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1. Projective modulus and automorphisms

We construct Z[π] the integral group ring of the group π. This consists of formal linear

combinations
∑

g∈π ngg (ng ∈ Z, ng = 0 for all but finitely many g).∑
ngg +

∑
mgg =

∑
(ng +mg)g(∑

mgg
)(∑

ngg
)
=

∑
g

( ∑
hk=g

mhnk

)
g

Ring R (associative, has 1, not nec. comm.)

(Left) R-module is Abelian group A with ra defined in A for all r ∈ R, a ∈ A such that

r(a+ b) = ra+ rb

(r + s)a = ra+ sa

(rs)a = r(sa)

1a = a

R-homomorphism f : A→ B is group homotopic with f(ra) = rf(a) for all r ∈ R, a ∈ A.
ai R-module (i ∈ I) ⊕i∈IAi consists of formal sums

∑
i∈I ai with ai ∈ Ai and ai = 0 for

almost all i.

A is free if it is isomorphic to a direct sum of copies of R; equivalently, A has a basis

{ai}i∈I such that for all a ∈ A there exists unique ri ∈ R such that a =
∑
riai (ri = 0 for

almost all i).

A is projective if, given R-modules B, C and R-homotopic ϕ : B → C, f : A → C with

ϕ onto, there exists g : A→ B such that ϕg = f .

Lemma 1.1. A is projective iff it is a direct summand of a free module.

A is finitely generated if there exists finite subset {a1, . . . , an} of A which spans A.

Corollary 1.2. A f.g. projective module is a direct summand of a f.g. free module.
1



2 A. J. CASSON

R any ring. Define K0(R) to be Abelian group with one generator [A] for each isomor-

phism class of f.g. projective R-modules, subject to relations

[A] + [B] = [A⊕B] .

Define K̃0(R) = K0(R)/subgroup generated by [R]) projective class group of R.

Examples. 1) R = Z f.g. proj. Z-modules all free

K̃0(Z) = 0 , K0(Z) ∼= Z

2) R = field f.g. proj. R-modules are f.d. vector spaces.

K̃0(R) = 0 , K0(R) ∼= Z .

3) p, q distinct primes, K0(Zpq) ∼= Z⊕ Z, K̃0(Zpq) ∼= Z.
4) R = ring of algebraic integers in some algebraic number field,

K0(R) = Z⊕ (ideal class group of R), K̃0(R) ∼= ideal class group.

Lemma 1.3. Any element of K0(R) can be expressed as [A]− [B], where A,B are f.g. proj.

modules; [A]− [B] = [C]− [D] iff ∃ f.g. proj. X such that A⊕D ⊕X ∼= B ⊕ C ⊕X.

Proof. Consider ordered pairs of f.g. proj. modules (A,B) . Define (A,B) ∼ (C,D) if

A⊕D ⊕X ∼= B ⊕ C ⊕X for some X, let G be set of equivalence classes.

Addition in G: (A,B) + (C,D) represented by (A⊕ C,B ⊕D). G is a group.

Define ϕ : K0(R)→ G, ψ : G→ K0(R) by ϕ[A] = (A, 0), ψ(A,B) = [A]− [B]. �

Corollary 1.4. Any element of K̃0(R) can be expressed as [A]; [A] = [B] iff A⊕F ∼= B⊕G
for some f.g. free F.G.

Proof. Any element of K0(R) can be expressed as [A] − [B]. Any B f.g. proj ⇒ ∃X such

that B ⊕X is f.g. free.

∴ Any element of K0(R) is of the form [A⊕X]− [B ⊕X].

∴ Any element of K̃0(R) is of the form [A⊕X].

Suppose [A] = [B] in K̃0(R). So [A]− [B] in K0(R) ∈ subgroup generated by [R].

∴ [A]− [B] = [F ]− [G]; F,G f.g. free, so A⊕G⊕X ∼= B ⊕ F ⊕X some f.g. proj. X.

X ⊕ Y is f.g. free some Y

∴ A⊕ (G⊕X ⊕ Y ) ∼= B ⊕ (F ⊕X ⊕ Y )

A⊕ F ∼= B ⊕G =⇒ [A]− [B] = [G]− [F ] in K0

=⇒ [A] = [B] in K̃0 .

�
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Tensor products.

Let A be a right R-module, B a left R-module. A ⊗R B is the universal Abelian group

of bilinear maps ϕ : A×B → G such that ϕ(ar, b) = ϕ(a, rb).

If A is an (S,R)-bimodule [i.e., left S-module, right R-module such that (sa)r = s(ar)],

then A⊗R B inherits structure of left S-module[
s ∈ S induced by A×B −→ A⊗R B

(a, b) 7−→ Sa⊗ b
]

If A is an (S,R)-bimodule and B is an (R, T )-bimodule, then A ⊗R B is an (S, T )-

bimodule.

R
f−→ S ring homomorphism preserving 1.

Construct f∗ : K0(R)→ K0(S).

Regard S as (S,R)-bimodule; S acts on S by left multiplication, R acts on S on right by

s.r = sf(r).

A is left R-module =⇒ S ⊗R A is a left S-module.

Lemma 1.5. S ⊗R (A ⊕ B) ∼= (S ⊗R A) ⊕ (S ⊗R B) and if A is f.g. projective R-module

then S ⊗R A is f.g. projective S-module.

Proof. The first part is obvious. Note that S ⊗R R ∼= S. Therefore S⊗R (f.g. free module)

is f.g. free.

If A is f.g. projective R-module, then A ⊕ X is f.g. free for some X. Therefore (S ⊗R
A)⊕ (S ⊗R X) is f.g. free.

Therefore S ⊗R A is f.g. projective S-module. �

Theorem 1.6. K0 and K̃0 are covariant functors from the category of rings and ring

homomorphisms (preserving 1) to the category of Abelian groups and homomorphisms.

Examples. 1) Suppose there exists homomorphism R→ K, K a field. Then Z→ R→ K

induce homomorphisms

K0(Z) → K0(R)→ K0(K)∥∥ ∥∥
Z

∼=−−−−−−−−→ Z

Therefore K0(R) ∼= Z⊕ K̃0(R).

In particular, this holds for commutative rings, and integral group rings (
∑
ngg →

∑
ng).

2) K0(Mn(R)) ∼= K0(R)
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Rn can be regarded as an (R,Mn(R))-bimodule

r(x1, . . . , xn) = (rx1, . . . rxn)

(x1, . . . , xn)aij = (
∑

xiai1, . . . ,
∑

xiain)

or an (Mn(R), R)-bimodule.

Rn ⊗R Rn ∼=Mn(R0 as an Mn(R)-bimomodule

Rn ⊗Mn(R) R
n ∼= R as an R-bimodule.

If A is left Mn(R)-module, A∗ = Rn ⊗Mn(R) A left R-module; B.... R-module, B∗ =

Rn ⊗R B left Mn(R)-module.

∗, ∗ preserve ⊕ to f.g. projectives; (A∗)∗ ∼= A and B∗)
∗ ∼= B.

∴ defines inverse isomorphisms K0(Mn(R)) ∼= K0(R).

In general K̃0(Mn(R)) ̸∼= K̃0(R), e.g., K̃0(Mn(Z)) ∼= Zn.

Any ring R; GL(n,R) = group of invertible n× n matrices /R.

Regard GL(n,R) as a subgroup of GL(n+ 1, R).

M ∈ GL(n,R) identified with
(
M 0
0 1

)
∈ GL(n+ 1, R)

GL(1, R) ⊂ GL(2, R) ⊂ · · · ⊂ GL(n,R) ⊂ GL(n+ 1, R) ⊂ · · ·

Define GL(R) =
∪∞
n=1GL(n,R).

A liter [??] as ∞×∞ matrices,, aij = δij for all but finitely many i, j.

Let eij be the matrix with 1 in (i, j)th place, zero elsewhere.

If i ̸= j and r ∈ R, then 1 + reij ∈ GL(R), inverse 1− reij .
Let E(R) be the group generated by these elementary matrices.

Lemma 1.7 (J.H.C. Whitehead). E(R) is the commutator subgroup of GL(R).

Proof. Suppose i, j, k distinct. Then

(1 + reij)(1 + sejk)(1− reij)(1− sejk)

= (1 + reij + sejk + rseik)(1− reij − sejk + rseik) = 1 + rseik

Therefore all elementary matrices are commutators.

Let X,Y ∈ GL(n,R); then in GL(R) we have

XYX−1Y −1 =

(
XYX−1Y −1 0

0 1n

)
=

(
X 0
0 X−1

)(
Y 0
0 Y −1

)(
(Y X)−1 0

0 Y X

)
(
Z 0
0 Z−1

)(
1 Z−1

0 1

)(
1 0
−Z 1

)(
1 Z−1

0 1

)
=

(
0 1
−1 0

)
∴

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
=

(
0 1
−1 0

)
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1 Z−1

0 1

)
,

(
1 0
−Z 1

)
, are products of elementary matrices(

1 1
−Z 1

)
=

∏
n+1≤i≤2n
1≤j≤n

(1 + zijeij)

Therefore E(R) ∼= GL(R)′ �

Define K1(R) = GL(R)/E(R); this is Abelian, usually written additively.

Let A be f.g. projective, and let α : A → A be an automorphism of A. Define τ(α) ∈
K1(R) (the Whitehead determinant of α) as follows.

If A is free, pick basis and represent α by invertible matrix M .

Then τ(α) = image of M in K1(R); independent of basis as in imM = imS−1MS.

If A is f.g. projective, pick X such that A ⊕ X is f.g. free. Define τ(α) = τ(α ⊕ 1X)

(already defined).

Examples. Independent of X.

1) τ(αβ) = τ(α) + τ(β) if α, β onto of A

2) τ(α⊕ β) = τ(α) + τ(β) if α onto of A, β onto of B.

In fact, τ is universal with respect to 1) and 2).

Let π be any group g ∈ π ⇒ [±g]
|X| matrices

∈ GL(1,Z[π]) ⊂ GL(Z[π]).

Definition. Wh[π] = K1(Z[π])/{τ(±g) : g ∈ π} the Whitehead group of π.

f : R→ S induces homomorphism f∗ : GL(R)→ GL(S).

By Abelianism, get f∗ : K1(R)→ K1(S).

Theorem 1.8. K1 is a covariant functor from the category of rings and ring homomor-

phisms to the category of Abelian groups and homomorphisms. Analogous result for Wh.

Examples. 1) If R is commutative, det : GL(R)→ U(R) = group of units of R.

U(R)= GL(1, R) ⊂ GL(R)→
−−−−−−−−−−−−−−−−−−→

K1(R)
det−−→ U(R)

u 7−→


u

1 0
1

0 1
. . .

 7→ u

Therefore K1(R) ∼= U(R)⊕ SK1(R) for commutative R.
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2) Wh(CS) ̸= 0. Enough to find a unit in Z[CS ] not of form ±g (g ∈ CS) Wh(π) ∼=
U(Z[π])
±π ⊕ SK1

t generates CS .

1− t− t4 is a unit in Z[CS ] inverse 1− t2 − t3

In fact Wh(CS) ∼= Z generated by 1− t− t4 (hard to prove).

3) K1(Z) ∼= Z)2 ∼= U(Z), SK1(Z) = 0

Implies that Wh (trivial group) = 0

A ∈ GL(n,Z) with detA = 1

RTP that A is a product of elementary matrices.a11 · · · A1n
...

...
an1 · · · ann


Simplify (a11 · · · a1n) by Euclidean algorithm. Suppose a1r has maximal modulus in

top row. Suppose a1s ̸= 0 for some s ̸= r. Pick λ ∈ Z such that |a1r − λa1s| < |a1s|.
A(1−λesr) has same top row as A except that a1r is replaced by a1r−λa1s. Repeat
until the top row has only one non-zero element – must be ±1. If n ≥ 2, can make

top row (1, 0, . . . , 0).1 0 · · · 0
|
| A′

|



1 0 · · · 0
0
... A′

0


Premultiply by elementary matrices to kill the first column. Therefore A ≡ some

element of GL(n01,Z) (mod E(Z)). Continue until

A ≡


1

1
. . .

1
±1


But detA = 1, so A ≡ I mod E(Z)

4) If R is a field then K1(R) ∼= R∗ = U(R). Similar to above, but easier.

5) K1(Mn(R)) ∼= K1(R)

GL(k,Mn(R)) ∼= GL(nk,R) (portioned matrices)

∼̇GL(Mn(R)) ∼= GL(R)

Abelianize ⇒ K1(Mn(R)) ∼= K1(R)
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Lemma 1.9 (π group). If γ : π → π is conjugation by some g ∈ π, then γ∗ : Ki(Z[π]) →
Ki(Z[π]) is the identity (i = 0, 1).

Proof. If A is f.g. projective over Z[π], then γ∗[A] represented by C⊗Z[π]A where C = Z[π]
as left Z[π]-module with right Z[π]-action given by c ·r = cgrg−1 (c ∈ C, r ∈ Z[π], · denotes
right action on C).

Define ϕ : C → Z[π] by ϕ(c) = cg. Left Z[π]-module isomorphism, and

ϕ(c · r) = ϕ(cgrg−1) = cgr

ϕ(c)r = cgr

Therefore ϕ is a bimodule isomorphism,, so C ⊗Z[π] A ∼= A.

Therefore γ∗ : K0(Z[π])→ K0(Z[π]) is identity.
If M ∈ GL(n,Z[π]), then γ∗M = (gIn)M(gIn)

−1.

Therefore γ∗M ≡M mod E(Z[π]), so γ∗ : K1 → K1 is identity. �

Wh(π) is f.g. if π is finite (Bass).

K̃0(Z[C∞ × Cp2 ]) not f.g.
K̃0(Z[π]) is summand of Wh(π × C∞).

Wh(π) = K̃0(π) = 0 if π free or free Abelian.

2. Chain Complexes

Consider chain complexes of left R-modules.

C∗ : · · ·
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · · −→ C1 −→ C0 −→ 0

∂ is an R-homomorphism such that ∂2 = 0.

Hn(C∗) is a left R-module.

C∗ is free/proj/f.g. ⇐⇒ Cn is free/proj ∀ n

C∗ is f.g. ⇐⇒
∞⊕
n=0

Cn is f.g.

Examples. X a (simplicial) complex, fundamental group π, and universal cover X̃ trian-

gulated canonically. Chain complex C∗(X̃) (finite simplicial chains). π acts n X̃, so C∗(X̃)

is chain complex of Z[π]-modules. Free: one basis element for each simplex of X.

If X dominated by finite complex X
f−→ K

g−→ X − zf ≃ 1.

C∗(X̃)→ C∗(K̃)→ C∗(X̃)
f.g. free

with g∗f∗ ≃ 1.

Lemma 2.1. If C∗ is projective and acyclic, then there exists R-homomorphisms Γi : Ci →
Ci+1 such that ∂Γ + Γ∂ = 1.
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Proof. C1
∂−→ C0 onto, C0 projective, so there exists Γ0 : C0 → C1 with ∂Γ0 = 1.

Suppose inductively that Γ0, . . . ,Γn−1 defined. x ∈ Cn; ∂x = (∂Γn−1+Γn−2∂)∂x = ∂Γ∂x

∴ (1− Γn−1∂)x ∈ Zn = ker ∂ : Cn → Cn−1

Zn = im : ∂ : Cn+1 → Cn = B + n.

Cn projective⇒ ∃ Γn : Cn → Cn+1 s.t. ∂Γn = 1−∂Γn−1, i.e. ∂Γn+Γn−1∂ = 1 completes

induction step.

f : C∗ → D∗ chain map. �

Algebraic mapping cylinder. M∗ of f has Mn = Cn⊕Cn−1⊕Dn with ∂ :Mn →Mn−1

defined by ∂(x, y, z) = (∂x− y,−∂y, ∂z + fy). Check ∂2 = 0.

Chain maps

λ : C∗ →M∗, µ :M∗ → D∗

x 7→ (x, 0, 0), (x, y, z) 7→ z + fx

µλ = f and µ is a chain equivalence.

Inverse µ̄ : D∗ →M∗; z 7→ (0, 0, z).

µµ̄ = 1. homotopy µ̄µ ≃ 1 given by ∆n :Mn →Mn+1

(x, y, z) 7→ (0, x, 0)

(∂∆+∆∂)(x, y, z) = (−x,−∂x, fx) + (0, ∂x− y, 0)

= (−x,−y, fx)

= (µ̄µ− 1)(x, y, z)

algebraic mapping cone. Q∗ =M∗/ imλ

∴ Qn = Cn−1 ⊕Dn, ∂(y, z) = (−∂y, ∂z + fy)

0 −→ C∗
λ−−→ M∗

π−−→ Q∗−→ 0
Z
Z
Z~

f ?
µ

D∗

Commutes, top row exact.

Define Hn(f) = Hn(Q∗); get exact homology sequence of f .

Hn(C()
f∗−−→ Hn(D∗) −→ Hn(f) −→ Hn−1(C∗)

f∗−−→ a

Lemma 2.2. If f : C∗ → D∗ induces homology group isomorphisms, and C∗, D∗ projective,

then f is a chain equivalence.



SIMPLE HOMOTOPY THEORY JANUARY 1970 9

Proof. M∗, Q∗ mapping cylinder and cone of f . It is enough to show λ : C∗ → M∗ is an

equivalence. Q∗ is acyclic and projective, therefore by 2.1 there exists the contraction Γ∗.

Put Mn = Cn ⊕Qn in obvious way.

Put ∆n = 0⊕ Γn :Mn →Mn+1

0 −→ Ci
λ−−→ Mi

π−−→ Qi −→ 0y∆i

yΓi

0 −→ Ci+1
λ−−→ Mi+1

π−−→ Qi+1 −→ 0

commutes π(1− ∂∆−∆∂) = (1− ∂Γ− Γ∂)π = 0,

therefore there exists λ̄ :M∗ → C∗ such that λλ̄ = 1− ∂∆−∆∂

λλ̄ ≃ 1

λλ̄λ(x) = (1− ∂∆−∆∂)λ(x) = λ(x)

λ mono ⇒ λ̄λ = 1

So λ̄ chain inverse to λ as required. �

C∗ dominated by D∗ if there exists f : C∗ → D∗, g : D∗ → C∗, gf ∼ 1. Dimension of C

is dim(C∗) = sup{n : Cn ̸= 0}.

Theorem 2.3 (C.T.C. Wall). If C∗, D∗ is projective, D∗ dominates C∗, and D∗ is f.g.,

then C∗ is equivalent to a f.g. projective complex of dimension ≤ dim(D∗).

Definition. C∗ is of finite type if Cn is f.g. for all n.

Lemma 2.4. If C∗, D∗ is projective, D∗ dominates C∗, and D∗ is of finite type, then C∗ ≃
some complex of finite type.

Proof. f : C∗ → D∗, g : D∗ → C∗, gf ≃ 1. Suppose inductively that Hi(f) = 0 for i < n

(start with n = 0).

First step: Hn(f) is f.g.

Homology sequence of f :

(1) 0 −→ Hi(C∗)
f∗−→←−
g∗

Hi(D∗) −→ Hi(f) −→ 0

Let r = fg : D∗ → D∗.

f, g, r induces homology isomorphisms in dimensions < n. Exact sequence of r:

Hn(D∗)
r∗−→ Hn(D∗) −→ Hn(r) −→ 0

r∗ = f∗g∗ , f∗ = r∗f∗ ⇒ im r∗ = im f∗

⇒n (f) = Hn(r)

Let Q∗ be mapping cone of r. Hi(Q∗) = 0 for i < n.
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Exact sequence. 0 → Zn(Q∗) −→⊂ Qn
∂−→ Qn−1

∂−→→ Q0 → 0. Qi is projective so

argument of 2.1 ⇒ ∃ contraction ? (don’t use Zn projective).

Γn|Zn(Q∗) = 1, so Zn is direct summand of Qn.

∴ Zn is f.g., ∴ Hn(f) ∼= Hn(Q∗) is f.g.

From (∗), Hn(f) ∼= ker g∗ : Hn(D∗)→ Hn(C∗)

Pick f.g. projective E and epimorphism e : E → ker g∗

∃ d such that

E
d−−−−→ Zn(D∗) commutes.

e

y yproj.

ker g∗
inc.−−−−→ Hn(D∗)

(2)

∂−−−−→ Cn+2
∂−−−−→ Cn+1

∂−−−−→ Cn
∂−−−−→

f

yxg f⊕0
yxg⊕C f

yxg
∂−−−−→ Dn+2

∂⊕0−−−−→ Dn+1 ⊕ E
∂⊕d−−−−→ Dn

∂−−−−→
To choose c, note that gd(Cn) ⊂ Bn(C∗) since e(E) ⊂ ker g∗.

E projective, so ∃ c : E → Cn+1 such that ∂c = gd.

Replace D∗ by bottom row of (2): chain complex of finite type. Haven’t changed gf , so

D∗ still dominates C∗.

g induces homology isomorphisms in dimensions sn.

Therefore f does too. Therefore Hi(f) = 0 for i ≤ n.
Only changed Dn+1.

Iterate infinitely, obtain complex D′∗ and map f ′ : C∗ → D′∗ inducing homology isomor-

phisms in all dimensions. Therefore by 2.2, C∗ ≃ D′∗, which is of finite type. �

Proof of Theorem 2.3. By Lemma 2.4, replace C∗ by an equivalent complex of finite type.

f : C∗ → D∗, g : D∗ → C∗ such that gf ≃ 1, say 1− gf = ∂∆+∆∂ where ∆i : Ci → Ci+1.

Let n = dimD∗. Then gf : Cn+ 1→ Cn+1 is zero.

∴ ∂∆n+1 +∆n∂ = 1Cn+1 ⇒ ∂∆n∂ = ∂

∴ we have the map ∂∆n : Cn → Bn such that ∂∆n|Bn = 1.

∴ Bn is a direct summand of Cn.

∴ Cn/Bn is f.g. projective.

Let E∗ be complex

0 −→ Cn/Bn
∂−−−−→ Cn1

∂−−−−→ Cn2

∂−−−−→ · · · ∂−−−−→ C0 −→ 0

Projection: C∗ → E∗ induces homology isomorphisms (clear for dimensions ≤ n, and

Hi(D∗) = 0 for i > n, from Hi(C∗) � Hi(D∗)).
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Therefore C∗ ≃ E∗ by 2.2; and E∗ is f.g. proj., dimE∗ = dimD∗. �

Let C∗ be f.g. projective. Define Wall invariant σ(C∗) to be
∑

i(−1)i[Ci] ∈ K̃0(R).

Lemma 2.5. If C∗ ≃ D∗, then σ(C∗) = σ(D∗) (where C∗, D∗ are f.g. projective).

Proof. Let Q∗ be mapping cone of a chain equivalence C∗ → D∗. Then Q∗ is acyclic, so ∃
contraction Γ∗.

∴ 0→ Bn
⊂−−−−→ Qn

∂−−−−→ Bn−1 → 0 splits

∴ Bn ⊕Bn−1 ∼= Qn ∼= Cn−1 ⊕Dn

∴ σ(C∗)− σ(D∗) =
∑
n

(−1)n−1{[Cn−1 + [Dn]}

=
∑

(−1)n−1{[Bn] + [Bn−1]}

= 0 .

�

C an generalize definition of σ(C∗) to case when C∗ is projective and dominated by a

f.g. proj. complex F or such a C∗ ≃ f.g. proj. complex E∗ (by 2.3) and define σ(C∗) to be

σ(E∗); well defined by Lemma 2.5.

Theorem 2.6. A f.g. projective complex C∗ is equivalent to a f.g. free complex of dimension

at most dimC∗ iff σ(C∗) = 0.

Proof. “Only if” is clear.

“If” : Suppose σ(C∗) = 0. Suppose inductively that Ci free for i < n. Cn f.g. proj. ⇒ ∃
R-module E, f.g. proj., such that Cn ⊕ E is free.

Replace C∗ by complex

∂−−−−→ Cn+2
∂⊕0−−−−→ Cn+1 ⊕E

∂⊕1−−−−→ Cn ⊕ E
∂⊕0−−−−→ Cn−1

∂−−−−→ Cn−2

which is equivalent to C∗ by Lemma 2.2.

This completes the induction; only had to alter Cn and Cn+1.

Let m = dimC∗ : continue this process until Ci is free, i < m (doesn’t increase dimC∗).

σ(C∗) = 0 but σ(C∗) = (−1)m[Cm].
∴ ∃ f.g. free F,G such that cm ⊕ F ∼= G.

Replace C∗ by complex

0→ Cm ⊕ F
∂⊕1−−−−→ Cm−1 ⊕ F

∂⊕0−−−−→ Cm−2
∂−−−−→

which is ≃ C∗ by 2.2; and it is f.g. free of dimm. �
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Whitehead Torsion.

Hypothesis (for rest of Section 2): R is such that free modules Rm, Rn are isomorphic iff

m = n.

Examples 1) if R any ring: R∞ = free left R-module on countably many generators.

S = EndR(R
∞). If A is any left R-module, HomR(A,R

∞) is a left S-module. But, as left

S-modules

S = HomR(R
∞, R∞) ∼= HomR(R

∞ ⊕R∞, R∞)

∼= S ⊕ S

so hypothesis doesn’t hold for S.

2) Hypothesis does hold if R can be mapped homomorphically into a field, e.g., commu-

tative rings, Z[π]. �
Let A be a f.g. free R-module, and let b = (b1, . . . , bm), c = (c1, . . . , cn) be bases for A.

Then m = n, so ∃ unique square matrix [aij ] ∈ GL(n,R) such that ci =
∑
aijbj . Write

[c/b] for τ [aij ] ∈ K1(R).

A based chain complex is a f.g. free chain complex C∗ together with a basis cn =

(c
(1)
n , . . . , c

(dn)
n ) of Cn, ∀ n.

Let C∗ be based and acyclic. By 2.1 ∃ contraction Γ∗.

Exact sequence.

0 −→ Bn
⊂−−−−→ Cn

∂−−−−→ Bn−1 −→ 0 splitsy1

y∂⊕∂Γn

y1

0 −→ Bn
⊂−−−−→ Bn−1 ⊕Bn

p1−−−−−→ Bn−1 −→ 0

commutative diagram. Five lemma ⇒ ∂ ⊕ ∂Γn isomorphism = γn

γn : Cn −→ Bn−1 ⊕Bn

Let γ = (⊕γ2i)−1(⊕γ2i+1) : ⊕C2i+1 → ⊕C2i.

Bases ⊕c2i, γ(⊕c2i+1) for ⊕C2i

Define τ(C∗) to be [γ(⊕c2i+1)/⊕ c2i].
Re-ordering bases: τ ( 0 1

1 0 ) = τ(−1), so that re-ordering bases adds τ(±1) to τ(C∗).
Define K1(R) = K1(R)/{τ(±1)} = coker(K1(Z)→ K1(R)).

Torsions of chain complexes will be regarded as elements of K1(R).

Lemma 2.7. The torsion τ(C∗) depends only on C∗ and bases c∗.

Proof. Let Γ′∗ be another contraction giving isomorphisms γ′n : CN → Bn−1 ⊕Bn.
Let βn = γ′nγ

−1
n : Bn−1 ⊕Bn → Bn−1 ⊕Bn.
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It is enough to prove τ(β) = 0.

Commutative diagram:

0 −→ Bn −→ Bn−1 ⊕Bn −→ Bn−1 −→ 0

1

y yβn y1

0 −→ Bn −→ Bn−1 ⊕Bn −→ Bn−1 −→ 0

Bn−1, Bn are f.g. projective: ∃Xn−1, Xn such that Xn−1 ⊕ Bn−1, Bn ⊕ Xn f.g. free. Let

Fn = Bn ⊕Xn.

ϕn = 1⊕ βn ⊕ 1 : Fn−1 ⊕ Fn −→ Fn−1 ⊕ Fn

τ(ϕn) = τ(βn)

0 −→ Fn −→ Fn−1 ⊕ Fn −→ Fn−1 −→ 0

V

1

V

ϕn

V

1

w.r.t bases for Fn−1, Fn, ϕn has matrix

(
1 M
0 1

)
which is a product of elementary matrices.

Therefore τ(βn) = τ(ϕn) = 0 as required. �

C∗, D∗ based f : C∗ → D∗ chain map, mapping cone Q∗ : Qn = Cn−1 ⊕Dn: basis

qn = cn−1 ⊕ dn.
Q∗ is based and acyclic if f is a chain equivalence

Define τ(f) = τ(Q∗).

Call f a simple equivalence if τ(f) = 0.

Theorem 2.8. If f : C∗ → D∗ is a chain equivalence of based chain complexes, and g ≃ f ,
then τ(g) = τ(f).

Proof. f − g = ∂∆+∆∂

Let Qf∗ , Q
g
∗ be the mapping cones of f, g.

Qfn = Qgn = Cn−1 ⊕Dn , qfn = qgn = cn−1 ⊕ dn

∂f (y, z) = (−∂y, ∂z + fy)

∂g(y, z) = (−∂y, ∂z + gy)

Define ϕ : Qf∗ → Qg∗ by ϕ(y, z) = (y, z +∆y).

Chain map: ϕ∂f (y, z) = (−∂y, ∂z + fy −∆∂y)

∂gϕ(y, z) = (−∂y, ∂z + ∂∆y + gy)

ϕ is an isomorphism of chain complexes. In fact, ϕn : Cn−1⊕Dn → Cn−1⊕Dn is a product

of elementary automorphisms, so [ϕ(qn)/qn] = 0. Therefore τ(Qfn) = τ(Qg∗) as required. �
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Lemma 2.9. Let 0 → C ′∗
i−−→ C∗

j−−→ C ′′∗ → 0 be a s.a.s. of based acyclic complexes.

Suppose i, j preserve bases, in the sense that i(c′n) ⊂ cn and j(cn − i(c′n)) = c′′n. Then

τ(c∗) = τ(c′∗) + τ(c′′∗).

Proof. Claim ∃ contractions Γ∗,Γ
′
∗,Γ
′′
∗ such that

0 −→ C ′n
i−−→ Cn

j−−→ C ′′n −→ 0yΓ′
n

yΓn

yΓ′′
n

0 −→ C ′n+1
i−−→ Cn+1

j−−→ C ′′n+1 −→ 0

commutes.

Let Γ′′∗ be any contraction of C ′′∗ .

Cn free ⇒ ∃ ∆n : Cn → Cn+1 such that j∆n = Γ′′nj. Therefore j(1 − ∂∆ − ∂∆) =

(1− ∂Γ′′ − Γ′′∂)j.

∃ unique k : C∗ → C ′∗ such that ik = 1− ∂∆−∆∂ : C∗ → C∗.

C ′∗ contractible, so k ≃ 0, say k = ∂∆′ +∆′∂, ∆′n : Cn → C ′n+1.

Put Γn = ∆n + i∆′n, then ∂Γ + Γ∂ = 1; Γ∗ contraction, jΓn = j∆n = Γ′′nj.

Diagram chasing ⇒ 0→ B′n
i−−→ Bn

j−−→ B′′n → 0 exact.

0 −→ C ′n
i−−→ Cn

j−−→ C ′′n −→ 0yγ′n yγn yγ′′n
0 −→ B′n−1 ⊕B′n −→ Bn−1 ⊕Bn −→ B′′n−1 ⊕B′′n −→ 0

∂ + ∂Γ = γn : Cn −→ Bn−1 ⊕Bn

0 −→
⊕
C ′2r+1

i−−→
⊕
C2r+1

j−−→
⊕
C ′′2r+1 −→ 0yγ′ yγ yγ′′

0 −→
⊕
C ′2r −→

⊕
C2r −→

⊕
C ′′2r −→ 0

both commute.

Let M,M ′,M ′′ be matrices of γ, γ′, γ′′ w.r.t. given bases.

i, j preserve bases. Re-order bases cn of Cn to bring M into form

(
M ′ x
0 M ′′

)
=(

M ′ 0
0 M ′′

)(
1 (M ′)−1x
0 1

)
.

∴ τ(M) ≡ τ(M ′) + τ(M ′′) mod τ(±1)

∴ τ(C∗) = τ(C ′∗) + τ(C ′′∗ ) ∈ K̄1(R)

�

Theorem 2.10. If f : C∗ → D∗, g : D∗ → E∗ are chain equivalences of based complexes,

then τ(gf) = τ(g) + τ(f).
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Proof. Let Qf∗ , Q
g
∗, Q

gf
∗ be mapping cones. Define S∗ by

Sn = Cn−1 ⊕ Dn ⊕ Dn−1 ⊕ En
y z v w C D E

squash C

bases sn = cn−1 ⊕ dn ⊕ dn−1 ⊕ en

∂(y, z, v, w) = (−∂y, ∂z + fy − v,−∂v, ∂w + gv) .

Based exact sequence

0 −→ Qf∗ −→ S∗ −→ Qg∗ −→ 0

(y, z) 7−→ (y, z, 0, 0)
(y, z, v, w) 7−→ (v, w)

τ(S∗) = τ(f) + τ(g) by 2.9.

Define i : Qgf∗ → S∗ by i(y, w) = (y, 0, fy, w) chain map.

Define complex T∗ by Tn = Dn ⊕Dn−1 basis tn = dn ⊕ dn−1
∂(z, v) = (∂z − v,−∂v)

0 −→ Qgfx
i−−→ S∗

j−−→ T∗ −→ 0

(y, z, v, w) −→ (z, v − fy)

This is not based.

Now basis ?? for Sn : s′n = i(cn−1⊕ en)∪ dn⊕ dn−1. In fact, [s′n/sn] = 0 ∈ K̄1(R) related

to sn by transformation (y, z, v, w) 7→ (y, z, v + fy, w). By Lemma 2.9, τ(gf) + τ(T∗) =

τ(S∗) = τ(f) + τ(g)

Tn = Dn ⊕Dn−1 ∂(z, v) = (∂z − v,−∂v) , tn = dn ⊕ dn−1

Define T ′∗ by T
′
n = Tn, t

′
n = tn, ∂

′(z, v) = (−v, 0). Define ϕ : T∗ → T ′∗ by ϕ(z, v) = (z, v−∂z)
chain map.

ϕ is elementary automorphism of Tn.

[ϕtn/tn] = 0

∴ τ(T∗) = τ(T ′∗)

To calculate τ(T ′∗), use contraction Γ′∗, with Γ′(z, v) = (0,−z).
Matrix of γ : ⊕T ′2i+1 → ⊕T ′2i has integer coefficients K̄1(Z) = 0, so γ has zero torsion.

Therefore τ(T ′∗) = 0. �

Corollary 2.11. Let 0→ C ′∗
i−−→ C∗

j−−→ C ′′∗ → 0 be an exact sequence of based complexes.

Suppose i is a chain equivalence, and i, j preserve bases. Then τ(i) = τ(C ′′∗ ).
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Proof. Let Q∗ be the mapping cone of i; let Q′∗ be the mapping cone of 1C′
∗ . Then τ(Q∗) =

τ(i) and τ(Q′∗) = 0 by (2.10).

Define u : Q′∗ → Q∗ by u(y, z) = (y, i(z)).

Define v : Q∗ → C ′′∗ by v(y, z) = j(z) preserve bases.

Exact sequence 0→ Q′∗ → Q∗ → C ′′∗ → 0.

By Lemma 2.9, τ(i) = τ(Q∗) = τ(C ′′∗ ). �

f : C∗ → D∗ any chain map of based complexes.

M∗ = mapping cylinder : Mn = Cn ⊕ Cn−1 ⊕Dn, basis mn = cn ⊕ cn−1 ⊕ dn

∂(x, y, z) = (∂x− y,−∂y, ∂z + fy) .

Chain equivalence µ :M∗ → D∗

Corollary 2.12. µ is a simple equivalence, i.e. τ(µ) = 0.

Proof. Recall from 2.2 that a chain inverse of µ is given by µ̄(z) = (0, 0, z). Define T∗ by

Tn = Cn ⊕ Cn−1, basis tn = cn ⊕ cn−1

∂(x, y) = (∂x− y,−∂y) .

Based exact sequence

0 −→ D∗
µ̄−−→ M∗ −→ T∗ −→ 0

(x, y, z) 7−→ (x, y)

∴ τ(µ̄) = τ(T∗) = 0 as in proof of 2.10.

∴ µµ̄ = 1 , so τ(µ) = 0 by 2.10.

�

An elementary based chain complex of dimension n is one of form

0→ · · · → 0→ En → En−1 → 0→ · · ·

with Ei = 0 if i ̸= n, n− 1.

En = En−1 = R , en = en−1 = 0 .

∂ : En → En−1 is ± identity.

Example. K,L (finite) simplicial complexes. Suppose K ↘ L by elementary simplicial

collapse. K̃, L̃ universal covers.

Exact sequences

0 −→ C∗(L̃)
⊂∗−−−→ C∗(K̃) −→ E∗ −→ 0

where E∗ is elementary, of same dimension as collapse.
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Suppose C∗, D∗ are based, and there is a based exact sequence

0 −→ C∗
i−−→ D∗ −→ E∗ −→ 0

with E∗ elementary.

Then i is called an elementary expansion.

By 2.2, i is a homotopy equivalence.

Any chain inverse is called an elementary collapse.

Theorem 2.13. A chain map f : C∗ → D∗ is a simple equivalence iff it can be factored

into finitely many elementary expansions and collapses.

Proof. The torsion of an elementary complex is 0; by Lemma 2.11, an elementary expansion

or collapse has torsion zero.

Lemma 2.14. A based acyclic complex with zero torsion can be reduced to 0 by finitely

many elementary expansions and collapses.

Proof. C∗ based acyclic, n = dimC∗.

First we show how to alter basis cn−1 = (c′, . . . , cd) of Cn−1 by an elementary matrix

1 + λeij.

0 −→ Cn
∂−−→ Cn−1

∂−−→ Cn−2
∂−−→yi1 y y1

0 −→ Cn ⊕R
∂2−−−→ Cn−1 ⊕R

∂1−−−→ Cn−2
∂−−→y yi2,3 y1

y1

0 −→ Cn −→ Cn ⊕ Cn ⊕R
∂3−−−→ Cn−1 ⊕R

∂1−−−→ Cn−2
∂−−→x xi1,3 x1

x1

0 −→ Cn ⊕R
∂4−−−→ Cn−1 ⊕R

∂1−−−→ Cn−2
∂−−→xi1 xϕ x1

0 −→ Cn
∂−−→ Cn−1

∂−−→ Cn−2
∂−−→

where

∂1(z, r) = ∂z + r(cj + λci)

∂2(y, r) = (∂y − r(cj + λci), r)

∂3(x, y, r) = ∂2(x+ y, r + (∂x)j) ∂x =
∑

(∂x)rc
r

∂4 = ∂3(x, 0, r)

∂5 = (x,−x,−(∂x)j)

ϕ(z) = (z − (z); (cj + λci), (z)j)
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Vertical maps define elementary expansions; except that ϕ isn’t based. To make it based,

we have to replace (c1, . . . , cd) by (c1, . . . , cj−1, cj +λci, cj+1, . . . , cd). But this is the change

we wanted to produce.

If n ≥ 2, make expansion

0 −→ Cn
∂−−→ Cn−1

∂−−→ Cn−2
∂−−→y1

yi1 yi1
0 −→ Cn

∂⊕0−−−−→ Cn−1 ⊕ Cn
∂⊕1−−−−→ Cn−2 ⊕ Cn

∂⊕0−−−−→

This makes Bn−2 (rottom row) ∼= Bn−2 (top row) ⊕ Cn

0 −→ Cn −→ Cn−1 −→ Bn−2 −→ 0 splits

i.e. it makes Bn−2 free.

Bases cn, cn−1 for Cn, Cn−1.

From the exact sequence 0 −→ Cn
∂−−→ Cn−1

∂−−→ Bn−2 −→ 0 and freeness of Bn−2, we

can extend ∂cn to a basis ∂cn of Cn−1.

∃ matrix M ∈ GL(k,R) (k = rank of Cn−1) such that ∂cn = Mcn−1. Make another

expansion

0 −→ Cn
∂−−→ Cn−1

∂−−→ Cn−2
∂−−→y1

yi1 yi1
0 −→ Cn

∂⊕0−−−−→ Cn−1 ⊕Rk
∂⊕1−−−−→ Cn−2 ⊕Rk

∂⊕0−−−−→ .

Extend cn−1 to bases of Cn−1 ⊕Rk by adjoining standard basis (e1, . . . , ek) of Rk.

Extend ∂cn to basis of Cn−1 ⊕Rk by adjoining (M−1e1, . . . ,M−1ek).

Now ∂cn =
(
M 0
0 M−1

)
cn−1 and

(
M 0
0 M−1

)
is product of elementary matrices. So we can

change cn−1 into ∂cn by elementary expansions and collapses. Then ∂ : Cn → Cn−1 is based

injection, so we can collapse C∗ onto 0 → Cn−1

∂cn

∂−−→ Cn−2
∂−−→ Cn−3

∂−−→. This reduces

dimC∗.

Continue until dimC∗ = 1

0→ C1
∂−−→∼= C? −→

Since τ(C∗) = 0, ∂ is given (wrt bases ??) by matrix M with τ(M) = 0. Expand until M

is a product of elementary matrices.

Change basis of C0 to make ∂ based (by expansions and collapses as above). Now C∗

can be collapsed to 0. This proves the lemma. �



SIMPLE HOMOTOPY THEORY JANUARY 1970 19

Proof of Theorem 2.13. f : C∗ −→ D∗ is simple again, C∗, D∗ based. M∗ = mapping

cylinder of f .

µ̄ : D∗ −→M∗

Dn ∋ z 7−→ (0, 0, z) ∈ Cn ⊕ Cn−1 ⊕Dn

�

Exercise. µ̄ : D∗ →M∗ is a product of elementary expansions

∂−−→ D2
∂−−→ D1

∂−−→ D0 −→ 0y yi2 yi2
∂−−→ D2 −→ C0 ⊕D1 −→ C0 ⊕D0 −→ 0y (y, z)y 7−→ (y, fy + ∂z)y
−→ C1 ⊕D2 −→ C1 ⊕ C0 ⊕D1 −→ C0 ⊕D0 −→ 0

Replace f : C∗ → D∗ by a based injection.

Exact sequence 0→ C∗
f−−→ D∗

π−−→ A∗ → 0 based τ(A∗) = τ(f) = 0. A∗ cyclic.

Therefore can reduce A∗ to 0 by Lemma 2.14. We show how to “cover” expansions

and collapses of A∗ by corresponding expansions and collapses of D∗. If A∗ −→ A′∗ is an

elementary collapse then D∗ → D′∗ = π−1(A′∗). Let A∗ → A′∗ be an elementary expansion.

Let h : A′∗ → A∗ be a collapse. Then h|A∗ is chain homotopic to 1. Extend homotopy to

get collapse g : A′∗ → A∗ with g|A∗ = 1. (An direct summand of A′n).

Define D′∗ = {(x, y) ∈ D∗ ⊕A′∗ : π(x) = g(y)}

∂(x, y) = (∂x, ∂y)

x 7→ (x, π(x)) is a based injection D∗ → D′∗.

Extend basis of D∗ to basis of D′∗ suitably; then D∗ → D′∗ is elementary expansion.

Still have exact sequence 0→ C∗
f ′−−→ D′∗

π′
−−→ A′∗ → 0 (based).

This finishes the proof of Theorem 2.13.

�

Exercise. 1) Can get from D∗ to C∗ by expansions and collapses of dimension at most

max(dimC∗ + 1,dimD∗ + 1).

2) In Lemma 2.14, we can get from C∗ to 0 by expansions and collapses of dimension

≥ 2.
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3. CW complexes

en closed n-cell.

C.W. complex is Hausdorff space X with maps ϕα : en → X (α ∈ An)

i) If Xn =
∪
r≤n

∪
α∈Ar

ϕα(e
r), then X = ∪Xn and ϕα(∂e

n) ⊂ Xn−1.

ii) ϕα(int e
n)nϕβ(int e

m) = ϕ unless α = β and n = m, i.e. ϕα|int en is 1–1

iii) ∀ alpha, ϕα(en) = finite union of interiors of cells

iv) C ⊂ X closed ⇔ ϕ−1α (C) closed in en for all α

Lemma 3.1. Any CW complex has the homotopy type of a simplicial complex.

Proof. Suppose ≃ equiv f : Xn−1 → Kn−1 = simplicial complex.

An discrete topology.

ϕ : An × ∂en → Xn−1 given by ϕ(α, x) = ϕx(x).

Let ψ be simplicial approximation of fϕ

fϕ : An × ∂en → Kn−1.

By homotopy theory,

Xn = Xn−1 ∪ϕ (An × en)

≃ Kn−1 ∪ψ (An × en)

= Kn

which can be triangulated. �

Corollary 3.2. Any CW complex is locally path connected and weakly locally simply con-

nected (i.e. ∀ x ∈ X ∃ neighborhood U of x such that any loop in U is null homotopic in

X).

Let X be a connected CW complex, x0 ∈ X, G ⊂ π1(X,x0). Then there exists covering

space, p : X̃ → X, with x̃0 ∈ X̃ such that p∗(π1(X̃, x̃0)) = G; X̃ connected.

A covering translation of p : X̃ → X is ??

h : X̃ → X̃ with ph = p.

Example. Rn is a cover of n-fold torus Tn.

(x1, . . . , xn) 7−→ (e2πix1 , . . . , e2πixn)

Group of covering translations is Zn.

Lemma 3.3. If G is normal in π1(X,x0) [regular cover] then the group of covering trans-

lations is ∼= π = π1(X,x0)
G .
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Proof. Suppose covering translation h : X̃ → X̃

∃ path f : I → X̃ with f(0) = x̃− 0, f(1) = h(x̃0).

pf : I → X is a loop in X, representing η(h) ∈ π. Well defined, homomorphism.

Injective: suppose η(h) = 1. pf represents element of G = p∗(π1(X̃, x̃0)).

∴ pf ≃ pℓ, ℓ some loop in X̃, rel ends.

Lift this homotopy to X̃ to prove f(0) = f(1), so h(x̃0) = x̃0.

∴ h = 1

Surjective: take loop ℓ : I → X. Lift to path ℓ̃ : I → X̃, ℓ̃(0) = x̃0.

p∗(π1(X̃, ℓ̃(1))) = G (since G normal)A ũ−−→ X̃
↘u

yp
X

∃ unique ũ : A→ X̃ with pũ = u
and ũ(α0) = x̃

provided u∗π1(A, u0) ⊂ p∗(π1(X̃, x̃)).


By covering space theory, ∃ h̃ : X̃ → X̃ with h̃(x̃0) = ℓ̃(1). Clearly η(h) rep by ℓ �

Lemma 3.4. If X is a connected CW complex, then any covering X̃ of X has the structure

of a CW complex.

Proof. Any map ϕ : en → X has a lift (non-unique) ϕ̃ : en → X̃ with pϕ̃ = ϕ.

Two lifts ϕ̃1, ϕ̃2 with ϕ̃1(x) = ϕ̃2(x) for some x ∈ en are equal everywhere.

Take for n-cells of X̃ all lifts of all ϕx : en → X (α ∈ An). Easy to check that this is CW

complex. �

Example.

P 2 = S1 ∪2 e2 = e0 ∪ e1 ∪2 e2

S2 = universal cover of P 2

= (e0 ∪ e0) ∪ (e1 ∪ e1) ∪ (e2 ∪ e2)

If X̃
P−−→ X is a regular cover of CW complex X, with π = group of translations, then π

permutes cells of X̃ freely (g ∈ π, enα cell of X̃, genα = enα ⇒ g = 1). π permutes n-cells of

p−1(n-cell of X) transitively.

Cellular homology

H∗(X,Y ) = singular homology

CW complex X; define Cn(X) = Hn(X
n, xn−1)

∂n : Cn(X)→ Cn−1(X) defined as composite

Hn(X
n, Xn−1)

∂−−→ Hn−1(X
n−1)

j∗−−−→ Hn−1(X
n−1, Xn−2)

(Xn, Xn−1) (Xn−1, Xn−2)

∂2 = 0; chain complex C∗(X).
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Lemma 3.5. C∗(X) is free Abelian with one generator for each n-cell of X. C∗(X) is

chain equivalent to the singular chain complex S∗(X).

Proof. By ?? and homotopy properties of singular homology

Hm(X
n, Xn−1) ∼= Hm(An × en, An × ∂en)

∼= 0 for m ̸= n

∴ Cn(X) ∼= free Abelian with one generator for each n-cell.

It follows that

Hm(X
m−1) ∼= Hm(X

m−2) ∼= Hm(X
m−3) ∼= · · · ∼= Hm(X

0) = 0

and

Hm(X
m+1) ∼= Hm(X

m+2) ∼= Hm(X
m+3) ∼= · · · ∼= Hm(S)

Zm(C∗(X)) = ker(j∗∂ : Hm(X
m, Xm−1)→ Hm−1(X

m−1, Xm−2))

= ker(∂ : Hm(X
m, Xm−1)→ Hm−1(X

m−1)) as j∗

= im j∗

Zm/Bm ∼= Hm(X
m)/j−1∗ (Bm)

∼= Hm(X
m)/j−1∗ (im j∗∂)

= Hm(X
m)/im ∂

Exact sequence Hm(X
m+1, Xm)

∂−−→ Hm(X
m)→ Hm(X

m+1)→ 0 gives Hm(X
m)/im ∂ ∼=

Hm(X
m+1) ∼= Hm(X). Cycle z ∈ C∗(X) = Hm(X

m, Xm−1). Put z = j∗y, y ∈ Hm(X
m).

Now image of y in Hm(X) is image of homology class of z in Hm(X). enα = basis element

of Cn(X) corresponding to n-cell ϕα : en → X. Seek map θ : C∗(X) → S∗(X) such that

θ∂ = ∂θ, θ(C∗(X
n)) ⊂ S∗(X

n), θ(enα) represents enα ∈ Hn(X
n, Xn−1). Define inductively;

for n = 0, define θ(e0α) = 0-simplex at e0α. Suppose θ : C∗(X
n−1)→ S∗(X

n−1) defined. If enα

is a basis element of Cn(X), θ(∂enα) already defined, represents ∂enα in Hn−1(X
n−1, Xn−2).

Also, ∂θ(∂enα) = 0 as chain. Pick chain cnα ∈ Sn(X
n) representing enα in Hn(X

n, Xn−1)

[so ∂cnα ∈ Sn−1(X
n−1)]. Now ∂cnα − θ(∂enα) represents 0 in Hn−1(X

n−1, Xn−2). But j∗ :

Hn−1(X
n−1)→ Hn−1(X

n−1, Xn−2) is mono so ∂cnα − θ(∂enα) represents 0 in Hn−1(X
n−1).

∴ ∃ dnα ∈ Sn(X
n−1) such that ∂cnα − θ(∂enα) = ∂dnα. Put θ(enα) = cnα − dnα. Then

∂θ(enα) = θ∂(enα). θ(enα) represents enα in Hn(X
n, Xn−1), because dnα ∈ Sn(X

n−1). This

completes the induction.
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It follows that θ induces homology isomorphisms given above

z
cycle
∈ Cn(X) = Hn(X

n, Xn−1)
j∗←−− Hn(X

n) θ(z)y j∗[θ(z)] = z
Hn(x)

�

Theorems from homotopy theory:

Whitehead Theorem. Let X,Y be connected CW complexes and let f : X → Y be a map

inducing homology isomorphisms in all dimensions; then f is a homotopy equivalence.

Hurewicz Theorem. Let X,Y be connected, simply connected CW complexes and let

f : X → Y be a map. If Hr(f) = 0 for all r < n, then πr(f) = 0 for all r < n, and the

natural map πn(f)→ Hn(f) is an isomorphism

Φ ⇑
X

f−−→ Yx xϕ
Sn−1 ⊂ Dn

πn(f) = homotopy classes of Φ
∼= πn(Mf , X)

Connected CW complex X; X̃ → X regular covering, group π. C∗(X̃) is a complex of

free Z[π]-modules ∑
ngg ∈ Z[π] , fnα is a cell of X̃

Define (
∑
ngg)(f

n
α ) =

∑
ng(g.f

n
α ) ∈ Cn(X̃). ∂ is a Z[π]-homomorphism.

For each cell enα of X, pick lift ẽnα in X̃. Then {ẽnα} is a basis for Cn(X̃) over Z[π]. (Any

n-cell in X̃ can be expressed uniquely as gẽnα.)

Similarly, S∗(X̃) is a free chain complex over Z[π]. Slight modification of 3.5 shows that

C∗(X̃) ∼= S∗(X̃) over Z[π]. (Actually get canonical homotopy class of equivalences C∗ ≃ S∗.)
CW complexes X,Y (connected) f : X → Y , f induces π1 surjection. Let G = ker f∗ :

π1(X)→ π1(Y ), let X̃ be covering of X com. to G, let Ỹ be universal cover of Y . Then ∃
lift f̃ : X̃ → Ỹ of f . If f̃ ′ is another lift, then f̃ ′ = gf̃ for some covering translation g of Ỹ .

If h is a covering translation of X̃, then f̃h = h̄f̃ for some unique translation h̄ of Ỹ . h 7→ h̃

defines isomorphism, translation group of X̃ → group of Ỹ ∼= π1(Y ). Use this isomorphism

to identify the groups.

Now f̃∗ : S∗(X̃)→ S∗(Ỹ ) is a chain map over Z[π1(Y )] whence

C∗(X̃)
≃−−→ S∗(X̃)

f̃∗−−→ X∗(Ỹ )
≃←−− C∗(Ỹ )

So we obtain f̃∗ : C∗(X̃)→ C∗ ∗ (Ỹ ), but defined only up to chain homotopy.
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A cellular map f : X → Y is one with f(Xn) ⊂ Y n ∀ n. Then we obtain a unique

f̃∗ : C∗(X̃)→ C∗(Ỹ ) (unique up to covering translations).

Lemma 3.6. If connected CW complex X is dominated by a finite CW complex K, then

C∗(X̃), S∗(X̃) are dominated by a finitely generated free Z[π1(X)]-complex (X̃ = universal

cover).

Proof. X
f−−→ K

g−−→ X, gf ≃ 1x. Wlg K connected. Let G = ker g∗ : π1K → π1X. Let

K̃ be covering of K ?? to G; let X̃ be universal cover of X. Lift f, g to f̃ : X̃ → K̃,

g̃ : K̃ → X̃.

Lift gf ≃ 1 to get g̃f̃ ≃ covering translation of X̃, choose g̃ to make g̃f̃ ≃ 1x̃.

g̃∗ : C∗(K̃)→ C∗(X̃); also f̃∗ : C∗(X̃)→ C∗(K̃) and g̃∗f̃∗ ≃ 1C∗(X̃); so C∗(K̃) dominates

C∗(X̃); hence also S∗(X̃). C∗(K̃) f.g. free.

By Theorem 2.3, C∗(X̃) ≃ f.g.proj Z[π1X]-complex E∗. Define wall invariant σ(X) ⊆
K̃0(Z[π1, X]) to be σ(E∗). By Theorem 2.5, σ(X) depends only on homotopy type of X.

By Theorem 1.9, σ(X) doesn’t depend on base point of X. �

Theorem 3.7. Let X be a connected CW complex, A∗ a free Z[π1X]-complex, and let

φ : A∗ → C∗(X̃) be a chain equivalence, such that φi : Ai → Ci(X̃) is bijective for i ≤ 2.

Then ∃ a CW complex Z, a cellular homotopy equivalence Z
f−−→ X and chain equivalence

α : C∗(Z̃)→ A∗ such that f̃∗ = φα and α : Ci(Z̃)→ Ai is bijective for all i.

Proof. Suppose inductively that Zn−1, f |Zn−1 → X, α|C∗(Z̃n−1) → A∗ already con-

structed, with f cellular, α : Ci(Z̃
n−1)→ Ai bijective for i < n and f̃∗ = φα.

Induction starts with n = 3, Z2 = X2, f = incl : Z2 → X; α = φ−1 : Ci(Z̃) → Ai

(i ≤ 2). Note that π1(X
2) ∼= π1(X), so that all complexes are over Z[π1X]. f induces map

g : Zn−1 → Xn, α induces β : C∗(Z̃
n−1)→ An∗ the “n-skeleton” of A∗.

C∗(Z̃
n−1)

1−−→ C∗(Z̃
n−1)

φ|An−1
∗−−−−−−→ C∗(X̃

n−1)yβ yg̃∗
An∗

φ|An
∗−−−−→ C∗(X̃

n) −→ C∗(X̃
n)

Induces maps (φ|An)∗ : Hi(β)→ Hi(g̃∗), isomorphisms for i < n (because φ : A∗ → C∗(X̃)

was chain equivalent). But

Hi(β) = 0 for i < n, Hn(β) = An

∴ Hi(g̃∗) = 0 for i < n, get map θ : An → Hn(g̃∗)

[Note that composition An
θ−−→ Hn(g̃∗)→ Hn(X̃

n, X̃n−1) = Cn(X̃) is just φ.]
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By Hurewicz theorem applied to g̃ : Z̃n−1 → X̃n−1

Hn(g̃∗) ∼= πn(g̃) ∼= πn(g) .

Pick basis {at}t∈T for An; we can represent θ(at) ∈ Hn(g̃∗) by the diagram

Zn−1 −→ Xnxvt xut
∂en −→ en

Given T discrete topology, define v : T × ∂en → Zn−1 by v(t, x) = vt(x). Let Zn =

Zn−1∪v (T ×en), define f |T ×en → Xn by f(t, x) = ut(x) extends g to a map f : Zn → Xn.

Define α : Cn(Z̃
n)→ An by α(ẽnt ) = at, where ẽ

n
t is a lift of cell t× en in Z̃n. (Choose lift

to make this a chain map.) But f̃∗(ẽ
n
t ) is represented by

X̃n−1 inc−−−→ X̃nxf̃ ṽt xũnt
∂en −→ en

But this is f̃∗(at) = φ(at) = φα(ẽnt ) therefore f̃∗ = φα. �

A group π is finitely presented if it is defined by a finite set of generators and relations

{g1, . . . gk : f1(g) == rℓ(g)}. Group H is a retract of G if ∃ homomorphisms φ : H → G,

ψ : G→ H with ψφ = 1H .

Lemma 3.8. A retract of a finitely presented group is finitely presented.

Proof. G finitely presented ad {gi : rj(g) = 1}.
φ : H → G, ψ : G→ H such that ψφ = 1H .

φψ(gi) = wi(g) for some word wi.

Let L = {gi : rj(g) = 1, wi(g) = gi}.
∃ homomorphism π : G→ L, π(gi) = gi.

∃ homomorphism θ : L→ L, θ(gi) = ψ(gi).

[well defined since

θ(wi(g)) = ψ(wi(g)) = ψφψ(gi) = ψ(gi) = θ(gi) = wi(θ(g)) = wi(ψ(g)) ]

θ is isomorphism with inverse πφ : H → L

πφθ(gi) = πφψ(gi) = πwi(g) = wi(πg) = wi(g) ∈ L = gi ∈ L

{ψ(gi)} is set of generators for H.

θπφ(ψgi) = θπwi(g) = θwi(πg) = θwi(g) = θ(gi) = ψ(gi)

∴ πφθ = 1, θπφ = 1, so H ∼= L which is infinitely presented. �
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Lemma 3.9. If connected CW complex X is dominated by a finite complex, then X ≃ CW
complex Y with Y 2 finite.

Proof. Let f : X → K, g : K → X be such that K is finite, gf ≃ 1X . f∗ : π1(X)→ π1(K),

g∗ : π1(K)→ π1(X) with g∗f∗ = 1.

∃ r1, . . . , rℓ ∈ ker g∗ : π1(K)→ π1(X) such that

π1(K)/{r1, . . . , rℓ} ∼= π1(X)

Let vj : ∂e2 → K1 represent rj ∈ π1(K). Let uj : e2 → X be a null-homotopy of gvj .

Define Y 2 = K2 ∪v1 e21 ∪ · · · ∪vℓ e2ℓ . Define g|e2j :→ X to be uj . Then we have g : Y 2 → X

induces bijection g∗ : π1Y
2 → π1X, and

g∗ : π2Y
2 −→ π2X is ontox onto

xg∗
π2(K

2) −−→
onto

π2(K)

so πi(g) = 0 for i ≤ 2.

Suppose we have Y n−1 ⊃ Y 2 so 2-skeleton, and g : Y n−1 → X with πi(y) = 0 for i < n.

Let {ξt}t∈T be a (not ? finite) set of generators of πn(y). Represent ξt by

Y n−1 z−−→ Xxvt xut
∂en −→ en

use vt to attach n-cells to Y n−1, giving Y ′′, ut to extend g to g : Y n → X, so that πi(g) = 0,

i ≤ n. Construct Y 2 ⊂ Y 3 ⊂ Y 4 ⊂ · · · with union Y , map g : Y → X with π∗(g) = 0.

Therefore g is a homotopy equivalent. �

A gap in the proof of Theorem 3.7

α : C∗(Z̃
n) −→ A∗ , chain map in dim < n .

1. Commutes if lift ẽnt of t× en is carefully chosen.

An
HHHHHj?

�����*

α−1

?
1. θ 2.

α−1

Cn(Z̃
n)∥∥∥

Hn(Z̃
n, Z̃n−1)

∂

y ∂

- An−1

Hn(g̃)- -

Hn−1(Z̃
n−1)

Cn−1(Z̃
n)

- -∂

∥∥∥
Hn−1(Z̃

n−1, Z̃n−2)
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2. commutes
An−2∗ ⊂ An−1∗ ⊂ An∗yα−1

yα−1

yϕ
C∗(Z̃

n−2) ⊂ C∗(Z̃
n−1)

g̃−−→ C∗(X̃
n)

Homology sequence of triples

An
∂−−→ An−1yθ yα−1

Hn(g̃) −→ Cn−1(Z̃
n)

Theorem 3.10. If the connected CW complex X is dominated by a finite complex K, and

σ(X) = 0, then X ≃ finite complex of dimension ≤ max(4, dimK).

Remark. 4 can be replaced by 3. [CTC Wall; Finiteness conditions I]

Proof. By 3.9, we can assume X2 finite.

By 3.6, 2.3, 2.6, C∗(X̃) is equivalent to a f.g. free complex E∗, by maps f : C∗(X̃)→ E∗,

g : E∗ → C∗(X̃), inverse equivalences. Define complex A∗ suitable for 3.7 as follows

A2
∗ = C∗(X̃

2) – f.g. free

An = En , n ≥ 4 – f.g. free.

−→ A5 −→ A4
∂4−−→ A3

∂3−−→ A2 −→ A1 −→ A0 −→ 0y1
y1

yf3 yf yf yf
−→ E5 −→ E4 −→ E3 −→ E2 −→ E1 −→ E0 −→ 0

Let Q∗ be mapping cone of f |A2
∗ → E∗. This has Hi(Q∗) = 0 for i ≤ 2

0 −→ Z3(Q∗) −→ Q3 −→ Q2 −→ Q1 −→ Q0 −→ 0 exact.

Define A3 = Z3(Q∗) – f.g. proj.

A3 = {(y, z) ∈ A2 ⊕ E3 : ∂y = 0 , ∂z = −fg} .

Define

∂4(x) = (0, ∂x)

f3(y, z) = z

∂3(y, z) = −y
A∗ is a chain complex, and vertical maps induce homology isomorphisms. So

f : A∗ −→ E∗ is chain equivalence.

gf : A∗ −→ C∗(x̃) chain equivalence.

gf |A2
∗ ≃ inclusion.

∴ gf ≃ ϕ : A∗ −→ C∗(X̃) with ϕ|A2
∗ bijection.
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A∗ is f.g. projective, free except in dim 3, σ(A∗) = 0. Enlarge A3, A4 to replace A∗ by ≃
equivalent free complex.

By 3.7, X ≃ Y with C∗(Ỹ ) ∼= A∗.

In particular, Y finite, dimY = max(dimE∗, 4).

By 2.3, we can choose E∗ such that dimE∗ = dimK. �

Exercise. Use Theorem 3.7 and methods of 3.9, 3.10, to show: (Milnor): If X is simply

connected CW complex, and Hn(X;Z) has rank βn and has τn “torsion coefficients”, then

X ≃ CW complex with βn + τn−1 + τn n-cells for each n.

Theorem 3.11. Given ????

[NOTE: PAGE 39 AND 40 ARE IMPOSSIBLE TO READ. TOO FADED.]

4. Torsion for CW complexes

π any group. A f.g. from Z[π]-modules, (a1, . . . , ak) basis. (a′1, . . . , a
′
k) is equivalent to

(a1, . . . , ak) if a
′
i = ±giai where gi ∈ π (so ±gi ∈ Z[π]).

Chain complexes C∗, D∗ (based), f : C∗ → D∗ chain equivalent. Then image of τ(f) in

Wh(π) depends only on equiv. classes of bases of C∗, D∗.

K finite CW complex. Equivalence class of basis of Cn(K̃) (ẽn1 , . . . , ẽ
n
k) depends only on

cell structure of K, not on choice of lifts ẽnk or on orientation of cells.

f : K → L homotopy equivalence of finite CW complexes define τ(f) = image of τ(f̃∗ :

C∗(K̃)→ C∗(L̃)) in Wh(τ).

This depends only on cell structures of K,L and homotopy class of f (by 2.8).

Theorem 4.1. If f : K → L, g : L → M use homotopy equivalences of finite CW

complexes, then τ(gf) = τ(g) + τ(f) ∈Wh(π1K = π1L = π1M = π).

Problem. Is τ(f) a topological invariant of K,L, f? Yes, if K,L are complex manifolds.

X any CW complex. Complex X ′ is a subdivision of X if |X ′| = |X| and the interior of

each cell in X ′ is contained in the interior of some cell in X.

Identity map χ : X → X ′ is cellular.

Theorem 4.2. χ : X → X ′ is a simple homotopy equivalence, i.e. τ(χ) = 0.

Proof. X finite CW complex. ∃ subcomplexes.

ϕ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xk = X
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such that Xi −Xi−1 consists of just one cell. Let X ′i be subdivision of Xi induced by X ′.

Let Yi = X ′i ∪ (cells of X −Xi).

Maps X = Y−1
X−−→ Y0

X−−→ Y1
X−−→ · · · X−−→ Yk = X ′.

Enough to prove X : Yi−1 → Yi is s.h.e. i.e. τ(X) = 0. Choose lift ẽ for each cell e of X.

If e′ is a cell in X ′, int e′ ⊂ int e for some unique cell e in X. Choose lift ẽ′ of e′ so that

int ẽ′ ⊂ int ẽ.

Exact sequence

(3) 0 −→ C∗(Ỹi−1)
X̃∗−−−→ C∗(Ỹi) −→ D∗ −→ 0 (defines D∗)

Let Xi −Xi−1 = eni .

Then X̃∗ maps each cell ẽ of Ỹi−1 to a cell of Ỹi, except that X̃∗(ẽ
n
i ) = f̃n1 + · · ·+ f̃nr where

f̃n1 , . . . , f̃
n
r are the n-cells of Ỹi with int f̃nj ⊂ int ẽni . Change basis of Cn(Ỹi) by replacing

f̃n1 by f̃n1 + · · ·+ f̃nr (leave other basis elements alone). This is an elementary operation, so

it doesn’t affect the torsion of X̃∗.

But now (3) is a broad exact sequence, so τ(X̃∗) = τ(D∗).

Boundary maps of D∗ have matrices with integer coefficients (by the choice of lifts ??

need to translate by an element of π).

∴ Torsion of D∗ is in image of K̄(Z) = 0.

∴ τ(χ) = 0, as required. �

Corollary 4.3. If f : X → Y is a homotopy equivalence of compact polyhedra, then τ(f)

is well defined (i.e. independent of PL triangulations chosen for X,Y ).

Theorem 4.4. Given finite CW complex K with fundamental group π, and element τ ∈
Wh(π), ∃ finite CW complex L and homotopy equivalence f : K → L with τ(f) = τ .

Proof. Represent τ by a matrix M ∈ GL(k,Z[π]). Let Y = K ∨
∨k
i=1 x

n
i , where ????.

p : Y → K sends sni to base point.

As in 3.11, πn+1(p) ∼=
⊕k

i=1 Z[π], one ?? for each sni ; let ξi be i
th.

Let ϕ : πn+1(p) → πn+1(p) have matrix M . Represent image of ϕ(ξi) in πn(Y ) by map

vi : ∂e
n+1
i → Y . Use the vi’s to attach en+1

1 , . . . , en+1
r to Y , giving complex L ⊃ K.

Then C∗(τ) has form

0→ πn+1(p)
ϕ−−→ πn+1(p)

0−−→ Cn−1(K̃)
∂−−→ · · ·

By 2.3 and the Whitehead theorem, inclusion K ⊂ L is homotopy equivalence,

0→ C0(K̃)→ C∗(τ̃)→ (?????)

By 2.11, τ(f)− τ(ϕ) = τ . �
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Let ∆n be an n-simplex, but ∆n be an ????. Let Λ = ∂∆−∆n. K finite CW complex,

f : Λ, ∂Λ→ Kn−1,Kn−2.

Let L = K ∪f ∆; this is CW complex with cells of K and ∆n−1
0 ; ∆n.

Then K ⊂ L is called an elementary expansion of dimension n, and a homotopy image

is an elementary collapse.

Both are homotopy equivalences, and have zero torsion.

Example. There exist finite complex K,L, which are homeomorphic but don’t have iso-

morphic subdivisions. Thus ∃ compact polyhedra |K|, |L|, which homeomorphic but not

PL homeomorphic. (Hauptvermutung is false.)

Proof. Group π with Wh(π) ̸= 0, e.g. C5, π finitely presented.

∃ finite simplicial complex X, with π1(X1) ∼= π. By method of 4.4, ∃ finite simplicial

complex X2 ⊃ X1 such that inclusion X1 ⊂ X2has torsion τ ̸= 0.

∃ finite simplicial complex X3 ⊃ X2 such that X3 ↘ X1 (e.g. take k large, and extend

X1 → X)1 ×∆k to an embedding X2 → X1 ×∆k by general position). ∃ finite simplicial

complex X4 ⊃ X3 such that X4 ↘ X2. Embed X4 in some Rn.
Let W4 be a regular neighborhood of X4 in Rn.
Let Wi be a regular neighborhood of Xi in Wi+1, i = 3, 2, 1.

W4 is a regular neighborhood of X4, X4 ↘ X2. ∴ W4 is a regular neighborhood of X2.

W2 is a regular neighborhood of X2, W2 ⊂ int W4.

∴ W4 =W2
∼= ∂W2 × I.

Similarly,

(4) W3 −W1
∼= ∂W1 × I .

Let V =W2 −W1, V
′ =W3 −W2.

V is a cobordism from M = ∂W1 to N = ∂W2.

V ′ is a cobordism from N to ∂W3
∼= ∂W1 by (4). Now

V ∪ V ′ ∼=M × I

V ∼= V ∪ (V ′ ∪W4 −W3 )

∼= (V ∪ F ′) ∪ (W4 −W3 )

∼=W4 −W3

∴ V ′ ∪ V ∼= V ′ ∪W4 −W3
∼= N × I

V is an invertible cobordism. M ↪→ V has torsion τ . �

Theorem 4.5. If V is an invertible cobordism from M to N , then V −N ∼=M × [0,∞).
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Proof. Let V ′ = inverse of V . Let U = V ∪N V ′ ∪M V ∪N V ′ ∪M · · · .

U ∼= (V ∪ V ′) ∪ (V ∪ V ′) ∪ · · ·
∼= (M × I) ∪ (M × I) ∪ · · ·
∼=M × [0,∞) .

But

U ∼= V ∪ (V ′ ∪ V ) ∪ (V ′ ∪ V ) ∪ · · ·
∼= V ∪ (N × I) ∪ (N × I) ∪ · · ·
∼= V ∪N (N × [0,∞)) .

∃ collar neighborhood C of N in V , so U ∼= V −N . �

Take

K = (M × I ∪ (cone on M × I)

L = V ∪ (cone on N)

Topologically,

K = 1-pt compactification of M × [0,∞)

L = 1-pt compactification of V ∪ (N × [0,∞))

∴ K ≡ L topologically.

Suppose K ′, L′ are isomorphic subdivisions of K,L. Let a, b be vertices of the cones in K,L.

Let P = K ′ − st(a,K ′), Q = L′ − st(b, L′). Then M × 0 ⊂ M × I ⊂ P , M ⊂ V ⊂ Q; and

(P,M × 0) ∼= (M × I,M), (Q,M) ∼= (V,M). For

b

M N
D

CN = cone on N = {tx+ (1− t)b : x ∈ N, t ∈ I}.
Let D = {tx+ (1− t)b : t ≥ 1/2}.
∃ pseudo radial homeomorphism

CN → CN fixing N , b and taking st(b,K ′) onto D. Extends to a PL homeomorphism

L→ L fixing M and taking Q onto L−D ∼= V ∪ (N × I) ∼= V .

Similarly (P,M × 0) ∼= (M × I,M × 0). Isomorphism K ′
h−→ L′ must take a onto b (for

these are the only points with non-simply connected links).

(n ≥ 2 + dimX4).

∴ must take P onto Q by PL homeomorphism.

Now
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M ⊂ P

h

y yh
M ⊂ Q

Vertical maps are PL homeomorphisms. Therefore

they have zero torsion. M ⊂ P has torsion zero and

M ⊂ Q has torsion τ ̸= 0. Contradiction

Theorem 4.2.

Remark. Every invertible cobordism V from M to N is an h-cobordism.

Stallings proved that any h-cobordism V of dimension ≥ 5 is invertible. Therefore V −
N ∼= M × [0,∞). s-cobordism is an h-cobordism in which M < V , N ⊂ V are simple

homotopy equivalences. Smale, Barden Mazur Stallings.

Theorem 4.6. If V n is an s-cobordism and n ≥ 6, then V ∼=M × I.

Exercise. Mn closed PL manifold, n ≥ 4. Then, if τ ∈ Wh(π,M), ∃ an h-cobordism

W o M with torsion τ(W,M) = τ [e.g., take W = regular neighborhood of M∪ suitable

2-complex in M × I].

Theorem 4.7. A cellular homotopy equivalence f : K → L between finite CW complexes

has τ(f) = 0 iff f can be factored into finitely many elementary expansions and collapses.

Proof. From now on, “elementary collapse” means retraction L → K where K ⊂ L is an

elementary expansion.

Elementary expansions and collapses have zero torsion.

Converse. First note that L ⊂ Mf is a composite of expansions. Put M i
f = mapping

cylinder of f |Ki → L

L ⊂M0
f ⊂M1

f ⊂ · · · ⊂Mk
f =Mf (k = dimK) .

M i−1
f ⊂M i

f is composite of elementary expansions of dimension i+1, one for each i-cell of

K. So we can replace L by Mf , and f : K → L by an inclusion. Assume from now on that

f is an inclusion. �

Lemma 4.8. If f : K → L is a composite of elementary expansions and collapses, and

ϕ : ∂en → Kn−1 is a map, then

f ∪ 1 : K ∪ϕ en → L ∪fϕ en is a composite of expansions and collapses.

Proof. Enough to consider case when f is an elementary expansion or collapse. Expansion

case is trivial, so suppose f : K → L is a collapse. ∃ cellular homotopy H : 1 ≃ f , rel 1.
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Let h = Hϕ ∪ 1 : (∂en × I) ∪ (en × 1)→ K ∪ϕ en. Let J = (K ∪ϕ en) ∪h (en × I), regard
as CW complex with cells of K, en × 1, en × 0, en × I.

K ∪ϕ en ⊂ J is elementary expansion (add cells en × 0, en × I)

K ∪fϕ en ⊂ J is elementary expansion (add cells en × 1, en × I)

Now L ∪fϕ en ⊂ K ∪fϕ en is elementary expansion. Hence result. �

Proof of Theorem 4.7. f : K → L inclusion, τ(f) = 0. Assume inductively that L−K has

no cells of dimension < r. We modify L keeping K fixed so that L − K has no cells of

dimension ≤ r.
Let er be an r-cells of L−K

πr(L
r+1,K) ∼= πr(L,K) = 0 .

∃ cellular homotopy H : er × I → L such that H0 = inclusion, H1(e
r) ⊂ K, Ht|∂er

independent of t. Let er+2 = er×I×I, er+1 = ∂(er × I × I)− (er × I × 0), h : er×I×0→ L

induced by H. Let M = L ∪h er+2: CW complex with cells of L together with er+1, er+2.

NowK∪er∪er+1 is a subcomplex ofM , collapsing ontoK. By repeated use of Lemma 4.8

(once for each cell of M − (K ∪ er ∪ er+1) ) we obtain a complex L′ ⊃ K, obtained from

L by elementary expansions and collapses, such that L′ → K has fewer r-cells than L−K
(we have removed er, but introduced er+2). Repeat until L−K has no r-cells, completing

induction. Continue until L−K has n-cells and (n− 1) cells only, with n > dimK.

We show how to alter basis of Cn(L̃) by elementary matrix 1 + aeij (a ∈ Z[π,K]). Let

ẽni , ẽ
n
j be n-cells of L̃. By Hurewicz theorem, Hn(L̃

n, L̃n−1) ∼= πn(L̃
n, L̃n−1). Therefore ∃

map φ : en, ∂en → Ln, Ln−1, reps. class ẽnj + aẽni . ∃ homotopy G : ∂en × I → Ln with

G0 = attaching map of enj

G1 = φ∂en → L .

Define ψ = 1∪G : (en×0)∪(∂en×I)→ Ln. LetM = L∪ψ (en×I) with cells of L and en×1,
en× I. Then L expands to L∪ψ (en× I) which collapses onto (L− enj )∪ϕ en. This performs

desired change of basis. Since τ(L ⊂ K) = 0, we may expand (to increase chain groups)

and then reduce matrix of ∂ : Cn(L̃, K̃)→ Cn−1(L̃, K̃) to 1. (May also have to change lifts

and orientation.) Let ẽni be an n-cell of L, so ∂ẽni = ẽn−1i in Hn−1(L̃
n−1, L̃n−2 ∪ K̃). Let

φ : ∂en → L be attaching map. Claim that φ is homotopic to map ψ : ∂en → L such that

ψ(∂en) ∩ (L −K) = en−1i and ψ|ψ−1(int en−1i )1−1 and ψ−1(int en−1i ) ∼= n − 1 cell. For let

θ : ∂en−1i → K be attaching map of en−1i . πn−1(L,K) = 0, so ∃ homotopy H : en−1i → K
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such that H|∂en−1i = θ. Then

1 ∪H : en−1i ∪∂ en−1i︸ ︷︷ ︸
∼=Sn−1

→ L

represents same element of Hn−1(L̃
n−1, k̃) as φ.

Therefore 1 ∪H represents same element of πn−1(L̃
n−1, K̃) as φ.

πn−1(K̃)→ πn−1(L̃
n−1)→ πn−1(L̃

n−1, k̃)

Therefore φ represents same element of πn−1(L̃
n−1) as ψ = (1 ∪ H)+ (some element of

πn−1(K̃)) and ψ has required properties.

By the trick used above for elementary change of basis, Ln−1 ∪ψ eni is obtained from

Ln−1 ∪φ eni by elementary expansion and collapse. Also, K ∪ en−1i ∪+ eni collapses to K, so

we can reduce number of cells in L−K.

Continue until L − K has no cells; then we have obtained K from L by elementary

moves. �

5. Open Manifolds

X any Hausdorff space. An end of X is a collection E of non-empty open sets in X, such

that

i) U ∈ E ⇒ U connected and Fr(U) compact.

ii) U, V ∈ E ⇒ ∃W ∈ E with W ⊂ U ∩ V .

iii) ∩{Ū ;U ∈ E} = ∅.
iv) E maximal w.r.t. i)–iii).

Example. R has just two ends, namely

{(a,∞); a ∈ R} and {(−∞, b); b ∈ R} .

Lemma 5.1. Suppose E ′ satisfies i)–iii), and A ⊂ X has compact frontier. Then ∃ U ∈ E ′

such that either Ū ∩A = ∅ or Ū ⊂ A.

Proof. Since Fr(A) is compact, and
∩
U∈E ′(Ū ∩ Rf(A)) = ∅, ∃ U1, . . . , Uk ∈ E ′ such that

Ū1∩· · ·∩ Ūk∩Fr(A) = ∅. By ii), ∃ U ∈ E ′ such that U ⊂ U1∩· · ·∩Uk, so Ū ⊂ Ū1∩· · ·∩ Ūk,
so Ū ⊂ X − Fr(A). Since U connected, Ū connected, so Ū ⊂ A or X −A. �

Corollary 5.2. If E ′ satisfies i)–iii), then E ′ is contained in a unique end of X.

Proof. Let E be the collection of all non-empty connected open sets V such that V ⊃ U for

some U ∈ E ′ and Fr(V ) compact. Then E satisfies i)–iii).
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Suppose E ′′ ⊃ E ′ also satisfies i)–iii). Then if V ∈ E ′′, ∃ U ∈ E ′ such that Ū ∩ V = ∅
or Ū ⊂ V . Ū ∩ V impossible by i,ii) so Ū ⊂ V , so V ∈ E . So E ′′ ⊂ E , so E is unique and

containing E ′.
A neighborhood of E is a set-N containing some U ∈ E . �

Corollary 5.3. Distinct ends of X have disjoint neighborhoods.

Proof. Suppose E , E ′ are ends without disjoint neighborhoods. Choose U ∈ E , ∃ V ∈ E ′

such that V̄ ⊂ U (by 5.1). By maximality of E ′, U ∈ E ′ so E ⊂ E ′. Similarly E ′ ⊂ E .
Therefore E = E ′. �

Definition. A spaceX is σ-compact if it is the union of countable many compact subspaces.

Theorem 5.4. Let X be locally connected, locally compact, connected, σ-compact, Haus-

dorff. Then X has an end iff X is not compact.

Proof. A compact space has no ends, by ii)–iii) for ends.

Conversely, X = ∪Ci where Ci is compact, C1 ⊂ C2 ⊂ · · · , X non-compact.

X locally compact, so Ci has compact neighborhood Di in X. Every component V of

X−Ci is open (X is locally connected), and meets Di (therefore X connected if V ∩Di = ∅,
then V̄ − V ⊂ Ci and V̄ ⊂ X − Ci; therefore V̄ − V = ∅, so V open and closed in X,

contradiction).

Fr(Di) compact, so covered by finitely many components V 1
i , . . . , V

k
i of X − Ci;

X = Di ∪ V 1
i ∪ · · · ∪ V k

i

∴ some V j
i has non-compact closure.

Choose inductively U1, U2, . . . such that Ui is a component of X − Ci, Ūi non-compact,

Ui ⊂ Ui−1. Fr(Ui) ⊂ Ci because X connected, therefore {U1, U2, . . . , } = E ′ satisfies i)–iii),
so contained in an end of X. �

Examples. i) Rn, n ≥ 2, has just one end.

Bn
λ = closed ball radius λ.

{Rn −Bn
λ : λ ∈ R} defines an end E of Rn.

If E ′ is another end, ∃ disjoint neighborhoods U ∈ E , V ∈ E ′.
Fr(U)∪Fr(V ) is compact, Rn−(Fr(U)∪Fr(V )) has at least two unbounded components

U, V , which is impossible.

An end E is isolated if it has a neighborhood U which is not a neighborhood of any other

end. It follows that Ū has just one end.
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Example. The universal cover of S1∨S1 has infinitely many ends, none of which is isolated.

An open manifold is a non-compact manifold without boundary.

If W is an open manifold, a completion of W is a homeomorphism (PL) from W onto

W̄ − ∂W̄ (= int W̄ ) where W̄ is a compact PL manifold.

Theorem 5.5. An open PL manifold has a completion iff it has finitely many ends, each

of which has a collar.

A collar of an end E of W is a submanifold V of W such that int V ∈ E, V ∼= ∂V ×[0,∞).

Proof. Suppose W homeomorphic to int W̄ , where W̄ is compact.

Let M1, . . . ,Mk be components of ∂W̄ . Let γi : Mi × I → W̄ be a collar neighborhood

of Mi in W̄ such that im γi ∩ im γj = ∅ if i ̸= j.

Then {γi(Mi × (a, 1)) : a ∈ (0, 1)} defines an end Ei of W . Ei, . . . , Ek are the only ends

of W . If E were another, with neighborhood U ∈ E disjoint from γi(Mi × (ai, 1)), so Ū =

closure of U in int W̄ ⊂ int W̄ − ∪γi(Mi × (ai, 1)) which is compact.

Converse by similar argument. �

A 0-neighborhood of an end E of W is a submanifold V of W such that int V ∈ E , V has

just one end, V is closed in W , and ∂V is connected.

Theorem 5.6. Any isolated end of an open manifold W has a 0-neighborhood.

Proof. ∃ neighborhood U ∈ E which isn’t a neighborhood of any other end. Fr(U) is

compact.

∃ compact polyhedron K
PL
↪→ W which is a neighborhood of Fr(U). Now let N be a

regular neighborhood of K in W . Now U −N has a non-compact component V [because

U −N has an end]. V is connected, Fr(V ) ⊂ N (because U is connected), so Fr(V )

compact. V is a PL submanifold with ∂V = Fr(V ), and it is a neighborhood of E .
LetM1,M2 be two components of ∂V . ∃ PL arc (embedded) A ⊂ V with ends inM1,M2.

[Possible for dimW ≥ 3 by general position for dimW ≤ 2, easy.]

Now let H be a regular neighborhood of A in V .

Replace V by V −H, which is still a neighborhood of E , contained in U , PL manifold,

connected; but with fewer boundary components than V .

Repeat the process until we get a 0-neighborhood of E . �
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Remark. This process gives a 0-neighborhood in U , so it gives arbitrarily small 0-neighborhoods

of E .

Inverse sequence of groups · · · f4−−→ G3
f3−−→ G2

f2−−→ G1 is stable if ∃ a subsequence

· · ·
Gn3−−−−→ gn2

gn2−−−→ Gn1 such that gni induces an isomorphism im gni+1 → im gni , ∀i.
Then lim

←
Gn has im gni for inverse limit. Note: gni = fni−1+1fni−1+2 · · · fni .

Let E be an end of X. π1 is stable at E if ∃ path-connected neighborhoods U1 ⊃ U2 ⊃
U3 ⊃ · · · of E with

∩
Ūi = ∅, with base points ui ∈ Ui, paths pi from ui to ui (in Ui) such

that

· · · −→ π1(U3, u3) −→ π1(U2, u2) −→ π1(U1, u1)

is stable.

Theorem 5.7. If π1 is stable at E, and V1 ⊃ V2 ⊃ · · · is sequence of path-?? neighborhoods

of E with
∩
V̄i = ∅, (and with base points and paths), then

−→ π1(V3) −→ π1(V2) −→ π1(V1)

is stable, with inverse limit equal to lim
←

π1(Ui).

Proof. Suppose wlog that −→ π1(U3)
f3−−→ π1(U2)

f2−−→ π1(U1) has fn inducing an isomor-

phism im fn+1
∼= im fn. Choose Vn1 ⊂ U1, Ur1 ⊂ Vn1 , Vn2 ⊂ Ur1 , Ur2 ⊂ Vn2 , etc..

Choose paths joining the base points. Have diagram

π1(Ur4)
h4−−→ π1(Ur3)

h3−−→ π1(Ur2)
h2−−→ π1(Ur1)y y y y

π1(Vn4) −−→
g4

π1(Vn3) −−→
g3

π1(Vn2) −−→
g2

π1(Vn1)

Then imh3h4 −→ im g3g4 −→ imh2 whose composite is an isomorphism. But imhg3g4 →
imh2 is 1–1. Therefore imh3h4 −→ im g3g4 is an isomorphism. So −→ π1(Vn60

g5g6−−−−→
π1(Vn4)

g3g4−−−−→ π1(Vn2) has same inverse limit as −→ π1(Ur6)
h5h6−−−−→ π1(Ur4)

h3h4−−−−→ π1(Ur2)

so ← lim π1(Ui) = l
←
im π1(Vi). �

An end E of X is tame if π1 is stable at E , and E has arbitrarily small open neighborhoods

dominated by finite CW complexes, and E is isolated.

Examples. 1) Let f : S1 → S1 be squaring map

X = S1 × I ∪
f

S1 × I ∪
f

S1 × I ∪ · · ·

f←−− f←−− · · ·
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just one end. Let Ui = X− union of first i S1 × I’s. ≃ X ≃ S1 is dominated by a finite

complex.

But π1 isn’t stable at E .

· · ·π1(U3) −→ π1(U2) −→ πi(U1) is the same as · · · ×2−−−→ Z ×2−−−→ Z ×2−−−→ Z

2) X = X2 × S2 # S2 × S2 # · · ·

Just one end, with arbitrarily small simply connected neighborhoods, therefore π1 stable.

No neighborhood of end is dominated by a finite CW complex.

3) If W is an open manifold with a completion, then all ends of W are tame

V = ∂V × [0,∞) . Look at ∂V × [n,∞) .

If E is an end of X at which π1 is stable. A 1-neighborhood of E is a 0-neighborhood V

with extra properties:

1) π1(∂V ) ∼= π1(V ) (induced by inclusion)

2) The natural map π1(E)→ π1(V ) is an isomorphism.

Theorem 5.8. Suppose E is an isolated tame end of an open manifold W . If dimW ≥ 5,

then E has a 1-neighborhood.

Proof. First show that π1E is finitely presented. Choose 0-neighborhoods V1 ⊃ V2 ⊃ · · · of
E with ∩V̄n = ∅ and such that gn : π1(Vn)→ π1(Vn−1) induces iso im(gn+1)→ im(gn).

∃ neighborhood U of E , U ⊂ V1, and U dominated by finite complex K.

∃ n such that Vn ⊂ U : we have

im gn+1 −→ π1(U) −→ im g2 ⊂ π1(V1)

Composite is an isomorphism, so π1(E) ∼= im(g2) is a retract of π1(U), which is a retract of

finitely presented group π1(K). By Lemma 3.8, π1(E) is finitely presented.

Let En be the image of map π1(E)→ π1(Vn).

Seek V 1 ⊂ Int V3 such that π1(∂V
1)→ E2 is onto.

E2 is finitely generated: represent finite set of generators by arcs A1, . . . , Ak embedded

in V3 with ends in ∂V4. By general case posn, Ai ∩ ∂V4 is finite set of points.

Subdivide A1, . . . , Ak into arcs B′1, . . . , B
′
ℓ such that B′j ∩ ∂V4 = ∂B′j ; say B

′
1, . . . , B

′
p in

V4 and B′p+1, . . . , B
′
ℓ ⊂ V3 − V4.
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Adjust B′j slightly to obtain disjoint arcs B1, . . . , Bℓ. Let H1, . . . , Hp be regular neigh-

borhoods of B1, . . . , Bp in V4. Let Hp+1, . . . , Hℓ be regular neighborhoods of Bp+1, . . . , Bℓ

in V3 − V4. �

Replace V4 by V ′ = V4 −H1 ∪ · · · ∪Hp ∪ Hp+1 ∪ · · · ∪ Hℓ. This has the desired effect:

π1(∂V
′)→ π1(V3)→ E2 is onto.

Now we modify V ′ further to make π1(∂V
′)

φ−−→ E2 an isomorphism. [It will then be a

1-neighborhood.]

Lemma 5.9. Let π,E be finitely presented groups and let φ : π → E be an epimorphism.

Then kerφ is the normal closure of a finite subset of π.

Proof. Let {gi; rj(g) = 1}, {hi : sj(h) = 1} be finite presentation of π, E. ∃ words wi → v,

φ(gi) = wi(h). Since φ is onto, ∃ words vi such that hi = φ(vi(g)) = vi(φ(g)). Now

E ∼= {hi : sj(h) = 1, rj(w(h)) = 1, hi = vi(w(h))}
∼= {hi, g′i : sj(h) = 1, g′i = wi(h), rj(g

′) = 1, hi = vi(g
′)}

E ∼= {g′i : sj(v(g′)) = 1, rj(g
′) = 1, g′i = wi(v(g

′))}

φ : π → E has φ(gi) = wi(h) = g′i, so kerφ is normal closure of {sj(v(g′))}∪{g−1i wi(v(g))}
as required. �

So φ : π1(∂V
′)→ E2 onto, kerφ = normal closure of finite set {z1, . . . , zk}. Represent zi

by embedded circle si in ∂V
′. Since φ(z1) = 0, S bounds a disc D in V2. By general position

(dimW ≥ 5), we can suppose D embedded, and int D ∩ ∂V ′ = finite union of circles.

Suppose first that int D ∩ ∂V ′ = ∅, so D ⊂ V ′ or D ⊂ V2 − V ′. Let H be a regular

neighborhood of D in V ′ or V2 − V ′. Replace V ′ by V ′1 = V ′ −H or V ′ ∪H

π1(∂V
′) - π1(((∂V

′) ∪H)−D) � j∗
π1(∂V

′
1)

Q
Q
Q
Qs

π1(V2)

�
�

�
�+

?

Now j∗ is composite

π1(∂V
′
1)

∼−→− π1(((∂V
′) ∪H)−D)

|
y≀

π1((∂V
′) ∪H)

isomorphism since dimH = dimW ≥ 5, dimD =?. So j∗ is an isomorphism. So π1(∂V
′
1)
∼=

π1(∂V
′) (normal closure of ?) so we have killed z1. Describe this process as swapping the
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disc D across ∂V . In general, (int D) ∩ ∂V ′ = finite union of circles S1 and Sℓ. Si bounds

a disc Di in int D. Label Si so that Di ⊂ Dj ⇒ i ≤ j.
Swap D1 across ∂V ′; this reduces the number of interior components of (int D) ∩ ∂V ′.

Repeat the process until (int D) ∩ ∂V ′ = ∅; now swap D across ∂V ′, killing z1. Repeat to

kill z2, . . . , zk; then φ : π1(∂V
′)→ E2, is isomorphism. Therefore φ : π1(∂V

′)→ E1 is also

isomorphism (π1(V2)→ π1(V1) induces iso E2 → E1). Therefore π1(V
′)→ π1(V2)→ π1(V1)

maps onto E1. Suppose z ∈ kernel of ψ : π1(V
′) → π1(V1). Represent z by a circle S in

V ′. S bounds a disk D in V1 : by general position, embedded with D ∩ ∂V ′ = S1 ∪ · · · ∪ Sℓ
(circles).

Let S1 be innermost circle, bounding disc D1 ⊂ D. S1 ⊂ ∂V ′ is null-homotopic in

V1. Since π1(∂V
′) → π1(V1) is 1–1, S1 is null homotopic in ∂V ′. Let D′1 be a small disc

neighborhood of D1 in D, not meeting S2, . . . , Sk. ∂D′1 ⊂ V ′ or V1 − V ′; use the null-

homotopy of S1 in ∂V ′ to span ∂D′1 by a disc D′′1 in V ′ or V1 − V ′ by general position D′′1

is embedded and disjoint from ∂V ′. Replace D by D −D′1 ∪D′′1 , which meets ∂V ′ in fewer

components than D. Repeat until D∩∂V ′ is empty; then S bounds disc D in V ′. Therefore

S is null-homotopic in V ′, so z = 0. So ψ : π1(V
′)→ π1(V1) is 1–1. Therefore π1(V

′)→ E1

is isomorphism. But π1(E) → π1(V
′) → E1 is an isomorphism. Therefore π1(E) → π1(V

′)

is isomorphism, and π1(∂V
′) → π1(V

′) is isomorphism. Therefore v′ is 1-neighborhood of

E ; in fact ∃ ?? small 1-neighborhoods.

E tame end of W . π = π1(E) ∼= π1(∂V ) ∼= π1(V ) for any 1-neighborhood of E . Ṽ , ∂Ṽ will

be universal coverings, C∗ = ?? chain group.

Lemma 5.10. If V is a sufficiently small 1-neighborhood of E, then C∗(Ṽ , ∂Ṽ ) is homotopy

euqivalent to a f.g. projective complex over Z[π].

Proof. E tame, so ∃ open path-? neighborhood U of E which is dominated by a finite

complex. Let V be any 1-neighborhood with V̄ ⊂ U . Let X = U − V in U , so U = X ∪ V ,

X ∩ V = ∂V (all CW complexes)

C∗(Ũ , ∂Ṽ ) ≃ C∗(Ṽ , ∂Ṽ )⊕ C∗(X̃, ∂Ṽ ) (by ?? and homotopy)

Therefore C∗(Ṽ , ∂Ṽ ) is dominated by C∗(Ũ , ∂Ṽ ).

U is dominated by finite complex, so by 3.6, C∗(Ũ) is equivalent to a f.g. projective

complex, say

f : C∗(Ũ) ∼−→− D∗ .
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∂V is a finite complex, so C∗(∂Ṽ ) is equivalent to a f.g. free complex, say

g : C∗(∂Ṽ ) ∼−→− E∗ .

0 −→ C∗(∂Ṽ ) −→ C∗(Ũ) −→ C∗(Ũ , ∂Ṽ ) −→ 0

g

y f

y
E∗ −−→

φ
D∗

commutes up to homotopy for suitable φ. It follows that C∗(Ũ , ∂Ṽ ) ≃ mapping ?? of φ(E?)

which is f.g. projective.

C∗(Ṽ , ∂Ṽ ) is dominated by C∗(Ũ , ∂Ṽ ), hence by f.g. projective complex. Therefore by

Theorem 2.3, C∗(Ṽ , ∂Ṽ ) is equivalent to a f.g. projective complex. �

Definition. A k-neighborhood of end E of open manifold W is a 1-neighborhood V such

that Hi(Ṽ , ∂Ṽ ) = 0 for i ≤ k ≥ 2.

Theorem 5.11. A tame end E of a manifold W of dimension n ≥ 5 has arbitrarily small

(n− 3)-neighborhoods.

Proof. Suppose inductively that E has arbitrarily small (k − 1)-neighborhoods. Start with

k = 2; suppose k ≤ n− 3. Let V be a (k − 1)-neighborhood.

C∗(Ṽ , ∂Ṽ ) is equivalent to a f.g. projective complex, say E∗. Since Hi(E∗) = 0, i < k, ∃
exact sequence

0 −→ Zk(E∗) −→ Ek −→ Ek−1 −→ · · · −→ E0 → 0 .

Therefore Zk(E∗) is f.g. projective (as in 2.3). Therefore Hi(E∗) ∼= Hk(Ṽ , ∂Ṽ ) is f.g. Let

{x1, . . . , xm} be finite set of generators.

Lemma 5.12. Let V be a (k − 1)-neighborhood of end E, and suppose E has arbitrarily

small (k − 1)-neighborhoods. Then any element of Hk(Ṽ , ∂Ṽ ) can be represented by a PL

embedded disc (Dk, ∂Dk) ⊂ (V, ∂V ), provided k ≤ n− 3.

Completion of proof of 5.11. Represent x1 by an embedded disc (Dk, ∂Dk) ⊂ (V, ∂V ). Let

H be a regular neighborhood of Dk in V , and repalce V by V ′ = V −H.

V ′ is still a 1-neighborhood, for π1(V
′) ∼= π1(V −D) ∼=

n−k≥3
π1(V )

π1(∂V
′) ∼= π1((∂V ∪H)−D) ∼=

n−k≥3
π1(∂V ) ∼= π1(V ) ∼= π1(V

′)

Homology exact sequence of (Ṽ , ˜∂(V ) ∪H, ∂Ṽ ) gives

Hi( ˜(∂V ) ∪H, ∂Ṽ ) −→ Hi(Ṽ , ∂Ṽ ) −→ Hi(Ṽ
′, ∂Ṽ ′) −→ Hi−1 ˜(∂V ) ∪H, ∂Ṽ )
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Therefore Hi(Ṽ
′, ∂Ṽ ′) ≃ 0 for k < k, so V ′ is (k − 1)-neighborhood. Hk(Ṽ , ∂Ṽ ) →

Hk(Ṽ
′, ∂Ṽ ′) is onto, and ??. Repeat process to kill off x2, . . . , xr; we finish with a k-

neighborhood of E . Continue to get an (n− 3)-neighborhood. �

Proof of Lemma. Represent x ∈ Hk(Ṽ , ∂Ṽ ) by a map φ : Dk, ∂Dk −→ V, ∂V by the

Hurewicz Theorem. Image of φ is compact, so ∃ small (k − 1)-neighborhood V ′ ⊂ V

so that imφ ⊂ V − V ′. Then x ∈ image of ψ : Hk(Ṽ − V ′, ∂Ṽ ) −→ Hk(Ṽ , ∂Ṽ ), say

x = ψ(y). Let U = V − V ′, y ∈ Hk(Ũ , ∂Ṽ ). ∂Ṽ ⊂ Ṽ , Ũ ⊂ Ṽ induce isomorphisms of

homology up to dimension k− 2 (sinc V, V ′ are (k− 1)-neighborhoods). Therefore ∂Ṽ ⊂ Ũ
induces homology ?? in dimensions ≤ k − 2. Therefore Hi(Ũ , ∂Ṽ ) = 0 for i ≤ k − 2. Take

handle decomposition of U based on ∂V . We can remove 1-handles, and cancel handles of

dimension ≤ k − 2, so there are no handles of dim ≤ max(1, k − 2).

Let X = regular neighborhood of union of (k − 1)-handles in U . Let Y = U −X, let

Z = X ∩ Y . Let ȳ = image of y in Hk(Ũ , X̃) ∼= Hk(Ỹ , Z̃). Let h1, . . . , hr be the k-handles

in Y . Let η1, . . . , ηr be the hommology classes in Hk(Ỹ , Z̃) represented by h1, . . . , hr. Wlog

ηr = 0 (otherwise introduce irrelevant k and k + 1 which cancel; then irrelevant k-handle

represents 0 in Hk(Ỹ , Z̃). Then η1, . . . , ηr generate Hk(Ỹ , Z̃) as Z[π]-module.

Let ȳ =
∑r

i=1 ρiηi (p ∈ Z[π]), wlog ρr = 1. Start with (Dk, ∂Dk) ⊂ (Y, Z) as the ??

of hr. Apply handle addition theorem to add on translates of h1, . . . , hr−1 to obtain disc

(Dk, ∂Dk) ⊂ (Y, Z) representing ȳ.

Suppose k = 2; since there are no 1-handles, so as (k − 1)-handles, so X is a collar

neighborhood of ∂V in V , so we are home. Suppose now k ≥ 3, so n ≥ k + 3 ≥ 6. X is a

collar neighborhood of ∂V cup(k − 1)-handles. Let X ′ = ∂V ∪ (k − 1)-hanldes. Let h′ be

a (k − 1)-handles. X is a collar neighborhood of ∂X ′ in V , so we replace Dk by a disc D̄

with ∂D̄ ⊂ ∂X ′, h′ ∼= Dk−1 ×Dn−k+1. Let S′ = image of 0× Sn−k, i.e. cocone body.

By general position, ∂D ∩ S′ is a finite union of points, P1, . . . , Pj ; each intersection

transverse.

Choose path pi from P1 to Pi in ∂D.

Choose path p′i from P1 to Pi in S
′.

Let gi = element of π1(Z) ∼= π represented by pi ◦ p̄′i (out along pi, back along p′i). Let εi

be sign of intersection at Pi (depends on orientation of spheres S′, ∂D). Now
∑
εigi ∈ Z[π]

is coefficient of h′ in ∂ȳ, which is 0. Therefore we can pair off P1, . . . , Pj so that, if Ps, Pt are

paired, then gs = gt and εs = −εt. Now choose a path p from Ps to Pt in ∂D, path p′ from

Ps to Pt in s
′. Then loop p ◦ p̄′ is null-homotopic in Z. So we can apply whitney argument
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to remove intersections at Ps, Pt (need n ≥ 6). this reduces the number of intersections of

S′, ∂D; repeat until S,∩∂D = ∅.
Now deform ∂D until it doesn’t meet h′, by an isotopy. Do this for all (k − 1)-handles

h′; then (D, ∂D) ⊂ (V, ∂V ), and represents the right homotopy class x. �

Lemma 5.13. Let E be a tame and of manifold W , limW ≥ 5. If V, V ′ are 1-neighborhoods

of E, then the W all variants σ(C∗(Ṽ , ∂Ṽ )), σ(C∗(Ṽ
′, ∂Ṽ ′)) are equal. If V is an (n− 3)-

neighborhood, then

Hi(Ṽ , ∂Ṽ ) = 0 for i ̸= n− 2 , and

Hn−2(Ṽ , ∂Ṽ ) is a f.g. projective module,

representing (−1)nσ(C∗(Ṽ , ∂Ṽ )) in K̃0(Z[π]).

Proof. By Theorem 5.8, it is enough to consider case V ′ ⊂ int V . Let U = V − V ′. Exact

sequence

0 −→ C∗(Ũ , ∂Ṽ ) −→ C∗(Ṽ , ∂Ṽ ) −→ C∗(Ṽ , Ũ) −→ 0

By excision, C∗(Ṽ
′, ∂Ṽ ′) ∼= C∗(Ṽ , Ũ). ∃ chain equivalences

f : C∗(Ṽ , ∂Ṽ ) −→ D∗

g : C∗(Ũ , ∂Ṽ ) −→ E∗

with E∗ f.g. free, D∗ f.g. projective.

φ : E∗ → D∗ making diagram below commute, up to chain homotopy

0 −→ C∗(Ũ , ∂Ṽ ) −→ C∗(Ṽ , ∂Ṽ −→ C∗(Ṽ , Ũ) −→ 0yg yf
E∗

φ−−→ D∗

Now C∗(Ṽ , Ũ) is chain equivalent to the mapping cone of φ, say Q∗

σ(C∗(Ṽ
′, ∂Ṽ ′)) = σ(C∗(Ṽ , Ũ)) = σ(Q∗) = σ(D∗) = σ(C∗(Ṽ , ∂Ṽ ))

since E∗ is f.g. free.

Define the Siebenmann invariant σ(E) to be σ(C∗(Ṽ , ∂Ṽ )) for any 1-neighborhood of E.

Now let V be an (n− 3)-neighborhood of E . By Theorem 5.8, there exists 1-neighborhoods

Vn of E with V0 = V , ∩Vn = ∅, and Vn+1 ⊂ int Vn. Let Un = Vn − Vn+1; so ∂Un =

∂Vn ∪∂Vn+1. ∂Vn ⊂ Un, ∂Vn+1 ⊂ Un induces fundamental group isomorphisms (because Vi
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is 1-neighborhood)

π1(∂Vn+1)
�

�
�>

Z
Z
Z~

π1(Vn+1)

π1(Un)

Z
Z
Z~

�
�
�>
π1(Vn)

Van Kampen’s Theorem ⇒ this is a pushout diagram. Therefore all isos, we know that

π1(∂Vn+1
∼= π1(Vn) and since Vn, Vn+1 are 1-neighborhoods, π1(Vn+1)→ π1(Vn) iso. There-

fore since diagram is a pushout, π1(Un)→ π1(Vn) and π1(∂Vn+1)→ π1(Un) are isos.

Similarly ∂Vn ⊂ Un induces π1 iso. There exists handle decomposition of Ui on ∂Vi

without handles of index 0, 1, n− 1, n. Therefore V can be obtained from ∂V by attaching

handles of index ≤ n− 2.

Therefore V ≃ CW complex K with ∂V as a subcomplex and with all cells of K−∂V of

dimension ≤ n− 2. [Attach handles of V − ∂V one at a time, giving ∂V = X0 ⊂ X1 ⊂ · · ·
with ∪Xi = V and Xi obtained from Xi−1 by attaching r-handle, r ≤ n − 2. Suppose

inductively Xi−1 complex Ki−1 of required form. Then

Xi ≃ Xi−1 ∪ r-handle

≃ Xi−1 ∪ r-cell

≃ Ki−1 ∪ er

Replace attaching map of er by a homotopic cellular map. Ki = Ki−1 ∪ er and xi ≃ Ki.

But K = ∪Ki; then V ≃ K.]

C∗(Ṽ , ∂Ṽ ) is equivalent to a (not rec. f.g.) free complex of dim ≤ n− 2. But C∗(Ṽ , ∂Ṽ )

is equivalent to a f.g. projective complex.

Them 2.3 (second half of proof) shows C∗(Ṽ , ∂Ṽ ) ≃ f.g. projective complex E∗ of dimension

≤ n− 2. We have exact sequence

0 −→ Hn−2(E∗) −→ En−2 −→ En−3 −→ · · · −→ E0 −→ 0

(since V is an (n − 3)-neighborhood). Therefore Hn−2(E∗) is f.g. projective. Moreover,

Hn−2(E∗) represents (−1)nσ(E∗) and = (−1)nσ(C∗(Ṽ , ∂Ṽ )). Hi(Ṽ , ∂Ṽ ) = 0 if i > n−2. �

Corollary 5.14. Let E be an end of manifold W , dimension ≥ 6. Then E has a collar iff

E is arbitrarily small (n− 2)-neighborhoods.
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Proof. Necessity clear. Let V be an (n − 2)-neighborhood of E , let v′ be another (n − 2)-

neighborhood, V ′ ⊂ int V . U = V − V ′ is an h-cobordism from ∂V to ∂V ′.

Hr(Ṽ , Ũ) −→ Hr−1(Ũ , ∂Ṽ ) −→ Hr−1(Ṽ , ∂Ṽ )∥∥ ∥∥
Hr(Ṽ

′, ∂Ṽ ′) 0∥∥
0

Let ∂V ⊂ U have torsion τ . Let U ′ = U ∪ (1-handles) ∪ (2-handles) where the 1-handles

and 2-handles are contained in V ′, and are chosen so that U → U ′ has torsion −τ . Let

V ′′ = V − U ′; V ′′ is a neighborhood of E contained in V ′. U ′ is an h-cobordism with torsion

0; i.e. an s-cobordism, dim ≥ 6. Therefore U” ∼= ∂V × I. Therefore there exists arbitrarily

small neighborhoods V ′′ of E , such that V ′′ ⊂ int V and V − V ′′ ∼= ∂V × I.
Now it is easy to show that V ∼= ∂V × [0,∞), so V is a collar. �

Theorem 5.15. Let E be an end of a manifold W , of dimension n ≥ 6. Then E has a

collar iff E is tame and σ(E) = 0. [σ(E) ∈ K̃0(Z[π]).]

Proof. Necessity clear (take collar ? (n− 3)-neighborhood to calculate σ(E)).
Conversely: let V be an (n−3)-neighborhood of E , and Hn−2(Ṽ , ∂Ṽ ) is stably free (since

σ(E) = 0) (i.e. Hn−2(Ṽ , ∂Ṽ ) ⊕ F ∼= G for f.g. free F,G). Wlog assume Hn−2(Ṽ , ∂Ṽ ) is

actually free: (for we can add Z[π] to Hn−2(Ṽ , ∂Ṽ ) by swapping a trivial (n−3)-disc across

∂V ).

Since Hn−2(Ṽ , ∂Ṽ ) is f.g., there exists (n − 3)-neighborhood V ′ ⊂ int V such that if

U = V − V ′, then Hn−2(Ũ , ∂Ṽ )→ Hn−2(Ṽ , ∂Ṽ ) is onto. Exact sequence of (Ṽ , Ũ , ∂Ṽ )

0 −→ Hn−2(Ũ , ∂Ṽ ) −→ Hn−2(Ṽ , ∂Ṽ )
0−−→ Hn−2(Ṽ

′, ∂Ṽ ′) −−→∼= Hn−3(Ũ , ∂Ṽ ) −→ 0

So

Hn−2(Ũ , ∂Ṽ ) ∼= Hn−2(Ṽ , ∂Ṽ )

Hn−2(Ṽ
′, ∂Ṽ ′) ∼= Hn−3(Ũ , ∂Ṽ )

V ′ is a (n − 3)-neighborhood, wlog Hn−2(Ṽ
′, ∂Ṽ ′) is f.g. free. Let x1, . . . , xk be free ba-

sis for hn−3(Ũ , ∂Ṽ ). By Lemma 5.12, we can represent x1, . . . , xk by disjoint embedded

Dn−3’s. (Embed discs one at a time; embed Dn−3
i in complement of regular neighborhood

of Dn−3
1 ∪ · · · ∪Dn−3

i−1 .) Swap these discs across ∂V , givingV ∗, U∗. Then Hn−2(Ũ
∗, ∂Ṽ ∗)→

Hn−2(Ṽ
∗, ∂Ṽ ∗) is still onto. It is enough to check that Hn−2(Ṽ , ∂Ṽ ) � Hn−2(Ṽ

∗, ∂Ṽ ∗).

Exact sequence

Hn−2(Ṽ , ∂Ṽ ) � Hn−2(Ṽ , H̃)
0−−→ Hn−3(H̃, ∂H̃) 7−→ Hn−3(Ṽ , ∂Ṽ )
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Replace V by V ∗, U by U∗; now Hn−2(Ũ , ∂Ṽ ) = 0. ∂V ⊂ U induces π1 isomorphism,

∂Ṽ ⊂ Ũ induces homology isomorphisms in dimension ≤ n − 4. Therefore Hi(Ũ , ∂Ṽ ) = 0

for i ̸= n−3, n−2. U has a handle decomposition on ∂V , handles of dimension n−3, n−2

only. Let X = regular neighborhood of ∂V ∪ (n− 3)-handles, Y = U −X, Z = X ∩ Y .

Let Cn−2 = Hn−2(Ỹ , Z̃), Cn−3 = Hn−3(X̃, ∂Ṽ ), bases Cn−2, Cn−3 given by handles.

Chain complex 0→ Cn−2
∂−−→ Cn−3 −→ 0 with homology groupsHn−2(Ũ , ∂Ṽ ),Hn−3(Ũ , ∂Ṽ )

from exact sequence of (Ũ , X̃, ∂Ṽ ).

Let Bn−3 be the boundary group ∂(Cn−2). If we put in extra (n− 3)-handle into X, and

complementary (n− 2)-handle into Y , then we add Z[π] to Cn−2, Cn−3, Bn−3, and do not

affect the homology groups. Bn−3 is stably free (0→ Bn−3 → Cn−3 → Hn−3(C∗)→ 0). By

adding enough complementary pairs of handles, we can make Bn−3 free.

Choose basis of Hn−2(C∗), and extend to a basis of Cn−2, say c
′
n−2, using exact sequence

0 → Hn−2(C∗) → Cn−2 → Bn−2 → 0. Let M ∈ GL(k,Z[π]) (k = dimension of Cn−2) be

such that c′n−2Mcn−2. Let D = free module (Z[π])k, standard basis d. Put in extra handles

as above to replace Cn−2 by Cn−2⊕D, and cn−2 by cn−2⊕d. Replace c′n−2 by cn−2⊕M−1e;
then c′n−2 = Lcn−2 where L ∈ GL(2k,Z[π]) is a product of elementary matrices.

By the handle addition theorem, we can change (n − 2)-handles so that they give the

basis c′n−2. Then Hn−2(C∗) is generated by handles hn−21 , . . . , hn−2r , which form a free

basis of Hn−2(C∗). Since ∂hn−2i presents 0 in Cn−3 = Hn−3(X̃, ∂Ṽ ), we can apply the

Whitney process to isotop hn−2i off the (n − 3)-handles in X (as in 5.12, we need n ≥ 6).

We finish with embedded discs Dn−2
1 , . . . , Dn−2

r with ∂Dn−2
i ⊂ ∂V representing a basis of

Hn−2(Ũ , ∂Ṽ ) ∼= Hn−2(Ṽ , ∂Ṽ ). Swap Dn−2
1 , . . . , Dn−2

r across ∂V , obtaining a neighborhood

V1 of E . Claim this is an (n− 2)-neighborhood.

1-neighborhood: Let U1 = U ∩ V1: U1 has a handle decomposition on ∂V1 with (n − 3)

and (n− 2)-handles only. n− 3 ≥ 3, so π1(∂V1)→ π1(U1) is iso.

U1 has handle decomposition on ∂V ′, with 2-handles and 3-handles only.

Therefore π1(∂V
′) → π1(U1) is onto. But we have π1(∂V

′) → π1(U1) → π1(U) an

isomorphism; so π1(∂V
′) ∼−→− π1(U1).

Van Kampen for π1(V1), (V1 = U1 ∪ V ′). Therefore

π1(V1) ∼= π1(U1) ∼= π1(∂V
′) ∼= π1(V

′) ∼= π1(E)

and

π1(∂V1) ∼= π1(U1) ∼= π1(V1)

Therefore V1 is a 1-neighborhood.
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Let H = U − U = union of handles swapped. Exact sequence of (Ṽ , ˜∂V ∪H, ∂Ṽ ) gives

→ Hn−2( ˜∂V ∪H, ∂Ṽ ) 7−→
i∗

Hn−2(Ṽ , ∂Ṽ )→ Hn−2(Ṽ1, ∂Ṽ1)→ 0

i∗ is mono because Dn−2
1 ∪ · · · ∪Dn−2

r is free basis for Hn−2(Ṽ , ∂Ṽ ).

In any case, Hn−2(Ṽ1, ∂Ṽ1) = 0, similarly. Hi(Ṽ1, ∂Ṽ1) = for i < n − 2, so V1 is (n − 2)-

neighborhood of E . Therefore by Corollary 5.14, E has a collar, as required. �

Remarks. i) There exist ends E which are tame but σ(E) ̸= 0.

ii) X finite CW complex such that X × S′ ≃ closed man?? M . M̃ = covering corr

to π1(X) ⊂ π1(X × S′). Then M̃ has just two ends E , E2, both tame, and both have

neighborhoods, M̃ , which is ≃ finite complex X. Can happen that σ(Ei) ̸= 0.


