SIMPLE HOMOTOPY THEORY JANUARY 1970

A. J. CASSON

1. PROJECTIVE MODULUS AND AUTOMORPHISMS

We construct $\mathbb{Z}[\pi]$ the integral group ring of the group π . This consists of formal linear combinations $\sum_{g \in \pi} n_g g$ ($n_g \in \mathbb{Z}$, $n_g = 0$ for all but finitely many g).

$$\sum n_g g + \sum m_g g = \sum (n_g + m_g)g$$
$$\left(\sum m_g g\right) \left(\sum n_g g\right) = \sum_g \left(\sum_{hk=g} m_h n_k\right)g$$

Ring R (associative, has 1, not nec. comm.)

(Left) R-module is Abelian group A with ra defined in A for all $r \in R$, $a \in A$ such that

$$r(a+b) = ra + rb$$
$$(r+s)a = ra + sa$$
$$(rs)a = r(sa)$$
$$1a = a$$

R-homomorphism $f : A \to B$ is group homotopic with f(ra) = rf(a) for all $r \in R$, $a \in A$. $a_i R$ -module $(i \in I) \oplus_{i \in I} A_i$ consists of formal sums $\sum_{i \in I} a_i$ with $a_i \in A_i$ and $a_i = 0$ for almost all i.

A is free if it is isomorphic to a direct sum of copies of R; equivalently, A has a basis $\{a_i\}_{i\in I}$ such that for all $a \in A$ there exists unique $r_i \in R$ such that $a = \sum r_i a_i$ $(r_i = 0$ for almost all i).

A is projective if, given R-modules B, C and R-homotopic $\phi : B \to C, f : A \to C$ with ϕ onto, there exists $g : A \to B$ such that $\phi g = f$.

Lemma 1.1. A is projective iff it is a direct summand of a free module.

A is finitely generated if there exists finite subset $\{a_1, \ldots, a_n\}$ of A which spans A.

Corollary 1.2. A f.g. projective module is a direct summand of a f.g. free module.

R any ring. Define $K_0(R)$ to be Abelian group with one generator [A] for each isomorphism class of f.g. projective R-modules, subject to relations

$$[A] + [B] = [A \oplus B]$$

Define $\tilde{K}_0(R) = K_0(R)$ /subgroup generated by [R]) projective class group of R.

Examples. 1) $R = \mathbb{Z}$ f.g. proj. \mathbb{Z} -modules all free

$$\tilde{K}_0(\mathbb{Z}) = 0$$
, $K_0(\mathbb{Z}) \cong \mathbb{Z}$

2) R =field f.g. proj. *R*-modules are f.d. vector spaces.

$$K_0(R) = 0$$
, $K_0(R) \cong \mathbb{Z}$.

- 3) p, q distinct primes, $K_0(\mathbb{Z}_{pq}) \cong \mathbb{Z} \oplus \mathbb{Z}, \ \tilde{K}_0(\mathbb{Z}_{pq}) \cong \mathbb{Z}.$
- 4) R = ring of algebraic integers in some algebraic number field, $K_0(R) = \mathbb{Z} \oplus \text{ (ideal class group of } R\text{)}, \quad \tilde{K}_0(R) \cong \text{ ideal class group.}$

Lemma 1.3. Any element of $K_0(R)$ can be expressed as [A] - [B], where A, B are f.g. proj. modules; [A] - [B] = [C] - [D] iff \exists f.g. proj. X such that $A \oplus D \oplus X \cong B \oplus C \oplus X$.

Proof. Consider ordered pairs of f.g. proj. modules (A, B). Define $(A, B) \sim (C, D)$ if $A \oplus D \oplus X \cong B \oplus C \oplus X$ for some X, let G be set of equivalence classes.

Addition in G: (A, B) + (C, D) represented by $(A \oplus C, B \oplus D)$. G is a group.

Define $\phi : K_0(R) \to G, \ \psi : G \to K_0(R)$ by $\phi[A] = (A, 0), \ \psi(A, B) = [A] - [B].$

Corollary 1.4. Any element of $K_0(R)$ can be expressed as [A]; [A] = [B] iff $A \oplus F \cong B \oplus G$ for some f.g. free F.G.

Proof. Any element of $K_0(R)$ can be expressed as [A] - [B]. Any B f.g. proj $\Rightarrow \exists X$ such that $B \oplus X$ is f.g. free.

 \therefore Any element of $K_0(R)$ is of the form $[A \oplus X] - [B \oplus X]$.

 \therefore Any element of $\tilde{K}_0(R)$ is of the form $[A \oplus X]$.

Suppose [A] = [B] in $\tilde{K}_0(R)$. So [A] - [B] in $K_0(R) \in$ subgroup generated by [R].

 $\therefore [A] - [B] = [F] - [G]; F, G \text{ f.g. free, so } A \oplus G \oplus X \cong B \oplus F \oplus X \text{ some f.g. proj. } X.$ $X \oplus Y \text{ is f.g. free some } Y$

$$\therefore A \oplus (G \oplus X \oplus Y) \cong B \oplus (F \oplus X \oplus Y)$$
$$A \oplus F \cong B \oplus G \Longrightarrow [A] - [B] = [G] - [F] \text{ in } K_0$$
$$\Longrightarrow [A] = [B] \text{ in } \tilde{K}_0 .$$

 $\mathbf{2}$

1		
1		
1		1

Tensor products.

Let A be a right R-module, B a left R-module. $A \otimes_R B$ is the universal Abelian group of bilinear maps $\phi : A \times B \to G$ such that $\phi(ar, b) = \phi(a, rb)$.

If A is an (S, R)-bimodule [i.e., left S-module, right R-module such that (sa)r = s(ar)], then $A \otimes_R B$ inherits structure of left S-module

$$s \in S \text{ induced by } A \times B \longrightarrow A \otimes_R B$$

 $(a, b) \longmapsto Sa \otimes b$

If A is an (S, R)-bimodule and B is an (R, T)-bimodule, then $A \otimes_R B$ is an (S, T)-bimodule.

 $R \xrightarrow{f} S$ ring homomorphism preserving 1.

Construct $f_*: K_0(R) \to K_0(S)$.

Regard S as (S, R)-bimodule; S acts on S by left multiplication, R acts on S on right by s.r = sf(r).

A is left R-module $\implies S \otimes_R A$ is a left S-module.

Lemma 1.5. $S \otimes_R (A \oplus B) \cong (S \otimes_R A) \oplus (S \otimes_R B)$ and if A is f.g. projective R-module then $S \otimes_R A$ is f.g. projective S-module.

Proof. The first part is obvious. Note that $S \otimes_R R \cong S$. Therefore $S \otimes_R$ (f.g. free module) is f.g. free.

If A is f.g. projective R-module, then $A \oplus X$ is f.g. free for some X. Therefore $(S \otimes_R A) \oplus (S \otimes_R X)$ is f.g. free.

Therefore $S \otimes_R A$ is f.g. projective S-module.

Theorem 1.6. K_0 and \tilde{K}_0 are covariant functors from the category of rings and ring homomorphisms (preserving 1) to the category of Abelian groups and homomorphisms.

Examples. 1) Suppose there exists homomorphism $R \to K$, K a field. Then $\mathbb{Z} \to R \to K$ induce homomorphisms

$$\begin{array}{cccc} K_0(\mathbb{Z}) & \to K_0(R) \to & K_0(K) \\ \| & & \| \\ \mathbb{Z} & \xrightarrow{\cong} & \mathbb{Z} \end{array}$$

Therefore $K_0(R) \cong \mathbb{Z} \oplus \tilde{K}_0(R)$.

In particular, this holds for commutative rings, and integral group rings $(\sum n_g g \to \sum n_g)$. 2) $K_0(M_n(R)) \cong K_0(R)$

JANUARY 1970

 R^n can be regarded as an $(R, M_n(R))$ -bimodule

$$r(x_1, \dots, x_n) = (rx_1, \dots rx_n)$$
$$(x_1, \dots, x_n)a_{ij} = (\sum x_i a_{i1}, \dots, \sum x_i a_{in})$$

or an $(M_n(R), R)$ -bimodule.

 $R^n \otimes_R R^n \cong M_n(R0 \text{ as an } M_n(R)\text{-bimomodule}$

 $R^n \otimes_{M_n(R)} R^n \cong R$ as an *R*-bimodule.

If A is left $M_n(R)$ -module, $A^* = R^n \otimes_{M_n(R)} A$ left R-module; B.... R-module, $B_* = R^n \otimes_R B$ left $M_n(R)$ -module.

*, * preserve \oplus to f.g. projectives; $(A^*)_* \cong A$ and $B_*)^* \cong B$.

: defines inverse isomorphisms $K_0(M_n(R)) \cong K_0(R)$.

In general $\tilde{K}_0(M_n(R)) \cong \tilde{K}_0(R)$, e.g., $\tilde{K}_0(M_n(\mathbb{Z})) \cong \mathbb{Z}_n$.

Any ring R; GL(n, R) = group of invertible $n \times n$ matrices /R. Regard GL(n, R) as a subgroup of GL(n + 1, R). $M \in GL(n, R)$ identified with $\begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix} \in GL(n + 1, R)$

$$GL(1,R) \subset GL(2,R) \subset \cdots \subset GL(n,R) \subset GL(n+1,R) \subset \cdots$$

Define $GL(R) = \bigcup_{n=1}^{\infty} GL(n, R).$

A liter [??] as $\infty \times \infty$ matrices, $a_{ij} = \delta_{ij}$ for all but finitely many i, j.

Let e_{ij} be the matrix with 1 in (i, j)th place, zero elsewhere.

If $i \neq j$ and $r \in R$, then $1 + re_{ij} \in GL(R)$, inverse $1 - re_{ij}$.

Let E(R) be the group generated by these elementary matrices.

Lemma 1.7 (J.H.C. Whitehead). E(R) is the commutator subgroup of GL(R).

Proof. Suppose i, j, k distinct. Then

 $(1 + re_{ij})(1 + se_{jk})(1 - re_{ij})(1 - se_{jk})$

$$= (1 + re_{ij} + se_{jk} + rse_{ik})(1 - re_{ij} - se_{jk} + rse_{ik}) = 1 + rse_{ik}$$

Therefore all elementary matrices are commutators.

Let $X, Y \in GL(n, R)$; then in GL(R) we have

$$\begin{aligned} XYX^{-1}Y^{-1} &= \begin{pmatrix} XYX^{-1}Y^{-1} & 0\\ 0 & 1_n \end{pmatrix} = \begin{pmatrix} X & 0\\ 0 & X^{-1} \end{pmatrix} \begin{pmatrix} Y & 0\\ 0 & Y^{-1} \end{pmatrix} \begin{pmatrix} (YX)^{-1} & 0\\ 0 & YX \end{pmatrix} \\ \begin{pmatrix} Z & 0\\ 0 & Z^{-1} \end{pmatrix} \begin{pmatrix} 1 & Z^{-1}\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ -Z & 1 \end{pmatrix} \begin{pmatrix} 1 & Z^{-1}\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \\ \vdots & \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \end{aligned}$$

 $\begin{pmatrix} 1 & Z^{-1} \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -Z & 1 \end{pmatrix}$, are products of elementary matrices

$$\begin{pmatrix} 1 & 1 \\ -Z & 1 \end{pmatrix} = \prod_{\substack{n+1 \le i \le 2n \\ 1 \le j \le n}} (1 + z_{ij} e_{ij})$$

Therefore $E(R) \cong GL(R)'$

Define $K_1(R) = GL(R)/E(R)$; this is Abelian, usually written additively.

Let A be f.g. projective, and let $\alpha : A \to A$ be an automorphism of A. Define $\tau(\alpha) \in K_1(R)$ (the Whitehead determinant of α) as follows.

If A is free, pick basis and represent α by invertible matrix M.

Then $\tau(\alpha) = \text{image of } M \text{ in } K_1(R)$; independent of basis as in $\text{im } M = \text{im } S^{-1}MS$.

If A is f.g. projective, pick X such that $A \oplus X$ is f.g. free. Define $\tau(\alpha) = \tau(\alpha \oplus 1_X)$ (already defined).

Examples. Independent of X.

1) $\tau(\alpha\beta) = \tau(\alpha) + \tau(\beta)$ if α, β onto of A

2) $\tau(\alpha \oplus \beta) = \tau(\alpha) + \tau(\beta)$ if α onto of A, β onto of B.

In fact, τ is universal with respect to 1) and 2).

Let
$$\pi$$
 be any group $g \in \pi \Rightarrow [\pm g]_{|X| \text{ matrices}} \in GL(1, \mathbb{Z}[\pi]) \subset GL(\mathbb{Z}[\pi]).$

Definition. Wh $[\pi] = K_1(\mathbb{Z}[\pi])/\{\tau(\pm g) : g \in \pi\}$ the Whitehead group of π .

 $f: R \to S$ induces homomorphism $f_*: GL(R) \to GL(S)$.

By Abelianism, get $f_* : K_1(R) \to K_1(S)$.

Theorem 1.8. K_1 is a covariant functor from the category of rings and ring homomorphisms to the category of Abelian groups and homomorphisms. Analogous result for Wh.

Examples. 1) If R is commutative, det : $GL(R) \rightarrow U(R) =$ group of units of R.

$$U(R) \xrightarrow{= GL(1, R) \subset GL(R) \to K_1(R)} \xrightarrow{\det} U(R)$$
$$u \longmapsto \begin{pmatrix} u & & \\ & 1 & & \\ & & 1 & \\ & & & \ddots \end{pmatrix} \mapsto u$$
$$u \mapsto u$$

Therefore $K_1(R) \cong U(R) \oplus SK_1(R)$ for commutative R.

2) Wh $(C_S) \neq 0$. Enough to find a unit in $\mathbb{Z}[C_S]$ not of form $\pm g \ (g \in C_S)$ Wh $(\pi) \cong \frac{U(\mathbb{Z}[\pi])}{\pm \pi} \oplus SK_1$ t generates C_S .

 $1-t-t^4$ is a unit in $\mathbb{Z}[C_S]$ inverse $1-t^2-t^3$

In fact $Wh(C_S) \cong \mathbb{Z}$ generated by $1 - t - t^4$ (hard to prove).

3) $K_1(\mathbb{Z}) \cong \mathbb{Z} \geq U(\mathbb{Z}), SK_1(\mathbb{Z}) = 0$

Implies that Wh (trivial group) = 0

 $A \in GL(n, \mathbb{Z})$ with det A = 1

RTP that A is a product of elementary matrices.

$$\begin{bmatrix} a_{11} & \cdots & A_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Simplify $(a_{11} \cdots a_{1n})$ by Euclidean algorithm. Suppose a_{1r} has maximal modulus in top row. Suppose $a_{1s} \neq 0$ for some $s \neq r$. Pick $\lambda \in \mathbb{Z}$ such that $|a_{1r} - \lambda a_{1s}| < |a_{1s}|$. $A(1 - \lambda e_{sr})$ has same top row as A except that a_{1r} is replaced by $a_{1r} - \lambda a_{1s}$. Repeat until the top row has only one non-zero element – must be ± 1 . If $n \geq 2$, can make top row $(1, 0, \ldots, 0)$.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ | & A' & \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & A' & \\ 0 & & & \end{bmatrix}$$

Premultiply by elementary matrices to kill the first column. Therefore $A \equiv$ some element of $GL(n01,\mathbb{Z}) \pmod{E(\mathbb{Z})}$. Continue until

$$A \equiv \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 & \\ & & & & \pm 1 \end{pmatrix}$$

But det A = 1, so $A \equiv I \mod E(\mathbb{Z})$

4) If R is a field then $K_1(R) \cong R^* = U(R)$. Similar to above, but easier.

5) $K_1(M_n(R)) \cong K_1(R)$ $GL(k, M_n(R)) \cong GL(nk, R)$ (portioned matrices) $\sim GL(M_n(R)) \cong GL(R)$ Abelianize $\Rightarrow K_1(M_n(R)) \cong K_1(R)$ **Lemma 1.9** (π group). If $\gamma : \pi \to \pi$ is conjugation by some $g \in \pi$, then $\gamma_* : K_i(\mathbb{Z}[\pi]) \to K_i(\mathbb{Z}[\pi])$ is the identity (i = 0, 1).

Proof. If A is f.g. projective over $\mathbb{Z}[\pi]$, then $\gamma_*[A]$ represented by $C \otimes_{\mathbb{Z}[\pi]} A$ where $C = \mathbb{Z}[\pi]$ as left $\mathbb{Z}[\pi]$ -module with right $\mathbb{Z}[\pi]$ -action given by $c \cdot r = cgrg^{-1}$ ($c \in C, r \in \mathbb{Z}[\pi]$, \cdot denotes right action on C).

Define $\phi: C \to \mathbb{Z}[\pi]$ by $\phi(c) = cg$. Left $\mathbb{Z}[\pi]$ -module isomorphism, and

$$\phi(c \cdot r) = \phi(cgrg^{-1}) = cgr$$

$$\phi(c)r = cgr$$

Therefore ϕ is a bimodule isomorphism, so $C \otimes_{\mathbb{Z}[\pi]} A \cong A$.

Therefore $\gamma_* : K_0(\mathbb{Z}[\pi]) \to K_0(\mathbb{Z}[\pi])$ is identity. If $M \in GL(n, \mathbb{Z}[\pi])$, then $\gamma_* M = (gI_n)M(gI_n)^{-1}$. Therefore $\gamma_* M \equiv M \mod E(\mathbb{Z}[\pi])$, so $\gamma_* : K_1 \to K_1$ is identity.

Wh(π) is f.g. if π is finite (Bass). $\tilde{K}_0(\mathbb{Z}[C_{\infty} \times C_{p^2}])$ not f.g.

 $\tilde{K}_0(\mathbb{Z}[\pi])$ is summand of Wh $(\pi \times C_\infty)$.

 $Wh(\pi) = \tilde{K}_0(\pi) = 0$ if π free or free Abelian.

2. CHAIN COMPLEXES

Consider chain complexes of left R-modules.

$$C_* : \cdots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$

 ∂ is an *R*-homomorphism such that $\partial^2 = 0$.

 $H_n(C_*)$ is a left *R*-module.

$$C_*$$
 is free/proj/f.g. $\iff C_n$ is free/proj $\forall n$
 C_* is f.g. $\iff \bigoplus_{n=0}^{\infty} C_n$ is f.g.

Examples. X a (simplicial) complex, fundamental group π , and universal cover \tilde{X} triangulated canonically. Chain complex $C_*(\tilde{X})$ (finite simplicial chains). π acts n \tilde{X} , so $C_*(\tilde{X})$ is chain complex of $\mathbb{Z}[\pi]$ -modules. Free: one basis element for each simplex of X.

If X dominated by finite complex $X \xrightarrow{f} K \xrightarrow{g} X - zf \simeq 1$.

$$C_*(\tilde{X}) \to C_*(\tilde{K}) \to C_*(\tilde{X})$$
 with $g_*f_* \simeq 1$.
f.g. free

Lemma 2.1. If C_* is projective and acyclic, then there exists *R*-homomorphisms $\Gamma_i : C_i \to C_{i+1}$ such that $\partial \Gamma + \Gamma \partial = 1$.

JANUARY 1970

Proof. $C_1 \xrightarrow{\partial} C_0$ onto, C_0 projective, so there exists $\Gamma_0 : C_0 \to C_1$ with $\partial \Gamma_0 = 1$.

Suppose inductively that $\Gamma_0, \ldots, \Gamma_{n-1}$ defined. $x \in C_n$; $\partial x = (\partial \Gamma_{n-1} + \Gamma_{n-2}\partial)\partial x = \partial \Gamma \partial x$ $\therefore \quad (1 - \Gamma_{n-1}\partial)x \in Z_n = \ker \partial : C_n \to C_{n-1}$

 $Z_n = \operatorname{im} : \partial : C_{n+1} \to C_n = B + n.$

 C_n projective $\Rightarrow \exists \Gamma_n : C_n \to C_{n+1}$ s.t. $\partial \Gamma_n = 1 - \partial \Gamma_{n-1}$, i.e. $\partial \Gamma_n + \Gamma_{n-1} \partial = 1$ completes induction step.

 $f: C_* \to D_*$ chain map.

Algebraic mapping cylinder. M_* of f has $M_n = C_n \oplus C_{n-1} \oplus D_n$ with $\partial : M_n \to M_{n-1}$ defined by $\partial(x, y, z) = (\partial x - y, -\partial y, \partial z + fy)$. Check $\partial^2 = 0$.

Chain maps

$$\begin{split} \lambda: C_* \to M_*, & \mu: M_* \to D_* \\ & x \mapsto (x,0,0), \ (x,y,z) \mapsto z + fx \end{split}$$

 $\mu\lambda = f$ and μ is a chain equivalence.

Inverse $\bar{\mu}: D_* \to M_*; z \mapsto (0, 0, z).$

 $\mu\bar{\mu} = 1$. homotopy $\bar{\mu}\mu \simeq 1$ given by $\Delta_n : M_n \to M_{n+1}$

$$\begin{aligned} (x,y,z) &\mapsto (0,x,0) \\ (\partial \Delta + \Delta \partial)(x,y,z) &= (-x, -\partial x, fx) + (0, \partial x - y, 0) \\ &= (-x, -y, fx) \\ &= (\bar{\mu}\mu - 1)(x,y,z) \end{aligned}$$

algebraic mapping cone. $Q_* = M_* / \operatorname{im} \lambda$

 $\therefore Q_n = C_{n-1} \oplus D_n, \, \partial(y, z) = (-\partial y, \partial z + fy)$

$$0 \longrightarrow C_* \xrightarrow{\lambda} M_* \xrightarrow{\pi} Q_* \longrightarrow 0$$

$$f \qquad \qquad \downarrow^{\mu} \\ D_*$$

Commutes, top row exact.

Define $H_n(f) = H_n(Q_*)$; get exact homology sequence of f.

$$H_n(C_{(}) \xrightarrow{f_*} H_n(D_*) \longrightarrow H_n(f) \longrightarrow H_{n-1}(C_*) \xrightarrow{f_*} a$$

Lemma 2.2. If $f : C_* \to D_*$ induces homology group isomorphisms, and C_*, D_* projective, then f is a chain equivalence.

Put $M_n = C_n \oplus Q_n$ in obvious way.

Put $\Delta_n =$

commutes π

therefore there exists $\bar{\lambda} : M_* \to C_*$ such that $\lambda \bar{\lambda} = 1 - \partial \Delta - \Delta \partial$ $\lambda \bar{\lambda} \simeq 1$ $\lambda \bar{\lambda} \lambda(x) = (1 - \partial \Delta - \Delta \partial) \lambda(x) = \lambda(x)$ $\lambda \text{ mono } \Rightarrow \bar{\lambda} \lambda = 1$

So $\overline{\lambda}$ chain inverse to λ as required.

 C_* dominated by D_* if there exists $f: C_* \to D_*, g: D_* \to C_*, gf \sim 1$. Dimension of C is $\dim(C_*) = \sup\{n: C_n \neq 0\}$.

Theorem 2.3 (C.T.C. Wall). If C_* , D_* is projective, D_* dominates C_* , and D_* is f.g., then C_* is equivalent to a f.g. projective complex of dimension $\leq \dim(D_*)$.

Definition. C_* is of finite type if C_n is f.g. for all n.

Lemma 2.4. If C_* , D_* is projective, D_* dominates C_* , and D_* is of finite type, then $C_* \simeq$ some complex of finite type.

Proof. $f : C_* \to D_*, g : D_* \to C_*, gf \simeq 1$. Suppose inductively that $H_i(f) = 0$ for i < n (start with n = 0).

First step: $H_n(f)$ is f.g.

Homology sequence of f:

(1)
$$0 \longrightarrow H_i(C_*) \xrightarrow{f_*}_{g_*} H_i(D_*) \longrightarrow H_i(f) \longrightarrow 0$$

Let $r = fg: D_* \to D_*$.

f, g, r induces homology isomorphisms in dimensions < n. Exact sequence of r:

$$H_n(D_*) \xrightarrow{r_*} H_n(D_*) \longrightarrow H_n(r) \longrightarrow 0$$

$$r_* = f_*g_* , \quad f_* = r_*f_* \Rightarrow \operatorname{im} r_* = \operatorname{im} f_*$$

$$\Rightarrow_n (f) = H_n(r)$$

Let Q_* be mapping cone of r. $H_i(Q_*) = 0$ for i < n.

JANUARY 1970

Exact sequence. $0 \to Z_n(Q_*) \xrightarrow{\subset} Q_n \xrightarrow{\partial} Q_{n-1} \xrightarrow{\partial} Q_0 \to 0$. Q_i is projective so argument of $2.1 \Rightarrow \exists$ contraction ? (don't use Z_n projective).

 $\Gamma_n | Z_n(Q_*) = 1$, so Z_n is direct summand of Q_n .

 \therefore Z_n is f.g., \therefore $H_n(f) \cong H_n(Q_*)$ is f.g.

From (*), $H_n(f) \cong \ker g_* : H_n(D_*) \to H_n(C_*)$

Pick f.g. projective E and epimorphism $e: E \to \ker g_*$

 $\exists d$ such that

To choose c, note that $gd(C_n) \subset B_n(C_*)$ since $e(E) \subset \ker g_*$.

E projective, so $\exists c : E \to C_{n+1}$ such that $\partial c = gd$.

Replace D_* by bottom row of (2): chain complex of finite type. Haven't changed gf, so D_* still dominates C_* .

g induces homology isomorphisms in dimensions sn.

- Therefore f does too. Therefore $H_i(f) = 0$ for $i \leq n$.
- Only changed D_{n+1} .

Iterate infinitely, obtain complex D'_* and map $f': C_* \to D'_*$ inducing homology isomorphisms in all dimensions. Therefore by 2.2, $C_* \simeq D'_*$, which is of finite type.

Proof of Theorem 2.3. By Lemma 2.4, replace C_* by an equivalent complex of finite type. $f: C_* \to D_*, g: D_* \to C_*$ such that $gf \simeq 1$, say $1 - gf = \partial \Delta + \Delta \partial$ where $\Delta_i: C_i \to C_{i+1}$. Let $n = \dim D_*$. Then $gf: Cn + 1 \to C_{n+1}$ is zero.

- $\therefore \partial \Delta_{n+1} + \Delta_n \partial = \mathbf{1}_{C_{n+1}} \Rightarrow \partial \Delta_n \partial = \partial$
- \therefore we have the map $\partial \Delta_n : C_n \to B_n$ such that $\partial \Delta_n | B_n = 1$.
- $\therefore B_n$ is a direct summand of C_n .
- $\therefore C_n/B_n$ is f.g. projective.

Let E_* be complex

$$0 \longrightarrow C_n/B_n \xrightarrow{\partial} C_{n_1} \xrightarrow{\partial} C_{n_2} \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_0 \longrightarrow 0$$

Projection: $C_* \to E_*$ induces homology isomorphisms (clear for dimensions $\leq n$, and $H_i(D_*) = 0$ for i > n, from $H_i(C_*) \leftrightarrows H_i(D_*)$).

Therefore $C_* \simeq E_*$ by 2.2; and E_* is f.g. proj., dim $E_* = \dim D_*$.

Let C_* be f.g. projective. Define Wall invariant $\sigma(C_*)$ to be $\sum_i (-1)^i [C_i] \in \tilde{K}_0(R)$.

Lemma 2.5. If $C_* \simeq D_*$, then $\sigma(C_*) = \sigma(D_*)$ (where C_*, D_* are f.g. projective).

Proof. Let Q_* be mapping cone of a chain equivalence $C_* \to D_*$. Then Q_* is acyclic, so \exists contraction Γ_* .

$$\therefore \quad 0 \to B_n \xrightarrow{\mathcal{C}} Q_n \xrightarrow{\partial} B_{n-1} \to 0 \text{ splits}$$

$$\therefore \quad B_n \oplus B_{n-1} \cong Q_n \cong C_{n-1} \oplus D_n$$

$$\therefore \quad \sigma(C_*) - \sigma(D_*) = \sum_n (-1)^{n-1} \{ [C_{n-1} + [D_n] \} \}$$

$$= \sum_n (-1)^{n-1} \{ [B_n] + [B_{n-1}] \}$$

$$= 0 .$$

C an generalize definition of $\sigma(C_*)$ to case when C_* is projective and dominated by a f.g. proj. complex F or such a $C_* \simeq$ f.g. proj. complex E_* (by 2.3) and define $\sigma(C_*)$ to be $\sigma(E_*)$; well defined by Lemma 2.5.

Theorem 2.6. A f.g. projective complex C_* is equivalent to a f.g. free complex of dimension at most dim C_* iff $\sigma(C_*) = 0$.

Proof. "Only if" is clear.

"If" : Suppose $\sigma(C_*) = 0$. Suppose inductively that C_i free for i < n. C_n f.g. proj. $\Rightarrow \exists R$ -module E, f.g. proj., such that $C_n \oplus E$ is free.

Replace C_* by complex

$$\xrightarrow{\partial} C_{n+2} \xrightarrow{\partial \oplus 0} C_{n+1} \oplus E \xrightarrow{\partial \oplus 1} C_n \oplus E \xrightarrow{\partial \oplus 0} C_{n-1} \xrightarrow{\partial} C_{n-2}$$

which is equivalent to C_* by Lemma 2.2.

This completes the induction; only had to alter C_n and C_{n+1} .

Let $m = \dim C_*$: continue this process until C_i is free, i < m (doesn't increase dim C_*). $\sigma(C_*) = 0$ but $\sigma(C_*) = (-1)^m [C_m]$.

 \therefore \exists f.g. free F, G such that $c_m \oplus F \cong G$.

Replace C_* by complex

$$0 \to C_m \oplus F \xrightarrow{\partial \oplus 1} C_{m-1} \oplus F \xrightarrow{\partial \oplus 0} C_{m-2} \xrightarrow{\partial}$$

which is $\simeq C_*$ by 2.2; and it is f.g. free of dim m.

11

Whitehead Torsion.

Hypothesis (for rest of Section 2): R is such that free modules R^m, R^n are isomorphic iff m = n.

Examples 1) if R any ring: R^{∞} = free left R-module on countably many generators. $S = \operatorname{End}_R(R^{\infty})$. If A is any left R-module, $\operatorname{Hom}_R(A, R^{\infty})$ is a left S-module. But, as left S-modules

$$S = \operatorname{Hom}_{R}(R^{\infty}, R^{\infty}) \cong \operatorname{Hom}_{R}(R^{\infty} \oplus R^{\infty}, R^{\infty})$$
$$\cong S \oplus S$$

so hypothesis doesn't hold for S.

2) Hypothesis does hold if R can be mapped homomorphically into a field, e.g., commutative rings, $\mathbb{Z}[\pi]$.

Let A be a f.g. free R-module, and let $b = (b_1, \ldots, b_m)$, $c = (c_1, \ldots, c_n)$ be bases for A. Then m = n, so \exists unique square matrix $[a_{ij}] \in GL(n, R)$ such that $c_i = \sum a_{ij}b_j$. Write [c/b] for $\tau[a_{ij}] \in K_1(R)$.

A based chain complex is a f.g. free chain complex C_* together with a basis $c_n = (c_n^{(1)}, \ldots, c_n^{(d_n)})$ of $C_n, \forall n$.

Let C_* be based and acyclic. By 2.1 \exists contraction Γ_* . Exact sequence.

commutative diagram. Five lemma $\Rightarrow \partial \oplus \partial \Gamma_n$ isomorphism = γ_n

$$\gamma_n: C_n \longrightarrow B_{n-1} \oplus B_n$$

Let $\gamma = (\oplus \gamma_{2i})^{-1} (\oplus \gamma_{2i+1}) : \oplus C_{2i+1} \to \oplus C_{2i}.$

Bases $\oplus c_{2i}$, $\gamma(\oplus c_{2i+1})$ for $\oplus C_{2i}$ Define $\tau(C_*)$ to be $[\gamma(\oplus c_{2i+1})/\oplus c_{2i}]$. Re-ordering bases: $\tau\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right) = \tau(-1)$, so that re-ordering bases adds $\tau(\pm 1)$ to $\tau(C_*)$. Define $\overline{K}_1(R) = K_1(R)/\{\tau(\pm 1)\} = \operatorname{coker}(K_1(\mathbb{Z}) \to K_1(R))$. Torsions of chain complexes will be regarded as elements of $\overline{K}_1(R)$.

Lemma 2.7. The torsion $\tau(C_*)$ depends only on C_* and bases c_* .

Proof. Let Γ'_* be another contraction giving isomorphisms $\gamma'_n : C_N \to B_{n-1} \oplus B_n$. Let $\beta_n = \gamma'_n \gamma_n^{-1} : B_{n-1} \oplus B_n \to B_{n-1} \oplus B_n$. It is enough to prove $\tau(\beta) = 0$.

Commutative diagram:

 B_{n-1}, B_n are f.g. projective: $\exists X_{n-1}, X_n$ such that $X_{n-1} \oplus B_{n-1}, B_n \oplus X_n$ f.g. free. Let $F_n = B_n \oplus X_n$.

$$\phi_n = 1 \oplus \beta_n \oplus 1 : F_{n-1} \oplus F_n \longrightarrow F_{n-1} \oplus F_n$$
$$\tau(\phi_n) = \tau(\beta_n)$$
$$0 \longrightarrow F_n \longrightarrow F_{n-1} \oplus F_n \longrightarrow F_{n-1} \longrightarrow 0$$
$$()^1 \qquad ()^{\phi_n} \qquad ()^1$$

w.r.t bases for F_{n-1}, F_n, ϕ_n has matrix $\begin{pmatrix} 1 & M \\ 0 & 1 \end{pmatrix}$ which is a product of elementary matrices. Therefore $\tau(\beta_n) = \tau(\phi_n) = 0$ as required.

 C_*, D_* based $f:C_*\to D_*$ chain map, mapping cone $Q_*:Q_n=C_{n-1}\oplus D_n$: basis $q_n=c_{n-1}\oplus d_n.$

 Q_\ast is based and acyclic if f is a chain equivalence

Define $\tau(f) = \tau(Q_*)$.

Call f a simple equivalence if $\tau(f) = 0$.

Theorem 2.8. If $f : C_* \to D_*$ is a chain equivalence of based chain complexes, and $g \simeq f$, then $\tau(g) = \tau(f)$.

Proof. $f - g = \partial \Delta + \Delta \partial$ Let Q_*^f, Q_*^g be the mapping cones of f, g.

$$Q_n^f = Q_n^g = C_{n-1} \oplus D_n , \qquad q_n^f = q_n^g = c_{n-1} \oplus d_n$$
$$\partial^f(y, z) = (-\partial y, \partial z + fy)$$
$$\partial^g(y, z) = (-\partial y, \partial z + gy)$$

Define $\phi: Q^f_* \to Q^g_*$ by $\phi(y, z) = (y, z + \Delta y).$

 ϕ is an isomorphism of chain complexes. In fact, $\phi_n : C_{n-1} \oplus D_n \to C_{n-1} \oplus D_n$ is a product of elementary automorphisms, so $[\phi(q_n)/q_n] = 0$. Therefore $\tau(Q_n^f) = \tau(Q_*^g)$ as required. \Box

JANUARY 1970

Lemma 2.9. Let $0 \to C'_* \xrightarrow{i} C_* \xrightarrow{j} C''_* \to 0$ be a s.a.s. of based acyclic complexes. Suppose i, j preserve bases, in the sense that $i(c'_n) \subset c_n$ and $j(c_n - i(c'_n)) = c''_n$. Then $\tau(c_*) = \tau(c'_*) + \tau(c''_*)$.

Proof. Claim \exists contractions $\Gamma_*, \Gamma'_*, \Gamma''_*$ such that

commutes.

Let Γ''_* be any contraction of C''_* .

 C_n free $\Rightarrow \exists \Delta_n : C_n \to C_{n+1}$ such that $j\Delta_n = \Gamma''_n j$. Therefore $j(1 - \partial \Delta - \partial \Delta) = (1 - \partial \Gamma'' - \Gamma'' \partial) j$.

 $\exists \text{ unique } k: C_* \to C'_* \text{ such that } ik = 1 - \partial \Delta - \Delta \partial : C_* \to C_*.$

 C'_* contractible, so $k \simeq 0$, say $k = \partial \Delta' + \Delta' \partial$, $\Delta'_n : C_n \to C'_{n+1}$.

Put $\Gamma_n = \Delta_n + i\Delta'_n$, then $\partial\Gamma + \Gamma\partial = 1$; Γ_* contraction, $j\Gamma_n = j\Delta_n = \Gamma''_n j$.

Diagram chasing $\Rightarrow 0 \rightarrow B'_n \xrightarrow{i} B_n \xrightarrow{j} B''_n \rightarrow 0$ exact.

$$\partial + \partial \Gamma = \gamma_n : C_n \longrightarrow B_{n-1} \oplus B_n$$

both commute.

Let M, M', M'' be matrices of $\gamma, \gamma', \gamma''$ w.r.t. given bases.

 $i, j \text{ preserve bases. Re-order bases } c_n \text{ of } C_n \text{ to bring } M \text{ into form } \begin{pmatrix} M' & x \\ 0 & M'' \end{pmatrix} = \begin{pmatrix} M' & 0 \\ 0 & M'' \end{pmatrix} \begin{pmatrix} 1 & (M')^{-1}x \\ 0 & 1 \end{pmatrix}.$ $\therefore \quad \tau(M) \equiv \tau(M') + \tau(M'') \text{ mod } \tau(\pm 1)$ $\therefore \quad \tau(C_*) = \tau(C'_*) + \tau(C''_*) \in \bar{K}_1(R)$

Theorem 2.10. If $f: C_* \to D_*$, $g: D_* \to E_*$ are chain equivalences of based complexes, then $\tau(gf) = \tau(g) + \tau(f)$. *Proof.* Let Q_*^f , Q_*^g , Q_*^{gf} be mapping cones. Define S_* by

bases $s_n = c_{n-1} \oplus d_n \oplus d_{n-1} \oplus e_n$

$$\partial(y, z, v, w) = (-\partial y, \partial z + fy - v, -\partial v, \partial w + gv)$$
.

Based exact sequence

$$0 \longrightarrow Q_*^f \longrightarrow S_* \longrightarrow Q_*^g \longrightarrow 0$$

$$(y, z) \longmapsto (y, z, 0, 0)$$

$$(y, z, v, w) \longmapsto (v, w)$$

$$\tau(S_*) = \tau(f) + \tau(g) \text{ by 2.9.}$$

Define $i: Q_*^{gf} \to S_*$ by i(y, w) = (y, 0, fy, w) chain map.

Define complex T_* by $T_n = D_n \oplus D_{n-1}$ basis $t_n = d_n \oplus d_{n-1}$

$$\partial(z, v) = (\partial z - v, -\partial v)$$
$$0 \longrightarrow Q_x^{gf} \xrightarrow{i} S_* \xrightarrow{j} T_* \longrightarrow 0$$
$$(y, z, v, w) \longrightarrow (z, v - fy)$$

This is not based.

Now basis ?? for $S_n : s'_n = i(c_{n-1} \oplus e_n) \cup d_n \oplus d_{n-1}$. In fact, $[s'_n/s_n] = 0 \in \overline{K}_1(R)$ related to s_n by transformation $(y, z, v, w) \mapsto (y, z, v + fy, w)$. By Lemma 2.9, $\tau(gf) + \tau(T_*) =$ $\tau(S_*) = \tau(f) + \tau(g)$

$$T_n = D_n \oplus D_{n-1}$$
 $\partial(z, v) = (\partial z - v, -\partial v)$, $t_n = d_n \oplus d_{n-1}$

Define T'_* by $T'_n = T_n$, $t'_n = t_n$, $\partial'(z, v) = (-v, 0)$. Define $\phi: T_* \to T'_*$ by $\phi(z, v) = (z, v - \partial z)$ chain map.

 ϕ is elementary automorphism of T_n .

 $\left[\phi t_n/t_n\right] = 0$ $\therefore \tau(T_*) = \tau(T'_*)$

To calculate $\tau(T'_*)$, use contraction Γ'_* , with $\Gamma'(z, v) = (0, -z)$.

Matrix of $\gamma : \oplus T'_{2i+1} \to \oplus T'_{2i}$ has integer coefficients $\bar{K}_1(\mathbb{Z}) = 0$, so γ has zero torsion. Therefore $\tau(T'_*) = 0$.

Corollary 2.11. Let $0 \to C'_* \xrightarrow{i} C_* \xrightarrow{j} C''_* \to 0$ be an exact sequence of based complexes. Suppose i is a chain equivalence, and i, j preserve bases. Then $\tau(i) = \tau(C''_*)$.

JANUARY 1970

Proof. Let Q_* be the mapping cone of i; let Q'_* be the mapping cone of $1_{C'_*}$. Then $\tau(Q_*) = \tau(i)$ and $\tau(Q'_*) = 0$ by (2.10).

Define $u: Q'_* \to Q_*$ by u(y, z) = (y, i(z)). Define $v: Q_* \to C''_*$ by v(y, z) = j(z) preserve bases. Exact sequence $0 \to Q'_* \to Q_* \to C''_* \to 0$. By Lemma 2.9, $\tau(i) = \tau(Q_*) = \tau(C''_*)$.

 $f: C_* \to D_*$ any chain map of based complexes. $M_* = \text{mapping cylinder}: M_n = C_n \oplus C_{n-1} \oplus D_n$, basis $m_n = c_n \oplus c_{n-1} \oplus d_n$

$$\partial(x,y,z) = (\partial x - y, -\partial y, \partial z + fy)$$
 .

Chain equivalence $\mu: M_* \to D_*$

Corollary 2.12. μ is a simple equivalence, i.e. $\tau(\mu) = 0$.

Proof. Recall from 2.2 that a chain inverse of μ is given by $\bar{\mu}(z) = (0, 0, z)$. Define T_* by $T_n = C_n \oplus C_{n-1}$, basis $t_n = c_n \oplus c_{n-1}$

$$\partial(x, y) = (\partial x - y, -\partial y)$$

Based exact sequence

$$0 \longrightarrow D_* \xrightarrow{\mu} M_* \longrightarrow T_* \longrightarrow 0$$
$$(x, y, z) \longmapsto (x, y)$$
$$\therefore \quad \tau(\bar{\mu}) = \tau(T_*) = 0 \text{ as in proof of } 2.10.$$
$$\therefore \quad \mu\bar{\mu} = 1 \ , \ \text{ so } \tau(\mu) = 0 \ \text{ by } 2.10.$$

An *elementary* based chain complex of dimension n is one of form

 $0 \to \dots \to 0 \to E_n \to E_{n-1} \to 0 \to \dots$

with $E_i = 0$ if $i \neq n, n-1$.

$$E_n = E_{n-1} = R$$
, $e_n = e_{n-1} = 0$.
 $\partial: E_n \to E_{n-1}$ is \pm identity.

Example. K, L (finite) simplicial complexes. Suppose $K \searrow L$ by elementary simplicial collapse. $\widetilde{K}, \widetilde{L}$ universal covers.

Exact sequences

$$0 \longrightarrow C_*(\widetilde{L}) \xrightarrow{\subset_*} C_*(\widetilde{K}) \longrightarrow E_* \longrightarrow 0$$

where E_* is elementary, of same dimension as collapse.

Suppose C_*, D_* are based, and there is a based exact sequence

$$0 \longrightarrow C_* \xrightarrow{i} D_* \longrightarrow E_* \longrightarrow 0$$

with E_* elementary.

Then i is called an *elementary expansion*.

By 2.2, i is a homotopy equivalence.

Any chain inverse is called an *elementary collapse*.

Theorem 2.13. A chain map $f : C_* \to D_*$ is a simple equivalence iff it can be factored into finitely many elementary expansions and collapses.

Proof. The torsion of an elementary complex is 0; by Lemma 2.11, an elementary expansion or collapse has torsion zero.

Lemma 2.14. A based acyclic complex with zero torsion can be reduced to 0 by finitely many elementary expansions and collapses.

Proof. C_* based acyclic, $n = \dim C_*$.

First we show how to alter basis $c_{n-1} = (c', \ldots, c^d)$ of C_{n-1} by an elementary matrix $1 + \lambda e_{ij}$.

where

$$\partial^{1}(z,r) = \partial z + r(c^{j} + \lambda c^{i})$$

$$\partial^{2}(y,r) = (\partial y - r(c^{j} + \lambda c^{i}), r)$$

$$\partial^{3}(x,y,r) = \partial^{2}(x+y,r+(\partial x)j) \qquad \partial x = \sum (\partial x)_{r}c^{r}$$

$$\partial^{4} = \partial^{3}(x,0,r)$$

$$\partial^{5} = (x, -x, -(\partial x)j)$$

$$\phi(z) = (z - (z); (c^{j} + \lambda c^{i}), (z)j)$$

A. J. CASSON

Vertical maps define elementary expansions; except that ϕ isn't based. To make it based, we have to replace (c^1, \ldots, c^d) by $(c^1, \ldots, c^{j-1}, c^j + \lambda c^i, c^{j+1}, \ldots, c^d)$. But this is the change we wanted to produce.

If $n \ge 2$, make expansion

This makes B_{n-2} (rottom row) $\cong B_{n-2}$ (top row) $\oplus C_n$

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow B_{n-2} \longrightarrow 0$$
 splits

i.e. it makes B_{n-2} free.

Bases c_n, c_{n-1} for C_n, C_{n-1} .

From the exact sequence $0 \longrightarrow C_n \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} B_{n-2} \longrightarrow 0$ and freeness of B_{n-2} , we can extend ∂c_n to a basis $\overline{\partial c_n}$ of C_{n-1} .

 \exists matrix $M \in GL(k, R)$ $(k = \text{rank of } C_{n-1})$ such that $\overline{\partial c_n} = Mc_{n-1}$. Make another expansion

Extend c_{n-1} to bases of $C_{n-1} \oplus R^k$ by adjoining standard basis (e^1, \ldots, e^k) of R^k .

Extend $\overline{\partial c_n}$ to basis of $C_{n-1} \oplus R^k$ by adjoining $(M^{-1}e^1, \dots, M^{-1}e^k)$.

Now $\overline{\partial c_n} = \begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix} c_{n-1}$ and $\begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix}$ is product of elementary matrices. So we can change c_{n-1} into $\overline{\partial c_n}$ by elementary expansions and collapses. Then $\partial : C_n \to C_{n-1}$ is based injection, so we can collapse C_* onto $0 \to \frac{C_{n-1}}{\partial c_n} \xrightarrow{\partial} C_{n-2} \xrightarrow{\partial} C_{n-3} \xrightarrow{\partial}$. This reduces dim C_* .

Continue until dim $C_* = 1$

$$0 \to C_1 \xrightarrow{\partial} C_? \longrightarrow$$

Since $\tau(C_*) = 0$, ∂ is given (wrt bases ??) by matrix M with $\tau(M) = 0$. Expand until M is a product of elementary matrices.

Change basis of C_0 to make ∂ based (by expansions and collapses as above). Now C_* can be collapsed to 0. This proves the lemma.

Proof of Theorem 2.13. $f : C_* \longrightarrow D_*$ is simple again, C_*, D_* based. $M_* =$ mapping cylinder of f.

$$\bar{\mu}: D_* \longrightarrow M_*$$
$$D_n \ni z \longmapsto (0, 0, z) \in C_n \oplus C_{n-1} \oplus D_n$$

Exercise. $\bar{\mu}: D_* \to M_*$ is a product of elementary expansions

Replace $f: C_* \to D_*$ by a based injection.

Exact sequence $0 \to C_* \xrightarrow{f} D_* \xrightarrow{\pi} A_* \to 0$ based $\tau(A_*) = \tau(f) = 0$. A_* cyclic.

Therefore can reduce A_* to 0 by Lemma 2.14. We show how to "cover" expansions and collapses of A_* by corresponding expansions and collapses of D_* . If $A_* \longrightarrow A'_*$ is an elementary collapse then $D_* \rightarrow D'_* = \pi^{-1}(A'_*)$. Let $A_* \rightarrow A'_*$ be an elementary expansion. Let $h: A'_* \rightarrow A_*$ be a collapse. Then $h|A_*$ is chain homotopic to 1. Extend homotopy to get collapse $g: A'_* \rightarrow A_*$ with $g|A_* = 1$. (A_n direct summand of A'_n).

Define $D'_* = \{(x, y) \in D_* \oplus A'_* : \pi(x) = g(y)\}$

$$\partial(x,y) = (\partial x, \partial y)$$

 $x \mapsto (x, \pi(x))$ is a based injection $D_* \to D'_*$.

Extend basis of D_* to basis of D'_* suitably; then $D_* \to D'_*$ is elementary expansion. Still have exact sequence $0 \to C_* \xrightarrow{f'} D'_* \xrightarrow{\pi'} A'_* \to 0$ (based).

This finishes the proof of Theorem 2.13.

Exercise. 1) Can get from D_* to C_* by expansions and collapses of dimension at most $\max(\dim C_* + 1, \dim D_* + 1)$.

2) In Lemma 2.14, we can get from C_* to 0 by expansions and collapses of dimension ≥ 2 .

A. J. CASSON

3. CW COMPLEXES

 e^n closed *n*-cell.

C.W. complex is Hausdorff space X with maps $\phi_{\alpha}: e^n \to X \ (\alpha \in A_n)$

i) If $X^n = \bigcup_{r \le n} \bigcup_{\alpha \in A_r} \phi_{\alpha}(e^r)$, then $X = \bigcup X^n$ and $\phi_{\alpha}(\partial e^n) \subset X^{n-1}$.

ii)
$$\phi_{\alpha}(\text{int } e^n)_n \phi_{\beta}(\text{int } e^m) = \phi$$
 unless $\alpha = \beta$ and $n = m$, i.e. $\phi_{\alpha}|\text{int } e^n$ is 1–1

iii) $\forall alpha, \phi_{\alpha}(e^n) = \text{finite union of interiors of cells}$

iv) $C \subset X$ closed $\Leftrightarrow \phi_{\alpha}^{-1}(C)$ closed in e^n for all α

Lemma 3.1. Any CW complex has the homotopy type of a simplicial complex.

Proof. Suppose \simeq equiv $f: X^{n-1} \to K^{n-1} =$ simplicial complex.

 A_n discrete topology.

 $\phi: A_n \times \partial e^n \to X^{n-1}$ given by $\phi(\alpha, x) = \phi_x(x)$.

Let ψ be simplicial approximation of $f\phi$

$$f\phi: A_n \times \partial e^n \to K^{n-1}$$

By homotopy theory,

$$X^{n} = X^{n-1} \cup_{\phi} (A_{n} \times e^{n})$$
$$\simeq K^{n-1} \cup_{\psi} (A_{n} \times e^{n})$$
$$= K^{n}$$

which can be triangulated.

Corollary 3.2. Any CW complex is locally path connected and weakly locally simply connected (i.e. $\forall x \in X \exists$ neighborhood U of x such that any loop in U is null homotopic in X).

Let X be a connected CW complex, $x_0 \in X$, $G \subset \pi_1(X, x_0)$. Then there exists covering space, $p: \tilde{X} \to X$, with $\tilde{x}_0 \in \tilde{X}$ such that $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = G$; \tilde{X} connected.

A covering translation of $p: \tilde{X} \to X$ is ??

 $h: \tilde{X} \to \tilde{X}$ with ph = p.

Example. \mathbb{R}^n is a cover of *n*-fold torus T^n .

$$(x_1,\ldots,x_n)\longmapsto (e^{2\pi i x_1},\ldots,e^{2\pi i x_n})$$

Group of covering translations is \mathbb{Z}^n .

Lemma 3.3. If G is normal in $\pi_1(X, x_0)$ [regular cover] then the group of covering translations is $\cong \pi = \frac{\pi_1(X, x_0)}{G}$.

20

Proof. Suppose covering translation $h: \tilde{X} \to \tilde{X}$ $\exists \text{ path } f: I \to \tilde{X} \text{ with } f(0) = \tilde{x} - 0, \ f(1) = h(\tilde{x}_0).$ $pf: I \to X$ is a loop in X, representing $\eta(h) \in \pi$. Well defined, homomorphism. Injective: suppose $\eta(h) = 1$. pf represents element of $G = p_*(\pi_1(\tilde{X}, \tilde{x}_0))$. $\therefore pf \simeq p\ell, \ell$ some loop in \tilde{X} , rel ends. Lift this homotopy to \tilde{X} to prove f(0) = f(1), so $h(\tilde{x}_0) = \tilde{x}_0$. $\therefore h = 1$ Surjective: take loop $\ell: I \to X$. Lift to path $\tilde{\ell}: I \to \tilde{X}, \ \tilde{\ell}(0) = \tilde{x}_0$. $p_*(\pi_1(\tilde{X}, \tilde{\ell}(1))) = G \text{ (since } G \text{ normal)}$ $\begin{bmatrix} A & \tilde{u} \\ & & \tilde{Y} \end{bmatrix}$ \vec{Y} \exists unique $\tilde{u} : A \rightarrow \tilde{X}$ with $n\tilde{u}$

$$\begin{bmatrix} A & \xrightarrow{a} & X & \exists \text{ unique } u : A \to X \text{ with } pu = u \\ \searrow^{u} & \downarrow^{p} & \text{and } \tilde{u}(\alpha_{0}) = \tilde{x} \\ X & \text{provided } u_{*}\pi_{1}(A, u_{0}) \subset p_{*}(\pi_{1}(\tilde{X}, \tilde{x})). \end{bmatrix}$$

By covering space theory, $\exists \tilde{h} : \tilde{X} \to \tilde{X}$ with $\tilde{h}(\tilde{x}_0) = \tilde{\ell}(1)$. Clearly $\eta(h)$ rep by ℓ

Lemma 3.4. If X is a connected CW complex, then any covering \tilde{X} of X has the structure of a CW complex.

Proof. Any map $\phi : e^n \to X$ has a lift (non-unique) $\tilde{\phi} : e^n \to \tilde{X}$ with $p\tilde{\phi} = \phi$.

Two lifts $\tilde{\phi}_1, \tilde{\phi}_2$ with $\tilde{\phi}_1(x) = \tilde{\phi}_2(x)$ for some $x \in e^n$ are equal everywhere.

Take for *n*-cells of \tilde{X} all lifts of all $\phi_x : e^n \to X$ ($\alpha \in A_n$). Easy to check that this is CW complex.

Example.

$$P^{2} = S^{1} \cup_{2} e^{2} = e^{0} \cup e^{1} \cup_{2} e^{2}$$
$$S^{2} = \text{universal cover of } P^{2}$$
$$= (e^{0} \cup e^{0}) \cup (e^{1} \cup e^{1}) \cup (e^{2} \cup e^{2})$$

If $\tilde{X} \xrightarrow{P} X$ is a *regular* cover of CW complex X, with $\pi =$ group of translations, then π permutes cells of \tilde{X} freely $(g \in \pi, e_{\alpha}^n \text{ cell of } \tilde{X}, ge_{\alpha}^n = e_{\alpha}^n \Rightarrow g = 1)$. π permutes *n*-cells of $p^{-1}(n\text{-cell of } X)$ transitively.

Cellular homology

 $H_*(X,Y) =$ singular homology

CW complex X; define $C_n(X) = H_n(X^n, x^{n-1})$

 $\partial_n : C_n(X) \to C_{n-1}(X)$ defined as composite

$$H_n(X^n, X^{n-1}) \xrightarrow[(X^n, X^{n-1})]{\partial} H_{n-1}(X^{n-1}) \xrightarrow[(X^{n-1}, X^{n-2})]{j_*} H_{n-1}(X^{n-1}, X^{n-2})$$

 $\partial^2 = 0$; chain complex $C_*(X)$.

Lemma 3.5. $C_*(X)$ is free Abelian with one generator for each n-cell of X. $C_*(X)$ is chain equivalent to the singular chain complex $S_*(X)$.

Proof. By ?? and homotopy properties of singular homology

$$H_m(X^n, X^{n-1}) \cong H_m(A_n \times e^n, A_n \times \partial e^n)$$

 $\cong 0 \text{ for } m \neq n$

 \therefore $C_n(X) \cong$ free Abelian with one generator for each *n*-cell.

It follows that

$$H_m(X^{m-1}) \cong H_m(X^{m-2}) \cong H_m(X^{m-3}) \cong \dots \cong H_m(X^0) = 0$$

and

$$H_m(X^{m+1}) \cong H_m(X^{m+2}) \cong H_m(X^{m+3}) \cong \dots \cong H_m(S)$$

$$Z_m(C_*(X)) = \ker(j_*\partial : H_m(X^m, X^{m-1}) \to H_{m-1}(X^{m-1}, X^{m-2}))$$

= $\ker(\partial : H_m(X^m, X^{m-1}) \to H_{m-1}(X^{m-1}))$ as j_*
= $\operatorname{im} j_*$
$$Z_m/B_m \cong H_m(X^m)/j_*^{-1}(B_m)$$

 $\cong H_m(X^m)/j_*^{-1}(\operatorname{im} j_*\partial)$
= $H_m(X^m)/\operatorname{im} \partial$

Exact sequence $H_m(X^{m+1}, X^m) \xrightarrow{\partial} H_m(X^m) \to H_m(X^{m+1}) \to 0$ gives $H_m(X^m)/\text{im } \partial \cong H_m(X^{m+1}) \cong H_m(X)$. Cycle $z \in C_*(X) = H_m(X^m, X^{m-1})$. Put $z = j_*y, y \in H_m(X^m)$. Now image of y in $H_m(X)$ is image of homology class of z in $H_m(X)$. e_{α}^n = basis element of $C_n(X)$ corresponding to n-cell $\phi_{\alpha} : e^n \to X$. Seek map $\theta : C_*(X) \to S_*(X)$ such that $\theta \partial = \partial \theta, \ \theta(C_*(X^n)) \subset S_*(X^n), \ \theta(e_{\alpha}^n)$ represents $e_{\alpha}^n \in H_n(X^n, X^{n-1})$. Define inductively; for n = 0, define $\theta(e_{\alpha}^0) = 0$ -simplex at e_{α}^0 . Suppose $\theta : C_*(X^{n-1}) \to S_*(X^{n-1})$ defined. If e_{α}^n is a basis element of $C_n(X), \ \theta(\partial e_{\alpha}^n)$ already defined, represents ∂e_{α}^n in $H_{n-1}(X^{n-1}, X^{n-2})$. Also, $\partial \theta(\partial e_{\alpha}^n) = 0$ as chain. Pick chain $c_{\alpha}^n \in S_n(X^n)$ representing e_{α}^n in $H_n(X^n, X^{n-1})$ [so $\partial c_{\alpha}^n \in S_{n-1}(X^{n-1})$]. Now $\partial c_{\alpha}^n - \theta(\partial e_{\alpha}^n)$ represents 0 in $H_{n-1}(X^{n-1}, X^{n-2})$. But $j_* : H_{n-1}(X^{n-1}) \to H_{n-1}(X^{n-1}, X^{n-2})$ is mono so $\partial c_{\alpha}^n - \theta(\partial e_{\alpha}^n)$ represents 0 in $H_{n-1}(X^{n-1}, X^{n-2})$. $\therefore \exists d_{\alpha}^n \in S_n(X^{n-1})$ such that $\partial c_{\alpha}^n - \theta(\partial e_{\alpha}^n) = \partial d_{\alpha}^n$. Put $\theta(e_{\alpha}^n) = c_{\alpha}^n - d_{\alpha}^n$. Then $\partial \theta(e_{\alpha}^n) = \theta \partial(e_{\alpha}^n)$. $\theta(e_{\alpha}^n)$ represents e_{α}^n in $H_n(X^n, X^{n-1})$. This completes the induction. It follows that θ induces homology isomorphisms given above

$$\begin{array}{c} z \\ \text{cycle} \in C_n(X) = H_n(X^n, X^{n-1}) & \xleftarrow{\mathcal{I}_*} & H_n(X^n) & \theta(z) \\ & \downarrow & j_*[\theta(z)] = z \\ & H_n(x) \end{array}$$

Theorems from homotopy theory:

Whitehead Theorem. Let X, Y be connected CW complexes and let $f : X \to Y$ be a map inducing homology isomorphisms in all dimensions; then f is a homotopy equivalence.

Hurewicz Theorem. Let X, Y be connected, simply connected CW complexes and let $f: X \to Y$ be a map. If $H_r(f) = 0$ for all r < n, then $\pi_r(f) = 0$ for all r < n, and the natural map $\pi_n(f) \to H_n(f)$ is an isomorphism

Connected CW complex $X; \tilde{X} \to X$ regular covering, group π . $C_*(\tilde{X})$ is a complex of free $\mathbb{Z}[\pi]$ -modules

$$\sum n_g g \in \mathbb{Z}[\pi] \ , \quad f^n_{\alpha} \text{ is a cell of } \tilde{X}$$

Define $(\sum n_g g)(f_{\alpha}^n) = \sum n_g(g.f_{\alpha}^n) \in C_n(X)$. ∂ is a $\mathbb{Z}[\pi]$ -homomorphism.

For each cell e_{α}^{n} of X, pick lift \tilde{e}_{α}^{n} in \tilde{X} . Then $\{\tilde{e}_{\alpha}^{n}\}$ is a basis for $C_{n}(\tilde{X})$ over $\mathbb{Z}[\pi]$. (Any *n*-cell in \tilde{X} can be expressed uniquely as $g\tilde{e}_{\alpha}^{n}$.)

Similarly, $S_*(\tilde{X})$ is a free chain complex over $\mathbb{Z}[\pi]$. Slight modification of 3.5 shows that $C_*(\tilde{X}) \cong S_*(\tilde{X})$ over $\mathbb{Z}[\pi]$. (Actually get canonical homotopy class of equivalences $C_* \simeq S_*$.)

CW complexes X, Y (connected) $f : X \to Y$, f induces π_1 surjection. Let $G = \ker f_* : \pi_1(X) \to \pi_1(Y)$, let \tilde{X} be covering of X com. to G, let \tilde{Y} be universal cover of Y. Then \exists lift $\tilde{f} : \tilde{X} \to \tilde{Y}$ of f. If \tilde{f}' is another lift, then $\tilde{f}' = g\tilde{f}$ for some covering translation g of \tilde{Y} . If h is a covering translation of \tilde{X} , then $\tilde{f}h = \bar{h}\tilde{f}$ for some unique translation \bar{h} of \tilde{Y} . $h \mapsto \tilde{h}$ defines isomorphism, translation group of $\tilde{X} \to g$ roup of $\tilde{Y} \cong \pi_1(Y)$. Use this isomorphism to identify the groups.

Now $\tilde{f}_*: S_*(\tilde{X}) \to S_*(\tilde{Y})$ is a chain map over $\mathbb{Z}[\pi_1(Y)]$ whence

$$C_*(\tilde{X}) \xrightarrow{\simeq} S_*(\tilde{X}) \xrightarrow{\tilde{f}_*} X_*(\tilde{Y}) \xleftarrow{\simeq} C_*(\tilde{Y})$$

So we obtain $\tilde{f}_*: C_*(\tilde{X}) \to C_* * (\tilde{Y})$, but defined only up to chain homotopy.

A. J. CASSON

A cellular map $f : X \to Y$ is one with $f(X^n) \subset Y^n \ \forall n$. Then we obtain a unique $\tilde{f}_* : C_*(\tilde{X}) \to C_*(\tilde{Y})$ (unique up to covering translations).

Lemma 3.6. If connected CW complex X is dominated by a finite CW complex K, then $C_*(\tilde{X})$, $S_*(\tilde{X})$ are dominated by a finitely generated free $\mathbb{Z}[\pi_1(X)]$ -complex (\tilde{X} = universal cover).

Proof. $X \xrightarrow{f} K \xrightarrow{g} X$, $gf \simeq 1_x$. Wlg K connected. Let $G = \ker g_* : \pi_1 K \to \pi_1 X$. Let \tilde{K} be covering of K?? to G; let \tilde{X} be universal cover of X. Lift f, g to $\tilde{f} : \tilde{X} \to \tilde{K}$, $\tilde{g} : \tilde{K} \to \tilde{X}$.

Lift $gf \simeq 1$ to get $\tilde{g}\tilde{f} \simeq$ covering translation of \tilde{X} , choose \tilde{g} to make $\tilde{g}\tilde{f} \simeq 1_{\tilde{x}}$.

 $\tilde{g}_*: C_*(\tilde{K}) \to C_*(\tilde{X})$; also $\tilde{f}_*: C_*(\tilde{X}) \to C_*(\tilde{K})$ and $\tilde{g}_* \tilde{f}_* \simeq 1_{C_*(\tilde{X})}$; so $C_*(\tilde{K})$ dominates $C_*(\tilde{X})$; hence also $S_*(\tilde{X})$. $C_*(\tilde{K})$ f.g. free.

By Theorem 2.3, $C_*(\tilde{X}) \simeq f.g.$ proj $\mathbb{Z}[\pi_1 X]$ -complex E_* . Define wall invariant $\sigma(X) \subseteq \tilde{K}_0(\mathbb{Z}[\pi_1, X])$ to be $\sigma(E_*)$. By Theorem 2.5, $\sigma(X)$ depends only on homotopy type of X. By Theorem 1.9, $\sigma(X)$ doesn't depend on base point of X.

Theorem 3.7. Let X be a connected CW complex, A_* a free $\mathbb{Z}[\pi_1 X]$ -complex, and let $\varphi : A_* \to C_*(\tilde{X})$ be a chain equivalence, such that $\varphi_i : A_i \to C_i(\tilde{X})$ is bijective for $i \leq 2$. Then \exists a CW complex Z, a cellular homotopy equivalence $Z \xrightarrow{f} X$ and chain equivalence $\alpha : C_*(\tilde{Z}) \to A_*$ such that $\tilde{f}_* = \varphi \alpha$ and $\alpha : C_i(\tilde{Z}) \to A_i$ is bijective for all i.

Proof. Suppose inductively that Z^{n-1} , $f|Z^{n-1} \to X$, $\alpha|C_*(\tilde{Z}^{n-1}) \to A_*$ already constructed, with f cellular, $\alpha: C_i(\tilde{Z}^{n-1}) \to A_i$ bijective for i < n and $\tilde{f}_* = \varphi \alpha$.

Induction starts with n = 3, $Z^2 = X^2$, $f = \text{incl} : Z^2 \to X$; $\alpha = \varphi^{-1} : C_i(\tilde{Z}) \to A_i$ $(i \leq 2)$. Note that $\pi_1(X^2) \cong \pi_1(X)$, so that all complexes are over $\mathbb{Z}[\pi_1 X]$. f induces map $g: Z^{n-1} \to X^n$, α induces $\beta : C_*(\tilde{Z}^{n-1}) \to A^n_*$ the "*n*-skeleton" of A_* .

Induces maps $(\varphi|A^n)_* : H_i(\beta) \to H_i(\tilde{g}_*)$, isomorphisms for i < n (because $\varphi : A_* \to C_*(\tilde{X})$ was chain equivalent). But

 $H_i(\beta) = 0$ for i < n, $H_n(\beta) = A_n$ $\therefore H_i(\tilde{g}_*) = 0$ for i < n, get map $\theta : A_n \to H_n(\tilde{g}_*)$

[Note that composition $A_n \xrightarrow{\theta} H_n(\tilde{g}_*) \to H_n(\tilde{X}^n, \tilde{X}^{n-1}) = C_n(\tilde{X})$ is just φ .]

By Hurewicz theorem applied to $\tilde{g}:\tilde{Z}^{n-1}\to\tilde{X}^{n-1}$

$$H_n(\tilde{g}_*) \cong \pi_n(\tilde{g}) \cong \pi_n(g)$$

Pick basis $\{a_t\}_{t\in T}$ for A_n ; we can represent $\theta(a_t) \in H_n(\tilde{g}_*)$ by the diagram

$$\begin{array}{ccccc} Z^{n-1} & \longrightarrow & X^n \\ & \uparrow^{v_t} & & \uparrow^{u_t} \\ \partial e^n & \longrightarrow & e^n \end{array}$$

Given T discrete topology, define $v : T \times \partial e^n \to Z^{n-1}$ by $v(t,x) = v_t(x)$. Let $Z^n = Z^{n-1} \cup_v (T \times e^n)$, define $f | T \times e^n \to X^n$ by $f(t,x) = u_t(x)$ extends g to a map $f : Z^n \to X^n$. Define $\alpha : C_n(\tilde{Z}^n) \to A_n$ by $\alpha(\tilde{e}^n_t) = a_t$, where \tilde{e}^n_t is a lift of cell $t \times e^n$ in \tilde{Z}^n . (Choose lift to make this a chain map.) But $\tilde{f}_*(\tilde{e}^n_t)$ is represented by

$$\begin{array}{cccc} \tilde{X}^{n-1} & \xrightarrow{\mathrm{inc}} & \tilde{X}^n \\ & \uparrow^{\tilde{f}\tilde{v}_t} & & \uparrow^{\tilde{u}^n_t} \\ \partial e^n & \longrightarrow & e^n \end{array}$$

But this is $\tilde{f}_*(a_t) = \varphi(a_t) = \varphi\alpha(\tilde{e}_t^n)$ therefore $\tilde{f}_* = \varphi\alpha$.

A group π is finitely presented if it is defined by a finite set of generators and relations $\{g_1, \ldots, g_k : f_1(\mathbf{g}) == r_\ell(\mathbf{g})\}$. Group H is a *retract* of G if \exists homomorphisms $\varphi : H \to G$, $\psi : G \to H$ with $\psi \varphi = 1_H$.

Lemma 3.8. A retract of a finitely presented group is finitely presented.

Proof. G finitely presented ad $\{g_i : r_j(\mathbf{g}) = 1\}$. $\varphi : H \to G, \ \psi : G \to H$ such that $\psi \varphi = 1_H$. $\varphi \psi(g_i) = w_i(\mathbf{g})$ for some word w_i . Let $L = \{g_i : r_j(\mathbf{g}) = 1, \ w_i(\mathbf{g}) = g_i\}$. \exists homomorphism $\pi : G \to L, \ \pi(g_i) = g_i$. \exists homomorphism $\theta : L \to L, \ \theta(g_i) = \psi(g_i)$. [well defined since

$$\theta(w_i(\mathbf{g})) = \psi(w_i(\mathbf{g})) = \psi\varphi\psi(g_i) = \psi(g_i) = \theta(g_i) = w_i(\theta(\mathbf{g})) = w_i(\psi(\mathbf{g}))$$

 θ is isomorphism with inverse $\pi \varphi: H \to L$

$$\pi\varphi\theta(g_i) = \pi\varphi\psi(g_i) = \pi w_i(\mathbf{g}) = w_i(\pi\mathbf{g}) = w_i(\mathbf{g}) \in L = g_i \in L$$

 $\{\psi(g_i)\}$ is set of generators for *H*.

$$\theta \pi \varphi(\psi g_i) = \theta \pi w_i(\mathbf{g}) = \theta w_i(\pi \mathbf{g}) = \theta w_i(\mathbf{g}) = \theta(g_i) = \psi(g_i)$$

 $\therefore \pi \varphi \theta = 1, \ \theta \pi \varphi = 1$, so $H \cong L$ which is infinitely presented.

Lemma 3.9. If connected CW complex X is dominated by a finite complex, then $X \simeq CW$ complex Y with Y^2 finite.

Proof. Let $f: X \to K$, $g: K \to X$ be such that K is finite, $gf \simeq 1_X$. $f_*: \pi_1(X) \to \pi_1(K)$, $g_*: \pi_1(K) \to \pi_1(X)$ with $g_*f_* = 1$.

 $\exists r_1, \ldots, r_\ell \in \ker g_* : \pi_1(K) \to \pi_1(X)$ such that

$$\pi_1(K)/\{r_1,\ldots,r_\ell\}\cong\pi_1(X)$$

Let $v_j : \partial e^2 \to K^1$ represent $r_j \in \pi_1(K)$. Let $u_j : e^2 \to X$ be a null-homotopy of gv_j . Define $Y^2 = K^2 \cup_{v_1} e_1^2 \cup \cdots \cup_{v_\ell} e_\ell^2$. Define $g|e_j^2 :\to X$ to be u_j . Then we have $g : Y^2 \to X$ induces bijection $g_* : \pi_1 Y^2 \to \pi_1 X$, and

so $\pi_i(g) = 0$ for $i \leq 2$.

Suppose we have $Y^{n-1} \supset Y^2$ so 2-skeleton, and $g: Y^{n-1} \to X$ with $\pi_i(y) = 0$ for i < n. Let $\{\xi_t\}_{t \in T}$ be a (not ? finite) set of generators of $\pi_n(y)$. Represent ξ_t by

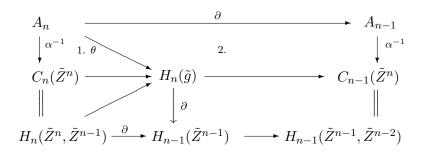
$$\begin{array}{cccc} Y^{n-1} & \xrightarrow{z} & X \\ \uparrow v_t & & \uparrow u_t \\ \partial e^n & \longrightarrow & e^n \end{array}$$

use v_t to attach *n*-cells to Y^{n-1} , giving Y'', u_t to extend g to $g: Y^n \to X$, so that $\pi_i(g) = 0$, $i \leq n$. Construct $Y^2 \subset Y^3 \subset Y^4 \subset \cdots$ with union Y, map $g: Y \to X$ with $\pi_*(g) = 0$. Therefore g is a homotopy equivalent. \Box

A gap in the proof of Theorem 3.7

 $\alpha: C_*(\tilde{Z}^n) \longrightarrow A_*$, chain map in dim < n.

1. Commutes if lift \tilde{e}_t^n of $t \times e^n$ is carefully chosen.



2. commutes

$$\begin{array}{ccccc} A_*^{n-2} & \subset & A_*^{n-1} & \subset & A_*^n \\ & & \downarrow^{\alpha^{-1}} & & \downarrow^{\alpha^{-1}} & & \downarrow^{\phi} \\ C_*(\tilde{Z}^{n-2}) & \subset & C_*(\tilde{Z}^{n-1}) & \xrightarrow{\tilde{g}} & C_*(\tilde{X}^n) \end{array}$$

Homology sequence of triples

$$\begin{array}{cccc} A_n & \stackrel{\partial}{\longrightarrow} & A_{n-1} \\ \downarrow_{\theta} & & \downarrow_{\alpha^{-1}} \\ H_n(\tilde{g}) & \longrightarrow & C_{n-1}(\tilde{Z}^n) \end{array}$$

Theorem 3.10. If the connected CW complex X is dominated by a finite complex K, and $\sigma(X) = 0$, then $X \simeq$ finite complex of dimension $\leq \max(4, \dim K)$.

Remark. 4 can be replaced by 3. [CTC Wall; Finiteness conditions I]

Proof. By 3.9, we can assume X^2 finite.

By 3.6, 2.3, 2.6, $C_*(\tilde{X})$ is equivalent to a f.g. free complex E_* , by maps $f: C_*(\tilde{X}) \to E_*$, $g: E_* \to C_*(\tilde{X})$, inverse equivalences. Define complex A_* suitable for 3.7 as follows

$$A_*^2 = C_*(X^2) - \text{f.g. free}$$

$$A_n = E_n , \quad n \ge 4 - \text{f.g. free.}$$

$$\xrightarrow{\longrightarrow} A_5 \xrightarrow{\longrightarrow} A_4 \xrightarrow{\partial_4} A_3 \xrightarrow{\partial_3} A_2 \xrightarrow{\longrightarrow} A_1 \xrightarrow{\longrightarrow} A_0 \xrightarrow{\longrightarrow} 0$$

$$\downarrow^1 \qquad \qquad \downarrow^{f_3} \qquad \qquad \downarrow^{f} \qquad \qquad \downarrow^{f} \qquad \qquad \downarrow^{f} \qquad \qquad \downarrow^{f}$$

$$\xrightarrow{\longrightarrow} E_5 \xrightarrow{\longrightarrow} E_4 \xrightarrow{\longrightarrow} E_3 \xrightarrow{\longrightarrow} E_2 \xrightarrow{\longrightarrow} E_1 \xrightarrow{\longrightarrow} E_0 \xrightarrow{\longrightarrow} 0$$

Let Q_* be mapping cone of $f|A_*^2 \to E_*$. This has $H_i(Q_*) = 0$ for $i \leq 2$

$$0 \longrightarrow Z_3(Q_*) \longrightarrow Q_3 \longrightarrow Q_2 \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow 0 \quad \text{exact.}$$

Define $A_3 = Z_3(Q_*)$ – f.g. proj.

$$A_3 = \{(y, z) \in A_2 \oplus E_3 : \partial y = 0, \ \partial z = -fg\}$$

Define

$$\partial_4(x) = (0, \partial x)$$

 $f_3(y, z) = z$
 $\partial_3(y, z) = -y$

 A_* is a chain complex, and vertical maps induce homology isomorphisms. So

 $f: A_* \longrightarrow E_*$ is chain equivalence.

 A_* is f.g. projective, free except in dim 3, $\sigma(A_*) = 0$. Enlarge A_3, A_4 to replace A_* by \simeq equivalent free complex.

By 3.7, $X \simeq Y$ with $C_*(Y) \cong A_*$.

In particular, Y finite, $\dim Y = \max(\dim E_*, 4)$.

By 2.3, we can choose E_* such that dim $E_* = \dim K$.

Exercise. Use Theorem 3.7 and methods of 3.9, 3.10, to show: (Milnor): If X is simply connected CW complex, and $H_n(X;\mathbb{Z})$ has rank β_n and has τ_n "torsion coefficients", then $X \simeq CW$ complex with $\beta_n + \tau_{n-1} + \tau_n$ *n*-cells for each *n*.

Theorem 3.11. Given ????

[NOTE: PAGE 39 AND 40 ARE IMPOSSIBLE TO READ. TOO FADED.]

4. TORSION FOR CW COMPLEXES

 π any group. A f.g. from $\mathbb{Z}[\pi]$ -modules, (a_1, \ldots, a_k) basis. (a'_1, \ldots, a'_k) is equivalent to (a_1, \ldots, a_k) if $a'_i = \pm g_i a_i$ where $g_i \in \pi$ (so $\pm g_i \in \mathbb{Z}[\pi]$).

Chain complexes C_* , D_* (based), $f : C_* \to D_*$ chain equivalent. Then image of $\tau(f)$ in $Wh(\pi)$ depends only on equiv. classes of bases of C_*, D_* .

K finite CW complex. Equivalence class of basis of $C_n(\tilde{K})$ $(\tilde{e}_1^n, \ldots, \tilde{e}_k^n)$ depends only on cell structure of K, not on choice of lifts \tilde{e}_k^n or on orientation of cells.

 $f: K \to L$ homotopy equivalence of finite CW complexes define $\tau(f) = \text{image of } \tau(\tilde{f}_* : C_*(\tilde{K}) \to C_*(\tilde{L}))$ in $Wh(\tau)$.

This depends only on cell structures of K, L and homotopy class of f (by 2.8).

Theorem 4.1. If $f : K \to L$, $g : L \to M$ use homotopy equivalences of finite CW complexes, then $\tau(gf) = \tau(g) + \tau(f) \in Wh(\pi_1 K = \pi_1 L = \pi_1 M = \pi)$.

Problem. Is $\tau(f)$ a topological invariant of K, L, f? Yes, if K, L are complex manifolds.

X any CW complex. Complex X' is a subdivision of X if |X'| = |X| and the interior of each cell in X' is contained in the interior of some cell in X.

Identity map $\chi: X \to X'$ is cellular.

Theorem 4.2. $\chi: X \to X'$ is a simple homotopy equivalence, i.e. $\tau(\chi) = 0$.

Proof. X finite CW complex. \exists subcomplexes.

$$\phi = X_{-1} \subset X_0 \subset X_1 \subset \dots \subset X_k = X$$

such that $X_i - X_{i-1}$ consists of just one cell. Let X'_i be subdivision of X_i induced by X'. Let $Y_i = X'_i \cup (\text{cells of } X - X_i).$

Maps $X = Y_{-1} \xrightarrow{X} Y_0 \xrightarrow{X} Y_1 \xrightarrow{X} \cdots \xrightarrow{X} Y_k = X'.$

Enough to prove $X: Y_{i-1} \to Y_i$ is s.h.e. i.e. $\tau(X) = 0$. Choose lift \tilde{e} for each cell e of X. If e' is a cell in X', int $e' \subset$ int e for some unique cell e in X. Choose lift \tilde{e}' of e' so that int $\tilde{e}' \subset$ int \tilde{e} .

Exact sequence

(3)
$$0 \longrightarrow C_*(\tilde{Y}_{i-1}) \xrightarrow{\tilde{X}_*} C_*(\tilde{Y}_i) \longrightarrow D_* \longrightarrow 0 \quad (\text{defines } D_*)$$

Let $X_i - X_{i-1} = e_i^n$.

Then \tilde{X}_* maps each cell \tilde{e} of \tilde{Y}_{i-1} to a cell of \tilde{Y}_i , except that $\tilde{X}_*(\tilde{e}_i^n) = \tilde{f}_1^n + \cdots + \tilde{f}_r^n$ where $\tilde{f}_1^n, \ldots, \tilde{f}_r^n$ are the *n*-cells of \tilde{Y}_i with int $\tilde{f}_j^n \subset \operatorname{int} \tilde{e}_i^n$. Change basis of $C_n(\tilde{Y}_i)$ by replacing \tilde{f}_1^n by $\tilde{f}_1^n + \cdots + \tilde{f}_r^n$ (leave other basis elements alone). This is an elementary operation, so it doesn't affect the torsion of \tilde{X}_* .

But now (3) is a broad exact sequence, so $\tau(\tilde{X}_*) = \tau(D_*)$.

Boundary maps of D_* have matrices with integer coefficients (by the choice of lifts ?? need to translate by an element of π).

- \therefore Torsion of D_* is in image of $\overline{K}(\mathbb{Z}) = 0$.
- $\therefore \tau(\chi) = 0$, as required.

Corollary 4.3. If $f : X \to Y$ is a homotopy equivalence of compact polyhedra, then $\tau(f)$ is well defined (i.e. independent of PL triangulations chosen for X, Y).

Theorem 4.4. Given finite CW complex K with fundamental group π , and element $\tau \in Wh(\pi)$, \exists finite CW complex L and homotopy equivalence $f: K \to L$ with $\tau(f) = \tau$.

Proof. Represent τ by a matrix $M \in GL(k, \mathbb{Z}[\pi])$. Let $Y = K \vee \bigvee_{i=1}^{k} x_i^n$, where ????. $p: Y \to K$ sends s_i^n to base point.

As in 3.11, $\pi_{n+1}(p) \cong \bigoplus_{i=1}^k \mathbb{Z}[\pi]$, one ?? for each s_i^n ; let ξ_i be i^{th} .

Let $\phi : \pi_{n+1}(p) \to \pi_{n+1}(p)$ have matrix M. Represent image of $\phi(\xi_i)$ in $\pi_n(Y)$ by map $v_i : \partial e_i^{n+1} \to Y$. Use the v_i 's to attach $e_1^{n+1}, \ldots, e_r^{n+1}$ to Y, giving complex $L \supset K$.

Then $C_*(\tau)$ has form

$$0 \to \pi_{n+1}(p) \xrightarrow{\phi} \pi_{n+1}(p) \xrightarrow{0} C_{n-1}(\tilde{K}) \xrightarrow{\partial} \cdots$$

By 2.3 and the Whitehead theorem, inclusion $K \subset L$ is homotopy equivalence,

 $0 \to C_0(\tilde{K}) \to C_*(\tilde{\tau}) \to (?????)$

By 2.11, $\tau(f) - \tau(\phi) = \tau$.

JANUARY 1970

Let Δ^n be an *n*-simplex, but Δ_n be an ????. Let $\Lambda = \overline{\partial \Delta - \Delta_n}$. *K* finite CW complex, $f : \Lambda, \partial \Lambda \to K^{n-1}, K^{n-2}$.

Let $L = K \cup_f \Delta$; this is CW complex with cells of K and Δ_0^{n-1} ; Δ^n .

Then $K \subset L$ is called an elementary expansion of dimension n, and a homotopy image is an elementary collapse.

Both are homotopy equivalences, and have zero torsion.

Example. There exist finite complex K, L, which are homeomorphic but don't have isomorphic subdivisions. Thus \exists compact polyhedra |K|, |L|, which homeomorphic but not PL homeomorphic. (Hauptvermutung is false.)

Proof. Group π with $Wh(\pi) \neq 0$, e.g. C_5 , π finitely presented.

 \exists finite simplicial complex X, with $\pi_1(X_1) \cong \pi$. By method of 4.4, \exists finite simplicial complex $X_2 \supset X_1$ such that inclusion $X_1 \subset X_2$ has torsion $\tau \neq 0$.

 \exists finite simplicial complex $X_3 \supset X_2$ such that $X_3 \searrow X_1$ (e.g. take k large, and extend $X_1 \to X$)1 × Δ^k to an embedding $X_2 \to X_1 \times \Delta^k$ by general position). \exists finite simplicial complex $X_4 \supset X_3$ such that $X_4 \searrow X_2$. Embed X_4 in some \mathbb{R}^n .

Let W_4 be a regular neighborhood of X_4 in \mathbb{R}^n .

Let W_i be a regular neighborhood of X_i in W_{i+1} , i = 3, 2, 1.

 W_4 is a regular neighborhood of $X_4, X_4 \searrow X_2$. $\therefore W_4$ is a regular neighborhood of X_2 .

 W_2 is a regular neighborhood of $X_2, W_2 \subset \text{int } W_4$.

 $\therefore \overline{W_4 = W_2} \cong \partial W_2 \times I.$

Similarly,

(4)
$$\overline{W_3 - W_1} \cong \partial W_1 \times I$$

Let $V = \overline{W_2 - W_1}, V' = \overline{W_3 - W_2}.$

V is a cobordism from $M = \partial W_1$ to $N = \partial W_2$.

V' is a cobordism from N to $\partial W_3 \cong \partial W_1$ by (4). Now

$$V \cup V' \cong M \times I$$
$$V \cong V \cup (V' \cup \overline{W_4 - W_3})$$
$$\cong (V \cup F') \cup (\overline{W_4 - W_3})$$
$$\cong \overline{W_4 - W_3}$$
$$\therefore V' \cup V \cong V' \cup \overline{W_4 - W_3} \cong N \times I$$

V is an *invertible* cobordism. $M \hookrightarrow V$ has torsion τ .

Theorem 4.5. If V is an invertible cobordism from M to N, then $V - N \cong M \times [0, \infty)$.

Proof. Let
$$V' =$$
 inverse of V . Let $U = V \cup_N V' \cup_M V \cup_N V' \cup_M \cdots$.
 $U \cong (V \cup V') \cup (V \cup V') \cup \cdots$
 $\cong (M \times I) \cup (M \times I) \cup \cdots$
 $\cong M \times [0, \infty)$.

But

$$U \cong V \cup (V' \cup V) \cup (V' \cup V) \cup \cdots$$
$$\cong V \cup (N \times I) \cup (N \times I) \cup \cdots$$
$$\cong V \cup_N (N \times [0, \infty)) .$$

 \exists collar neighborhood C of N in V, so $U \cong V - N$.

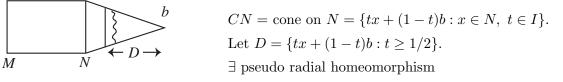
Take

$$K = (M \times I \cup (\text{cone on } M \times I)$$
$$L = V \cup (\text{cone on } N)$$

Topologically,

K = 1-pt compactification of $M \times [0, \infty)$ L = 1-pt compactification of $V \cup (N \times [0, \infty))$ $\therefore K \equiv L$ topologically.

Suppose K', L' are isomorphic subdivisions of K, L. Let a, b be vertices of the cones in K, L. Let $P = \overline{K' - st(a, K')}, Q = \overline{L' - st(b, L')}$. Then $M \times 0 \subset M \times I \subset P, M \subset V \subset Q$; and $(P, M \times 0) \cong (M \times I, M), (Q, M) \cong (V, M)$. For



 $CN \to CN$ fixing N, b and taking st(b, K') onto D. Extends to a PL homeomorphism $L \to L$ fixing M and taking Q onto $\overline{L-D} \cong V \cup (N \times I) \cong V$.

Similarly $(P, M \times 0) \cong (M \times I, M \times 0)$. Isomorphism $K' \xrightarrow{h} L'$ must take a onto b (for these are the only points with non-simply connected links).

 $(n \ge 2 + \dim X_4).$

 \therefore must take P onto Q by PL homeomorphism.

Now

$ \begin{array}{ccc} M & \subset & P \\ h \\ \downarrow & & \downarrow h \\ M & \subset & Q \end{array} $	Vertical maps are PL homeomorphisms. Therefore
	they have zero torsion. $M \subset P$ has torsion zero and
	$M \subset Q$ has torsion $\tau \neq 0$. Contradiction
	Theorem 4.2.

Remark. Every invertible cobordism V from M to N is an h-cobordism.

Stallings proved that any *h*-cobordism V of dimension ≥ 5 is invertible. Therefore $V - N \cong M \times [0, \infty)$. *s*-cobordism is an *h*-cobordism in which M < V, $N \subset V$ are simple homotopy equivalences. Smale, Barden Mazur Stallings.

Theorem 4.6. If V^n is an s-cobordism and $n \ge 6$, then $V \cong M \times I$.

Exercise. M^n closed PL manifold, $n \ge 4$. Then, if $\tau \in Wh(\pi, M)$, \exists an *h*-cobordism W o M with torsion $\tau(W, M) = \tau$ [e.g., take W = regular neighborhood of $M \cup$ suitable 2-complex in $M \times I$].

Theorem 4.7. A cellular homotopy equivalence $f : K \to L$ between finite CW complexes has $\tau(f) = 0$ iff f can be factored into finitely many elementary expansions and collapses.

Proof. From now on, "elementary collapse" means retraction $L \to K$ where $K \subset L$ is an elementary expansion.

Elementary expansions and collapses have zero torsion.

Converse. First note that $L \subset M_f$ is a composite of expansions. Put M_f^i = mapping cylinder of $f|K^i \to L$

$$L \subset M_f^0 \subset M_f^1 \subset \cdots \subset M_f^k = M_f \qquad (k = \dim K) .$$

 $M_f^{i-1} \subset M_f^i$ is composite of elementary expansions of dimension i+1, one for each *i*-cell of K. So we can replace L by M_f , and $f: K \to L$ by an inclusion. Assume from now on that f is an inclusion.

Lemma 4.8. If $f : K \to L$ is a composite of elementary expansions and collapses, and $\phi : \partial e^n \to K^{n-1}$ is a map, then

 $f \cup 1: K \cup_{\phi} e^n \to L \cup_{f\phi} e^n$ is a composite of expansions and collapses.

Proof. Enough to consider case when f is an elementary expansion or collapse. Expansion case is trivial, so suppose $f: K \to L$ is a collapse. \exists cellular homotopy $H: 1 \simeq f$, rel 1.

Let $h = H\phi \cup 1 : (\partial e^n \times I) \cup (e^n \times 1) \to K \cup_{\phi} e^n$. Let $J = (K \cup_{\phi} e^n) \cup_h (e^n \times I)$, regard as CW complex with cells of K, $e^n \times 1$, $e^n \times 0$, $e^n \times I$.

 $K \cup_{\phi} e^n \subset J$ is elementary expansion (add cells $e^n \times 0, e^n \times I$)

$$K \cup_{f\phi} e^n \subset J$$
 is elementary expansion (add cells $e^n \times 1, e^n \times I$)

Now $L \cup_{f\phi} e^n \subset K \cup_{f\phi} e^n$ is elementary expansion. Hence result.

Proof of Theorem 4.7. $f: K \to L$ inclusion, $\tau(f) = 0$. Assume inductively that L - K has no cells of dimension < r. We modify L keeping K fixed so that L - K has no cells of dimension $\leq r$.

Let e^r be an *r*-cells of L - K

$$\pi_r(L^{r+1}, K) \cong \pi_r(L, K) = 0 .$$

 $\exists \text{ cellular homotopy } H : e^r \times I \to L \text{ such that } H_0 = \text{ inclusion, } H_1(e^r) \subset K, \ H_t | \partial e^r \text{ independent of } t. \text{ Let } e^{r+2} = e^r \times I \times I, \ e^{r+1} = \overline{\partial(e^r \times I \times I) - (e^r \times I \times 0)}, \ h : e^r \times I \times 0 \to L \text{ induced by } H. \text{ Let } M = L \cup_h e^{r+2}: \text{ CW complex with cells of } L \text{ together with } e^{r+1}, \ e^{r+2}.$

Now $K \cup e^r \cup e^{r+1}$ is a subcomplex of M, collapsing onto K. By repeated use of Lemma 4.8 (once for each cell of $M - (K \cup e^r \cup e^{r+1})$) we obtain a complex $L' \supset K$, obtained from L by elementary expansions and collapses, such that $L' \to K$ has fewer r-cells than L - K(we have removed e^r , but introduced e^{r+2}). Repeat until L - K has no r-cells, completing induction. Continue until L - K has n-cells and (n - 1) cells only, with $n > \dim K$.

We show how to alter basis of $C_n(\tilde{L})$ by elementary matrix $1 + ae_{ij}$ $(a \in \mathbb{Z}[\pi, K])$. Let \tilde{e}_i^n , \tilde{e}_j^n be *n*-cells of \tilde{L} . By Hurewicz theorem, $H_n(\tilde{L}^n, \tilde{L}^{n-1}) \cong \pi_n(\tilde{L}^n, \tilde{L}^{n-1})$. Therefore \exists map $\varphi : e^n, \partial e^n \to L^n, L^{n-1}$, reps. class $\tilde{e}_j^n + a\tilde{e}_i^n$. \exists homotopy $G : \partial e^n \times I \to L^n$ with

 $G_0 =$ attaching map of e_j^n $G_1 = \varphi \partial e^n \to L$.

Define $\psi = 1 \cup G : (e^n \times 0) \cup (\partial e^n \times I) \to L^n$. Let $M = L \cup_{\psi} (e^n \times I)$ with cells of L and $e^n \times 1$, $e^n \times I$. Then L expands to $L \cup_{\psi} (e^n \times I)$ which collapses onto $(L - e_j^n) \cup_{\phi} e^n$. This performs desired change of basis. Since $\tau(L \subset K) = 0$, we may expand (to increase chain groups) and then reduce matrix of $\partial : C_n(\tilde{L}, \tilde{K}) \to C_{n-1}(\tilde{L}, \tilde{K})$ to 1. (May also have to change lifts and orientation.) Let \tilde{e}_i^n be an *n*-cell of L, so $\partial \tilde{e}_i^n = \tilde{e}_i^{n-1}$ in $H_{n-1}(\tilde{L}^{n-1}, \tilde{L}^{n-2} \cup \tilde{K})$. Let $\varphi : \partial e^n \to L$ be attaching map. Claim that φ is homotopic to map $\psi : \partial e^n \to L$ such that $\psi(\partial e^n) \cap (L - K) = e_i^{n-1}$ and $\psi | \psi^{-1}(\operatorname{int} e_i^{n-1})_{1-1}$ and $\overline{\psi^{-1}(\operatorname{int} e_i^{n-1})} \cong n - 1$ cell. For let $\theta : \partial e_i^{n-1} \to K$ be attaching map of e_i^{n-1} . $\pi_{n-1}(L, K) = 0$, so \exists homotopy $H : e_i^{n-1} \to K$

such that $H|\partial e_i^{n-1} = \theta$. Then

$$1 \cup H : \underbrace{e_i^{n-1} \cup_\partial e_i^{n-1}}_{\cong S^{n-1}} \to L$$

represents same element of $H_{n-1}(\tilde{L}^{n-1}, \tilde{k})$ as φ .

Therefore $1 \cup H$ represents same element of $\pi_{n-1}(\tilde{L}^{n-1}, \tilde{K})$ as φ .

$$\pi_{n-1}(\tilde{K}) \to \pi_{n-1}(\tilde{L}^{n-1}) \to \pi_{n-1}(\tilde{L}^{n-1}, \tilde{k})$$

Therefore φ represents same element of $\pi_{n-1}(\tilde{L}^{n-1})$ as $\psi = (1 \cup H) +$ (some element of $\pi_{n-1}(\tilde{K})$) and ψ has required properties.

By the trick used above for elementary change of basis, $L^{n-1} \cup_{\psi} e_i^n$ is obtained from $L^{n-1} \cup_{\varphi} e_i^n$ by elementary expansion and collapse. Also, $K \cup e_i^{n-1} \cup_{+} e_i^n$ collapses to K, so we can reduce number of cells in L - K.

Continue until L - K has no cells; then we have obtained K from L by elementary moves.

5. Open Manifolds

X any Hausdorff space. An *end* of X is a collection \mathcal{E} of non-empty open sets in X, such that

- i) $U \in \mathcal{E} \Rightarrow U$ connected and Fr(U) compact.
- ii) $U, V \in \mathcal{E} \Rightarrow \exists W \in \mathcal{E}$ with $W \subset U \cap V$.
- iii) $\cap \{\overline{U}; U \in \mathcal{E}\} = \emptyset.$
- iv) \mathcal{E} maximal w.r.t. i)–iii).

Example. \mathbb{R} has just two ends, namely

$$\{(a,\infty); a \in \mathbb{R}\}$$
 and $\{(-\infty,b); b \in \mathbb{R}\}$

Lemma 5.1. Suppose \mathcal{E}' satisfies i)-iii), and $A \subset X$ has compact frontier. Then $\exists U \in \mathcal{E}'$ such that either $\overline{U} \cap A = \emptyset$ or $\overline{U} \subset A$.

Proof. Since Fr(A) is compact, and $\bigcap_{U \in \mathcal{E}'} (\bar{U} \cap Rf(A)) = \emptyset$, $\exists U_1, \ldots, U_k \in \mathcal{E}'$ such that $\bar{U}_1 \cap \cdots \cap \bar{U}_k \cap Fr(A) = \emptyset$. By ii), $\exists U \in \mathcal{E}'$ such that $U \subset U_1 \cap \cdots \cap U_k$, so $\bar{U} \subset \bar{U}_1 \cap \cdots \cap \bar{U}_k$, so $\bar{U} \subset X - Fr(A)$. Since U connected, \bar{U} connected, so $\bar{U} \subset A$ or X - A.

Corollary 5.2. If \mathcal{E}' satisfies i)-iii), then \mathcal{E}' is contained in a unique end of X.

Proof. Let \mathcal{E} be the collection of all non-empty connected open sets V such that $V \supset U$ for some $U \in \mathcal{E}'$ and Fr(V) compact. Then \mathcal{E} satisfies i)–iii).

Suppose $\mathcal{E}'' \supset \mathcal{E}'$ also satisfies i)-iii). Then if $V \in \mathcal{E}''$, $\exists U \in \mathcal{E}'$ such that $\overline{U} \cap V = \emptyset$ or $\overline{U} \subset V$. $\overline{U} \cap V$ impossible by i,ii) so $\overline{U} \subset V$, so $V \in \mathcal{E}$. So $\mathcal{E}'' \subset \mathcal{E}$, so \mathcal{E} is unique and containing \mathcal{E}' .

A neighborhood of \mathcal{E} is a set-N containing some $U \in \mathcal{E}$.

Corollary 5.3. Distinct ends of X have disjoint neighborhoods.

Proof. Suppose $\mathcal{E}, \mathcal{E}'$ are ends without disjoint neighborhoods. Choose $U \in \mathcal{E}, \exists V \in \mathcal{E}'$ such that $\overline{V} \subset U$ (by 5.1). By maximality of $\mathcal{E}', U \in \mathcal{E}'$ so $\mathcal{E} \subset \mathcal{E}'$. Similarly $\mathcal{E}' \subset \mathcal{E}$. Therefore $\mathcal{E} = \mathcal{E}'$.

Definition. A space X is σ -compact if it is the union of countable many compact subspaces.

Theorem 5.4. Let X be locally connected, locally compact, connected, σ -compact, Hausdorff. Then X has an end iff X is not compact.

Proof. A compact space has no ends, by ii)–iii) for ends.

Conversely, $X = \bigcup C_i$ where C_i is compact, $C_1 \subset C_2 \subset \cdots, X$ non-compact.

X locally compact, so C_i has compact neighborhood D_i in X. Every component V of $X - C_i$ is open (X is locally connected), and meets D_i (therefore X connected if $V \cap D_i = \emptyset$, then $\overline{V} - V \subset C_i$ and $\overline{V} \subset X - C_i$; therefore $\overline{V} - V = \emptyset$, so V open and closed in X, contradiction).

 $Fr(D_i)$ compact, so covered by finitely many components V_i^1, \ldots, V_i^k of $X - C_i$; $X = D_i \cup V_i^1 \cup \cdots \cup V_i^k$

 \therefore some V_i^j has non-compact closure.

Choose inductively U_1, U_2, \ldots such that U_i is a component of $X - C_i, \bar{U}_i$ non-compact, $U_i \subset U_{i-1}$. $Fr(U_i) \subset C_i$ because X connected, therefore $\{U_1, U_2, \ldots, \} = \mathcal{E}'$ satisfies i)–iii), so contained in an end of X. \Box

Examples. i) \mathbb{R}^n , $n \ge 2$, has just one end.

 $B_{\lambda}^{n} = \text{closed ball radius } \lambda.$

 $\{\mathbb{R}^n - B^n_{\lambda} : \lambda \in \mathbb{R}\}\$ defines an end \mathcal{E} of \mathbb{R}^n .

If \mathcal{E}' is another end, \exists disjoint neighborhoods $U \in \mathcal{E}, V \in \mathcal{E}'$.

 $Fr(U) \cup Fr(V)$ is compact, $\mathbb{R}^n - (Fr(U) \cup Fr(V))$ has at least two unbounded components U, V, which is impossible.

An end \mathcal{E} is *isolated* if it has a neighborhood U which is not a neighborhood of any other end. It follows that \overline{U} has just one end. **Example.** The universal cover of $S^1 \vee S^1$ has infinitely many ends, none of which is isolated.

An open manifold is a non-compact manifold without boundary.

If W is an open manifold, a *completion* of W is a homeomorphism (PL) from W onto $\overline{W} - \partial \overline{W}$ (= int \overline{W}) where \overline{W} is a compact PL manifold.

Theorem 5.5. An open PL manifold has a completion iff it has finitely many ends, each of which has a collar.

A collar of an end \mathcal{E} of W is a submanifold V of W such that int $V \in \mathcal{E}, V \cong \partial V \times [0, \infty)$.

Proof. Suppose W homeomorphic to int \overline{W} , where \overline{W} is compact.

Let M_1, \ldots, M_k be components of $\partial \overline{W}$. Let $\gamma_i : M_i \times I \to \overline{W}$ be a collar neighborhood of M_i in \overline{W} such that im $\gamma_i \cap \operatorname{im} \gamma_j = \emptyset$ if $i \neq j$.

Then $\{\gamma_i(M_i \times (a, 1)) : a \in (0, 1)\}$ defines an end \mathcal{E}_i of W. $\mathcal{E}_i, \ldots, \mathcal{E}_k$ are the only ends of W. If \mathcal{E} were another, with neighborhood $U \in \mathcal{E}$ disjoint from $\gamma_i(M_i \times (a_i, 1))$, so $\overline{U} =$ closure of U in int $\overline{W} \subset \operatorname{int} \overline{W} - \cup \gamma_i(M_i \times (a_i, 1))$ which is compact.

Converse by similar argument.

A 0-neighborhood of an end \mathcal{E} of W is a submanifold V of W such that int $V \in \mathcal{E}$, V has just one end, V is closed in W, and ∂V is connected.

Theorem 5.6. Any isolated end of an open manifold W has a 0-neighborhood.

Proof. \exists neighborhood $U \in \mathcal{E}$ which isn't a neighborhood of any other end. Fr(U) is compact.

 \exists compact polyhedron $K \xrightarrow{\text{PL}} W$ which is a neighborhood of Fr(U). Now let N be a regular neighborhood of K in W. Now $\overline{U-N}$ has a non-compact component V [because $\overline{U-N}$ has an end]. V is connected, $Fr(V) \subset N$ (because U is connected), so Fr(V) compact. V is a PL submanifold with $\partial V = Fr(V)$, and it is a neighborhood of \mathcal{E} .

Let M_1, M_2 be two components of ∂V . \exists PL arc (embedded) $A \subset V$ with ends in M_1, M_2 . [Possible for dim $W \geq 3$ by general position for dim $W \leq 2$, easy.]

Now let H be a regular neighborhood of A in V.

Replace V by $\overline{V-H}$, which is still a neighborhood of \mathcal{E} , contained in U, PL manifold, connected; but with fewer boundary components than V.

Repeat the process until we get a 0-neighborhood of \mathcal{E} .

Remark. This process gives a 0-neighborhood in U, so it gives arbitrarily small 0-neighborhoods of \mathcal{E} .

Inverse sequence of groups $\cdots \xrightarrow{f_4} G_3 \xrightarrow{f_3} G_2 \xrightarrow{f_2} G_1$ is *stable* if \exists a subsequence $\cdots \xrightarrow{G_{n_3}} g_{n_2} \xrightarrow{g_{n_2}} G_{n_1}$ such that g_{n_i} induces an isomorphism im $g_{n_{i+1}} \to \operatorname{im} g_{n_i}, \forall i$.

Then $\lim_{i \to \infty} G_n$ has $\lim_{i \to \infty} g_{n_i}$ for inverse limit. Note: $g_{n_i} = f_{n_{i-1}+1} f_{n_{i-1}+2} \cdots f_{n_i}$.

Let \mathcal{E} be an end of X. π_1 is stable at \mathcal{E} if \exists path-connected neighborhoods $U_1 \supset U_2 \supset U_3 \supset \cdots$ of \mathcal{E} with $\bigcap \overline{U}_i = \emptyset$, with base points $u_i \in U_i$, paths p_i from u_i to u_i (in U_i) such that

$$\cdots \longrightarrow \pi_1(U_3, u_3) \longrightarrow \pi_1(U_2, u_2) \longrightarrow \pi_1(U_1, u_1)$$

is stable.

Theorem 5.7. If π_1 is stable at \mathcal{E} , and $V_1 \supset V_2 \supset \cdots$ is sequence of path-?? neighborhoods of \mathcal{E} with $\bigcap \bar{V}_i = \emptyset$, (and with base points and paths), then

$$\longrightarrow \pi_1(V_3) \longrightarrow \pi_1(V_2) \longrightarrow \pi_1(V_1)$$

is stable, with inverse limit equal to $\lim_{i \to \infty} \pi_1(U_i)$.

Proof. Suppose wlog that $\longrightarrow \pi_1(U_3) \xrightarrow{f_3} \pi_1(U_2) \xrightarrow{f_2} \pi_1(U_1)$ has f_n inducing an isomorphism im $f_{n+1} \cong \operatorname{im} f_n$. Choose $V_{n_1} \subset U_1, U_{r_1} \subset V_{n_1}, V_{n_2} \subset U_{r_1}, U_{r_2} \subset V_{n_2}$, etc..

Choose paths joining the base points. Have diagram

Then $\operatorname{im} h_3 h_4 \longrightarrow \operatorname{im} g_3 g_4 \longrightarrow \operatorname{im} h_2$ whose composite is an isomorphism. But $\operatorname{im} hg_3 g_4 \rightarrow \operatorname{im} h_2$ is 1–1. Therefore $\operatorname{im} h_3 h_4 \longrightarrow \operatorname{im} g_3 g_4$ is an isomorphism. So $\longrightarrow \pi_1(V_{n_6} 0 \xrightarrow{g_5 g_6} \pi_1(V_{n_4}) \xrightarrow{g_3 g_4} \pi_1(V_{n_2})$ has same inverse limit as $\longrightarrow \pi_1(U_{r_6}) \xrightarrow{h_5 h_6} \pi_1(U_{r_4}) \xrightarrow{h_3 h_4} \pi_1(U_{r_2})$ so $\underline{\leftarrow} \lim \pi_1(U_i) = \underline{l} \operatorname{im} \pi_1(V_i)$.

An end \mathcal{E} of X is *tame* if π_1 is stable at \mathcal{E} , and \mathcal{E} has arbitrarily small open neighborhoods dominated by finite CW complexes, and \mathcal{E} is isolated.

Examples. 1) Let $f: S^1 \to S^1$ be squaring map

$$X = S^{1} \times I \underset{f}{\bigcup} S^{1} \times I \underset{f}{\bigcup} S^{1} \times I \cup \cdots$$

just one end. Let $U_i = X$ - union of first $i S^1 \times I$'s. $\simeq X \simeq S^1$ is dominated by a finite complex.

But π_1 isn't stable at \mathcal{E} .

$$\cdots \pi_1(U_3) \longrightarrow \pi_1(U_2) \longrightarrow \pi_i(U_1) \text{ is the same as } \cdots \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}$$
2) $X = X^2 \times S^2 \ \# \ S^2 \times S^2 \ \# \cdots$

Just one end, with arbitrarily small simply connected neighborhoods, therefore π_1 stable.

No neighborhood of end is dominated by a finite CW complex.

3) If W is an open manifold with a completion, then all ends of W are tame

$$V = \partial V \times [0, \infty)$$
. Look at $\partial V \times [n, \infty)$.

If \mathcal{E} is an end of X at which π_1 is stable. A 1-neighborhood of \mathcal{E} is a 0-neighborhood V with extra properties:

- 1) $\pi_1(\partial V) \cong \pi_1(V)$ (induced by inclusion)
- 2) The natural map $\pi_1(\mathcal{E}) \to \pi_1(V)$ is an isomorphism.

Theorem 5.8. Suppose \mathcal{E} is an isolated tame end of an open manifold W. If dim $W \ge 5$, then \mathcal{E} has a 1-neighborhood.

Proof. First show that $\pi_1 \mathcal{E}$ is finitely presented. Choose 0-neighborhoods $V_1 \supset V_2 \supset \cdots$ of \mathcal{E} with $\cap \overline{V}_n = \emptyset$ and such that $g_n : \pi_1(V_n) \to \pi_1(V_{n-1})$ induces iso $\operatorname{im}(g_{n+1}) \to \operatorname{im}(g_n)$.

 \exists neighborhood U of \mathcal{E} , $U \subset V_1$, and U dominated by finite complex K.

 $\exists n \text{ such that } V_n \subset U$: we have

$$\operatorname{im} g_{n+1} \longrightarrow \pi_1(U) \longrightarrow \operatorname{im} g_2 \subset \pi_1(V_1)$$

Composite is an isomorphism, so $\pi_1(\mathcal{E}) \cong \operatorname{im}(g_2)$ is a retract of $\pi_1(U)$, which is a retract of finitely presented group $\pi_1(K)$. By Lemma 3.8, $\pi_1(\mathcal{E})$ is finitely presented.

Let E_n be the image of map $\pi_1(\mathcal{E}) \to \pi_1(V_n)$.

Seek $V^1 \subset \text{Int } V_3$ such that $\pi_1(\partial V^1) \to E_2$ is onto.

 E_2 is finitely generated: represent finite set of generators by arcs A_1, \ldots, A_k embedded in V_3 with ends in ∂V_4 . By general case posⁿ, $A_i \cap \partial V_4$ is finite set of points.

Subdivide A_1, \ldots, A_k into arcs B'_1, \ldots, B'_ℓ such that $B'_j \cap \partial V_4 = \partial B'_j$; say B'_1, \ldots, B'_p in V_4 and $B'_{p+1}, \ldots, B'_\ell \subset \overline{V_3 - V_4}$.

39

Adjust B'_j slightly to obtain disjoint arcs B_1, \ldots, B_ℓ . Let H_1, \ldots, H_p be regular neighborhoods of B_1, \ldots, B_p in V_4 . Let H_{p+1}, \ldots, H_ℓ be regular neighborhoods of B_{p+1}, \ldots, B_ℓ in $\overline{V_3 - V_4}$.

Replace V_4 by $V' = \overline{V_4 - H_1 \cup \cdots \cup H_p} \cup H_{p+1} \cup \cdots \cup H_\ell$. This has the desired effect: $\pi_1(\partial V') \to \pi_1(V_3) \to E_2$ is onto.

Now we modify V' further to make $\pi_1(\partial V') \xrightarrow{\varphi} E_2$ an isomorphism. [It will then be a 1-neighborhood.]

Lemma 5.9. Let π , E be finitely presented groups and let $\varphi : \pi \to E$ be an epimorphism. Then ker φ is the normal closure of a finite subset of π .

Proof. Let $\{g_i; r_j(\mathbf{g}) = 1\}$, $\{h_i : s_j(\mathbf{h}) = 1\}$ be finite presentation of π , E. \exists words $w_i \to v$, $\varphi(g_i) = w_i(\mathbf{h})$. Since φ is onto, \exists words v_i such that $h_i = \varphi(v_i(\mathbf{g})) = v_i(\varphi(\mathbf{g}))$. Now

$$E \cong \{h_i : s_j(\mathbf{h}) = 1, \ r_j(\mathbf{w}(\mathbf{h})) = 1, \ h_i = v_i(\mathbf{w}(\mathbf{h}))\}$$
$$\cong \{h_i, g'_i : s_j(\mathbf{h}) = 1, \ g'_i = w_i(\mathbf{h}), \ r_j(\mathbf{g}') = 1, \ h_i = v_i(\mathbf{g}')\}$$
$$E \cong \{g'_i : s_j(\mathbf{v}(\mathbf{g}')) = 1, \ r_j(\mathbf{g}') = 1, \ g'_i = w_i(\mathbf{v}(\mathbf{g}'))\}$$

 $\varphi : \pi \to E$ has $\varphi(g_i) = w_i(\mathbf{h}) = g'_i$, so ker φ is normal closure of $\{s_j(v(\mathbf{g}'))\} \cup \{g_i^{-1}w_i(\mathbf{v}(\mathbf{g}))\}$ as required.

So $\varphi : \pi_1(\partial V') \to E_2$ onto, ker φ = normal closure of finite set $\{z_1, \ldots, z_k\}$. Represent z_i by embedded circle s_i in $\partial V'$. Since $\varphi(z_1) = 0$, S bounds a disc D in V_2 . By general position (dim $W \ge 5$), we can suppose D embedded, and int $D \cap \partial V'$ = finite union of circles.

Suppose first that int $D \cap \partial V' = \emptyset$, so $D \subset V'$ or $D \subset \overline{V_2 - V'}$. Let H be a regular neighborhood of D in V' or $\overline{V_2 - V'}$. Replace V' by $V'_1 = \overline{V' - H}$ or $V' \cup H$

Now j_* is composite

$$\pi_1(\partial V'_1) \xrightarrow{\simeq} \pi_1(((\partial V') \cup H) - D)$$
$$\downarrow \downarrow \wr$$
$$\pi_1((\partial V') \cup H)$$

isomorphism since dim $H = \dim W \ge 5$, dim D = ?. So j_* is an isomorphism. So $\pi_1(\partial V'_1) \cong \pi_1(\partial V')$ (normal closure of ?) so we have killed z_1 . Describe this process as swapping the

disc D across ∂V . In general, (int D) $\cap \partial V' =$ finite union of circles S_1 and S_ℓ . S_i bounds a disc D_i in int D. Label S_i so that $D_i \subset D_j \Rightarrow i \leq j$.

Swap D_1 across $\partial V'$; this reduces the number of interior components of (int D) $\cap \partial V'$. Repeat the process until (int D) $\cap \partial V' = \emptyset$; now swap D across $\partial V'$, killing z_1 . Repeat to kill z_2, \ldots, z_k ; then $\varphi : \pi_1(\partial V') \to E_2$, is isomorphism. Therefore $\varphi : \pi_1(\partial V') \to E_1$ is also isomorphism ($\pi_1(V_2) \to \pi_1(V_1)$ induces iso $E_2 \to E_1$). Therefore $\pi_1(V') \to \pi_1(V_2) \to \pi_1(V_1)$ maps onto E_1 . Suppose $z \in$ kernel of $\psi : \pi_1(V') \to \pi_1(V_1)$. Represent z by a circle S in V'. S bounds a disk D in V_1 : by general position, embedded with $D \cap \partial V' = S_1 \cup \cdots \cup S_\ell$ (circles).

Let S_1 be innermost circle, bounding disc $D_1 \,\subset \, D$. $S_1 \,\subset \, \partial V'$ is null-homotopic in V_1 . Since $\pi_1(\partial V') \to \pi_1(V_1)$ is 1–1, S_1 is null homotopic in $\partial V'$. Let D'_1 be a small disc neighborhood of D_1 in D, not meeting S_2, \ldots, S_k . $\partial D'_1 \,\subset \, V'$ or $\overline{V_1 - V'}$; use the null-homotopy of S_1 in $\partial V'$ to span $\partial D'_1$ by a disc D''_1 in V' or $\overline{V_1 - V'}$ by general position D''_1 is embedded and disjoint from $\partial V'$. Replace D by $\overline{D - D'_1} \cup D''_1$, which meets $\partial V'$ in fewer components than D. Repeat until $D \cap \partial V'$ is empty; then S bounds disc D in V'. Therefore S is null-homotopic in V', so z = 0. So $\psi : \pi_1(V') \to \pi_1(V_1)$ is 1–1. Therefore $\pi_1(\mathcal{E}) \to \pi_1(V')$ is isomorphism. But $\pi_1(\mathcal{E}) \to \pi_1(V') \to E_1$ is an isomorphism. Therefore $\pi_1(\mathcal{E}) \to \pi_1(V')$ is isomorphism. Therefore v' is 1-neighborhood of \mathcal{E} ; in fact \exists ?? small 1-neighborhoods.

 \mathcal{E} tame end of W. $\pi = \pi_1(\mathcal{E}) \cong \pi_1(\partial V) \cong \pi_1(V)$ for any 1-neighborhood of \mathcal{E} . $\tilde{V}, \partial \tilde{V}$ will be universal coverings, $C_* = ??$ chain group.

Lemma 5.10. If V is a sufficiently small 1-neighborhood of \mathcal{E} , then $C_*(\tilde{V}, \partial \tilde{V})$ is homotopy euqivalent to a f.g. projective complex over $\mathbb{Z}[\pi]$.

Proof. \mathcal{E} tame, so \exists open path-? neighborhood U of \mathcal{E} which is dominated by a finite complex. Let V be any 1-neighborhood with $\overline{V} \subset U$. Let $X = \overline{U - V}$ in U, so $U = X \cup V$, $X \cap V = \partial V$ (all CW complexes)

$$C_*(\tilde{U}, \partial \tilde{V}) \simeq C_*(\tilde{V}, \partial \tilde{V}) \oplus C_*(\tilde{X}, \partial \tilde{V})$$
 (by ?? and homotopy)

Therefore $C_*(\tilde{V}, \partial \tilde{V})$ is dominated by $C_*(\tilde{U}, \partial \tilde{V})$.

U is dominated by finite complex, so by 3.6, $C_*(\tilde{U})$ is equivalent to a f.g. projective complex, say

$$f: C_*(\tilde{U}) \xrightarrow{\sim} D_*$$
.

 ∂V is a finite complex, so $C_*(\partial \tilde{V})$ is equivalent to a f.g. free complex, say

commutes up to homotopy for suitable φ . It follows that $C_*(\tilde{U}, \partial \tilde{V}) \simeq$ mapping ?? of $\varphi(E?)$ which is f.g. projective.

 $C_*(\tilde{V}, \partial \tilde{V})$ is dominated by $C_*(\tilde{U}, \partial \tilde{V})$, hence by f.g. projective complex. Therefore by Theorem 2.3, $C_*(\tilde{V}, \partial \tilde{V})$ is equivalent to a f.g. projective complex.

Definition. A *k*-neighborhood of end \mathcal{E} of open manifold W is a 1-neighborhood V such that $H_i(\tilde{V}, \partial \tilde{V}) = 0$ for $i \leq k \geq 2$.

Theorem 5.11. A tame end \mathcal{E} of a manifold W of dimension $n \ge 5$ has arbitrarily small (n-3)-neighborhoods.

Proof. Suppose inductively that \mathcal{E} has arbitrarily small (k-1)-neighborhoods. Start with k = 2; suppose $k \leq n-3$. Let V be a (k-1)-neighborhood.

 $C_*(\tilde{V}, \partial \tilde{V})$ is equivalent to a f.g. projective complex, say E_* . Since $H_i(E_*) = 0, i < k, \exists$ exact sequence

$$0 \longrightarrow Z_k(E_*) \longrightarrow E_k \longrightarrow E_{k-1} \longrightarrow \cdots \longrightarrow E_0 \to 0 .$$

Therefore $Z_k(E_*)$ is f.g. projective (as in 2.3). Therefore $H_i(E_*) \cong H_k(\tilde{V}, \partial \tilde{V})$ is f.g. Let $\{x_1, \ldots, x_m\}$ be finite set of generators.

Lemma 5.12. Let V be a (k-1)-neighborhood of end \mathcal{E} , and suppose \mathcal{E} has arbitrarily small (k-1)-neighborhoods. Then any element of $H_k(\tilde{V}, \partial \tilde{V})$ can be represented by a PL embedded disc $(D^k, \partial D^k) \subset (V, \partial V)$, provided $k \leq n-3$.

Completion of proof of 5.11. Represent x_1 by an embedded disc $(D^k, \partial D^k) \subset (V, \partial V)$. Let *H* be a regular neighborhood of D^k in *V*, and repaice *V* by $V' = \overline{V - H}$.

V' is still a 1-neighborhood, for $\pi_1(V') \cong \pi_1(V-D) \underset{n-k \ge 3}{\cong} \pi_1(V)$

$$\pi_1(\partial V') \cong \pi_1((\partial V \cup H) - D) \underset{n-k \ge 3}{\cong} \pi_1(\partial V) \cong \pi_1(V) \cong \pi_1(V')$$

Homology exact sequence of $(\tilde{V}, \partial(\tilde{V}) \cup H, \partial\tilde{V})$ gives

$$H_i((\partial \widetilde{V}) \cup H, \partial \widetilde{V}) \longrightarrow H_i(\widetilde{V}, \partial \widetilde{V}) \longrightarrow H_i(\widetilde{V}', \partial \widetilde{V}') \longrightarrow H_{i-1}(\partial \widetilde{V}) \cup H, \partial \widetilde{V})$$

Therefore $H_i(\tilde{V}', \partial \tilde{V}') \simeq 0$ for k < k, so V' is (k-1)-neighborhood. $H_k(\tilde{V}, \partial \tilde{V}) \rightarrow H_k(\tilde{V}', \partial \tilde{V}')$ is onto, and ??. Repeat process to kill off x_2, \ldots, x_r ; we finish with a k-neighborhood of \mathcal{E} . Continue to get an (n-3)-neighborhood. \Box

Proof of Lemma. Represent $x \in H_k(\tilde{V}, \partial \tilde{V})$ by a map $\varphi : D^k, \partial D^k \longrightarrow V, \partial V$ by the Hurewicz Theorem. Image of φ is compact, so \exists small (k-1)-neighborhood $V' \subset V$ so that im $\varphi \subset V - V'$. Then $x \in$ image of $\psi : H_k(\tilde{V} - V', \partial \tilde{V}) \longrightarrow H_k(\tilde{V}, \partial \tilde{V})$, say $x = \psi(y)$. Let $U = \overline{V - V'}, y \in H_k(\tilde{U}, \partial \tilde{V})$. $\partial \tilde{V} \subset \tilde{V}, \tilde{U} \subset \tilde{V}$ induce isomorphisms of homology up to dimension k - 2 (sinc V, V' are (k - 1)-neighborhoods). Therefore $\partial \tilde{V} \subset \tilde{U}$ induces homology ?? in dimensions $\leq k - 2$. Therefore $H_i(\tilde{U}, \partial \tilde{V}) = 0$ for $i \leq k - 2$. Take handle decomposition of U based on ∂V . We can remove 1-handles, and cancel handles of dimension $\leq k - 2$, so there are no handles of dim $\leq \max(1, k - 2)$.

Let X = regular neighborhood of union of (k - 1)-handles in U. Let $Y = \overline{U - X}$, let $Z = X \cap Y$. Let $\overline{y} =$ image of y in $H_k(\tilde{U}, \tilde{X}) \cong H_k(\tilde{Y}, \tilde{Z})$. Let h_1, \ldots, h_r be the k-handles in Y. Let η_1, \ldots, η_r be the hommology classes in $H_k(\tilde{Y}, \tilde{Z})$ represented by h_1, \ldots, h_r . Wlog $\eta_r = 0$ (otherwise introduce irrelevant k and k + 1 which cancel; then irrelevant k-handle represents 0 in $H_k(\tilde{Y}, \tilde{Z})$. Then η_1, \ldots, η_r generate $H_k(\tilde{Y}, \tilde{Z})$ as $\mathbb{Z}[\pi]$ -module.

Let $\bar{y} = \sum_{i=1}^{r} \rho_i \eta_i$ $(p \in \mathbb{Z}[\pi])$, wlog $\rho_r = 1$. Start with $(D^k, \partial D^k) \subset (Y, Z)$ as the ?? of h_r . Apply handle addition theorem to add on translates of h_1, \ldots, h_{r-1} to obtain disc $(D^k, \partial D^k) \subset (Y, Z)$ representing \bar{y} .

Suppose k = 2; since there are no 1-handles, so as (k - 1)-handles, so X is a collar neighborhood of ∂V in V, so we are home. Suppose now $k \ge 3$, so $n \ge k + 3 \ge 6$. X is a collar neighborhood of $\partial V cup(k - 1)$ -handles. Let $X' = \partial V \cup (k - 1)$ -handles. Let h' be a (k - 1)-handles. X is a collar neighborhood of $\partial X'$ in V, so we replace D^k by a disc \overline{D} with $\partial \overline{D} \subset \partial X'$, $h' \cong D^{k-1} \times D^{n-k+1}$. Let S' = image of $0 \times S^{n-k}$, i.e. cocone body.

By general position, $\partial D \cap S'$ is a finite union of points, P_1, \ldots, P_j ; each intersection transverse.

Choose path p_i from P_1 to P_i in ∂D .

Choose path p'_i from P_1 to P_i in S'.

Let g_i = element of $\pi_1(Z) \cong \pi$ represented by $p_i \circ \overline{p}'_i$ (out along p_i , back along p'_i). Let ε_i be sign of intersection at P_i (depends on orientation of spheres $S', \partial D$). Now $\sum \varepsilon_i g_i \in \mathbb{Z}[\pi]$ is coefficient of h' in $\partial \overline{y}$, which is 0. Therefore we can pair off P_1, \ldots, P_j so that, if P_s, P_t are paired, then $g_s = g_t$ and $\varepsilon_s = -\varepsilon_t$. Now choose a path p from P_s to P_t in ∂D , path p' from P_s to P_t in s'. Then loop $p \circ \overline{p}'$ is null-homotopic in Z. So we can apply whitney argument Now deform ∂D until it doesn't meet h', by an isotopy. Do this for all (k-1)-handles h'; then $(D, \partial D) \subset (V, \partial V)$, and represents the right homotopy class x.

Lemma 5.13. Let \mathcal{E} be a tame and of manifold W, $\lim W \ge 5$. If V, V' are 1-neighborhoods of \mathcal{E} , then the W all variants $\sigma(C_*(\tilde{V}, \partial \tilde{V}))$, $\sigma(C_*(\tilde{V}', \partial \tilde{V}'))$ are equal. If V is an (n-3)neighborhood, then

> $H_i(\tilde{V}, \partial \tilde{V}) = 0$ for $i \neq n-2$, and $H_{n-2}(\tilde{V}, \partial \tilde{V})$ is a f.g. projective module,

representing $(-1)^n \sigma(C_*(\tilde{V}, \partial \tilde{V}))$ in $\tilde{K}_0(\mathbb{Z}[\pi])$.

Proof. By Theorem 5.8, it is enough to consider case $V' \subset \text{int } V$. Let $U = \overline{V - V'}$. Exact sequence

$$0 \longrightarrow C_*(\tilde{U}, \partial \tilde{V}) \longrightarrow C_*(\tilde{V}, \partial \tilde{V}) \longrightarrow C_*(\tilde{V}, \tilde{U}) \longrightarrow 0$$

By excision, $C_*(\tilde{V}', \partial \tilde{V}') \cong C_*(\tilde{V}, \tilde{U})$. \exists chain equivalences

$$\begin{split} f: C_*(\tilde{V}, \partial \tilde{V}) &\longrightarrow D_* \\ g: C_*(\tilde{U}, \partial \tilde{V}) &\longrightarrow E_* \end{split}$$

with E_* f.g. free, D_* f.g. projective.

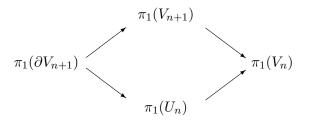
 $\varphi: E_* \to D_*$ making diagram below commute, up to chain homotopy

Now $C_*(\tilde{V}, \tilde{U})$ is chain equivalent to the mapping cone of φ , say Q_*

$$\sigma(C_*(\tilde{V}',\partial\tilde{V}')) = \sigma(C_*(\tilde{V},\tilde{U})) = \sigma(Q_*) = \sigma(D_*) = \sigma(C_*(\tilde{V},\partial\tilde{V}))$$

since E_* is f.g. free.

Define the Siebenmann invariant $\sigma(\mathcal{E})$ to be $\sigma(C_*(\tilde{V}, \partial \tilde{V}))$ for any 1-neighborhood of E. Now let V be an (n-3)-neighborhood of \mathcal{E} . By Theorem 5.8, there exists 1-neighborhoods V_n of \mathcal{E} with $V_0 = V$, $\cap V_n = \emptyset$, and $V_{n+1} \subset \operatorname{int} V_n$. Let $U_n = \overline{V_n - V_{n+1}}$; so $\partial U_n = \partial V_n \cup \partial V_{n+1}$. $\partial V_n \subset U_n$, $\partial V_{n+1} \subset U_n$ induces fundamental group isomorphisms (because V_i is 1-neighborhood)



Van Kampen's Theorem \Rightarrow this is a pushout diagram. Therefore all isos, we know that $\pi_1(\partial V_{n+1} \cong \pi_1(V_n)$ and since V_n, V_{n+1} are 1-neighborhoods, $\pi_1(V_{n+1}) \to \pi_1(V_n)$ iso. Therefore since diagram is a pushout, $\pi_1(U_n) \to \pi_1(V_n)$ and $\pi_1(\partial V_{n+1}) \to \pi_1(U_n)$ are isos.

Similarly $\partial V_n \subset U_n$ induces π_1 iso. There exists handle decomposition of U_i on ∂V_i without handles of index 0, 1, n - 1, n. Therefore V can be obtained from ∂V by attaching handles of index $\leq n - 2$.

Therefore $V \simeq CW$ complex K with ∂V as a subcomplex and with all cells of $K - \partial V$ of dimension $\leq n - 2$. [Attach handles of $V - \partial V$ one at a time, giving $\partial V = X_0 \subset X_1 \subset \cdots$ with $\cup X_i = V$ and X_i obtained from X_{i-1} by attaching r-handle, $r \leq n - 2$. Suppose inductively X_{i-1} complex K_{i-1} of required form. Then

$$X_i \simeq X_{i-1} \cup r$$
-handle
 $\simeq X_{i-1} \cup r$ -cell
 $\simeq K_{i-1} \cup e^r$

Replace attaching map of e^r by a homotopic cellular map. $K_i = K_{i-1} \cup e^r$ and $x_i \simeq K_i$. But $K = \bigcup K_i$; then $V \simeq K$.]

 $C_*(\tilde{V}, \partial \tilde{V})$ is equivalent to a (not rec. f.g.) free complex of dim $\leq n-2$. But $C_*(\tilde{V}, \partial \tilde{V})$ is equivalent to a f.g. projective complex.

Them 2.3 (second half of proof) shows $C_*(\tilde{V}, \partial \tilde{V}) \simeq \text{f.g.}$ projective complex E_* of dimension $\leq n-2$. We have exact sequence

$$0 \longrightarrow H_{n-2}(E_*) \longrightarrow E_{n-2} \longrightarrow E_{n-3} \longrightarrow \cdots \longrightarrow E_0 \longrightarrow 0$$

(since V is an (n-3)-neighborhood). Therefore $H_{n-2}(E_*)$ is f.g. projective. Moreover, $H_{n-2}(E_*)$ represents $(-1)^n \sigma(E_*)$ and $= (-1)^n \sigma(C_*(\tilde{V}, \partial \tilde{V}))$. $H_i(\tilde{V}, \partial \tilde{V}) = 0$ if i > n-2. \Box

Corollary 5.14. Let \mathcal{E} be an end of manifold W, dimension ≥ 6 . Then \mathcal{E} has a collar iff \mathcal{E} is arbitrarily small (n-2)-neighborhoods.

Proof. Necessity clear. Let V be an (n-2)-neighborhood of \mathcal{E} , let v' be another (n-2)-neighborhood, $V' \subset \text{int } V$. $U = \overline{V - V'}$ is an h-cobordism from ∂V to $\partial V'$.

$$\begin{array}{cccccc} H_r(\tilde{V},\tilde{U}) & \longrightarrow & H_{r-1}(\tilde{U},\partial\tilde{V}) & \longrightarrow & H_{r-1}(\tilde{V},\partial\tilde{V}) \\ \| & & \| \\ H_r(\tilde{V}',\partial\tilde{V}') & & 0 \\ \| & & \\ 0 \end{array}$$

Let $\partial V \subset U$ have torsion τ . Let $U' = U \cup (1\text{-handles}) \cup (2\text{-handles})$ where the 1-handles and 2-handles are contained in V', and are chosen so that $U \to U'$ has torsion $-\tau$. Let $V'' = \overline{V - U'}$; V'' is a neighborhood of \mathcal{E} contained in V'. U' is an *h*-cobordism with torsion 0; i.e. an *s*-cobordism, dim ≥ 6 . Therefore $U'' \cong \partial V \times I$. Therefore there exists arbitrarily small neighborhoods V'' of \mathcal{E} , such that $V'' \subset \operatorname{int} V$ and $\overline{V - V''} \cong \partial V \times I$.

Now it is easy to show that $V \cong \partial V \times [0, \infty)$, so V is a collar.

Theorem 5.15. Let \mathcal{E} be an end of a manifold W, of dimension $n \geq 6$. Then \mathcal{E} has a collar iff \mathcal{E} is tame and $\sigma(\mathcal{E}) = 0$. $[\sigma(\mathcal{E}) \in \tilde{K}_0(\mathbb{Z}[\pi]).]$

Proof. Necessity clear (take collar ? (n-3)-neighborhood to calculate $\sigma(\mathcal{E})$).

Conversely: let V be an (n-3)-neighborhood of \mathcal{E} , and $H_{n-2}(\tilde{V}, \partial \tilde{V})$ is stably free (since $\sigma(\mathcal{E}) = 0$) (i.e. $H_{n-2}(\tilde{V}, \partial \tilde{V}) \oplus F \cong G$ for f.g. free F, G). Wlog assume $H_{n-2}(\tilde{V}, \partial \tilde{V})$ is actually free: (for we can add $\mathbb{Z}[\pi]$ to $H_{n-2}(\tilde{V}, \partial \tilde{V})$ by swapping a trivial (n-3)-disc across ∂V).

Since $H_{n-2}(\tilde{V}, \partial \tilde{V})$ is f.g., there exists (n-3)-neighborhood $V' \subset \text{int } V$ such that if $U = \overline{V - V'}$, then $H_{n-2}(\tilde{U}, \partial \tilde{V}) \to H_{n-2}(\tilde{V}, \partial \tilde{V})$ is onto. Exact sequence of $(\tilde{V}, \tilde{U}, \partial \tilde{V})$

$$0 \longrightarrow H_{n-2}(\tilde{U}, \partial \tilde{V}) \longrightarrow H_{n-2}(\tilde{V}, \partial \tilde{V}) \xrightarrow{0} H_{n-2}(\tilde{V}', \partial \tilde{V}') \xrightarrow{\simeq} H_{n-3}(\tilde{U}, \partial \tilde{V}) \longrightarrow 0$$

So

$$H_{n-2}(\tilde{U},\partial\tilde{V}) \cong H_{n-2}(\tilde{V},\partial\tilde{V})$$
$$H_{n-2}(\tilde{V}',\partial\tilde{V}') \cong H_{n-3}(\tilde{U},\partial\tilde{V})$$

V' is a (n-3)-neighborhood, wlog $H_{n-2}(\tilde{V}', \partial \tilde{V}')$ is f.g. free. Let x_1, \ldots, x_k be free basis for $h_{n-3}(\tilde{U}, \partial \tilde{V})$. By Lemma 5.12, we can represent x_1, \ldots, x_k by disjoint embedded D^{n-3} 's. (Embed discs one at a time; embed D_i^{n-3} in complement of regular neighborhood of $D_1^{n-3} \cup \cdots \cup D_{i-1}^{n-3}$.) Swap these discs across ∂V , giving V^*, U^* . Then $H_{n-2}(\tilde{U}^*, \partial \tilde{V}^*) \to H_{n-2}(\tilde{V}^*, \partial \tilde{V}^*)$ is still onto. It is enough to check that $H_{n-2}(\tilde{V}, \partial \tilde{V}) \to H_{n-2}(\tilde{V}^*, \partial \tilde{V}^*)$. Exact sequence

$$H_{n-2}(\tilde{V},\partial\tilde{V}) \twoheadrightarrow H_{n-2}(\tilde{V},\tilde{H}) \xrightarrow{0} H_{n-3}(\tilde{H},\partial\tilde{H}) \longmapsto H_{n-3}(\tilde{V},\partial\tilde{V})$$

Replace V by V^* , U by U^* ; now $H_{n-2}(\tilde{U}, \partial \tilde{V}) = 0$. $\partial V \subset U$ induces π_1 isomorphism, $\partial \tilde{V} \subset \tilde{U}$ induces homology isomorphisms in dimension $\leq n-4$. Therefore $H_i(\tilde{U}, \partial \tilde{V}) = 0$ for $i \neq n-3, n-2$. U has a handle decomposition on ∂V , handles of dimension n-3, n-2only. Let X = regular neighborhood of $\partial V \cup (n-3)$ -handles, $Y = \overline{U-X}, Z = X \cap Y$.

Let $C_{n-2} = H_{n-2}(\tilde{Y}, \tilde{Z}), C_{n-3} = H_{n-3}(\tilde{X}, \partial \tilde{V})$, bases C_{n-2}, C_{n-3} given by handles. Chain complex $0 \to C_{n-2} \xrightarrow{\partial} C_{n-3} \longrightarrow 0$ with homology groups $H_{n-2}(\tilde{U}, \partial \tilde{V}), H_{n-3}(\tilde{U}, \partial \tilde{V})$ from exact sequence of $(\tilde{U}, \tilde{X}, \partial \tilde{V})$.

Let B_{n-3} be the boundary group $\partial(C_{n-2})$. If we put in extra (n-3)-handle into X, and complementary (n-2)-handle into Y, then we add $\mathbb{Z}[\pi]$ to C_{n-2} , C_{n-3} , B_{n-3} , and do not affect the homology groups. B_{n-3} is stably free $(0 \to B_{n-3} \to C_{n-3} \to H_{n-3}(C_*) \to 0)$. By adding enough complementary pairs of handles, we can make B_{n-3} free.

Choose basis of $H_{n-2}(C_*)$, and extend to a basis of C_{n-2} , say c'_{n-2} , using exact sequence $0 \to H_{n-2}(C_*) \to C_{n-2} \to B_{n-2} \to 0$. Let $M \in GL(k, \mathbb{Z}[\pi])$ $(k = \text{dimension of } C_{n-2})$ be such that $c'_{n-2}Mc_{n-2}$. Let $D = \text{free module } (\mathbb{Z}[\pi])^k$, standard basis d. Put in extra handles as above to replace C_{n-2} by $C_{n-2} \oplus D$, and c_{n-2} by $c_{n-2} \oplus d$. Replace c'_{n-2} by $c_{n-2} \oplus M^{-1}e$; then $c'_{n-2} = Lc_{n-2}$ where $L \in GL(2k, \mathbb{Z}[\pi])$ is a product of elementary matrices.

By the handle addition theorem, we can change (n-2)-handles so that they give the basis c'_{n-2} . Then $H_{n-2}(C_*)$ is generated by handles $h_1^{n-2}, \ldots, h_r^{n-2}$, which form a free basis of $H_{n-2}(C_*)$. Since ∂h_i^{n-2} presents 0 in $C_{n-3} = H_{n-3}(\tilde{X}, \partial \tilde{V})$, we can apply the Whitney process to isotop h_i^{n-2} off the (n-3)-handles in X (as in 5.12, we need $n \ge 6$). We finish with embedded discs $D_1^{n-2}, \ldots, D_r^{n-2}$ with $\partial D_i^{n-2} \subset \partial V$ representing a basis of $H_{n-2}(\tilde{U}, \partial \tilde{V}) \cong H_{n-2}(\tilde{V}, \partial \tilde{V})$. Swap $D_1^{n-2}, \ldots, D_r^{n-2}$ across ∂V , obtaining a neighborhood V_1 of \mathcal{E} . Claim this is an (n-2)-neighborhood.

1-neighborhood: Let $U_1 = U \cap V_1$: U_1 has a handle decomposition on ∂V_1 with (n-3) and (n-2)-handles only. $n-3 \ge 3$, so $\pi_1(\partial V_1) \to \pi_1(U_1)$ is iso.

 U_1 has handle decomposition on $\partial V'$, with 2-handles and 3-handles only.

Therefore $\pi_1(\partial V') \to \pi_1(U_1)$ is onto. But we have $\pi_1(\partial V') \to \pi_1(U_1) \to \pi_1(U)$ an isomorphism; so $\pi_1(\partial V') \xrightarrow{\sim} \pi_1(U_1)$.

Van Kampen for $\pi_1(V_1)$, $(V_1 = U_1 \cup V')$. Therefore

$$\pi_1(V_1) \cong \pi_1(U_1) \cong \pi_1(\partial V') \cong \pi_1(V') \cong \pi_1(\mathcal{E})$$

and

$$\pi_1(\partial V_1) \cong \pi_1(U_1) \cong \pi_1(V_1)$$

Therefore V_1 is a 1-neighborhood.

Let $H = \overline{U - U} =$ union of handles swapped. Exact sequence of $(\tilde{V}, \partial \widetilde{V \cup H}, \partial \tilde{V})$ gives $U = (\partial \widetilde{V \cup H}, \partial \widetilde{V}) + (\tilde{V}, \partial \widetilde{V}) \rightarrow H_{2}, (\tilde{V}, \partial \widetilde{V}) \rightarrow 0$

$$\to H_{n-2}(\partial V \cup H, \partial V) \underset{i_*}{\longmapsto} H_{n-2}(V, \partial V) \to H_{n-2}(V_1, \partial V_1) \to 0$$

 i_* is mono because $D_1^{n-2} \cup \cdots \cup D_r^{n-2}$ is free basis for $H_{n-2}(\tilde{V}, \partial \tilde{V})$.

In any case, $H_{n-2}(\tilde{V}_1, \partial \tilde{V}_1) = 0$, similarly. $H_i(\tilde{V}_1, \partial \tilde{V}_1) = \text{for } i < n-2$, so V_1 is (n-2)neighborhood of \mathcal{E} . Therefore by Corollary 5.14, \mathcal{E} has a collar, as required.

Remarks. i) There exist ends \mathcal{E} which are tame but $\sigma(\mathcal{E}) \neq 0$.

ii) X finite CW complex such that $X \times S' \simeq$ closed man?? M. \tilde{M} = covering corr to $\pi_1(X) \subset \pi_1(X \times S')$. Then \tilde{M} has just two ends $\mathcal{E}, \mathcal{E}_2$, both tame, and both have neighborhoods, \tilde{M} , which is \simeq finite complex X. Can happen that $\sigma(\mathcal{E}_i) \neq 0$.