(here F is the kernel of Fo1” F ; it is finitely generated).

n-2
Let Q be any maximal ideal of R, and apply RQ@E{*- to the

above exact sequence. If Q # P, then since NQ = 0, it follows

hat FQ is AQ- projective. If Q =P, F is alsc AQ-projective,

Q

and by assumption hdA (N) = n.
P

follows that F is A-projective, i.e. that hdA(N) < n.

ince N = NP By lemma 2.2, it

Thus N is

_in gS(A), which completes the proof.

With the aid of lemma 2.3 the proof of theorem 2 will be
quite easy. Let R be a Dedekind ring with fraction field K, let
&' Beé a noetherian R-algebra which is R-torsion-free, and let S

_dendte the multiplicative set of nonzero elements of R. If A de-

notes KglRA' we have the long localization sequence

Kn+l(A) *—Kn+l(A) i Kn(gs(A)) 9'Kn(A) -+ Kn(A)
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which, using the notation introduced before the statement of . .Integral Group Rings of Finite Groups

theorem 2, may be written as the collection of short exact sequence In this section we show how theorem 2 can be used to com-

te the lower K-theory for integral group rings of finite groups.

0+ K +1(A) S K (HS(A))» Kn(A) > 0. e main result, given by theorem 3 above, will be seen to emerge
n n =

& consequence of the following fact : in a certain sense, the

We map this sequence into the product of the analogouys sequences ntegral group ring of a finite group is close to being a regular

for the P-adic completions AP.

But by lemma 2.3 we may conclude that the p-adic completions Recall that a ring A is called quasi-regular if it has a

give rise to isomorphisms: Ibotent two-sided ideal N such that A/N is (left) regular. The

nllowing result is an easy consequence of Serre's calculation of

K (H_(A)) >~ & K (H (A)) (ﬁ[t,t—l]) for A a regular ring:
n =S n =5 P |

(we use the Q-construction of Quillen or the L-construction above, a3.1: (Bass. [2], p. 685, prop. 10.1) If a ring A is

depending on whether n > 0 or n < 0). But now since the center si-regular then K_i(A) =0 for all i > O.

terms of our "global" short exact sequences are mapped into the

. N " ntice that (left) Artin rings and (left) hereditary rings are
coproduct of the center terms in our local" seguences, then so

. . early quasi-regular.
also are the outer terms; i.e., we may conclude that there is a

. . Let R be a Dedekind ring with fraction field K and let A
commutative exact diagram

esp. A) denote the group algebra RG (resp. KG) of a finite

group G. For P any maximal ideal of R, let AP, AP denote the

0~ KX -~ Kn(gs(A)) > Kn(A) >0 responding P-adic completjons. Since A and AP are Artin rings,

¥ [] ¥ . %he conclusions of lemma 3.1 apply, and by theorem 2 we may
nclide there are exact sequences

0 - 2 Kn+l(AP) - 2 Kn(gs(AP)) - 2 Kn(AP) -+ 0.

0> K (b ~@ Kohy) = K {4 > @ K_

(A) »~ O
P P P

1
Applying the snake lemma to this diagram, the desired exact

sequence of theorem 2 is immediate.




(3.2)

0~+~K ,(A) &K ,(A) >0
-1 P -1 P

When possible we wish to dispense with the groups K_i(AP).
We shall do this by an appeal to the theory of maximal orders.
first result we shall require is well-known (see, for example,
p. 63, prop. 4.9).
Lemma 3.3: Let R be a Dedekind ring with fraction field K of

characteristic zero, and let A denote the integral group ring RG

of a finite group G of order n. If I' is any R-order in A = KG

which contains A then nl is contained in A. Furthermore, A is a

maximal R-order if and only if n is invertible in R.

As a consequence of this result, for I' any R-order con-

taining A we have a cartesian square

A - r
¥ +
A/nT > T/nT

which gives rise to a long K-theory Mayer-Vietoris sequence (for

n < 2)

K (A) - K (A/nT) ® K (T) » K (I'/nl) » K (A) = ---
n n n n n-1

Now A/nl and I'/nl are clearly Artinian rings. If also I is a

CARE

The

19,

WG EDRALL KT LlOLURD vy

4)

and K .(A) =0 '
-i

_(RG) for i > 1 whenever R is a Dedekind ring in a field of
A

acteristic zero and G is a finite group. If we now impose the

D KO(F) %>KO(F/nF) is surjective, whence K_l(A) = 0.

Applying these considerations to (3.2), we are now able to

X

0 - KO(A) - i KO(AP) - K_l(A) >0

and K_i(A) =0 ’ i>1.

At this point there is not too much left to do to finish the

proof of theorem 3. By lemma 3.3, if G has order n and a maximal

ideal P of R does not lie over nR, then n is invertible in RP so

= R G is a maximal RP—order, hence regular. But it is well-

P
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G

=

s

i

=

A

S

=
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known that localization of a regulax

ring induces surjection on onseguence of A and AP being semisimple Artinian and AP (being

KO' Hence, if p * nR we have RO(AP) = 0, and thus the exact ~adically complete) having the same KO as the finite ring A/PA.

0~ RO(A) > @ EO(AP) >R W) >0 roof of corollary:  Since A (AP) is semisimple, KO(A) (KO(AP)) is
P[nR - ;
ree abelian on isomorphism classes of simple left A-modules

ﬁF-modules). Further, KO(AP) = KO(A/PA), which is free abelian

Rearranging this seguence slightly, we get the exact sequenc

1 isomorphism classes of indecomposable left A/PA-modules. But a
imple argument based on the lifting of idempotents shows that
KO(A)—> @ KO(AP)QK(A)+ ® K (A) »K _(A) +0

anR 0 P]nR F -1 ndecomposable A/PA-modules may be put in one - to-one correspondence

ith simple A/PA-modules by reducing mod the radical of the finite
which is valid for R any Dedekind ring with fraction field K of ing A/PA.
characteristic zero.

If finally we impose the additional requirement that no
prime factor of n be invertible in R, which holds for example if

R is the ring of integers in an algebraic number field, then by
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REMARKS ON PRIMITIVE RINGS WITH NON-ZERO SOCLES

William D. Blair
Department of Mathematical Sciences

Northern Illinois University
DeKalb, Illinois 60115

I.N. Herstein and Lance W. Small in conversation
ave asked whether for a finite set Al’AZ""’An of
Qn—zero mxm matrices (m 2 2) over an infinite field
§§here exists an idempotent matrix E different from
¢ identity matrix I such that EAiE # 0 for
=1,...,n. In this note we answer this question

ffirmatively and generalize the result to the class

f primitive rings with non-zero socle.

It is clear that without some other restriction
de-set of matrices must have entries from an infinite
ield. To see this consider the finite set {Aj} of all
on-zero idempotent mxm matrices over a finite field
where for any idempotent mxm matrix E # I we have that

- E is one of the A .
J
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