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Abstract. Let (E, Σ) be a pair of spaces consisting of a compact Hausdorff space E and
a closed subspace Σ. Let A be an additive category. This paper introduces the category
B(E, Σ; A) of geometric modules over E with coefficients in A and with continuous control
at infinity. One of the main results is to show that the functor that sends a CW comples X

to the algebraic K-theory of B(cX, X ; A) is a homology theory. Here cX is the closed cone
on X and X is its base.

The categories B(E, Σ; A) are generalizations of the categories C(Z; A) of geometric mod-
ules and bounded morphisms introduced by Pedersen and Weibel [8]. Here (Z, ρ) is a com-
plete metric space. If X is a finite CW complex and O(X) is the metric space open cone on
X considered in [9], then there is an inclusion of categories C(O(X); A) → B(cX, X ; A). A
second main result is that this inclusion induces an isomorphism on K-theory.

One advantage of the present approach is that B(E, Σ; A) depends only on the topology
of (E, Σ) and not on any metric properties. This should make application of these ideas to
problems involving stratified spaces, for example, more direct and natural.

0. Introduction

Let Z be a metric space with complete metric ρ, A be an additive category and C(Z; A)
be the category of geometric modules on Z with coefficients in A and bounded morphisms
introduced and studied in [8] and [9]. We recall that an object in C(Z, A) is a collection
A = {Ax ∈ A|x ∈ Z} with the property that for every bounded set K ⊂ Z, {x ∈ K|Ax 6= 0}
is finite. A morphism f : A→ B is a collection f = {fx

y |f
x
y : Ax → By is a morphism in A}

for which there is a number d such that fx
y = 0 if ρ(x, y) > d.

The categories C(Z; A) have been of interest and use both in algebra and topology. In [8],
the categories C(Rn+1; A) are used to construct a nonconnective spectrum K(A) delooping
the usual K-theory spectrym for A. In [9], the categories C(O(X); A), where O(X) is the
open cone on X, are used to construct a homology theory on the category of finite CW
complexes. Finally in [4], an equivariant version of these categories is used in the study of
group actions.

The first three named authors were partially supported by the National Science Foundation under grants
numbered DMS88-03149, DMS90-01729, and DMS90-03746, respectively.
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In this paper we describe a new approach to these ideas that depends only on the topology
of the space Z and not on its metric properties. The advantage of this approach is that it
can be applied more naturally and more directly to some topological problems than the
“bounded” approach. This is especially true of problems that arise in stratified settings. An
application that exploits the greater flexibility this gives will be given in [1].

Let E be the category whose objects are pairs (E; Σ) where E is a compact Hausdorff
space and Σ is a closed subspace. Let E = E − Σ. (Althought we do not require it, we
often think of E as being dense in E. We also think of Σ as the “space at infinity” of E.) A
morphism in E is a (not necessarily continuous) function f : E1 → E2 having F−1(Σ2) = Σ1,
for which f |E1 : E1 → E2 is proper in the sense that if K ⊂ E2 is compact, then f−1(K)
has compact closure in E1, and for which f is continuous at every point z ∈ Σ1.

Let (E, Σ) ∈ E and A be an additive category. We define a new additive category
B(E, Σ; A) as follows: An object of B(E, Σ; A) is a collection A = {Ax ∈ A|x ∈ E} of objects
of A with the property that for each compact set K ⊂ E, {x ∈ K|Ax 6= 0} is finite. A mor-
phism f : A → A′ is a collection f = {fx

y |f
x
y : Ax → A′

y is a morphism in A and x, y ∈ E}
that has the properties that for all x, {y|fx

y 6= 0} is finite and that for every point z ∈ Σ

and every neighborhood U of z in E, there is a neighborhood V of z such that fx
y = 0

whenever x ∈ V and y /∈ U . (In particular, if y ∈ E and U = E − {y}, the compactness
of Σ implies that {x|fx

y 6= 0} is finite.) We describe this condition by saying that f is

continuously controlled at infinity. The additive structure of B(E, Σ; A) is given by setting
A⊕ A′ = {Ax ⊕ A′

x}.
We may regard B(−,−; A) as a functor from E to additive categories as follows: Let

h : (E1, Σ1) → (E2 → Σ2) be a morphism in E . We define a functor h∗ : B(E1, Σ1; A) →
B(E2, Σ2; A) as follows: If A = {Ax|x ∈ E1} is an object of B(E1, Σ1; A), let h∗(A) be
the object {Bz} of drawboxed() B(E2, Σ2; A) with Bz = ΣAx where the sum runs over
x ∈ h−1(z). Since the set h−1(z) has compact closure in E1, there are only finitely many
x in h−1(z) with Ax 6= 0. Hence the sum is finite. Similarly for any compact set K ⊂ E2,
{z ∈ K|Bz 6= 0} is finite. Hence {Bz} is an object of B(E2, Σ2; A). Let f : A → A′ be the
morphism f = {fx

y |x.y ∈ E1}. Then h∗(f) = {gz
w} : h∗(A) → h∗(A”) is the morphism with

gz
w =

∑
fx

y where the sum runs over (x, y) ∈ h−1(z)×h−1(w). It is easily checked that h∗(f)

is a morphism in B(E2, Σ2; A) and that h∗ is an additive functor.
For any additive category A, let KA denote the classifying space BA−1A where A = Iso A

is the category of isomorphisms in A. The algebraic K-theory of A is given by Km(A) =
πm(KA) for m ≥ 0. The algebraic K-theory of the additive category B(E, Σ; A) is denoted
by K∗B(E, Σ; A) and is called the algebraic K-theory of E with continuous control at infinity.
If h : (E1, Σ1 → (E2, Σ2) is a morphism in E , h induces a homomorphism

h∗ : K∗B(E1, Σ1; A)→ K∗(E2, Σ2; A)
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and we may may regard K∗B(−; A) as a functor from E to the category of graded abelian
groups.

The closed-cone construction can be used to obtain many examples of pairs (E, Σ) in E .
In particular if X is a non-empty compact Hausdorff space, we let cX be the closed cone on
X (i. e. the quotient space obtained from X × [0, 1] by identifying X × {0} to a point c)
and (cX, X) be the pair in which X is the image of X × {1} in cX. In X = ∅, then we let
(cX, X) = (c, ∅). In either case, (cX, X) is in E . In fact, the closed cone construction defines
a functor c : F → E where F is the category of compact Hausdorff spaces. The image of
X × [0, 1) in cX is denoted oX and is called the small open cone on X.

If A is an additive category, we let Â be the idempotent completion [3] of A; that is, Â is
the category with objects (A, p) where A ∈ A and p : A→ A has p2 = p anf with morphisms
f : (A, p)→ (B, q) those morphisms f : A→ B in A for which f = qfp.

Let X be a compact metrizable space and SnX be its nth suspension. We will prove that

the collection of spaces K̃(X; A) = {KB̂(cSnX, SnX; A)|n = 0, 1, 2, . . .} is a spectrum. This

spectrum is nonconnecteive and its stable homotopy is denoted by K̃∗(X; A). It is studied
in Section 4.

Theorem I. For any additive category A, the functor X 7→ K̃∗(X; A) is a reduced homology
theory on the category of compact metrizable spaces.

The reader should see Theorem 5.2 for a more complete statement of this theorem.
The main steps in the proof of Theorem I are showing that if X = vY is the closed cone

on Y , the K-theory classifying space of X is contractible and establishing a Mayer-Vietoris
property. Thes steps are done in Corollary 2.3 and Theorem 4.4 respectivley. Here we have
written X = vY instead of X = cY since we must form cX to get the homology of X and
it is convenient to dictinguish the two cone points c and v.

For any pair of compact metrizable spaces (X, A), let K∗(X, A; A) = K̃∗(X ∪A vA; A)
where vA is the cone on A with vertex v and we take vA to be a point if A = ∅. To simplify
notation, throughout this paper we shall write X ∪v A) instead of the more precise X ∪A vA.

Theorem II. The functor K∗(−; A) is a homology theory on the category of pairs of compact
metrizable spaces. If we restrict this homology theory to the category of pairs of finite CW

complexes, its representing spectrum K(pt; A) = K̃(S0; A) has ΩK(pt; A) = K(A).

The reader should see Theorem 5.3 for a more complete statement of this theorem. In
this theorem K(A) is the nonconnective spectrum for the K-theory of A constructed in [8].
It follows from this theorem and the main result of [9] that K∗(X, A) = H∗−1(X,K(A)) for
every compact polyhedron X where the right-hand side is the homology of X with coefficients
in the spectrum K(A).

In proving the last part of Theorem II, the idea is to show that K̃(S0; A) and the spec-

trum K̃′(pt; A) of [9] have isomorphic homotopy groups. In positive dimensions, this is
accomplished in Lemma 5.5 and in nonpositive dimensions, in Lemma 5.6. The proof of
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Lemma 5.6 is based on the results in section 2 and the construction of a “Bass-Heller-Swan”
homomorphism motivated by the discussion in [7, Section 2].

Let X be a finite CW complex and O(X) be the large open cone on X (i. e. the space
obtained from X × [0,∞) by identifying X × {0} to a point c). If we identify O(X) with
oX under the homeomorphism that sends [ξ, t] to [ξ, 1 − t/(1 + t)], there is an inclusion
of categories i : C(O(X); A) → B(cX, X; A) obtained by noticing that any morphism in
C(O(X); A) is continuously controlled at infinity under the above identification. Let

i∗ : Kb
∗(X; A)→ K∗(X; A)

be the induced homomorphism on homology where Kb
∗(X; A) is the homology of X using

bounded morphisms as described in [9]. The next result follows easily from Theorem II.

Corollary III. For any finite CW complex X, i∗ : Kb
∗(X; A) → K∗(X; A) is an isomor-

phism.

In a recent paper [12], Vogell describes another approach to proving Theorems I and II
for finite CW complexes. Although his approach in that case is simpler than the one taken
here, it does not work in the full generality of this paper.

The first-named author would like to than the Department of Mathematics at the Uni-
versity of Notre Dame for provising a stimulating atmosphere for him during the period in
which this paper was written. All four author would like to thank th ereferee for his detailed
comments on the paper. They have greatly improved the exposition.

1. Some elementary properties of the categories B(E, Σ; A)

We collect here some elementary properties of the categories B(E, Σ; A) that will be useful
later in this paper and illustrate the topological flavor of this category.

Let (E, Σ) ∈ E , A be an additive category and A = {Ax|x ∈ E} ∈ B(E, Σ; A). The
set supp∞(A) = cl{x ∈ E|Ax 6= 0} ∩ Σ is called the support of A at infinity. Notice that
z ∈ supp∞(A) if and only if every neighborhood U of z contains a point x ∈ E with Ax 6= 0.

Lemma 1.1. Let A, B ∈ B(E, Σ; A). If A is isomorphic to B, the supp∞(A) = supp∞(B).

Proof. Let f = {fx
y : Ax → By} be an isomorphism from A to B. Let z ∈ supp∞(A) and U

be a neighborhood of z in E. Then there is a smaller neighborhood V of z so that if x ∈ V
and fx

y 6= 0, then y ∈ U . Since z ∈ supp∞(A), there is an x ∈ V with Ax 6= 0. Since f is an
isomorphism, there is a y with fx

y 6= 0. Hence By 6= 0 for some y in U , z ∈ supp∞(B), and
supp∞(A) ⊂ supp∞(B). Lemma 1.1 follows easily. �

Let (E, Σ)×I = (E×I, Σ×I). Then lemma 1.1 shows that there are objects in B(E, Σ)×
I, A) that are not isomorphic to objects in the subcategory B((E, Σ) × {0}, A). Hence the
inclusion

i : B((E, Σ)× {0}, A)→ B((E, Σ)× I, A)

is not an equivalence of categories.
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Lemma 1.2. Let (E, Σ) ∈ E , K ⊂ E be closedand W ⊂ Σ be disjoint from K. Let
A, B ∈ B(E, Σ; A) and f : A → B. Then there exists a neighborhood U of W in E −K so
that if either (x, y) or (y, x) is in U ×K, then fx

y = 0.

Proof. Suppose first that W is a single point w. Then there are disjoint open sets U ′ and
V ′ with w ∈ U ′ and K ⊂ V ′. For each z ∈ K ∩ Σ, there is a neighborhood Vz so that if
fx

y 6= 0 and x ∈ Vz, then y ∈ V ′. Let V =
⋃
{Vz|z ∈ K ∩ Σ}. For all x ∈ V , if fx

y 6= 0, then

y ∈ V ′. Since C = K ∩ (E − V ) is compact and contained in E, the sets {x ∈ C|Ax 6= 0}
and {y ∈ E|fx

y 6= 0, x ∈ C} are finite. Let U = U ′ − {y ∈ E|fx
y 6= 0, x ∈ K}. Then U is an

open neighborhood of w and for all (x, y) ∈ K × U , fx
y = 0. Since f is continuous at w, we

may replace U by a smaller neughborhood of w, if necessary to insure that if (x, y) ∈ U ×K,
then fx

y = o. The lemma follows in case W is a single point.
In the general case choose a neighborhood Uw for each w ∈ W as in the preceeding

paragraph. Then U =
⋃
{Uw|w ∈W} works. �

Let f : (E1, Σ1)→ (E2, Σ2) be a map in E for which f |Σ1
: Σ1 → Σ2 is a homeomorphism.

We say thatf is an equivalence at infinity if for every p ∈ Σ1 and every neighborhood U of p
in E1, there exists a neighborhood V of f(p) in E2 with f−1(V ) ⊂ U . This term is explained
in the following lemma:

Lemma 1.3. Let f : (E, Σ) → (E, Σ be a map in E for which f |Σ = 1. Then there is a
natural transformation η : I → f∗ where I is the identity functor of B(E, Σ; A). If f is
an equivalence at infinity, then η is a natural equivalence. Hence f induces the identity on
K-theory.

Proof. Let A = {Ax} be an object of B(E, Σ; A) and set B = f∗(A). Let η(A) = {ηx
y} : A→

B be the morphism for which ηx
y is the inclusion of the Ax summand into By if y = f(x)

and is 0 otherwise. Since f is a m map in E , for every p ∈ Σ and every neighborhood U of
p there is a neighborhood V so that f(V ) ⊂ U . hence η(A) is a morphism in B(E, Σ; A). It
is easily checked that η = {η(A) : I → f∗ is a natural transformation.

Suppose that f is an equivalence at infinity. To see that η is a natural equivalence, it
suffices to show that for each A, η(A) is an isomorphism. Let ρ(A) : {ρx

y} : B → A be the

morphism for which ρx
y is the projection of Bx on the Ay summand if y ∈ f−1(x) and is

0 otherwise. Since the set {y|ρx
y 6= 0} = {x|ηy

x 6= 0}, it is finite. Let p ∈ Σ and U be a

neighborhood of p. By hypothesis there is a neighborhood V of p with f−1(V ) ⊂ U . hence
ρ(A) is a morphism in B(E, Σ; A). It is easily checked that ρ(A) is an inverse of η(A).

The following general observations show that f induces the identity on K-theory: Let
F, G : A → B be additive functors between additive categories and η : F → G be a
natural equivalence. Then F, G induce functors F , G : A−1A → B−1B and η induces a
natural transformation η : F → G. Hence F and G induce the same homomorphism on
K-theory. �
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Corollary 1.4. Let h1, h2 : (E, Σ) → (E, Σ) be homeomorphisms with h1|Σ = h2|Σ. Then
there is a natural equivalence η : h1∗ → h2∗. Hence h1 and h2 induce the same map on
K-theory.

Proof. Since f = (h−1
1 )h2 satisfies the hypothesis of Lemma 1.3, there is a natural equivalence

η′ : I → f∗ where I is the identity functor. Then η = h1∗(η
′) is the desired natural

equivalence. �

A morphism i : (E1, Σ1)→ (E2, Σ2) is an inclusion in E if i : E1 → E2 is an inclusion and
Σ1 = E1 ∩ Σ2.

Corollary 1.5. Let (E1Σ1) and (E2, Σ2) be objects in E with Σ1 = Σ2. Let i : (E1, Σ1) →
(E2, Σ2) be an inclusion and r : (E2, Σ2) → (E1, Σ1) be a retraction in E . Suppose that r
is an equivalence at infinity. Then i∗ : B(E1, Σ1; A) → B(E2, Σ2; A) is an equivalence of
categories.

Proof. Since r is a retraction, ri = 1 and r∗i∗ is the identity functor. Since i is clearly an
equivalence at infinity and r is an equivalence at infinity by hypothesis, ir is an equivalence
at infinity. Hence i∗r∗ is naturally equivalent to the idnetity by Lemma 1.3. Corollary 1.5
follows �

We now introduce a technical concept that is used in the proof of theorem 3.1. Let
(E0, Σ0)→ (E, Σ) ∈ E be an inclusion in E . We say that (E0, Σ0) is an eventual neighborhood
retract in (E, Σ) if there is a closed neighborhood N of Σ0 in E and a function r : (N −
Σ)∪E0 → E0 with r−1(Σ0) = Σ0 and r|E0

= id with the following property: For every open

neighborhood W of Σ − Σ0 in E − E0, rW = r| : [(N − Σ −W ) ∪ E0] → (E0, Σ0) is an
equivalence at infinity. This amounts to requiring that for every triple (p, U, W ) consisting
of a point p ∈ Σ0, a neighborhood U of p in E, and an open neighborhood W of Σ − Σ0 in
E, there is a neighborhood V of p in E0 with r−1(V ) ⊂ U ∪W . The reader will note that
only the restrictions rW of r, and not r itself need be morphisms in E and that r need to be
continuous only at infinity. The function r is called an eventual retraction.

The diagram below illustrates the definition of an eventual neighborhood retraction r. In
it, r is defined on (N − Σ) ∪ E0. It is “well behaved” on (N − Σ−W ) ∪E0 for every W .

E

E0

Σ

Σ0

W

Nhoin

.............

..
...
...
..
...

Proposition 1.6. Suppose that Σ0 ⊂ Σ is a neighborhood retract. Then (cΣ0, Σ0) is an
eventual neighborhood retract in (cΣ, Σ).
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Proof. By replacing Σ with an appropriate closed neighborhood of Σ0, we may assume there
is a continuous retraction ρ : Σ→ Σ0. Let N = cΣ and r : N → cΣ0 be the cone on ρ. Let W
be an open neighborhood of Σ−Σ0 not meeting cΣ0. Then rW = r|(cΣ−W ) : (cΣ−W, Σ0)→
(cΣ0, Σ0) is a morphism in E and ri = 1 where i : (cΣ0, Σ0)→ (cΣ−W, Σ0) is the inclusion.

Let U be any open neighborhood of p ∈ Σ0 in cΣ. Then there is an open neighborhood
V of p in cΣ0 with (rW )−1(V ) ⊂ U . If not, then for each neighborhood V of p, there is
a point xV ∈ cΣ −W − U with r(xV ) ∈ V . Then the net {r(xV )|V ∈ V} converges to p
where V is the set of neighborhood of p. Let B be the set of neighborhoods of p that do not
contain c. Then B is a base of the neighborhoods of p. hence {r(xV ) = (cρ)(xV )|V ∈ B}
also converges to p. On the other hand, {xV |V ∈ B} converges to some point q of cΣ. Since
xV ∈ cΣ−W − U which is compact, q ∈ E −W − U ⊂ cΣ− Σ. In particular q and (cρ)(q)
are not in Σ. Hoevere, since cρ is continuous, (cρ)(q) = p ∈ Σ0. This is a contradiction. �

If X is a nonempty space, let SX be the unreduced suspension of X (i. e. space obtained
from X × [−1, 1] by identidying X ×{i} to {i} for i = ±1). If X = ∅, let SX = S∅ = S0 be
the discrete two-point space.

Proposition 1.7. If Σ0 ⊂ Σ is a neighborhood retract, then so is SΣ0 ⊂ Σ.

Proof. Let r : N → Σ0 be a continuous retraction of a closed neighborhoos N of Σ0 in Σ onto
Σ0. Let vΣ be the cone on Σ with vertex v. We show first that there is a closed neighborhood
N1 of vΣ0 and a continuous retraction r1 : N1 → vΣ0 with N ⊂ N1, N1 ∩ Σ0 = N , and
r1|N = r. To see this, let h : I × I → I × I be a function with the following properties:

(i) For all s ∈ I, h(s, 0) = (s, 0) and h(s, 1) = (s, 1).
(ii) If 3

4
≤ s ≤ 1 and 1

2
≤ t ≤ 1, then h(s, t) = (s, 1).

Such a function can be constructed using standard elementary techniques. Let φ : Σ→ I
be a continuous map for which φ(Σ0) = 0 and φ(Σ− Int N) = 1. Define H : Σ× I → Σ× I
by setting H(x, t) = (x, h(φ(x), t)). By (1), H(x, 0) = (x, 0) and H(x, I) = (x, 1) for all x.
Hence H induces a continuous map H ′ : vΣ → vΣ for which H ′[x, 0] = [x, 0] for all x and
H ′(v) = v. Let N1 = q(N × I ∪Σ× [1

2
, 1]). Then N1 is a closed neighborhood of vΣ0 in vΣ.

Since H(x, t) = (x, 1) for all (x, t) ∈ φ−1[3
4
, 1]×]1

2
, 1] by (2), for such (x, t), H ′[x, t] = v and

H ′(N1) ⊂ vN . We now set r1 = (vr)H ′ : N1 → vΣ0 and observe that r1 has the properties
claimed.

Let SΣ = vΣ ∪ wΣ where the union is along Σ. By gluing two copies of the map r1

together along the common subspace N , we obtain a neighborhood N2 of SΣ0 in SΣ and
continuous retraction r2 : N2 → SΣ0. This completes the proof of Proposition 1.7 �

2. The structure of the category B(cX, X; A)

Let (X, d) be a compact metric space X together with a metric for which diam X ≤ 2. In
this section we shal determine the structure of B(cX, X; A). We also use this result to show
that K∗B(cX, X; A) = 0 if X = vY where Y is a compact metrizable space.
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Let O(X) be the large open cone on X (i. e. the space obtained from X × [0,∞) by
identifying X × {0} to a point c). It was observed in [11] (cf. also [2] that setting

(1) ρ(x, y) = min{s, t}d(ξ, η) + |s− t|

for x = [ξ, t] and y = [η, s] in polar coordinates, gives a metric on O(X). We identify O(X)
with o(X) under the homeomorphism that sends [ξ, t] to [ξ, 1− t/(1 + t)] and write cX as
O(X) ∪X(∞) where X(∞) is a copy of X “at infinity”.

For any numbers r < s ≤ ∞, let < r, s >= {[ξ, t] ∈ O(X)|r ≤ t < s}. If ξ ∈ X
and β > 0, let ang(ξ, β) = {[ζ, s]|0 < s and d(ζ, ξ) < β}. By an abuse of language if
x = [ξ, t] 6= c in O(X)∪X(∞) and β > 0, we shall write ang(x, β) for ang(ξ, β). Finally for
f ∈ B(O(X) ∪X(∞), X(∞); A) and x ∈ O(X), let Sx(f) = {y ∈ O(X)|fx

y 6= 0}.
Let r = (r1, r2, r3, . . .) be an increasing sequence of positive integers. Let Br be the subcat-

egory of B(O(X)∪X(∞), X(∞); A) containing all the objects of B(O(X)∪X(∞), X(∞); A)
but only those morphisms f : A→ B for which there are constants α, β and γ so that

For almost all k, if x ∈< rk, rk+1 >, then

(2) Sx(f) ⊂< rk−αrk+1+α > ∩ ang(x,
β

k − γ
).

Of course for (2) to make sense, we must have k > γ and k ≥ α. A simple calculation
shows that if f ′ and f ′′ are in Br, then so is f ′′f ′ and thus that Br really is a subcategory of
B(O(X) ∪X(∞), X(∞); A).

The structure of B(O(X) ∪X(∞), X(∞); A) is given by the following theorem:

Theorem 2.1. Let X be a compact metric space with diam X ≤ 2 and A be any addi-
tive category. Then the collection {Br forms a direct system of subcategoies of B(O(X) ∪
X(∞), X(∞); A) ordered by inclusion. that is

(i) B(O(X) ∪X(∞), X(∞); A) =
⋃
Br

(ii) if r′ and r′′ are two such sequences, then there is a sequence r with Br′ ⊂ Br and
Br′′ ⊂ Br.

Furthermore, for every increasing sequence r, Br is isomorphic to C(O(X); A).

Theorem 2.1 is a direct consequence of Lemma 2.4-2.8.

Corollary 2.2. Let X be a compact metric space with diam X ≤ 2 and A be an additive
category. Then K∗B(cX, X; A) = colim−−−→K∗Br.

The colimit here is over the family {Br} of subcategories of B(O(X)∪X(∞), X(∞); A) and
we use the identification of this category with B(cX, X; A) given above to simplify notation.
The corollary is an immediate consequence of Theorem 2.1.

We recall that for any additive category A, its idempotent completion [3] is the category

Â with objects (A, p) where A ∈ A and p : A → A has p2 = p and with morphisms
f : (A, p)→ (B, q) those morphisms f : A→ B in A for which f = qfp.
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Corollary 2.3. Suppose X = vY is the closed cone on the compact metrizable space Y .
Then the spaces KB(cX, X; A) and KB̂(cX, X; A) are contractible.

Proof. Any compact, metrizable space has a metric d of diameter ≤ 2. For this metric
B(cX, X; A) =

⋃
Br and hence B̂(cX, X; A) =

⋃
B̂r. By Theorem 2.1, Br is isomorphic to

Ĉ(O(X); A) which is flasque by [9]. hence K∗B̂r = K∗Ĉ(O(X); A) = 0 and K∗B̂(cX, X; A) =

colim−−−→K∗B̂r = 0. It follows that KB̂(cX, X; A) is contractible. The proof that KB(cX, X; A)

is contractibel is similar. �

Lemma 2.4. Let f ∈ B(O(X) ∪ X(∞), X(∞); A) and suppose that r > 0 and β > 0 are
given. then there is an R > 0 so that for all x ∈< R,∞ >, Sx(f) ⊂< r,∞ > ∩ ang(x, β).

Proof. Suppose no such R exists. Then there exist sequences xn = [ξn, tn] and yn = [ζn, sn]
(n = 1, 2, 3, . . .) so that for all n, xn ∈< n,∞ >, yn ∈ Sxn

(f) and either sn ≤ r or
d(ζn, ξn) ≥ β. By choosing a subsequence if necessary, we may assume xn → x ∈ X(∞).
Since f is continuously controlled at infinity, yn → x. Hence sn → ∞ and d(ζn, ξn) → 0.
This contradicts the choices of xn and yn. �

Lemma 2.5. For any f ∈ B(O(X) ∪X(∞), X(∞); A) there is a sequence r with f ∈ Br.

Proof. The proof is inspired by an argument of Hughes given in [5, Section 5]. We construct
the sequence r by induction. Use Lemma 2.4 to choose r1, so that if x ∈< r1,∞ >, then
Sx(f) ⊂ ang(x, 1). Suppose r1, . . . , rn constructed so that

(i) if x ∈< rk,∞ >, then Sx(f) ⊂< rk−1,∞ > ∩ ang(x, 1/k) for k ≤ n; and
(ii) if x ∈< 0, rk >, then Sx(f) ⊂< 0, rk+1 > for k < n.

Now use Lemma 2.4 to choose rn+1 so that if x ∈< rn,∞ >, then (i) holds for k = n + 1.
Since there are only finitely many non-zero fx

y with x ∈< 0, rn >, we may also choose rn+1

large enough that (ii) also holds. this completes the construction of r.
If x ∈< rn, rn+1 >, then Sx(f) ⊂< rn−1, rn+2 > ∩ ang(x, 1/n). By letting α = 1, β = 1

and γ = 0 in (2), this shows that f ∈ Br. �

Lemma 2.6. Let r0 = (1, 2, 3, . . .). Then Br0
= C(O(X); A).

Proof. Let f ∈ Br0
, x = [ξ, t], y = [η, s], and suppose that fx

y 6= 0. Then if x ∈< k, k + 1 >,

ρ(x, y) = min{s, t}d(ξ, η) + |s− t|

≤ min{s, t}
β

k − γ
+ α + 1 ≤ (k + α + 1)

β

k − γ
+ α + 1.

Since (k + 1 + α)(k − γ) → 1 as k → ∞, ρ(x, y) < 2β + α + 1 for all x = [ξ, t] with t
sufficiently large. Since there are only finitely many fy omitted by this process, there is a
number B so that ρ(x, y) < B for all x, y with fy 6= 0. Thus Br0

⊂ C(O(X); A).
Let x ∈< n, n + 1 > and suppose d > 0 is given. Simple estimates using (1) show that

B(x, d) ⊂< n−d, n+d+1 > ∩ ang(x, d/(n−d)). Hence if f ∈ C(O(X); A) has the property
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that ρ(x, y) < d when fy 6= 0, then f ∈ Br0
with constants α = β = γ = d in (2). Thus

C(O(X); A) ⊂ Br0
. This completes the proof of Lemma 2.6. �

Lemma 2.7. For every sequence r, Br is a subcategory of B(O(X) ∪X(∞), X(∞); A) and
there is an isomorphism of categories hr∗ : Br0

→ Br.

Proof. Let ρr : [0,∞) → [0,∞) be the homeomorphism that maps [k, k + 1] linearly onto
[rk, rk+1 and set hr[ξ, t] = [ξ, ρr(t)]. Then hr induces an automorphism hr∗ of the category
B(O(X) ∪X(∞), X(∞); A) onto itself whose inverse is (h−1

r )∗. Straighfoprward calculation

shows that hr∗(Br0
) ⊂ Br and that (h−1

r )∗(Br) ⊂ Br0
from which Lemmma 2.7 follows. �

Lemma 2.8. Let r′ = (r′1, r
′
2, r

′
3, . . .) and r′′ = (r′′1 , r

′′
2 , r

′′
3 , . . .) be increasing sequences of

integers. Then there is a sequence r so that Br′ ⊂ Br ⊃ Br′′.

We say that a squence s splices the sequences t if tn < sn < tn+1 for all n. Notice that if
s splices t, the Bt = Bs.

Proof. Clearly one can choose subsequences s′ and s′′ of r′ and r′′ respectively so that s′

splices s′′. Then Bs′ = Bs′′ . Since s′′ is a subsequence of r′, we see that Br′ ⊂ Bs′ . Similarly
Br′′ ⊂ Bs′′ . The proof is completed by letting r = s′′. �

3. The Mayer-Voetories property

This section establishes a Mayer-Vietories property. Although the result given here is
technical, the consequences of it obtained in the next section are far less so and are sufficient
for proving the main theorems of this paper. The approach taken here is a modification of
that in [2]. The difference is that the categories in [2] were filtered; whereas the categories
that arise here are not. The reader who is interested in only the main results of this paper
can sjip this section and refer back to it only as needed.

We recall some definitions and notation.
If

fb is a full, additive subcategory of the additive category A, then the idempotent semicom-
pletion (or simply, semicompletion) of A with respect to B is the full, additive subcategory

of hatA containing those objects (A, p) isomorphic to (B, q) ⊕ (C, 1) with (B, q) ∈ B̂ and

C ∈ A. The semicompletion is denoted by Ã.

Theorem 3.1. Let (E, Σ) be the pushout of the diagram (E1, Σ1)
i1←− (E0, Σ0)

i2−→ (E2, Σ2)
of inclusions in E in which E0 − Σ0 6= ∅. If (E0, Σ0) is an eventual neighborhood retract in
(E, Σ), then the square of spaces

KB̂(E0, Σ0; A)
i1

//

i2
��

KB̃(E1, Σ1; A)

j1
��

KB̃(E2, Σ2; A)
j2

//
KB̃(E, Σ; A)
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is a pullback up to homotopy. Here the semicompletions are with respect to B(E0, Σ0; A).
Hence there is a long exact sequence

· · · → πn+1(KB)→ π(KB0)→ πn(KB1)⊕ πn(KB2)→ πn(KB)→ · · ·

(n ≥ 0) where KBi = KB̃(Ei, Σi; A)(i = 1, 2, ∅) and KB0 = KB̂(E0, Σ0; A).

The reader will recall that the definition of Σ0 being an eventual retract in E is given in
section 1. Therem 3.1 is an immediate consequence of Lemmas 3.2 and 3.3.

Suppose given a commutative diagram (*) of additive categories and additive functors

(⋆)

A0

i2
��

i1
// A1

j1
��

A2

j2
// A

and a directed set Λ, We say that (⋆) has the Mayer-Vietories property relative to Λ if the
following conditions hold:

(1) The functors i1, i2, j1 and j2 are full and faithful.
(2) For every pair of objects A, B ∈ A there is a family of subgroups {Fλ Hom(A, B)|λ ∈

Λ} such that if µ < λ, then Fµ Hom(A, B) ⊂ Fλ Hom(A, B) and with Hom(A, B) =⋃
Fλ Hom(A, B).

(3) For every A ∈ A, there is a λ(A) ∈ Λ so that for every λ ≥ λ(A) there is a preferred
decomposition of A as A = A1λ⊕A0λ⊕A2λ with Aiλ ∈ Ai(i = 1, 2) and an isomorphism
σ0λ : A0,λ → A0λ to an object A0λ ∈ A). It is further required that 1A and 11λ ⊕
σ0λ ⊕ 12λ be in Fλ Hom(A, A′) and that 11λ ⊕ (σ0λ)

−1 ⊕ 12λ ∈ Fλ Hom(A′, A) for all
λ ≥ λ(A) where A′ = A1λ ⊕ A0λ ⊕A2λ.

(4) If λ ≥ λ(A) and f ∈ Fλ Hom(A, B), then f decomposes as

A1λ

��

⊕ A0λ

}}zz
zz

zz
zz

�� !!D
DD

DD
DD

D
⊕ A2λ

��

B1 ⊕ B0 ⊕ B2

relative to the preferred decomposition of A and any decomposition B = B1⊕B0⊕B2

with Bi ∈ Ai (i = 1, 2).
(5) If λ ≥ λ(B) and f ∈ Fλ Hom(A, B), then f decomposes as

A1

��

⊕ A0

}}zz
zz

zz
zz

�� !!DD
DD

DD
DD
⊕ A2

��

B1λ ⊕ B0λ ⊕ B2λ
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re;ative to any decomposition A = A1 ⊕ A0 ⊕ A2 with Ai ∈ A (i = 0, 1, 2) and the
preferred decomposition of B.

Lemma 3.2. If (*) has the Mayer-Vietories property with respect to Λ and A0 is idempotent
complete then

KA0

i2
��

i1
// KA1

j1
��

KA2

j2
//
KA

is a pullback up to homotopy. Hence for n ≥ 0, there is a long exact sequence

· · · → πn+1(KA)→ π(KA0)→ πn(KA1)⊕ πn(KA2)→ πn(KA)→ · · ·

Proof. The proof is similar to the proofs of the corresponding rsults in [8],[9] and [2]. Let B be

Thomasson’s simplified double mapping cylinder ogf the diagram A1
A
←−0

A
−→2 and Σ : B→ A

be the obvious functor. We show Σ is a homotopy equivalence on K-theory classifying spaces
using Quillen’s Theorem A by showing that for each object A ∈ A , the category A ↓ Σ is
contractible.

For any λ ∈ Λ, let Fλ(A ↓ Σ) be the full subcategory of A ↓ Σ) with objects those
morphisms α : A→ B1⊕B0⊕B2 = B for which α ∈ Fλ Hom(A, B) and α−1 ∈ Fλ Hom(B, A).
Let σ be the composite

σ = 1⊕ σ0λ ⊕ 1 : A = A1λ ⊕ A0λ ⊕A2λ → A1λ ⊕ A0λ ⊕ A2λ.

The argument given in [8],[9] or [2] shows that if λ ≥ max{λ(A), λ(B)}, then σ is an initial
object in Fλ(A ↓ Σ). Hence this category is contractible. Since Λ is a directed set, it follows
that A ↓ Σ is the directed union of contractible subcategories. Hence A ↓ Σ is contractible
and Lemma 3.2 follows. �

Let (E, Σ) ∈ E . Let A be an object of B(E, Σ; A). The support of A is the set supp A =
{x ∈ E|Ax 6= 0}. If X ⊂ E, we write A|X for the object {By|y ∈ E} where By = Ax if
y = x ∈ X and By is zero if y /∈ X. If f = {fx

y : Ax → By|x, y ∈ E} : A→ B is a morphism

in B(E, Σ; A), we let f |X : A|X → B|X be the morphism {fx
y |x, y ∈ X}.

Lemma 3.3. Let (E, Σ) be the pushout of a diagram (E1, Σ1)
i1←− (E0, Σ0)

i2−→ (E2, Σ2) of
inclusions in E in which E0 − Σ0 6= ∅. Let Λ = {U |U ⊂ E − E0 is a neighborhoos of
Σ − Σ0 with U ∩ Σ0 6= ∅ and set U ≥ V if U ⊂ V . If (E0, Σ0) is an eventual neighborhood
retract in (E, Σ), then the following diagram of additive categories and functors has the
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Mayer-Vietories property relative to Λ

(⋆⋆)

B̂(E0, Σ0; A)
i1

//

i2
��

B̃(E1, Σ1; A)

j1
��

B̃(E2, Σ2; A)
j2

// B̃(E, Σ; A)

where the semicompletions are taken with respect to B̂(E0, Σ0; A)

Proof. The semicompletion B̂(Ek, Σk; A)(k = 1, 2, ∅ can be described more concretely as the

full subcategory of B̂(E, Σ; A) with objects those (A, p) for which there is a neighborhood
Uk of Σk − Σ0 in Ek − E0 so that

(i) supp A ⊂ Ek;
(ii) px

y = 0 for (x, y) ∈ Uk × (Ek − Uk) ∪ (Ek − Uk)× Uk ∪ (Uk × Uk −∆); and
(iii) px

x = 1 if x ∈ Uk.

Here p = {px
y : Ax → Ay|x, y ∈ E} and ∆ is the diagonal in Uk × Uk. Notice that (i)-

(iii) implyu that p|Uk
= 1, that p|Ek−Uk

is a projection, and that (A, p) = (A|Uk
, 1) ⊕

(A|Ek−Uk
, p|Ek−Uk

).
We now verify that (⋆⋆) has the Mayer-Vietories property relative to Λ by verifying con-

ditions (1)-(5) above.

It is clear from the description of B̃(Ek, Σk; A)(k = 1, 2, ∅ that the functors i1, i2, j1 and
j2 are full and faithfull, so (1) holds.

Let (A, p) ∈ B̂(Ek, Σk; A), choose U ⊂ E − E0 satisfying (i)-(iii) above for k = ∅ (i. e.
for E), and set λ(A, p) = U . Suppose V = λ ≥ λ(A, p) = U . Then V is a neighborhood
of Σ − Σ0 contained in U . We set Vk = V ∩ Ek and let Akλ = A|Vk

(k = 1, 2), A0λ =
A|E − V , pkλ = p|Vk

(k = 1, 2), and p0λ = p|E−V . Then pkλ = 1(k = 1, 2) and the preferres
decomposition of (A, p) is given by setting

(A, p) = (A1λ, 1)⊕ (A0λ, p0λ ⊕ (A2λ, 1).

Clearly (Akλ, 1) ∈ B̃(Ek, Σk; A)(k = 1, 2) and (A0λ, p0λ) ∈ B̂(E − V, Σ0; A). Since E0, Σ0)
is an eventual neighborhood retract in (E, Σ), there is a closed neighborhood N of Σ0 in
E and function f : (N − Σ) ∪ E0 → E0 with r−1(Σ0) and r|Σ0

= id which has rW =
r|; ((N −Σ−W )∪E0, Σ0)→ (E0, Σ0) a morphism in E with rW |Σ0

for any neighborhood W
of Σ − Σ0 in E − E0. Let V be one such neighborhood. We may extend rV to a morphism
ρ : (E − V, Σ0) → (E0, Σ0), also in E , by setting ρ(y) = x for all y ∈ E − (N ∪ V ∪ E0)

for some x ∈ E0. Let (A0λ, p0λ) = ρ∗(A0λ, ρ∗A0λ, ρ∗p0λ) ∈ B̂(E0, Σ0; A). Since Corollary 1.5

shows that ρ∗ : B̂(E − V, Σ0; A) → B̂(E0, Σ0; A) is an equivalence of categories with inverse

the inclusion B̂(E0, Σ0; A)→ B̂(E − V, Σ0; A), (A0λ, p0λ is isomorphic to (A0λp0λ).
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Suppose f : A → B is a morphism in B(E, Σ; A) and that U = λ ∈ Λ. We define a
subgroup Fλ Hom(A, B) of Hom(A, B) by letting f ∈ Fλ Hom(A, B) if

(i) f decomposes as

A1λ

��

⊕ A0λ

}}zz
zz

zz
zz

�� !!D
DD

DD
DD

D
⊕ A2λ

��

B1 ⊕ B0 ⊕ B2

relative to the decomposition of A given above and any decomposition B = B1 ⊕
B0 ⊕ B2 with Bk ∈ B(EkΣk; A)(k = 0, 1, 2); and

(ii) f decomposes as

A1

��

⊕ A0

}}zz
zz

zz
zz

�� !!DD
DD

DD
DD
⊕ A2

��

B1λ ⊕ B0λ ⊕ B2λ

relative to any decomposition A = A1 ⊕A0 ⊕A2 with Ak ∈ B(Ek, Σk; A)(k = 0, 1, 2)
and the decomposition given above.

For (A, p), (B, q) ∈ (̃E, Σ; A) and λ ∈ Λ, we now let Fλ Hom((A, p), (B, q)) = {f |f =

qgp for some g ∈ Fλ Hom(A, B)}. Suppose f ∈ Hom((A, p), (B, q)) in B̃(E, Σ; A). Then
f : A→ B in B(E, Σ; A) and f = qfp. By Lemma 1.2 for k = 1, 2, there is a neighborhood
Uk of Σk−Σ0 with Uk ⊂ E−E3−k so that if either (x, y) or (y, x) is in Uk×E3−k, then fx

y = 0.
Let λ = U1 ∪ U2. Clearly f ∈ Fλ Hom(A, B) and since f = qfp, f ∈ Fλ Hom((A, p), (B, q)).
Thus (⋆⋆) satisfies (2).

That (⋆⋆) satisfies (3), (4) and (5) follows immediately from the definition of Fλ Hom((A, p), (B, q))
and the choice of the preferred decompositions of (A, p) and (B, q) given above.

This completes the proof of Lemma 3.3 �

4. Some consequences of the Mayer-Vietories property

Some consequences of the Mayer-Vietories property are obtained in this section. They are
used in the next section to prove the main results of this paper. For the remainder of this
paper, we let CM be the category of compact metrizable spaces and continuous maps.

Theorem 4.1. Let X be the pushout of the diagram X1
i1←− X0

i2−→ X2 of inclusions of spaces
in CM and suppose that X0 is a neighborhood retract in Xi(i = 1, 2). Then the square

KB̂(cX0, X0; A)
i1

//

i2
��

KB̃(cX1, X1; A)

j1
��

KB̃(cX2, X2; A)
j2

//
KB̃(cX, X; A)
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is a pullback up to homotopy. hence there is a long exact sequence

· · · → πn+1(KB)→ π(KB0)→ πn(KB1)⊕ πn(KB2)→ πn(KB)→ · · ·

(n ≥ 0) where KBi = KB̃(cXi, Xi; A)(i = 1, 2, ∅) and KB0 = KB̂(cX0, X0; A).

We recall that if X0 = ∅, then (cX0, X0) = (c, ∅).

Proof. Take (Ei, Σi) = (cXi, Xi)(i = 0, 1, 2, ∅) in Theorem 3.1. Since X0 is a neighborhood
retract in Xi(i = 1, 2), it is also a neighborhood retract in X. Hence (cX0, X0) is an eventual
neighborhood retract of (cX, X) by Proposition 1.6 and Theorem 4.1 follows directly from
Theorem 3.1 �

Corollary 4.2. For any compact metrizable space X, there are homotopy equivalences

KB̂(cX, X; A)
f
←− ΩKB̃(cSX, SX; A)

Ωi−→ ΩKB̂(cSX, SX; A)

where SX is the suspension of X and i is induced by the inclusion B̃(cSX, SX; A) →
B̂(cSX, SX; A).

Proof. The homotopy equivalence f is obtained by applying Theorem 4.1 to the pushout

diagram vX ← X → wX of spaces in CM and using the fact that K(̃cuX, uX; A)(u = v, w)

is contractible. Here we think of SX as the join {v, w}X. Since B̃(cSX, SX; A) is cofinal

in B̂(cSX, SX; A), KB̂(cSX, SX; A) is a union of components of KB̃(cSX, SX; A) and Ωi is
actually a homeomorphism. �

Corollary 4.3. For any additive category A, there are homotopy equivalences

K(Â)
f
←− ΩKB̂(D1, S0; A)

Ωi
−→ ΩKB̂(D1, S0; A)

Proof. Let X = ∅. Then cX is a point, B̂(cX, X; A) = A, SX is the two-point space and
(cSX, X) = (D1, S0). Thus Corollary 4.3 is a special case of Corollary 4.2. �

Theorem 4.4. Let X be the pushout of the diagram X1
i1←− X0

i2−→ X2 of inclusions of spaces
in CM and suppose that X0 is a neighborhood retract in Xi(i = 1, 2). Then the square

KB̂(cX0, X0; A)
i1

//

i2
��

KB̂(cX1, X1; A)

j1
��

KB̂(cX2, X2; A)
j2

//
KB̂(cX, X; A)

is a pullback up to homotopy. hence there is a long exact sequence

· · · → πn+1(KB)→ π(KB0)→ πn(KB1)⊕ πn(KB2)→ πn(KB)→ · · ·

(n ≥ 0) where KBi = KB̂(cXi, Xi; A)(i = 0, 1, 2, ∅).

The proof is given at the end of this section.
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Corollary 4.5. Let X be a compact metrizable space and j0 : X → X × I be the inclusion
at level 0. Then

KB̂(cX, X; A)
j0∗
−→ KB̂(c(X × I), X × I; A).

is a homotopy equivalence. hence the correspondence X 7→ KB̂(cX, X; A) is a homotopy
functor.

Proof. Consider the inclusions ← X → X × I. Since X is a neigborhoos retract in each of
these spaces, we may apply Theorem 4.4 to this diagram. Since the pushout of vX ← X →
X × I is homeomorphic to vX, the two spaces at the bottom of the resulting diagram are
contractible by Corollary 2.3. Corllary 4.5 now follows from theorem 4.4. The last sentence
is a well-known consequence of the first part. �

Corollary 4.6. Let ; : A → X be an inclusion of spaces in CM. Then there is a fibration
up to homotopy

KB̂(cA, A; A)→ KB̂(cX, X; A)→ KB̂(c(X ∪ vA), X ∪ vA; A)

Proof. Suppose first that A is a neighborhood retract in X and consider the inclusions
vA ← A → X. Since A is a neighborhood retract in each of these spaces, we may apply
Theorem 4.4 to this diagram. Since KB̂(cvA, vA; A) is contractible by Corollary 2.3, this
case of Corollary 4.6 follows from Theorem 4.4.

Now consider the general case. Let (X, A) be a pair of spaces in CM and consider the
space X ∪ vA. Recall that vA = A× [0, 1]/A×{1}. Let v1/2A be the image of A× [1/2, 1] in
vA, Y = Cl[X ∪ vA− v1/2A) and consider the inclusion of A into Y that sends a to (a, 1/2).
We denote the image of this inclusion by A1/2. Since A1/2 is a neighborhood retract in Y ,
the preceding paragraph shows there is a fibration

KB̂(cA1/2; A)→ KB̂(cY, Y ; A)→ KB̂(c(X ∪ vA), X ∪ vA); A.

Since the inclusion X → Y is a homotopy equivalence, by Corollary 4.5 so is KB̂(cX, XA)→
KB̂(cY, Y ; A). Thus we may replace KB̂(cY, Y ; A) with KB̂(cX, XA) to obtain the desired
fibration up to homotopy. This completes the proof of Corollary 4.6. �

Proof of Theorem 4.4. Consider the pushout diagram SX1 ← SX0 → SX2 of inclusions of
spaces in CM. Since X0 is a neighborhood retract in Xi (i = 1, 2), SX0 is a neighborhood
retract in SXi(i = 1, 2) by Proposition 1.7. By taking the loops on the spaces in the diagram
obtained by applying Theorem 4.1 to these inclusions, we see that the diagram

(3)

ΩKB̂(cSX0, SX0; A) //

��

ΩKB̃(cSX1, SX1; A

��

ΩKB̃(cSX2, SX2; A
// ΩKB̃(cSX, SX; A)
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is a pullback up to homotopy. On the other hand, if j1 : KB̂(cSXi, SXi; A)→ KB̂(cSXi, SXi; A)(i =

0, 1, 2, ∅) is induced by the inclusion, then Ωji is a homeomorphism since KB̃(cSXi, SXi; A)

is a union of components of KB̂(cSXi, SXi; A). Hence (3) is homeomorphic to the diagram

(4)

ΩKB̂(cSX0, SX0; A) //

��

ΩKB̂(cSX1, SX1; A

��

ΩKB̂(cSX2, SX2; A
// ΩKB̂(cSX, SX; A)

Let gi : ΩKB̂(cSXi, SXi; A) → KB̂(cXi, Xi; A) (i = 0, 1, 2, ∅) be the inverse of the homo-
topy equivalence obtained by applying Corollary 4.2 to the space Xi. Consider the commu-
tative cube obatined by using the maps gi to map (4) into the diagram

(5)

ΩKB̂(cX0, X0; A) //

��

ΩKB̂(cX1, X1; A

��

ΩKB̂(cX2, X2; A // ΩKB̂(cX, X; A)

We regard (4) and (5) as being the front and back faces of this cube, respectively. A
straighforward argument using Corollary 4.2 shows that each of the other faces commutes
up to a pointed homotopy. Since (4) is a pullback up to homotopy, the same is true for (5).
This completes the proof of Theorem 4.4 �

5. The proofs of the main theorems

Let A be a fixed additive category. To simplify notation, we suppress mention of A when it
is clear from the context. Let Ω−SPEC be the category in which an object is a Ω-spectrum
{An; ε} → {Bn; ηn} is a sequence of maps {fn : An → Bn|n ≥ 0} for which ηnfn is pointed
homotopic to (Ωfn+1)εn.

Let X ∈ CM and define the Ω-spectrum K̃(X; A) = {K̃(X; A)n, εn} as follows: Let

(6) K̃(X; A)n = KB̂(cSnX, SnX; A) (n ≥ 0)

where SnX is the nth suspension of X and S0X = X. then Corollary 4.2 shows that there
are homotopy equivalences

KB̂(cY, Y ; A)
f
←− ΩKB̃(cSY, SY ; A)

Ωj

−→ ΩKB̂(cSY, SY ; A)

form which we obtain a homotopy equivalence

(7) εn = (Ωj)f 1 : KB̂(cSnX, SnX; A)→ ΩKB̂(cSn+1X, Sn+1X; A)
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by taking Y = SnX and choosing a homotopy inverse f−1 for f . Thus {K̃(X; A)n, εn} is

an Ω-spectrum and it is readily checked that the correspondance X 7→ K̃(X, A) denfines a
functor

K̃(−; A) : CM→ Ω− SPEC.

Proposition 5.1. The functor K̃(−; A) has the following properties: it is a homotopy func-

tor; K̃(pt; A) is contractible; and there is a natural isomorphism of Ω-spectra ΣK̃(X; A) →

K̃(SX; A).

Proof. To see K̃(−; A) is a homotopy functor, let j0 : X → X × I be the inclusion at level 0
and recall that

KB̂(cX, X; A)
j0∗
−→ KB̂(c(X × I), X × I; A)

is a homotopy equivalence by Corollary 4.5. A standard argument (cf. [2, p.575]) now

easily adapts to prove that j0 induces a homotopy equivalence of spectra and that K̃(−; A)

is a homotopy functor. The second statement follows from the definition of K̃(pt; A) and

Corollary 2.3. The last statement is immediate from the definition of K̃(X). �

Let K̃∗(−; A) = πS
∗ K̃(−; A) : CM → GA where πS

∗ is the stable homotopy functor aand
GA is the category of graded abelian groups. Theorem I is a consequence of the following
more complete result:

Theorem 5.2. The functor K̃∗(−; A) = πS
∗ K̃(−; A) : CM → GA is a reduced homology

theory on CM; that is,

(i) K̃∗(−; A) is a homotopy functor.

(ii) There is a natural isomorphism Σ : K̃∗(X; A)→ K̃∗+1(SX; A).
(iii) For any pair (X, A) of spaces CM, there is an exact sequence

· · · → K̃∗(A; A)→ K̃∗(X; A)→ K̃∗(X ∪ vA; A)→ K̃∗−1(A; A)→ · · · .

(iv) widetildeK∗(pt; A) = 0.

Proof. Part (i) follows directly from Proposition 5.1;(ii) follows from the definition of K̃(X; A);
while (iv) follows from proposition 5.1. Finally for every n ≥ 0, there is a fibration up to
homotopy

KB̂(cSnA, Sn; A)→ KB̂(cSnX, SnX; A)→ KB̂(cSn(X ∪ vA), Sn(X ∪ vA); A)

by Corollary 4.6. The associated homotopy exact sequence may now be spliced together
using (ii) to obtain the exact sequence of (iii). �

Fro any pair (X, A) of spaces in CM, let K∗(X, A; A) = K̃∗(X ∪ vA) where the union is
over A and vA is a point if A = ∅. In particular, X ∪v∅ = X+ is X with a disjoint basepoint

attaches and K∗(X, ∅; A = K̃∗(X
+). The following result is Theorem II:
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Theorem 5.3. The functor K∗(X, A; A) is a homology theory on the category of pairs of
spaces in CM; that is,

(i) K∗(−,−; A) is a homotopy functor.
(ii) For any pair (X, A) of spaces in CM, there is an exact sequence

· · · toK∗(A
+; A)→ K∗(X

+; A)→ K∗(X, A; A; A)→ K∗−1(A
+; A)→ · · · .

(iii) If U is an open set with Cl(U) ⊂
∫

(A), then the inclusion map (X − U, A − U) →
(X, A) induces an isomorphism K∗(X − U, A− U)→ K∗(X, A).

Furthermore, if we restrict this homology theory to the category of finite CW complexes, the

representing spectrum K(pt; A) = K̃(S0; A) has Ω(K(pt; A) = K(A).

In this theorem K(A) is the non-connective spectrum that [8] associates with the additive

category A. The reader will recall that K(A) = K(Ã).

Proof. That K∗ satisfies the homotopy and exactness condition axioms follows directly from

the corresponding statements for K̃∗. That K∗ satisfies the excision axiom follows from the
arguments given in [6, p. 19]. �

It remains to identify the representing spectrum K(pt; A) for the restriction of K∗ to the

category of finite CW complexes. Let K̃ ′(S0; A) = {K̃ ′(S0; A)n, ε′n} be the spectrum with

K̃′(S0; A)n = KĈ(Rn+1; A)
ε′n−→ ΩKĈ(Rn+2; A) = ΩK̃′(S0; A)n+1

constructed from the homotopy equivalences of [8]

KĈ(Rn+1; A)
f ′

←− ΩKC̃(Rn+2; A)
Ω′

j

−→ ΩKĈ(Rn+2; A)

by choosing a homotopy inverse for f ′. Recall that these are obtained by a Mayer-Vietories
argument similar to the proof of Corollary 4.2 that uses the categories C(−; A) instead of

B(−; A). Then K̃′(S0; A) is the spectrum that [8] assocites with S0.
We now identify R

n+1 = O(Sn) with oSn =
∫

Dn+1 = {x ∈ R
n+1| ‖ x ‖< t} as above and

write cSn = Dn+1. Since every bounded map of R
n+1 extends via the identity on Sn to a

map of Dn+1, there is an inclusion of additive categories

i : Ĉ(Rn+1; A)→ B̂(Dn+1, Sn; A).

It is easily checked that these inclusions for n ≥ 0 induce a map of spectra i∗ : K̃′(S0; A)→

K̃(S0; A). The proof of Theorem 5.3 is completed by proving the following lemma:

Lemma 5.4. The map i∗ : K̃′(S0; A) → K̃(S0; A) is a homotopy equivalence of spectra. In

particular, ΩK̃(S0; A) = K(A).
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Proof. Since [8] and [9] show that ΩK̃′(S0; A) = K(A), the second sentence follows from

the first. To show the first part, it suffices to show that i∗ : K̃′
∗(S

0; A) → K̃∗(S
0; A) is an

isomorphism. Notice that by the definition of K̃(S0; A) and Corollary 4.2,

K̃n(S0; A) = KnB̂(D1, S0; A) if n ≥ 0.

Similarly

K̃ ′
n(S0; A) = KnĈ(R

1; A) if n ≥ 1,

and
K̃ ′

−n(S0; A) = K1Ĉ(R
n+2; A) if n ≥ 0.

We examine
i∗ : KnĈ(R

1; A)→ KnB̂(D1, S0; A)

for n ≥ 1 in Lemma 5.5 and

i∗ : K1Ĉ(R
n+2; A)→ K0B̂(Dn+2, Sn+1; A)

for n ≥ 0 in Lemma 5.6. �

Lemma 5.5. For any additive category A, there is a homotopy commutative diagram of
homotopy equivalences

K(Â)
ε′

yyrrrrrrrrrr
ε

''NNNNNNNNNNN

ΩKĈ(R1; A)
Ωi

// ΩKB̂(D1, S0; A)

Hence for all n ≥ 1, i∗ : KnĈ(R
1; A)→ KnB̂(D1, S0; A) is an isomorphism.

Proof. We claim that there is a homotopy commutative diagram

KÂ

��

ΩKC̃(R1; A)
f ′

oo

Ωi
��

Ωj′
// ΩKĈ(R1; A)

Ωi
��

KÂ ΩKB̃(D1, S0; A)
f

oo
Ωj

// ΩKB̂(D1, S0; A)

in which all the horizontal maps are homotopy equivalences. Letting ε′ = j′f ′−1 and ε =
jf−1. where f ′−1 and f−1 are homotopy inverses for f ′ and f will complete the proof.
To obtainn the diagram, recall the homotopy equivalences f was constructed in Corollary
4.3 using a Mayer-Voetories argument. A corresponding Mayer-Vietories argument using
C, etc. instead of B, etc. gives the homotopy equivalence f ′. Since the Mayer-Vietories
diagram using C maps to the corresponding diagram using B, the left-hand square homotopy
commutes. The right-hand square commutes since the underlying diagram of categories
commutes. �
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Lemma 5.6. Let n ≥ 0. Then i∗ : K1Ĉ(R
n+2, A)toK1B̂(Dn+2, Sn+1; A) is an isomorphism.

Proof. Since the map Ωi : ΩKC(Rn+2; A) → ΩKĈ(Rn+2; A) induced by the inclusion is a

homeomorphism, we may replace Ĉ with C in this lemma. Similarly, we may replace B̂ with
B.

To see that i∗ is onto, let x = [A, f ] ∈ K1B(Dn+2, Sn+1; A) where f : A→ A is an isomor-
phism in B(Dn+1, Sn; A). By Theorem 2.1(i) and Lemma 2.7, there is a homeomorphism h
of Dn+2 = R

n+2∪Sn+1(∞) onto itself with h|Sn+1(∞) = 1 for which h∗(f) is bounded. Since
h∗ is the identity by Lemma 1.3, x = [A, f ] = [h∗(A), h∗(f)] and i∗ is onto.

For any additive category A, let A[t, t−1 be the “polynomial extension” categoryu of A

introduced by Ranicki [10]. This category has two descriptions. In one description, the
objects of A[t, t−1 are the same as the objects of A and Hom(A, B) is the set of all formal
sums

∑∞

−∞ tnfn with fn = 0 for all n with |n| large enough. In the other description, the
objects of A[t, t−1 are the objects {An|n ∈ Z} of C(Z, A) for which An = A0 for all n and the
morphisms f : A → B are the Z-equivariant morphisms f = {fn

m : An → Bm|n, m ∈ Z} in
C(Z; A). In either case, we let A[t, t−1] denote the object of A[t, t−1] determined by A ∈ A.

The arguments given in Section 2 of [7] extend easily to define a “Bass-Heller-Swan”
homomorphism λC : K1C(R

n+1; A) → K1C(R
n; A[t, t−1]) for any n ≥ 0 and to show that λC

is injective. Since K1Â = K1A for nay additive category, the facxt that i∗ is one to one
follows fron the next lemma by an obvious inductive argument. This completes the proof of
Lemma 5.6. �

Lemma 5.7. Let n ≥ 0. there is a homomorphism λB making the following diagram com-
mute:

K1C(R
n+1; A)

i∗
��

λC
// K1C(R

n; A[t, t−1])

i∗
��

K1B(Dn+1, Sn; A)
λB

// K1B(Dn, Sn−1; A[t, t−1])

Proof. The construction of λB will follow Pedersen’s construction [7] of λC quite closely.
Let D(A) be either C(Rn+1; A) or B(Dn+1, Sn; A), A = {Ax|x ∈ X} ∈ D(A), and

A[t, t−1] = {Ax[t, t
−1]|x ∈ X} be the object of D(A[t, t−1]) determined by A. Here X is

either R
n+1 or Dnn + 1. Let p− : A → A be the projection that is the identity on Ax

if x = (x1, . . . , xn+1) has xn+1 < 0 and is zero otherwise. Let pt be the morphism of
A[t, t−1] = {Ax[t, t

−1]|x ∈ X} given by pt = tp− + (1 − p−) and notice that pt is an auto-
morphims with inverse t−1p− + (1 − p−). Finally, if a : A → A is an automorphims, we let
at = a[t, t−1] be the automorphims of A[t, t−1] induced from a.

Let [A, a] represent an element of K1D(A) and consider the commutator [at, pt]. If D(A) =
C(Rn+1; A) and a has bound d, [7, p. 469] shows that [at, pt|R

n+1 − B = id where B is the
band {x = (x1, . . . , xn+1||xn+1 ≤ 2d}. It also shows that [at, pt] restricts to an automorphims
of A[t, t−1]|B and lets λC([A, a]) be represented by [A[t, t−1], [at, pt]]. here if y = (y1, . . . , yn),
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A[t, t−1] ∈ C(Rn; A[t, t−1]) has A[t, t−1]y =
∑
{Ax[t, t

−1]|x = (y1, . . . , yn, xn+1) with ||xn+1 ≤
2d}.

If D(A) = B(Dn+1, Sn; A) and a is continuously controlled at infinity, then by appl;ying
Lemma 1.2 with K = H± = {x = (xa, . . . , xn+1| ± xn+1 ≥ 0} and W =

∫
D∓ where

D∓ = H±∩Sn, there are neighborhoods U± of
∫

D± so that if a−1 = b = {bx
y |x, y ∈

∫
Dn+1},

then bx
y = 0 for (x, y) ∈ (U± ×H∓) ∪ (H± × U∓). It now follows that c = [at, pt] has

c|U+± = id : A[t, t−1]|U±
→ A[t, t−1]|U±

.

Consider f = c| : A[t, t−1]|M → A[t, t−1]| where M = Dn+1 − (U+ ∪ U−). Applying Lemma
1.2 a second time with K = M and W =

∫
D+ ∪ D[, there is a neighborhood V of W

with fx
y = 0 if (x, y) ∈ V ×K ∪K × V . Let W± = U± ∩ V . It is thenb easy to check that

c|W±
= id : A[t, t−1]M±

→ A[t, t−1|W±
and that the rstriction of c maps A[t, t−1]|Dn+1−(W+∪W−)

isomorphically onto itself. Let λB([A, a]) be represented by [A[t, t−1], [at, pt]] where if y =
(y1, . . . , yn) then A[t, t−1] ∈ B(Dn, Sn−1; A[t, t−1]) had A[t, t−1]y =

∑
Ax[t, t

−1] where the
sum runs over those x ∈ im{z × R} ∩ {Dn+1 − (W+ ∪W−)}. Here z = (1− ‖ y ‖−1 y and
im{z × R} is the image of this line in R

n+1 under the identification of R
n+1 with

∫
Dn+1

given above. The proof that λC is well defined given in [7, Theorem 2.3] carries over, almost
without change, to show that λB is a well-defined homomorphism.

Since it follows immediately from the definitions of λC and λB that the diagram above
commutes, this completes teh proof of Lemma 5.7. �
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