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ABSTRACT. The standard combinatorial approximation C(R", X) to "2"X is a
filtered space with easily understood filtration quotients D ,(R", X). Stably, C(R", X)
splits as the wedge of the D (R", X). We here analyze the multiplicative properties
of the James maps which give rise to the splitting and of various related combina-
torially derived maps between iterated loop spaces. The target of the total James
map
j=(j,): Q"="X - X Q"az2np (R", X)
q=0

is a ring space, and j is an exponential H-map. There is a total Segal map
s = >< 54t X QZ""EZ”"D,,( R", X) - X @3naginaxlal
q=0 q=0 q=0
which is a ring map between ring spaces. There is a total partial power map

k= (kq): Q27 x - X Qrazraxta)
q=0
which is an exponential H-map. There is a noncommutative binomial theorem for
the computation of the smash power Q"2"X — Q"92"9X19) in terms of the k,, for

m < g. The composite of s and j agrees with the composite of k and the natural
inclusion

X Qragnaxta o M Q3nazinaxlal,
q=0 q=0

This analysis applies to essentially arbitrary spaces X. When specialized to X = §°,
it implies an unstable version of the Kahn-Priddy theorem. The exponential property
of the James maps leads to an analysis of the behavior of loop addition with respect
to the stable splitting of 2"="X when X is connected, and there is an analogous
analysis relating loop addition to the stable splitting of Q(X™*).

Our main purpose here is to analyze the algebraic properties of various combina-
torially defined maps relating iterated loop spaces. The “James maps” referred to in
the title will be extensions of the generalized James maps which we introduced in [6].
The “Segal maps” will be generalizations to the context of [6] of certain maps
introduced by Segal [21] in his intriguing paper on the Kahn-Priddy theorem. Other
families of combinatorial maps will also make their appearance. One application will

Received by the editors January 18, 1983.
1980 Mathematics Subject Classification. Primary 55P35, 55P47, 55Q05; Secondary 18F25, 55Q25,
55815.

Key words and phrases. James maps, Kahn-Priddy theorem, iterated loop space, splitting theorem,
coefficient system, group completion.

©1984 American Mathematical Society
0002-9947,/84 $1.00 + $.25 per page

243



244 J. CARUSO, F. R. COHEN, J. P. MAY AND L. R. TAYLOR

be the derivation of an unstable Kahn-Priddy theorem. Other applications have
appeared in [8, 18 and 23].

We shall prove the following five theorems. In the first three, X is a based space
such that my( X) is countable. In all of them, 4 is a CW complex which is assumed to
be finite unless X is (path) connected. We write [A4, X] for the set of based
homotopy classes of based maps 4 — X. Throughout, spaces are to be compactly
generated, weak Hausdorff, and of the homotopy type of CW complexes; basepoints
are to be nondegenerate.

To fix notation, recall from [6] that

Dq(Y’ X) = F(Y’ q)+ /\qu[q].

Here X9 is the gth smash power of X, F(Y, q) is the configuration space of g-tuples
of distinct points of Y, Z" is the union of Z with a disjoint basepoint, and = is the
gth symmetric group with its natural permutation action on F(Y, ¢) and X9. By
convention, X% = Dy(Y, X) = S° If Y is contractible, then D,(Y, X) is homotopy
equivalent to X.

The spaces D (R", X) are the basic building blocks for 2"2"X and the subjects of
our first two theorems. We specified a free action of 2, on F(R" — 0,9 — 1) in
[6,5.7] and we let #(n, q) be 1 plus the embedding dimension of

R™'X F(R"—0,q — 1)/Z,.

While these numbers give good destabilization for the generalized James maps of the
following theorem, the reader need only think of them as some appropriate numbers
between ng and 2nq. Note that #(n, 1) = n.

THEOREM A. For n = 2, there exist natural maps
Jgt U EX - Q’(""’)E’(""”Dq(R", X)
which satisfy the following properties:
(1) ji, is constant at the point 1 € S° = D(R", X).
(2) j, is homotopic to the identity via D,(R", X) =~ X.
Bk + B) = 3y o, J(@)J(B) for o B € [4, 972" X].

For 0 < m < n, let n[m, n] denote the natural inclusion of Q"="X in Q"3"X; it
induces the (n — m)-fold suspension on homotopy groups. In part (3), we have
continued to write j, for the evident composite

Q"S"X - QUnOZhOD (R, X) - Q*9327D (R", X).

The sums in (3) are induced by the usual loop space addition. The products are
induced by the composite of the usual loop space smash product and application of
the functor Q2" 22"’ to certain canonical pairings

(*) D,(R", X) AD/(R", X) > D(R", X).

Sums and products have similar interpretations in our remaining theorems.
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Our second theorem introduces the Segal maps, and we need some notation in
order to state their multiplicative properties. Observe that any homeomorphism o:
S§” - §" induces the conjugation homeomorphism §: £"2Z"X - Q"="X specified by
6(f)=(1ANo")ofoo on maps f: "> XAS". For s €2, let 6: QX" >
Q727X denote the composite (2"267") o &, so that 6(f) = (o' Ao ')o foa.
Let S, , C Z,,, denote the set of ( p, q)-shuffles, namely those permutations o such
that 0(i) <o(j) whenever 1 <i<j<porp+1<i<j<p-+gq.

THEOREM B. For n = 2, there exist natural maps
84t Dq(R", X) - Qraznaxlal

which satisfy the following properties:

(1) s, is the identity map of S°.

(2) s, is homotopic to 1[0, n] via D|(R", X) = X.

(3) (540 ApX@) = g'[0, nq]A(a) for a € [A, X], where A: X —» X9 is the diago-
nal map and A,: X - D(R", X) is induced from A by A,(x) = [b; A(x)] for any
chosen b € F(R", q)

@) s,,(aB) = ,es 6(s,(a)s(B)) for a €[4, D(R", X)] and B €
[4, D(R", X)), aB being defzned by means of the pairing (*).

Recall that a map X — Q'X” extends uniquely to a ¢-fold loop map Q'Z'X - Q'X".
We shall also write s, for the ¢-fold loop map

Q'Eth(R”, X) N an+12nq+1X[q1
whose restriction to D,(R", X) is the evident composite
D,(R", X) —» Qrazraxlal - Qrateznatiylal,

With ¢ = (n, g), this map s, can be composed with j,. To study the composite, we
introduce a map k , which we call the gth partial power because of its relationship to
the gth smash power. We need further notation to describe this relationship. For
l<m<gq,let P, q denote the set of all partitions of {1,2,...,q} into m disjoint
nonempty subsets and let c,, , denote the cardinality of P,, ,. Define a partial order
on the set of subsets of {1,2,...,g9} by s <t if the smallest element of s is smaller
than the smallest element of 7. Then a partition p € P, , can be written as
p = {s,...,8,} withs, < -.- <s,, and we define a corresponding map p: X!"! -
X4l by

p(x1-3%,) = (¥1s0-23,), Wherey, = x,if j € s,.
Thus p is a composite of diagonal maps and permutations.
THEOREM C. For n = 2, there exist natural maps
k,: Q'E"X - Qrazraxlal
which satisfy the following properties, where o, B € [A4, Q"Z"X]:
(1) ky is constant at the point 1 € S° = X101,

(2) k, is the identity map.
() nlng, nq + t(n, @)k (a) = (5, ° j ).
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@Dkfat B)=2,,4=r20es,, 6(k()k(B))
(5) o = 25,1 Zycp, (nlnm, nq] o Q""2"p © k) a).

The last formula may look peculiar; it would remain correct for any choice of
ordering of sets with {i} < {/j} if / <. Since the gth summand is just k («), it gives
an inductive calculation of all k (a) in terms of smash powers. While all this
structure will surely prove useful in general, the obvious application is in the case
X = S°. Here the maps p are all the identity, hence a? = 39 _, Com,1lnm, nqlk (o).
This makes it a simple matter to derive explicit formulae for the k.

THEOREM D. Forn =2 anda € [A",Q"S"],
k(e) =a(a—1) - (a=g+1),

where r € [A",Q"S™] maps all of A to a map S™ — S" of degree r. If A is a
suspension and o A) is contained in the component Q}S" of degree-zero maps, then

k()= (-1)""'(g— 1)m[n, nq](a).

Here the second statement follows immediately from the first since the reduced
diagonal 4 - A N A is null homotopic and thus products are zero when A4 is a
suspension.

As Segal observed, the Kahn-Priddy theorem follows. For an unstable version, let
us first fix some notations. For a based space X, we have an equivalence 2"( X ) =
"XV §". One form of the Hilton-Milnor theorem asserts that, for based spaces U
and V' with V (path) connected,

QU V IV) = sz( V U A V“l) X QSV.
1=0
Taking U= 2""'X, V = S~ ! and looping ¢ — 1 times, ¢ = 2, we obtain
QI(XT) = Q&'X X Q'S!, wheres'X = V ST~y
i=0

Let B(Y, q) denote the generalized braid space F(Y,q)/Z,. It is clear that
D(Y,S° =B(Y,q)". Thus j: Q"S" » Q'Z'D(R", S°), t = t(n, q), splits up to
homotopy as j; X j;’, where the maps

Jo: Q"S" - Q'&'B(R",q) and j;:Q"S" - Q'S

are defined once we fix a basepoint b € B(R", q).

THEOREM E. For n =2, t =t(n, q), and a € [A*,Q"S"), where A is a suspension
and a(A) C Q§S",

(s, Jg)(@) = (-1)*" (g = D'nln, ng + t)(«) — g'nlt, ng + 1] ;(a).

Thus, if p is a prime, then (s, ° j,)(a) = -n[n, nq + t](a) mod p.

PROOF. Part (3) of Theorem B implies s,(B8) = g'!n[¢, ng + t](B) for any B in the

image of [A*,Q'S'] in [4™,Q'Z'D(R", S°)]; hence the conclusion follows im-
mediately from part (3) of Theorem C and the second formula of Theorem D.
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All of our constructions pass to colimits over n, and B(R®, q) is equivalent to the
classifying space B2 . As usual, let QX = colim @"2"X and let QX be its base-
point component. We have a (based) equivalence Q(BE+ ) = QB2 X 0S°, %, and we
write j; for the first coordinate of the restriction of j, to 0,S° and s, for the map
OBZ, - Q,S % obtained by restriction of s,. Clearly Theorem E 1mp11es that s, © j;
1nduces an isomorphism on the p-torsion in W*QOSO

THEOREM F (KAHN-PRIDDY). For a prime p, the composite
2 s;
QoS > QBZ, = 0,S°
is a p-local equivalence.

The reader is invited to consult [18, pp. 61-66] for an outline of proofs and an
application of the ideas above to the study of 2-primary exponents of homotopy
groups of spheres. However, Theorems B and C show that some formulas on [18, p.
64] are incorrect.

REMARKS. (i) Kuhn [12] has proven that j, is not a second loop map. We do not
know whether or not j, is homotopic to the map (¢ on [10, p. 110]) used by Kahn and
Priddy.

(ii) Theorem B gives a map s,: B2, - OS 9 which lands in the component of maps
of degree p!, and s, is the 1nf1n1te loop map adjoint to the translate of 5, to 0S". 0
The action of the 1nf1n1te little cubes operad on QS° leads to a map Pyt BE - QS°
which lands in the component of maps of degree p, and Kahn and Priddy used the
infinite loop map ¢, adjoint to the translate of ¢, to Q,S %, By Adams [1], ¢, and s,
differ at most by an infinite loop self-equivalence of QBZ . They will be homotopic
if and only if the two specified translates B2, - Q,S° are homotopic; we suspect
that this is true if p = 2 but false if p > 2.

(iii) Loffler and Ray [14] have very recently given a quick geometric proof of the
Kahn-Priddy theorem.

(iv) In a slightly different direction, the second author, Peterson, and Selick have
recently shown that any map g: QSRP® — QS' which induces an isomorphism on
7, induces a split epimorphism on the 2-primary component of all higher homotopy
groups; g need not be an infinite loop map or even an H-map.

We shall derive several other results related to Theorem A. Let P"( p) denote the
mod p Moore space S"~'U,e" In [8], we used the p-local H-map Q25> -
QP??~( p) implied by the following result to obtain a simple proof of Mahowald’s
theorem [15] that K(Z,0) is a Thom spectrum.

THEOREM G. When localized at an odd prime p,
s, 02nQ2n+2k—1 2n, 2n, 2n 2k—1
Jp Qs - Q1@n.PZH P)DP(R , S )
becomes an H-map. Moreover, p-locally, D,(R?, S**~1) = P*P¥~1(p).

Although we have taken pains to make this paper reasonably self-contained, it is a
sequel to [6]. We gave general splitting theorems there, and a major concern here is
the analysis of their multiplicative behavior. In particular, we gave a new proof of
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Snaith’s stable equivalence [22] between 2"="X and V 4>1D,(R", X) for connected
spaces X, and we shall prove that our splitting is compatible with products. Let =
denote the suspension functor from spaces to spectra (denoted @, in [6]).

THEOREM H. For n = 1 and connected spaces X, the following is a natural commuta-
tive diagram in the stable category in which the horizontal arrows are equivalences:

r=1 2p+q=r.jp/\jq

Z
S®(QS"X X Q"SX) V. V ==(D(R", X)AD/(R" X)
P q

r=1 p+q=r
! !
2r>|jr
S°QS"X >\ 2*D(R", X)

r=1

Here the map on the left is loop addition and that on the right is given by the canonical
pairings () alluded to above.

This completes our summary of the main results. The proofs are all based on a
certain natural diagram

C(R", X) & c,xSarsmx,

recalled in §2, in which the left space is filtered with successive quotients Dq(R", X),
8, is a homotopy equivalence, and a, is a homotopy equivalence if X is connected
and a group completion in general. In the connected case, all of the proofs are purely
combinatorial: we simply write down maps relating the C(R", X), determine their
algebraic properties, and translate to 2"2"X via the equivalence.

To extend to nonconnected spaces, such as S°, we need some general properties of
group completions. This material is independent of the rest of the paper and of
independent interest. For example, it gives a very quick way of defining products in
algebraic K-theory. It is presented in §1.

We introduce the combinatorial pairings that we are concerned with in §2 and
study the James maps in §§3-5. In particular, these sections contain generalized
homological and homotopical variants of Theorem H and the proofs of Theorems A
and G. §§86-9 contain the proofs of Theorems B~D. An appendix gives a bit of
needed geometry. ,

In §10, we change context slightly and study the multiplicative properties of the
James maps we used in [7] to stably split such spaces as B(Z_ [G) for a topological
monoid G and Q,(X™) for a connected space X. The results here play a central role
in Snaith’s proofs of stable splittings of BU and BSp [23].

1. Universal properties of group completions. For simplicity, we agree that all given
H-spaces are to be homotopy associative and commutative in this section. An
H-space Y is said to be grouplike if 7,Y is a group. By a simple check of homotopy
groups and our CW-homotopy type assumption, it follows that the shearing map,
s(x, y) = (xy, y), is a homotopy equivalence. Restricted to {*} X Y, the first
coordinate of a homotopy inverse of s gives a map x: Y — Y which provides inverse
elements up to homotopy. Thus, a grouplike H-space is an Abelian group up to
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homotopy. Choose a point z in each component [z] of Y and let Y, be the basepoint
component. Then the map Y — Y, X m,(Y), specified by y —» (yx(z),[z]) fory € [z],
is a homotopy equivalence of H-spaces. We have the following observation.

Lemma 1.1. Let f: X - X’ induce an isomorphism on integral homology and let Y be
a grouplike H-space. Then f,: [ X', Y] = [ X, Y] is an isomorphism.

PrROOF. We may assume that Y is connected. A fixed choice for associating
iterated products determines a retraction MY — Y, where MY is the James construc-
tion on Y, and MY is equivalent to 2ZY. Since 2 f is an equivalence, the conclusion
for QY is obvious by adjunction. This implies the conclusion for Y.

Let X be an H-space. A group completion of X is an H-map g: X — Y, where Y is
grouplike, such that m,Y is the universal group associated to the monoid =, X and
H.Y is the localization of the Pontryagin ring H, X at its multiplicative submonoid
7, X for any commutative coefficient ring. It is easily seen that this condition holds
for general rings if it holds for fields [17, 1.4]. Clearly g is an equivalence if X itself is
grouplike.

We shall prove the following observation of Segal [21] (whose countability
hypothesis will be explained in the proof). Recall that two maps f, f': X — Y are
said to be weakly homotopic, written f = f’, if fk = f’k for any k: A - X whose
domain A4 is a finite CW-complex. By a simple exercise in the use of classical
obstruction theory, the conclusion of Lemma 1.1 remains valid for weak homotopy
classes of maps.

PROPOSITION 1.2. Let g: X —» Y be a group completion, where myX contains a
countable cofinal sequence. Then for any grouplike H-space Z and weak H-map f:
X - Z, there exists a weak H-map f. Y — Z, unique up to weak homotopy, such that

fg=1.
This has the following conceptual interpretation.

COROLLARY 1.3. On the category of finite CW-complexes A, the natural transforma-
tion g,: [A, X] — [A, Y] is universal with respect to natural transformations of Abelian

monoid valued functors from [A, X] to Abelian group valued represented functors
[4, Z].

We shall also need the following result. Both it and the recognition of its role in
the present proof of the Kahn-Priddy theorem are due to the first author.

PROPOSITION 1.4. Let g: X - Y and g': X' = Y’ be group completions, where my X
and my X' contain countable cofinal sequences. Then for any grouplike H-space Z and
weakly homotopy bilinear map f: X N\ X' — Z, there exists a weakly homotopy bilinear
map f: Y N'Y' > Z, unique up to weak homotopy, such that f(g N\ g') = f.

By a (weak) H-semiring space we understand a space X with two H-space
structures which satisfy the axioms for a commutative ring, with the exception of the
existence of additive inverses, up to (weak) homotopy. We require the additive unit
to be a strict multiplicative zero, so that the multiplication factors through X A X.
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We say that X is a (weak) H-ring space if it is additively grouplike. We have the
following consequence.

COROLLARY 1.5. Let g2 X - Y be a group completion of the additive H-space
structure of an H-semiring space X. Then Y admits a unique structure of weak H-ring
space such that g is a map of weak H-semiring spaces.

PrOOF. With f the composite of g and the product XA X—> X, f: YAY > Y
gives the product on Y. With unit g(1), the unit laws for Y follow from the
uniqueness clause of Proposition 1.2. The associativity and commutativity of f follow
from the uniqueness clause of Proposition 1.4.

We digress to point out how this yields products in algebraic K-theory. With
basepoint 0, 7Y is clearly a graded commutative ring for any weak H-ring space Y.

COROLLARY 1.6. For a commutative ring R, K R is a graded commutative ring.

Proor. For quickness, we take K,R = Z; the argument is easily modified to
account for the usual K,R. Let BS2(R) denote the disjoint union of the classifying
spaces BGL(n, R). On passage to classifying spaces, the standard sums and tensor
products,

@ : GL(m, R) X GL(n, R) » GL(m + n, R)
and
®: GL(m, R) X GL(n, R) » GL(mn, R),

give BGL(R) a structure of H-semiring space in which all associativity and unit laws
hold strictly. Regarding BSE(R) as a topological monoid under @, we can define
KR = QB(BSL(R)). The natural map §: BSL(R) — KR is known to be a group
completion, and this implies KR =~ BGL(R, 00)" X Z, where the + denotes the plus
construction (see [2, §3.2] for discussion). Thus K ,R = 7, KR. The previous corollary
gives KR a structure of weak H-ring space such that { is a map of weak H-semiring
spaces.

In our applications of Proposition 1.4, we shall often have three sequences X, Y,
and Z,, ¢ = 0, of additive H-spaces, with sums written @©. We shall also have
homotopy bilinear pairings ®: X, X Y, > Z,, .. Thus, we shall have composite
maps

xp+q=r ® @
a: X X, XY, - X z,-2Z,.
ptg=r ptq=r
Sending Xp +q=r(xp’ ¥,) to the sequences beginning with (x,,...,x,) and (yg,---5Y,)
and ending with the units 0 of the X, and Y| for s > r, we obtain inclusions
X X, X ch(XXp) ><(>< Yq).

ptg=r p=0 q=0

On the other hand, we have an evident inclusion

(X %)% (X x)e x| X %xy,).

=0 q=0 r=0 'ptq=r



JAMES MAPS AND THE KAHN-PRIDDY THEOREM 251

Thus the maps O above determine and are determined by a single map

D:(Xxp)x(XYq)—»XZ,.

p=0 q=0 r=0
With X, = Y, = Z, and with 1 € X, it is evident how to specify homotopy unity,
associativity, and commutativity conditions on ® so as to ensure that X = X =0 X,
is an H-semiring space under [, the additive H-space structure being the product of
the sums © on the X o When these conditions hold, we let UX C X be the unit space
{1} X (Xq>1 X,); it is an H-space under [J. With these notations, Proposition 1.4
gives the following result.

COROLLARY 1.7. Let X = ano X, be an H-semiring space as above and let g,:
X, - Y, be group completions of the X,. Then there are pairings ®: Y, \NY, > Y,
which give Y = Xq>0 Y, a structure of weak H-ring space such that g = XqBO 84
X - Y is a map of weak H-semiring spaces. Moreover, UY is a grouplike weak

H-space.

PrROOF. As in Corollary 1.5, the pairings are given by Proposition 1.4 and the
desired algebraic properties are inherited by uniqueness. The last statement results
from application of the following standard lemma to the Abelian groups my(Y,).

LemMa 1.8. Suppose a sequence of Abelian groups A,, r =0, with a unital,
associative, and commutative system of pairings A, ® A, > A, , is given. Then the set
of formal sums 2, a,, witha, € A, and a, = 1, is a group with respect to the product

(3a)(3e)=2( 2 an)
b4 b4 roptq=r

ProoOF. Regard finite sums X;_, a, as formal sums with a, = 0 for ¢ >s. Let
b, = 1, assume inductively that 3$”)a, admits the inverse b,_,, and set b, =
3,(-1yb*la’, where a; denotes the sequence with sth term a,; and remaining terms
0. Then b, is inverse to Z!_, a, and, inductively, the components of b, in 4,, for
r <s, are independent of s. The resulting limit element b is inverse to X, a,.

Use of infinite products makes the following comment obligatory.

ReMARK 1.9. Infinite products of CW-homotopy types are not CW-homotopy
types, and we agree to replace them by weakly homotopy equivalent CW-complexes
without change of notation. By Milnor [19] for the functors £”, Lewis [13] for the
functor Q, and [17, Appendix] for our combinatorial functors, all other construc-
tions we use do preserve CW-homotopy types.

The rest of the section is devoted to the proofs of Propositions 1.2 and 1.4, and we
begin with the former.

Let {a;} be a cofinal sequence in 7, X. This means that a;,, = b,a, for some b, and
that, for any ¢ € m, X, there exists d € m, X such that dc = a; for some i. Let X
denote the telescope of the sequence of left translations b;: X — X; X is contained in
X as the base of the telescope. Construct Y and Z similarly by use of the elements
g(b,) and f(b,). Since m)Y and m,Z are groups, the translations here are all
equivalences, hence so are the natural inclusions ¥ — Y and Z — Z. Since f and g
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are weak H-maps, they commute up to weak homotopy with translations and so
induce maps f: X > Z~ Z and g: X - Y ~ Y whose restrictions to X are f and g. It
is this use of telescopes which forces our use of weak homotopy, and the lim' exact
sequence can often be used to obtain more precise conclusions.

It is an easy consequence of the group completion property and the standard
description of localizations of rings as colimits (e.g. [17, p.63]) that g: X — Y induces
an isomorphism on homology. By Lemma 1.1, there results a map f: ¥ — Z such
that fg ~ f and thus fg ~ f.

To see that fis a weak H-map, observe that g X g induces an isomorphism on
homology. While X is not an H-space, in general, it is easy to see (usmg homotopy
commutativity) that the product ¢ on X extends to a product ¢ on X which is
compatible up to weak homotopy with the products ¢ on Y and Z. Thus

TV _ - =W = « =W _
S(fXFUEXE)=o(fX[)=fo=fgo=fo(g*3)
and therefore ¢( f X f) = fo by the weak homotopy version of Lemma 1.1.
Finally, suppose given a second weak H-map k: Y — Z such that kg = f. Since k

is a weak H-map, we find easily that kg = f = fg and therefore k = fby Lemma 1.1
again.

We use function H-spaces to prove Proposition 1.4. For H-spaces Y and Z, let
H(Y, Z) be the space of based weak H-maps Y — Z. Then H(Y, Z) is an H-space
under the product induced by Z, (jk)(») = j(y)k(y). The homotopy commutativity
of Z ensures that jk is again a weak H-map. The constant map at the unit of Z is the
unit of H(Y, Z), and H(Y, Z) is evidently homotopy associative and commutative.
Moreover, if Z is grouplike with a homotopy inverse map x, then H(Y, Z) is
grouplike with a homotopy inverse map specified by j — x - j.

We have the following interpretation of weak homotopy bilinearity.

LemMA 1.10. Let X, Y and Z be H-spaces. A map f: X \ Y — Z is weakly homotopy
bilinear if and only if its adjoint f provides a weak H-map X - H(Y, Z). The same
conclusion holds with the roles of X and Y reversed.

Now adopt the notations of Proposition 1.4. The adjoint X - H(X’, Z) of fis a
weak H-map, so extends uniquely to a weak H-map Y — H(X’, Z) with adjoint f:
Y A X' - Z. Since f is weakly homotopy bilinear, its adjoint on the other side
X' - H(Y, Z)is a weak H-map, so extends uniquely to a weak H-map Y’ - H(Y, Z)
with adjoint f: Y A Y’ - Z. The uniqueness clause of Proposition 1.2 implies the
uniqueness of the weakly homotopy bilinear map f.

2. Combinatorial pairings; loop sums and smash products. As in [6], let A be the
category of finite based setsr = {0, 1,...,r} (with basepoint 0) and based injections.
A coefficient system Cis a contravariant functor from A to spaces with zeroth space
C, a point. Associated to any coefficient system C and based space X (with basepoint
) there is a space

cx=ce,x)=1 e xx7/(~),

r=0



JAMES MAPS AND THE KAHN-PRIDDY THEOREM 253

where the equivalence relation is specified by (c¢, x) ~ (¢, ¢x) for ¢: r - s in A,
c€C, and x =(x,...,x,) € X"; here ¢x = (x},...,x;), where x;,) = x, and
x) = »ifj & Imé.

Write [¢; x] for the image of (¢, x) in CX. Filter CXby F,CX =11,_, €, X X//(~),
give the F,CX the quotient topology, and give CX the colimit topology. The inclusion
of F,_,CX in F,CX is a cofibration with quotient

FCX/F,_CX=D/(C, X)=C; Nz X9

Details of the above are in [6]. There we also talked about II-spaces. At the price
of considerable extra verbiage to keep track of pairings of II-spaces, all of our
combinatorial work could be carried out in the more general context.

For a space Y, let C(Y) be the coefficient system whose gth space is F(Y, q). For
¢:r—-sinAand (y,,...,y,) € F(Y, s),

(P15 o900 = (Doqayo -+ Yot ) -

These are the most important examples for the technical part of our work. We write
C(Y, X) and D (Y, X) for the resulting spaces. It should always be kept in mind
that these are functors of X but are only functorial with respect to injective maps of
Y.

Other examples we need are operads, especially the little cubes operads C,. The
gth space of C, consists of g-tuples of linear embeddings J” — J" with disjoint
images, where J is the open unit interval. Morphisms of A act just as above. Here we
write G, X and D, ; X for the resulting spaces. Via a homeomorphism J = R, we can
replace J by R. Then the map of coefficient systems G, » C(R"), obtained by
sending cubes to their centers, induces natural homotopy equivalences

8,:C,X-C(R", X) and g, D, X- DJ(R", X).

We write g;! for any chosen homotopy inverses.
Regarding S” as I"/dI", we obtain a natural map «,: C,X - Q"2"X by the
following simple prescription, where s € S™:

x; At ife(t) =s,

an[<cl,...,cq>,x,,...,xq](s) R ifse U Ime;.

J

If X is connected, @, is a homotopy equivalence. In general, «, is a group
completion. We set 8, = a,, g,

Proofs of the above statements may be found in [16, 5,20 and 4]; they need not
concern us here. What does concern us is how these maps relate to various standard
maps (loop sums, smash products, etc.) between loop spaces. As observed in [16],
such comparisons are quite trivial verifications in view of the very simple and
explicit nature of the maps g, and «,. To define the model level analogs of loop
sums and smash products, and for other purposes, we first note that A has sums and
products, and then introduce notions of additive and multiplicative pairings of
coefficient systems.
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DEFINITIONS 2.1. (i) Define the wedge sum V: A X A - AbypVq=p+qon
objects and, for ¢: p — p’ and y: q — (',

(¢V\P)(i)={¢(i) ifl<i<p,

Yv(i—p)+p ifp<i<p-+taq.

(ii) Define the smash product /A\: A X A — A by p /A q = pq on objects and, for
¢:p—>pandy:q-q,

(¢ AY)((i = Dg+j)=(¢(i) — g’ +¥(j), wherel<i<pandl<j<g.

DEerFINITIONS 2.2. Let @, % and € be coefficient systems.

(i) A sum @: (€, B) - Cis a collection of maps &, X B, > C,, which define a
natural transformation from @ X ® toCo V.

(i) A product ®: (@, B) — Cis a collection of maps &, X B, > C,, which define
a natural transformation from @ X ® to Co /\.

Morphisms of such pairings are triples of maps of coefficient systems which
commute with the given natural transformations. Via the evident r-fold wedge sum
and smash product on A, there are obvious generalizations to r-fold pairings.

The following lemmas are immediate from the definitions. We write AX for
C(@, X), and so forth, to abbreviate notations.

LEMMA 2.3. For a sum ®: (@, B) — C and based spaces X and Y, there is a natural
induced map ®: AX X BY - C(X V Y) specified on elements by the formula

[a; x,,...,xp] €B[b; yl,...,yq] =[a€Bb;x1,...,xp, yl,...,yq].
This map carries F, X F 10 F,

@:D,(€, X) AD(B,Y) > D, (C, XV Y).

Often X = Y. We then continue to write @ for the internal sums obtained by
composing with C(v) or D, (1, V), where v: X V X — X is the folding map.

and so passes to filtration quotients to give maps

LEMMA 2.4. For a product ®: (&, ®) — C and based spaces X and Y, there is a
natural induced map ® : AX N\ BY - C(X N\ Y) specified on elements by the formula

[a; xl,...,xp] ®[b; yl,...,yq] =[a®b; X x; Ny
()

9

where 1 <i<p, 1 <j < q, and the set of pairs is ordered lexicographically. This map
carries F, \ F, to F,, and so passes to filtration quotients to give maps

®:D,(&; X) AD(B;Y) > D, (C, XA Y).

Often we will have a canonical map f: X A Y — Z, the choice of which should be
clear from context. We then continue to write @ for the products obtained by
composing with C(f) or D, (1, f).

A word about basepoints and the case p =0 (or ¢ =0) is in order. X has
basepoint * and we define X° = {*}. We denote adjoined disjoint basepoints by 0
and think of S° as {1}*. We take X[® = {x}* with basepoint 0, not *. Since C, is
also a point *, this forces the convention

Dy(C, X) =€ A X101 = (€, x X°)" = 8° with (x,%) = 1.
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All maps in the lemmas are based, where the basepoint 0 is used in forming smash
products whenp = 0orqg = 0,and 1 @ [b; y] = [b; y] while 1 ® [b; y] = 1.

ExAMPLE 2.5. For any spaces Y and Z, we have a sum @: (C(Y),C(Z)) -
C(Y'11Z) specified by

<y,,...,yp>+ <zl,...,zq>= <y1,...,yp,zl,...,zq>.

If i YIIZ - W is an injective map, we can compose with C(1,7) to obtain ©:
(C(Y), C(2)) » C(W). When Y = Z = W, we say that an injection / is good if its
restrictions Y — Y are both homotopic through injections to the identity map. This
is just enough to ensure that C(Y, X) is an H-space under ©.

We have analogous r-fold sums defined for r-tuples of spaces and we have the
analogous notion of a good injectionIl ,_,, Y - Y. Of course, if Y is a manifold,
such injections are embeddings and a homotopy through such embeddings defines
an isotopy. We shall prove the following uniqueness result in the appendix.

LEMMA 2.6. For n = 2, any two good embeddings |1, _,;<, R" - R" are isotopic.

ExaMPLE 2.7. For any operad C and any point ¢ € C,, the operad structure maps
y(c): €, X €, - C,, specify a sum ©: (C,C) > C. If @, is connected (as always
holds in practice), then CX is an H-space under @. Similarly, any element of C,
gives an r-fold sum on C; if C, is connected, any two such sums give homotopic
r-fold sums on CX. When C is the little n-cubes operad and ¢ = (¢, ¢, ), y(c) is
simply given by composition of little cubes:

y(c)((al,...,ap>,<b1,...,bq>) = (c1ay,...,¢,a,,¢;by,...,c3b, ).

Via J" = R", {¢,, ¢, ) defines a good embedding R"IIR"” — R". It also defines a
pinch map S” — $” VV §”, namely the Pontryagin-Thom construction on this embed-
ding, and thus a loop sum * on "X for any X. With these choices, the following
lemma is immediate.

LEMMA 2.8. The following diagram commutes for any X:

gnxg” anxan

C(R", X)X C(R", X) < CXXCX =" QIXXQ'3"X
® ) I*
C(R", X) il C, X 3 Qsnx
There are analogous examples of products.

ExaMPLE 2.9. For any spaces Y and Z, we have a product ®: (C(Y), C(Z)) -»
C(Y X Z) specified by

(Droe,)® (210ens2,) = < X (y,.,z,)>,

()]

where 1 <i<p, 1 <j < g, and the pairs are ordered lexicographically.
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ExAMPLE 2.10. We have a product ®: (C,, C,) = C,,.., specified by
(ar,)® (b )= X ax),

(C))
where a; X b;: J™*" - J"™*" is the product little cube.
The following lemma is another immediate verification.

LEMMA 2.11. The following diagram commutes for any X and Y

8m”\8&n a,Ne,
C(R™, X) AC(R"Y) =" C,XAGY "= QrS"XAQE"Y
®| le A

Em+n X pptn

C(Rm+n’ XA Y) pal Cm+n(X/\ Y) - Qm+n2m+n(X/\ Y)

It is convenient to allow O-fold loop spaces Q°Z°X = X. Let ¥ be the trivial
coefficient system with @)= {*}, @, = (1}, and ¥, empty for ¢ > 1. Clearly
C(9®, X) = X. By convention or definition, C; = & and C(Y) = @ if Y is a point.
With g, and «, both identity maps, Lemmas 2.8 and 2.11 are valid for all m = 0 and
n=0.

The following easily checked lemma leads to the context discussed in the previous
section.

LEMMA 2.12. The three products displayed in the previous lemma are all homotopy
bilinear maps.

We shall also need the following examples. The product of coefficient systems is
defined in the evident spacewise way.

EXAMPLES 2.13. Sums (@, ®) —» C and (@', %’) - €’ induce a sum (& X @, B X
B") - € X €’ such that the two projections define morphisms of sums. The same
statement holds for products.

To relate sums and James maps, it is useful to have a notion of a pairing from two
sequences of coefficient systems to a third one.

DEFINITION 2.14. Let @4, %7 and C% g =0, be three sequences of coefficient
systems. A pairing (1: ({@7}, {®7}) —» {€"} is a collection of maps
ao: X @;x%;{ﬁ@;, 2= 2 s,

ptq=r ptq=r

one map for each r =0 and each choice of the s, > 0 and t,= 0, such that the
following diagram commutes for morphisms ¢,: s, > u, and ¢, t, = v, in A,

W= Zpig=r U4
p q -
X @rx® - ¢
ptrq=r
Xp+q=r¢Px‘P'7‘|’ y Vp+q=r¢p/\‘pq

X @, x®, - @

w
prq=r
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An easy verification gives the following result.

LEMMA 2.15. Let 01 be a pairing as above. Let X, and Y, be based spaces, q = 0,
and define W, = V X, N\ Y,. There are natural induced maps

O: X 47X,X B, - C'W,
ptq=r

ptrq=r

specified on elements by

X ([ap; x,], [bq; yq]) -

prq=r

D( X (ap’bq)); X X(xp,t/\yw) ’

ptq=r ptq=r (i, J)

where x, = (Xp 15+ -3%p ;) and y, = (y,1>- ..,yq,,q). The ordering on the right is by
increasing p and, for fixed p, by lexicographic ordering of the (i, j).

As in the previous section, it is useful to regard these maps (] as components of a
single map

o (X 4 x |

=0

X Bqu) - X C'W,.
q=0 r=0

Often we will have canonical maps f,: W, —» Z,, the choice of which should be clear
from context. We then continue to write (] for the products obtained by composing
with the maps C'f.. For example, given a sum @: (&, B) — € and using the wedge
sum of the pairings D,(€, X) A\ D (B, X) - D(C, X) of Lemma 2.3 to specify the
f,, we obtain '

o

In fact, these are the central examples in our applications.

While these last definitions may look a bit formidable, we have already en-
countered a simple source for such pairings [J.

ExAMPLES 2.16. Given further coefficient systems 0”9 and given products ®:
(@7, B%) - D?9and sums B: X )79 - ©’, the following composites define
a pairing (:

X 4°D,(@, X)) X ( X BD,(D, X)) - X C'D,(C, X).

p=0 q=0 r=0

ptrqg=r

Xp+q=r® ®
X @f; X %Z - X GDS’;;Z -C/.
ptq=r prq=r

Here the map [ of the previous lemma factors as the corresponding composite. In
particular, with @ =B =C"=D?% p+ q=r, ® and ® induce pairings O] on
the sequences {C(R"?)} and {C,} for any fixed n.

Only pairings of this general form are needed for the theorems stated in the
introduction. A slight variant not quite of this form will play a role in the general
theory.

3. Pairings of James systems and homological splittings. Here we use the pairings
O to work out how sums and James maps interact. To be precise about this, we
must first recall the definition of the latter from [6]. Fix ¢ = 0 and consider an
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injection ¢: r — s. If Y: q — r is an ordered injection, so that (i) < () if i </,
then there is a unique ordered injection w: q — s with the same image as oy
Giving the sets of ordered injections q — r and q — s, the reverse lexicographic
ordering (¢ <y’ if Y(i) < ¢’(i) for the largest i with ¢(i) # ¢’(i)), and observing
that these sets have m = (r — g, q) and n = (s — ¢, q) elements, respectively, we see
that the correspondence ¢ — w specifies an injection ¢: m—>n. A James system
C - €’ is a sequence of maps £, ,: C =, r=0, such that {, ¢ = $§q,s for an
injection ¢: r —>s. Given such a system, the associated James map j,: CX —
C’'D,(C, X) is specified by the formula

jq[c; x] = gq,r(c); X e, ¥¥x]|s
I<i<m
where ¢ € C,, x = [xy,...,x,] € X', {§,} is the set of ordered injections q — r, and
Yrx = (X 1yse -5 Xy, () € X% When g =0, we shall always take C’ = p. Here the
definition gives that j,: CX — Dy(C, X) = S° is constant at 1. We need some
combinatorics to relate these maps to sums.

CoMBINATORICS 3.1. Fix nonnegative integers r, u and v, and consider all pairs
(p, q) such that p + g = r. Let {x?}, {¢/} and {«,} be the ordered sets of ordered
injections p - u, q - v and r — u + v, respectively. (Some of these may be empty.)
Obviously x7 V ¢ € {w,}, and it is not much harder to see that any w, is x7 V ¢/
for some choice of p, g, i and j. Thus, as unordered sets,

= I {xrvs,
ptg=r
this set having w=(u+ovo—r,r)=2,, ,—(u—p,p) (v —4,9) elements. Order
O ,,=AX? V¥f} by increasing p, for fixed p increasing i, and for fixed p and i
increasing j. Let 7, , , € 2, be that permutation which reorders this set according to
its identification with the ordered set {w, }.

The following observation may help explain these permutations.

REMARK 3.2. Consider the James construction MX and the classical James maps
Jg: MX > MX'9 (see [9 or 6, 3.3]). With the evident & and ®, the permutation
. measures the deviation from commutativity of the restriction of the following

r,u,ov

diagram to X* X X*:

X o _ X X _®
MX X MX __M X MXPlx Mxlal p_+q_' s (MX[,])rH
ptrg=r
GB\L lo
MX o MX[r]

We give a legislative solution to such noncommutativity.

DEFINITION 3.3. A pairing of James systems consists of a sum @: (€, %) > C, a
pairing O: ({@7), {®7)) - {€’}, and James systems {p,, }: &- &%, {r, }:
B > B and {£,,): C— €, for p, g, r =0, such that the following diagram com-
mutes for each r, u and v, wherew = (u + v — r, r):
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Xp+q=,#p.u><”q,v

@’u X %0 @(ﬁ—p,p) x €l3)(qv—q,q)
o o
fr,u+v Tr.u,o
@u+o > ‘: N @‘:

The following result should come as no surprise. What should be mildly surprising
is that there are examples.

PROPOSITION 3.4. Given a pairing of James systems, the following diagram com-
mutes for each r = 0:

X ptg=rdpXiq

AX X BY > X A’D,(@, X) X BID(B,Y)
ptqg=r
Lo
o C,( V' D@, X) AD,(®, Y))
ptq=r
1C(®)
C(XVY) - > C'D(C, XV Y)

PrROOF. It suffices to compute both composites on points ([a; x],[b; y]), where
a€®,beRB,x € X*“andy € Y*. Going clockwise, we obtain

D( X (1), Vq,u(b))); X ><[axf’EBbtl/,-";(xf’)*(X),(tl/j")*(y)]]-

ptq=r p+qg=r (i, ))

Going counterclockwise, we obtain
I:gr,u+o(a @ b)’ >< [(a @ b)wk; w/t(x, y)]]
k

Since (a © b) (x V ) = ax V by by the naturality of @ and since (x V ¢)*(x, y)
= (x*(x), ¥*(y)) by inspection, the equivariance relation in the construction of
C'D(&, X V Y) implies the conclusion.

Our first example is rather trivial, but paradigmatic.

EXAMPLE 3.5. Let @: (@, B®) — Cbe any sum. As always, take @° = B° = ° = @,
For g = 1, take @7 = B = C7 = 9, where I is the operad with each N; a single
point. The associated construction NX is the infinite symmetric product. Using the
only possible maps, we obtain a pairing of James systems. The pairing O] on {9} is
obtained as in Example 2.16 from the only possible sum @ and product ® on 9.

The rest of this section is an illustrative digression in which we use this example to
prove the following analog of Theorem H.
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THEOREM 3.6. Let ®: (&, B) — C be any sum. For any based spaces X and Y and
Abelian group G, the following is a natural commutative diagram in which the
horizontal arrows are isomorphisms:

i S o1 Sy Uy Nig),
A,(AX X BY; G) e

S 3 HJ(D,(& X)AD(B,Y);:G)

r=1 p+q=r
@, 13213 g @

22100,

H,(C(XVY);G) >> H,(D(C, XV Y);G)

r=1
ProOF. For r = 1, the present special case of the diagram in Proposition 3.4 can
be rewritten in the form:
2 prg=rpXJ
AX X BY—L—-’,—;N( V' D@, X) A D%, Y))
ptg=r
ol LN (®)
jr
C(XVY) ND(C,XVY)

Let MG denote the Moore space with H,(MG; Z) = G, so that ﬁq( X; G) is
isomorphic to 7, N(MG A X) for any based space X. The inclusion of MG in
N(MG) and the tensor product N(MG) A NX - N(MG A X) yield a natural map
MG A NX - N(MG A X) and the addition on NX yields a natural map NNX - NX.
Smashing our diagram with MG, applying N, and using these maps on the right, we
obtain the diagram:

V' MG A D@, X) A D%, y))
ptq=r

l l
N(MGAC(XVY)) =~ N(MG A D/(C, XV Y))

N(MG A (AX X BY)) - N(

Summing over r = 1, we can replace the spaces to which N is applied on the right by
the wedges over r = 1 of all these spaces. It was proven in [6, §4] that the resulting
bottom arrow induces an isomorphism on homotopy groups, and a precisely
analogous induction over filtration gives the same conclusion for the resulting top
arrow.

The interest lies in the following immediate consequence.

COROLLARY 3.7. For any commutative coefficient ring, the pairing
&, HAX® H.BX > HCX
can be computed as the sum of the filtration quotient pairings

®,: H,D,(@, X) ® H,D(B, X) > H,D, (C, X).

Note, in particular, the case @: (9, 9) - . Here D, (N, X) is the reduced
symmetric power X'71/3 .
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4. Canonical pairings and splittings of spectra. Here we obtain canonical pairings
of James systems and use them to prove a generalization of Theorem H.
_ Any coefficient system C has an associated James system j,: C - ?P(C_‘Zq), where
¢, = C,/Z, (denoted B, in [6]) and where P(Y) denotes the coefficient system
whose jth space is the Cartesxan power Y. Indeed, let 7: C, - G be the projection
on orbits and define ¢ ,: C, - G”‘ =(r—q,q),by

gq,r(c) - (W(C‘Pl)’ s ’W(C‘Pm))’

where {y,} is the ordered set of ordered injections q - r. We would rather land in
the configuration space coefficient system @(@ ). Thus we say that C is separated if
§,,, takes values in F(C,, m) for all g and r. We then refer to {§,,}: C - @(@ )asa
canonical James system It induces a canonical James map

J;: €X = C(€,, D(C, X)).

For examples, it is easily checked that C, is separated if n = 1 and C(Y) is separated
if Y has infinitely many points.

Now let @: (&, ®) > Cbe a sum and let D7 = @(@ X B ,)- By Example 2.9,
we have a product ®: (@(@ ), @(63 ) - DP9 As in Example 2.5, the maps
Gt’, X % -C »+4 induced by @ g1ver1setoan(r+ 1)-fold sum ©: X _ D79~
@(@ ). By Example 2.16, there results a pairing

0: ({e(&,)}. {e(3,)}) - {2(2)}.

Again, we would rather land in {C(C,)}.
DErFINITION 4.1. Let @, %% and © be separated coefficient systems. A sum D:
(@, B) - Cis said to be separated if the induced maps
©: [ €x%,-¢
ptrg=r
are injections and so induce a sum @: X _ _ D77 - @(@ ). A sum is said to be
weakly separated if the pairing (1, defined above factors through {C(C,)}. We then

refer to
0: ({e(&,)}. {e(3,)}) - {e(&))

as a canonical pairing of James systems.
We pause to check that we have gotten everything right.

PrOPOSITION 4.2. If @: (&, B) — Cis a weakly separated sum, then the canonical
James systems and the canonical pairing constitute a pairing of James systems.

ProoF. Consider the diagram of Definition 3.3. Fora € @ ,and b € B,
O X (@) = { X X alaxt) @ n(oy1))
prq=r pta=r(ij)
while
urolat ) = ( X nl(a®b)o,)).

k
The permutation 7, , , was defined so as to convert the first to the second.
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EXAMPLE 4.3. The sum @: (C(Y), C(Z)) » C(Y1IZ) of Example 2.5 is separated
for (infinite) spaces Y and Z. Indeed, the induced maps

®: [l B(Y,p)XxXB(Z,q)-B(YllZ,r)
ptq=r
are easily seen to be homeomorphisms.

EXAMPLE 4.4. The operad sum on C, is separated for n = 1.

ExaMPLE 4.5. If either of two sums (&, %) > € and (&, D) —» €’ is weakly
separated, then so is the product sum (& X @', % X B') - C X €. The analogous
assertion for separated sums is false, and this motivates our introduction of the
weaker notion.

In the rest of this section, we use this example to prove the following result. With
@=%=C=C(R") and X = Y, we see from Lemma 2.8 that Theorem H is an
immediate consequence. A coefficient system C is said to be 2-free if each €, is
2 -free.

THEOREM 4.6. Let @: (@, B) > C be any sum, where @, B and C are Z-free
coefficient systems. For based spaces X and Y, the following is a natural commutative
diagram in the stable category in which the horizontal arrows are equivalences:

2r>l 2p+q=rjp/\jq

S*(AX X BY) >V V 3%(D(&, X) AD,(B,Y))
r=1 pt+q=r
z‘wel« ‘l'vr>lvp+q=re
S
S2C(XV Y) - >V 3®D(C, XV Y)
r=1

PROOF. Let &= € X C,.- (We used C(R>) rather than C_ for the same idea in [6];
use of C_ is slightly more efficient.) By [6,2.7], the projections CX - CX and

q(@ X) - D(C, X) are equivalences, and similarly for @ and %. The separate~d
sum (C_, C_) - C,_ and the given sum induce a weakly separated sum (&, $) -
To av01d drowning in a wave of tildes, we start over and assume, without loss of
generality, that the given sum is weakly separated. Then Proposition 3.4 applies. To
get from its diagram to a diagram in_the stable category, we apply the tilde
construction to the coefficient systems C(C,) to obtain natural maps

c(@, x)<c(2(8), x) S x=ox.

Again, the projection =, is an equivalence. Choose a homotopy inverse for each X
and let B: C(C,, X) - QX be the resulting map. Observe that the three sequences of
projections
e(e,) <e(e,)-c,, e(8,)<e(®,) -c,, e(C,)<e@)-e,
specify two morphisms of pairings {J. Composing the diagram of Proposition 3.4
with maps 8 on the right, we find by Lemmas 2.8 and 2.11 and the observation just
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given that the resulting homotopy commutative diagram may be rewritten in the
form ]
X +, =,-j N
Axx BY — 27 S 0D(@, X) A QDD Y)_E.Q( V' D@, X) A DA%, Y))
ptg=r ptq=r
®| 1Q(®)

C(XVY) z > 0D(C,XVY)

where we have continued to write j, for its composite with 8 and where [1 denotes
the composite obtained from external smash products and the (r + 1)-fold loop sum.
Adjointing to obtain maps of suspension spectra, commuting wedges past £, and
summing over r = 1, we obtain the diagram of the statement. Its bottom arrow was
proven to be an equivalence of spectra in [6, §8], and a precisely analogous induction
over filtration proves the same conclusion for the top arrow. Naturality in X and Y
is clear and naturality in the given pairing is proven by the methods of [6, §9].

5. Multiplicative properties of the unstable James maps. We prove Theorems A and
G here. To begin, specialize the theory of the previous section to the canonical
pairing of James systems associated to the composite of the separated sum
(C(R™), C(R™) » C(R"IR™) and C(i) for a chosen good embedding i = i; + i,:
R"IR" - R". To abbreviate notation, set

(5.a) C(n,q)=C(B(R",q)) and C(n,q, X)=C(B(R", q), DR", X)).
Notice that C(n,'q, X) is an H-space by virtue of the good embedding

e(i) = B(i\, q) + B(i,, q): B(R", ¢)IB(R", q) - B(R", q)
induced by i. Proposition 3.4 specializes to give the following result.

PROPOSITION 5.1. The following diagram is commutative:

xp+q=r~/}7 qu

C(R", X) X C(R", X) >X C(n, p, X)X C(n,q, X)
ptq=r
®) 1
C(R", X) - >C(n,r, X)

The maps O arise from the pairing on the sequence of coefficient systems C(n, q)
obtained by specialization of Definition 4.1. It is helpful to notice that there is a
slightly different pairing which gives rise to homotopic maps. We have the internal-
izeéd tensor product pairings

(€(n, p), C(n,q)) SC(B(R", p) X B(R",q)) > €(n, p + q)

and, as above, a good embedding j: I ,,,—,R" > R" induces a good embedding
e(j): 1,4 ,-,B(R" r) > B(R", r) and thus an (r + 1)-fold sum ®: C(n,ry*' >
C(n, r). Therefore, application of Example 2.16 gives a second pairing on {C(n, q)}.
The following observation leads to a comparison.
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LEMMA 5.2. If n = 2, the following composztes are isotopic:

®
I B(R,p)xB(RYq) "= I B(R".r) 3 B(R"1).
ptq=r ptq=r (/)

PROOF. By Lemma 2.6, we may as well choose our good embeddings i = i; + i,
and j = j, + - - - +J, so that there exist isotopies J,: j, = 1 such that each embedding
J,.s 0 <1 <1, carries the images of i, and i, into themselves. With these choices, the
conclusion is obvious since the respectlve composites send (a, b) to (i,a, i,b) and
(J,i1a, j,i,b) if a € B(R", p) and b € B(R", q), the cited embeddings R" — R"
being applied coordinatewise.

A simple comparison of definitions gives the following consequence.

LEMMA 5.3. The map O: X C(n, p, X) X C(n, q, X) - C(n, r, X) is homo-

ptrq=r
topic to the composite
X C(n, p, X) X C(n, q, X)—ﬂ’——>>< Cn, r, X) > C(n, r, X).
ptaq=r ptq=r

It is easy to see that the maps & here are homotopy bilinear, and this implies the
first part of the following result. Choose embeddings e,: B(R", q) — R*"9; there
exist such embeddings since B(R", q) is an ng-manifold, and any two are isotopic.

PROPOSITION 5.4. For n =2, X
product over q = 0 of the maps

BaniCleg,1): Cln, g, X) » @"9Z2"D,(R", X)

is a map of H-semiring spaces.

=0 C(n, q, X) is an H-semiring space and the

PrOOF. Recall that 8, = a, g,'. In view of Lemmas 2.8 and 2.11, it suffices to
study the maps C(e,,1). They are H-maps since the H-space structure on
C(R*"4, D(R", X)) can be obtained from a good embedding j =j, + j;:
R*"[IR*" - R*"% such that jie, =~ e,B(iy,q), k=1 and 2, via isotopies with
disjoint images. Similarly, up to homotopy, C(e,, 1) carries the (r + 1)-fold sum on
C(n,r, X) to that on C(R*"", D(R", X)). If p+q=r, e, o @ is isotopic to
e, X e, B(R", p) X B(R", q) » R?*"". This and the naturality of the external pair-
ing @ imply

® o (C(e, 1) X C(e,,1)) = Cle,, 1) 0 ®.

If X is connected, the proof of Theorem A can now be completed as follows. We
can choose e, to factor through e;: B(R", g) - R, where s = s(n, q) is the embed-
ding dimension of B(R", ¢), and we can take the James maps needed for Theorem A
to be the composites

B! Ja BC(ej,1)
Q"3"X > C(R", X) > C(n, q, X) —>Q°2°D (R", X).

Here part (3) of Theorem A is valid for all CW-complexes, not just finite ones. We
observed in [6, 5.7] that B(R", ¢) is diffeomorphic to R X A(n, q), where

A(n,q) =R X F(R"— {0}, — 1)/%,.
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Since we defined #(n, q) to be 1 plus the embedding dimension of A(n, q), s(n, q)
might be a smidgeon smaller.

Before proceeding, we interpolate a lemma. Via the diffeomorphism just cited, a
good embedding i: R"[IR” — R" determines the good embedding

f(i): B(R", g)IB(R", q) - B(R", q)
whose restrictions are i; X 1 and i, X 1. We shall prove the following analog of
Lemma 2.6 in the appendix.
LEMMA 5.5. The good embeddings e(i) and f(i) are isotopic.

Thus f(i) induces the H-space structure used above on C(n, g, X). We agree to let
our good embeddings i (for any »n) have the form (A, X 1) + (h, X 1) for a good
embedding &, + h,: RIIR - R. Now choose an embedding ¢, A(n, q) > R,
t = (n, q), and let d, = 1 X ¢, be the resulting embedding of B(R", q) in R’. Then
d, clearly commutes with the good embeddings f(i) for B(R", q) and i for R*. Thus
C(d,, 1) is an H-map, hence so is the composite

(5.b) Y, = BC(d,,1): C(n,q, X) - Q'Z'D,(R", X).

We now prove Theorem G. Let p be an odd prime. Calculations of Cohen [5, III]
give that, with mod p coefficients,
H,D(R*™ S*')=0 ifl<g<p and H,D,(R? $**7')=H,P>*\(p),
the latter with nontiivial Bockstein on both sides. (If n > 1, D,(R*", $**7') has too
much homology to be a Moore space.) Thus, p-locally,

DR, $*"") = {+} if1<g<p and D,(R §%') =Pk i(p);
the first of these implies
D(R*, S**""YAD,_(R*",S* ') ~{x} if0<g<p.

By Proposition 5.1, Lemma 5.3, and the observations just given, the composite James
map
ﬂ2ns2n+2k—lﬁi'} C(R2n S2k—l) ji) C(2 S2k—l) iﬂtle (R2n S2k—l)
- K n b P ] 44 )
becomes an H-map when localized at p.
To prove Theorem A for nonconnected spaces, we exploit the following generali-

zation, due to Caruso [4], of the results cited in §2. (A space Y is weak metric if
AY = d~'(0) for some map d: Y X Y - [0, 0).)

THEOREM 5.6. For weak metric spaces Y, there is a natural H-map : C(R X Y, X)
- QC(Y, £X) which is a homotopy equivalence if X is connected and is a group
completion in general, provided that, for the latter, Y has the form R X Z.

With Y = R""!, iteration gives our map B,: C(R", X) —» Q"="X; that is, B, =~
(2B,_,)B. We consider the spaces Y = A(n, q) and we set
(5.c) G(n,q, X) = QC(A(n, q), ZD,(R", X))
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to abbreviate notation. Thus we have group completions 8: C(n, g, X) - G(n, g, X).
By Proposition 5.4, Corollary 1.7 applies to give Xq>0 G(n, g, X) a structure of
weak H-semiring space such that Xq>0 B is a map of weak H-semiring spaces.
Moreover, if we define

(5.d) 8=PB_,°C(c,1): C(A(n,q),ED(R", X)) » Q' 'E'D,(R", X),
then the following diagram of H-maps is homotopy commutative:

B
C(n,q, X) - G(n’q9 X)

YN v Q8,
Q2D (R", X)

After composition with n[¢,2ng], this H-map agrees with the H-map B,,,C(e,, 1) of
Proposition 5.4. It follows by the uniqueness clause of Proposition 1.4 that the
product over ¢ =0 of the maps n[z,2nq]§, is also a map of weak H-semiring
spaces.

By Corollary 1.7 again, the unit H-space {1} X (Xq>l G(n, q, X)) is grouplike.
By Proposition 5.1, the composites Bj, are the components of an H-map from
C(R", X) to this unit space. By Proposition 1.2, this H-map extends over the group
completion 2"="X. When composed with the maps 28,, the components of the
extended weak H-map provide the James maps @"2"X - Q‘2'D (R", X) promised
in Theorem A. Part (1) of that result is obvious, part (2) holds by uniqueness since j,
is clearly an'additive H-map, and part (3) follows from the preceding paragraph.

6. The Segal maps and the partial powers maps. Here we prove (1)-(3) of Theorem
B and the combinatorial level of (1)—(3) of Theorem C.

The combinatorics in the rest of the paper are simplified by use of the very pretty
way of thinking about the spaces C(Y, X) introduced by Koschorke and Sanderson
[11]. They pointed out that C(Y, X) can be described as the set of pairs (4, f),
where A is a finite subset of Y and f: 4 — X is a function; (A4, f) and (4', f) are
identified if f = f” on A N A’ and f and f’ both carry all points of their domains not
in A N A’ to the basepoint of X. The same notation will be used for elements of the
subquotients D (Y, X).

With this description, the canonical James map

J,i C(Y, X) - C(B(Y,q), D(Y, X))

takes the pleasant form j, (4, f )= (B, g), where B C B(Y, q) is the set of subsets
a of A with g elements and g: B - D (Y, X) maps a to the point {a, f|a). Here we
regard B(Y, q) as the set of subsets of Y with g elements; we regard F(Y, q) as the
set of ordered subsets of Y with ¢ elements.

We could define Segal maps D(C, X) - C(C,, X!?') for any 3-free coefficient
system ©, but we restrict to configuration space systems since these provide all the
examples we need and allow full exploitation of the framework just established.

DEFINITION 6.1. Define the gth Segal map s,: D (Y, X) - C(F(Y, ), X'91) by
5,(A4, [ Y= (F(4,q), [19F(4, q)). Less cryptically, F(4,q) is the set of all
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orderings of the unordered set A. By convention, s, is the identity map of S°.
Clearly, s, is the inclusion of the first filtration and s, takes values in the (g!)th
filtration.

The Segal maps D(R", X) - Q"92"9X14] of Theorem B are obtained by setting
Y = R”, including F(R", q) in R", and applying B,,. Parts (1) and (2) of that result
are obvious, and we next prove (3). For b € F(Y, q), define A,: X > D (Y, X) by
A(x) = [b; A(x)]. Then the composite s, ° A,: X - C(Y?, X!4)) sends a point x to
(4, f), where A = {bo|o € 2} and f(bo) = A(x) for all 0. When Y = R", we can
choose a good embedding i; + - - - +i,, of the disjoint union of ¢! copies of R"? in
R™ such that i,(0) = bo, for some chosen ordering of the elements o, € 2. Then
5,08, = q!(n o A), where n: X191 - C(R"™, X'9)) sends y to [(0); y]. The desired
formula follows by use of Lemma 2.8.

It is not the Segal maps of Theorem B, but their ¢-fold loop extensions, that are of
real interest, and we need a combinatorial model for the latter. The following
definitions give the relevant maps.

DEFINITIONS 6.2. (i) For spaces Y and Z, define {: C(Y, C(Z, X)) - C(Z X Y, X)
by (A4, fY=(C, h), whereif f(a) = (B,, g,) for a € 4, then

c=UB,X{a)CcZXY and h(b,a)=g,b) forb€EB,.

a€A

(ii) Define {: C,,C, X - C,,, X by the formula

k k Jk k
c; >_< [d,; y,]] =[< X X (d, X cr)>; >_< y,],

r=1 s=1

§

wherec = (c,,...,¢,YEC, \,d, = (d,,...,d, , YEC, ..y, € X/, and thed, X c,
are product little (m + n)-cubes.
(iii) Define { = Q™p: Q"I"Q"I"X —» QmtnEmtnx where v(g A u)(t) = g(t) N u
forg € Q"2"X,u € S"and t € S”. Thus, for f € Q"Z"Q"Z"X and s € S™,
S ens)=g(t) Nu iff(s) =g Au.
We have written out formulas because more conceptual formulations tend to

obscure the orderings of loop coordinates. With these formulas, the following lemma
is easily checked.

LEMMA 6.3. The following diagram is commutative:

m °© Cm n A,y © Cpoty
C(R™,C(R", X)) < € C.X — 10y Qrsm@rsnx
cy In; I
C(Rm+"’ X) 8m+n

+

Cm+nX __a'f_i_+ Qm+"2m+nX

In defining ¢ on the right, we thought of $™*" as §” A $™ in order to have
consistency with the n-fold loop map n[n, m + n]: Q"2"X - Qm+**Sm*nX In turn,
this motivated our switching Z past Y in Definition 6.2(i). Our Segal maps land in
Qrazraxlal. When we embedded this space in the “¢-fold loop” space 2"9+/="4%¢ in
the introduction, it was the last ¢ loop coordinates we had in mind. On this



268 J. CARUSO, F. R. COHEN, J. P. MAY AND L. R. TAYLOR

understanding, the r-fold loop extension of s, is the bottom composite in the
homotopy commutative diagram: ‘

c(,s,) ¢
C(R', D(R", X)) — = C(R*, C(R™, X'9))) ——C(R"a+!, x14]
q

Bl ‘L ‘]'Btc(lvﬁnq) ‘]'Bnq-H

Q2B ¢
QtEth(Rn’ X) > Q3Qrasng xlql _—_+ﬂnq+12nq+tX[q]

When convenient, we shall continue to write s, for any of its displayed composite
variants.
Again, we could define partial power maps for general Z-free separated coefficient
systems, but we prefer to restrict attention to configuration space systems.
DEFINITION 6.4. Define the ¢ th partial power map

kg C(Y, X) = C(F(Y, q), X'9)

by k, (A, f)= (F(4,q), fl9 F(A4, q)); compare Definition 6.1. Observe that the
actual gth power map

A ®
p,: C(Y, X) > C(Y, X)7 > C(Y9, X19)

is given by the analogous formula p, (4, f )= (49, f19). That is, k, results from p,
by deletion of all points of Y? with repeated entries. By convention, k, and p, are
constant at 1 € S°. Clearly k, and p, are both the identity map; k o sends filtration r
to filtration r! /(r — gq)! while p, sends filtration r to filtration 9.

The following result is the combinatorial core of part (3) of Theorem C and thus
of our proof of the Kahn-Priddy theorem. Its proof is trivial in view of the explicit
set theoretical description of all the relevant maps.

PROPOSITION 6.5. The following diagram is commutative:

k
c(¥, X) : > C(F(Y,q), X'7)

Jab Le( X m,1)

C(B(Y, 4), D,(¥, X)) —% C(B(Y, ), C(F(¥, ), X191)) SmC(£(¥, 4) @ B(Y, g, X9

Upon embedding F(Y, q) in Y9 we can transform C(1 X =, 1) into a more
convenient map in the cases of interest.

LEMMA 6.6. Let v: F(R", q) - R" be the inclusion and define A ;: R"? > R"¥ X
B(R", q) by A (y) = (y, b,) for any chosen b, € B(R", q). Then the following dia-
gram is homotopy commutative:

C(e, 1)
-

C(F(R", ¢), X'4) C(R", X14T)

c(1Xa, 1)l lc(a,,n)

C(x1,1)
C(F(Y,q) X B(Y,q), X!9) 57 C(R" X B(R", q), X141
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PrROOF. Choose an embedding e: R"?Y — F(R", q) such that e is isotopic to the
identity and we(0) = b,. Observe that the trapezoid commutes and the two triangles
homotopy commute in the diagram:

C(l1Xa, 1)

C(R", X)— ————> C(R" X F(R",q), X) ———>C(R" X B(R".q). X)
C(e N Cle ¥ 1,1)/
C(1Xm, 1)
C(F(R".q). X) C(F(R".q) X B(R",q). X)
((Ll)l/ ll(‘(txhl)
Cx, D
C(R™, X) C(R™ X B(R".q), X)

Since e is clearly homotopic through injections to A,, the top composite is
homotopic to C(A,, 1) and the conclusion follows.

7. Multiplicative properties of the maps s, and k ,. Here we complete the proof of
Theorem B and of parts (1), (2) and (4) of Theorem C. We begin on the combina-
torial level, retaining the notations of the previous section. Note that

@:C(Y,X)XC(Zz,W)-C(YllZz, XV W)
isgiven by (A4, f YD (B, g)= (AlB, fV g), while
®:C(Y,X)XC(Z,W)->C(YXZ,XANW)
isgivenby (4, f)® (B, g)= (A4 X B, f\g). _
Throughout this section, let r = p + g. Recall from the introduction that S, ,

denotes the set of ( p, g)-shuffles in 2. We need some more combinatorial maps.
DEFINITION 7.1. Define maps

w, .- C(F(Y, p) X F(Z,q), X' A W) - c(F(YUZ,r), (X VvV W)

p.q

and a further map, the formal sum of the Wy g0

W,

r

X C(F(Y, p) X F(Z,q), X' A W) - C(F(YTIZ, r), (X vV W)")
ptq=r

as follows. Regard F(Y, p) X F(Z, q) as a subspace of F(Y1IZ, r) via the inclusions
of Y and Z in YIIZ and regard X?! A W4l as a subspace of (X V W)!"l via the
inclusions of X and W in XV W. For A, ,CF(Y,p)XFZ,q)and f, ;: A

XY A wldl define

pq<qu’j:vq> <qu pq’gpq>
where g, (ao) =07'f, (a)fora € A, jando € S, ,, and
wr( X <Ap‘q’fp,q >) = < I Ap g Sy v gp,q>‘
ptq=r ptq=r ptg=r

Write ® © (s, Ns,) =s5,®s,and & o (k, X k,) = k, ® k,. Then easy compu-
tations give the following result.
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LEMMA 7.2. The following diagrams commute:

@
DY, X) AD(Z,W) - D(YlUz, XV W)

sp®sqi ls,
C(F(Y, p) X F(Z,q), X' Awla) 5 c(F(YlzZ, r),(x Vv W)™
and

2]
C(Y, X)X cCc(z,w) - c(xliz, xvw)
X prq=rkp ® kgl Lk,

r

X C(F(Y, p) X F(Z,q), XP' AW@) 2 c(F(Ylz, r), (X V W)™

ptqg=r

Set X = W and apply the folding map V: XV X - X, set Y = Z and apply a
good injection i, + i,: YIIY — Y, and replace configuration spaces by Cartesian
powers, all without change of notation. By the evident naturality of s, and k, and by
the fact that w, , and w, can be defined similarly and compatibly with configuration
spaces replaced by Cartesian powers, the lemma implies the commutative diagrams:

€
D(Y,X)AD(Y,X) ~  D(Y,X)

5,®5,1 ls,
c(y’, xi) 5y, x)
and
®
c(y,X)x c(Y,X) -  CfY, X)
X pig=rkp ® kgl Lk,

X oc(yn, xS oy, xin)

ptq=r

Here, for A, , = {(v,8)} C Y? X Y¢and f, ;: 4, ,~ X'}, we have

o X (Apptd)={ I (if'Xia')(A,,.q)osp,q,g>,

ptq=r ptqg=r

where g((ify, i§0)0) = o"fp_ Y, 8). In practice, this formal sum w, and its sum-
mands w, , are homotopic to actual sums.

LeEMMA 7.3. If Y = R", n = 2, then w, is homotopic to the composite
ptq=r®pr.q

X <]
X e, xS cre, xn) S e(re, xiv)
ptq=r p+q=r
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and w, , is homotopic to the composite

X,C(a,27Y) ®
C(R™, xt) = > X C(R™, XU > C(R™, XU).

0ES, ,

ProoF. This is closely analogous to Lemmas 5.2 and 5.3, and a slight variant of
the proof of the former leads to the homotopies required here.

Combining results, we obtain the following combinatorial version of parts (4) of
Theorems B and C.

PROPOSITION 7.4. Let n = 2. Then the following diagrams are homotopy commuta-
tive:

5]
D,(R", X) AD,(R", X) >D,(R", X)
5,®s,1 Us,
Zses, ,C(0,07)
C(Rnr’ X[r]) > C(Rnr’ X[r])
and
(2]
C(R", X) ® C(R", X) >C(R", X)
><p+q=r kP®kql ‘l'kr
2p+q=r2c1ES‘,“,C‘(ovo-l)
>< C(Rnr’ X[r]) > C(Rnr, X[r])
ptg=r

Note that C(o, 67") = C(1, 67')C(a, 1). We shall see in a moment that 8,,C(a, 1)
~ GB,,, where ¢: Q="' X - Q" 2" X is the conjugation homeomorphism specified
in the introduction. This will complete the proof of part (4) of Theorem B. To
complete the proof of part (4) of Theorem C, we use the following observation.

PROPOSITION 7.5. For n = 2, the composite maps

2"uES‘,_‘, C(O, 0—])

®
C(R", X“’]) A C(R™, X[q]) - C(R", X[’]) > C(R™, X[r])
and
N EGES‘N’&
Qresne xlel A Qrasnaylal _, Qrranrylr] >Qrrnrxlrl

are homotopy bilinear and constitute homotopy unital, associative, and commutative
systems of pairings. They therefore give X __, C(R", X 91y and X 4o Q12X lq]
structures of H-semiring spaces such that X 750 B, is a map of H-semiring spaces.

PrOOF. Homotopy bilinearity is clear since C(o, 6™') and 6 are H-maps. The rest
follows easily from standard unity, associativity, and commutativity properties of
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shuffle permutations. For commutativity, one should note that

® o1~ C(r,,,7)° ®: C(R", X) AC(R",Y) > C(R™™", X\ Y)

and
N or= Foon © N QUEPX AQ'I"Y - QPTESmTiX N Y,

where the 7 are transposition maps, 7, , is the twist homeomorphism R™ X R" -
R"X R™or S" AN S" > S"AS", and 7, , = (Q"""Z" )0 F

Now Proposition 7.4 gives that X . k, is an H-map into the unit space of
X 40 C(R™, X'41), while Corollary 1.7 gives that the unit space of X __, Qraznaxlal
is grouplike. Therefore Proposition 1.2 gives an extension of Xk, to a weak H-map
from ©"Z"X to the latter unit space. The components of this H-map are the maps k
promised in Theorem C, and parts (1), (2) and (4) of that result are clear.

We must still verify that 8, C(s,1) ~ 6B,,. We work more generally and consider
a proper homeomorphism ¢: R” — R"; we also write ¢ for its one-point compactifi-
cation S” —» S”. If o is isotopic through homeomorphisms to the identity, then
C(o,1) and 6 are homotopic to the identity. Otherwise, o is isotopic through
homeomorphisms to the map x: R" - R" which changes the sign of the first
coordinate and leaves the remaining coordinates unchanged. (For n = 4, we require
o to be differentiable at some point to ensure this.) Thus, the following result implies
the desired conclusion.

LEMMA 7.6. For n = 1, B, ° C(x, 1) = % © B, C(R", X) - Q"S"X.

PROOF. Via R =J, we may consider C(x,1), where x: J" - J" is given by
x(s,8)=(1 —s,¢) fors €J and ¢t € J""". Define a map x: C, - C, of coefficient
systems by sending a little cube ¢ = ¢’ X ¢”: J" - J" to the little cube x(¢) = x(¢")
X ¢”, where x(c)(s) =1 — ¢’(1 — s). Write ¥ for the induced map C,X » C, X. It
is a simple matter to check that C(x, 1)g, = g,X and x«a, = a,X.

8. The diagram relating j,, s, and k . Here we complete the proof of part (3) of
Theorem C. Recall the notations (5.a)—(5.d) and adopt the following analogs, where

t=1(n,q):

(8.2) C(n,q, X)=C(R" X B(R", q), X'9"),
(S‘b) .7nq+t = Bnq+t ° C(l X dq’ 1): 6("’ q’ X) - an+’2nq+’X[q]9
(8.¢) G(n,q, X) = QC(R""' X B(R", q), =X19),

(B Bigue= Buyrero C1 X d,01): C(RP X B(R", ), 2X19)

N 9nq—l+t2nq+tX[q].
By Theorem 5.6 _and the sentence following it, we have a group completion
B: C(n,q, X) > G(n, q, X) such that y, ., = (£§,,.,) ° B. Consider the following

diagram; we apologize for its size (and for writing ¢ ambiguously for the #(n, ¢)), but
putting things together this way does seem to help keep track of the argument.
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x k
q
O™ - oo o ol a - > x o"9ngylal
\ q/
\ I’
\ ] X
) n 3 Bnq //
\ /
\ x k /]
\
\ c(r,X) 9 »x c(g"xldy /)
\ q i
\ I’
VX x C(Aq,l) /
(S a /
\ 4 x Sq ' /
x jq x jq\\ x Cln,q,X) — 32— > x Tn,q,X) /4 hq x nlna,nq+t]
q a T\ a q /a q
\
\ /
\ x 8 x B /’
\a a g
y X s
q @ R 2 4
x G(n,q,X) - ="~ - - - »x G(n,q,X)
q q
X Qét x Q(an+t
q q
\ x s v
x otz (R%,X) | > x gnattynattylal
q 4 q

All dotted arrows were, or will be, obtained by use of the universal properties of
group completions. The left trapezoid summarizes the construction in §5 of the
James maps used to prove Theorem A. The upper rectangle is the concatenation of
the diagrams in Proposition 6.5 and Lemma 6.6, with s, and k, written for the
resulting composite H-maps. With the dotted arrows s, erased, the lower central
diagram is homotopy commutative by an easy, but lengthy, chase based on natu-
rality and the diagram following Lemma 6.3. The dotted arrows s, are obtained by
Proposition 1.2 so that qug Bs,, and then the bottom trapezoid is weakly

homotopy commutative by the uniqueness clause of that result. With the dotted
arrows h , erased, the right trapezoid homotopy commutes, this being obvious once
we note that we can choose b, € B(R", q) and d,: B(R", g) - R'so that d (b,) = 0.
Since C(A ,, 1) is certainly an H-map (see Lemma 5.5), Proposition 1.2 applies again
to give dotted arrows h, making the two parts of the right trapezoid weakly
homotopy commutative. Dotted arrows k, making the top trapezoid weakly homo-
topy commutative were obtained in the previous section.

To sum up, the entire diagram will be weakly homotopy commutative if
hk, 25 4J4» and these two composites become weakly homotopic when composed
with §8,. We showed in §§5 and 7 that X _C(n, g, X) and X _C(R", X149y are
H-semiring spaces such that X 7 and Xk, are H-maps into their unit spaces. We
shall shortly prove the following result.
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PROPOSITION 8.1. There are homotopy bilinear maps
C(n, p, X)NC(n,q,X) > C(n,p+gq,X)

which constitute a homotopy unital, associative, and commutative system of pairings
such that the diagram

X .5, _ X, CAg 1)
X C(n,q,X) - X C(ng,X) < X C(R™, X19)
q q q

displays two maps of H-semiring spaces.

By Corollary 1.7, it will follow that Xqé(n, g, X) is a weak H-ring space such
that its unit space is grouplike and XqB 1s a map of weak H-semiring spaces. The
uniqueness clause of Proposition 1.4 will apply to give that the dotted arrows X 754
and X qh 4 are also maps of weak H-semi‘l;ing spaces. Finally, the uniqueness clause
of Proposition 1.2 will then give X q hok,=X 2Sada

Before proving the proposition, we interpolate the following naturality diagrams
relating the maps ¢ of Definition 6.2(i) to sums and products; the first has already
been used implicitly in our assertion that the maps s, of the proposition are additive
H-maps:

C(Y,Cc(z, X)) X (Y, C(Z', X)) g (YUY, C(Z, X) V C(Z, X))

§X$l l
C(ZX Y, X)X C(Z' XY, X') c(vlly’,c(zlz', X V X))
ey i

CAZXMI(Z X Y),XVX) - C((ZUz')x (YY), XV X')

where evident inclusions give the unlabeled arrows, and

2]
C(Y,C(2, X)) X C(Y',C(Z', X)) ————— C(Y X Y',C(Z, X) AN C(Z', X))
Exgl (1, ®)
C(ZX Y, X)X C(Z' XY, X) C(YXY,C(ZXZ', XN X))
®) , 1§
C(I1X7X1,1)

C(ZXYXZ XY, XNX) ——————— C(ZXZ'XYX Y, XNX)

where 7 denotes the transposition map.

To prove the proposition, note that the maps w, , of Definition 7.1 can be defined
equally well with all left-hand variables crossed with a given space B with trivial
action by = . The following diagram then commutes:

¢
C(B,C(F(Y,p) X F(Z,q), X' Awl))  ~  C(F(Y,p) X F(Z,q) X B, X"} A wl4))

c(l, “’p.q)l Lo,

el

c(B,c(F(vuz,r).(x v w)")) c(F(vuz,ryx B,(xV w)")
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When Y = Z = R", Lemma 7.3 generalizes to evaluate the resulting internalized
maps w, , as sums 3,5 C(0,07").

The multiplications promised in Proposition 8.1 are given by the dotted arrow
composites in the diagrams

— — ®
C(n,p,X)NC(n,q,X) ———— C(R" X B(R", p) X R" X B(R", q), X'P) A x14])
LC(1 X 1X1,1)
C(R"™ X B(R", p) X B(R", q), X'"1)
1C(1 X ®,1)

(..___- _

Zes,,Clo,07")

C(n,r,X) C(n,r,X)=C(R" X B(R",r), X'")

where r = p + g. Recalling Lemma 5.3 and the fact that s, in Proposition 8.1
denotes { © C(1, 5,), we see that Proposition 7.4 and the diagrams above give that
X, 5 is a map of H-semiring spaces. Composing these pairings with those of
Proposition 7.5, we see that any choices of paths in B(R, r) connecting b, ® b, to b,
determine homotopies which show that X g C(A,, 1) is a map of H-semiring spaces.

9. Decomposition of the power maps. We prove Theorem C(5) and Theorem D
here. Recall the notation above Theorem C. As there, for p € P, ,, define
p: F(Y, m) - Y?by

p(Viseeosm) = (215...,2,), wherez, =y,ifj € s,.

These maps p partition Y7 in the sense of the following result.

LEMMA 9.1. Regard P,, , as a discrete space and let
¢o: I F(Y,m)xP, - Y9

I<m<gq

have pth restriction the map p just specified. Then ¢ is a continuous bijection.

An easy calculation gives the corresponding decomposition of the combinatorial
power map p,.

LEMMA 9.2. The following diagram is commutative:

XX, C(,p) q

X X C(F(Y,m), x)

X nkom 9
(¥, x) ——— X C(F(Y,m), x'™)

m=1 m=1pEP, ,
Pql ;)
(9.1
c(v4, x19) c( O Fy,m) me,q,Xlﬂ)
Ism=<gq

At this point, our usual device of including configuration spaces in Cartesian
powers causes a bit of a problem since we obviously cannot extend our bijection ¢ to
an injection I, ,,<, Y” X P, . — Y9 With Y = R", n = 2, we overcome this prob-
lem by use of an isotopy of ¢ which we now describe.



276 J. CARUSO, F. R. COHEN, J. P. MAY AND L. R. TAYLOR

Of course, ¢ is the restriction of a surjective map

¢: [ R™XP, —R".

Ism=<gq

Choose an integer a, for each p €1I,_, -, P, ,, taking the a, to be distinct. Let
b, € R"™ be the element all of whose coordinates are a,. Let ¢ = 27,_,c,, and
observe that {¢(b,)} is just a set of ¢ distinct points each of which is a distance at
least 1 away from all the others in the usual Euclidean metric.

For p € P, ,, choose an isotopy A7: R" — R” such that h{§ is the identity and h{
takes image in the interior of the ball of radius 1/g with center (a,,...,a,). Define a

homotopy ¢, of ¢ by letting its mth restriction be given by the formula

S(Visee ooV 0) = S(RE(1),- - HE(3))

for y, € R". Let y = E)l and observe that ¢ is an embedding. Since E), restricts on
I, cn<q F(R", m) X P, 4 to an isotopy of ¢, we conclude from the previous lemma
that the following diagram is homotopy commutative:

X ko q X, X, C.p) q
C(R", X) - >< C(an. X[m]) >< >< C(an, X[q])
m=1 m=1p&P, ,
Pyl ]
Cy.D
C(R™, x4 C( I rmx P X[‘”)
. lsm=<gq

For each m and p, the restriction of { to R"™ X {p} is isotopic to the standard
inclusion. (For m = g, there is just one p and the corresponding restriction is
isotopic to the identity.) By Lemma A.2 below, we conclude that C(y,1) o @ is
homotopic to the composite

q XmXpn[nm,nq] q @
X X c(R™, x) XX C(R, X19) % (R, X9,

m=1 pEP, m=1p€EP, ,

m.q

where n[nm, nq] is induced by the standard inclusion R*” C R"9.
This proves Theorem C(5) on the combinatorial level. Of course, 8,,p, = p B,
where p, on the right is the smash power. By the construction of the k ,, we also have

q
Big| 2 2 nlnm,ngleC(l,p)°k,

m=1p€P,,

w
>~

M=

> (nlnm, nq)l o Q"Z=""p o k,)B,.
pEPp‘q

m=1

We shall apply our usual uniqueness trick to conclude that the smash power is
weakly homotopic to the relevant sum. To justify this, we use the following analog of
Lemma 7.2, in which p, ® p, = ® o (p, X p,). This is really just a disguised form
of the binomial theorem.
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LEMMA 9.3. The following diagram commutes:
@
C(Y, X)X C(z,w) - C(yliz, xvw)

Xp+q=rpp®qu \IrP,
X oc(yrx za, X Awl) L o((Yliz) (X V w))
ptq=r
Internalizing and applying Lemma 7.3, we obtain the following analog of Proposi-
tion 7.4.

PROPOSITION 9.4. Let n = 2. Then the following diagram is homotopy commutative:

&
C(R", X) X C(R", X) C(R", X)
><p+q:rpp®pq\|r lp,
2p+q=r211ES‘,'qC(U’ U-l)
>< C(Rnr’ X[r]) C(Rnr’ X[r])
ptrq=r

Thus X _p, is an H-map into the unit space of X C(R", X!%'); compare
Proposition 7.5. It is easy to check the corresponding version of the binomial
theorem for the smash powers p,. It takes more work to use the known multiplicative
properties of the k,, to deduce that

q
X Z 2 (nlnm,ng]le@"z"pok,)
q m=1 pEPm’q
is also a weak H-map from Q"3"X to the unit space of X Q"92"4X[%). These
verifications made, Proposition 1.2 applies to show that the last two maps are weakly
homotopic.
To prove Theorem D, we apply the following algebraic fact to X q[A* , Qrasnd]
regarded as a ring under componentwise loop sums and smash products. Note that
this ring is not commutative if » is odd; compare the proof of Proposition 7.5.

LeMMA 9.5. In a ring, the functions f(x) specified by the implicit formulas
x9=Z8_ | Cp 4 fu(X) are given by the explicit formulas

fx)=x(x—1)--- (x—q+1).

PROOF. If Y is a set with r elements, the bijection ¢ of Lemma 9.1 and the fact that
F(Y, m) has r!/(r — m)! elements imply the formula r7=3%_,c,  r!/(r — m)!
for positive integers r. This implies the conclusion for the free ring (= polynomial
ring) on one variable, and the conclusion follows, in general, by universality.

10. Multiplicative properties of some more James maps. In [7], we constructed
stable splittings of certain spaces

CX = colimC, Xs X
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associated to directed coefficient systems ©. Here C is directed if there are sub-
2,-spaces A, +1 of G, and 2 -equivariant homotopy equivalences A,: C, - @, 1
which satisfy the following properties:

(i) The inclusion M, @, 417 = G, is a £ ~cofibration, where 7 € £ __ | is the
cyclic permutation (1,2,...,r + 1), s is any subset of {0,1,...,r},and 2, C =, is
the group of permutations o such thatif i € s and 7’0 € 2,_,7/, thenj € 5.

(i) ¢,A, = 1: €, = C,, where ¢,: r > r + 1, is the injection specified by ¢,(i) = i
forO0<is<r.

(iii) wA, takes values in @q for any ordered injection w: q —» r + 1 such that
w(g)=r+ 1.

The cofibration condition (i) was misstated in [7] but, as stated and used there, it
is implied by the following two conditions.

(ia) For c € A,H ando €23, ,,c0 € @,H ifand onlyifo € Z,.

(ib) The inclusion of &, , , in G, , is a =, -cofibration.

Given such a structure on C, the maps of the colimit system used to define CX are
defined to be

G=A X6 X5 X1 =Gy X, X
where ¢.(y) = (y, *). The cofibre of {, is equivalent to the quotient space
D_r+l(@’ X) = @r+l XZ,H Xr+l/@r+1 XE'X’
=[Ct X X1/ (8 X X7)Z,00] /500

Again, by convention, we set D_O(G, X)=S°

For a James system {§,,}: C - @, precisely the same formula as in §3 gives a
James map j;: CX - C’Bq(G, X). We use the following definition to relate these
James maps to sums.

DerFINITION 10.1. Let o, , € 2,, 4, fix the first p letters and permute the
(p + D)st letter past the remaining q letters. Let @, B and € be directed coefficient
systems. A sum @: (&, B) - Cis directed if the following conditions hold:

(i) The following maps have images contained in Gp +q'

~ %14

® )
€, xX®,-C,, - C, and € X%B -C, .

(ii) The following diagrams are commutative:

X1 1XA,
él7’1)+1><§j?’q‘ él7’11><€%q @pX%qH
e lo lo
%.q Aptq Aptq
Gp+q+l Gp+q+l N Gp+q @p+q+l

The sum @ is weakly directed if (i) holds and the diagrams of (ii) commute up to
2, X Z -homotopy, where 2, X 2_is embeddedin2,, ., via(0,7) >0 O 7& 1.

We have the following analog of Lemma 2.3, the last statement of which is verified
by use of the natural equivalence Tel(C, Xs X") - CX.



JAMES MAPS AND THE KAHN-PRIDDY THEOREM 279

LEMMA 10.2. For a directed sum ®: (&, ®) — C and based spaces X and Y, there is
a natural induced map
D:AXXBY->C(XVY)
whose restriction (&, Xz, XP) X (®, X5, Y9 - C, Xs(XV Y)Y, r=p+gq, passes
to quotients to give
®:D,(&, X) AD(B,Y) > D(XVY).

If @ is only weakly directed, then the first map still exists but is only determined up to
weak homotopy.

When X = Y, we continue to write @ for internalized sums.

Since James maps and sums are defined by precisely the same formulas here as
earlier in the paper, the following analog of Proposition 3.4 admits the same proof,
telescopes again being used for the last statement.

PROPOSITION 10.3. Given a pairing of James systems as in Definition 3.3, where @ :
(@, B) - Cis directed, the following diagram commutes for each r = 0:

xp+q=rjpqu

AXXBY — X A’D,(&, X)X BD(D,Y)
ptq=r
|
o C'( V B(e, x) /\D_q(‘J?),Y))
* ptq=r
1C'(®)
C(XVY) r o CD(C, XV Y)

If ® is only weakly directed, the diagram still commutes up to weak homotopy.
Via Example 3.5, we obtain the following analog of Theorem 3.6; compare [7, 2.5].

THEOREM 10.4. Let ®: (&, B) — C be a weakly directed sum. For any based spaces
X and Y and Abelian group G, the following is a natural commutative diagram in which
the horizontal arrows are isomorphisms:

2r> 1 2p+q=r(j-p /\./_q)*

> 3 A.(D,(& X)AD(%®,Y);G)

r=1 pt+q=r
6*\1, ‘Lzr>12p+q=r®*

H,(AX X BY;G)

2r>l(j_r)*

S H(D(C,XVY);G)

r=1

H,(C(XVY);G)

COROLLARY 10.5. For any commutative coefficient ring, the pairing
&, HAX®HBX->HCX
can be computed as the sum of the quotient pairings
®,:H,D,(@, X)®H,D(%, X) - H,D,

Ptq

(G, X).
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For example, the sum @: (9, N) - N is directed. Here D_p(%, X) is the
quotient (X?/2 ) /(X?~ /3 »—1) of unreduced symmetric powers. '

Before proceeding to the analog of Theorem 4.6, we consider some examples and
counterexamples.

ExaMPLES 10.6. The product C X €’ of directed coefficient systems € and €’ is
directed by the spaces @, X @,’ +; and maps A, X N.. The product of two (weakly)
directed sums is (weakly) directed.

The most interesting examples in [7] were the coefficient systems C(R"). Unfor-
tunately, the present theory does not quite work for them.

CouNTEREXAMPLE 10.7. Let Y = R X Z for a nondegenerately based space Z. By
[7, 1.4], C(Y) is directed with respect to the spaces

FY,r+1)={{(t;,2,),..., (1,, 2,), (¢, %))t =1 + max ¢,}
and maps A,: F(Y, r) — F(Y, r + 1) specified by

A, 20)sen, (t,2,)) = (4, 20)se -, (5, 2,), (1 + max ¢, %) ).

Use a good embedding RIIR — R to give C(Y) an internal sum @.If Z=R X Z’,
then it is easy to verify, by use of Lemma 2.6, that the diagrams of Definition 10.1(ii)
commute up to 2, X 2 -homotopy. However, at least one of the inclusions of
Definition 10.1(i) fails, hence @ fails to yield a quotient sum relating the spaces
DY, X).

We can get around this in one crucial case.

ExampLE 10.8. The coefficient system C(R®) is directed by the full spaces
F(R®,r+ 1) and the maps A, just specified. The point is that A,: F(R®, r) -
F(R*,r+ 1) is clearly itself a 3 -equivariant homotopy equivalence since both
spaces are 2 -free and contractible. With these choices, the inclusions of Definition
10.1(i) hold trivially and the internal sum on C(R*) is weakly directed.

For a connected based space X, C(R®, X) is homologically and, hence, stably
equivalent to Quo(X™*) [7, 3.1]. If X = BG for a topological monoid G, then
C(R*®, BG) is a model for B(Z_, [G), and 5‘](R°°, BG) is a model for the cofibre of
the natural map B(Z,_,/G) — B(Z,/G). This is the example relevant to Snaith’s
applications [23]. While we shall state the main theorem of this section in proper
generality, we should admit that our only present application is to the internal sum
on C(R™).

THEOREM 10.9. Let @ : (&, B) — C be a weakly directed sum, where &, B and C are
2-free. For based spaces X and Y, the following is a weakly homotopy commutative
diagram in the stable category in which the horizontal arrows are equivalences:

_ _ 212 g=rdpNg

=°(AX X BY) V VvV 32(D(@, X)AD(B,Y))

r=1 p+q=r
9| WV VvV

pra=r®

el 2r> _r gl
S*C(XAY) L V 5%D(C, X A Y)

r=1
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PrOOF. Crossing with C_ as in the proof of Theorem 4.6 fails here since C_ is not
directed [7, 1.6]. However, crossing with C(R*®) shows that we may assume, without
loss of generality, that the given sum is weakly separated. The result follows as in the
proof of [7, 2.7] and Theorem 4.6.

We close with two examples related to the classical James maps [9] and the James
maps of Barratt and Eccles [3]. We leave the details to the interested reader.

EXERCISE 10.10. Let 9 be the operad with 9, = 2. The associated functor MX
on spaces is the James construction. Then 9N is a directed coefficient system [7, 1.3]
and admits James systems {£,,}: 9N — 9N for all g [6, 4.3]. Verify that the block
sum of permutations @ : (9M, M) —» MM is directed. Show that, with all coefficient
systems taken to be 91 and with O defined in terms of @ and the usual product ®,
the diagram of Definition 3.3 would commute if the permutation 7, , , were replaced
by the identity; compare Remark 3.2.

ExercIs 10.11. By [15, §10 or 3, I}, there is a product-preserving functor from
spaces to contractible spaces. Application of this functor to 9T (that is, to symmetric
groups) gives an operad D [15, p.161]. Verify that ) inherits from 9N a structure of
directed coefficient system, a directed sum €, a product @, and James systems
{(£,,}: D — D (compare [3, IIT]). Again, with all coefficient systems taken to be D,
the diagram of Definition 3.3 would commute if 7, , , were replaced by the identity.

These examples give force to the sentence above Proposition 3.4.

Appendix. Good embeddings. Here we prove generalizations of Lemmas 2.6 and
5.5. The following is a start. We write e; for the ith restriction of an embedding e:
<<, Y= Z

LemMMA A.l. Let e: U, _;<, Y > Z and f: 1 ,<;<, Z — Z be embeddings. Assume that
the following conditions hold for each i
(i) There is an isotopy E;: e; = j; for some chosen embedding j;.
(ii) There is an isotopy F;: f; ~ 1 with f(Z) C F, (Z),0 <t < 1.
(iii) e,(Y") is contained in f(Z).
Then e and f o (11, <<, j;) are isotopic.

PrOOF. The unique maps G, ,: ¥ — Y such that £, o G, , = e; specify an isotopy.
An isotopy H: e =~ fo ([I;<;<,J) is obtained by letting its ith restriction begin by
traversing f; o G;: e, = f; o ¢; and end by traversing f, o E;: fio e, =~ f o j.

Lemma 2.6 is a special case of the following result. Note that if m < n, then any
embedding R” — R" obtained as a composite of permutations and diagonal maps on
certain coordinates is isotopic to the standard inclusion.

LEMMA A2. Let m<n, where m=1 and n=2. Then any two embeddings

e: I, _,<, R™ > R" such that, for each i, e, is isotopic to some fixed chosen embedding j;
are isotopic.

ProoF. It suffices to prove the result for e and fo (Il,<;<,Jj,), where f is a
conveniently chosen fixed good embedding. Choose r distinct points y; and choose f;:
R" = R" such that f,(0) = y,, the images of the f; are disjoint, and there are isotopies
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F: f,~1 with f(R") C F, (R"), 0 <t < 1. By the previous lemma, it suffices to
prove that e is isotopic to e’, where e/(R™) is contained in f(R"). Choose points
x; #y, in the image of e,. Since n = 2, we can choose embedded nonintersecting
paths A; from x; to y,. (It is only here that we use n = 2; if m = n = 1, there is a
unique 7 € =, such that e is isotopic to f, where (e7), = e, ;).) Construct an isotopy
H of R" such that H(x,) = A,(¢t) for 1 <i<rand 0 <t < 1. We can choose ¢ >0
so that the ball B(x;) of radius € around x; is carried into the image of e; by H,, and
so that H,B(x;) and H,B(x,) have empty intersection for i 7 j and all ¢. Clearly we
may apply a shrinking isotopy to arrange that each e, carries all of R” into B(x,).
Then e’ = H, o e s as required.

Turning towards Lemma 5.5, consider R” X Y. A good embedding i: R"[[R" — R”"
induces the good embedding (R"” X Y)II(R” X Y) » R" X Y with restrictions i, X
1. If n = 2, the induced H-space structure on C(R" X Y, X) is independent of the
choice of i. By the parenthetical remark in the above proof, there are two potentially
different products if » =1 and they agree if and only if either is homotopy
commutative. Let

e(i): B(R" X Y,q)IB(R"X Y,q) » B(R"X Y,q)

be the embedding with restrictions B(i, X 1, g). Observe next that the map
a: B(R" X Y, q) —» R”, defined by

77<(Up yl),-.., (Dq, yq)>: tll(vl 4+ ... +vq),

is R"-equivariant, where R” acts by coordinatewise addition on B(R" X Y, q) and by
addition on R”. Therefore B(R" X Y, q) is homeomorphic to R” X Z, where Z =
77(0). For Y a point, we identified Z as F(R" — 0, ¢ — 1)/Z,in [6, 5.7]. Let

f(i): B(R" X Y,q)IB(R" X Y,q) > B(R" X Y,q)

be the embedding with restrictions i, X 1. With Y a point, the following result
specializes to Lemma 5.5.

LeMMA A.3. The good embeddings e(i) and f(i) above are isotopic.

PROOF. If n = 2, we need only prove this for any one chosen i. If n = 1, we need
only consider one i in each of the two inequivalent classes of good embeddings
RIR - R. In any case, we may assume that there are isotopies 1,: i, =~ 1 such that
i(R") C I, (R") for all ¢. The I, induce analogous isotopies E,: e(i), =~ 1 and F}:
f(i), =~ 1. An easy calculation shows that the image of e(i), is contained in the
image of f(i), provided that each average (i,(v,) + --- +i,(v,)) has the form
i,(w) for some w. This holds if we take i, = h, X 1, where h,: R—> R is an
increasing embedding with image either (0, 00) or (00, 0). Lemma A.1 then applies to
give the conclusion.

We conclude with an amusing exercise in these techniques.

LEMMA A 4. Let i: YIIY - Y and j: ZI1Z - Z be good embeddings. Then the good
embeddings (Y X Z)II(Y X Z) - Y X Z induced by i and j are isotopic.
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