180

sign ﬁ=nsignM now follows from the regular case applied to the regular coverings
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COBORDISM OF CLASSICAL KNOTS

by
A.J. CASSON and C.McA. GORDON

A knot is a smooth submanifold of 53 which is homeomorphic to S1 . We

regard 53 as an oriented 3-sphere ; the orientation of S1 is usually immaterial.

The knot K is slice if there is a smooth 2-disc D« B4 such that K = 3D . Knots

Ko , K 4 are cobordant if there is a smoothly embedded annulus in 53 X 1 meeting

83 x {t} in K ¢ (t =0, 1) . Addition of cobordism classes of oriented knots is defined

by connected sum, giving cobordism group 9:; .
We can also construct cobordism groups of knots of s" in Sm'2 , say 6:+2
It is known that 9:+2 =0 if n is evens [5] , that 63 x 9:? 2 ... and

7n a1l o 915 o
855 6y = 6;3%

a natural surjection 6% - 9; ; we show that this is not injective. First we describe

Gg is isomorphic to a subgroup of 6? of index 2 . There is

the known cobordism invariants.

3 3

K < 87 bounds an oriented surface F < S” ; we thicken F to an embedding

FxIc s> . Given x,y&l-I](F) , put ax,y) =linking numberof xx0 and yx 1 .
This defines a bilinear form «: H1(F) x H1(F) -+ Z , suchthat a(x,y) - aly,x) =

= intersection number of x and y . We refer to o as a Seifert form for K . Let

g = genus of F = T (dimension of H1(F)) . We say that a Seifert form is null-cobordant

if it vanishes on a subgroup of H1(F) of dimension g .

THEOREM [6] . If K is slice, then any Seifert form for K is nuli-cobordant. In

higher (odd) dimensions, the analogous condition is necessary and sufficient for K to

be slice.

In fact, proving 9? ~ 9; is not injective is equivalent to finding a non-slice
knot with a null-cobordant Seifert form.
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Example.

2 (W.’\ I\_J\JPJ

t full twists (t full twists) (=1 full twist)
With respect to the basis shown, the Seifert form has matrix A = (g _11) .
Put x=(:l) ; then X'AX = t +u - u? , which vanishes if t=u(u-1) . So K has a
null-cobordant Seifert formif t=0, 2, 6, 12, We shall show that K is slice
ifandonly if t=0 or 2.
K is a ribbon knot if it bounds an immersed disc (a ribbon) in 53 , each of
whose singularities is of the type shown (two sheets intersecting in an arc which lies

in the interior of one of the sheets).

(square knot) (stevedore's knot : example above, t = 2)

Ribbon knots are slice (push the interior of the ribbon into B4 , then deform

slightly a neighbourhood of each singular arc).

Problem (Fox). Is every slice knot a ribbon knot ?
Our method will prove that certain knots do not bound ribbons without proving

them non-slice.

First we give a fairly simple method of showing that knots do not bound ribbons.

The only special property of ribbons needed is the following (see [3] and [10]).

LEMMA 1. If 2-disc D < B* is obtained by deforming a ribbon, and K = 2D €S ,

then the map 1r1(S3 -K)» 111(84 - D) is surjective.

Let K be a knot whose double branched covering is a lens space L . Our

method is not confined to these, but calculations have not yet been made in other cases.
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Examples. 2-bridge knots (Viergeﬂechte ) {21, 9]

(Q\/ /_ T \’\,L_)j

has double branched covering L , where ! has continued fraction a + 1 + - " .
pP,q P <4 C2 <

(We obtain a knot if p isodd, and a 2-string link if p iseven.) Thissetsupa 1-1

correspondance between 2-bridge knots and lens spaces, and we refer to the knot g
1

The example given earlier was 2/{4t+1) , with continued fraction % 5

Now we define an invariant of our knot K with double branched covering L .
It is in fact a disguised form of a standard Atiyah-Singer invariant of 3-manifolds. Let
X : H1(L) -+ C* be a character with image Cm , the group of mth rootsof 1. We
say that x has order m ; X isinduced by amap L ~ K(Cm,l) . Since the bordism
group ﬂB K(Cm, 1) is finite, rL bounds a compact 4-manifold W over K(Cm, 1), for
some r >0 ‘. Let W be the induced m-fold covering of W, so AW = rz for some
m-fold covering T of L.

Let k the cyclotomic field Q(Cm) c € ; this is a module over the group ring
Z[Cm] . By Maschke's theorem, k is projective over the rational group ring Q[Cm] y
so k is flat over Z[Cm] . Let C *(W) be a chain complex for W (integer coefficients)

on which the covering translations induce a Z[Cm] -module structure. Write H, (W;k)

for the homology of C (W) Z[Cpy ] k since k is flat, H*(w;k) ~H (W Z)3, [C ]k .

Homology with k coefficients will always be twisted in this way.

The intersection pairing HZ(W;k) X HZ(W ;k) # k is hermitian, so it has a
signature s(W) . Let sO(W) be the signature of the intersection pairing on HZ(W;Q)
(in other words, the ordinary signature of W) . Define o (K,X) = %(S(W) - sO(W))
this is clearly independent of r .

Suppose W1 , W2 are two manifolds over K(Cm,1) with aw1 = aw2 =prl .
Let X =W, U(-W,)) ; thisis closed manifold over K(C ,1), and

(S(W1) - sO(W1)) - (S(WZ) - sO(W)) = s(X) - sO(X) . It is easily proved that s, s,
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define homomorphisms from n4K(Cm,1) to Z . Modulo torsion, Q4K(Cm,1) is gene-
rated by cp? (with the constant map to K(Cm,1)) . Since s(CPZ) = sO(CPZ) =1,
s(X) = sO(X) for any closed 4-manifold X over K(Cm,l) . It follows that ¢ (K,x)

is independent of the particular null-cobordism W .

THEOREM 1. If K is a ribbon knot whose double branched covering is a lens space L,

then : (1) \H1(L)\ is a square, say m? ;

(2) If x is anon-constant character of order dividing m , then o (K,x) =X1.

Statement (1) is true (and well-known) for slice knots ; it follows from

lemmas 2 and 3 below.

LEMMA 2. If K is slice, then L bounds a compact 4-manifold W with ﬁ*(W;Q) =0.

Proof. Let K=3D, Dc B4 , and let W be the double covering of B4

branched over D . Let W' be the infinite cyclic covering of B4 -D . Let
T: H " wW');2Z 2)"3 be induced by a generator of the group of covering translations.
The exact sequence of the infinite cyclic covering W' » W'/ T2 yields the
following exact sequence :
- B Wz e B Wz - B ) - H Wz, -
Similarly, there is an exact sequence :

~ 1-T ~ ~ 4 ~
» Hwizy) = B wizy) - Hehzy) - H_ Wiz -

From the second sequence, 1-T is an isomorphis. With Zz coefficients, 1—T2 =(1—T)2

from the first sequence, ;I*(W;ZZ) =0 . Since W is compact, ﬁ*(W;Q) =0.

: . 2
LEMMA 3. If the image of H1(L) in H1(W) has order m , then IH1(L)| =m* .

Proof. HZ(L) =0, so we have exact sequence :
0 + H,y(W)— H,(W,L)= H,(L)—= H (W) = H,(W,L)~ ©
By duality and universal coefficient theorems,
HW | = jH (W,L)] and  [H,W,L)| = [H,W] ;

the result follows. (Note that here it is crucial that we are in dimension 4.)

H
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To prove Theorem 1, recall our hypotheses that K is ribbon and L is a lens

space. By lemmas 1 = £ i
v and 3, 171(L) Zm2 and 171(W) ~Z If x 1is a character on

m "
HT(L) of order dividing m , then x factors through H1(W) , Sowecanuse W to

- compute o{K,x) .

Let C *(W) be the chain complex corresponding to a cell (or handle) decompo-

sition of W . Cn(W) is free over Z[Cm] with one basis element for each n-cell of W .

The compl - W

plex of k-vector spaces C *(W) ®z[Cm ]k has Euler characteristic equal to
that of W, namely 1 .

R all . E‘ N‘ . .
ecall that Hn(w,k) Hn(w,z) ®Z[Cm]k . Since x is not constant,

HO(W,k) TZ ®ZECm]k =0 . Since W is simply connected, HT(’\TV,Z) =0= HB(W,Z) s
giving H1(W;k) =0 :HB(W;k) . Therefore .HZ(W;k) has dimension . 1 over k . Simi-
l . = —_— - 1 H i 3
arly H 1(L,k) 0= H2(L,k) » S0 the intersection pairing on H2(W ;k) is non-singular.

It follows that s(W) =7+ 1, sO(W) =0, giving o (K,x) =% 1.

Calculation of o (K,X) .

The rational number o (K,x) depends only on the 3-manifold L and the
character x on H1(L) - First, we shows how 0 (K,X) is related to the Atiyah~-Singer
G-signature.

Let A be a vector space over k , with hermitian form ©: AXA- k.
Suppose that the group Cm of mth roots of 1 acts on A, preserving © To avoid
confusion, we write g.w for the automorphism of A corresponding to the element w

- . S
of Cm' Let As—{aEA.gwa=w a}l ; then A=A _&A Eb...ébAm and g

0 1 -1
acts on AS by multiplication by wS
Observe that As and At are orthogonal with respect to ¢ if s#£t. For
i -
L xCA;, vy €A, then o(x,y) = elg, x.g,y) =o(w,wly) = o So(x,y) . By
diagonalisin A / i i tfoa
g g ¢ | e we obtain (non uniquely) AS = AS @AS GBA;) , Where ¢ is

+
t definite on A~ ° z : ©
S and zero on As . Let A= = EAS , AT = EA: ; these are Cm—

i ) + +
invariant subspaces with ¢ ~ definite on A~ and zero on A% .
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By definition, the gw—signature of ¢ is :
o (o ,gw) = trace (gw | AT) - trace (gw lATY,
m-1
so glp,g )= 2 wS (signature of @1A) .
w S
s=0
Now suppose A = HZ(W;k) (untwisted for once), and ¢ is the hermitian
extension of the intersection pairing on HZ(W;Z) . Recall our earlier construction ;
the character X gave rise to a twisted homology group H2(W;k) , isomorphic to
HZ(W;Z) ®Z£Cm]k . This in turn is isomorphic to A ®k[Cm]k , SO
HZ(W;k) ¥ TA ®k[cm1k = A
The intersection pairing HZ(W [ Z) x HZ(W;Z) +Z[C_] is defined by
x,y)= = ox,g wy)(.u-_1 . Tensoring with k gives the intersection pairing on
weCpy
H2(W;k) by the same formula. However, gy =wy for y € HZ(W;k) :A1 , SO
-1
x,9) = T eeye = mekx,y)
wclm
Suppose dW =rL ; then we defined ¢ K,x) = % (s(w) - so(W)) , where :

s(W) = signature of intersection form on HZ(W;k) ;

= signature of <,olA1 .

Therefore rolK,x) +s o(W) = signature of ¢ | Ay and a similar argument

shows that : ro{K,x%) + SO(W) = signature of ¢ \As .

We can regard T as afree Cm—manif_old, the element w of Cm correspon-

ding to the covering translation x—1(w) of T. Atiyah and Singer define the invariant

a(l,w) tobe -Il,cr((p,gw) . We obtain :

~ m-1 sy, 1 m-1 s S
af,w) = T wOKX)+5s,W) = I @ o(K,x) it w#i.
S=0 s=0

Since A_ and A__ are related by complex conjugation, oL, w) is real.

Inverting these equations :
m-1

T o, T =z I &5ToK,x)
w#l s=0  w#i
m=-1 m-1
- 225 Tok,x)- T oKX
s=0 @ s=1

]

mo (K,x) + wr;é1 a@,w),
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so o (K,X") =1'11'1 z o, wlw™ 1)
W#1

1 o~ omi
== & a L,ezms/m) (cos-zn?rs- 1)

nrs

2mis/m, . 2
,e } sin (—nT

. 3 ~
If L is the lens space Ly ., then L=s/c_, L= 53/cn , where

3
Cmn acts on S° by the formula {(z,w) = (£z,C %) . This implies the choice of a

particular character x on HT(L) . Let p: C on ” Cm be the projection.

A lemma of Hirzebruch [4] states that o, w) = 1 z a(SB,C) .

n
. i . ep1
Putting ¢ = "™ oo w2 e?TIS/M e chtain L
mn-1
no_ o2 3 2mis/mn, . 2 @
o(K,x) = -z5 Iy «lSe / ) sin (—nfs)

; 3 . .
The action of Cmn on S” extends to a linear action on B4 with one fixed point at the
origin. By the Atiyah-Singer G-signature theorem [1] :

271
a(SB,e IS/ml’l) - cot s COtnTn%? )

mn
s0 o (K,x) = -2 m§"1ctns mgs . 2 Mrs
, oz ot .= cot == sin (—m-)

Since q isprime to m, it will suffice to calculate ¢ (K,x%) . Putting
mn-1
1

gives o (K,x) = - == 52_21 P(z°) , where

o7 i/mn
2mn
2

Z=

P(2) (&"1) (zﬁ‘_’) (2T _ ,nar)

z-z ¥ \z9-z74

(z+z—1)(zq+z'q)(znqr' a3, L, 1—nqr‘)(z(nr'—1)q+ z(nP'B)q+...+ z“'np)q) .

1l

Since P(z) = Pz 1,

2mn-
o (K30 - PA) +PEY) 1 Y 1P(Zs)

4mn 4mn g2

2mt i p(z)) .

i st

_ 2ngr'2 1 .
=Shn 3 Zf? (coefficient of z

By considering the contribution made by the term Z(nr-1—25) 9 in the last bracket of

P(z), we find :
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2mnt

L (coefficient of z in P(z)) =

i
) :§;1([g;;1_1]+1+[9(?:n__523 +1+[q(n£;s)—1]+{q(s;r1l)—1] 1+

+ (q(n:"n—r‘Sﬁ] + [q(;«:)] 1+ [g(nr;;—nq )

Let A(x,y) be the triangle whoses vertices has coordinates (0,0) , (x,0),

(x,y) . Let int &(x,y) be the number of integer points in 4(x,y) , where boundary

)
points count % , (0,0) is not counted and other vertices count 41 . The above sum is
a

)

then 8 int A(nr,%nz) , so we have the formula o (K’er') = 4(are A(nr,gmg) - intA(nr,=2)}).

COROLLARY. If g is a ribbon knot, then p = m2 ,and , for r=1,2,...,m-1,

4(area A(mr,gmz) - int A(mr,grar:)) =%1.

We showed earlier that the knot K = d,tzﬁ has null-cobordant Seifert form if

2

t = u(u-1) , in which case 4t+1 = (2u-1)2 =m We easily compute that

o (K,XZF) =

4r?-2mr+1 if 2r<m . In particular, o(K,xZ) <-1if m>3, so -25
is a ribbon knot if and only if m =3 (stevedore's knot) or 1 {unknot). "
The only known values of q/ m2 satisfying the condition of the corollary are :
(1) g=km 1, with k, m coprime ;
(2) q=(mZ 1)d, with di{2m3 1 ;
(3) q={m*1)d or 2mZI N(m=*1)/d, with d/m* 1) and d odd
These are all ribbon knots, and for m =< 105, they are the only knots satisfying the

condition (this was verified by a Hewlett-Packard calculator) .

Now we consider to what extent Theorem 1 holds for slice (instead of ribbon)

knots. To push through the proof, we should have to answer the following question.
Problem. Which 3-dimensional lens spaces bound compact 4-manifolds W with
Ho(W;0) = 0 7

The method described above deals with the analogous question for manifolds W

with cyclic fundamental group. By using the group-theoretic lemma in [7 ], one can
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deal with manifolds with H1(W) cyclic. The general question seems difficult.

We avoid this problem by considering infinite coverings instead of finite bran-
ched coverings. Fortunately the result can be expressed in terms of the invariants
o (K,x) calculable from the double branched covering.

Let K< 53 be a knot, and let M be the closed 3-manifold obtained from 53
by surgery on K . We use the null-homologous framing for K , so
H (M;Z) = H_)(_(S1 sz; Z) . We write M for the n-fold cyclic covering of M
(including n = ) , and {temporarily) write (S3 - K)n for the n-fold cyclic covering of
53 -K . The map 1—11((53 -K) n) - H1(Mn) is clearly surjective, and has kernel generated
by a parallel of K . But a parallel of K bounds a surface in (SB- K)n (obtained by
lifting a Seifert surface for K) , so H1(Mn) is isomorphic to H1((S3 - K)n) .

Let Ln be the n-fold branched cyclic covering of K ; we no longer assume
that Ln is a lens space. Let x: H1(Ln) -+ C* be a character of order m . By
composition with the maps, H1(Mn) ~ H1((S3 —K)n) - H1(Ln) , X induces m-fold
coverings ﬁn of Mn and ﬁm of M. Observe that Mm is an Abelian covering of Mn
with group Cm xC, -

Since the bordism group QB(K(Cm xC_,,1) is finite, rM, bounds a compact

v be the induced

n’ ©

4-manifold V_ over K(mecmﬂ) , forsome r. Let V_, v

coverings. We have diagrams :

~ ~

-y

M M, Vo— v,

& —
&

We identify the group ring Z[Cm X Ccc] with the Laurent polynomial ring
z[cmj [t,t'1] . Recall that k is the cyclotomic field Q(Cm) ; we write k(t) for the
field of rational functions over k . This is a module over Z[Cm X Cm] , easily seen

to be flat. Let C *('\7&) be a chain complex for '\V/w, on which the covering translations

induce a Z[Cm x C_, ]~module structure. Write H*(Vn;k(t)) for the homology of

c*(i‘/w) QQZ[meCw] k(t) ; since k(t) is flat, this is isomorphic to

-
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H, (V5 Z) dy¢ ¢ xc, ] k(t) -
According to Wall {11], there is an intersection pairing
HZ(Vn;k(t)) X HZ(Vn; k(t)) » k(t) . This is hermitian with respect to the involution
sending p(t).ql(t) to B(t_1)/ Ei(t—1) . We shall soon see that it is non-singular if m is
a prime-power. Again following Wall, we write Lo(k(t)) for the Witt group of non-
singular hermitian forms on finite-dimensional k(t)-modules. Assuming that the inter-
section pairing is non-singular, it represents an element t(Vn) of Lo(k(t)) (since k(t)
is a field, this assumption is not really necessary). Let tO(Vn) be the image of the
intersection pairing on HZ(Vn;Q) in Lo(k(t)) , and detine :
TK,x) = V) = (V) € Lo(k(D) @ @ .

This is clearly independent of r , and the proof that o (K,x) is independent of W
extends to show that 7(K,x) is independent of Vn . One step is to show that
t (Vrl U(—VI'1) = t(Vn) - t(Vr") ; this is simplified if the intersection pairing is non-singu-
lar, for then H*(Mn;k(t)) -0 . The next lemma shows this if m is a prime-power ;

it has more important applications to slice knots.

LEMMA 4. Let X bea connected infinite cyclic covering of a finite complex Y . Let

X be a regular p'—fold covering of X , with p prime. If H*(Y;Zp) ’SH*(S1;EP) ,

then H*(’DV(;Q) is finite dimensional.

COROLLARY. If m is aprime-power, then H*(Mn;k(t)) =0 and the intersection

pairing on HZ(Vn;k(t)) is non-singular,

Proof. Let T be a tubular neighbourhood of K and let X = S3 -T. By
lemma 4, H, (iw;Q) is finite-dimensional. Since ﬁw = iw U(m copies of ]R1><D2),

H*(Mx;Q) is finite-dimensional. Therefore :
H, (M k() = H (M,50) ®z[cmxcm] k(t) = 0

The non-singularity follows, using the exact sequence of (Vn,Mn) . To prove lemma 4,

weneed two more lemmas.
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LEMMA 5. Let X bea p-fold cyclic covering of X , with p prime. If H*(X;zp)
is finite, then H,(X;Z ) is finite.
Proof. Let Cp be the group of covering translations. The spectral sequence

. 2 tard 0~
of the covering has E{ ., =H.(C ;H.AX;Z and E. .= HX;Z ). I it
e covering n 4 o’ J( ; p)) ook B3 (5 p) t follows

that Eg | is finite for all k .
b
Suppose that Hj&;zp) is finite for all j< k . Then Ei2 i is finite for j <k .
?

r + =b
T,k+1-1 EO,k
. © Lo 2 o (Y s . o .
Since Eo,k is finite, Eo’k=H0(Cp,Hk(X,Zp)) is finite. Let T.Hk(x,zp) -'Hk(x,zp)
be induced by a generator of Cp . Then E% K= coker (T-1) and (T-1)p =TP_1=0.
s’

In particular, the differential d": E has finite rank for all r=2.

It follows that dim Hk&;z )< p dim E2 is finite. By induction, H (’}v( sZ ) is
p 0,k * 27 Tp

finite.

LEMMA 6. Let X be an infinite cyclic covering of a finite complex. If H *(X;Zp) s

finite for some prime p , then H*(X ;@) is finite-dimensional.

Proof. The homology of X may be calculated from a chain complex of finitely
generated free Zt,t] J-modules. Since Zt,0 ] is noetherian, the homology groups
of X are finetely generated Z[t,t_1 J-modules.

For fixed n, let A= Hn(X;Z) . By the universal coefficient theorem,

Hn(X;Q) = AG, DO TOFz(Hn_1(X);Q) = A®5Q
since @[ t,t"1 ] is a principal ideal domain, A ®z @ is a direct sum of finitely many
cyclic (D[t,t_1 J-modules.

If A ®Z @ has infinite dimension, then at least one of its cyclic summands
must be free. So there is a non-zero Qlt,t” ' ]-homomorphism A By 0 olt,t '] ;
restriction to A< A®, @ gives a non-zero Z[t,t_1 J-homomorphism f: A = Q[t,t_1 7.
Since A is finitely generated over Z[t,t_1] , there is a non-zero integer r such
that (rf)(A) Z[t,t_1] . Now (rf)(A) is a non-zero ideal in Z[t,t_1] , soits
additive group is free abelian of infinite rank. This implies that A ®z Zp is infinite.

On the other hand, A%, Zp is isomorphic to a subgroup of Hn(X;Zp) . By
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hypothesis, Hn(X;Zp) is finite, so we have a contradiction. This proves that

A ®Z @ has finite dimension, as required.

Proof of lemma 4. Following Milnor [8), we first show that H*(X'; Zp) is
finite. Let t: Hy (X;Zp) * H, (X ;Zp) be induced by a generator of the group of
covering translations. From the exact sequence :

Hoq(GZ)  H(GZ) 1 B (XZ) + HGZ) |
we see that t-1 is an automorphism of Hn(x;zp) forall n=z 1. Hn(X;Zp) is a
finitely generated Zp [t,t'-1 J-module ; by induction on the number of generators, it
follows that Hn(X;Zp) is finite.

First suppose that ')N( is a p-fold cyclic covering of X . By lemma 5,

H* &;Zp) is finite. The result will follow from lemma 6, if we show that 3,( is an
infinite cyclic covering of a finite complex.

Let h: X+ X generate the group of covering translations of X . Let G
be the image of H1(§;Zp) in H1(X;zp) . Since H1(X;Zp) is finite, there is a
non-zero integer r such that (h*)r(G) =G . Itfollows that h' : X » X lifts to a
homeomorphism b oof X , and X is an infinite cyclic covering of the finite complex
X/h.

Finally, observe that a regular pr—fold covering map X -+ X can be facto-
rised into p-fold cyclic covering maps. The result follows or pr-fold coverings by
repeating the argument given above.

We have shown (lemma 2) that the double branched covering of any smooth
2-disc in B4 is a rational homology ball. The proof extends to show the same
branched cyclic coverings of prime-power order. Similarly, the branched covering

3

Ln of Kc 53 has the rational homology ¢f S° i n is a prime-power. There is

then a linking form X : H1(Ln) x H 1(L.n) + ®/Z which is symmetric and non-singular.

THEOREM 2. Let the knot K have n-fold branched cyclic covering L’n , with n

a prime~power. If K is slice, then there is a subgroup G of H1(Ln) such that

193

X({GxG)=0 and 7(K,x) =0 for every character x of prime-power order with

x(@=0.

4 , and let U be a regular neighbour-

Proof. Suppose K =3D with Dc B
hood of D . Let Vr be the r-fold cyclic covering of Bj-——U_, and let Wr be the
r-fold cyclic covering of B4 branched over D . Observe that Mr =3 Vr and
L. =03W_ . Let G be the kernel of the map i, : H1(L‘n) - H1(Wn) induced by inclusion.

Since ﬁ*(wn;Q) =0, X vanisheson G xG .

Let x: HI(Ln) +C¥ be a character of order m with x{(G) =0 . There is
a character x': H1(Wn) + C* of order m° (for some ¢) with x =x'i, . Wehave
H,M)—— H,@L) X c*

li* !/i " X!

Hv)  » H )

commutative diagram :

Let '\V/n , Wn be the m-fold coverings induced by x' ; we can also form the induced
covering '\“/w of V.

We claim that Vn can be used to compute 7(K,x), even though aT/n isa
disconnected covering of Mn . To justify this, suppose Mn bounds Vr'] over Cm xC_

~ ~1 2 . . - 1
andlet V , V_ bethe m -fold coverings induced by the composite H1(Vn) *CheChp-

Then : t(v,) 't(Vrlx) = t(vnu(-vr'])) = to(vnu(-vl;))
= t (V) -t (V)
so tv) -t (v) = t(vl'1) -to(vr'l)

This equation takes place in LO(E(t) where k is the cyclotomic field
Q(Cme) c C . Thus k(t) is an extension field of k(t) of degree m®~1 . We have a
map Lo(k(t))-g-* LO(E(t)) induced by tensoring with k(t) over k(t) . This map is also
given ty taking a matrix with coefficients in k(t) for a representative class in Lo(k(t))
and viewing it as a matrix with coefficients in k(t) . Now Vo'c is a disjoint union of
m~fold coverings of VO'O permuted cyclically by Cme _q - Thus t(vr'x) - to(Vr'l) is the

image 7(K,x) under this map (after tensoring with @) . Thus we need to see that
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p®id . is injective. To see this one defines a map LO(E(t)) I, Lo(k(t)) as follows.

()]
Let A be a vector space over (k(t) and ¢, > : Ax A~ k(t) ahermitian form, then

we may view A as a vector space over k(t) (the dimension is multiplied by m® _1)

Tr X,y ,

and define a k(t) hermitian form on A by the formula {x,y)' = 1_1
m

where Tr is the trace homomorphism k(t) + k(t) . This map is well defined on the

Witt level. Since these Witt groups are generated by one dimensional forms, it is not

2
difficult to see that the composition T o p is multiplication by m ! . Therefore

P idQ is injective.

~ . 4 .
Now suppose m (the order of X ) is prime-power. V, isan m -fold cyclic

covering of V_, which is an infinite cyclic covering of B4— U . Bylemma4,
Hz(vm; Q) has finite dimension over Q , so it is a torsion module over Z[t,t_1] .

It follows that : - ~
Hy(V k(D) = Hy(V,,; Z) ®Z[mecw]k(t) =0.

This proves that t(Vn) =0 ; it only remains to observe that H2(Vn; Q) =0 (by the
extension of lemma 2) so to(Vn) =0 . Therefore 7(K,x)=0.

We now explain a relation between o(K,x) and 7(K,x) leading to a partial
calculation of T for 2-bridge knots. Let V be a vector space over k(t) and let
@: VxV = Kk(t) be non-singular and hermitian with respect to the involution
plt).q(t) « f)(t_1)/c'1'(t_1) . We can define a signature o a(<p) for each complex number
a of modulus 1, as follows.

Let A be a matrix for ¢ over k(t) ; we write A = A(t) to indicate that the
entries of A are rational functionsin t . If |a| =1 and all entries of A(a) are
finite, then Alc) is hermitian and has a signature © a(A) . Observe that aa(A) is
constant in a neighbourhood of « unless det(A(@)) = 0 or some entry of A(a) is
infinite. So ¢ a(A) is a step~function with finitely many discontinuities. At each
discontinuity @, we re-define ¢ a(A) to be the average of the one-sided limits of
9% (A) as B tendsto a.

If B is another matrix for ¢, then B =P'AP for some non-singular matrix
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P over k(t) . It follows that ca(A) = Oa(B) except at finitely many values of «,
and this implies that o c)‘(A) =0 a(B) forall @. We define oa(q:) = oa(A) , and note

that % induces a homomorphism from Lo(k(t)) ®z Q into Q.

THEOREM 3. Let K< s> have n-fold branched cyclc covering L. Let x bea

non-constant character on H1(Ln) , inducing a covering in of Ln I H1('I:n;Q) =0,

then lo(K,x) - o,7(K,x)| = 1.

Proof. Let Mn be constructed as above and suppose rMn bounds a compact
4-manifold Vn over Cm x C_ . We may do surgery on Vn untii 1r1(Vn) = Cm xCy s
making ’\V/m simply connected. Recall that H*(?/m) isa Z[Cm;][t,t-1]—module,

~ o~
where t represents a covering translation of V_ over Vn . From the exact sequence

n

of this covering; : HZ(Vn) coker (t-1 :Hz(Vw) — Hz(Vw))
~ H2(V°°) ®z[t,t"1] Z .
(e,e-17% -

The intersection form on HZ(Vn;k(t)) is obtained from the pairing

By tensoring over Z[Cm] with k , we obtain HZ(Vn;k) = Hz(Vm;k) 8,

H (V) x H,(,) - Z[Cm][t,t_1] by tensoring over Z[C_1[t,t™'] with k(t) . It
follows that the intersection form on H2(Vn;k(t)) has a matrix A(t) all of whose
entries liein k[t,t”']. Observe that A(1) is a matrix for the intersection form on
HZ(Vn; k) .

Let A(1) have rank p and nullity v, andlet B(t) be the px p submatrix
in the top left-hand corner of A(t) . We may transform A(t) by a permutation matrix
to make B(1) non-singular. Then B(a) is non-singular for all & closeto 1, so
Ua(B) is constant in some neighbourhood of 1 .

Observe that \oa(A) - ca(B)i < v forall a closeto 1. Since B(1) has
(V ;k) =s(V) . Let a, be

2 1
the average of the one-sided limits of ¢ a(A) as o approaches 1 ; it follows that

the same rank as A(1) , 01(B) = o1(A) = signature of H

s 1
- < = - -
101 s(Vn)l < v . By definition, 011'(K,x) 7 (o1 so(Vn)) , SO

]011' (K,x) - % (s(Vn) - sO(Vn)) | = % . By the proof of invariance of
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1 . : v

o(K,x),r (s(Vn) - so(Vn)) depends only on M_ and X ; the same is true of e

Suppose r'Ln bounds a compact 4-manifold Wn over Cm . Since Mn can
be obtained from Ln by a single surgery, rMn bounds a 4-manifold Vn obtained
from Wn by attaching r 2-handles. Although Vn is not the manifold which was

1

called V above, the values of — (s(Vn) - So(Vn)) and Vv agree.

By hypothesis, in is a rational homology sphere. Observe that Hz(vn ; k)
has a subspace of codimension r isometric with HZ(Wn;k) . The intersection form
on HZ(Wn;k) is non-singular, and the form on Hz(Vn;k) has nullity v . It follows

that 1s(Vn) - s(Wn)l < r-v . A similar argument shows that so(Vn) =5 (Wn) , SO

o
\01T(K;x)-c(K;x)\ s§+(1_%) - 1.

Let K be the 2-bridge knot g , with double branched covering L = L
2

P,q’
If K is slice, then p is a square (lemma 1), say p=¢

for every character x on H1(L) of prime-power order dividing ¢ . By theorem 3,
lo(K,x)! = 1 for every such character.

Suppose %= mn with m a prime-power dividing ¢ . We showed that (for
some character X of order m) :

o(K,x) = 4 (area Alnr, %ﬂz) - int A(nr, 9;‘—1))
For K tobe slice, this expression (which is always an odd integer if r # O(m) )
mustbe £ 1 for r=1, 2,...,m-1 . Consider the example K = 2/22 , whis has null-
cobordant Seifert form. We obtain, for 2r<m, O(K,xzr) = 4% -2nr+ 1. In
particular (since m > 2) :
olk,x) = 4Z-2041 = 1-20(1-2)

If e>3, then ¢ 2 5 and ¢ has aprime-power factor m=5 . Since

2

=mn and m|¢, wehave n=5, so :
ok, x) = 1-1001-8) = -5<-1,
so K cannot be slice. This proves the result announced at the beginning, that 2/ 22

is slice if and only if ¢ =3 (stevedore’s knot) or ¢ =1 (unknot).

By theorem 2, 7(K,x)=0
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Observe that, in contrast to theorem 1, theorem 2 is restricted to characters
x of prime power order. As a consequence, there are knots (for example, the
2-bridge knot 94/225) which cannot bound ribbons but which could conceivably be
slice.
Finally, we remark that the condition that K be slice could be replaced

throughout by the condition that K bound a smooth 2~disc in a homology 4-ball.
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Appendix to Cobordism of Classical Knots by A. Casson & C. Gordon

REMARKS ON SUBSEQUENT DEVELOPMENTS

P.M. GILMER

Further progress has been made in several directions since this seminal paper
first became available (1975).

The most recent and most dramatic follows from Donaldson's result that certain
quadratic forms are not the intersection pairings for simply connected 4-manifolds.
Previously Casson had noted that if every knot with Alexander polynomial one is slice,
then every quadratic form can be realized as above. Thus, it follows that some knots
with trivial Alexander polynomial are not slice. In fact, Casson's argument is cons-
tructive. So one can find such knots explicity. The branched cyclic covers of
Alexander polynomial one knots are homology spheres. Thus, there are no nontrivial
Casson-Gordon invariants. Such a knot also has a null-cobordant Seifert matrix.

Following more directly in the footsteps of "Cobordism of Classical Knots", much
work has been done. Gilmer [1] showed these methods could be used to get lower
bounds on the slice genus of a knot (the minimal genus for a smooth proper surface
in D* with boundary K) .

Litherland [2] has a formula for T(K,x) (for x associated to Lz) in terms
of data derived from a Seifert surface for K . This generalizes a formula for 7(K,X)
in the genus-one case and an estimate of 01(T(K,x)) due to Gilmer [3] .

Gilmer also showed that the characters x which must extend across W2 could
be more precisely identified, and related to the Seifert form [3] . In this way the
work of Levine and that of Casson and Gordon could be combined in a nontrivial way

yielding further examples of non-slice knots.
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The most interesting are examples, due to Livingston (4], of knots which cannot
be cobordant to their reverses. The reverse of a knot is obtained by simply reversing
the string orientation of a knot. Thus, a knot and its reverse have identical exteriors
and branched cyclic covers (viewing these objects as oriented manifolds. Thus the
Casson-Gordon invariants must fail to distinguish them. Their Seifert pairings are
cobordant as well. ‘

There is also an interesting preprint by Daryl Cooper [5] which considers a
particular family of knots and obtains very strong results. His method is related to
that of Casson and Gordon but is definitely different. Casson~Gordon invariants have
also found other related uses in topology. For instance in his recent Ph. D. thesis ,
Ruberman [6] found new obstructions to a knot being the slice of an unknot in every

dimension [6] .
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