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Preface

This research tract contains an exposition of our research on bordism
and differentiable periodic maps done in the period 1960—62. The re-
search grew out of the conviction, not ours alone, that the subject of
transformation groupsis in need of a large infusion of the modern methods
of algebraic topology. This conviction we owe at least in part to ARMAND
BOREL; in particular BOREL has maintained the desirability of methods
in transformation groups that use differentiability in a key fashion
[9, Introduction], and that is what we try to supply here.

We do not try to relate our work to Smith theory, the homological
study of periodic maps due to such a large extent to P. A. SmiTH; for
a modern development of that subject which expands it greatly see the
BogrEL Seminar notes [9]. It appears to us that our work is independent
of Smith theory, but in part inspired by it. We owe a particular debt to
G. D. Mostow, who pointed out to us some time ago that it followed
from Smith theory that an involution on a compact manifold, or a map
of prime period p on a compact orientable manifold, could not have
precisely one fixed point. It was this fact that led us to believe it worth-
while to apply cobordism to periodic maps.

On the personal side we are greatly endebted to DEANE MoONT-
GOMERY and G. T. WHYBURN, who have supported our work in every
way possible. We would also like to thank JIN-CHEN Su, who has read
critically some of the manuscript. During portions of the time spent on
the research presented here, we have been supported by AFOSR Grant
AF 49(638)-72 and NSF Grant G18853. We have also received generous
support from the Sloan Foundation as Sloan Fellows.

P. E. CoNNER and
E. E. FLoyp
Charlottesville, Virginia

November 5, 1962
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Introduction

In this introduction we speak of a compact differentiable #-manifold
as simply an #-manifold. The boundary of ¥» is denoted by V=»; V» is
closed if Pr=@. Two closed #-manifolds V» and V’'® are in the same
bordism class if there exists an (# 4 1)-manifold W»+1 with Wn+1 the
disjoint union of ¥ and V'" (we adopt here ATIYAH’s suggestions on the
usage of “bordism” and “‘cobordism”). There results the abelian group
N, of (unoriented) bordism classes, due to THoM [40] and completely
computed by him. Moreover N = 3}’ N, is a ring with multiplication
induced by the cartesian product. THOM has shown that the structure
of N is that of a polynomial algebra, over the base field Z,, with a
generator in each dimension not of the form 2/— 1.

TroM also considered the bordism classes of pairs (V*, o) where V'
is a closed #-manifold and o is an orientation of V" There resulted the
oriented bordism groups £2,, and the bordism ring 2 = X 2,. THOM
computed the rank of the free part of £,,; the torsion has since been
settled by the work of MILNOR [26] and WALL [42]. In particular, £ has
no torsion of odd order (MiLNOR) and the 2-torsion consists entirely of
elements of order two (WaLL). Moreover £/Tor, where Tor denotes the
torsion subgroup, is polynomial algebra with a generator in each dimen-
sion 4% (MILNOR).

Various refinements of £ (and of ) result by putting additional
structure on the manifold V»; this has occurred to several people, in
particular ATivaH [1], EELs, and MIiLNOR. The main point of this tract
is that such refinements are particularly appropriate in the study of
periodic maps and transformation groups. The role of Chapters I and II
is to present the purely topological aspects of our work.

Let X> A denote a pair of spaces. An oriented singular #-mani-
fold in (X, 4) is a pair (V*, f) where V* is an oriented #-manifold and
f:(V*, V) > (X, A) is a map. There is a suitable bordism relation
joining such pairs (V*#, f), and there results an abelian group £,(X, 4);
denote the bordism class of (V*, ) by [V*, f]. Given (V*, f) and a closed
oriented m-manifold M™, there is the pair (V*x M™, fz) where z: V»x
X Mm— V* is projection. We consider £, (X, 4) =2 £,(X, 4) as an
£2-module by

Ve, f1 [M™] = [V*X M™, fa] .

Maps ¢:(X,4)— (Y, B) induce homomorphisms ¢, : £2,(X,4)—~ 2,(Y,B);
there is also a boundary homomorphism 9:2, (X, 4) - £, _,(4).
Ergebn. d. Math. N.F. Bd. 33, Conner and Floyd 1



2 Introduction

In Chapter I, we study {Q, (X, 4), ¢, 8} as a generalized homology
theory; such a study has also been carried out by ATryan [1]. All the
Eilenberg-Steenrod axioms for a homology theory are satisfied except
for the “dimensional axiom’; for a point ¢, £, (p) is the Thom group
£,. We also present a bordism spectral sequence, a spectral sequence
whose E-terms are associated with a filtration of 2, (X, 4) and which
has E] = H,(X, 4; ).

We also give in Chapter I a homotopy interpretation for £, (X, 4).
Here the Thom spaces M SO(k) enter, with M SO (k) = E|E where E
is the bundle space of a universal %-cell bundle E —~ BSO (k). Recall
that TaoM proved that Q,= n, (M SO(k)) for £ = n + 2. We extend
THOM's result to show that

Qu(X, A) = 7, o (X|A) NMSORE), k=n+2,

where A denotes the smashed product. Thus the bordism functor 2, (X, 4)
isshown to fitinto G. W. WHITEHEAD's generalized homology theory [43].
In Chapter IT we show that Q, (X, 4) can be computed for a wide
range of CW pairs (X, 4). The chief tool of the section is that the
bordism spectral sequence is trivial modulo the class C of odd torsion
groups; the proof relies heavily on WALL’s result on the structure of
H*(MSO; Z,) as a module over the Steenrod algebra. Moreover

.(X, A)=2,, ,—H,y (X, 4; 2) modC .
If H, (X, 4; Z) has no odd torsion, then
QX A=X,, . H) X 4;8).
For finite CW pairs (X, A) with H, (X, 4; Z) torsion-free, then
2, X, A)=H, (X, 4;2)® 2.

Given a closed oriented manifold V#, there are the Whitney numbers
of V" and the Pontryagin numbers of V*»; these are functions of the
bordism class [V*]. We generalize these in Chapter II to obtain Whitney
numbers and Pontryagin numbers of a map f:¥»— X. These turn out
to depend only on the bordism class of f: V#—> X. Moreover if the torsion
of H*(X; Z) consists of elements of order two, these numbers determine
the bordism class [V", f].

Along with all the above there is also an unoriented theory
{N. (X, 4), @4, 0}, in which V* is not required to be oriented. As with
ordinary bordism, this is an easier case. For example, for all CW pairs
it is the case that

N (X, A) = Hyo (X, A7) ® R

In Chapter III we begin to make the transition to transformation
groups. For G a finite group, consider all pairs (G, V) consisting of a
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closed oriented #-manifold V* and a free action of G on V* which pre-
serves the orientation. Two such (G, V™ and (G, V'"), are in the same
bordism class if there exists an oriented (# 4+ 1)-manifold Wn+! with
Wn+l= ™y —V'" and a free orientation preserving action of G on
Wn+1 which yields the original action on V" and on V’'". Denote the
resulting bordism group by £, (G). It is shown that £, (G) is isomorphic
to the group £, (B(G)) of Chapter I, where B (G) is a classifying space for
G. There is a similar unoriented group R, (G) = N, (B(G)).

It is not surprising that the study of differentiable periodic maps
of prime period p breaks naturally into the cases p = 2 and p odd. It is
typical of the case p = 2 that orientation can be ignored, making the
resulting theory simpler. In Chapters IV—VI we study the case p = 2;
that is, we study the differentiable involutions.

First of all, we consider pairs (T, V*) where V* is a closed #-manifold
and T is a differentiable fixed point free involution on V*. There is a
suitable bordism relation which leads to the group N, (Z,) already dis-
cussed in Chapter III. Hence the bordism theory of fixed point free in-
volutions is easily carried out.

We go on in Chapter IV to study the fixed point sets of differentiable
involutions T:¥=—> V= Our method is based on two procedures. First,
we consider a tubular neighborhood N of the fixed point set, invariant
under T and of small radius. Delete from V" the interior N°® of N.
There results an #-manifold Wr= V*\N? and a fixed point free involution
T:Wn— W=, Hence the pair (7|, N) bords in the sense of the previous
paragraph, where N is the boundary both of N and of W». Now N is just
the normal sphere bundle to the fixed point set F of T'; the implications
from [T|N, N],= 0 can now be obtained from the fixed point free case.
The other procedure gives the bordism class of V'* in terms of F and its
normal sphere bundle. Take the Whitney join of the normal sphere
bundle N -~ F with a trivial O-sphere bundle; there results a sphere
bundle V'*— F, and V’'" has a natural involution 7”, the antipodal map
on each fiber. It is shown that the manifolds V" and V'#/T’ are bordant
(mod2). Appropriate combination of these two basic procedures produces
a number of novel facts about fixed points of differentiable involutions.
For example, given a positive integer % there exists a positive integer
@(k) such that if T:V"— V* is a differentiable involution on a closed
non-bording #-manifold with »# > ¢ (%), then some component of the
fixed point set F is of dimension > &.

In Chapter V we discuss differentiable involutions T,:V»— V=,
1=1,...,k with T,T,=T,T;; that is, we discuss differentiable
actions of (Z,)*=Z,x - -+ X Z,. A stationary point of such an action
is a point x € V" with T,(x) = #, all ¢. It is proved that if (Z,)* acts

1*



4 Introduction

differentiably on V" without stationary points, then [V*],= 0. It follows
that in any differentiable action of (Z,)* on a closed manifold ¥, then
the set F of stationary points, together with the normal bundle to F and
the action of (Z,)* on the normal bundle, determine the bordism class
[V*],. Since this appears very difficult to cope with in general, we content
ourselves with a single special case. We consider actions of Z,X Z, on
closed manifolds ¥* with all stationary points isolated. Among other
things it then follows that [V"],= 0 or [V"],= [P,X - *X P,] where
P, is the real projective plane.

Chapter VI is concerned with an operation on bundles. Namely
given a fixed point free involution (7, B} and a bundle 7:E — B|T of
n-dimensional vector spaces, there is defined another #-dimensional
vector space bundle 7:E - B|T, which we call the fwist of » by (T, B).
It is shown to be a particularly simple case of the tensor product. One
application is concerned with an s-dimensional component F™ of the
fixed point set of a differentiable involution T':V™+n2— Vm+% Namely
if H{(Vmin;Z,) =0 for n — k < ¢ < »n then the Whitney classes V; of
the normal bundle to F™ are trivial forn — 2 <7 < #.

A second application of the twist construction of Chapter VI con-
sists of generalizing the Borsuk antipode theorems. Suppose that f is a
map of S* into the differentiable manifold M®. If f is of even degree
(that is, if f*:H"(M";Z,) > H"(S"; Z,) is trivial), then there exists
% € S* with f(—x) = f(x). There is also a discussion of maps f:5%—~ MF,
k<mn.

In Chapter VII we consider the structure of 2, (Z,),  an odd prime.
Alternatively we consider the group of bordism classes of pairs (T, V7
where V™ is a closed oriented manifold and T is an orientation pre-
serving, fixed point free diffeomorphism on V" of period . The bordism
spectral sequence of B(Z,) is trivial; thus £,(Z,) is determined up to
group extensions. The main task of Chapter VII is to determine the
precise additive structure of 2,(Z,). This is carried out; the generators
of £,(Z,) as an Q-module turn out to be pairs (T, S2#-1), one for each
positive integer #, and these have order p+1wherea(2p —2) < 21— 1<
<(a+ 1) (2P — 2). We also discuss 2, (Z,%).

Chapter VIII turns to a discussion of fixed point sets F of differentiable
maps T: V" V* of odd prime period; here it is assumed that V* is
oriented and that T preserves orientation. The first task is to understand
the normal bundle to F. It is shown that the structural group of the
normal bundle can always be reduced to the unitary group. We then
turn to the following problem, whose solution appears to make use of all
our technique up to this point; which bordism classes of £, admit
representatives V'* upon which Z,x Z, acts, preserving the orientation
and without stationary points? It is clear that Z, x Z,so acts on Y°=
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points; BoReL has pointed out that it also acts on complex projective
space Y27—2= P,_,(C) with

T2y - 2] = 2o - s 2p 2], Talzn ..o 2] = [71, 0% .« ., 077 12,)]

where g = exp(2m¢/p). We prove that if Z,x Z, acts differentiably on
V=, preserving the orientation and without stationary points, then[V*]
is in the ideal of £ generated by [Y?] and [Y27-2].

We also discuss in Chapter VIII the structure of the manifold V=
and the fixed point set F, in the case where T:V*— V* has the normal
bundle to the fixed point set trivial in a suitably strong sense.

In Chapter IX we turn to differentiable actions of (Z,)*. Here our
work is motivated by that of BoreL [6, 9]. In view of his work together
with our point of view of the previous chapters, it is natural to ask the
following question: which bordism classes of £ admit representatives
upon which (Z,)* acts preserving the orientation and without stationary
points? The collection of all such bordism classes constitutes an ideal
SF((Z,)*)in £. We are not able to compute this ideal in general, but we
make some progress in determining its structure. For example, it is
contained in the ideal of all [V*] with the Pontryagin numbers of [V*]
all divisible by p. While we are about it, we consider also actions of
abelian groups of order p*.

CHAPTER I
The bordism groups

Given a pair (X, 4) of spaces, consider all maps f:(B", Br) - (X, 4),
where B” is a compact oriented differentiable manifold with boundary
Br. We introduce a relation of the bordism type on the class of all such £,
arriving in § 4 at the set £,(X, 4) of equivalence classes. These groups
constitute a generalized homology theory; it is shown in §5 that the
Eilenberg-Steenrod axioms are satisfied except for the dimensional
axiom. In § 12 we give a homotopy interpretation for £, (X, 4). It is
shown that 2, (X, %,), X a CW complex with base point %, € X, is given
by the homotopy group 7, , (X A M SO(k)); here M SO () is the Thom
space and & = »# + 2. In § 13 the dual generalized cohomology theory is
sketched; this is due to ATrvan [1]. We try to fill in along the way some
of the background material of differential topology.

1. Differentiable manifolds

In this section we outline the elementary properties of differentiable
manifolds, paying particular attention to manifolds with boundary.
Always in this work ‘‘differentiable” is used as an abbreviation for
“differentiable of class C™”'.
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A map f:4 - R", where 4 is a subset of Euclidean #m-space R™, is
said to be differentiable if and only if for each x € 4 there is a neighborhood
V of x in R™ and a differentiable map F:V — R® with F(x) = f(x) for
xeVnA

Denote by H™ the closed half-space in R® consisting of all points
(%4, %, - . ., %) With x; = 0. A separable metric space B" is a topological
n-manifold if for each x € B there is a neighborhood V of x and a
homeomorphism % of V onto an open subset of H". A differentiable
structure on a topological n-manifold B” consists of a collection of ordered
pairs (V, A;), where V, is open in B" and 4; is a homeomorphism of ¥,
onto an open subset of H", such that

i) the collection {V} is an open covering of B*;

ii) for every pair (7,7), the map h;h;71:h,(V;n V,) > R* is differen-
tiable;

iii) the collection {(V;, %;)} is maximal with respect to the above
properties.

Given a collection of pairs satisfying i) and ii), there is a unique collection
of pairs containing it and satisfying i)—iii). A topological #-manifold
B together with a differentiable structure on B* is a differentiable
n-manifold. The pairs (V;, k;) are referred to as coordinate neighborhoods.

In the above definitions, H? is taken to be a single point; that is
a O-manifold is a countable discrete space.

Denote by R*~1C H", n > 0, the set of all (%, ..., x,) with ,=0.
The boundary B" of a differentiable manifold consists of those points
% € B® for which there is a coordinate neighborhood (V, #) with x ¢V
and k(x) ¢ R"-1 C H» If B" is empty, then Br is a manifold without
boundary; in this case H™ may be replaced by R” in the definition of
differentiable structure. Always the boundary B" of a differentiable
n-manifold is a differentiable (# — 1)-manifold without boundary, such
that whenever (V, ) is a coordinate neighborhood of B then (V N B*,
k|V N B is a coordinate neighborhood of B

If U is an open subset of a differentiable #-manifold B®, then U is
also a differentiable #-manifold. Namely, its coordinate neighborhoods
are the coordinate neighborhoods (V, %) of B* with ¥V C U. We call this
the differentiable structure induced by that of B®. The following easily
verified remark is useful in piecing together structures.

(1.1) Supposethat U, and U, are open subsets of the topological n-mani-
fold B which cover B*. Suppose U, and U, have differentiable structures
which induce the same differentiable structure on Uyn U,. There exists a
unique differentiable structure on B" which induces the differentiable
structure of U, and of U,.

If M™ is a differentiable manifold without boundary and B" a
differentiable manifold, the reader will see that there is an induced



2. The Thom bordism groups 7

differentiable structure on M™>< B". More generally, BJ'>< B’Z'\B;"x B;'
has a natural differentiable structure.

A map ¢:BT - B} connecting differentiable manifolds is differen-
tiable if whenever (V, h) and (W, k) are coordinate neighborhoods of
B and B} respectively, then kph=1:2(V N ¢~'W) — R"is differentiable.
The differentiable manifolds B} and Bj are diffeomorphic if there exists
a homeomorphism f of B} onto B} with both f and f-! differentiable.

We assume the following differentiable collaring theorem (see MiL-
NOR [27]).

(1.2) Theorem. For any differentiable manifold B™ there is an open
set U containing Br and a diffeomorphism @ of U onto Br>< [0,1) with
@(x) = (%, 0) for x € B~

In this work we will be mainly concerned with compact differentiable
manifolds, and often with the closed manifolds, namely the compact
differentiable manifolds without boundary. That being the case, we
discuss orientability only in the compact case. Suppose that Bf is a
component of the compact differentiable manifold B"; the singular
homology group H,(B?, BY; Z) is either Z or 0 [19, p. 314]. Say that B®
is orientable it H, (B, By; Z) = Z for each component B7; to orient such
a manifold means to select a generator ¢, of each H, (B}, B}; Z). Identi-
fying H,(B", B") with X H,(B", B") the orientation class ¢(B") of an
oriented manifold is the element of H,(B" B*; Z) given by Xa,.

An orientation of Br induces an orientation of B» by assigning the
orientation 9o (B"), where 9:H,(B", Br) - H,_,(B" is the boundary
homomorphism. A diffeomorphism ¢: B} = B} of oriented manifolds is
orientation preserving if and only if .o (B]) = o (B3).

2. The Thom bordism groups

In this section we define and give elementary properties of the Thom
groups £, and N,,. At the end of the section we summarize briefly the
deeper structure of these groups; however it is some time before that
information is actually used. Hereafter in this book we use “‘manifold”
for “differentiable manifold” .

Given a closed oriented manifold M®, then —M™" is the oriented
manifold obtained by using as orientation class —¢ (M*). Given closed
oriented manifolds M} and M3, we call the disjoint union of M7 and My
any compact oriented manifold which is a disjoint union M;"v M," of
closed submanifolds with M;* diffeomorphic to M} via an orientation
preserving diffeomorphism; denote a disjoint union simply by M7y M3.

A closed oriented manifold M is said to bord if there is a compact
oriented manifold Br+! with B +! diffeomorphic to M" via an orientation
preserving diffeomorphism. Two closed oriented manifolds M} and M}
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are bordant if the disjoint union M7\ —Mj} bords; we refer to this
relation as the bordism relation.

(2.1) The bordism relation is an equivalence relation on the class of
closed oriented n-mansfolds. The resulting set £, of equivalence classes 1s
an abelian growp with addition induced by disjoint union.

Proof. In order to see that M* is bordant to itself, form the oriented
manifold I >< M* where I is the oriented unit interval. Then (I >< M%)
= [><Mnr= 1> My 0><—M?*, Hence M* —M?* bords. The bordism
relation is clearly symmetric. It is in the proof of transitivity that the
collaring theorem (1.2) plays its typical role. Suppose that M7 is bordant
to M}, and that M3 is bordant to M 5~ There are the compact oriented
manifolds B?+Y, Brt1 with BMl= MPU—MP, Biti= MpU—MT.
We may as well suppose B}*1n By*+l= M3 Let Br+l= B}ty By+l;
then B"+1is a topological oriented (n + 1)-manifold with B*+1= M7 U
U —M3. It is necessary to give B*+! a suitable differentiable structure.
By (1.2) there is an open set U; containing M} in B"+! and a homeo-
morphism 4 of M, onto Mj>< (—1,1) with 2:U;n Bft1-> M} < (—1,0]
a diffeomorphism and 4: U; N Byt M} >< [0,1) a diffeomorphism. Give
U, the differentiable structure obtained from that of M} > (—1,1) via
h. Let U,= Br+1~M7; U, has a natural differentiable structure. We
thus get a differentiable structure on B**! via (1.1). The relation is then
transitive.

The equivalence class to which M" belongs is denoted by [M*], and
the collection of all such classes by £,. An abelian group structure is
put on £, by disjoint union: [M}] + [M3] = [M}yv M3]. The zero
element of the group consists of those manifolds which bord; moreover,
— [M") = [—M"].

The weak direct sum £,= X, can be given the structure of a
graded ring. The product of homogeneous elements [M7'] and [M7] is
given by [MT"]+ [M3] = [M} > M3]. This is seen to give a well-defined
associative and distributive operation. Furthermore -there is a unit
element, the bordism class of a single point. It is also the case that
[M] (M) = (— 1)m» [M7] [M™].

The groups £2, have been completely determined. THOM showed, in
his original work on the subject [40], that 2,® Q, @ the rationals, is a
polynomial algebra with generators the bordism classes of the complex
projective spaces P,;(C), k=1,2,... . MILNOR [25, 26], and indepen-
dently AverBUcH [2], showed that £, has no elements of odd order,
The torsion was then completely determined by WaLL [42], who showed
that all torsion consists of elements of order two, and moreover settled
the structure of the set of elements of order two. Here he found useful
the elements of order two discovered earlier by DoLp [16]. In the mean-
time, MILNOR [25, 41] had also completed TroM’s work on £2,® Q by
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giving the multiplicative structure of £,/Tor, Tor the torsion of £,.
Namely there exist closed oriented manifolds Y4*, 2=1,2, ..., such
that £,/Tor is the polynomial algebra over the integers generated by the
[Y*]. For 2k 4 1 a prime $, one may choose Y4*= P__, (C).

In addition to the oriented bordism there is also an unoriented
bordism theory. In the unoriented theory all closed manifolds are used;
no requirements of orientability or orientedness are imposed. The
definitions of the bordism relation are otherwise precisely as in the
oriented case. The unoriented bordism class of M* is denoted by [M*"],,
and the set of all bordism classes by N,,. As with Q,,, N, has an abelian
group structure defined by disjoint union; however every element of
N, has order two. The weak direct sum R, = XN, has a multiplication
induced by the cartesian product, and 9, is a graded commutative
algebra over Z,. THOM [40] completely settled the structure of 9N, by
showing that for every »# not of the form 2¢— 1 there exists a closed
manifold M* with R, the polynomial algebra

Zy([M?]o, [M*]g, [M®], .. .)

In even dimensions the M2* can be chosen to be the real projective
spaces P,,= P,;(R); explicit generators were given in the odd dimen-
sions by DoLp [16].

3. Straightening the angle

We show here that the cartesian product of two differentiable mani-
folds has a differentiable structure. The technique involved, usually
referred to as “‘straightening the angle”, is useful whenever two manifolds
are sewn together. We follow MILNOR’s exposition [21, p. 34].

Let R, C R consist of all non-negative real numbers. Pick once and
for all a homeomorphism 7 of the quadrant R, >< R, onto the halfspace
R >< R,, with 7 a diffeomorphism of R, > R,\(0,0) onto R >< R, \(0,0).
For example in polar coordinates let z(p, 8) = (o, 26), 0 < 0 < =/2.

Suppose now that we have a topological manifold B®, and that we
also have in B® a submanifold M"-2 without boundary, closed in B,
such that

i) B*\M=-2 has a differentiable structure;

ii) there exist a neighborhood U of M*-2in B® and a homeomorphism
® of U onto M*~2< R, >R, with @(x) = (x,0,0) for x ¢ M"~2 and
with @ a diffeomorphism of U\M"-2 onto M*~2>< R > R \M"~2x<
=< 0><0.

Let 7:M"2< R, ><R,»> M"-2><R>=<R_ be given by 7'(x, 7%, 2)
= (x,7(y,2)). We then have the homeomorphism 7/®:U —» Mn"-2x<
> R><R,. There is the product differentiable structure for M"-2x<
>< R> R, and hence a differentiable structure on U such that ' @ is a
diffeomorphism. Then U and B=\M"~2 have differentiable structures,
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and these are seen to induce the same differentiable structure on their
intersection. Use of (1.1) then gives a differentiable structure for B".
This structure is referred to as obtained by straightening the angle.

Consider for example differentiable manifolds B} and B}. As pointed
outin section 1, B =< B"\B’” > B’Z‘ has a natural d.lfferentlable structure.
Also B™and B" have nelghborhoods U, and U, in BT and B} respectively,
with dlffeomorphlsms &, of U; onto BP < R, and (D of U, Onto Br<R,.
Let U= U,;>< U,; then @ = @, x (15 is a homeomorphlsm of U onto
B™>< Bt>< R, >R, with the properties of ii) above. We then obtain
a differentiable structure on B}* x B} by straightening the angle.

The following will be useful in the following section.

(3.1) Suppose P and Q are closed disjoint subsets of the compact
n-manifold B". There exists a topological manifold B} C B* with P C BY,
B} N Q=0 and B} closed in B". Moreover B} can be given a differentiable
structure by straightening the angle.

Proof. By (1.2), we may as well identify a neighborhood U of B* with
B*>< [0, 1), and we do so. By normality, there exist disjoint closed sub-
sets P, and Q) of B containing P N B* and Q n B" respectively in
their interior. By compactness there exists a 0 < ¢ < 1 such that

Py><[0,4) > P (B*<[0,1), 01><[0,7) D Q n(B*>=<[0,1).

Let B'® be the n-manifold B\Brx<[0,#), and let P'= P B'"
Q’= Q N B’n. There exists a differentiable function f': B'*— [0, 1] with

F(Pr<t) U P)=0,f((@1<)v@)=1.

Extend f' to a function f:B"— [0, 1] by defining f(x, s) = f’(x, ¢) for
(%, s) € Br><[0,#). Then f(P)=0, f(Q) =1 and f is differentiable on
Br>< [0,1). There exists a differentiable approximation F to f with
F = fon B*x< [0, {,], 0 < {,< t. We may suppose that F picked so close
tof that Lu.b.F(P) <g.Lb.F(Q). There exists now an s, with Lu.b. F(P) <
< So< g.1.b.F (Q) and with s, a regular value of F [30]. Then F-1[0, s,]
is seen to be a topological #-manifold B} with B} > P and B} n Q=20.
We leave it to the reader to see that the angle can be straightened around
the (» — 2)-manifold F-1(s,) N B" so as to give a differentiable structure
to BY.
4. The bordism groups of pairs of spaces

In this section we define a singular bordism theory quite analogous to
singular homology.

Fix a pair (X, 4) consisting of a space X and a subspace 4. An
ortented singular manifold in (X, A) is a pair (B®, f) consisting of a com-
pact oriented manifold B* and a map f:(B" B") > (X, 4). If A=90
then of course B*= @ also.
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An oriented singular manifold (B=, f) in (X, 4) is said to bord if an
only if there is a compact oriented manifold C*+1 and a map F:Cr+H—» X
for which

i) Bris contained in +1 as a regular submanifold whose orientation
is induced by that of Cn+1;

ii) F|Br=f and f(C"+\B™ C 4.

From two singular oriented manifolds (B?, #,) and (B}, f,) a disjoint
union (B U B, f, U f,) is defined where Bf N BE =0, f, U f| B =},
and f, U f,| B} = f,. Define —(B" f) = (—B"f). A pair (B},f;) and
(B%, f,) of oriented singular manifolds in (X, 4) are bordant if and only
if the disjoint union (B} — B}, f; U f,) bords in (X, 4). The reader
may show that this defines an equivalence relation among the oriented
singular manifolds in (X, 4); a device similar to straightening the angle
is needed in the proof of transitivity.

Denote the bordism class of (B*, f) by [B®, f], and the collection of
all such bordism classes by £,(X, 4). An abelian group structure is
imposed on £, (X, 4) by disjoint union; that is,

[BY, Al + + [By, f2] = [BY v B3, hvtl.

It is seen that the class of all (B", f) which bord forms the zero element,
and that — [B», f] = [— B®, f]. We refer to 2,,(X, 4) as the n-dimensional
oriented bordism group of (X, A). Similar groups have been defined by
Arrvan [1], EErs, and MILNOR. In one way or another much of the
remainder of this tract is devoted to the study of these groups.

Let Q,(X, 4) be the weak direct sum X0, (X, 4). We define on
0, (X, 4) the structure of a graded module over the Thom bordism ring
£,. From an oriented singular manifold (B, f) in (X, 4) and a closed
oriented manifold M™, a singular manifold (Bm><M™, g) is obtained
with g (%, ¥) = f(x). Define the module structure by

[B", f] [M™] = [B">< M™,¢].

The reader may check that this product satisfies the appropriate asso-
ciative and distributive laws.

Given a map ¢:(X, 4) > (X, 4,) there is associated a natural
homomorphism ¢, : £,(X,4) - 2,(X,,4,) given by ¢, [B*f] = [B*, ¢f].
There is also a homomorphism 8: 2, (X, 4) —~ £, _,(4) given by 8*[B*, f]
= [B",f|B"]. It is easy to see that 3 is well defined and additive. In fact,
Pa: 24 (X, A) > 2,(Xy, A7) and 3:Q2,(X, 4) - 0,(4) are Q-module
homomorphisms of degree 0 and —1 respectively. We have chosen a
right module structure above since (B%>< M™) = Brx Mm™, while
(M™ < B")' = (—1)™(M™><Br). However, we may also introduce a left
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module structure and we have
(M™] [B*, f] = (=1)™*[B", f] [M™].

As we have said in section 2, if [M™] <= 0 then either m = 4% or [M™]
is of order two. It then follows that

[M™] [B", f] = [B", f] [M™] .

3. The Eilenberg-Steenrod axioms

We have defined in section 4 a covariant functor {£, (X, 4), @4, 0}
on the category of pairs of spaces and maps of pairs. We proceed to
show that it is a functor of the homology type. Such generalized homology
theories have recently been studied more generally by G. M. WHITE-
HEAD [43].

(5.1) Theorem. On the category of pairs of spaces and maps of pasrs the
oriented bordism functor {Q4(X, A), p,, 0} satisfies the first six Etlen-
berg-Steenrod axioms for a homology theory. However for a single point p
we have Q,,(p) = £, the oriented Thom bordism group.

We proceed to enumerate the axioms; the first three are trivially
verified.

(5.2) If ¢:(X, A) > (X, A) s the identity map then i,:8,(X, 4) —~
— Q.(X, A) is the identity automorphism.

(5.83) If ¢:(X, A)—> (Xy, 4)) and 0:(X,, 4;) - (X,, 45), then (0¢),

= Oy P

(5.4) For any map @:(X, A) > (X, 4,) the diagram
Qn(X, 4) —> Q,_1(4)

l% l('PIA)‘

Q(Xy, Ay) —> Doy (4)
is commutative.

We have next the homotopy axiom.

(5.5) If @, g1 (X, A) > (X4, 4,) are homotopic, then Qo= @14

Proof. Let A:(I< X, I>< A)— (X;, 4,) be a homotopy joining ¢,
and ¢,. For (B", f) a singular manifold in (X, 4) define 6:1 x B"—~ X,
by 0(, ) = A(2, f(x)); then 0(0, x) = gof(x) and 6(1, x) = ¢,f(»). Now
I > B*is amanifold (see section 3) and (I < B") = (I B U (I ><— B").
Thus 1 >< By 0> — B" is a regular submanifold of the boundary, and
0(I X (—B™) C 4,. Hence [B", g,f] = [B", ¢, f].

We need a remark before proving exactness. Let V* CM" be a regular
submanifold with boundary in a closed manifold M*". If f:M"»—> X is a
map with [(M™\IntV") CA, then [M" fl= [V V"] in 2,(X, 4).
Define F:I > M"—> X by F(t, %) = f(x). Now (I < M")'= 1 x M", and
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1< VP uU0>x—M"is a regular submanifold of the boundary. Since
F(1 > (M™IntV™) C A then [M", f] = [V" f|V*]in £2,(X, 4).
(5.6) For every pair (X, A) the sequence

e O (A) = Q,(X) 2> 0,(X, 4) > Q,_,(4) —> -

is exact.

Proof. It is easy to see that dj,=0 and ¢,0 =0. Consider now
(M7, f]€ 2,(4). We can apply the preceding remark to see that
Tatx [M™ f1=0 in £,(X, 4). Next consider [C" f] € £,(X, 4) in the
kernel of 9. There is a B and a map g: B"—~ 4 with B*= (* and g| B~
= f| Cn. Identify C* and — B" along their common boundary to obtain
closed oriented manifold M" and a map F:M"—> X with F|C"=f and
F|Br=g. Now [M", F] € £,(X); that 7, [M", F] = [C" f] in 2,(X, 4)
follows from the remark preceding (5.6). The remainder of exactness is
trivial.

(5.7) If U CIntA, then the inclusion <:(X\U, A\U) C (X, 4) induces
an isomorphism

1482, (X\U, A\U) =~ £,(X, 4) .

Proof. We show that 7, is an epimorphism; the remainder of the
argument is similar. Let (B* f) be an oriented singular manifold in
(X, 4). Let P=f{1(X\Int4), Q = f1(U). There exists, by (3.1), a
topological submanifold B} C B® with B} D P and B;N Q = §. Further-
more B} can be given a differentiable structure by straightening the
angle.

Now [Bf,f|B}] € 2,(X\U, A\U). That 4, [B}, f|By] = [B* f] in
£, (X, A) follows just as in the remark preceding (5.6).

6. Consequences of the axioms

A number of facts follow from the first six Eilenberg-Steenrod axioms
alone; here the general reference is EILENBERG-STEENROD [19]. For one
thing we now have reduced bordism groups. Identify the Thom group
Q, with 9, (p) for any point p. Define the reduced group &, (X) to be
the kernel of ¢,:0,(X) > £, (p) where ¢ collapses X to the point . As
usual 2, (X) ~ 2, £,(X). Itis seen that an oriented singular manifold
(M=, f) in X represents an element of £, (X) if and only if [M"] = 0 in
£,. For each pair (X, 4) there is an exact sequence [19, p. 20]

cee oy ,,(A) - n(X) - .Q,,(X, A) —)Qn—l(A) > e,
Also for every triple X >4 > B there is the exact sequence [19, p. 25]
coo > Q.(4,B) > 02,(X,B) > 2,(X, 4) »---.
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There are also a number of consequences for pairs (X, 4) consisting
of a CW complex X and a closed subcomplex A ; these are proved just
as in EILENBERG-STEENROD [19]. For example, full excision holds in
this category. Also if ¢:(X, A) - (X;, 4,) is a relative homeomorphism
between CW pairs, then ¢,:0,(X, 4) = 2,(X,, 4,). In particular,
0,(X,A) = ,(X/A). Here if A =9 we agree by convention that
X0 is the disjoint union of X and a point. There is also a Mayer-Vietoris
sequence and a relative Mayer-Vietoris sequence for CW triads [19,
p- 76].

One can now compute such groups as

'Qn (Sk) = M- Q"(Sk) = Qn$ Qn—k »
and

Q,(I%, SE-1) = G, _ (S =Q,_,.
For pairs (X, 4) and (Y, B) there is a homomorphism
#:02,(X, 4)® 2,(Y, B)> Q,, (X, A) x (Y, B))
where (X, A)><(Y,B)=(X>x<Y,A><Y U X>B). Namely, define
%([B% f] ® [Ceg]) = [BP>< (9, f><¢],

where B?><(C? has the product orientation. If Y is a point and B is

empty, we obtain
#:2,(X, A) ® Q> DpealX, 4)

which is just the £2-module structure on £, (X, 4) already described.

There is also a natural homomorphism

w2 (X, A)>H,(X,A;Z), where H, (X, A;Z) is the integral
singular homology group. Given [B~, f] € Q,(X, A), leto, ¢ H, (B", B*;Z)
denote the orientation class of B". Define u[B", f] to be the element
f+(0,) € Ho(X, A; Z). The image of u is the subgroup of integral homol-
ogy classes representable in the sense of STEENROD. It will be recalled
that STEENROD raised the following question [18, p. 257]: given an inte-
gral homology class ¢ of a complex X, is there a map of a closed oriented
manifold into X carrying the orientation class into ¢ ?

We note that commutativity holds in

Q.(X, 4) > H, (X, 4) 2,(X, 4) > H,(X, A)
(6.1) l% l% la lb

0Q,(X, 4) > H, (X, 4) 92,_,(4) —*—> H,_,(4).
As in EILENBERG-STEENROD [19, p. 45], there are isomorphisms

Q,,.(I”, Sn——l) o~ Q’r-—l (In—l, Sn—2) s
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the composition of a boundary homomorphism and homomeorphisms
induced by maps. We then have a commutative diagram

Q, (I, Sr-1 LA H, (I, S*-1)

l |

Q, _(I*1, Sm-1) LN H,_,(I»-1, S»-1)

It follows by induction that yx:Q,(I", S*—1) = H,(I", S™~1), since this
is the case for # = 0. By the relative homeomorphism property and the
direct sum theorems it follows for any CW complex X that

p 2, (X, Xn-) = H (X", X»1),
where X* denotes the k-skeleton. Moreover commutativity holds in
Q, (X", Xn=1) = H, (Xn, Xn-1) = C, (X)
(6.2) la la ia
Qp (X1 X8 = Hy,_y (X271, X028) = G (X))
We note next that
(6.3) 2: 02, (I S @ 2,= 2, (I S*Y).

For first of all (6.3) holds for » = 0. The general case follows by induction
on # from

Q. (I, S*1) @ Q4> 2, (I, S
¥ ¥
Qﬂ—l (In—l, SW—Z) ® Qq_; Q"+q_1 (In-—l‘ Sﬂ~—2)
It then follows that
(6.4) #: 0, (X, Xn-Y) @ Q= Q,, (X7, Xn-1) .,

Denote by SX the usual suspension of X, namely X >< I with X > 0
and X > 1 each identified to a point. Identify X with X ><1/,; there
are then the cones

C_=Xx<[0,1]JX>=<0,C,=X>= [, 1]/X <1
in SX, and the composite isomorphism
A4:3,(5X) = 0,(SX,C)=2,(C_.X)=0,_,(X).

There are also maps ¢:X/A4 — SA of the type well-known in stable
homotopy. In our case we extend the identity map 4 > A4 to a map
(X, 4) > (C_, A), for (X, A) a CW pair, and then define ¢ as the com-
posite

X/A—>C_|[A=SA.

(6.5) The composite 2,(X, A) = 3, (X]A) BLLN L (SA) LN —1(4)
is the homomorphism 9:2,(X, A) - 8, _,(A).
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This follows immediately from the commutative diagram

0.(X]4) <S— 0,(X, 4) ——> B,_,(4)

G.(S4) «— Q,(C_,4) —> 8, ,(4).

We can also define a suspension homomorphism S:8,_,(X) -
- ,(S X). Suppose [Mn-1, f] represents an element of &, _, (X). Then
Mn-1= Bn for some compact manifold B=. There is a map F of (B»>< I}’
into S which maps M™-1>1I into A >< I via f><1d, and which maps
B™ >< 1 into the north pole and B»>< 0 into the south pole. The element
[(B®>< I), F] is uniquely determined, since

(6.6) A[(Br>< )", F]= (—1)*~1[Mr-1, []. Define S[M"-1,{] to be
[(B*><I), F]in 3,(X).

7. The bordism spectral sequence
For a CW pair (X, A) there are the groups £,(X* U 4, X' U 4), X*
the k-skeleton of X, and the exact sequences of the triples
XeUADX'UADX" VA, k=zlzm.

We thus receive a spectral sequence, whose elementary properties we
study in this section.

Using the terminology of EILENBERG [11, Chapter 8], there is a
spectral sequence {E%, ;} where Ej ;= C% ./Bp ., and where C},, and
B, , are the images of

QX200 A, X7 UA)> 0, (XP U4, X?P-1U d),
O a (X2t U A, XPUA)> 2, (X2 U A, X2~ U A).
Moreover there is the filtration
0CJo,nC " Clpn-pCr* Clno= (X, 4)
with [, , the image of
Qo X2 U A, A) > 2, 4(X, 4)

and Jp,olJp-1,041= Epg
We have El, = Q,,,(X? U4, X?-1yU 4)=C,(X, 4) ® 2,=
= C,(X,A;2,) by (6.4) and (6.2). Moreover d} ,:E} ,~E}_;, is
identified withd:C (X, 4;2,)>C,4(X,A4; Q,). Hence EZ ;= H,(X,A; 82,).
We have thus for each CW pair a spectral sequence {E}, ,, 4"}, with
E®-term associated with a filtration of 2, (X, 4). If ¢:(X, 4) - (X}, 4))
is cellular there is induced a homomorphism of the spectral sequence
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of (X, A) into that of (Xj, A;), compatible with @,:0Q,(X, 4)—
- Q. (X, AY). If @, @1 (X, A) > (X, A;) are cellularly homotopic it
follows in a standard way that the homomorphisms Ef ,—~ Ejf , agree
for » = 2.

If @:(X, A) - (X;, A;) is a map joining CW pairs, there is a homo-
topic map ¢’ which is cellular [44, p. 221]. Define ¢, :E} ,—~ E;, to be
@4 This is well-defined for » = 2 since homotopic cellular maps are
cellularly homotopic [44]. In particular the bordism spectral sequence
is independent of the particular cell subdivision for » = 2.

Note also that the Thom ring £ acts on the spectral sequence. For
each Q,(X*UA4,X U A4) is an Q-module, and the inclusion and
boundary homomorphisms are (2-module homomorphisms. Hence
Er= YE% . is an Q-module, each d" is an 2-module homomorphism
and Er+le H (E™) isan Q-isomorphism. Finally the product »: Q2,(X,4) ®
® 2> 2,(X, A) has»(],,¢® ;) CJp,q4s The induced

% (Jo,alJo—1.041) ® 5= Jp,avslJp-1.045+1
is the homomorphism Eg,® 2, Ep'; 1 s

(7.1) The product E2 ,® Q2> E2 ., of the spectral sequence is
identified with the homomorphism

H,(X,4;2)0 Q—~>H,(X,A; 2,0 Q,)>H, (X, A;2,,,) .

Proof. The remark follows from the commutative diagram
E3.q® 0, > Ep g+

Co(X, 4; 29 ® 2~ Cp(X, 4; 2,8 Q) > Cp(X, 45 Qg4 -

(7.2) The edge homomorphism 0,(X, A) = J, o> Eno—> E%,
= H, (X, A) of the bordism spectral sequence coincides with the homo-
morphism p:2,(X, A) > H,(X, A) of (6.1).

Proof. The edge homomorphism may be described as follows. If
be,(X, A) = J,,o then b is the image of an element ¢ under
Q. (Xru 4,4) > 2,(X,A). There is the image ¢’ of ¢ under
Q. (XrUA, A)—» 2, (X" U A, Xr1Ud). Then ('€E}qo=C,(X, A),
and ¢’ represents an element d € E% ,. The edge homomorphism maps b
into 4.

We now prove (7.2). Consider an element [B”, f] € Q,(X, A). There
is [B", id] € £2,(B", B") and f, [B*, id] = [B*, f]. Naturality shows that
it suffices to prove (7.2) for [B~, id] € 2, (B", B"). Under the edge homo-
morphism we must show that [B®, 7d] maps into the orientation class
of Br. Letting b= [Br, id] ¢ Q,(B, B"), we have ¢ = b. Hence ¢’ is

Ergebn. d, Math, N, F, Bd. 33. Conner and Floyd 2



18 I. The bordism groups

[B", id] € 2,(B", X*-1), where X"~ is the (»— 1)-skeleton of B~
Under the identification

412, (B", X»=1) = H, (B, X»-1) = C, (B"),

¢’ is identified with the orientation cycle by the definition of y. The
theorem follows.

8. Unoriented bordism groups

We sketch here the unoriented version ,(X, 4) of the oriented
bordism group 2, (X, 4). As one would guess from the work of THOM,
the structure of R, (X, 4) is easier to determine than that of (X, 4);
in fact, it is not difficult to determine it completely.

A singular mainfold in (X, A) is a map f:(B", B") - (X, A), where
B# is a compact manifold. A bordism relation is defined just as in § 4,
except that no orientability requirements are imposed. The resulting
group of bordism classes is denoted by :,(X, 4); every element is of
order two. The bordism class of (B=, f) is denoted by [B”, f];. The weak
direct sum RN, (X, 4) = XN, (X, A4) is a graded R,-module. The functor
{R.(X, A), p,, 0} is defined on the category of pairs of spaces and maps
of pairs. This unoriented bordism functor satisfies the first six Eilenberg-
Steenrod axioms for a homology theory; however for a single point p
we have U, () = N, the unoriented Thom group.

There is a natural homomorphism g: R, (X, A) - H,(X, 4;Z,) de-
fined just as in § 6. Moreover for every CW pair (X, A4) there is an un-
oriented bordism spectral sequence {E} ,, @'} with EZ ;= H,(X,4;R,)
and whose E”-term is associated with a filtration of R, (X, A4).

In the unoriented case we see that H (X, 4;%,) = H,(X,4;Z,) ® R,,
and in fact %:E2 ,® N,= EZ , for all p, q.

(8.1) Thom. For each CW pair (X, A), u: N, (X, A) > H, (X, 4; Z,)
is an epimorphism.

This was shown by THoMm in [40], and we shall now discuss its im-
plications. In the unoriented bordism spectral sequence of (X, 4), it
follows from the unoriented version of (7.2) that EZ , consists entirely of
permanent cycles. Then 42 o= 0; since E2 = EZ ,® £,, it follows
that d2 ;= 0 and E} ,= EZ ,. Continuing in the same fashion, we see
that df, ;= 0 for » = 2. We have the following corollary.

(8.2) Theorem. For every CW pair (X, A), the unoriented bordism
spectral sequence is trivial.

IR (X, A) =], 0D D Jo,nis the filtration coming from the spectral
sequence, then [, o ofJu_ g 1,001 En—gq = B3 g =H, (X, 4;%,).

Since every element in R, (X, A) has order two, we thus see that
R (X, A)=XH, (X, A;Z,) ® N, A refinement of this last remark
is possible.
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(8.3) Theorem. For every CW pair (X, A), R (X, A) is a free graded
N-module isomorphic to Hy (X, A; Z,) @ N.

Proof. We do not prove this here in complete detail; that will be done
in Section 17. Let {c,,,;} CH,(X, 4;Z,) be an additive homogeneous
base. For each ¢, select an unoriented singular manifold (B}, ;) in
(X, A) with u([BY, /;]s) = ¢y, s The elements {[B", f,],} can be shown to
form a homogeneous N-base of N, (X, 4).

It is easily seen from (8.2) that {[BY, /,],} forms a generating set for
N (X, A). We shall later in passing show the independence of the base.

9. Differentiable bordism groups

Let X* be a differentiable manifold without boundary, with no
requirements of compactness or orientability. We define differentiable
bordism groups D, (X*).

To do so, consider pairs (M", f) consisting of a closed oriented mani-
fold M™ and a differentiable map f:M”»— X*. Such a pair orientably
bords if and only if there is a compact oriented manifold B#+! with
Br+l= Mm and a differentiable map g: B»+1-> X*, with g| Br+!= f, and
such that there exist an open set U containing B+! and a diffeomorphism
h:Br+15< [0, 1) > U with &(x, 0) = x and with g(k(x, ?)) = f(») for all
0= t<1 and x ¢ Br+!, This last condition is seen to guarantee the
transitivity of the bordism relation. The resulting group of bordism
classes is denoted by D, (X*).

There is a natural homomorphism D, (X¥) - £2,(X¥), mapping the
class of (M™, f) into the class of (M*, f). This is an epimorphism, for
given f:Mm™—> X* there is for ¢ > 0 an g-approximation /" : M*»— X* with
[’ differentiable. Since f and f' are homotopic for ¢ sufficiently small,
(M, f] = [M~, '] in 2, (X¥).

We next show that D, (X*) - £, (X*) is a monomorphism. For let
f:Mr—~ X* be differentiable, and suppose there is a compact oriented
manifold B»+! with B*+1= M" and a map g: B*+1-> X* with g| B»+1= .
Choose a neighborhood U of Bn+!in Br+! which is diffeomorphic to
Br+1x [0, 1), and identify the two. The map g:Br+1x [0, 1/2] > X*
is seen to be homotopic to the map g’: B»+! x< [0, 1/2] - X* given by
g'(x,t) = f(x). By the homotopy extension property, there is then a
map g': Br+1»> X* with g'(x, t) = f(«) for 0 < ¢ < 1/2. By the approxi-
mation theorems for differentiable maps [22], there is an e-approximation
g"’: Br+l-> X* with g” differentiable and g”’=g' on Br+lx< [0, 1/3].
Thus f differentiably bords, and we receive the following theorem.

(9.1) Theorem. If X* is a differentiable manifold without boundary,
then D, (X*) = Q,(X¥).

Similar remarks apply to the unoriented bordism groups.

2‘
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10. A review of differential topology

Up to this point we have made do with the very simplest differential
topology. However the situation soon becomes more complicated. Hence
we give at this stage a summary of some of the things assumed.

First there are some purely geometric facts; here MIiLNOR [22] is the
appropriate general reference. First of all, there is the fact that every
continuous function can be approximated by a differentiable function.
We state the following (see MILNOR [22, p. 62]).

(10.1) Let f:M —> N be a continuous map of differentiable manifolds
without boundary, with | diffeventiable on the closed subset A of M. Let a
positive real — valued function € be given on M, and let N have the metric
determined by an embedding N C R?. Then there exists g:M —> N with g
differentiable, g an e-approximation of f, and with g|A = f|A.

For a differentiable manifold M without boundary, let M, denote
the vector space of tangent vectors to M at x ¢ M. If f:M > N is
differentiable, for each x ¢ M there is the homomorphism df: M,— Ny,
the differential of f.

The map f is an smmersion if df is a monomorphism for each x ¢ M,
and an embedding if f is an immersion and also a homeomorphism of M
onto f(M). There is now the Whitney embedding theorem (see MILNOR
[22, p. 21]).

(10.2) Whitney embedding theorem.

If p > 2n, any map | of the differentiable manifold M", without boundary,
into R? can be e-approximated by an embedding g. If f is alveady an embed-
ding on a neighborhood of the closed set A C M™, we may choose g|A = f|A.

It is easy to generalize (10.2), replacing R? by an arbitrary N® without
boundary.

We shall also be considering manifolds B with boundary. Denote by
U a neighborhood of Br which is diffeomorphic to Br>< [0, 1); identify
U with Br>< [0,1). A map 4 of B» into the solid p-ball C? is an embedding
if & is a 1 — 1 immersion with & (Br) ¢ S?-1, h(B") N S?—1= k(B"), and
if there exists 0 < £, < 1with &(x, ) = (1 — #) k(x) for (x, £) € Brx [0, t,).

(10.3) If Br*lis a compact (n + 1)-manifold and if p = 2n + 2, then
every embedding of B"+! into S® can be extended to an embedding of Br+1
tnto the solid (p + 1)-ball Cr+L,

Proof. Let U be a neighborhood of B»+! diffeomorphic to Br+lx
><[0, 1), and identify the two. Let 4:B"+l->S?® be an embedding.
Define #': B*+1-> CP+1 by k' (x, ) = (1 — £) & (x) for (x, £) € Br+1x< [0, 1),
A’ = 0 otherwise. One now uses the Whitney embedding theorem on the
manifold Br+1\Br+lx [0, 1/3], requiring that the approximation be
an extension of A’ on Bn+1x< (1/3,2/3]. It is seen that we thus get an
embedding of B+1in C?+I,
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We turn now to THOM’s concept of transverse regularity [40, 22],
invented to study such topics as cobordism. Suppose that N is a differen-
tiable manifold without boundary, and that N’ is a regularly embedded
submanifold of N. The tangent space N, can be regarded as a subspace
of the tangent space N, for each x € N'. The space of normal vectors to
N' is by definition the vector space N, /N,

Suppose that M and N are differentiable manifolds without boundary,
and that f: M — N is differentiable. If N’ is a regularly embedded sub-
manifold of N, then f is transverse regulay on N' if for each x € f~1(N’) the
composite map

M,~2s N> NN,

is an epimorphism. It is then the case that f~1(IV') is a regularly em-
bedded submanifold of M, and that dim M — dimf~}(N’) = dimN —
— dimN".

We have now the basic approximation theorem of Thom (see MILNOR
[22, p- 22]).

(10.4) Let f:M™-> N» be differentiable, and let N5=2? be a closed
differentiable submanifold of N. Let A be a closed subset of M such that the
transverse regularity condition for f and Ny holds at each x in A Nf~*(NV,).
Let 8 be a positive real-valued continuous funciion on M. There exists a
differentiable map g: M»— N?® such that

(1) g is a 8-approximation of f,

(2) g is transverse regular on Ny, and

3) gld =f|4.

We shall also need the existence of tubular neighborhoods. Let M™ be
a closed differentiable manifold. There is a Riemannian metric on M#
[38, p. 58], which we assume fixed once and for all. The tangent bundle
to M" thus receives a continuous inner product. Let ¥ be a closed
differentiable submanifold of M=». The bundle v: E — V™, induced on
V™ by the tangent bundle to M", splits as a Whitney sum 1 =1,® 7,
where 7, : E;— V™ is the tangent bundle to V™ and t,: E,— V™ is the
orthogonal complement of E; in E. Moreover, 7, is isomorphic to the
normal bundle to V™ in M"; we identify the two.

We define now a map 4 : E,—> M=, following a classical procedure. A
normal vector v at x € V™ has a length |v|. If |v| > 0, there is a unique
geodesic #(s) in M", parameterized by arc length, with %(0) = x and
with initial direction v/|v|. The map 4: E,— M™ is defined by 4(v)
= u(||lv|)if v == 0, A(v) = x if v = 0. It is a standard fact that the Jacobian
of 4 is non-singular along V™ C E,, where V™ is identified with the trivial
cross-section of E,. The map %| V™ being a diffeomorphism of the com-
pact space V™ and % having non-singular Jacobian on V™, there is an
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open set W, V" C W CE,, such that A: W — M" is a diffeomorphism
onto an open subset of M" containing V™.

Select & > 0 so that if |jv| < ¢ then v € W. Let v : A - V™ denote the
closed unit cell bundle in E,; ie., 4 = {v:v € E, and |Jv| < 1}. There is
then a diffeomorphism 4': A - M™ onto a submanifold in M=, given
by A'(v) = h(ev). Call the image 4’(A) a tubular neighborhood of V™ of
radius e.

We turn now to a very quick resume of the theory of characteristic
classes following BOREL [4, 5]. For expositions of characteristic classes,
see also HIRZEBRUCH [20], MILNOR [24], or BoreL-HIirzEBRUCH [7]. For
G a compact Lie group, a wuniversal G-bundle is a principal G-bundle
7: E(G) > B(G) with E (G) pathwise connected and with z;(E(G)) = 0
for 0 < ¢ < o0, and with B(G) a CW complex. Call B(G) a classtfying
space for G. If B(G) and B’ (G) are two such classifying spaces, H*(BG; K)
and H*(B'G; K) are canonically isomorphic. For every inclusion
G, C G, there is defined a homomorphism

0= 0(Gy, Gy) : H¥*(BG,; K) > H¥*(BGy; K) .

For the cyclic group Z,, a classifying space BZ, is seen to be infinite
dimensional real projective space P, the CW complex which is the
union of an ascending union P, C P, C--- of real projective spaces.

Hence
H*(BZ,;Z,) = Z,[1] ,

a polynomial algebra with a single one-dimensional generator ¢. Generally
it is the case that for B (G, >< G,) we may take B(G,>< G,) = BG, =< BG,.
Hence

H*(B(Zy)"; Zy) = Zs[ty, - - -, 1],

with each #; one-dimensional.

Pass now to the orthogonal group O (n). There is the subgroup D of
diagonal orthogonal matrices in O(#n), and D = (Z,)". BOREL [4] has
shown that the inclusion (Z,)* C O(») induces a monomorphism

e+ H*(BO(n); Zy) > H*(B(Zy)"; Z,)

whose image is the symmetric polynomials in ¢, .. ., ¢, In particular
there are the elementary symmetric polynomials X; ... % * 4,
denoted simply by 2t ...#4. Let w,¢ H*(BO(n); Z,) be defined by
o(wy) =2t ... t. The wy, 1 < k < n, are the universal Whitney classes
and w =1+ w;+ ' - - + w, is the total Whitney class. Also

H*¥(BO(n); Zy) = Zy[wy, . . ., wy] .

There is the inclusion SO(n) C O(n), inducing ¢: H*(BO(n); Z,) >
— H*(BSO(n); Z,). It is known [4] that p is an epimorphism and that
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its kernel is the ideal generated by w;. Letting wy=p(wy), 2 k2 = n,
then
H*(BSO(n); Zy) = Zy[w,, . . ., w,] .

For the circle group S!, a classifying space BS?! is the infinite di-
mensional complex projective space P (C). Hence

H*(BSY“;Z)=Z1y],
where ¥ is two dimensional. Moreover
H*(B(SY)™; Z) =Z[¥1s - « +» Ynl-

Consider now the unitary group U (n). There is the subgroup D of
diagonal unitary matrices in U(#), and D == (S1)". BOREL [8] has shown
that (S')* C U(») induces a monomorphism H*(BU (n);Z)—>H*(B(SY)*;Z)
whose image is the group of symmetric polynomials myy,....¥n Deﬁne
the universal Chern class ¢ ¢ H¥*(BU(n);Z), 1< k < n, by g(cy)
=2y ... ¥ thatis, (1 + ¢;+ -+ + ¢,) = II(1 + y;). Then

H*BU@#n);Z)=Z[c, .., C,)

Consider again O(2#). There is the embedding of (S*)» in O (2#%), with
(31, - -+ 2) €(SY®, 2= %+ 1y, identified with the block matrix

oy 0

( T, ) where %o —
¢ k T Ok

0 ak %= (yk ”k)
The induced homomorphism g:H*(BO(2#); Z) > H*(B(S")*; Z) maps
H*(BO(2n); Z) onto the symmetric polynomlals S[% ..., y2]. More-
over the kernel of g is the 2-torsion of H*(BO(2#); Z), which consists
solely of elements of order two; for all this, see BOREL-HIRZEBRUCH [7].
There are the inclusions

(SY»C U(n) CO(2n) CU(2n),

and g: H*(BU (2n); Z) > H¥*(B(SY™; Z) maps (1 4+ ¢+ ¢+ )
(1— ¢+ cg— =) into IT(1—¥3). Deﬁne the universal Pontryagin
classes p € H‘”‘(BO(Zn);Z), 1<k=nbyl—p+pp— -+ (—1)"p,
=o[(l+e+ " +¢c){1—c+ -+ (—1)"¢,)] where g is the homo-
morphism H*(BU (2n)) -~ H*(BO(2#)). Then

H*(BO(2n);Z)=Z[py, - . -, Pn] + 2-torsion .
Also
H*(BO@2n+1);Z)=Z[py, . . ., pn] + 2-torsion .

Denote also by pr€¢ H ‘”‘(B S0(n); Z) the image of p, under
H*(BO(n); Z) > H*(BSO(n); Z). One new class has also to be defined,
namely the Euler class. Under o: H¥*(BU(2n); Z) > H¥*(BS0(2n); Z),
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let Wy,= o(c,) € H**(BSO(2n); Z). Then according to BOREL-HIRzE-
BRUCH [7, p.373], H¥(BSO(2n+ 1);2)=Z[py, .. ., p,] + 2-torsion,
H*(BSO(2n);Z)=Z[p1, - . -+ Pn—1» Wan] + 2-torsion.

Suppose now that 7:E > X is a bundle of n-dimensional vector
spaces, with X a CW complex. There is a continuous inner product on
the bundle [22, p. 37], so that we may consider T an O (n)-bundle. There
is then a bundle map

E—>F'

Vg
X —> BO(n)

where E'— BO(n) is a universal O (n)-bundle with fiber R*. The homo-
morphism _
f*:H*(BO(n); Z,) > H*(X, Z,)

is independent of the particular bundle map, by universality. The
Whitney classes wy(t) € H*(X;Z,) of the bundle 7 are defined by
w, (T) = f*(w;). Similarly there are the Pontryagin classes of a vector
space bundle, and Chern classes of complex vector space bundles.
Consider the embedding O(m) >< O (n) CO(m + n) which identifies

a>< f with the matrix (g g) It is not difficult to show that the induced

o: H*(BO(m+ n); Z,) > H*(BO(m) x BO(n);Z;) is given by p(wy)
=2, 1 q— 1@, ® w,. When converted into a statement concerning vector
space bundles, this becomes the classical Whitney sum theorem: for
vector space bundles 7;: E;—~ X, 7= 1,2, we have w, (1, ® 7,) = 2, 4
w,(Ty) w,(72). The Pontryagin classes reduced modulo an odd prime p
also obey such a rule.

11. The Thom spaces

In this section we consider the Thom spaces of SO (n)-bundles, in
preparation for the homotopy interpretation of the bordism groups.

The category of spaces with base point is useful here. The objects of
the category are pairs (X, x,) consisting of a space X and a base point
%y € X ; abbreviate the pair simply by X. The maps of the category are
the maps (X, %) = (Y, ¥,). There is the sum X vY = X >y, U x,<
<Y C X ><Y with base point (x,,y,); X vY is a disjoint union of X
and Y with base points identified.

If X> A then X/A is the space obtained by identifying 4 to a point;
the point corresponding to A is the base point. There is the product
XAY=Xx<Y/XvY. In the category of spaces with base point, the
circle S'is taken to be I/1. The suspension SX of X is taken to be X A S,
Also St= S (S»-1); it is true that $” is homeomorphic to the #n-dimensional
sphere.
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Shift now to the category of SO(n) bundles (»# variable) and bundle
maps; the fiber is always the solid #-ball C* C R*. Denote a bundle by
£: E(&) - B(£), and the union of the boundary spheres of the fibers of
& by E(£). TuoM has described a functor T from the category of SO (x)
bundles to the category of spaces with base point. Namely, T assigns
to & the Thom space T (§) = E (£)/E (£), and T assigns to the bundle map
f: E(&) - E () the map T(f): T (&) - T (n) induced by f:(E (£), B (&) >
-~ (E(n), B (n))-

It may be seen that if B(§) is a CW complex then T () is also a
CW complex, with no cells in dimension < # except the base point.

Let £ x n: E(§) >< E(n) > B(§) > B(n) be the product of & and 7.
Then &x 5 is a SO(m) > SO(n) bundle with fiber C™>< C=. Identify
Cm>< C* with C™+", and consider £ X  a SO (m + n)-bundle. Then

(E@) X E(n))y=E(E)><E®n) vEEx En
TExn)=TEAT@).

In particular, if O, is the trivial line interval bundle over B(£), then
T(E® Oy = T(§) A S'=ST(2).

Let 7 : Ex—> BSO(k) denote a universal SO (%)-bundle. The Thom
space T (ny) is denoted by M SO (k). Now 5, @ O, is an SO (k + 1)-bundle
over BSO(k). There is then a bundle map E(n, ® O) > E (1, 4,) and
an induced map SMSO(R) > MSO(k + 1), unique up to homotopy
type. More generally there isa map MSO(p) AMSO(g) > MSO(p + g).

THowM introduced the spaces above in order to convert (2, into a
stable homotopy group. We give now a bare outline of this noted theorem.

(11.1) Thom. For k= n+ 2 we have Q,=m, . (MSO(R), and
Q‘Zng T, +k(M0 (k))

The proof is long [40, 22]. Here we merely define the isomorphisms.
Suppose that M™ is a closed oriented #-manifold. Embed M™ in S»+¥
via the Whitney embedding theorem. Denote by §: A - M" the normal
cell bundle to M= in S™+*. Assuming S*+* oriented, we may assume the
tangent bundle g to S*+¥ oriented; moreover the tangent bundle 7 to
Mm is oriented. Hence the normal bundle & is oriented so that the
orientation of 7 followed by the orientation to & yields the orientation
of . We may then consider £ an SO (k)-bundle. By § 10, A can be identi-
fied with a closed tubular neighborhood of M™ in S +*; identify the two.
There is a bundle map

f
A—>E(ny)

sl i lm

M"—f—>BSO(k)
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and an induced map A/4 - E/E of Thom spaces. There is then the
composite map f given by
T(f)

Sn+k_s Sn+k|(Sn+i\Int A) = AJA — > E[E = MSO(),

and f represents an element of =, , (M SO (k). THOM proved that the
correspondence [M™] — [f] is well-defined and an isomorphism. Here
the transverse regularity concept was particularly essential.

We also point out the beginnings of the analysis of H*(M SO (n); Z).
Consider an SO(n)-bundle &: A — X with fiber C* and CW base space
X. We have Ht(4)|4;Z) = H!(A, 4;Z), i > 0. An adaptation of the
usual spectral sequence of a map yields a spectral sequence with E2?
= H?(X; H(C" S*~1; Z)) and with E* associated with a filtration of
HP“(A,A;Z). Then E2?=0 for ¢4 n, Ef"= H?(X;Z). We thus
receive, since the spectral sequence has a single non-zero fiber degree,
the Thom isomorphism [39],

(11.2) V:H(X;Z)=Hr+%(4,4,2).
Moreover ¥ is canonical. Given a bundle map

/

A—> A’

N
X —f> X'
there is a commutative diagram

*
Ho+n(A, 4;Z) <f—H1’+"(A', 4, z)
d L e
H?»(X;2Z) <f—HP(X';Z) .

We have also the following theorem of THOM [40].

(11.3) The map SMSOR)—>MSO(k+ 1) defined earlier in this
section induces an isomorphism w,(SMSO(R) =n,(MSOk+ 1)) in
dimensions 1 < 2k.

Proof. As earlier denote the universal bundle by 7, and #; ;. There
is then the diagram of the bundle maps

f
E(ny® O)) —> E(ny4q)

BSO(k)—f> BSO(k+1)
and the diagram

T (fy*
Hp v (SMSO (B); K) < B+ 1M SO (k + 1); K)

~|¥ ~|¥

HP(BSO(k);K)i—HP(BSO(k + 1); K)
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It follows from the resume of characteristic classes in § 10 that f* ()
=w; for ¢ < k and coefficients Z,. Hence with K = Z,, f* is an iso-
morphism in dimensions < % and T (f)* is an isomorphism in dimensions
<2k + 1. By Serre’s map C theory [35], w,(SMSO(k)) —~
- m;(MSO(k + 1)) is an isomorphism modulo the class of odd torsion
groups for ¢ < 2k. A similar analysis for K = Z,,, $ and odd prime, shows
that #,(SMSO(k)) > 7, (MSO(k+ 1)) is an isomorphism modulo the
class of torsion groups with no p-torsion for ¢ < 2%. Hence 7 (S M SO(k))—~
- 7,(MSO(k + 1)) is an isomorphism for ¢ < 2.

12. Homotopy interpretation of the bordism groups

THOM opened the way for a complete analysis of £, by demonstrating
an isomorphism Q,= x, (M SO(k), 2= n+ 2. In this section we
prepare for the study of the structure of £,(X, A) by extending THOM's
result to an isomorphism

Q,(X, A) = 7, o (X]A) A MSO(R)

for (X, A) a CW pair. Always in this section pairs (X, 4) will be CW
pairs.

It is easiest to consider first the absolute case. Suppose that (M*, f)
is an oriented singular manifold in the space X. Embed M® in S»+¥,
k = n 4+ 2. There is a tubular neighborhood N of M” in S*+%* as in
§ 10, and N can be considered as the oriented normal %-cell bundle
E:N-> M to M™ Let BSO(k) denote a classifying space for SO (&),
chosen to be a countable CW complex, and let 7 : Ex— BSO(k) denote
the universal oriented %-cell bundle. By a theorem of WHITEHEAD [44],
BSO(k) is then of the homotopy type of a locally finite CW complex.
Hence we may take BSO(R) to be locally finite. Then for any CW
complex X, X X BSO(k) is a CW complex [44]. There is then a bundle
map

N-LE,

El ] lm

M2 BSOR) .

There is also the map f&: N - Mn— X,
Hence we have
(f&) <g: (N,N) > (X < E,, X< E).

Denoting the map of quotient spaces by the same name, we have

(1€) < g: NJN > X < Ex/X < E, .
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We then have the composition
Sn+ks Sn+E/(Sn+E\Int N) = N/N - X < Ex/X < By,

which we denote by &.

(12.1) The homotopy class in 7, (X =< E4/X =< E,) of the map h
above ts a function only of the bordism class [M", f] in £2,(X).

Proof. Suppose (M, f,) and (M, f,) are oriented singular manifolds
in X, and that each M} is embedded in S»+k, There are the tubular
neighborhoods &;: Ny M? in S»+¥, and bundle maps

N2 E,

M5 BSo ).
There is then
(f:&s) x gi:Ni/Ni—') X X ExX x B,
and the induced map
hi M S"+k—‘) X > Ek/X > Ek .

Suppose now that (—Mg, fo) U (M7, f,) bords. There is then a com-
pact oriented manifold Br+! with B"+!'=M7yu—Mp and a map
f: Br*1— X with f|M? = f,. Consider the oriented manifold I > S»+¥,
withM(')‘ embedded in O x Sn+k~ Sntk and M7, embedded inlx Stk
2~ Sn+k_ Ag in section 10, B»+1 can be embedded in I x S®+% with

Bn+1n (0 X Sﬂ+k) _— M:)l, Bﬂ+1n (1 X Sﬂ+k) — M;-l .

We may also suppose as in section 10 that there is a O < ;< 1 such that
if (0, x) € B+ then (¢, x) € Br+! for 0 < ¢ < ¢,, and similarly for points
(1, x) € B»+1, Suppose also that I x S*+* is given the product metric.

For ¢ sufficiently small, there exists a tubular neighborhood N of
radius ¢ of B*+1lin I x S*+k. We may suppose that N, and N, were also
of radius e. Then

NnNn(0x S*%) =N, Nn (1 x S*t¥) =N, .

N can be identified with the oriented normal cell bundle &: N —» Br+1
to Br+lin I x Sn+k. Moreover § restricted to M} is ;. Hence there
exists a bundle map g: N - E, with g = g; on N,. There is (f§) x g: N
- X x E; inducing

hiI><Sn+ks X < E /X < B, .

Moreover #(0, x) = k(») and A(1, x) = Ay (x). The result then follows.
We thus receive a well-defined function

1:02,(X) > My y(X<EJX<Ey), k2n+2.
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(12.2) 7 is a homomorphism.

For consider oriented singular manifolds (Mg, f,) and (M7, f;) in X.
We have only to embed M} in the interior of the lower hemisphere of
Sn+k, and M7 in the interior of the upper hemisphere; we have then an
embedding of the disjoint union (M} U M}, f; U f,) in S"+E. One pro-
ceeds easily through the definition of T to the conclusion.

Observe also that if X is a point p, then 7 becomes the Thom iso-
morphism 2,2 x, (M SO (k)) of (11.1). Thus we have the following.

(12.8) For X a single point, T is an isomorphism.

Moreover if ¢: X — Y is a map, there is the commutative diagram

Qo (X)—> 71, , 1 (X < Ey/X < B)
l«p* l(w'd).
.Q,,(Y)—T> T (Y < E]Y < E,) .

Recall the convention that X/@ is the disjoint union of X and a

point, denoted here by c. Then
(X|0) AMSO() = (X < Epuoo < E)JX =< B Uoo < Ey) =
~ X< EyJX < Ey.
Using this identification, we can recast 7 in the following form. Given
(Mn, f) and the embedding of M" in S*+%, there is f&: N —> X C X/0
and g: N/N —» E,/E,= M SO(k), giving a map
(1€) Ag: NIN - (X/0) A MSO(F) .

Then t[M, f] is represented by the composition

Sntk_y Sn+k/(Sn+k\IntN) — N/N (f&)ng

(12.4) There exists a unique homomorphism

T:802,(X, %) > My 1 (X AMSO(R), k= n+2

(X/0) A MSO() .

with commutativity holding in
Qp(X) ——————> (X, x)
T T
T4 (X/9) A MSO(R)) > 70 1 (X A MSO(R)) .
Proof. There is the sequence
O—>xyu0>Xyoo—»XUoofxyuw=X->0

inducing the exact sequence

0 > (% U 0) A MSO (k) > (X/0) AMSO(k) > X AMSO(k) 0.
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Since MSO(k) is a CW complex with no cells of dimension < %
except the base point, so then the three spaces of the above diagram are
CW complexes with no cells of dimensions < % except the base point.
But there is the Blakers-Massey theorem [3]: If X and 4 are (k — 1)-
connected CW complexes, then the natural map =;(X, 4) - m;(X/4)
is an isomorphism for ¢ £ 2k — 2. It then follows from exactness of
the ordinary homotopy sequence that =, ,((%,/0) A MSO(k)) -
= T 1 1, (X[0) A MSO(R)) > 7 . (X AMSO(R)) is exact. From the
diagram

0— 2, (%) = 2, (X) > ,(X, %)) > O

— b

o 1 1((50/90) A MSO(R)) > 7 4 1 (X]0) A MSO (k) > T4 1(X A MSO(R))

we obtain the conclusion.

Using the identification £, (X) =~ Q,(X, x,), we thus obtain a
homomorphism 7 : &,(X) - 7, , (X A MSO(R)).

Recall that S(X AMSO(k)) = X A SMO(k). Also denote by S the
usual suspension homomorphism 7, (X) - 7;,,(SX); S assigns to the
homotopy class of f:S*—> X the homotopy class of faid:StA St
= St+ls X A S'= SX. We use the map SMSO(k) > MSOE+ 1) of
§ 11 in the following remark.

(12.5) Commutativity holds in

0,(X)
T 41 (X/0) A M S O(R)) > T4 141 (X19) A SMSO(R)) > o 11 (X/9) A MSO(k + 1))

Proof. Suppose that (M™, f) is an oriented singular #-manifold in X.
Embed M" in Sn+% let §: N - M" denote a tubular neighborhood of
Mmin Sn+¥, and consider a bundle map

N-45E,

Lo

M»—-> BSO(k) .
There is then
(&) >< g: (N, N) > (X < Ey, X < E;) C((X U0) < Ey, X < By Uoo < Ey).
The induced map
h: Stk (X/0) A MSO(R)

represents t; [M®, f].

Now Sn+k is embedded in S»+*+1 as the set of (xy, . . ., %, r42) With
Zpyk42= 0. There is the tubular neighborhood &' : N - M" of M™ in
Sn+k+1 an oriented (k + 1)-cell bundle. It is seen that & is the Whitney
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sum & @ O,, where O, is a trivial line bundle. There is then the diagram

id
N=E@E)=E(¢® 0) ———> E(n,® 0) — E(nes1) = Ep s

l : l

M g > BSO (k) —> BSO(k + 1)

where 7, : E— BSO (k) is the universal bundle. Passing to Thom spaces,
we get a diagram
N'|N'—>E (@ 0)/E (15 ® Op) > E (e 10)/E (e11)

e T

NI A2 (SO A St MSO(R + 1)

The commutativity follows readily.
(12.6) Using the identification

S(XAMSOR)=(XASYAMSOER)=SXAMSO(k)
we get a commutative diagram

B (X)—> 7, o(X A MSO(R)

l

B i1 (SX)—> Ty 611 (SXAMSO(E)).

Proof. Suppose (M*, f) represents an element of &, (X). There is then
a compact (n + 1)-manifold Br+! with Br+l!= M", As in section 6,
S [Mn, flisrepresented by (W, F) in 3, (S X), where W+l = (Bn+1x< I)",
where F|Mn <1 = f>=id, F maps B*"*1> 1 and B**1x O into the
base point of SX.

Suppose M™ is embedded in S*+*. There is §: N - M=, g: N - E,
(f& Ag:N—>XAMSO(k) inducing % : S*+%¥ > X A MSO(k). Then
T[M, f] = [A].

Using the Whitney embedding theorem as seen in section 10, we can
embed Wn+l in Sr+k+l 5o that M™>< [1/2, 1] U B*+1>< 1 lies in the
upper hemisphere, M»>< [0, 1/2] v B*+1>< O lies in the lower hemi-
sphere, and Wn+ln Sr+k= M">< 1/2, which is identified with M». We
may also suppose that Wn+! is orthogonal to S*+¥ at their points of
intersection. Let &': N'— Wn+! be a tubular neighborhood of Wn+!
in S»+k+1 chosen so that N'n S*+*= N and so that & restricted to
Mnr>< 1/2 =~ M™ is §. We now have the maps

B:Sn+ks NN 2205 X A MSO®R),

B SnrEos NN S22 S XA MSO(R) .
We may consider SX A M SO (k) as a union of two cones, say C, and
C.,with C,.NC_=XAMSO(R) CSX AMSO(k). The map %’ is seen




32 I. The bordism groups

to map the upper hemisphere of S»+%+1 into C,, the lower hemisphere
in C_, and 4’ agrees with % on S"+¥*. It then follows that [A'] = S [%],
and the remark follows.

For every CW pair (X, 4), consider the sequence

v (XJA) AMSO(R), (X[A)AMSOR+1),...
together with the maps

((XJA) AMSO (k) - (X]A) ASMSO(R) > (X|A) AMSO(E +1) .

S

(12.7) The composition homomorphism 7,  ((X]A) A MSO(k)) —>

S
—> T 5+ 1(XJA) ASMSOR)) > 7p o 1 (X[A) AMSO (R + 1)) is an
isomorphism for k = n + 2.

Proof. Recall that M SO (%) has no cells of dimension < & except for
the base point. The same then follows for (X/4) A M SO(k). Hence
(XJA) AMSO(E) is (k— 1)-connected. Then S is an isomorphism for
k = n + 2 by the stability theorems.

Consider now the map SMSO(k) > MSO(k+ 1) of section 10. If
n; denotes the universal bundle, there is a bundle map

F
E=E(m® 0) —> E(es) = E'
F
BSO(k)—> BSO(k+1).
There is the Thom diagram (11.2)
Fx
H*(BSO(k+ 1))—> H*(BSO(k))
=|¥ =k4
F*
Hr+k+1(E' B') —> Hr+*+1(E, E).

For coefficients Zz,_F* maps Whitney class w, into Whitney class
w;, 1 < 7= k while F* kills w,_,. Hence E"‘ is an isomorphism for
n < k, as is F*. For coefficients Z;, $ odd, F* maps Pontryagin class
into Pontryagin class. However for % even the Euler class in H¥*(BSO ()
may not be in the image. However F'* is an isomorphism for » < & as
then is F*, Hence for every prime p

Hr+E+1(E' E') - Hr+k+1(E, E)
is an isomorphism over Z, for » < £, as is

HA+* 4L (M SO(k + 1) > H*+*+1(SMSO(R)) .

Now H*(PAQ;K)= HA*(P;K) ® H*(Q; K), for K a field. It then
follows that

HrtR1((X[A) A MSO(k + 1))~ Ho+*+1((X]A) A SM SO (k)
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is an isomorphism, coefficients Z,, for n < k. Hence
”n+k+1((X/A) A SMSO(k)) -> ”n+k+1((X/A) A MSO(k + 1))

is an isomorphism modulo the class of torsion groups having every
element of order prime to $, » < & — 2, and this for every . Hence it is
an isomorphism and the assertion follows.

Now for a CW pair (X, 4), define o, (X, 4) =m,, , ((X]A) AMSO(R)),
k = n + 2, where the groups are identified for different values of % by the
isomorphism of (11.7).

There is a boundary operator 8: 5, (X, 4) > #, _, (4, B) for triples
X > A > B defined by means of the Blakers-Massey theorem. Namely the
natural map

Tn+x((X/B) A MSO(E), (4] B) A M SO (k) = 700 5 ((X]4) A M SO(R))

is an isomorphism for £ = # + 2, since the spaces involved are (& — 1)-
connected. The boundary operator

8: 541 (X/B A MSO(R), (A]B) A MSO (1) > 7, ((4)B) A MSO(R))
then becomes the boundary
0:H# (X, A) > H,(4,B).

The reader may verify that the resulting 0 is well-defined.

Maps @: (X, 4) > (X}, 4;,) clearly induce homomorphisms
@x: Hn(X, A) > K (Xy, 4y).

(12.8) The covariant functor {# ', (X, A), @y, 0} satisfies the first six
Eilenberg-Steenvod axioms.

The general study of such homology theories has been carried out
by G. W. WHITEHEAD [43]; our procedure here has been suggested by
his results. There are, as in section 6, such consequences as reduced groups
H,(X), etc. Here #,(X) = Hn(X, %) = 7,4 x(X A MSO(E)). There is
also a suspension isomorphism S : 5, (X) - #, ,;(SX), the ordinary
suspension 7, . x(X AMSO (k) > 7, .1 4.1(SX AMSO(R)). The com-
position

Hona (X, A) = By (X]4) 2> B, (S 4) > H(4) > H,(4)

is just (—1)»—19, as with , (X, 4) (see (6.5) and (6.6)).
We have defined for every CW pair a homomorphism

Q,(X, A) = B, (X|A) ——> #,(X|A) = #,(X, 4)

following (12.4). The role of (12.5) is to prove that 7 is well-defined; that
is, independent of k. The role of (12.6) is to prove, in view of (6.5), (6.6)
Ergebn. d. Math, N, F, Bd. 33, Conner and Floyd 3
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and the immediately preceding remarks, that commutativity holds in

Q.(X, 4)—> #, (X, A)
3 3
Oy (4)—> #0_1(4) .
If ¢: (X, 4)— (X, 4,), it is obvious that commutativity holds in
Q.(X, 4)—> #,(X, 4)

lﬁpt lﬁpt
Q,(Xy, Ay) —> #, (X, 4y) .

(12.9) Theorem. The homomorphism T of the homology theory
{Q4(X, A), gy, 0} into the homology theory {H# (X, A), py, 0}, where
Ho(X, 4) = m, W (X]A) AMSO(R). k= n+ 2, is an isomorphism of
the two theories over the category of CW pairs (X, A).

Proof. From the Thom result (12.8), 7 is an isomorphism for a point,
that is, on the coefficient groups. It will follow that 7 is an isomorphism
for all finite CW pairs (X, 4). For suppose 7 is an isomorphism on all
pairs (X, 4) where X has = £ cells. Suppose now that X has £ + 1 cells.
If 4 also has £+ 1 cells then X = 4 and 2,(X, 4) = #,(X, 4) = 0.
If 4 has < & cells, select a subcomplex X; with X, >4 and with X,
having % cells. There is

e (X, A) > (X, A 2,(X, X)) >
Hp(Xy, 4) > Hp (X, 4) > #, (X, Xy) .
Moreover 7; is an isomorphism by induction. Also £, (X, X)) =
= Q. (I, S*-1) and #,(X, X|) = H#,(I" S*~1). An easy argument
using the fact that 7 is an isomorphism of coefficient groups shows 7, to
be an isomorphism. The five lemma then shows 7, to be an isomorphism.
Hence 7 is an isomorphism on finite CW pairs. For CW pairs (X, 4),
it is easy to see that
£,(X, A) = Dir Lim £, (X,, 4,) ,
over all finite pairs (X,, 4,) in (X, 4). Also
Mo 1(X, A) = Dir Limm,, |, (X, 44) ,
and
T+ x(X]A) A MSO (k) = Dir Lima,, , ((Xo/4s) A MSO(R)) .
That is,
Hn(X, A) = Dir Lims#, (X,, 4,)

we thus see that 7 is an isomorphism for every CW pair (X, 4).
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We sketch now WHITEHEAD's more general fashion for obtaining
generalized homology theories. Here a spectrum M will be a sequence
oM, M, ... of countable CW complexes with base points, with
M, defined for all # sufficiently large, together with maps SM,—~ M, , .,
such that

(a) M, is (n — 1)-connected;

(b) SM,—~ M, ,, induces isomorphisms ;(SM,)— 7;(M,,,) for
1 < 2n. We can then define, for (X, 4) a CW pair, a group

#n(X,A) = Dir Limm, , ((X/4) A M}).
For X finite dimensional, we have
Ho (X, A) = 7, R((X]4) A M), Flarge.

There is then a boundary operator 9: 5#,(X, 4) - 5, _, (4, B), defined
as above. There is thus defined the functor {5, (X, 4), ¢4, 9}, due to
G. W. WHITEHEAD [43], satisfying the first six Eilenberg-Steenrod
axioms.

There are cohomology groups H"(M; K) = Dir Lim H»+¥(M,; K),
and homotopy groups (M) = Dir Lima, , ,(M;). The coefficient
groups #,(p) of the homology theory are the groups =, (M).

In this section we have used the Thom spectrum M SO :..., M SO (n),
MSO(n + 1),... with the maps SMSO(n) > MSO(n + 1).

There is another spectrum of particular importance to us. Given an
abelian group s, there is a spectrum

K@:--,K(m,n), KE,n+ 1), ...

withmaps S K (n, #) > K (m, n + 1) as follows. There are the fundamental
cohomology classes 7,, € H™(r, m; ), and the suspension homomorphism
S: Hi(m, n; ) -~ H+1(SK (7, n); 7). There exists a map f: SK(7,n) —
— K(m,n+ 1) with f*(z,.,) =5S(,), and any two such maps are
homotopic. It is easy to verify conditions (a) and (b) of the definition of
a spectrum. The Serre-Cartan theory [12] shows that H*(K(n); =') is
isomorphic to the stable cohomology operations

H¥(X; ) - H:+*(X; ') .

Consider now the homology theory based on the spectrum K (7). The
coefficient group 5, (p) is , (K (%)) = 73 o (K (7, k). Hence 5, (p) =0
for n=£ 0, 5#,(p) = n. By the Eilenberg-Steenrod uniqueness theorem
for ordinary homology, we then have 5#,(X, 4) = H,(X, 4;n) for
finite C W pairs (X, 4).

13. Duality and cobordism
Following ATivaH [1], we sketch a generalized cohomology theory

{Q2"(X, 4), ¢*, 6} defined via mappings into Thom spaces; the £27(X, 4)
3'
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are the cobordism groups of (X, 4). There is given the Thom-Atiyah
duality theorem, of the type of Poincare duality. We go on to show
duality of the Alexander type. The section is not of fundamental im-
portance to the remainder of this work, but is sketched for completeness.

We work in the category of CW complexes with base point. Denote by
[X, Y] the set of homotopy classes of maps X - Y. The spaces M SO(1),
MSO@2),...,MSO(k),... together with the maps SMSO(k)—
-> M SO(k + 1) define the Thom spectrum M S 0. Following ATIYAH, the
nth cobordism group of (X, 4) is defined by

@7 (X, A) = Dir Lim [S*(X/A4), MSO (k + #)]

for every integer », where (X, 4) is a finite CW pair. The homomor-
phisms of the direct system are the composites [X, M SO (n)] 2
S5 [SX, SMSOn)] - [SX, MSO(n + 1)].

(13.1) The homomorphisms [X, MSO(n)] - [SX, MSO(n + 1)] are
isomorphisms whenever X is a CW complex of dimension < 2n — 2.

Proof. That S: [X, MSO(n)] - [SX,SMSO(n)] is an isomorphism
if dimX < 2# — 2 follows from the well-known stability theorems [3],
since MSO(n) is (n — 1)-connected. That [SX,SMSO(n)]—
- [SX, MSO(n + 1)] is an isomorphism follows from (11.3) and a re-
mark of SPANIER [36, Appentix].

It follows from (13.1) that

Q0 (X, A) = [S*(X]A), MSO(k + n)]

for k sufficiently large. The group £2%(X) is defined by 2*(X) = 2%(X, 9).
For any map f: (X, 4) - (Y, B) there is an induced homomorphism
f*¥: 7Y, B) > 2°(X, A). In the fashion of stable homotopy there is
a coboundary §: 27(4) - Q7+1(X, A). For further details the reader
may consult ATivau [1].

(18.2) Atiyah. The cobordism functor {£27(X, A), p*, 8} satisfies the
forst six Etlenberg-Steenrod axioms for a cohomology theory. For a single
point, Q27 (p) = L_,,.

There are reduced groups £7(X). These may be defined as O (X)
= 0" (X)/Ime* where ¢: X > p collapses X to a point. We leave it as an
exercise to show a canonical isomorphism

On(X) = [S*X, MSO(k +n)], Fk large.
For a pair (X, A) there is an exact sequence

coo> QF(X, A) - D6(X) > TE(4) > QX A) > - -
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and the commutative diagram

Qx(X, A) - ¥(X) - JF+(A)

ook
Q¥+1(SX, S A) —» Qe+1(SX) > Fe+1(SA4) .

We turn now to duality.

(13.3) Thom-Atiyah. I} (X, A) is a finite CW pair with X\4 an
oriented n-manifold without boundary, then there is a canonical iso-
morphism u : 2, (X\4) = Q-*(X, 4).

We outline the proof of (13.3). Suppose first 2 < #/2. By the em-
bedding theorems, then [V%, f] € £2,(X — A) may be represented as the
inclusion of a closed oriented regular submanifold V*C X\A4. A tubular
neighborhood N of V*in X\4 can be identified with the normal (n — %)-
cell bundle to V¥, &: N - V%, The fibers of N are oriented so that the
orientation of the tangent bundle of V* followed by the orientation of
& yields the orientation of the tangent bundle to X\A4 restricted to V.
There is a diagram of bundle maps

NS E

El l’l
yi—Ls BSOm—1#).
There is then the map
X/A - N|N - E|/E=MSO(n—k)
which represents an element of [X/4, MSO(n — k)] = 2+-*(X, A). This
defines # in the stable range. In the stable range commutativity holds in
Q,(X\4) —> Qn~*(X, A)
i ls
2,(SX\SA)—> 27~ +1(SX, SA)
where ¢, is induced by inclusion.

In arbitrary dimensions the isomorphism # is defined as the com-

position
Q4 (X\A) —=> 2,,(STX\STA) —> Qr+7—k(STX, STA) < Q-+ (X, A)
for r large.

Consider now a finite simplicial complex X embedded as a sub-
complex of $#. For such complexes there is the duality theory of SPANIER-
WHITEHEAD [37]. In particular, any finite complex D, X C S"\X which
is a deformation retract of S"\X is an #n-dual of X. If X is a finite CW

complex, there is a finite simplicial complex X' of the same homotopy
type as X [44]. An n-dual D, X’ is defined to be a weak n-dual D, X of X.
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(13.4) If X is a finite CW complex with a weak n-dual D, X, there is a
canonical 1somorphism

w: G (X) = Gr-*-1(D,X) .

Proof. We may confine ourselves to finite simplicial complexes X
embedded as proper subcomplexes of S*. Since X is contractible to a
point in S there is a short exact sequence 0-> Ir—%-1(X) -
- Qn-k(Sn, X) > (On—%(Sn) —» 0. There is also the exact sequence

0> Z(S™\X) > 2,(S™\X) - 2, 0.

Duality yields a diagram
0> Ty (SMX) - 2, (SMX) > 2> 0

0> n—k-1(X) > Qn-k(Sn, X) —> Gr—%(S") >0,

There is then a unique isomorphism {,(S*\X) = Gn-*-1(S%, X) such
that commutativity holds. Since (D, X) = &, (S™\X), we get an iso-
morphism «': 3, (D,X) = »-*-1(X), which is sufficient to show
(18.4).

CHAPTER 1I

Computation of the bordism groups

In the previous chapter, we have defined and characterized geo-
metrically the homology theory {2, (X, 4), @4, 0} of bordism. Thus the
stage is set for their computation, at least in many cases. In order to
compute, we use the powerful results of MILNOR (£2, has no odd torsion)
and WALL (see section 14) on M SO (k). In section 14 we prove that the
bordism spectral sequence is trivial modulo the class of odd torsion
groups. In section 15 it is proved that if X has no odd torsion then
02,(X)=2p 1 q=aHp(X; £2,); in section 18 it is shown that if X has no
torsion then 24 (X) = Hy(X; Z) ® L2 as an £2-module.

Generalizing the Stiefel-Whitney numbers and the Pontryagin
numbers of a manifold, in section 17 we define natural numerical in-
variants of maps f: M"— X. These are functions only of the bordism
class of f. If all torsion of X consists of elements of order two, the bordism
class of f is determined by the Whitney numbers and the Pontryagin
numbers of f.

14. Triviality mod €

Denote by C the class of torsion groups having all elements of odd
order. The fundamental result of this chapter is the following.

(14.1) Theorem. For any CW pair (X, A) the bordism spectral se-
guence is trivial modC.
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The purpose of this section is to prove (14.1). We must show that the
image of each d*: E} ,—~E}_ ., ., is an odd torsion group. We use
in a basic way the following theorem of C. T. C. WALL [42], which is
now assumed.

(14.2) Wall. The module H*(MSO(k); Z,) over the mod 2 Steenrod
algebra is isomorphic in dimensions < 2k to a direct sum of Steenrod
algebras H*(Z, m;; Z,) and H* (Z,, n;; Z,).

Put in terms of spectra of §12, H*(MSO;Z,) is isomorphic as a
module over the Steenrod algebra to a direct sum of copies of
H*(K(Z);Zy) and of H¥(K(Z,);Z,).

Proof of (14.1). Let a € H™(M SO; Z,) denote the generator of one
of the submodules of H*(M SO; Z,) isomorphic to H*(K(Z); Z,). The
Bockstein St: H™(MSO;Z,) -~ H™M+Y(MSO; Z,) kills a. Hence the
integral Bockstein H™(M SO; Z,) - H™*Y(MSO; Z) maps a into an
element a’, a’ of order two, which is zero when restricted mod 2. Hence
a'=2b for some b € H™ +1(MS0; Z). But additively H¥*(M SO (k); Z) =
=~ H*(BSO(k);Z) by the Thom isomorphism (11.2), and hence all
2-torsion consists of elements of order two by the results in § 10. Since
2a’' =0, a’ = 2b it follows that a’ = 0. Thus a is the restriction of an
integral class a € HM(M SO; Z).

The elements o, a are represented by unique elements «; ¢
€ H"""”‘(MSO ;Z) and a, € H¥+*™(MSO(k); Z,) for k> m,. For each
k > m, there is a cellular map f,: M SO (k) - K(Z, m; + k), unique up
to homotopy, with f*(z) = a;, v€ H™ +¥(Z, m,+ k; Z) the fundamental
class. Also f*(r mod 2) = a,.

The diagram

SMSOR)—> MSOE+1)

Stx fe+a
SK(Z mi+ k) —> K(Z,mi+h+1),

where the horizontal maps are the spectrum maps, is then seen to be
commutative up to homotopy.

Consider now a variant of the homology theory of § 12 based on the
spectrum K (Z). Define

‘K (X, A) = Dir Limwm, . (X/4) A K(Z, m; + E)) .

It follows from §12 that ‘K, (X, 4) = H,_,,(X, 4;Z). There is a
spectral sequence {*Ej, ,} for the homology theory ‘K, (X, 4). We have
‘El —'K,H_q (X?/X?- 1) H,\qm(X?, X?-1;Z). Hence ‘E} ,=0 if
q:{: my, *Ep m, = Cp(X, 4). It is also the case that *E2 , = H,(X, 4;Z).
Since there is just one non-zero fiber degree, the spectral sequence is

trivial for r = 2. The maps f,: MSO (k) - K(Z, m; + k), all %, induce
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canonical homomorphisms fps: £2,(X, 4) - K (X, A), and homo-
morphisms of the bordism spectral sequence {E} ,} into the spectral
sequence {*Ef, 1.

In WaLL's decomposition of H*¥*(MSO;Z,), consider next a sub-
module isomorphic to H*(K(Z,);Z,). Let b H¥(MSO;Z,) be a
generator and b, ¢ H¥+"%(M SO (k); Z,) a representative. There are maps
ge: MSO(R) - K (Z,, n; + k) with gf (t) = by, 7 the fundamental class.

Define a homology theory K (X, 4) by

iK,(X, A) = Dir Lim 7, , (X/A4) A K (Z,, n; +F)) .

It follows from §12 that KX, A4)=H, ,(X,4;Z,). There
is a spectral sequence {’Ef, ,} for the homology theory ‘K (X, 4) with
IEY = H, g 0 (X?, X?1;Z,). Hence ‘E} , =0 if ¢ n;, and EZ,,
= H,(X, 4;Z,). The spectral sequence is trivial for » = 2. There are
canonical homomorphisms g, : 2,(X, 4) > K, (X, 4), and homo-

morphisms
{Epd B} g} -
Define now a homology theory K, (X, 4) by
Kk(X, A) = ZiiKk(X, A) + ijKk(X, A) .

We have a canonical homomorphism §: 2,(X, 4) -» K, (X, 4), the
direct sum of the f, and the g,. There is also a spectral sequence {'E], ;}
with 'Ef ;= XE} o+ X;E} ,, and with 47 the direct sum of the ‘dr
and the /d". Then 'E} , = K, ,(X?, X?-1). There is moreover a homo-
morphism of {Ej ;} into {'E} ,} with E1 ,->'E}l , the homomorphism
0: 2y 4q(X7, XP1) > K, o(X7, X771).

We must now analyze the homomorphism 0. For p a point, £2,(p)
= 7, (M SO(k)) for k large. Fix k large, and let P,= K(Z, m; + k),
Q:=K(Z,n;+ k). Then

Kn(p) = 23700 1 o (K(Z, ms + k) +
+ 270 1 k(K (Zg, m5 + k) = 70, ([T P; < 11Q)) -

The homomorphism 0: Q, (p)-> K, (p) is induced by the map f: M SO (k)
- ITP, < I1Q, defined by f = ITfi < IIgi. According to the theorem of
WarLr, f*: H¥(IIP;=<11Q,;Z,) - H*(MSO(%); Z,) is an isomorphism
in dimensions < 2%. Hence [, : 75, (M SO (k) > 70, . ( (II P, < IIQ)) is
an isomorphism modulo the class C of odd torsion groups if n < & — 2
[35]. Hence 0: £2,(p) -~ K, (p) is an isomorphism mod C. It follows now
from the proof of (12.9) that 0 is an isomorphism mod C for any CW
pair (X, 4).

Coming back now to the homomorphism {E}, ;} - {'E}, ;} we recall
that {'E} .} is trivial for » = 2. Moreover §:E} ,- 'E} , is an iso-
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morphism mod C. Hence E} ,— 'Ej . is an isomorphism mod C for
r = 1, and {E%, } is trivial mod C for » = 2.

(14.2) Theorem. For any CW pair (X, A) there is an isomorphism
0:2,(X,A)=2,,,-H,(X, 4; 2,) modC. For any finite CW complex
X there is an isomorphism Qm(X) = X, _,_H?(X; 2, modC.

Proof. In the proof of (14.1) we have constructed a mod C isomorphism
0:8,(X, 4) =K, (X, A) modC where K, (X, A)=2H,_,(X,4;Z) +
+ ZHy (X, 4;2Z,). Now K, (X, 4) = 2, H, (X, 4; A,) where 4,
is the direct sum of as many copies of Z as there are ¢ with m;, = g and as
many Z, as there are § with #; = ¢. In particular K, (p) = A4, and there
is the mod C isomorphism 0: 2,(p) > K, (p), or 6: 2, 4,. But 2,
and A, are finitely generated abelian groups all of whose torsion is
2-torsion; here we assume the theorem of MILNOR that £2, has no odd
torsion [26]. If two such groups are mod C isomorphic, they are iso-
morphic. Hence 4, = £, and

QX A)=X  ,_HyX, 4;2,) modC.

The result for 2m(X) follows from duality arguments, and we leave
it to the reader.

15. Steenrod representation

We return to the homomorphism pu: 2,(X, Ay H, (X, 4;Z) of
section 6. To each oriented singular manifold [B~, f] in (X, 4), u assigns
the image of the orientation class of B* under the homomorphism
fo: H,(B" B*;Z) > H,(X, A;Z). The image of u is the subgroup of
integral homology classes representable in the sense of STEENROD. We
can now make progress in the study of g, using the fact (7.2) that the
image of p is the set of permanent cycles of the term E2  of the bordism
spectral sequence.

(15.1) Theorem. If (X, A) is a CW pair then the bordism spectral
sequence collapses (is trivial) if and only if u: 2,(X, A) -~ H,(X, 4;2)
1s an epimorphism for all n = 0.

Proof. The spectral sequence collapses if @7: E ;- Ef . . . is
trivial for all » = 2. It is clear that if the spectral sequence collapses,
then u: 2,(X, 4) > H, (X, 4; Z) is an epimorphism for all # = 0.

Assume now that u is an epimorphism. Then dr: E}, ¢~ E, _, .,
is trivial for all ». Consider the operation of £2 on the bordism spectral
sequence as in section 7. We have H, (X, 4;Z) @ ,=E% ,® 2,—~
- EZ = H,(X, A; £,). From (7.1) this is a monomorphism with image
H,(X,A4;Z)® 2,CH,(X, A; 2,). Since every element of EZ, is a
permanent cycle, so is every element of H,(X,4;Z)® 2,c H (X,4; 2,).
Now H, (X, 4;Z) ® £, is a direct summand of E3 ,, the other summand
7,,, being isomorphic to Tor(H,_,(X, 4;Z), £,). Since £, has no odd
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torsion, T, , consists of 2-torsion only. By (14.1), d? carries EZ , onto an
odd torsion group, and since T,,, consists solely of 2-torsion, then
d*(T,, ) = 0. Thus 42= 0. As we continue through the spectral sequence,
it is seen to be trivial. The theorem then follows.

TroM has shown that in H,(Z; + Z3, 1; Z) there is an integral class
which is not STEENROD representable [40]. The bordism spectral se-
quence of K(Zy + Z,, 1) is thus non-trivial.

(15.2) Theorem. I} (X, A) is a CW pair such that each H (X, A; Z)
is finitely generated and has no odd torsion, then the bordism spectral
sequence 1s trivial. Moreover p: 8,(X,A) > H,(X,A;Z) is an epi-
morphism and 2,(X, A) =X, _H, (X, 4; 8,).

Proof. The bordism spectral sequence is trivial mod C and Ej,
= H, (X, 4; £,) has no odd torsion, thus d?: E} , > E%Z_, , ., is trivial.
Hence E3 , =~ E3 ,, and we repeat the argument, eventually showing
the spectral sequence trivial. Since no EZ, has odd torsion, then
£4(X, 4) has no odd torsion.

Now from (14.2) we have a mod C isomorphism £,(X, 4) =~
=2, —nH(X, A; 2,) joining finitely generated groups without odd
torsion. The torsion subgroup of £, (X, 4) must then map isomorphically
onto the torsion subgroup of XH, (X, 4; £,). The groups also have the
same rank, hence 2,(X, 4) = 2, , .o H, (X, 4; 2,).

(15.3) Theorem. Let (X, A) be a CW patr. For each homology class
cC H, (X, A; Z) there is a integer k with (2k + 1) ¢ Steenrod representable.

Proof. It follows from (14.1) that the image R of u: 2, (X, 4) -~ E2 ,
=H,(X,A4;Z) has H,(X, A; Z)/R an odd torsion group. Hence (15.3)
follows; this result improves the result of THoM that some multiple of ¢
is representable. The following is obtained in the same fashion.

(15.4) Let (X, A) be a CW pair. Every element of the 2-torsion sub-
grouwp of H, (X, A; Z) is Steenrod representable.

There are also gap theorems for the bordism spectral sequence, which
we examine next.

(15.5) For a CW pair (X, A), E}, , consists entively of elements of
order 2 if == O mod 4.

Proof. As was noted in § 2, the results of MILNOR and WALL show
that £, consists entirely of elements of order 2 if g== 0 mod 4. Now
EZ,=H,(X,A;2)® 2,+ Tor(H,_,(X,4;Z), ;) and the remark
follows for EZ ,, and hence E}, , in view of (14.1).

(15.6) The boundary dr:Ey ,—~E5 _, ., 1 ts trivial unless ¢ =0
mod 4 and r = 1 mod 4.

This follows from (14.1) and (15.5). We come now to the gap theorem.

(15.7) Theorem. Let (X, A) be a CW pair. If for each pair r > s with
r— s = 1mod 4, either H (X, 4;Z) is a 2-torsion group or H(X, A; Z)
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has no odd torsion, then every element of H, (X, A; Z) is Steenrod represen-
table.

Proof. By (15.6), Ef ,~EZ2Z, and Ei =H,(X,4;Z)® 2,+
+ Tor(H, (X, 4;2), ;). If H,(X,A;Z) is a 2-torsion group, so is
ES ,and by (14.1) d5: E§ ,— E5 _5 ;. 4is trivial. If H,, (X, 4;Z) has
no odd torsion, then neither does E§_ 4,4, s0d5: ES  —~E5 5 . ,is
again trivial. Thus E2 ,~ E§ , =~ ES >~ E9  and we repeat the argu-
ment inductively, showing that the spectral sequence collapses.

16. A generalization of Rochlin’s theorem
There is the homomorphism #: 2, - R, obtained by ignoring the
orientation of a closed oriented manifold; that is, » [M"] = [M*],. It was

shown by RocHLIN that the sequence £2, =N 2, X, is exact [34].
We show in this section that for any C W pair the corresponding sequence

2a(X, 4) => 0,(X, 4) >R, (X, A)

is also exact, where »[B", f] = [B", fl,.

We first make some remarks concerning unoriented bordism. Let
7: E"—> BO(%) denote a universal k-cell bundle with structural group
O (k). There is a Thom space MO (k) = E’[E’. Just as in section 12, there
is an isomorphism

Na (X, A) = 7041 (X]4) A MO (R))

for & large. There is also a diagram

E—F

||
BSO(k)—> BO (k)
of O(k)-bundle maps, since E - BSO(k) can be considered an O (k)-
bundle. We get an induced map v : E/E > E'/E’, that is, a map M SO (k)
-> MO (k). From the properties of characteristic classes, it is seen that
v*: H¥*(BO(k); Z,) > H*(BSO(k); Z,) is an epimorphism. By the Thom
isomorphism (11.2), v*: H¥(MO(k); Z,) > H*(M SO(k); Z,) is also an
epimorphism. We leave the following as an exercise.
(16.1) The diagram
2n(X, 4) > m 1 ((X]4) A MSO(R)

r l(id/\”).
R (X, 4) > 7, 1 (X]A) A MO (R))

1s commutative for k large.
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We proceed now to the proof of the theorem.

(16.2) Theorem. For a CW pair (X, A) the sequence 2,(X, A) 2>
25 0.(X, 4) "> R, (X, A) is exact.

Proof. Since R, (X, 4) has every element of order two, Im2 C Ker.
Suppose now that x € 2, (X, A) has r(x) = 0. The order of proof is to
show that the mod C isomorphism 0 : £, (X, 4) - K, (X, 4) of the proof
of (14.1) has 8(x) divisible by two. Since 6 is a mod C isomorphism, x
will then be divisible by two. In order to show 8 (x) divisible by two, it
will be sufficient to show that the image of x under each of the homo-
morphisms 2,(X, 4) - ‘K, (X, 4), 2,(X, 4) - K, (X, 4) is divisible
by two. We proceed to show this for the homomorphism 2, (X, 4) -
- K (X, A).

Recall that the definition of K, (X, A) was as follows, for & large.
One started with a certain a, € H™+¥(M SO(k); Z,), the restriction of
an integral class oy € H™+¥(MSO(k); Z). There was defined a map
Fe: MSO(R) - K(Z, m; + k) with f§ (t) = a, so that f*(r mod2) = a,.
Then 'K, (X, A) = 7t o (X/A)ANK(Z, m; + k) = H,_, (X, 45 Z).

Since #*: H*¥*(MO(R); Zy)~ H*(MSO(k); Z,) is an epimorphism,
there is a ¢, € H™ +¥(M O (k); Z,) with 7*(c) = a;. Define b, : MO (k) —
- K(Z,, m; + k) so that hf(v)) = ¢, where 7’ is the fundamental class.
There is the group *L,(X, 4) = &, ((X/A) A K(Zy, m; + k) =
= H,_ (X, A;Z,) and the homomorphism R,(X, 4) L, (X, 4) in-
duced by 4. There is also a map w: K(Z, m; + k) - K(Z,, m; + k) with
w*(1') = v mod2. It is seen that the diagram

MSO® 2> K(Z, m,+ k)
l lw
MO (B> K (Z,, m; + k)
is homotopy commutative. Hence
7, 1 ((X/4) A MSO(k))W:It,,+k((X/A) AK(Z, m;+ k)
l(id Av)e l(id Ay
(id A hg)y
711 ((X4) A MO R)——">7, ;1 (X]4) N K (Zy, m; + F))
is commutative. We next see that

Q,(X, A)—> K, (X, A) = H,_.(X, 4; 2)
R (X, A)—> L, (X, A) = H, _, (X, 4; Z,)

is commutative, where s is restriction mod 2. We see that (id A w),
yields a canonical homomorphism of the homology theory K, into
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il,, and that for (X, 4) the pair (p, 0), it is for » = m, the natural
homomorphism Z - Z,. But ‘K, and ‘L, are homology theories with a
single non-zero coefficient group. The Eilenberg-Steenrod uniqueness
theorem [19, p. 100] then applies to show that if two homomorphisms
coincide on the coefficient group, they coincide in general. Hence the
diagram is commutative.

Recall now that x € £2,(X, A) was supposed to have »(x) = 0. Hence
0,(x) €K, (X, A)=H,_,,(X,A4;Z) has sf,(x) =0. By exactness of
H, ..X 4;2)2>H, (X, A4;Z)>H,_, (X, 4;Z,), we have 0,()
divisible by two. We have then that in 6: 2,(X, 4) - K, (X, 4), 0 (x)
is divisible by two. Since 6 is a mod C isomorphism, it is not difficult to
show x divisible by two.

17. Algebraic invariants of maps

In this section we generalize the well-known Stiefel-Whithney num-
bers and Pontryagin numbers of a manifold M®, obtaining Whitney
numbers and Pontryagin numbers of a mapf : M"—> X. We prove theorems
concerning when these determine the bordism class [M®, f] in £2,(X).

Let M» be a closed oriented manifold with orientation class
0, € H,(M";Z). Denote by 1=uwy,w,...,w, the Stiefel-Whitney
classes of M™, that is the Whitney classes of the tangent bundle to M™.
To every partition 4, + -+ + 4, = » there is the element w, ... w, ¢
€ H™(M"; Z,) and the corresponding Stiefel-Whitney number (w;, . . . w,,,
o,y € Z,. Here {, > denotes the dual Kronecker pairing of cohomology
and homology.

If [M"], =0, then all Stiefel-Whitney numbers of M*» vanish; this
is due to PoNTRYAGIN [33]. The proof is as follows. Let B»+! be a com-
pact manifold with Br+!= M=, Let @, ..., @,,, denote the Stiefel-
Whitney classes of B+, The differentiable collaring theorem (1.2) shows
that the bundle on M™ induced from the tangent bundle to B»+! is the
Whitney sum of the tangent bundle to M* with a trivial line bundle.
From the Whitney sum theorem and the naturality of Whitney classes,
1% (®;) = w; where 7 is the inclusion M™C B~*1, Then (w; ...w,, 0,y
= (0*Wy, .. 0¥y, 0p) = (Wi, . . . Wiy, T40,) =0 since o, lies in the
kernel of 7,. Thus the Stiefel-Whitney numbers of M” depend only on
[M"],. THOM went on to show the following [40].

(17.1) Thom. If M™ is a closed manifold, then [M™], = O if and only
if all the Stiefel-W hitney numbers of M™ vanish.

Next consider a map f: M®» - X where M* is a closed manifold.
We seek to associate numbers with [M*, f], € R, (X) which are analogous
to Stiefel-Whitney numbers. Let ™ ¢ H™(X;Z,) be a cohomology
class of X. For every partition 4, + -+ + 4, = #— m, the number
{w; ... wy, f*(h™), 0,) € Z, is defined; we call this number a Whitney
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number of the map [ associated with k™. If h® is the unit class of H*(X; Z,),
then the Whitney numbers associated with A° are precisely the Stiefel-
Whitney numbers of M,

Note that if [M™, f], = 0, then all the Whitney numbers of f: M*—+ X
vanish. Suppose Br+! is a compact manifold with Br+! = M" and that
F:Br+'—> X is a map with F|M"=/f. Then (w, ...w,f*(#™),o")
= (*;, . .. B FR (™), 0,) = (W, . . . w;, F* (™), i40,) = 0. Thus
the Whitney classes of f: M* — X only depend on [M*, f], € R, (X).

Let X be a CW complex and for each # let {c,, ;} be an additive base
for H,(X; Z,). According to (8.1), for each c,,; we may select a singular
manifold f;: M7} > X with [ (0,) = Cn,. Define h:Hy(X;Z,) ®
@ RNy (X), an N-module homomorphism, by &(c,,;® 1)=[M},/,],€
€N, (X). Since H*(X;Z,) @ N is a free graded R-module, % is well-
defined.

(17.1) Theorem. The R-module homomorphism h:H*(X;Z,) ®
® N — N (X) s an isomorphism for each finite CW complex.

Proof. Consider first the Whitney numbers of a product [M7,/,1,[V™],
= [M} > V™ fm] where s is projection M7 > V™ M. Let c™i¢
€ H"(X; Z,) be the cohomology class dual to ¢, ,; that is, {c®?, ¢, ;> =1
while {¢™%, ¢, ;> = 0 for i==74. Select a partition 4, + -+ + + 4, = m and
consider the Whitney numbers of f;;r associated with ¢*:%. Note that
(fim)*cmt = ffemi® 1. Let v, € Hi(V™; Z,) denote the Stiefel-Whitney
classes of V™, Any Stiefel-Whitney class of the product M7 =< V™ is of
form W,=1® v, + terms involving Stiefel-Whitney classes of M.
From dimensional considerations we see that W, ... W, (f@)*cm?
=ffemi® v, ... v, Thus

Wi oo Wi (fim)¥c™i, 0, < 0y = (F¥ (™), 0) (U4, - - - Vg, Om)
= (Vg -+ - Vi Oy

a Stiefel-Whitney number of [V™),. Furthermore if we use ¢»7 with
1 =% 7, the Whitney numbers of the product associated with ¢/ all vanish,

Now suppose there is an expression 2, ;[M7™™, f,1,[V], = 0. All
the Whitney numbers must vanish, We show inductively that [V]'], = 0
for all m, 5. Suppose that for m < m, and all 7 it has been shown that
[V, = 0. We choose a partition ¢, + * - - + 4 = m, and a ¢"~™, %; then
ZinzmyilWey oo« Wy (fim)*cn=—ma o, MP~">< VI') = 0.

Now note that it follows from dimensional considerations that
Wi oo Wy (fim)*on—mate, M7~ M5 V1) = 0 for all m > m, and all 4.
The point is that the expression for computing the Whitney number
involves f*(cr—™.4) ¢ Hr—mo(Mn—m; Z,) which is O if m > m, Thus

ZiWey o Wy (fim)*on—ma i, ME=Moxx Vi) =0.
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However if 7 5 7, the term is zero, while for 7 = 7y, we get the Stiefel-
Whitney number (v, ... vy, Vi) of V% Hence the Stiefel-Whitney
numbers of V’”ﬂ are all zero, and [V’”ﬂ]2 = 0 The induction is established,
and hence % is a monomorphism.

For finite CW complexes X, (8.2) shows that the unoriented bordism
spectral sequence is trivial, so that additively Hy (X;Z,) @ R = R, (X).
We then see by dimensional considerations that % is an isomorphism for
finite C W complexes X. We have now fully established (8.3). In passing
we have also shown the following.

(17.2) Theorem. If f: M"— X is an unoriented singular manifold
n a finite CW complex X then [M*®, fl, = O if and only if all the Whitney
numbers of [M™, f1, vanish.

We wish now to indicate a more functorial treatment of Whitney
numbers. For a CW complex X denote by 3" (X) the vector space of
linear functionals from R, (X) to Z,; that is, X*(X) = Hom (AR, (X), Z,).
Consider the product X < BO(n) of X with the classifying space
BO(n). We define now a well defined homomorphism

H™(X < BO(n); Z,) - T (X) ,

an epimorphism for all # = 0.

An element of R, (X) is determined by a map f: M*»-> X where
M~ is a closed manifold. The tangent bundle of M* may be induced by
amap g: M*® - BO(n). The product map F = f><g: M® > X >< BO (n)

induces F*: Ho(X > BO(n); Z3) - H(M~; Z,) .

For each ¢» ¢ H*(X =< BO(n); Z,) we consider (F'*(c"), 0, € Z,, 0, the
orientation class of M=, It is seen that {(F*(c"), o,,) depends only on
[Mn, f], and on c®. If ¢* is fixed and [M", Ha Varies over R, (X) we obtain
an element of A*(X) = Hom(QI ), Z5). Thus we obtain a homo-
morphism H*(X > BO(n); Z,) —» A (X). In view of (17.2) it is an epi-
morphism.

Now this homomorphism has a non-trivial kernel Wn(X) C
CH"(X > BO(n); Z,). This kernel represents generalized Wu relations
That is, if X is a single point p, then the kernel of H*({$} =< BO(n); Z,) —~
—> R (p) is precisely the set of Wu relations as shown by DOLD [177.

For each £ < # and each partition ¢; < « -+ < ¢, of & containing no
term of the form 27— 1 (i.e. to each non-dyadic partition) there is
associated an element sz, . . ., 1;) € H¥(BO (n); Z,), a polynomial in the
Whitney classes w,, . . ., w;. Namely s is given by the symmetric function
Xtn. .. (% Let S*CH*(BO(n); Z,) be the subspace spanned by the
s, ..., 1) Now additively S* = R, =~ R*(p) and in fact under
H"({p} =< BO(n); Zy) = A~ (p), S* is carried isomorphically onto R*(p)
[40].
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In general let S*(X) C H*(X < BO(n); Z,) be given by S*(X)
= 20H**(X; Z,) ® S*. The point is that under H*(X =< BO(n); Z,) -
- Ql" (X) the subspace S»(X) is carried isomorphically onto 92" (X). It
is only necessary to show S?(X) N W»(X) =0, but this is entirely
analogous to (17.2). Thus we have a splitting H"(X > BO(n); Z,)
= S5*(X) ® Wr(X). As we shall see, this may be regarded as a canonlcal
sum decomposition.

Let ¢: X - Y be a map; then ¢, : RN, (X) > R, (Y) is defined and
by duality @ : R*(Y) - R*(X) is also deﬁned Let p><1d: X > BO( ) —>
- Y > BO(n) induce @*: H*(Y =< BO(n); Z,) - H*(X =< BO(n); Z,).
It is seen that the diagram

H"(X =< BO(n); Z,) —> W(X)

H™(Y < BO(n); Z,) - A (Y)

commutes. By duality the kernel of @ consists of those homomorphisms
which annihilate the image of @, N (X) > R, (Y). The fact is that
under H*(Y > BO(n); Z,) - A" (Y) the kernel of @* is carried onto the
kernel of ®. Suppose cn € HY(Y >< BO(n); Z,) goes into the kernel of
®. We write ¢, = a, + b, where a,€S5*(Y) and b,€ Wr(Y). Now
D*(c,) € Wr(X) but D*(a,) ¢ S"(X) and @*(b,) € W*(X); hence
@*(a,) = 0, but a4, and ¢, cover the same homomorphism in R*(Y). We
get immediately as a corollary.

(17.8) Let ¢: X —> Y be a map joining finite CW complexes. The
necessary and sufficient condition [M™, fl, € R, (Y) lUe in the image of
@t W (X) = R(Y) is that every Whitney number of [M™, fl, associated
with an element in the kernel of o* : H*(Y ; Z,) - H*(X ; Z,) must vanish.

For the remainder of this section, we proceed by analogy to the
oriented bordism groups £, (X).

Let w= (53,...,%) be a partition, and p,=p, ...p; the cup-
product of Pontryagin classes of the tangent bundle of a closed oriented
manifold M". Let A"¢ H™(X;Z) be a cohomology class with
m=mn—4(f, + - -+ 4;). For an oriented singular manifold f: M»->X
we then have the numbers (p,/*(F™), o(M™)) € Z; we call these the
Pontryagin numbers of the map /.

Since £2,(X) = 2, ¢=nH,(X; £,) modC we see that £,(X) ® Q =
=X, —nHy(X; £, ® Q) where Q denotes the rationals. This generalizes
the theorem of THoM [40]. The following can be shown just as (17.2).

(17.4) Theorem. Two oriented singular n-manifolds in X represent the
same element in 2,(X) ® Q if and only if their corvesponding Pontryagin
numbers are equal.



18. The existence of an Q2-base 49

With this we can show that in many cases Whitney numbers and
Pontryagin numbers determine the bordism class.

(17.5) Theorem. Let X be a finite CW complex such that the torsion of
Ho (X ; Z) consists of elements of order two. Then two oriented singular
n-manifolds in X represent the same clement in Q,(X) if and only if they
have the same Whitney numbers and the same Pontryagin numbers.

Proof. In view of (15.2), £2,(X) = 2, (= o H,(X; £2,) and thus every
torsion class in £,(X) also has order two. Suppose all the Whitney
numbers and the Pontryagin numbers of [M", f] vanish. Then by (17.2),
[M™, fl, = 0. Thus by the exact sequence £,(X) - £2,(X) - R,(X) of
(16.2), [M™ f]=2[V" g]. However by (17.3) the class [M* f] is a
torsion class, as is [V*, g]. Hence 2[V*, g] = 0 = [M?", f].

18. The existence of an 2-base

We have seen in (8.3) and (17.2) that 9, (X) always has a homo-
geneous N-base. We go on to show that in some cases there is a corre-
sponding result for 2, (X).

(18.1) Theorem. If X is a finite CW complex for which Hy (X ; Z) has
no torsion, then 2, (X) has a homogencous $2-base and is thus a free graded
-module.

Proof. Let {c,,;} denote an additive base for H,(X; Z). According to
(15.2) there are oriented singular #-manifolds / : M} - X with [ (0) =¢,, ;.
We shall show that {{M7, f]} forms a homogeneous £-base in £, (X).

We rely on the triviality of the bordism spectral sequence. There is
the filtration £2,(X) = Jn,0D D Jo,n D0 With Jin_s/Jkctn-r11=
= El:?w—lcE E%,’n—lc= Hk(X; 'Q'n—k)‘

Since X has no torsion, Hy(X;Z2) ® Q,_.= H.(X; 2,_;) and thus
E%,0® .Q"_kg E%,n—k'

Let AC £2,(X) be the submodule generated by the {[M?, f]}. We
show by induction on % that J;, ,_;C 4. Suppose this is true for £ — 1.
Choose a € Ji, n—x There is &€ E%,_; corresponding to «. Since
E3o® 92, = Ek n—b & is uniquely expressed as Xy, ,® [V7—F].
There is § = X, [M%, f] [V7~*]. We may take f: M¥ - X as a map into
the k-skeleton so that e ] & n—x Now falso corresponds toac E:,
thus & — B € Jx_1,n—x41- By induction we see that 4 = 2, (X).

The independence can be seen as follows. If

M= Vi =0,

then we can see from (17.3) that all the [V']"] are torsion classes and of
order two. Since

ZMp=, fy V1= 0,

it follows from (17.2) that [V7'], = 0 and thus [V7*] = 0.
Ergebn. d. Math. N. F, Bd. 33, Conner and Floyd 4
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CHAPTER III
The G-bordism groups

This chapter serves as a transition between the preceding purely
topological chapters and the following chapters which deal specifically
with periodic maps. In section 19 we interpret 2,(B(G)), G a finite
group, as a group of bordism classes of pairs (G, M*) consisting of a
closed oriented manifold M™ and an orientation preserving differentiable
free action of G on M. Section 20 deals with a bordism analogue of the
classical transfer homomorphism. Sections 21 and 22 give elementary
properties of differentiable actions on a compact #-manifold B®, in
particular an equivariant collaring theorem and a discussion of tubular
neighborhoods of invariant submanifolds.

19. The principal G-bordism groups

We consider an equivariant bordism theory for principal G-manifolds,
G a finite group. An oriented G-manifold is a pair consisting of a compact
oriented manifold B together with an orientation preserving action of
G on B® as a group of diffeomorphisms; we shall denote such a pair
by (G, B®) or simply by B". A principal oriented G-manifold is an oriented
G-manifold such that no element of the group other than the identity
has a fixed point.

Two oriented G-manifolds (G, B}) and (G, B}) are equivalent provided
there exists an orientation preserving equivariant diffeomorphism ¢ of
B} onto BY; recall that ¢ is equivariant if ¢ (gx) = g(@(x)) for all g€ G.
We shall borrow the following result, to be proved in section 21. Let
(G, B denote a G-manifold. There is an open invariant set U > B and
an equivariant diffeomorphism ¢ of (G, B®><[0, 1)) onto (G, U) with
@ (¥, 0) = x, where G acts on B*>< [0,1) via g(x, #) = (gx,¢). This is
just an analogue of (1.2).

Consider a closed oriented principal G-manifold (G, M®). We say
that (G, M™) equivariantly bords if and only if there is a compact oriented
principal G-manifold (G, B*+1) with (G, B*+1) = (G, M"). Given (G, M™)
and (G, M3), there is the usual disjoint union denoted by (G, M} v M}).
Let —(G, M") = (G, —M™). Define (G, M7) to be equivariantly bordant
to (G, M3) if and only if the disjoint union (G, M} U — M7) equivariantly
bords.

Equivariant bordism is an equivalence relation on the closed oriented
principal G-manifolds. To see that (G, M*) is equivalent to itself we have
only to consider (G, M»><1I), where g(x,f) = (gx,t). Symmetry is
obvious. Transitivity follows from the equivariant collaring theorem
(21.2). Denote the equivariant bordism class of (G, M®) by [G, M"], and
the collection of all such classes by £, (G). An abelian group structure
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is imposed on £, (G) via disjoint union. We use the notation 2, (G) here
by analogy with the notation H,(G;Z) for the homology groups of a
finite group.

The weak direct sum 2, (G) = 27 2,(G) is a graded right £2-module.
Specifically, from a closed oriented principal G-manifold (G, M") and a
closed oriented manifold V™ a closed oriented principal G-manifold
(G, M™ =< V™) is given by g(x, y) = (gx, y). We speak of £,(G) as the
oriented bordism module of the finite group G.

Let E(G) be a universal space for the group G, in particular a CW
complex upon which G acts freely and with every skeleton of E = E(G)
a finite CW complex. Also let B(G) = E(G)/G denote the classifying
space of G; we may also suppose it a CW complex with skeletons finite.

(19.1) Theorem. For ecach closed oriented principal G-manifold, let
v M» - MG denote the orbit map. There exists a unique differentiable
structure on M"G in which v is a local diffeomorphism, and a unigue
orientation for M*|G such that v preserves orientation locally. There exists
an equivariant map f: M® - E (G), inducing a map f: M*|G - B(G). The
correspondence [G, M) - [MnG, ] is an isomorphism of the Q,(G)
defined above onto the 82,(B(G)) defined in Chapter 1.

Proof. To show the correspondence well-defined, suppose (G, M%)
= (G, Br+1). By universality of E (G), f: M™ - E (G) can be extended to
an equivariant map F: B+l E(G), inducing an F: B*+!/G - B(G)
which extends f: MG — B(G). Moreover, Br+1/G is seen to be a com-
pact oriented manifold whose boundary is M#/G. Hence [M#G, f] =0
in £2,(B(G)), and the correspondence is well-defined.

Suppose now that (V»,f) is a closed oriented singular manifold in
B(G). There is the diagram

E(G)

V»-Ls B(G)

inducing as usual a principal G-bundle over V». Let M*"C V"< E be
defined then as the set of (x,y) with fx =»y. Let G act on M* via
g{x,y) = (», gy). The projection »:M"—> M"G is a local homeo-
morphism. A differentiable structure is imposed on M so that » preserves
orientation locally. We thus get a closed oriented principal G-manifold
(G, M™), and [G, M"] maps into [V", f]. Thus the correspondence is an
epimorphism. In a similar fashion it is seen to be a monomorphism.

We can now apply the results of Chapters I and II to £2,(G). From
section 7, we have the following.

(19.2) For cvery finite group G there is a spectral sequence {E?, /} with
E2 .= H,(G; Q) and with E®-term associated with a filtration of 2,(G).

4%
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There is also an unoriented bordism module %, (G), defined by means
of closed principal G-manifolds (G, M®) in which there are no orientability
requirements on M~ From (17.2) we get the following.

(19.8) For any finite group G the unoriented bordism module N, (G) s
isomorphic to H, (G; Z,) @ N.

There is also an analogue of the reduced bordism groups. Namely an
augmentation &, : 2, (G) - 2 is defined by sending [G, M"] into [M™/G].
It is seen that (19.1) identifies this with the augmentation £, (B(G)) - £.
We can then define §,(G) = Ker[ey: £2,4(G) - 2], and obtain such
results as B, (G) = 3,.(B(G)) and £,(6) = 2, © £,(G).

(19.4) Theorem. If (G, M™ is a closed oriented principal G-manifold
where G is a finite group of order r, then [M™] = » [M"G].

Proof. The quotient map v: M» - M"G is a local diffeomorphism,
and thus the bundle over M” induced by » from the tangent bundle to
M™G is the tangent bundle to M». Thus v*: H¥(M~/G; Z) -~ H*(M"; Z)
maps the Pontryagin classes P, of M"/G onto the Pontryagin classes of
M=, Similarly »*: H*(M%G; Z,) - H*(M"; Z,) maps Stiefel-Whitney
classes of M"/G onto Stiefel-Whitney classes of M.

It is also seen that if ¢, o, denote the orientation classes of M» and
M™% G respectively, then v, (o,) = ro,. Looking at Pontryagin numbers,
then

(P (M™) ... Py (M"), 0,y = (v*P; (M™G) . .. v* P, (M"G), 0,)

= (P, (MYG) . .. M"/G) VaOpd
=r{(P, (M"G) ... Py (M"G), op) .

Thus a Pontryagin number of M* is » times the corresponding Pontryagin
number of M#/G. Precisely the same remark applies to Stiefel-Whitney
numbers. Then [M*] and »[M»/T] have the same Pontryagin numbers
and the same Stiefel-Whitney numbers, and the result follows.

Now (19.4) answers easily a question variants of which will arise in
later chapters. Namely, which bordism classes of {2, admit representa-
tives M* upon which there exists a differentiable, orientation preserving
free action of G ? According to (19.4), every such bordism class is divisible
by r. On the other hand, every bordism class »[V*] admits such re-
presentatives, namely » copies of V* (that is, G >< V"), permuted appro-
priately by G. Hence the class of such bordism classes is precisely the
ideal » 2.

20. The transfer homomorphism

Let G be a finite group and H C G a subgroup. Classically there is a
homomorphism ¢: H,(H; Z) - H,(G; Z) and a transfer homomorphism
t:H,(G;Z)—> H,(H;Z). We shall investigate the corresponding homo-
morphisms relating 2, (G) and 2, (H).
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First, let 4(G) denote the group of automorphisms of G and let
I{G) ¢ A(G) be the normal subgroup of inner-automorphisms. We shall
define an action of 4 (G)/I(G) on £2,(G) as a group of £2-module homo-
morphisms of degree 0. Let (G, M*) be a closed oriented principal G-mani-
fold and let ¥ : G — G be an automorphism. A new action yp, (G, M") is
given by g*x = 9 (g) (»). This is again an oriented principal G-space. We
can set Y4 ([G, M*]) = [y4(G, M™)]. This is an £2-module automorphism
of degree 0. Now suppose y(g) = hgh~'. Define m : M — M" by m(x)
= hx. Now g*(m(x))=hgh~'hx = hgx = m(gx), thus m: (G, M") —
— Y4(G, M™) is an orientation preserving equivariant diffeomorphism
so p¢([G, M*]) = [G, M"]. In this way we see that the quotient group
A (G)/I(G) acts on £2,(G).

Next consider H C G. We first define the transfer ¢: 2, (G) -~ 2, (H).
Let (G, M™) be a closed oriented principal G-manifold. This induces by
restriction (H, M®) which is still a closed oriented principal H-space. We
simply let ¢([G, M"]) = [H, M*]. This defines an £2-module homomor-
phism ¢: 2,(G) — £, (H) with degree 0.

The homomorphism 7 : 2, (H) — 2,(G) is defined as follows. Begin
with a closed oriented principal H-manifold, (H, M*). We form the
product G >< M™ on which H acts by the rule 2(g, x) = (gh~!, hx). Thus
G < M* is also a closed oriented principal H-manifold. We form the
quotient (G >< M"™)/H. Let ((g, %)) denote the point in the quotient
corresponding to (g, x) € G > M. The group G acts on (G >< M")/H by
£((g, »)) = ((Bg, x)). We set i([H, M*]) = [G, (G >< M™)/H]. Following
the classical usage we refer to ¢: 2, (G) - £2,(H) as the transfer homo-
morphism. We should note here that the problem of computing the
composite homomorphism £, (G) - 2, (H) - 2,(G) is a complete
mystery. This is quite unlike the classical situation for it is well known
that i¢: H, (G; Z) - H,(G; Z) is multiplication by the index of H in G.

We shall determine 2, (H) - 2, (G) - 2, (H) under the assumption
H is normal in G. This assumption is not really needed, but is suffices for
our purposes. If H is normal in G there is a natural homomorphism
v: G/H — A (H)/I (H) which assigns to g € G the automorphism » — ghg—1.
We begin with (H, M") and we consider [H, (G =< M™)[H] ¢ £,(H). This
will be ¢ti([H, M=]). We note that A{(g, x)) = ((hg, x)) = ((gg~'hg, %))
= ((g, g~'hgx)). We shall use this formulation of the action of H on

(G>=<M~H.
Let #:G— G/H denote the quotient homomorphism. We select
g1, 82 - - -, 8 € G, one from each coset of H in G. First we define

(H, GIH =< M") by g(n(g;), %) = (n(g;), g; *hg;x). Observe that for a
fixed g;, (n(g;) ><M™) is H-invariant. Actually the action of H on
(n(e) < M) ist(n(g,))«(H, M"). Thus [H, G/H = M~] = Z¥(n(g,)) [H, M7].
We see how the action of 4 (H)/I (H) on £2,(H) enters our picture.
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We must show [H, (G>=<M"/H]= [H, G/H><M"]. We define
m: (G>=< M™|H — G/H > M™ as follows. Given ((g, x)) there is a unique
1, k€ H for which g = g,h. Let m((g, x)) = (n(g;), hx). Suppose ((g, x))
= ((& %), then gh-t=g, hx=1y. Thus § = ghh™', so m((g )
= (n(g;), hh1y) = (5(g;), k). In this way m is well defined. Now we see
that

m(h((g, )= m((hg, x)) = m((g, g~ hgx)) = (n(g;), hh~g; hg;hz)
= (n(g;), & *hegshx) = h(n(gy), hx) = km((g, #)) -
Therefore m is equivariant. The reader may show m is 1 — 1 onto.

(20.1) Theorem. Let H C G be a normal subgroup, then ti([H, M"])

= 2t (n(e)s ([H, M™]).
The right side is clearly independent of our choice of gy, . . ., g;.

(20.2) Corollary. If H belongs to the center of G then ti(H, M"))
= k[H, M™)] where k is the index of H in G.

We shall see that (20.1) corresponds to the case of the composition
t1: H,(H,Z) > H,(H; Z). Our task is to now show that the diagram

Qu(H)—> 2,6 —> 2u(8)
I I I
H,(H;2)—> Hy(G; 2)—> Hy(H;2)
is commutative.

Let (G, W) be the universal principal G-space with W/G = B(G).
Obviously W/H = B(H). We may form the principal G-space
(G, (G><W)/H). This admits a unique equivariant map:(G, (G><W)/H)—
— (G, W), which induces %:((G>< W)/H)/G - B(G). We identify
((G<W)/H)/G with W/H = B(H) to obtain ¢: B(H) > B(G) which
produces the commutative diagram

Q2.(B(H))—> 2,(B(G))

u u ,
H,(B(H);Z)—> H,(B(G);Z)
which is just

Qu(H)—> 2,(6)
u u

H,(H;2)—> H,(6:2)

Now choose a closed oriented principal G-manifold which is N-uni-

versal (G, V™), N > n. We may take V™ to be an appropriate Stiefel
manifold. We have V#/H > V™G, Let f: W*— Vm|G define [W™, f] ¢
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€ 2,(V™G). If m>2n we may by the Whitney embedding theorem
(10.2) replace f : W» — V™G by an inclusion W C V™/G. In fact, we may
replace 2,(V™G) by L,(V™/G), the group of L-equivalence classes of
closed regular #-dimensional submanifolds in V7/G. The local diffeo-
morphism it V™H —~ V™G is transverse regular on Wr, thus W=
= iA—l(W")CV’"/H is a closed regular submanifold in V™/H. In this
manner a homomorphism ¢: L, (V™/G) - L, (V™/H) is defined. This is the
transfer homomorphism. In homology the transfer is simply the Hopf
umkehr homomorphism of 7: V™/H — V™|G. Obviously the diagram

2,(6)—> 2.

H,(G; Z)—> H,(H;Z)
commutes.
(20.3) Theorem. For any subgroup H C G the diagram

Q,H) —> 2,(6) —> 2,(H)

J# Js J#
H,(H;2) > H,(G; Z) —> H,(H;Z)
is commutative.

We shall use the transfer homomorphism later as a computational
tool in studying 0, (G).

21. The G-bordism groups

In section 19 we have defined the bordism groups of principal
G-manifolds (G, M"). Here we point out that there are similar G-bordism
groups in which the actions are not necessarily free. In order to prove
transitivity of the G-bordism relation, we first prove the equivariant
form of the collaring theorem (1.2).

Let G be a compact Lie group. Let B” be a compact manifold; fix
once and for all a closed manifold M” which contains B” as a regular
submanifold. The existence of M* follows from (1.2); for example we
can take M™ to be the double of B». A differentiable action of G on B is a
map 7 : G >< B™— B" such that

i) n{e x) = x, for e the identity;
ii) 7(gy, 7(g2 %)) = 7(8182, %);
iii) % is a differentiable map.

This last condition implies that each point (g, x) € G > B* there is a
neighborhood in G >< M™ to which 7 may be extended to a differentiable
map. By a result of MiLNoRr [27] there exists an open neighborhood U
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of B* in M™ and a differentiable extension #: G > U » M™ of . Fix
U and 7 once and for all.

(21.1) Swuppose the compact Lie group G acts differentiably on the
compact n-manifold B* and also on the closed m-manifold V™. If A is a
closed tnwoaviant subset of B™ and if f: A — V™ is an equivariant differentiable
map, then theve is an open invariant set W, A CW CB*, and an equi-
variant diffeventiable extension F: W — V™,

Proof. Choose an open set W; in M* with A CW;CU and a differ-
entiable extension f: W, - V™ of f. There exists an open set W, in M»
with A C W, W, C U and (G =< Wy) C Wy

We use now the Mostow-Palais embedding theorem [31, 32]. There
is an orthogonal representation of G on R* and an equivariant differen-
tiable embedding ¢: V™~ R*. There is also an open invariant set
0>¢(V™ and an equivariant differentiable retraction g 10— @(Vm.

Denote by f(g, x) the composite G < W2—> w; R4 @ (V™ C RF,
Define F (x) = [¢ g—lf (g, %) dg; then F is a differentiable map of W, into
R*and F <p fon A. Choose an invariant set Wopenin B*, AC W CW,,
with (W) 0. The desired extension of f: 4 — V™ is g=1pF : W V™,

There is the following corollary. If G acts differentiably on the compact
n-manifold B*, theve is an open tnvaviant set W, BrcWc B, and an
equivariant differentiable retraction v : W - Br,

We now prove the following. Here G acts on B < [0, 1) via g(#, {)
= (g%, 7).

(21.2) Theorem. Suppose that G acts differentiably on the compact n-mani-
fold Bn. There is an open invariant set V with Br CV C B® and an equi-
variant diffeomorphism h:V — B >< [0, 1) with h(x) = (x, 0) for x € B™.

Proof. Consider the tangent bundle g: E — B®, the restriction to
Bm of the tangent bundle to M= The group G acts on E as a group of
bundle maps, covering the action of G on B*. For a real-valued differ-
entiable function f and for a tangent vector v € B% (the tangent space
at x), denote by {J, v) the directional derivative of f in the direction ».
Denoting by fg the composite function f(gx), we have {fg, v) = {f, gv).
Let F(x) = [¢f(gx) dg. Then (F, v) = [¢{fg, v) dg = [o(f, gv) dg.

Now let ¥, be an open neighborhood of B~ in Br for which there is a
diffeomorphism % : V; - B# > [0, 1) with & (x) = (¥, 0), # € B~ (see (1.2)).
Let f: B» - R be a differentiable map which on V] is the projection of
k(x) into [0, 1). At a point x € B, if v is a tangent vector pointing toward
the interior of B” then (f v) > 0. Moreover {f, v) = 0 if and only if v is
tangent to Br. Let F(x) = [¢f(gx) dg. Then for x € B and v a tangent
vector at x pointing toward the interior of B=,

(F,v) = [o<f gvy dg = 0.
Moreover, {(F, v) = 0 if and only if v is tangent to B~
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Select an open invariant W, B»C W C V;, for which there is an equi-
variant differentiable retraction v: W — B®. Then define h: W —
— Br>< [0, o) by k(%) = (7(%), F(x)). Along B", k induces an isomor-
phism of the tangent spaces for x € B", h(x) = (x,0) and 4 is a diffeo-
morphism of B» onto B®><0. There is then an open invariant W,
BrC W,C W, such that h: W, Br>< [0, 1) is an equivariant diffeo-
morphism onto an open subset. There is an & > 0 for which B" x< [0, ¢)
lies in the image of 4. Let V = h~ 1(3" [0,¢)) and define A': V —
-~ B">< [0, 1) by h(x) = (r(x), (1) F (). The theorem then follows.

Suppose now that (G, B?) and (G, BE) are compact G-manifolds;
that is, pairs consisting of a compact manifold B? and a differentiable
action of G on B2. If the boundaries (G, B}) and (G, B}) are joined by
an equivariant diffeomorphism ¢, then we can use (21.2) to sew B} and
B% together along their boundaries. That is, by identifying B} and B%
along their boundary via ¢ to obtain B", we obtain a compact G-mani-
fold (G, B™.

As in section 19, a closed oriented G-manifold (G, M™) consists of a
closed oriented manifold and an orientation preserving differentiable
action of the compact Lie group G on M™. The isotropy group G, of
x € M* is the subgroup {g: gx = x} of G; it is clear that G,, = gG, g
Fix a non-empty collection 4 of subgroups of G such that if K € 4 then
gKg 1€ A for any g € G. A G-manifold (G, M") is A-free if each isotropy
group G, is contained in an element of 4.

We can now define an Q2-module Q, (G, 4), generalizing Q,(G) in
that free actions are replaced by A-free actions. To define Q, (G, 4), we
simply define a bordism relation on the closed oriented A-free G-mani-
folds duplicating that of section 19. In particular if 4 is the collection
S (G) of all subgroups of G, we get an unrestricted G-bordism module. If A
consists of the single subgroup {¢}, we get 24 (G). Similarly we can define
unoriented G-bordism groups N, (G, 4). It will be seen in the remainder
of this work that 2, (G, 4) is computed in very few cases. Nevertheless,
its existence will be quite useful.

22. Tubular neighborhoods

In section 10, we have defined the classical tubular neighborhoods.
Here we extend that discussion a bit to cover closed G-manifolds (G, M7).
We go on to a preliminary discussion of the stationary point structure of
a closed G-manifold (G, M™). This consists of the set I of stationary
points, a disjoint finite union of 4-manifolds F%, 0 < ¢ < #, of the normal
bundles to the F%, and of the induced action of G on the normal bundles.

Let (G, M™) be a closed G-manifold. By the usual averaging process,
there is a Riemannian metric on M with respect to which G is a group
of isometries. Let ™ be a closed submanifold of M*, regularly embedded
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and invariant under the action of G. As in section 10, there is the tubular
neighborhood N of V™, of radius ¢ for each ¢ sufficiently small. Now N
is always a regularly embedded submanifold of M™. Since V™ is invariant
and G is a group of isometries, it is also seen that N is invariant under the
action of G. If Fy, ..., F, is a pairwise disjoint collection of closed in-
variant submanifolds of M=, with dimensions varying with ¢, then a
tubular neighborhood of FF = \UF; is by definition a disjoint collection
of tubular neighborhoods of the various F;.

Summarizing the above, let &: E — V™ denote the normal cell-
bundle to V™ in M. Then E is a compact #-manifold; moreover G acts
differentiably on E via the differentials dg : E — E, and we may consider
V™ E. According to the above there is an equivariant diffeomorphism
h of (G, E) onto (G, N), and % may be considered the identity on V™.

If x € M™is a stationary point, then x can be considered a 0-manifold
so we may apply the above. In this case the normal bundle is the space
M, of tangent vectors to M* at x, and we have an orthogonal representa-
tion of G on M,. By the diffeomorphism # we may map the unit cell of
M, via an equivariant diffeomorphism onto invariant neighborhoods of
% in M. This yields the linearization of the action of G at a stationary
point [29, p. 206]. It follows immediately that the component I con-
taining x of the set of stationary points is a regular submanifold of M.
Moreover the tangent space to I at x is the subspace of the tangent space
to M" at x which is pointwise fixed under the linear representation of
G on M,.

Suppose now that F is the set of stationary points of (G, M"). Let
Fi denote the union of the i-dimensional components of F. Then F¢ is a
closed regularly embedded submanifold of A", invariant under G. There
is the normal cell bundle &: E; — F?, and the action of G on E;; the
action on each fiber is an orthogonal representation of G. Denote by
E the union v E;, and by &: E - F the map v E; » v F*. We shall
occasionally speak of &: E — F as a cell bundle. We can now identify
(G, E) with the tubular neighborhood (G, N) of I in M*. A particularly
simple case is that in which G = Z,. Then Z, acts orthogonally on the
fibers of &, and leaves only the zero vectors fixed. The only such action
of Z, on a vector space is via the antipodal map.

(22.1) Theorem. Swuppose that G acts differentiably on the closed
ortented manifolds MY and M3, preserving the ovientation. Suppose that
the sets Fy and F, of stationary points have tubular neighborhoods which are
equivayiantly diffeomorphic via an orientation preserving diffeomorphism
@. There exists a closed oviented manifold V™ and a differentiable action
of G on V™ without stationary points, with

[MT] — [M§] = [V"].
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Proof. Denote by N; and N, the tubular neighborhoods. Form
Wrtl= (—M?%) =< I v M%><I. Form the identification space W%+l of
Wr+1, where (x, 1) € Ny >< 1 is identified with (¢ (x), 1) € Ny>< 1 for all
% € N;. The angle straightening technique may be used to show that
W2+l is a differentiable manifold. The boundary of W% +1 consists of the
disjoint union of M, — M, and a third manifold V* described as follows;
V» is formed from — (MP\IntN;) and M3\IntN, by identifying their
boundary via @. By (21.2), we see that the differentiable structure can
be put on V™ so that G acts differentiably. Moreover, G acts on V*
without stationary points. The theorem follows.

There is an unoriented version of (22.1).

CHAPTER IV
Differentiable Involutions

We now begin our major undertaking, the study of differentiable
periodic maps. Most of our attention is given to maps of prime period 4.
There appear to be two cases to treat, » = 2, and $ odd. In this chapter
we treat the case p = 2; that is, we deal with differentiable involutions
T on closed manifolds M». A distinctive feature of the case p =2 is
that we may ignore matters of orientation.

In section 23, we give the complete structure of the bordism module
AN, (Z,) of fixed point free involutions (7', M™). In the succeeding sections
we study the fixed point sets of involutions T : M™ — M». The results
typically relate the bordism class [#"], to the fixed point set and its
normal bundle. The concluding section 28 gives the structure of the
bordism theory of all differentiable involutions (T', M™).

23. Fixed point free involutions

We begin our study of involutions with a further analysis of R (Z,)
(see section 19). We go on to introduce an important class of fixed point
free involutions, the bundle involutions associated with sphere bundles.

An involution is a homeomorphism 7T : X — X of period 2; the in-
volutions are identified with the actions of the group Z, and will be
denoted by (T, X). The differentiable fixed point free involutions (T', M7
on closed manifolds are the closed principal Z,-manifolds of section 19.
There is then the bordism relation of section 19 and the bordism group
N, (Z,). Specifically (T, M™) bords, written [T, M*], = 0, if there is a
differentiable fixed point free involution (S, B**!) on a compact mani-
fold with Br+1= M and S|M" = T.

Given a differentiable fixed point free involution (T, M™®), there is
an equivariant map M" — E(Z,), where E(Z,) is a universal Z,-bundle,
and an induced map ¢: M™/T — B(Z,) unique up to homotopy. Now
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H*(B(Z,);Z,) is a polynomial algebra with a single one-dimensional
generator denoted here by c. There is then p*(c) € H}(M™/T; Z,); we
denote p* (¢) by ¢ and call it the characteristic class of the involution. It is
of course the Whitney class of the Z,-bundle M* -~ M~/T.

We obtain the following directly from (17.2).

(23.1) Theorem. The bordism class [T, M), in N,(Z,) of a differen-
tiable fixed point free involution on a closed manifold is uniquely deteymined
by the integers mod two (w; ...w,c™ 0,) where the w; are the Stiefel-
Whitney classes of MM T, o, € H,(M™T; Zy) 1s the fundamental class of
MAT, and 4, 4« + + 4, = n— m.

The above numbers (w; ...w;,c™, o,) will be called the snvolution
numbers.

It follows from (8.8) that the N-module N, (Z,) is a free N-module
with one base element in each dimension.

(23.2) Theorem. Suppose for each n =0, 1. .. we have a differentiable
Sfixed point free tnvolution (T, X™) on a closed manifold, such that for each
n the involution number {c*, o,y of (T, X™) 1s non-zero. Then {[T, X"],} is
a basis for the N-module Ry (Z,). In particular the antipodal map (A, S*)
of the n-sphere has {c", o,y == 0, and {4, S"],} is a base.

Proof. Considering the map ¢ : X*/T — B(Z,), we have

(™, 050,y = {@*c", 0,)F+ 0.
Hence g, (0,) = 0 in H,(B(Z,); Z,). The above now follows from (8.3).

Note that (23.2) implies that every fixed point free (7, M") has a

unique representation
[T, M)y = 25 o[4, S* "] [V™], -

We turn now to the bundle involutions. Consider a differentiable
sphere bundle ¢: B — V* over the closed manifold ¥; the fiber is the
(kR — 1)-sphere S*-1 and the structural group is 0(k). Note that B is a
closed (n 4 k— 1)-manifold. The antipodal map A :S5*-1— S¥-1 lies
in the center of 0(%). Hence it is seen that there is a fiber preserving
differentiable fixed point free involution (7', B) which on each fiber
reduces to the antipodal map. We refer to (T, B) as the bundle tnvolution ;
this involution was studied in [14].

Consider the diagram
B— B|T

A

We see that p: B/T — V" is a bundle with real projective space P, _; as
fiber. If P,_; C BT is a fiber then by the naturality of Whitney classes
the image of ¢ € HY(B|T; Z,) under ¢*: HY(B|T; Z,) - H* (Py,_1; Z,) is
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the generator of H*(P,_;;Z,). The fiber P,_; is thus totally non-
homologous to zero in B/T. By the Leray-Hirsch theorem [5, p. 129] the
mod 2 spectral sequence of p collapses. It follows that for any class
h*€ H(B|T;Z,) there are unique classes e, ¢, _4,..., 6 _ ;4 IN
H*(V*; Z,) for which

b= p*(e,) + p*(er—p)c+ -  + P*(6r_p11) k-1,

Consider now the tangent bundle & of B/T. The differentiable fiber
map p splits & into a Whitney sum &; @ &, [7, p. 482]. Here & is the
normal bundle to the fiber and &, is the tangent bundle to the fiber. By
naturality, the total Whitney class of & is 1+ p*(wy) + * + * + p*(w,),
where the w; are the Stiefel-Whitney classes of V*. The total Whitney
class of & was computed by BOrReL-HIRZEBRUCH [7, p. 517]; a proof
will be given in section 31.

(23.8) Borel-Hirzebruch. The fotal Whitney class of the tangent bundle
&, along the fiber in B|T 1s given by (1+ ¢}k + (14 ¢)*1p*(v)) + - -+
+ p*(vy), Where the v, are the Whitney classes of the O(k)-bundle g: B—~V™.
Since &, 1s an O0(k — 1)-bundle it also follows that

F = CEIpR (o) + o 1 (0

Thus the total Stiefel-Whitney class of B/T is (Z3p*(w)) X
X (ZF(1 + c)—4p*(v;)). Explicitly,

(234) Wm = Zj’+¢+r=m (k;p) p*(wrvp) c?.

In principal this will enable us to compute the involution numbers of
the bundle involution (T, B), although in practice we find it very diffi-
cult.

24. Fixed Point Sets of Differentiable Involutions

We come to the first installment of our study of fixed point sets F
of differentiable involutions T : M® — M» We prove that F and its
normal bundle determine in an explicit way the mod 2 bordism class
[M"],. Our first illustration of the interest of this fact is a geometric
proof of a theorem of WALL that if M™ is a closed manifold then M >< M=
is bordant mod 2 to an orientable manifold. A second illustration is the
study of fixed point sets of conjugations of almost complex manifolds.

Consider a differentiable involution (T, M™ on a closed manifold.
Fix once and for all a Riemannian metric on M* with respect to which
T is an isometry. Denote by F the fixed point set of T, and let F™,
0 = m < #, denote the union of the m-dimensional components of the
fixed point set. According to section 21, F™ is a regularly embedded
submanifold of M™. Note also that F» consists of the components of M=
which are pointwise fixed under 7.
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There is now the normal bundle E,, - F™ m <#u, to F™ in M*, a
differentiable (# — m)-vector space bundle with inner product, and the
corresponding differentiable (# — m — 1)-sphere bundle ¢: B, - F™.
For each m < n there is the bundle involution (T, B,,) of the sphere
bundle B,,. Denote the disjoint union v, . ,(T, B,,) by (T, B); call B
the normal sphere bundle to the fixed point set.

(24.1) If (T, M™) is a differentiable involution of a closed manifold,
and if (T, B) is the bundle involution of the normal spheve bundle B fo the
Jixed point set, then [T, Bly, = 0 in R, (Z,).

Proof. We may as well suppose F» = @. Let N be a tubular neighbor-
hood of F (see section 21). Then B» = M™\IntN is a regularly embedded
invariant submanifold with boundary, on which T has no fixed points.
Then [T, B*], = [T, B], = 0. The result follows.

We go now to the chief result of the section.

(24.2) Theorem. Let (T, M™) denote a differentiable involution on a
closed manifold. Denote by q: E — F the noymal bundle to the fixed point
set I, by ¢’ : E' > I' the Whitney sum of q with a trivial line bundle, and
by B’ — F the associated spheve bundle to q'. Denote by (1, B') the bundle
involution of B'. Then [M"], = [B'|T"],.

Proof. We have first to point out that the definition of B’ should be
carried out in each dimension. That is, E,, — '™ is the Whitney sum of
E,, - F™ with a trivial line bundle (for m = %, E; - F* is a trivial line
bundle). Moreover B,,—F™ is the associated sphere bundle, and
B' = UB,,

The proof is obtained by considering the involutions (77, M ><I)
and (T,, M» > I), where

Ti(x, 8) = (%, 1—1), Ty(x, 8) = (T (x), 1 —1).
The fixed point set of T} is M™ >< 1/2, and the normal bundle to the fixed
point set is a trivial line bundle. The fixed point set of T}, is F >< 1/2;
identify F >< 1/2 with F. The normal bundle to the fixed point set of
T, is clearly the bundle E' - F.

Define an equivariant diffeomorphism @: (T3, Mm><I) = (T,,Mnx<1)
by ¢@(x 1) =(T(x),1), ¢ 0 =(x,0). We adjoin (T}, M»<1I) to
(T, M ><I) along their boundaries via ¢ to obtain an involution
(T3, M™+1) on a closed manifold.

All that remains is to apply (24.1) to (75, M?*') to obtain
[4, S, [M™], + [T, B'], = 0. Thus [4, §°], [M"], = [T”, B'],. We pass
to quotient spaces and obtain [M"], = [B'/T"],.

The existence of such a result was suggested by the easy observation
that a closed manifold which carries a fixed point free involution always
bords mod 2. A simple geometric argument for this is given by noting
that the mapping cylinder of the orbit map M» - M™/T is a compact
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manifold with boundary M™ Now (24.2) is a generalization of this to
the case in which fixed points are present. We now turn to elementary
applications, first reproving the following result [42].

(24.3) Wall. If M™ is a closed manifold, then Mm >< M™ is bordant
mod 2 fo a closed orientable manifold.

Proof. First consider the case in which M® is of odd dimension
n = 2k + 1. On the product M2¥+1>< M2k+ldefine T by T (%, y) = (¥, ).
The fixed point set of the involution T is the diagonal M2*+l= A
C M2e+1xc M2+l We apply (24.2) to 7.

The normal bundle to A in M?2k+1x M2k+1 g equivalent to the
tangent bundle of M2k+1 If B’ — M2k+! is the Whitney join of the
tangent sphere bundle to M?*+! with a trivial O-sphere bundle, then
[M2E+1sc M2E+1], = [B'[T'],. We now show that B’/T’ is orientable.
The Whitney classes of B’ — M2%+1 are the Stiefel-Whitney classes of
M?2k+1, By (23.4), the Stiefel-Whitney class W, of B/T" is

Wy = p* (wy) + p* (wy) + (2;’1_}—2)":0-

Hence B’/T is orientable and the result holds for # odd.

Next consider the involution (T, P,(C)) given in by homogeneous
coordinates by T([z,...,2%]) = [Z, ..., 7). The fixed point set is
precisely real projective space P, P,(C). We shall see that the normal
bundle to P, in P,(C) is equivalent to the tangent bundle of P,. At a
point in P, consider the complex tangent space to P,(C). The real
vectors are identified with the tangent space to P, at this point, and the
purely imaginary vectors make up the normal space. Now multiplication
by -1 will interchange the normal and tangent spaces, which provides
the equivalence. We thus see by (24.2) that [P,(C)], is determined by
the tangent bundle to P,. But we can also consider P, > P, and its
involution (x,y) — (¥, %} to conclude that [P, >< P,], is determined in
the same way by the tangent bundle to P,. Thus [P, (C)], = [Py >< Ppl,.
This is of course a well-known fact [42].

We come now to the general case. Now q is a polynomial algebra
whose even dimensional generators can all be taken to be P,,. Since N
is a polynomial algebra over Z,, it is sufficient to check the theorem on
the generators. But this follows from the preceding cases. The assertion
follows.

The above discussion of the conjugation involution (T, P,(C))
suggests a generalization. In P, (C) let V™ be a closed regular projective
subvariety which is T-invariant; that is, 7 (V™) = V™. Such a variety
in algebraic geometry is a real algebraic variety. The set F C V™ of fixed
points of (T, V™) is called the real fold of V™. We shall show that
[V™], = [F >< F],. As far as we know this is a new fact about real folds.
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We shall put the question in a more general setting. Let &: E — M2#
be the tangent bundle of an even dimensional manifold. An almost com-
plex structure (M?*", J) is determined by selecting a fiber preserving
bundle isomorphism

s E
A /e
M2n

such that J2=—7T [7, p. 480]. A differentiable involution 7 on M?2®
induces a bundle isomorphism T, for which

EXZS>E

el ie
T
Mr— M®

s a commutative diagram. We shall say that (T, M2") is a conjugation
of the almost complex structure (M?#, J) if and only if at each point
x € M2 the diagram

T
E,—/ ET(a:)

]l l]
T
E,— ET(a:)
anti-commutes; that is, J T, = — T, J. The idea is that T carries J into
the conjugate almost complex structure given by — J.

(24.4) Theorem. If (T, M??) is a conjugation of an almost complex
structure on a closed manifold and if F is the fixed point set of T, then F
is an n-dimenstonal submanifold and [M?7], = [F >< F],.

Proof. This is valid if there are no fixed points since [M??], = 0 in
this case. Suppose that F == @, and let x € F. Split E, into I, and N,
where

Io={v:T,(v)=v}, Ny={v: Ty(v) =—1}.

For any v€ E,, v= (v + T4 (v))/2 + (v — T*())/2, thus E, =1, ® N,.
Now I, is just the subspace of vectors tangent to the fixed point set at
%, while N, is the normal space. Since JT,=—T,] we have J(I,)
= N,, J(N) =I,. Thus dimI, = n. Hence the fixed point set F is of
dimension #. Furthermore, J gives an equivalence between the normal
and tangent bundles to the fixed point set. We may then use (24.2) just
as in the proof of (24.3) to show the theorem.

We shall briefly indicate a natural way in which conjugations arise
in connection with complex analytic manifolds. Let ¥ be a closed com-
plex analytic manifold, and let 7 be the conjugate complex structure.
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On V7 Vn consider T (x, y) = (¥, ). This involution is a conjugation
on the product manifold. A closed regular analytic manifold M™C V' ><V»
which is T-invariant may be thought of as a conjugation of the complex
analytic structure on V" Now I = A n M" is the real fold of this con-
jugation and [M™], = ([F],)%

25. The normal bundle and the tangent bundle to the fixed point set

In this section we give some evidence that if (T, M") is a differen-
tiable involution for which [M*], &= 0, then both the tangent bundle and
the normal bundle to the fixed point set are somewhat complicated. The
only new technique added to the preceding two sections is a bordism
interpretation of the bundle involution.

Consider N, (BO(k)). An element of N,(BO(k)) is defined by a map
f: V?— BO(k) where V" is a closed manifold. If two maps V» - BO(k)
are homotopic they represent the same bordism class. We may then think
of a bordism class as given by a closed manifold V* and a preferred
homotopy class of maps V*— BO(k). But the homotopy classes of
maps V*— BO(k) are in one-to-one correspondence with the vector
space bundles over V* Thus we receive a bundle interpretation for
R, (BO(%)). Elements are represented by k-dimensional vector space
bundles &: E — V* over closed manifolds ¥?; denote the bordism class
by [£]; or [&: E - V7], The bundle &: E - V* bords if there is a bundle
& :E’' - Br+1 with B*+! a compact (# + 1)-manifold with Br+l= =
and with & the bundle induced on V= B+, It is a noteworthy con-
sequence of (17.2) that if the bundles &;: E; —» V* and &,: E, -~ V™ have
the same Whitney classes, then they bord as bundles.

If we wish to use differentiable bundles in the above, we use for
BO(k) the Grassman manifold M,, 5 of unoriented %-planes through
the origin in R*¥+¥. We take N > # and use the unoriented differentiable
bordism group D, (M,, y) as defined in section 9. In this fashion we can
identify ®,(BO(k)) with bordism classes of differentiable k-plane
bundles.

To each differentiable £-dimensional vector space bundle &: E - V»
we have the bundle involution (T, B) of section 23. The assignment
[£]s— [T, By gives a well-defined function J : R,(BO (k) > Ry 4 x—1(Z2)-
It may be verified that J is an 9-module homomorphism of degree
k— 1. As we shall see, the homomorphism [ is of central importance in
the study of the fixed point set.

(25.1) Theorem. Suppose that (T, M™ is a differentiable involution
on a closed manifold, and that F™ is the union of the m-dimensional com-
ponents of the fixed point set of T. If the Whitney classes of the normal
bundle to F™ are trivial, all 0 = m = n— 1, then [F™,=0for 0 < m <
= n— 1 and [M], = [F],.

Ergebn. d. Math. N. F. Bd. 33. Conner and Floyd 5
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Proof. Consider the normal bundle &,: E,—~F™ 0= m <n— 1.
Since the Whitney classes of £ are trivial, it follows from (17.2) that &,
is bordant in R,,(B O (n — m)) to the trivial bundle #,, : E* — F™. Thus

J(Eml) = J ([9m]2) = [4, S*=™~1], [F™],. Hence
0=[T,Bly=2371T,Bply=28"1] ([£n]s) = 28 "1[4, St —m 1], [F™],.

Since {[4, S¥],} is a base for N, (Z,), then [Fm],=0for0 < m < n— 1.
Consider now the bundle &': E' — F of (24.2). The Whitney classes
of & are 0, thus as above

[T, B'], = 234, Sr—™], [F™], = [4, S*],[F*],

and hence by (24.2), [4, S°], [M™], = [4, S°],[F"], and [M™], = [F™*],.

The above theorem was arrived at as a generalization of the following:
if (T, M™) is a differentiable involution on a closed manifold for n > 0,
then T cannot have precisely an odd number of fixed points. We now go on
to a sort of dual version of (25.1).

(25.2) Theorem. Let (T, M™) be a differentiable snvolution on a closed
n-manifold, and let the fixed point set F* of T be a connected k-manifold.
If all the Stiefel-Whitney classes of F* vanish, then [M™], = 0.

Proof. As in (24.2), we consider the normal bundle §: E — F* to F*
and the normal (#n— % — 1)-sphere bundle ¢: B — F% There is the
bundle involution (7, B) with [T, B], = J([£],) = 0, and the projective
space bundle p: B/T — F*. Suppose now we could prove that [£], = O;
that is, & bords as a bundle. It follows easily that the Whitney sum
&’ of & with a trivial line bundle also bords. Then ] ([§’],) = 0. We then
have from (24.2)

(4, SO, [M"]), = [TV, B']y = J([£']g) = 0
and [M"], = 0.

To complete the theorem, it is thus sufficient to prove the following
lemma.

(25.3) Lemma. Suppose £: E - V™ is a k-dimensional vector space
bundle over the connected manifold V™, and that all the Stiefel-Whitney
classes of V™ are trivial. Then J([£]y) =0 in Ry p_1(Zy) if and only if
[£], = 0 in Ry (BO(R)).

Proof. Denote by (T, B) the bundle involution associated with &,
and by p: BT - V™ the associated fiber map. If J([£],) =0 then
[T, B], = 0, and hence the involution numbers of (T, B) all vanish. We
shall show for any partition »=14; +---+14; that p*(v; ... 9 X
X ¢m+k=1-r=(in H*(B|T; Z,). Here the v are the Whitney classes of &.
For r=0, ¢m+k-1=0, since {c™*+*1,0,,,_> =0 and B|T is con-
nected.
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Suppose the remark has been shown for » < 7, Choose a partition
ro=1y+ -+ +1; then W, ... W cm+k-1-%= 0 where the W, are the
Stiefel-Whitney classes of B[T. From (23.4), W, = $*(v;) + terms in-
volving ¢ and hence W ... Wycm+k=1=To= p*(y, . gy Jem+k-1-"
plus terms of higher power in ¢. We may employ the inductive hypothesis
to eliminate the higher order terms. Thus p*(v;, ... v;)em+k-1-%=(,
Letting 7, = m, we get p*(v;, ... v;)c*~1= 0 for every partition of .
Hence v, ...v;=0. All Whitney numbers of & are then seen to be
zero by (17.2). Thus [£], = 0. Clearly [£], = O implies J([&],) = 0 and
the lemma follows.

An extension of the above shows that (25.2) holds if F* is required
to be a k-manifold, but is not necessarily connected. The conclusion is
false if the components of F are allowed to be of different dimensions.
For example, there is an involution on P, whose fixed point set consists
of a point and a simple closed curve.

26. The Smith homomorphism

In this section we set up some techniques needed in the following
sections. The most important of these is a homomorphism A : N, (Z,) —
- R, _1(Z,) which we call the Smith homomorphism. We include its
definition in the following theorem.

(26.1) Theorem. Suppose (T, M™) is a differentiable fixed point free
involution on a closed manifold. For N = n there exists a differentiable
equivariant map g: (T, M™) — (A, S*) which is transverse regular on
SN-1c SN, Let Vr—1= g=Y(S¥-1), The function A: N, (Z,) - Np_1(Z,)
defined by [T, Mn),— [T|Vn-1, Vr-1), is a well-defined function for
N > n independent of N. The resulting A: N, (Zy) > Ry (Z,) 15 an N-
module homomorphism of degree — 1.

Proof. Since (4, S¥) is (N — 1)-universal for the group Z,, for N = #
there is an equivariant map f: (T, M) - (4, S¥) and a commutative
diagram f
Mr—> S¥

MyT—Ls s¥4—py.
By (10.1) there is a map g: M™T -~ Py homotopic to f and transverse

regular on Py_;C Py. By the homotopy lifting property, there is an
equivariant g: M® - S¥ with commutativity holding in

Mr—E5 SN
M~T —55 S¥/T = Py.
5#
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Since the maps » are local diffeomorphisms, g is transverse regular on
S¥-1if and only if g is transverse regular on Py _;.

To show A well defined for N > #, it is seen to be sufficient to show
that if [T, M"], =0 then [T|V»-1, V»-1], =0. Suppose then that
(T, M) = (T, Br+1). Since m;(S¥) =0 for 1 £ i < #n, we may extend
g to an equivariant map G: B*+!— S¥. By (21.2), we may select a
neighborhood U of Br+! equivariantly diffeomorphic to M* >< [0, 1); we
identify U with M > [0, 1). It is no restriction to suppose G (x, ) = g(x)
forxeM», 0=¢t<1.

There is now @:B"+!T - Py, and G(x,?) = g(x) for x € M~|T,
0 < t< 1. It is then seen that @ is transverse regular to Py_; at all
points of (M®T) > [0, 1/2] which map into Py_;. By (10.1) there is
then a G : B**+1/T - Py transverse regular to Py_; and with G; = @
on (M*T) > [0, 1/2].

Then G;: B*+1 S¥ is transverse regular on S¥-1 and G, =G
on Mrx< [0, 1/2]. Let Wr= G-1Y(S¥-1). Then clearly [T, W],
= [T|V»-1, V»-1],, Hence 4 is well-defined.

We leave it to the reader to show independence of N, and to show
A and an N-module homomorphism.

(26.2) Let (T, M™) be a differentiable fixed point free involution on a
closed manifold. Let W»C M™ be a compact regular submanifold with
boundary for which W»\u T (W™ = M* and W* N\ T (W") = Wn. Then
4 ([T, M"]y) = [T, W”]z-

Proof. First of all, select an equivariant differentiable f: W» - S¥-1,
Consider now the normal line bundle to W». It is easy to see that it is
trivial. Using the tubular neighborhoods of section 22, it is seen that
there is a tubular neighborhood N of W» with N =~ W=» > (—1, 1) and
with T on N given by T (x, t) = (T (x), —f). Under these identifications,
we may suppose Wr>< [0, 1) ¢ W» and W* > (—1, 0] C T (W™). Denote
by S®C S¥ the union of the north and south pole. Then S¥\S° may be
identified with S¥-1><(—1, 1) with A (x, #) = (4 (x), —?). Define now
G:M™— S¥ so that G: N - S¥\S° is given by G(x, {) = (g(x), £) and
extend so that G(W™\N) = north pole, G(T (W™)\N) = south pole. Then
G is transverse regular on S¥-1, and (25.2) follows from (25.1).

We now turn to a homomorphlsm I,:N,(BO(k) >R (BO(k + 1)).
This homomorphism assigns to the bordJsm class [&], of a vector space
bundle & : E — V™ the bordism class [¢], of the Whitney sum & : E' — V»
if & with a trivial line bundle. Alternatively there is a natural homotopy
class of maps I:BO(k)—BO(k+1) and I,:R,(BO(k))>N,(BO(k+1))
is induced by I.

(26.3) We have I : N,(BO (k) = N, (BO(k+ 1)) 1fn < k.

Proof. The result follows from (8.3), using the fact that I,:
:H;(BO(k); Z,) = Hi(BO(k + 1); Z,) for § < k. We could go on to
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show that I, is always a monomorphism. We regard (26.3) as a stability
theorem, asserting that N,,(BO(k)) is independent of & for & = #.
(26.4) Theorem. The diagram

R (BO(H)—L> Rpia (Z2)

I, 4

R (BOGE + 1) —> Ra4(2)

commutes.

Proof. We first translate the above into geometric language. Let
B — V* be a differentiable (¢ — 1)-sphere bundle, and let (T, B) be its
bundle involution. Let B’ — V" be the Whitney join of B — V* with a
trivial O-sphere bundle, and let (77, B") be its bundle involution. We
must show that A([T', B'],) = [T, Bl,. We leave it to the reader to
apply (26.2) to show that this is the case.

27. Dimension of fixed point sets

Here we give some of our main results concerning fixed point sets of
involutions. The results are far from definitive; we hope the subject will
recommend itself for further study.

(27.1) Theorem. Let k be a non-negative imteger. There exists an
wndeger (k) such that if (T, M™) is a differentiable involution on a closed
non-bording manifold of dimension n > (&), then the dimension of some
component of the fixed point set F is greater than k.

Proof. We fix k; for n = 2k let M,= 2§R,(BO(n—j)). Let
I.:M,—~M,,; be the sum of the various I,:%,(BO(n —j))—
- N(BO(n —j + 1)). It is seen from (26.3) that I,: M, = M, ., for
all n = 2k.

We also define J:M,—~qN,_;(Z,) to be the sum of the various
J: R (BO(m —74)) > R,_1(Zs) defined in section 25. It follows from
(26.4) that the diagram

1, I

M2k = ... z‘ M,n ~ Mn+1...
b bob
Rapo1(Ze) e e Ry (Z0) < Mu(Z) - .
is commutative.
We define a sequence of subgroups Ky, . . ., Ky, . . . of My, via the
above diagram. Namely
K= Ker(JI3 28 : My > N, _1(Z)) -

Commutativity shows that K, > K, ;. Since M,, is finite, there is an
ny with K, = K, for all n = n,.
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We shall now show that we may take ¢ (k) = #, — 1. Suppose that
(T, V?) is an involution on a closed manifold with [V*],== 0, # = n,
and dimF =< k. There are the normal bundles &,,: E,, ~ ™, m < k, and
() € R, (BO(m— m)), m < k. We have a = 2, -, [£,]s € M, and by
(24.1) we have J («) = 0. There exists § € M,, with I22¥(f) = «; then
B € K,. Since n = n,y, then §¢€ K,,;. On the other hand, the proof of
(24.2) states that JI,(a)= [4, S°,[V"]y= 0. Then JIZ~2*+1(8) =0
so that B¢ K,,;. We have a contradiction and we may take ¢(%)
=ny— 1.

The problem of estimating ¢ (%) is obviously suggested; unfortunately
we have no information on this problem. It is clear that more knowledge
of J is needed. We turn next to manifolds of odd Euler characteristic,
first giving a bundle theory proof of the following known fact [9].

(27.2) Lemma. Let (T, V*) be an involution on a closed manifold with
fixed point set F. Then 4 (V*) = x(F) mod 2 where x(-) denotes the Euler
characteristic.

Proof. We may take F* = @ without loss of generality. Let §: B+ F
be the normal sphere bundle to F. According to (24.1), [T, B],
=2 <alT, Byly = 0.Hence [B/T], = 2[B,,/T], = 0. Now B,,/T — Fm,
m << k, is a bundle with fiber Py,_,, _;. Then y (B,/T) = 2 (F™) * 1 (Pr—m—1)-
Since the mod 2 Euler characteristic is a bordism invariant, we get

Zon < kX (F™ % (Pr—m—1) = 0 mod2
Zmevenx (F'm) = 0 mod2

and hence x (V¥ = 4 (F) mod 2, assuming % odd.

Now take & even. By (24.2) we have [V*], = X [B,/T’'], and (V¥
= 2y (F™) % (Py_p) mod2 = X oeny (F™) = % (F) mod2. Thus we have
(27.2).

It is convenient to assign meaning to N,(BO(k)) for & < 0. Set
R, (BO(k)) =0 for k<0 and N,(BO(0)) =N,; this checks with the
interpretation of a 0-dimensional vector space bundle as a homeo-
morphism &: E = X.

(27.3) Theorem. Let (T, M™) be a differentiable involution on a closed
manifold of odd Euler characteristic, and let &, :E, —~F™ denote the
normal bundle to the union F™ of the m-dimensional components of the
fixed point set . There exists an m such that [&,,], is not in the image of
I.:R,(BO(n—m—1)—>R,(BO(n—m)).

Proof. Suppose to the contrary that each [£,,], is in the image of I,.
In particular [F7], = 0; it is then no loss of generality to suppose F» = @.
For each m let [&,], = I ([£.],) where £, : B,, —~ F'™ is a differentiable
(n — m — 1)-dimensional vector space bundle. Notice in particular that
&n_1:E,_4—~ "1 is bordant to a trivial line bundle and hence

AJ([‘Sn—l]Z) =0.
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Let now (1,B,), m<#%n—2, and (T, B,), m =< n—1, be the
bundle involutions associated with 5,,, and &, respectively. That is,

(7, Bplo = J((n]a), [T, Byly = J ([ém]a)- Then

ngn—zj([émk) = stn—2AJI*([£m]2)
= L gn—24J ([Enla)
= Zmgn14 ] ([Enle)
=4 (stn—lf([fmh)
= 0 by (24.1).

Since X, <p_z[T, B,y =0 it is seen that there is a differentiable
involution (T, V*-1) on a closed manifold whose fixed point set is
F = UPm with the normal bundle to Fm being 5,,,. It is noted that
[Fm]y = [#™],, so that y(F™) = y(#™) mod2. Using (27.2) and the fact
that odd dimensional manifolds have Euler characteristic zero, we have
1= g (M) = 4 (F) = y(F) = y(V*-1) = 0 mod2. We then have a contra-
diction, and (27.8) is established.

The stability result (26.3) yields an immediate corollary. For if
Fm = ¢ for m = n/2 then each I, is an isomorphism.

(27.4) Corollary. Suppose that (T, M%) is a differentiable involution
on a closed manifold of odd Euler characteristic. Then some component of
the fixed point set is of dimension = k.

Actually we can use (17.3) to obtain a more precise result. The map
I:BO(r—1) > BO(r) induces I'* : H*(BO(r); Zy) ~ H*(BO (r—1); Z,),
and the kernel of I* is the ideal generated by the Whitney class
v,. Hence by (17.3) an element o € N, (BO(#)) is in the image of
I.: R,(BO(r — 1)) > N, (BO()) if and only if every Whitney number
of « associated with classes of the form v; ..., v, is zero. Hence we
have the following.

(27.5) Suppose that (T, M2¥) is a differentiable involution on a closed
manifold of odd Euler chavacteristic. There exists an m such that some
Whitney number (@i ... w00} ... V2k_m, Omy Of the mormal bundle
Ep: Ep — F™ is non-zevo.

In the above, the w, are Stiefel-Whitney classes of F™ and the v, are
Whitney classes of &,. We go now to some very specific applications.

(27.6) Theorem. Let (T, M™), n >0, be a differentiable involution
on a closed manifold, with fixed point set the disjoint unton of a point and
a k-spheve. Then k = 1,2, 4 or 8, n = 2k, and M™ is bordant mod 2 to the
appropriate projective plane.

Proof. Consider first the manifolds M2% = Py(R), P,(C), P,(Q) and
Cayley plane. There exists an involution T on M?2* with fixed point set
the disjoint union of a point and S*. For the first three, let T ([z,
23, 23]) = [— 2y, 2,, 23] and similarly for the Cayley plane.
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Suppose now that (T', M®), n > 0, has fixed point set p \ S*. There
is the normal sphere bundle &,: E;, — Sk. Now (27.5) applies to show
that &, has non-zero Whitney class v, _,. For by (27.2), y (M") = g (pv S¥)
= 1mod2. Hence #» — £ = %k and # = 2k. But by (27.4), n < 2% and
hence # = 2. Since now v, 5= 0, MILNOR [28] shows that 2 =1, 2, 4, or 8.

Now let (7, M%), n=2k and k=1,2,4, or 8, be the manifold
constructed in the first paragraph. Then T and 7' have the same fixed
point set. Moreover &, : E,, - S*and & : E;, - S* have the same Whitney
class vy, € H*(S*; Z,). Hence [&;], and [£,], € R(BO(%)) have the same
Whitney numbers and are thus bordant. It follows from (24.2) that
[M2¥], = [M2*],. The theorem follows.

There is another case in which we can be almost as specific. Note
that every M" is the fixed point set of a non-trivial involution on a
2#n-dimensional manifold, namely of T :M™ > M®— M?®> M" where
T (x, y) = (¥, ¥). We now consider M* = P (27).

(27.7) Theorem. Suppose that (T, M™} is a differentiable involution
on a closed mantfold, with fixed point set real projective space P(27) and
with n > 2r. Then n=4r and the Whitney class of the normal bundle
ELE— P(2r) 15 (1 + d)™ where m is odd, (;nr) = 1mod?2, and d is the
non-zero element of H'(P (2r); Z,).

Proof. Every vector space bundle over projective space has Whitney
class (14 d)™. A classical proof of this is based on the theorem of
Wu [46] that the Whitney classes v,; determine all the Whitney classes.
It also follows immediately from the Grothendieck ring of orthogonal
bundles Ky(P (s)).

Since y(P(27)) =1 then y(M") = 1mod2 by (27.2). Then n < 4r
by (27.4). Let now 2 = n — 27 be the dimension of the normal bundle
&:E - P(27). Then & is even and & < 27. Let (1 + d)™ be the Whitney
class of &. Since v, 4= 0 by (27.5) we have m = k.

We show now that = > k. Suppose on the contrary that m = k.
Let (T, B) be the bundle involution associated with & The Stiefel-
Whitney class W, of B/T is found by (23.4) to be

W= p*(w) + 2* ) + () ¢
= p*(d) + p* (md) + mc
= p*(d)
since m is even. Now WZc*—!= p*(d27) ¢*~1= 0 since d27== 0. Then
the involution number (W3"c*~!, o) of B/T is non-zero, which contra-
dicts the fact that [T, B], = 0. Hence m > k. Clearly the same proof
also shows that m is odd.
It now follows that m > 27, for if 27 = m > k&, then we would have
v,, = 0, contradicting the fact that & is a z-bundle.
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Finally we wish to prove that %= 2y and that (inr) =1 mod2.

Since v,+ 0 and v, = (’:) d,, we see that (72) = 1mod2. Hence every
term in the dyadic expansion of £ occurs in the dyadic expansion of m.

Since m is odd and % is even, it follows that (k _T 1) = 1 mod2. Thus if

k < 27 it would follow that v, ,,= (k :r_L 1) d¥+1 =0, contradicting the

fact that £ is a %-dimensional vector space bundle. The theorem then
follows.

We do not in fact know how many of the bundles of (27.7) can occur
as normal bundle to the fixed point set. For example, must the M™ of
(27.7) be bordant to [P(27) >< P (2#)],?

28. Unrestricted bordism classes of involutions

We shall consider, by way of example, the unrestricted bordism
group of involutions. We consider all differentiable involutions (T, M™)
on closed manifolds. Such an involution (T, M*) bords if and only if
there is an involution (S, B**!) on a compact manifold for which
(S, B*+1) is equivariantly diffeomorphic to (7, M"). From two in-
volutions (T3, M¥) and (T,, M%) a disjoint union (T, M7\ M%) can be
formed as usual. We say that (T, M%) and (T,, M%) are bordant if and
only if the disjoint union (7', M? v M%) bords in the above sense. Use
of (21.2) shows that bordism is an equivalence relation; the bordism
class to which (7', M™) belongs is denoted by {T', M*}. The collection of
such bordism classes is denoted by I,(Z;). An abelian group structure,
with every element of order two, is imposed on I, (Z,) by disjoint union.
We cannot identify I,(Z,) with the bordism group of any space, but we
shall compute the group.

Let M, = 28N, (BO(n — m)), where N, (BO(0)) =N,. We define
iy L (Zy) > WM, as follows. For each involution (T, M*), let F™ denote
the union of the m-dimensional components of the fixed point set and
let &,: E, —F™ denote the normal bundle to F™. Define 7, {T, M"}
=2, [En], € M,. By (21.2), 4, is a well-defined homomorphism. We
also consider the homomorphism J: M, - N,_;(Z,), the sum of the
homomorphisms N,,(BO(n — m)) >R, _1(Z,) of section 25. By de-
finition J(A,) = 0.

(28.1) Theorem. The sequence

0= In(Z)) =Wy N1 (Z) —0
1s split exact.
Proof. We first define K : R,,_;(Z,) - M, and show that JK = iden-
tity. From section 23 recall that every fixed point free involution
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(T, V»-1) admits a unique decomposition
[T, Vry = 25714, S™ (W=7,

Now let K assign to [T, V»-1], the sum 2§ 1[£,] € M, where £, E,, —
— Wn-m—1ig the trivial (m + 1)-dimensional vector space bundle over
Wn-m-1 (Clearly K is well-defined and JK = ¢d. Hence J is an epi-
morphism.

The fact that I'mi, C KerJ is just (24.1). We leave it as an exercise
to show that I'mi, DKer].

We must show that ¢, is a monomorphism. To do this we shall
define g : M, » I,,(Z,) with pi, = identity.

Let £: E - V™ be a differentiable linear O (n — m)-bundle. There is
the Whitney sum &' : E’ — V™ of £ with a trivial line bundle, with fibers
R™ >< R. Define two bundle involutions 7' and S on E’ by T'(v,1?)
= (—v, —1), S(v, t) = (—v, ). We restrict the involutions to the asso-
clated (# — m)-sphere bundle B’, noting that the two involutions
commute, Of course (T”, B’) is the bundle involution, and S induces a
fiber preserving involution (8, B’/T") on the P,_,-bundle B'/T’ over
V™. Note that on each fiber § leaves a point and a P,_,,_, fixed. Let
o assign to [£], the bordism class {S, B//T"} in I,(Z,). There results a
well defined homomorphism g: R, (BO(n — m))— I,(Z;). We agree
that ¢:,(BO(0)) > I,(Z,) assigns to a closed manifold the trivial
involution on that manifold. We thus obtain g: M, — I,,(Z,). We now
prove the following.

(28.2) For n = 0, gty = identity.

Consider a (T, M") and form a new involution (73, M"»>=< S') by
T,(x,z2) = (Tx, —z), which is a fixed point free involution. Introduce
also (Ty, M™ >< SY) and (T3, M™ =< SY) by Ty(x, z) = (x, 271) and T4(x, 2)
= (Tx, z). Note that all three involutions commute. Thus T, and T,
induce involutions (77, M™ > SYT,) and (S, M™ > SYT,) on the closed
manifold M» > SYT,.

Let us first describe the fixed point set of T”. Note that the fixed
point set of (T, M" >< ') is M™ >< 1 U M*" >< — 1. The set of coincidences
of T; and T, is F >< ¢ U F > —1. Hence the fixed point set of (T, M* =<
>< SYT,) is the disjoint union of M* with the fixed point set F of (T, M™).
The normal bundle to M™® in M™ >< SYT, is a trivial line bundle, while the
normal bundle to F in M™ > SYT, is the Whitney sum of the normal
bundle £ to F in M® with a trivial line bundle.

Note next that T’ restricted to the normal sphere bundle to its
fixed point set in Mn >< 51T, reduces to the bundle involution. More-
over S and T’ commute. Let Wr+1C M7 >< SY/T, be the compact sub-
manifold with boundary, invariant under S and 7”, obtained by re-
moving the interior of a tubular neighborhood about the fixed point
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set of T'. Since T’ acts freely on Wn»+1 we obtain an involution
(8, Wn+YT") on a compact manifold with boundary. Examination of
(8, Wn+/T") then shows gi,{T, M"} = {T, M~}. This completes (28.2)
and so (28.1) follows.

CHAPTER V
Differentiable actions of (Z;)%.

Here we give a beginning to the study of differentiable actions of
(Z4)* on closed manifolds M*. An action of (Z,)* is equivalent to a collection
ofinvolutions Ty : M*—> Mn,i=1, ...,k with T, T; = T;T,. A stationary
point of the action is a point fixed under all the T,.

We start with our usual procedure, by giving the structure of the
bordism module 9, ((Z,)¥) of differentiable free actions ((Z,)*, M™). We
then go on in sections 30 and 31 to give what information we have on
the structure of the stationary point set of actions ((Z,)*, M*®).

29. Free Actions of (Z;)*

We consider differentiable free actions ((Z,)*, M™)) on closed manifolds;
sometimes the action is denoted by (r, M"®) where 1 : (Z,)% =< M™ -~ Mn
defines the action. As in section 19, there is the module R ((Z,)*) of
bordism classes [(Z,)*, M"], of such actions.

Recall from section 6 that there is a canonical homomorphism
1 N (X) ® Rue(Y) > N (X < Y), given by y([M" [l ® [V gly)
= [M™>< V™, f > gl,. The homomorphisms

Ne(X) ® W (¥) ® Ny (2) > R (X < V) @ NY(2) > AW (X =< ¥ < 2)
Ny (X) ® Ny (V) @ Ny(Z) > N (X) ® NV < Z) > Ny (X =< Y < 2)

obviously coincide. If we take Y to be a single point, so that N, (Y) = R,
we see that there is induced a homomorphism N, (X) @q N, (Y) —
- Ny (X >< Y); we also denote this homomorphism by y.

(29.1) For CW complexes X and Y, the homomorphism y: Ny (X) O g
®q N*(Y) > N*(X < Y) is an isomorphism.

Proof. According to (8.3), W, (X) is a free R-module. In fact, there
is a base {a,} for N, (X) so that {u(«);} is a base for H,(X; Z,), where
p: o (X) ~ Hy(X; Z,) is as in section 6. Similarly there is a base {f;}
for N (Y) so that {u(p,)} is a base for H, (Y ; Z,).

Consider now the commutative diagram

Ry (X) ®q R (V) —> Ry (X < V)

e 2

Hy(X;Zy) ® Hy(Y; Z) —> H*(X =< Y; Z,).
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It is seen that {uy(x; ® f;)} constitutes a base for H (X < Y; Z,).
Hence, from (8.3), {)(«; ® f,)} constitutes a base for 9, (X ><Y) and
% is an isomorphism.

We see now from (19.1) that for finite groups G and H we have an
somorphism ¥ : N, (G) @ Ny (H) — Ny (G >< H). Specifically

x((G, M), ® [H, V™]y) = [G>< H, M* < V"],

where the right hand side denotes the product action. Hereafter we use
y to identify the two actions.

Recall from section 23 that R, (Z,) is a free module, with homo-
geneous base {y;:1=0,1,...} where y;€ R,;(Z,). Then N, ((Z;)¥) is a
free module with base

{yi,® @ pyity.. ., 5 =01,..}.

30. Actions of (Z;)* without stationary points

We prove the following.

(30.1) Theorem. If (Z,)* acts differentiably on the closed n-manifold
M without stationary points, then [M™]y = 0.

For k = 1 the result has already been proved (see (24.2)). Suppose the
theorem true for (Z,)*-1. Consider a differentiable action of (Z,)* on
M without stationary points. Write (Zy)* = Z, >< (Z,)*~1. Let FC Mn
denote the fixed point set of the first Z,. Now (Z,)*~1 acts on F without
stationary points, and Z, >< (Z,)*~* acts on the normal bundle N to F so
that the fiber map is equivariant. Since (Z,)*~! has no stationary points
in F, there is no fiber of the normal bundle ¢: N — F carried into itself
by every element of (Z,)*~1. The generator T of the first Z, acts on the
normal bundle N as the antipodal involution. Consider the Whitney
sum of g with a trivial line bundle over F. That is, consider ¢': N >
> R - F. The action of (Z,)* can be extended to IV >< R as follows. For
(v, ) EN=<R, let T(v,t)={(—v,—t) while for g¢c(Z)*-1, g(v,1)
= (gv, ?). The fiber map is still equivariant, so that some g ¢ (Z,)*~1
carries a given fiber into a distinct fiber. Consider now the sphere bundle
r: B’ — F associated with g’. There is the action of (Z,)* on B’ with T
acting as the antipodal map. There is then the action of (Z;)*~1 on
B’|T without stationary points. Hence by the inductive assumptions
[B'|T], = 0. By (24.2) [M*], = [B’/T], = 0. The theorem follows.

31. Actions of Z, X Z, with isolated stationary points

The detailed investigation of stationary points of (Z,)* appears to
be difficult. Here we content ourselves with a single deep result, an
analysis of Z, > Z, acting with all stationary points isolated.
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Consider all linear representations of a compact Lie group G on
finite dimensional real vector spaces. V. Two such representations are
equivalent if there is an equivariant linear isomorphism joining the
vector spaces. We call the equivalence classes representation classes. A
class is called #rreducible if the representations belonging to it are ir-
reducible and of positive degree. The degree of a representation class is
the dimension of one of the vector spaces representing it. Denote by
R, (G) the vector space over Z, whose generators are the representation
classes of degree n. Let R(G) = 2,R,(G). We agree that there is a
single representation class of degree 0, so that Ry(G) = Z,. Given re-
presentations G on ¥V, and on V,, there is the representation of G on
Ve V, given by g(vy, v5) = (g7, gv,). We thus obtain a product
R, (G) ® R,(G) > R, .,{G). That is, R(G) is a graded algebra, the
representation algebra. It is seen that it is a polynomial algebra whose
generators are the irreducible representation classes.

Suppose now that G acts differentiably on a closed #-manifold M»
and that x € M™ is a stationary point. There is then the linear represen-
tation of G on the tangent space to M" at x. Denote this representation
class by X (x). For each differentiable action of G on a closed manifold
having just a finite number %, .. ., x, of stationary points we receive
X(x)+ -+ X(x) € R,(G). Denote by S,(G) C R,(G) the set of all
such 2 X (x,), arising from all such actions. It is easy to see that S, (G) is
a subgroup of R, (G). Moreover S(G) = 2'S,,(G) is a subalgebra of R (G).
For is G acts on M with stationary points x,, . . ., ¥; and on M% with
stationary points y;, . . ., ¥,, then using the diagonal action on M >< M?%
we have X((x,,37)) = X () - X () and ZX (x,, ) = ZX () - ZX (3.
Hence S (G) is a subalgebra of R(G).

Consider now Z, > Z,, letting T, and T, be generators. There are
four irreducible representation classes Y,, Y;, Y, Y,, of degree one,
represented on the line — oo < s < oc by

Yo: Ti(s) =s, Te(s) =s;
Y, : Ty(s) = —s, Ty(s) = s;
Yo: T,(s)=s, Ty(s) =—s
Y;: Ty(s) = —s, Ty(s) = —s.

Thus R (Z, < Z,) is the polynomial algebra Z,[Y,, Y;, Y,, Y,].

Suppose now that Z, >< Z, acts differentiably on M" and that x ¢ M»
is an isolated stationary point. Then X (x) = Y- YZ- Y. Moreover,
#, ¢, and » have the following significance. Namely, # is the dimension of
the component containing x of the fixed point set of T, ¢ is the dimension
of the component containing x of the fixed point set of 73, and r is the
dimension of the component containing x of the fixed point set of T;- T,.
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By way of example suppose Y2YLYL € R(Z,<Zy), p+q+7=n.
This representation class is represented by a linear action of Z, >< Z, on
R,, with 0 the only stationary point. Compactify R* to obtain S*. Then
we have an action of Z, > Z, on S® with precisely two stationary points
0 and oo, and X (0) = X () = Y YL Y],

We next note the action of Z, < Z, on the real projective plane P,,
given in homogeneous coordinates by T, ([x,y,2]) = [~ #,,2], T ([x,¥,2])
= [x, —y, z]. The stationary points of this action are x, =[1,0, 0],
%y = [0, 1,0], x,=1[0,0,1]. The corresponding representation classes
are seen to be X (%))=Y, Y, X{x) =Y, Y, and X{x,) =Y, - Y,.
For example, for x, this is verified by using local coordinates [1, y, 2]
in a neighborhood of x;. Then T [1,3,2]1=1[1, —y —2z], To[l, ¥, 4]
=[1,—y,2z] and hence X(x) =Y,-Y,; Hence Y, Y, + Y, Y, +
+ Y, Y;€5(Z, < Zy).

(81.1) Theorem. The algebra S(Z,><Z,) is the polynomial subalgebra
of R(Zy<Z,) generated by Y, Y, + Y, Y, + Y, Y,

Proof. We have already seen that the above polynomial subalgebra is
contained in R(Z,><Z,). Suppose now that XX, is an element of
S(Zy><Z,), where the X, are distinct elements of the form Y% - Y{- Y7
There is then a differentiable action of Z,><Z, on a closed manifold,
such that for each X, there are exactly an odd number of stationary
points ¥ with X (¥) = X; while for each Y?- Y- Y} different from all
the X, there are exactly an even number of stationary points x with
X(x)=YP-YL- Y

Suppose that there are two stationary points x; and x, in M» with
X (%) = X (x,). As we have seen, there is an action of Z, > Z, on $* with
0 and cc as stationary points and with X (0) = X () = X (x;) = X (x,).
As in section 22, we can form a manifold from M" \ Sn as follows. Delete
small invariant open neighborhoods of x; and y;, and identify the result
along their spherical boundaries. Proceed similarly with x, and y, We
thus get a manifold M7 and a differentiable action of Z, ><Z, on M¥%;
moreover M7 has the same stationary points as M™ except that x, and
X, have been deleted. We thus see that we may as well suppose for each
1 that there is exactly one fixed point x; with X (x,) = X,.

Let X(x,) = Y0YZYY where p; + ¢; + 7, = n. We first argue that
we cannot have X (x;) = Y7. If X(x,) = Y7 then T, leaves every point
of an invariant cellular neighborhood about x; fixed. Since each com-
ponent of F(T,) is a manifold, then F(T,) contains the component ¥»
of M® containing x,. Since T, has at least two fixed points on V*, we
get the contradiction X (x;) = X (x;) = Y7.

Recalling that X(x;) = Y®#Y2YY, consider the set of numbers
P19 1, Pas o ¥, - .. . Suppose to be definite that p, is the largest
number occurring in the sequence. Of all j with p; = p; suppose for



31. Actions of Z, X Z, with isolated stationary points 79

convenience that r, =max{r;:p;=p}. If p;=p, for j==1, then
r; < r,. For otherwise p, = p;, r, = »; and hence ¢, = g; so that X(x,)
= X (x;) contrary to hypothesis.

We shall now prove that n is even and X (x,) = Y2 Y2 That is, we
prove that p, =7 =n/2. In order to do so, return to the action
(Z3><Z,, B) where B is the normal sphere bundle to F (T}, M"®). As
already noted, (Z, < Z,, B) = (Zy < Z,, C»+1) where C*+! is a compact
manifold and where T,:Cn+1— C»+1 is without fixed points. Now
dimension by dimension we have F(T, B)=F(T, C*+1), and
F(Ty, B)|T, = (F(T,, C**+Y)/T,)y. Moreover the normal bundle to
F(T,, B)/T, in B/T, extends to the normal bundle to F(T,, B)/T; in
Cn+YT,. Let v, be a Whitney class of the normal bundle to the com-
ponent P, _; of F(T,, B)/T, in B/T,. The element ¢ ¢ H*(Py,_, ; Z,) is
the characteristic class of (T, S#~!). Suppose now that p, >»,. Con-
sider ¢"~" 1y, € H™1(P,, _;; Z,) for all j with p; = p,. It is seen by
bordism that

2=, 0y, 0(Ppyy) ) = 0

where ¢ denotes the fundamental class.
If == 1 then 7, <7 and v, = 0 since v = (1 + ¢)%*. If j =1 then
v, = ¢ and ¢»~ "y, = h~ 1 0. Hence

2= 0Py, 0 (Py )y =1,

We have a contradiction and 7; = ;.

We show next that ¢, = 0. If ¢, > 0 there is a ¢; with ¢, = ¢, and
j== 1.Then (py, ¢, 1) = ($;, g;, 7;) so that either p, > p, or , > r,. It is
impossible that $, > p,. Since p, = r,, it is also impossible that »; > #,.
Hence ¢, = 0. That is, # is even and X (x)) = Y*2 Y272,

We may repeat the above argument with the role of », and ¢, inter-
changed, and with T, replaced by T, T, We obtain that there is a
with X (x;) = Y3 Y32 Suppose to be definite that j = 2.

Finally consider max{g,: r, = n/2}. Let g, denote this maximum and
consider (p,, g5, #/2). We can use the argument above with T, replacing
T, and T, T, replacing T, to show g, = n/2.

We have now that #»=2m and that X(x)=YPY% X(x,)
= YPYP X(v,) = YPY?P. Consider also the action (Z,><Z,, P,) con-
structed just prior to (31.1). There is the diagonal action of Z, > Z, on
(Po)™. If y,,¥s 3 ... are the stationary points of this action, then
2X(v)=(Y, Y, + Y, Y, + Y,Y,)». We may as well suppose -that
X)) = YPYP, X(y) = YPYE, X(yg) = YE Y.

* We leave it to the reader to show v = (1 + ¢)4. We also leave it to the reader
to show that if 0 <% < # there exists an even number of ¢ with ¢;= 5.
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Delete the interiors of invariant cellular neighborhoods of x, and y,
and identify along the boundary; proceed similarly for x, and y,, and
x5 and y;. Now Z, =< Z, acts with isolated stationary points zy, z,, . . .
on the resulting manifold, and there are no isolated fixed points of type
YPY?, YPYZ, or YRYP. It follows from our argument that 2X (z;) = 0.
Hence

X (x) = ZX(y) = (Y, Yy + Y, Yy 4 Y,¥gm.

The theorem is proved.

(81.2) Theorem. Suppose that Z, < Z, acts differentiably on the closed
n-manifold M® with isolated stationary points, say %,, %5, . . . . Either M®
bords mod 2, or else n = 2m and M™ is bordant to the product (Py)™ of
projective planes. If M™ bords, then XX (x;) = O; that is, there are an even
number of stationary points of amy type YPYIY:. If [Mr],= [P,]7,
then 2X (x) = (Y, Yo+ Y, Y+ Y, Y.)™ In particular, there are then
an odd number of stationary points, and also an odd number of each of the
types YPYS, YPRYD, YR YD

Proof. Either 2X (x;) = 0orn =2mand 2X(x,) = (Y, Y, + Y, Y +
+ Y, Y,)™ by (31.1). If 2 X (x;) = 0, there are then an even number of
stationary points of each type Y?Y{Y]. We then obtain spherical
actions (Z;><Z,, S¥), each with precisely two stationary points, and
such that the tubular neighborhoods of the stationary point sets of M®
and of U,S? are equivariantly diffeomorphic. By the unoriented version
of (22.1), [M"*], = 2[S?#],=0.

Suppose next that 2X (x,) = (Y, Y, + Y,Y,+ Y, Y,)™ By adding
an appropriate number of spherical actions to each of M™ and (P,)™, we
get two actions whose stationary point sets have equivariantly diffeo-
morphic tubular neighborhoods. Since [S*], = 0, it follows that [M™*],
= [P;]%®. The theorem follows.

The following actions of Z, > Z, may be noted. For example, Z, >< Z,
acts on the complex projective plane precisely as it did on the real
projective plane. Similarly it acts on the quaternionic projective plane
and on the Cayley plane. In each of these cases there are precisely three
fixed points. That [Py(C)]e= [P.)Z [P:(Q)] = [Ps]s now follows
from (81.2). These are, of course, well-known statements.

We are in general ignorant about properties of the stationary point
set of (Z,)*. We can, however, prove the following easy fact.

(81.3) Theorem. If (Z,)* acts differentiably on a closed n-manifold
with n > 0, then there cannot be precisely one stationary point.

Proof. Suppose that x € M™ is a stationary point. As pointed out in
section 22, there is a local coordinate system around x» in which (Z,)*
acts orthogonally. By representation theory, some (Z,)*~1C (Z,)* has a
set of stationary points of positive dimension. Let F denote the set of
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stationary points of (Zy)*—! acting on M*. The component C of F con-
taining x is of positive dimension and is invariant under (Z,)*. Now
(Zo)¥ = Zy>< (Zy)*1; let T be a generator of Z,. Then T:C—~ C has a
fixed point x. From (25.1), T cannot have precisely one fixed point.
There is a y € C with y = x and T (y) = y. Then y is a stationary point,
and the theorem follows.

It is easy to see by example that results of the kind proved here do
not hold for actions of Z,, that is for maps of period 4. For example,
Z, acts on every P, with precisely one fixed point. On the solid ball
12k R%%, define T of period 4 by T(z, ..., %) = (¢, . . ., 12;) where
i = |/— 1. Identifying antipodal points of the boundary, we get T : P,; —
— Py, of period 4 with precisely one fixed point. We get then actions
of Z, on both P, and P, < P, each having precisely one stationary point.
It is seen that neighborhoods of the stationary points may be deleted
and the resulting manifolds identified along their spherical boundaries.
There results an action of Z, on a closed manifold M* without stationary
points, and with M* bordant to the disjoint union P, P,>< P,
According to (30.4), this could not happen for Z, >< Z,.

CHAPTER VI

Differentiable involutions and bundles.

We come back to involutions to make some observations that did
not fit into the framework of Chapter IV. Given a fixed point free
involution (7, B) and an #-plane bundle  : E — B/T, we define another
n-plane bundle #: £ — B/T, which we call the twist of » by (T, B). In
the manner of BorReL-HIRZEBRUCH, we compute its Whitney class.
In section 32, we make one application showing some of the influence
of the homology of the total space on the Whitney classes of normal
bundles to the fixed point set. In section 33, we give some generalizations
of the famed Borsuk antipode theorems.

32. The bundle involution

We consider a certain operation connecting involutions and vector
space bundles; it turns out to be a form of the tensor product. One
application is a proof of the Borel-Hirzebruch theorem already assumed
in section 23; other applications are given in this and the following
section.

Given an m-plane bundle ¢: E(g) >~ X and an #n-plane bundle
r: E(r) > X, we assume the existence of the tensor product ¢ ® r, an
mn-plane bundle ¢ ® »: E(g ® ) > X [20]. The fiber (¢ ® »)"'(x) is
just the tensor product g=1(x) ® r~1(x) of the fibers. Moreover there is a
map p of the set {(v, ') : ¢(v) = r(v")} C E =< E’ into E(¢ ® 7) given by

Ergebn, d. Math. N. F. Bd. 33, Conner and Floyd 6
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»{v,v') = v ® v". We also assume that if ¢ and » are line bundles with
Whitney classes w, (9) and w, () respectively, then ¢ ® » is a line bundle
with w, (9 ® 7) = @, (g) + w, (7).

(82.1) Suppose that q: E(q) > X is a line bundle with Whitney class
c € H\(X; Z,) and that v: E(r) > X s an n-plane bundle. Then the total
Whitney class of the n-plane bundle q ® r is given by w(g ® 7)
= 2F_o(1 + ¢)*w,_(r).

Proof. For n =1, this is just the formula already quoted. Consider
next the case in which 7 is a Whitney sum », & - - - @ 7,, of line bundles.
Theng@® r=2¢®r,and w(qg® 7;) = (1 + ¢) + w, (r,).

Hence w(g ® 7) = IT[(1 + ¢) + w,(g)]
=22 o1+ )f 2. <o a (i) -y (rs, )
= 2p(1 4 )fwp_(r) .

Consider next a universal #-plane bundle »: E () > BO{n). There
isamap BO(1) > -+ -> BO(1) > BO(n) as in section 10, which induces
an n-plane bundle #': E{r') > BO(1) >< -+ - > BO(1). It is known thas
7 splits into line bundles, and hence the formula holds for w(g ® 7). It
is also the case that H*(BO(n); Z;) > H*(BO(1) <+ ->< BO(1); Z,)
is a monomorphism. It is then seen by naturality that the formula holds
for w(g ® 7). The assertion then follows for all » by universality.

Suppose now that we are given a fixed point free involution (T, B)
and an #-plane bundle 7: E(r) - B/T over the orbit space. The orbit
map »: B — B/T induces an #-plane bundle " : E(r') - B. Here E (') C
C B> E(r) is given by {(b, v) : »(b) = r(v")} and #’ is the restriction of
projection. There is the fixed point free involution (7", E(r')) given by
T'(b,v) = (T (b), —v"). The equivariant map ' :(T", E(+) - (T, B)
induces a map of orbit spaces 7: E{r)/T" — B/T. It is seen that ¥ is an
n-plane bundle. Given the involution (T, B) and the bundle »: E () -
— BJT, we thus get the bundle #: E () - B/T, which we call the fwist
of » by (T, B).

(82.2) Suppose that (T, B) 1s a fixed point free involution and that
v: E(r) > BT is an n-plane bundle. Consider v: B — B|T as a principal
0(1)-bundle, and let q: E(q) > BT be the associated line bundle. The
tensor product q @ r: E{q ® vr) - B/T and the twist #: E(¥)— B|T of r
by (T, B) are equivalent n-plane bundles.

Proof. We define ¢ so that commutativity holds in

Ef—>E(@g®7

AN

B/T
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Consider E(r') = {(b,v) : »(b) =7(v)} C B>< E(r). We may identify B
with the unit O-sphere bundle in E (g), so that T is given by T (b) = — .
Considering B<E(r) CE{g) <E(r), we have p: B<E(r)>E{(y®r)
given by w(b,v) =b ®v. Moreover p(T'(b,v) =9p(—b —v)=0b® v
= (b, v). Hence y induces a map ¢ of E(7) = E(r')/T’ into E(q ® 7).
It is seen to be a bundle map, and the assertion follows.

We now apply the preceding to prove (23.3). Let £: E(§) > X be a
differentiable linear O(n)-bundle. There is the unit sphere bundle
B ¢ E(&) and the bundle involution (7, B) as in section 23. The map
s: B/T - X is a differentiable projective (# — 1)-space bundle; we
consider the tangent bundle # : E(5n) — B/T along the fiber. There is the
bundle 7, : E (r,) > B, where E (r,) consists of all pairs (v, v") in B>< E(§)
with &(v) = £(v') and o' perpendicular to ». We may identify 7, with the
tangent bundle along the fiber in the sphere bundle B. Moreover
T: B> B maps fibers into fibers and hence induces an involution
T’ of E(r,), by means of the differential of T. It is seen that T’ (v, ¢')
= (—wv, —v'). There is the bundle E(r,)/T’ — B/T, and it is seen to be
isomorphic to the tangent bundle # along the fiber.

Consider now the #-plane bundle »: E (*) - B/T induced from & by
the map s: B/T — X ; we have w(r) = s*w(£). A point of E (r) is deter-
mined by an antipodal pair {v, —v} from the unit sphere of a fiber
£-1(x) together with a point v’ € §-1(x). Clearly r = r; © 7, where 7, is
obtained by requiring that »" be on the line determined by », and where
7, has v’ perpendicular to ». According to the preceding paragraph, the
twist 7, : E (7)) - BT of r, by (T, B) is isomorphic to the tangent bundle
along the fiber in B/T.

Let g: E(q) - B/T be the line bundle associated with »: B —~ B/T.
Then ¢g®r=¢q®7r +9®r,. Moreover w{g®7)=1+2c=1 so
that w(g® 7)) =w({g® r) = 2 (1 + ¢)* - w,_,(£). Thus (23.3) follows.

We shall use the following application of the twist.

(82.3) Lat (T, MY) be a differentiable fixed point free involution, and
let (T', Vm+m) be a differentiable involution with F™ a component of the
fixed point set of T'. Let ¢ ¢ H{(MYT; Z,) be the fundamental class of T,
and let v 1 E — F™ be the normal bundle to F™ in Vm+n. Then the normal
bundle to MV >< F™T >< T = (MYT)><F™ in M'>< V™8T >< T’ has
total Whitney class given by 2% _ o(1 + ) @ w, _4(r).

Proof. According to section 22, we may identify E () with an open
tubular neighborhood N of F™. Moreover, the antipodal map T’ of
E () is identified with T": N - N. Now M*» > N/T >< T’ is a tubular
neighborhood of M® =< F™T >< T'. But M*» =< N/T =< T' =~ M» x<
> E(#)/T > T'. It is thus seen that the normal bundle to (MYT) =< Fm
is the twist # of 1® » with the involution (T > 1, M!> Fm), But
w(f) = 2(1+ ¢)* ® w,_{7), and the assertion follows.

6*
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There is the following application of (32.3).

(82.4) Theorem. Suppose that T is a differentiable involution on the
closed manifold V™+n, and that F™ is a component of the fixed point set
of T.If HH(Vm+n, Z,) =0 for n — k < © = n, then the Whitney classes v,
of the normal bundle to F™ in V™5 have v; =0 forn — bk < i < n.
~ Proof. We use here the Smith-Gysin sequence for principal Z,-bundles
[74]. If (T', M") is a fixed point free involution, there is an exact se-

quence
s HMYT'; 2) > HY O 2,) ~

S HEMYT'; Zg) ~> H (MYT"; Z) -+

If /: (T, M%) - (T”, M'"'¥) is equivariant, there is an induced homo-
morphism of the exact sequence of (T’', M"'*) into that of (T, MY).
Finally 8: H¥(MYT') - Hi+1(MYT') is given by &(x) = x - ¢, where ¢
is the fundamental class of T".

Select !> n. Consider the fixed point free involutions (4 > T,
St><Vmin) and (4 =1, S*><Fm™), The inclusion 7:S'><FmC S'x
> Vm+5 is equivariant. Let 7' = A =< T and T"= 4 >< 1. Note that
St>< Fm/T"' = P!> Fm™ where P! is projective /-space.

We shall consider the commutative diagram

Hn—k-1(Stxc Ym+a/T") HLINDURLIN Hn-1(St >< Ym+a/T") LN Hn (St >< Vm+n/T")

l,-. l,-. J,-.

Hﬂ—k—l(Pl XFm) _L> e _d> Hn—l(Plem) _d) Hn(Plem)

where coefficients are Z,. Note that §: H¢(P!>< F™) — Hi+1(Pt > F™)
is obtained by taking the cup-product with ¢ ® 1.

Next consider the cohomology class ¢, € H?(St>< Vm+n/T'; Z,)
which is dual, under Poincare duality, to the submanifold P!> Fm,
It has been shown quite generally by Tuom [39] that i*(¢,) is the
n-dimensional Whitney class v, of the normal bundle to P!> F™ in
Stx< Vm+n/T'. By (32.8), t*(¢) =c"®@ 1+ 1@v,+ -+ 18 v,

Suppose now that H¥(Vm+9;Z,) =0 for # —k <4 < n Then
H{(S < Vmin, Z)) =0 for n— k <17 < n. By the Smith-Gysin se-
quence, § : H#=1(S? >< Vm+/T") - Ht(S' > V™+8/T") is an epimorphism
for n — £ £ 7 £ n. In the diagram

Hr—k=1(St < Pt Ty 25 Hn(Stoc min T

l,-. l,-.

Hn-%-1(Pt s Fry 225 fn (Prsc Fm)
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we then have ¢ = §*+1(y). Then

Al +c 1y + -+ 10 v, =1%(p,)
= 541G (7))
= (" * 1@ o+ + 1® Y1)
(c**+1® 1)
=" Q '}’o+ e 4 ck+1® Va—k—1-
Hencev;,=0forn -k < i< n.

33. The Borsuk antipode theorems.

In the following, M* denotes a differentiable manifold, not necessarily
closed or compact. For any map f: S* -~ M¥, let A(f) C S* be all x with
f{x) = /(—x). We shall prove the following.

(83.1) Theorem. If f: S™ — M* where n > k, then dimA (f) = n — k.
If f:5% > M» has f*: HM(M®; Zy) -~ H*(S™; Z,) trivial, then A (f) == 0.

The classical Borsuk-Ulam theorem, that if f: S® — R® then there
exists x € S with f(x) = f(—=), results immediately since f* =0. In
fact the analogous result holds with R® replaced by any noncompact
connected #-manifold M*. The above also generalizes the following well-
known theorem of Borsuk: if f:S® — S® has f(—x) = —f(x) for all x
then f is of odd degree. Finally, the result conserning maps f: S® - M*
has some overlap with theorems of BourGIN [10] and YANG [48] con-
cerning maps f: S® - RF,

We now begin the proof, considering first the case in which M* is
closed and connected. There is the fixed point free involution (T, S* >
>< M* > M¥) given by T(x,y,2) = (—x,2,5) and S®> M¥* > M*/T is
a closed (n + 2%)-manifold. Projection S > M* > M* — S» yields the
bundle map %: 5" < M*><M*T — P» a bundle with fiber M* > M*
and structural group Z,[5]. There is the invariant subset S">< 4 of
Sn >< M* > M*, where A is the diagonal of M* >< M*, and hence S* >< A/T
= Pr>< A is a closed (# + &)-submanifold of S >< M* > M*|T.

Recall that the normal bundle to 4 in M* > M* is equivalent to the
tangent bundle of A =~ M*. Hence, by (32.8), the £-dimensional Whitney
class v, of the normal bundle to P#>< A in S" > M* > M*/T is given
by v,=c*®1+c*1®@w,+ -+ 1Q w,, where ¢ is the non-zero
element of H'(P"; Z,) and the w, are the Stiefel-Whitney classes of M*,

Let X = 87> M*> M* Inclusion 7:P">< ACX/T induces
T Hy o (PP < A;Zy) > Hy 1 (X[T). Let @ ¢ H*(X/T; Z,) be the dual,
under Poincare duality, of ¢,(s) where ¢ is the fundamental class of
H, (P> A). That is, ¢, is the cohomology class of X/T dual to the
submanifold P* >< 4. It has been shown by THom [39] that

@) =1, =@ 1+ cF1Quw +- -+ 10 w,.
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It is also seen that if NV is a closed tubular neighborhood of P»>< 4
in X/T, then ¢ is the image of ¢ under the composition

H, (P> 4) = H, () = H¥(N, N) =
= H*(X|T, X/T\N*) > H*(X/T) .

It follows immediately that for any open set U > P*>< A, ¢, lies in the
kernel of H*(X|T; Z,) -~ H*(X|T\U; Z,).

We are now ready to consider maps f: S® — M*. To each such map,
we associate a cross-section s of 5 by s((x)) =((x, /(x), /(—#))), where
(x) € Pn corresponds to x € S® and ({, f(x), f(—«)) € X/T corresponds to
(%, f(x), f(—x) € X. If f,: S® - M* is a homotopy of f, then the cor-
responding cross-section homotopy of s is given by s,((x)) = ((x, f: (%),
fo(— x))) To each f: S® - M* we associate the cohomology class s* (g;) €
€ H¥(Pn; Z,). We next prove the following.

(83.2) If s*(gy) &= 0, then AimA (f) = n — k.

There is the orbit map »: S* - P Let B(f) = »(4(f)). Note that
s: Pr— X/T has s7}(Pr><A) = B(f). Let U be a neighborhood of
Pr>< A in X/T. Consider the diagram

H*(X|T) —> H*(X)T\U)

F

H* (Pr) s Hr(PM\s1D) |

Since j*(@;) = 0 then j¥s*(@;) = ¥ (c¥) = 0. Given a neighborhood
V of B(f) there is a U with s~2(U) ¢ V. Hence for every neighborhood
V of B(f), H*(Pr) — H*(P™\V) kills ¢*. Pass now to Alexander-Spanier
cohomology; ¢* is then represented by a cocycle a; with support in V.

Suppose now that H#~*(P»; Z,) -~ H**(B(f); Z,) is trivial. Since
we are now using continuous cohomology, there is a neighborhood V
of B(f) with H*~%(P%) — Hn~*(V) trivial. Then ¢*~* is represented by
a cocycle f,_; with support in P#\V. Then the cup-product ¢* « ¢#—* = ¢»
is represented by «; + B,z However oy + f,_,= 0, since it has empty
support. Hence ¢ = 0, we have a contradiction and H*—*(P»; Z,) —
— H»=*(B(f); Z,) is nontrivial. Hence imB(f) = #» — kand dim A4 (f) =
=>n—Fk

The above line of reasoning is due originally to YanG [47]. The reader
will find more details in [14]. In the notation of that paper, we have
shown co-indz 4 (f) = n — kif s*(¢;) == 0.

Now we prove that s*(g,) &= 0 if » > k. In any case s*{¢g;) depends
only on the homotopy class of f: S® -~ M*. Hence we may as well take
f constant on the southern hemisphere; that is, f(E®) = y, € M*. Con-
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sider S*-1C S as the equator; thus f(S*~1) = y,. We thus have the
diagram
Pr-1_25 Prxc(

b

Pr—5 X|T
where s, ((x)) = (%, ¥o, ¥0)) for x € P*~1, Then

1 s* (@r) = s¥o* (@)
=sf(F@l+ - +10w)
= 1§ (c*) C H¥(Pr—1; Zy) .

Since # > k, then s*(g;) & 0. We apply (33.2).

Consider now f: S® — M» with f,: H*(M®»; Z,) - H"(S"; Z,) trivial;
the manifold M™" is for the present required to be closed and connected.
We may continue to require f{E®) = y,€ M". Now consider the equi-
variant map F:S5" - M" < M® given by F(x) = (f(x), f(—x)). It is
seen that F actually maps S* into the wedge M” v M” = M" <y,
Uy > M?, since either x or —x is always in E®. The involution
(o, M® < M™ given by o(y,z) = (z,y) has M"v M* invariant, M»v
v Mg = M® and F : S* > M" v M" equivariant.

(33.8) If F: P~ Mn is the map between orbit spaces induced by F,
then F*: H*(M®%; Z,) — H»(Pn®; Z,) is trivial.

We see this via the commutative diagram

H"(M™, y,)

T I B [

Hn(S") <= Hn(S®, E™) => Hn(E%, Sn-1) <= Hn(Pn, Pr-1) S5 Fn (P |

The first f* is 0 by assumption, hence F* = 0.
(83.4) Under the composite of

P < (393 yg) —> S7 < (M# v M%)/ T —2» Sn < M > MY T

we have 1¥1% (p,) = " @ 1.
We merely consider

/ X|T
\ PI

and note t*(@,) =" @ 1 + -+ + 1 ® w, ¢ H*(P*>< 4).

Pr >< (y4 < y)
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Let Y = S*>< (M"v M~), and let s,: P*— Y/T be given by s,({(x))
= ((x, f(x), /(—%)). Then s: P* - X|T is given by 4,s,. Clearly we have
only to show sf (1% (¢,)) =& 0. Since s, is a cross-section of the fiber map
Y/T — P», then s¥:H*(Y|T;Z,) - H"(P*;Z,) is an epimorphism.
Select y, € H*(Y|T; Z,) with s¥(y,) = ¢ For example, let y, = n¥ (c")
where #,:Y/T - P* is the fiber map. Under f:H*(Y/T;Z,) ~
— Hr (PP >< (y9<¥0); Zy), 1¥(yn) =c¢c"® 1. By (33.4) we then have
¥ (yn + 1% (@) = 0 and y,, + 7¥ (¢,) lies in the image of

H(Y[T, Pr>< (35 y)) —> H*(Y/T).
We now show that in the diagram
7'.
H*(Y|T, Pr><(yo><y,)) —> H"(Y/T)

boh
H™(M™, y) — H*(P™)

that s¥s* = 0. Themap g: Y/T = S < (M» v M")[T — M» v M"*joc = M"
is induced by projection S">< (M®v M™ — Mn"v M». It is seen that
Y/T\P* >< (yy >< yp) = S® > M™\S" < y, and that f is the projection
St >< (M*?, yo) > (M™, y,). But projection induces an isomorphism
Hn(M®, yo) = H*(S" >< (M", y,)), and hence f* is an isomorphism.
Since F* = 0 by (33.3), it follows that s¥j* = 0.

Now y + 1% (gp,) lies in the image of j*, thus s¥(y, + 1¥(p,)) =0.
Hence s*(@,) = STiF(@n) = s¥(yn) =c*® 13=0. The theorem now
follows for M* closed.

The extension of the theorem to a compact manifold M* with
boundary is immediate by doubling M*. An open manifold may be
regarded as the increasing union of compact manifolds with boundary,
and since S is compact we thus get (33.1) for open manifolds.

(83.5) Corollary. Suppose f is a map of S* into the mnon-compact
connected differentiable manifold Mn. There exists x ¢ S* with f(—x)
— 1(x).

This follows immediately from (33.1), since H*(M*®; Z,) = 0.

We now consider briefly the question of what generalizations we may
make for the involution (A4, S*). Suppose that (T, S'#) is a fixed point
free involution on a closed manifold which is a homotopy #-sphere.
There exists equivariant maps ¢: (T, $'*) — (4, S*) and ¢’: (4, S*) -
(T,S') [14]. If f:S5'" > M* let Ap(f) be the set of x € S* with f(x)
= f(Tx). It is seen that ¢’ maps A(f¢’) into Ap(f) equivariantly.
Moreover, ¢' is of odd degree. We have actually shown in the proof of
(83.1) that co-ind; 4 (f¢’) = n— k. Since A(f¢') is mapped equi-
variantly into A4 (f), we get co-indz A (f) = n — k. Hence we get (33.1)
for the pair (T, S'7).
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(83.6) Corollary. Any pair of fixed point free involutions T, and T,
on S™ have a co-incidence.

Proof. Consider the quotient map »: S* — 5%/T,. It may be seen that
v¥: Ho(SY Ty, Z,y) - H*(S™; Z,) is trivial. By the preceding, there is an
x € St with »(x) = (T;%). This means that Tyx =x or T,x = T,x.
Since T has no fixed points then T;x = Tyx.

The following corollary is a special case of a theorem of MiLNOR [23].

(83.7) Corollary. If G is a finite group acting freely on S*, then every
element of G of order two lies in the center of G.

Proof. Suppose g € G is of order two. For A€ G, both g and Ag A—1
give fixed point free involutions of S*. Hence for some x, g(x) = hg
h~1({x) by (38.6). Since G acts freely g = hg ! and g is in the center.

It would be of interest to know to what extent (83.1) generalizes,
Can all differentiability hypotheses be eliminated? Can S* be replaced
by a closed manifold which is a mod 2 homology sphere? Can M* be
replaced by non-manifolds? For example, is there a map f:S% > X
into a 2-complex with f(—x) & f(x) for all x?

CHAPTER VII
The structure of 24(Zp), p an odd prime.

We begin now our study of maps of odd prime period. The primary
problem is to compute the structure of the group Q,(Z,) of bordism
classes [T, M*] where T is a fixed point free orientation preserving
diffeomorphism of period p on the closed oriented manifold M=. The
bordism spectral sequence of B(Z,) is trivial, and this gives the order
of the reduced groups 3,(Z,). To obtain the precise structure is harder.
It is solved here by geometric methods using certain maps of period $
on P,_,{C) with isolated fixed points. We obtain finally in (36.5) the
complete additive structure of 2,(Z,). We go on in section 87 to study
Q4 (Z,0)-

34. Preliminaries.

We denote by (T, ¥7) a closed oriented manifold V* together with an
orientation preserving diffeomorphism T of period p, $ an odd prime.
In this section T will have no fixed points, so that (T, V") represents an
element of £2,(Z,).

A vparticularly important example is (T, S®#-1), where T acts on
S$2r-1 in complex coordinates by T(z, ..., z,) = (0z, ..., 02,) with
o = exp(2xi/p). The union v S%»-1 of S*C S8 --- can be given a
CW topology in which each S27-1is a skeleton. Moreover T operates
on the union. Let E(Z,) = v S?*—1; T acting on E(Z,) makes E(Z,) a
universal space for Z,. The corresponding classifying space B(Z,) is
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E(Z,)|T = S?-YT. Moreover B(Z,) is a CW complex whose
(27 — 1)-skeleton is the generalized lens space S2#~1/T.

We shall assume that the homology of Z, is given by Hy(Z,, Z)
=Z, Hy {Z2,,2) =0 for n>0 and H,,,(Z,, Z)=Z, In the above
B{(Z,), the generator of H,,_,(Z,, Z) is given by the fundamental class
of the lens space S?#~1/T. Since S27—Y/T is a closed orientable manifold,
it follows immediately that u:Q2,(B(Z,))—~ H(B(Z,),Z) is an epi-
morphism. We thus get the following as a corollary from (15.1).

(84.1) The bordism spectral sequence of B(Z,) collapses.

There is also a reduced bordism spectral sequence associated with

8,(B(Z,)) = 2,(B(Z,), point). We see that the reduced bordism
spectral sequence also co]lapses Note that by definition (T, V®) re-
presents an element of 3, (Z,) = 3,(B(Z,)) if and only if [V*/T]=0
in Q,. By (19.4), [V*] = p[V*/T] = 0. Since MILNOR has shown that
£, has no odd torsion, then (T, V") represents an element of 3,(Z,)
if and only if [V"] = 0.

(34.2) The abelian group 3,(Z,) is O for n even, and of order p* for
n odd where t = X; -, rank £,

Proof. Consider the reduced bordism spectral sequence for B(Z,).
There is a filtration

OCJO,nCJI.n—l C o Cno= QH(B(Zp))

with J,,o/Jro1,e01= H(B(Z,), 2,). Hence Ja;,4= Jas_ 1,941 and order
Jeien,olJai1,spe= %% The remark follows. Note in passing that
EZ;=0if s4 0 mod4.

According to our previous remarks, there is a collection {«;} of
homogeneous elements of B, (Z,) such that u: 3, (Z,) > Hy(Z,, Z) has
{u(a,)} generating H, (Z,, Z). For example, we may take o; = [T, S?¢-1].
More generally, it can be seen that we can take for «, any [77, S2¢-1].
The following now is obtained from the proof of (18.1).

(84.3) Supposethat [T, X231 :n=1,2,...1s a collection of elements
of B4 (Z,) suchthat {u[T, X211} generates Hy (Z,,, Z). Then {[T, X271}
generates the Q-module 3, (Z,).

In fact it can be seen that, in the reduced bordism spectral sequence,
every element of Jan.1.5C Ponies1(Z,) can be expressed in terms of
the [T, X2%:+1), 1 < »n.

We summarize in the following the structure of H*(B(Z,), Z,).

(34.4) For every r we have H"(B(Z,),Z,) = Z,. If dy is a generator
of H2(B(Z,), Z,,) then dy genmerates H2'(B (Zy), Z,) There is a genemtor

d, of Hl(B ), Z,) such that the Bockstein §:HY(B(Z,),Z,)—~
- H*B(Z, ,,) maps d, into d,. Moreover d,dy is a generator for
Hor3 2, £,
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We set d,, = d} and d,, ., = d,4%, having picked d,.

For every (T, V#), T fixed point free, the natural homomorphism
H*(B(Z,),Z,) > H*(V"T,Z,) maps d, into elements which we also
denote by d,. For every (T, V"), define mod  characteristic numbers
as follows. Denoting by p, € H*(V»/T; Z,) the mod p restrictions of the
Pontryagin classes of the tangent bundle, the mod p characteristic
numbers are the integers modp(p; ...p; d;, 0,y where ¢ denotes the
orientation class of ¥#/T induced by the orientation of ¥* and where
4, +-+4,+7=mn Just as in section 17, these are invariants of
the bordism class [T, ¥*]. It is also seen that [T, V*] = 0 if and only
if {dy, 0y =+ 0. For if o: V/T -~ B(Z,) induces (T, V") then {d,, o,
= {o*d,, 0n) = {dn, @*0p)-

(34.5) In dimensions n < 2p —2, an element [T, Vr]¢€ 3,(Z,) is
0 if and only if all 1ts modp characteristic numbers are 0.

Proof. We assert first that in dimensions # < 2$ — 2, an element
[V*] is in p L2, if and only if all the Pontryagin numbers of V' are
divisible by . We must use now the MILNOR results on the structure
of Q, [25,41]. Namely, Q/T for T the torsion of 2 is a polynomial
algebra with a generator X** for each dimension 4 k. Moreover
(81 Oy =+ 0modp, 4k < 2p — 2, where (s;, 04y is the linear com-
bination of the Pontryagin numbers obtained from the symmetric
function Z#. Now [V*] =2, 5 | 5.4, .. [X*%. . X**]modT; sup-
pose that the Pontryagin numbers are all divisible by $. Order the above
terms as (g, . . .,6g) > (Ju -+ 1J0) i &y =fu - « » Gp = fips Gp 41> Jir 42. CoOD-
sider the term with largest (7, . . ., 7;) for which 4; _ ; == 0 modp. Then
(Siynip Oa(VP)) = a;,. 58, [X*™] ... 5, [X**] = Omodp, a contra-
diction. Hence 4; . ;= 0modp and [V*] € p 2 + T. Since 2 has only
two-torsion then T C p 2 and [V*] ¢ p Q2.

Fix now a generating set {[T, X2»—1]} for {J,(Z,) as in (34.3). Con-
sider the function X<, Q2 —~ £,(Z,), » odd, which maps [V ¢ Q,
into [T, X»—%] [V7].

Using the method of (17.2), using now the numbers {(p; . .. p; d;, o,,),
we see that for n < 2p — 2 the kernel of this homomorphism is con-
tained in Xy, ., p £2,;. That is, the image is of order at least p! where
t = 2;<,rank ;. Hence the homomorphism is an epimorphism by
(84.2). For the order to be correct, the kernel must be precisely
Zii<np 24 It follows that every element of 3,(Z,), n < 2p — 2, is of
order p.

We shall see now that (34.5) becomes false in dimensions = 2 — 1.
For example, [T, $*] [P,_,{(C)] has all its mod $ characteristic numbers
equal to 0, while by the next remark it is not 0 in J,,_,(Z,).

(34.6) Supposethat (T, X23"+Y) has u[T, X2+ £ 0in Hyp, o1 (Zy, Z).
IF (V™) § Q. then [T, X2n+1] (V0] & 0 in By, 4011 (Z,).
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Proof. Consider again the reduced bordism spectral sequence for
B(Z,). The edge homomorphism [Jo, ;= E34 1,0 maps [T, X27+1]
into a non-zero element y,, ., of Hy,,1(Z,, Z). Since E3, . 1,0 ® 2~
— E%, 1, m has kernel E3, | ,® p 2, it follows that y,, .., ® [V™] =0
in E%, . 1, » and hence [T, X2#+1] [T] == 0.

By analogy with section 26, we now define Smith homo-
morphisms £2,(Z,) > 2, _,(Z,). Define (T;, S®™+1) by T;(z, .- ., Zmi1)
= (0?2, ..., 0'2,,,), where o =-exp(2ni/p) and 1=j<p. Regard
Stm-1c S2m+1ag the set of all (0, z,, . . ., Zp.4q)-

We need also to recall a remark on transverse regularity. Suppose
@:V®—> V'™ is a differentiable map joining closed oriented manifolds,
and suppose @ is transverse regular on the closed oriented submanifold
Wrm=k of V'm Then Wr—k= g~{(W'm—*) is a closed oriented sub-
manifold of V». First one orients the normal bundle to W’'™-* so that
the orientation of the normal bundle followed by the orientation of the
tangent bundle to W'™~% yields the orientation of the bundle induced
on W'm-F from the tangent bundle to ¥'™. Next the normal bundle to
Wn—* is oriented so that ¢ preserves orientation on the normal bundle.
Finally the tangent bundle to W»—% is oriented to that the orientation
of the normal bundle followed by the orientation of the tangent bundle
yields the orientation of the bundle induced on W=~* from the tangent
bundle to V7.

(84.7) Given (T, V") and 2m + 1> n, there exisls an equivariant
differentiable map @: (T, V*) - (Ty, S2™+Y) which is transverse regular
on §*m-1 Lot Wn—2= @-1(S?m-1), Jot T'= T|Wn-2, and let Wr—2 be
oriented as above. The function assigning to each bordism class [T, V"]
the bordism class [T', W*=2] {s a well-defined homomorphism $2,(Z,) —~
— 0, _o(Z,), which we denote by A,.

The proof is essentially that of (26.1), and is left to the reader. It is
also seen that 4, is an £2-module homomorphism of degree —2. We call
the homomorphisms 4; the Smith homomorphisms.

(34.8) For any odd prime p, 34 (Z,) is the submodule of p-torsion of
Qu(7,).

Proof. It follows from (34.2) that 3, (Z,) consists solely of p-torsion.
On the other hand, 2,(Z,) =~ Q ® O,(Z,). Since 2 has no p-torsion
for $ odd, the remark follows,

Since 4, is a homomorphism, it follows immediately from (34.8) that
A!(QH(ZP)) C ‘Qﬂ—2(211)'

(84.9) The homomorphism A;: By (Z,) — B4 (Z,) is an epimorphism.

Proof. Select an Q-generating set {[T, X*m-1]} for O,(Z,) by
(T, X2™-1) = (T;, S*m-1), It is seen that A,;[T,, S?m+1] = [T,, Sm-1],
The remark follows.



35. The fixed point set 93

35. The fixed point set

In this section (7T, M®) denotes a differentiable map of odd prime
period p, possibly with fixed points, preserving orientation on the closed
oriented manifold M". We show to what extent the normal bundle to
the fixed point set determines the oriented bordism class of M™,

(85.1) Lemma. Let (T, SY) be defined by T;(z)=¢+2z where
o = exp(2zifp). Then

[T;><T,S'>< M*] = [T;> 1, 51> M"] = [Ty, S'] [M"]

in 0na(2,).

Proof. We confine our proof to the case (T, S*) given by T, (2) = pz;
the general case goes in precisely the same fashion. At the beginning of
section 34 we have pointed out the universal space (T, E(Z,)) with
(Ty, SY) the 1-skeleton of (T, E(Z,)). The element ], , in the filtration
of 3,..1(Z,) is the image of j,: O, ., (SYT)) - £, .1(B(Z,)) where { is
the inclusion SYT; C B(Z,). Now SYT, is a circle which we denote by
S'1. It follows from section 6 that &, ,,(S'Y) = 2, under the isomor-
phism [S'%,id] [Wn] — [W=]. Under f,, the element [S'%,:d] goes
into [Ty, SY] € 2,(Z,). It follows from (34.5) and (84.6) that Kerj,
=$ 3,.1(5").

There is also a geometric interpretation of the isomorphism
3, .1(SY) = Q,. Namely if f: Wr+1 S'1 is a differentiable map of a
closed oriented manifold Wr+1 with [Wn+1] =0, choose a regular
value x, € S’ and send [W7+1, f] into [f~1(x,)]. Here f~1(x,) is a closed
n-manifold, oriented as in section 34. A typical transverse regularity
argument shows this to be well-defined. The resulting homomorphism
is also seen to send [S'Y, 7d] [W"] into [W=].

Consider now the diagonal action (7)><T,S'> M®). The map
T, > T is induced by the natural fiber map f: S1>< M™Z,— SYZ, = S'1.
The fiber is M™ and fis regular at all points. Now by (19.4), p [S* < M"/Z ]
= [S§! > M"] = 0; since £2, ,, has no odd torsion, then [S'>< M*/Z,] = 0.
Thus [Sl = M"/Zzn f:] G Qﬂ+1 (S,l)‘

Under the isomorphism 3, ,,(S'?) =~ Q,, we thus see that [S!><
> M™Z,, f] maps into [M"]. Hence we see that [S'><M®%Z,,f] is
independent of the particular T : M® — M®, and is a function of [M"]
alone. Hence we would have obtained the same element of 3, (S}
had we used T = identity. But for T = ¢d, we obtain [S’1, id] [M"].
Using the homomorphism g, : 3, ,,(S") > £,,,(Z,), the conclusion
follows.

We continue to consider (T, M*) where T is a differentiable map of
odd prime period p, preserving orientation on the closed oriented mani-
fold M*. We may suppose that M™® carries a Riemannian metric in which
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T is an isometry. Let F™ denote the union of the m-dimensional com-
ponents of the fixed point set F of 7. There is the normal (n — m — 1)-
sphere bundle ¢: B,, > F™ to F™ Moreover B,, can be identified with
the boundary N of a tubular neighborhood of F™. Thus B,, receives an
induced orientation from that of N. It follows from section 22 that,
under the identification B,, = N, the differential 4T : B,, > B,, cor-
responds to T|N : N — N. We denote the resulting differentiable fixed
point free map of period by (7, B,,). It follows just as in section 24
that 2, ., [T, B,]=0in Q,_,(Z,).

Let q: E,, - F™ denote the normal vector space bundle to F™, and
let ¢': E,,—F™ denote the Whitney sum of a trivial 2-dimensional
vector space bundle with ¢g. Denote by ¢': B,, — F™ the corresponding
(n — m + 1)-sphere bundle. Now E, = R*>=<E,; define T': E, - E,,
by T’ = T,> T where T,(z) = 0z, 0 = exp(2xi/p). There is then the
differentiable fixed point free map (77, B,,) of period .

The following is the key theorem of the chapter.

(85.2) Theorem. For any (T, M™) we have

En[T', By = [Ty, $1 [M]
n Q,,.(Z,).

Proof. Note first the implication of the theorem. By (34.6), the right
hand side determines [M*] in Q,/p 2,. On the other hand, the left hand
side comes directly from the fixed point set, the normal bundle and the
action of T on the normal bundle. The theorem is of course an analogue
of (24.2).

We now proceed with the proof. Consider I2= {z:|2] < 1} and
(11, I?) given by T,(z) = p2. Form (T >=<T, 12> M") and (T, ><1d,
I% >< M™). Then

(Ty>< T, ([2< M%) )= (Ty><T, §*>< M")

(Ty><id, (I* < M®)) = (Ty ><id, St >< M") .
By (35.1) there is a differentiable fixed point free (z, Br+2) with (r, Br+?)
= (Ty>< T, St>< M) v (Ty ><id, —S' >< M»). We construct a differen-
tiable (7', V"+2), with V"+2 a closed oriented manifold, by judicious
identification of boundaries in (Ty><T,I%>x<M") U (r,—B"+?%) y
U (Ty><1d, —I? >< M"). The fixed point set of 7’ is the union of the
fixed point set F of T; > T and the fixed point set —M» of T, <1id.
Applying the rule X' (T, B,,] = 0 to (¢/, V" +2) yields the theorem.

36. The structure of 2, (Zp)

We use the theorem of the preceding section to prove the following.

(36.1) Theorem. Ewvery clement [T,X2r—1] of Oy, ,(Z,) with
u(T, X210 in Hyy_1(Z,, Z) has order po+1, where a(2p— 2) <
<2n—1<(a+1)(2p—2).
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We first indicate some preliminaries. There is the map (T, P,_,(C))
on complex projective space, given by

T([z, ..., 2,)) = [21, 023, - -+, 0771 2]

where ¢ = exp(2m1/p). Now T has exactly p fixed points ;= [0, . . ., 0,
1,,0,...,0]. In order to use (35.2), we put appropriate local coordinates
about x;. We may use as local coordinates (z;, ..., 2, 1) = [Zp—i - - - Zp_p»
1,2,...,2,_;_1] in a neighborhood of x; Denote by S$2#-3 the unit
sphere of this coordinate system and by T, :S%?-3 - S527-3 the
map T|S??-3. It is seen that T, is given by T;(z, ..., 2,_4)
= (o2, ..., 07 2, y). If we define (I',5%**71) by T'(2,...,2)
= (02, 029, 0%23, . . ., 07 712,), then it follows from (35.2) that p [T”, $?»1]
= [Ty, SY] [P,_,(C)]. Since [P,_,(C)] § p 2,,_,, it follows from (34.6)
that p[T', 527115 0. Now p2[T7, S??-1] = p [T, S*] [P,_,(C)] =0,
thus [77, S27-1] has order 2 in 2,,_, (Z,). By a similar line of reasoning
we now prove the theorem generally.

From (34.5) we have that [T, X2# 1] hasorder p for2n — 1 < 2p — 2.
Let (T, S2%-1) be an orthogonal fixed point free map of period # on the
(2% — 1)-sphere, with 2% — 1 < 2p — 4. Since p [T, S2*—1] = 0 there is
a (r, V2¥), where V2% is a closed oriented manifold and 7 is an orientation
preserving diffeomorphism of period $ with exactly p fixed points each
in an invariant S?*~! with 7|S?*—1= T. Moreover [V2*]¢pQ,,, for
otherwise we can use (35.2) and (34.6) to show a suitable [7”, S?¥ + 1]
has order greater than p. Since 2% + 1 < 2p — 2 this cannot be the case
by (34.5). For each 25— 1 < 2p — 4 select a (T, $2*%-1) and a corre-
sponding (z, V2¥).

Consider next the dimension 2#— 1=a(2p — 2)— 1. Here for
(z, V2m) choose V2r = P,_,(C) >+ > P,_,(C), a factors, and let v be
the diagonal action T ><---> T of the T: P,_,(C) > P,_,(C) already
discussed. Now (z, V*7) has exactly p¢ fixed points; these are all within
spheres S27-1 for which 7|527-1 is independent of the particular fixed
point. Let (7', S27-1) denote the common orthogonal map of period $
on spheres about the fixed points. We apply (35.2) to (r, V??) and
obtain a (7,527 +1) with po[T’, S2n +1] = [T, S1]| [V2#]. According to Mi1L-
NOR [25, 47], Q,/$ 2, is a polynomial algebra over Z, with a generator
in each dimension 4%, and for an odd prime p the class [P,_,(C)] may
be taken as the generator of dimension 2p — 2. In particular [P, _,(C)]* ¢
¢ pQ,; thus pa[T’, S2n+1] <4 0 but pe+1[T’, S2r+1] = (. So far we have
shown (36.1) in dimensions < 2 — 2 and for a certain generator in
each dimension of the form a(2p — 2) + 1.

Consider now 2n + 1=a(2p—2) + k with 1 = k< 2p—2 and %
odd. Consider V#n+2= (P _ (C))* > V*+1, We have already defined
maps of period $ on both factors; let (z’, V27 +2) be the resulting diagonal
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map. Then 7’ has p2+1 fixed points, and all have equivariantly diffeo-
morphic neighborhoods. Let (T, S?t+!) denote the common sphere
about the fixed points. Applying (35.2) to (¢, V?"+2) we obtain a
(T7, S27+3) with

¢a+1 [Tl’ S2n+1] = [Tl’ Sl] [Pa)—l (C)]a [Vk+1:| =0 ,

where the above vanishes since [V*+1] €4 Q.. Thus the order of
(T, S2n+3) divides p*tt wherea (2p —2) +3 < 2n+ 3 < (a+ 1) (2p— 2).
We have to argue eventually that the order is precisely p¢+! and for all
[T, X27+8]. We use the Smith homomorphism in order to do this. We
have at this stage for each # a particular (77, $2#-1) with i) [T”, S27-1]
of order po+1 for 2n— 1= a (24— 2) + 1, i) [T, S®*~1] having order
dividing petifora(2p—2)+3=2n—1<(a+ 1) (2p—2).

We now show that every generator [T, X?%1], 2n—1=a(2p—2)+ 1,
has order p%+1. By (34.3),

[T, X2n-1] = b[T", S?n—1] + [T, S2=3] [V4] + -+ -.

Multiplying through by ¢, po[T, X2%-1] = pps[T’, S2»-1]. Since
w[T, X?»-1]5 0, then b= 0 modp and [T, X27~1] is of order p@+1.

We have finally to show thatif a (2p—2) +3= 2n— 1< (a+ 1) (2p—2)
then [T, X®n-1] is of order p®+!, Recall the operator 4; of section
34, It can be shown that if [T, X2"~!] is a generator then so is
A;[T, X2 -1]. Successive application of A; carries [T, X2"~1] into a
generator of dimension a(2p - 2) + 1, which is of order p2+!. Hence
order [T, X?"-1] = pe+1, However [T, X27~1] is a linear combination
of the [T”, S2™-1], m < n. Since the [7’, S?™~1] have order dividing
e+, then order [T, X2?#-1] divides p**l. The theorem now follows.

(36.2) With the notation as in (36.1) when 2n— 1=a(2p—2) + 1
we have p° [T, X?n-1] = b[T,, S1] [P, _1(C)]® where b= 0 mod p.

Proof. In the course of the proof of (36.1), it was shown that
pe[T, X2n—1] = bpe [T, S?»-1] where b= 0 modp, and that po [T, S2n-1]
= [Ty, '] [P, _1(C)]e. The result follows.

Recall that MiLNor has shown that £/Tor is a polynomial algebra
with generators [Y4*] € 24;, k= 1,2, ... . It also follows that for an
odd prime p we may take Y27-2= P,_,(C). We fix an Q-generating set
{[T, X2»-1)} for £2,(Z,) with u[T,X?r-1]+0 and A,[T, X2n+1]
= [T, X?»-1] for a fixed 7. Let I'(p) C L2 be the polynomial subring
generated by all [Y#*] with 4% 29— 2.

(36.3) Lemma. Suppose

Zipi=nlT, XY [MH] =0

where each [M*%] € I'(p). Then [MA4] € po+10Q,, where a(2p — 2) < 47 +
+1l<(@a+1) (2p—2).
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The proof is by induction over . That is, we assume the result for
m < n.

We consider
Livi=nl[T, XY [M*]=0. (i)

We apply A? to this equation and obtain
Ziggormna [T, XHO-DH] [ME]=0. (i)

By the induction hypothesis, [M*¢] ¢ po+1.0Q,, if a(2p — 2) + 4 < 47 +
+ 1< (a+1)(2p—2), while [M*¥] ¢p2Q,,if4j+1=0a(2p—2) + 3.
The order of [T, X4/+1] is pe+t where a(2p — 2) <47+ 1< (a+ 1) X
X {2p — 2). Thus equation (i) reads

ZL [T, Xo@r-2+3] [Mén-a@r-2)-2] = (,
We have
[M4n-—a(2p—2)—2] — pa [V4n—a(2b—2)—2]

SO
ZaPa([T’ Xa(2p-2) +3] [V4n—a(2p—2)—2]) =0.
By (86.2) we can write, with b, == 0 modp,
[T}, $1] Zaba([Py—1 (C)]%) [VEn—2C2=B2])) = 0.
This implies
2304 ([Py_y ()]0 [Vin—0Cr=0=2]) €p Qypyy -
Now [V4an-e@r-2-2] ¢ I'(p) also, thus [V4n-e@r-2-2]¢p0Q and
[Min—a@p-2)-2] ¢ pa+1 0

We fix an integer 4n + 1. We define a; by the rule 4,29 — 2) <
<4n—1)+ 1< (a;+ 1) (2p — 2). We consider Z3I'y;(p)/p%+ 1 T'y;(p).
There is 2 well defined homomorphism Z%I'y; (£)/6% t 1 Ty () = P4nia (Z,)
which sends [M4%] into [T, X4 a—9+1] [M44].

This is well defined since the order of [T, X4®-9+1] is p%+1 The
lemma (36.3) is precisely the statement that this homomorphism is a
monomorphism. We wish to check that it is an epimorphism. The order
of Z4n11(Z,) is p* where ¢ = X, rank Q,,= Z;_,s; where s, is the
number of partitions of 7. Let ¢ be the number of partitions of 7 into
ky, ...,k with k;j3=p— 1/2 all k;. Then s; = 28, — a(p — 1)/2. Hence

Zignsi = Eign,ati—a(m—l)/2= ngncj ° tj .

We can compute c¢,. Suppose 45+ 6(2p—2) < 4n <47+ (b + 1) X
X (2p — 2), then we get a {,; in the sum for each i =7+ a(p — 1)/2, a
=0,1,...,5 Hencec; =b+ 1, b as above. A computation of the order
of Z§I'ys(p)/p™* ' I'yi (p) shows it is also p*44. Thus Z§ Ty (8)/p™+ ' Lys (p)
is isomorphic to 24y, .1(Z,)-

(86.4) Forn = 0,4;: B4,,3(Z;) = B4 11 (Z,)

Ergebn. d. Math, N. F. Bd. 83, Conner and Floyd 7
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We know 4;: D4n.3(Z,) > @4n.1(Z,) is an epimorphism. The two
groups have the same order, so 4; is an isomorphism. With (36.4) we
can now give the additive structure of 3, (Z,).

(36.5) Theorem. With Q-base {[T, X?*+1]} in 3, (Z,) selected with
ulT, X411 0,n=0,1,2, ... the group 0, (Z,) is the direct sum of the
cyclic subgroups Cop i 1,k,,... .k, With generators [T, X®"+1][Y,p]...
oo [Yyy,], one for each n and each (ky, . .., k) with 4k; == 2p — 2, all 1.
The order of the generator is po+1,a (29— 2) < 2n + 1 < (a + 1) (29— 2).

37. The bordism groups £2,(Zpk)

In this section we shall study the structure of &, (Z) for p an odd
prime and % = 1. We are primarily concerned with computing the orders
of a generating set for O, (Z,). We shall use the fact that £, (Z,) has
been computed, together with the transfer homomorphism studied in
section 20. We shall need several results about the action of Z, which
are entirely analogous to remarks already demonstrated for Z,. In such
cases we shall only indicate the analogous proof. In this section we shall
only consider free orientation preserving differentiable actions of Z.

Let E again be all finitely non-zero sequences of complete numbers
(21, 25, . . .) with 22,7 = 1. Let 4, = exp(2mi/p*), and define (Zu, E) by
(21 2 - - ) = (Mazy Az, - . .). Now 2,(Zp) = 2, (E/Z), and we have
the following.

(87.1) For k = 1 the reduced bordism spectral sequence of 34(Z )
collapses, $2y;(Z ) = 0 and the order of Qyy 11 (Z ) is (P*) wheret =245 < 9 41
rank Q,;.

This is entirely analogous to (84.1). Let S24+! be embedded in E as
(71 - - .5 234540, 0, 0,...). Then S%/+! is invariant and we let S?/+1/Z,;
=L(2{+ 1,9% CE|Zyu The image of the orientation class under
Hy; (L2]+1,0%);Z) > Hyy 11 (Zpr, Z) = Zye is  the generator of
H,;.1(Z s Z). Thereis the natural Z -covering map ¢ : E/Z,k -~ E[Z )k + 1
and a commutative diagram

L2+ 1,9 CEZp

Lol

L(2]- +1, Zbk'H) C E/Zpkﬂ

where the first vertical map has degree p. Under 4, : Hy; .4 (Z, Z) >
— H,y;,1(Zpe1; Z) the generator of the first group goes into p times the
generator of the second.

(37.2) Themapi: E|Z o~ E|Z yrrinduces a monomorphismiy : By (Z ) ~
> D (Zn).
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This follows immediately from the fact that i, ® id: Hy,(Zs;Z) ®
® Q> Hy(Zp+1;Z) ® 2 is a monomorphism together with the col-
lapsing of the reduced bordism spectral sequences.

A Smith homomorphism 4 : 3 (Z) — £, (Z ) is obtained by analogy
with the case £ = 1. This 4 is an £-module homomorphism of degree-2.
If (Zu, S?7+1) is given by (z1, ..., ZyG4n) = (A1, - - -5 Ao op) then
A([Zpr, S2iHY]) = [Z, S*~1]. As in (34.3) we also have the following.

(87.8) The elements [Zy, S?3+1] generate By (Z) as an Q-module.

We only have to note that under u: @y;.; (Zp) = Hyy 1 (Z; Z) we
have p ([Z s, S?/+1]) a generator of the homology group. We see of course
that A : 2y;1(Zp) > D4;_1 (Z) is an epimorphism.

(87.4) For any { = 0, A: 24, 5(Z ) = 84,1 (Z ).

We know A is an epimorphism. The order of O, 5(Z) is
(p¥)Fas<es+arak i ang the order of By;,, (Zp) is (pF)Feis e +rmnk byt
47 < 47+ 1 if and only if 47 < 4§ + 3, thus the two bordism groups
have the same order so 4 is in fact an isomorphism as indicated.

We turn now to the transfer homomorphism ¢ : @ (Zs1) = 24 (Z )
defined in section 20. The transfer of a [Zp+1, M29+1] is obtained by
taking the induced action of the subgroup Zs C Zps1. Since A2, = 4,
we have £([Zpes1, S29+1]) = [Zp, S2941], and thus ¢ : Dy (Zpi1) > 24 (Z )
is an epimorphism. We recall that in (20.2) the composition
tig: Dyi1(Zp) > 29;41(Zp) was found to be £2, [Zp, M2iVY] = p[Z,
M?i+1]. Although we shall not use it, it is easy to see that {4 = 44.

We compute $,(Zu). We have B(Zu) = J;,0 = EPo= E%,
= H (Zs, Z) = Z, therefore u: & (Zy) = Hy (Z; 2).

(87.5) The order of [Zp, S1] is p* and iy [Zg, S*] = P [Z a1, S*].

The last statement is a consequence of commutativity in

B,(Z3) —— B, (Zyer)

i’ i“
Hy(Zys; Z)——> Hy(Zpus1; Z) -

(87.6) If V™ is a closed oriented manifold then [Zm, S*] [V"] = 0 if and
only if [V"] € p* 2,

Suppose we have shown this for £ < 7 + 1. Now suppose [Z; 11, S1] X
X [V*]=0. From %,([Zy, S'] [V"]) = p[Zpr+1, S} [V*] =0 we have
[Z, S*] [V"] = 0 since i, is a monomorphism. By the inductive hypo-
thesis [V"] € p7Q2,; that is [Vn] = p7[M"]. Now pr—Li,([Z,, SY] [M™))
=$771p [Zpy 11,81 [M") = [Zr.11,51] [V*] = 0, thus [Z,r, SY] [p7-LM"] = 0.
Again by induction pr—1[M#] € pr Q,. That is, p7~1[M"] = 7 [X"] and
[Vn] = ?r [Mn] — ?r-{-l [Xn] S0 [Vn] €¢r+1 Qn-

7%
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In view of (37.5) there is a well defined homomorphism £, ,/p* £2,;~
— 34;11(Z) given by [V49] — [Z, S'] [V44]. In view of (37.6) this isa
monomorphism.

(87.7) The sequence
) 0 — 844/p* 245~ ‘Q4j+1 (Z ) A—’ Q4(J-—1)+1(Zpk) -0
1S exact.

We know A2 is an epimorphism. The order of its kernel is (p¥)=ok 247,
The image of Q,,/p% Q45— £4;,1(Z) lies in the kernel of A2 and the
order of its image is also (p¥)™ak 4,

(37.8) For 47 + 1 < 2p — 2 the order of [Z, S4+1] s p*. If
Zi [ Zp, ST V2] =0, 47+ 1<2p—2,

then each (V4] € p* £y,

The case 1 = 0 follows by (37.6). We induct on 7 with the aid of 4.
Our inductive hypothesis is, with a fixed » > 0 and a fixed s, 45+ 1 <
<2p-—2,

a) theresultistruefor k<74 landall4/+ 1 <2p—2

b) the result is true for Ak =7+ 1 and all 47 4 1 < 4s+ 1.

We must demonstrate the result for the pair (» 4- 1, 45 + 1).
We consider 7, [Zr, S4¢+1] — p[Z ey, S14+1]. Since by ([Zpr, S4H1])
= p[Zp, S**¥1%] and ¢[Z 41, SPH] = [Z,, S4eH1] we have
(i [Zper S2EH] — P [Zpesr, S4H1]) = 0. ()
Since p(ig [Zpr, ST+1]) = p(p[Z 41, SP*+1]) = p times the generator of
Hygy1(Zpei1, Z) we have
‘u(i* [Zp” S4s+1] —p [ZpH-l: S4s+1]) =0 (ii)
In view of (ii) we write
is[Zpr, SHH] — B[Z e, SH041]
= P [Zpper, S [VO] + 2F [Zprsr, SHE-DH] [V4] (1)
Now A2(pr+1[Zies1, S48H1]) = pr+1[Zpsa, S4E-D+1]. By part b) of the
inductive hypothesis, p7+1 [Z 41, S2E-D+1] = 0, thus pr+1 [Z,,41,54%+1] X

X [V?] is in the kernel of 42, so it may be replaced by [Zr+1, S*] [X*°].
We may simply write (iii) as

bx [Zpr, SUH] = p[Zy1, SPHY] = 2 [Zppy, SO H] [VH] L (iv)
We apply the transfer homomorphism to both sides of (iv) and

2§ [Z4, S4E-0+1] [V44] = 0. From part a) of the inductive hypothesis
we have [V41] ¢ pr 2, for 1 < i £ s. We write (iv) now as

ix [Zpr, S — P Zpesr, SHHY] = 7 (2 [Zper, SEHE-DH] [MH]) (v)
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We multiply (v) through by #, apply part b) of the inductive hypothesis
and get
?51:* [an S4s+1] — ?52 [Zpr+1: S4s+1] . (Vl)

Since 7, is a monomorphism, v > 1, the reader may use (vi) to see the
order of [Z,1, S28+1] is exactly pr+1.

Suppose now 2% [Z1, SEE-9+1] [V4] = 0. We apply 42 to obtain
257 [Zyp4r, SPE-i-D+1] [44] = 0. By part b) of the inductive hypo-
thesis, [V4f] €p+102,; for 0 <4 < s— 1. Now the order of [Z,,,
S4(s—9) +1] is ?br-;-l, S0 2‘8—1 [Zpr+l; Sd(s—19) +1] [?br+1M4i] + [ZpH-l; 51] [Vu]
= [Zye+1, S] [V28] = 0. Now Vs ¢pr+1Q, . by (37.6). The inductive
step is complete. We can begin since the resultistrue fork=1,4s 4 1 <
<2p—2 and for [Z,4+1, S']. In addition the dimensions 4s+ 3 <
< 2 — 2 are covered now by (37.4).

(87.9) Theorem. The order of [Z, St+1] 1s p¥+% where a(2p — 2) <
<4j+1<(@a+1)2p—2).
We fix » and 4s + 1. We assume
a) the result is true for k <7+ 1l and all 45 + 1
b) the result istrue for A =74 1 and all 47 + 1 < 4s + 1.
We must exhibit the order of (£, S##+1). We first take a special case
4s+1=a(2p—2)+1,a= 1. Again
t(ig [Zpr, S22H] — p[Z o4, S*2+1]) =0
p (0w [Zpr, S48 — p [Z o4, SHH]) = 0.
Accordingly
1:* [an S4s+1] — ?5 [Zpr+1; S4s+1]
= 17 L, S [V] 4+ B [y, SO (V4] ()
We apply the transier to (i) and we have
?r-l-l [ZP" S48+1] [VO] + Z'f [ZpH—l: 54 (8 —1) +1] [I/4i] - O . (ii)

We apply the homomorphism A exactly (¢ — 1) ( — 1) times to (ii) to
obtain
1
?r-{-l [pr: 521)—2+1] [VO] + 21 2 [ZP" 521)—2—4l'+1:| [V4i] — O .

By part a) of our inductive hypothesis the order of [Z,, S??—2+1] is
pr+1, thus
p—1

21 2 [an Szp—2~4i+1] [V“] =0,
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We apply (37.8) to conclude [V44] €p7 2y, 1 <4 < p— 1/2. We write
(i) then as
1'* [th S4s +1] _ gb [ZpH-l; S4s+1]

=1
= P [ Ly, SEH] VO] 4 £ <21 2 [Zpesr, SHE-D41] [Mu]) +
+ (Z3—1j24 1 [Zprar, STE-DH] [VA4])

From part b) of the inductive hypothesis the order of [Z,,1, S¢ €~ +1]

g pa-lirtl=patriorl <7 < PT_I Again from part b) the order of

[Z pe1, SE6-D+1] divides pa—2+7+1= pa+r=1 for 1’;1

multiply the last equation by p2+7-! and since » = 1

+1=<7<s We

gb“*‘"l'l;* [th S4s+1] — ?ba+r|:ZP'+1, S4s+1:|
= pEVET[Z,01, SESH] [VO], (i)
By part b) the order of [Z4,, ST€-D+1] is pe-1+r+l= pe+r, thus

POt [Zpes1, S1+1] [V0] lies in the kernel of A% We let pa+7[Z,.,,
S48+1] [VO] = [Ze4a, S'] [X*1]. Now (iii) becomes

?§a+r—1i* [th S4s+1] _ 75“+T[ZP'+1! S4s+1] — ?br [Zpr+1. 51] [X“] (iv) R

The order of [Z,,, S¢*1], by part a), is p%*7, thus multiplying (iv) by p
gives pe+r+l[Z,,.,, S47+1] = 0. We recall » = 1 and we return to (iii).
Now pe+2r[Z, 1, S48+ = pr-ipatr+l[Z, ., 545411 =0 so we have
POy [Z e, SU8+Y] = pO+7[Z 41, S48+1]. Since 7, is @ monomorphism
?‘H'T[Zprﬂ. S4s+1] =+ 0.

Finally we must consider 4(s + b) - 1, b < — 1/2. We go back to

iy [Zpp, SHOHDH] — (7,0, SHOHD41]
— ?§r+1 [Zpr+1, S4+d) +1] [VO] + 2f+b [Zpr+1, S4(e+b—z)+1] [V4z] .
By the transfer
prl [an Ste+v) +1] [P0] - 2*1’+b|:Zpr, StE+b-i)+1] [P4i] = 0,
We apply 4 exactly (a — 1) (p — 1) + 25 times noting
prLZ,, SPP-2H] = 0,
Again

=1
21 [an S2p—2—4i+1] [V4z]: 0.
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Now V4t ¢pr2,,, 1 <7< p— 1/2. We have then

G [Zpe, SLOTOH] — p[Z,, ., SEEHY) 1]

=1
P SO 4 7 (5,7 L Stes-on s 4
FIG [ SO0 1),
2

Since » = 1 we multiply by %+, apply part b) of the hypothesis and
conclude
25“""1:* [Zp” S4(s+b) +1:| — ?§a+r+1 [pr'l-l: S4(s+Db) +1]

= patrdl[Z ) S4e+d)+1] [PO] (v)
We may by the inductive hypothesis write,

?ba+2r+1 [ZpH-l; S4(s+b)+1:| — ?r(?a+r+1 [Zpr+1; S4(s+b)+1:|)
= §"[Zyps2, 1] [X0049].

Since pa+71, [Z,y, SEE+D+1] = 0 now (v) reads
patr+l [pr+1; StE+d)+1] = pr [Zprs1, S1] [X4@+b)]

from which
?ba+r+2 [Zpr+1. 54 8+ +1:| — O .

We look back at (v). Sincer = 1
¢a+2r+1 [pr+1i 54 @+h +1:' [VO:' — ¢r—1¢a+r+2[zﬂ_+1’ S4(3+b) +1] [VO:' =0.

Finally po+r+1[Z,.,, S4€+0) +11=0. Since A20([Zp41, S+ 0+]
= [Z 41, S**+1] the order of [Z;41, SE@+D) +1] is exactly pa+r+1,

The proof of (37.9) is complete. Now we have the following.

(87.10) If 4s + 1 = a(2p — 2) + 1 then p®+¥ [Z 1, S+ = PP b, [ Z a4,
S [P,_;1 (C))® where b, =+ 0 modp.

As we have stated (37.10) it is, in view of (36.2), true for £ = 0. Now
as we pointed in equation (iii) of (37.9)

?a-{-k—li* [Zpk, S48+1] — ?a+k[zpk+1: S48+1:| .

Now pa+*-1[Z, S4+1] = pk-1p, [Z 4, SY] [P,_,(C)]® by induction. Now
by (37.5)
iy [Zpk» St = ? [Zpk+1; 51]
thus
ba (BF 7106 [Z, S1] [Py 1(C)]%) = $#ba[Z a1, S'] [Py -1 (C)]°
— Pa+7c [Zpk+1; S4s+1] .
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CHAPTER VIII

Fixed points of maps of odd prime period

We consider now the fixed point sets of differentiable maps
T : M™— M" of odd prime period . In section 38 we analyze the normal
bundle £ to the fixed point set. It turns out to be as simple as could be
expected, breaking into a Whitney sum of complex vector bundles &, on
which T acts as multiplication by g%, o = exp(2mi/p).

We then illustrate some connections between the properties of such
T:M?— M" and the structure of Q,(Z,) found in Chapter VIL. In
section 39 we describe those bordism classes in £2 which admit representa-
tives upon which Z, =< Z, acts differentiably, preserving orientation,
and with no stationary points. In section 40 we study those T": M” - M™"
whose fixed point sets are m-manifolds, F™, with trivial normal bundles
in an appropriate sense. There follows a purely topological section giving
the structure of the ideal in £ consisting of all those [M™] whose
Pontryagin numbers are all divisible by 4. We then return in section 42
to the study of those T for which the normal bundle to the fixed point
is trivial; here we obtain additional insight into the module structure
of Q,(Z,).

38. Generalities about the normal bundle

Let H be a compact Lie group which acts differentiably on a manifold
M. There is a Riemannian metric on M® with respect to which H acts as
a group of isometries. Denote by F™ the union of the m-dimensional
components of the set of stationary points. There is the normal bundle
£:E— F™to F™in M*, and £ can be thought of as an O (» — m)-bundle.
Moreover, H acts on E as a group of bundle maps, mapping each fibre
into itself. If we fix a fibre ¥V, of &, then on V', we have a linear represen-
tation of H and thus a (non-unique) embedding H C O (n — m). We shall
prove in this section a theorem which implies that the structural group
of £ can be reduced, on the component containing #, to the centralizer
of H in O(n— m). We go on to consider the case H = Z, in detail. To
handle the non-abelian case we need the following mild extension of a
well known Montgomery-Zippin theorem [29, p. 216].

(88.1) Lemma. Let 7g: H — G be a homomorphism of the compact Lie
group H into the Lie group G. For each homomorphism r: H — G suffi-
ciently close to 7,, there exists g € G with r = gryg=1.

Proof. Consider the Lie group H > G and the graph K(r)) C H < G
of 7y, where K (7) = {(x, 7o(x)) : x € H}. Since K (r,) is a compact sub-
group of H > G, the Montgomery-Zippin result asserts that there exists
a neighborhood U of K (7,) such that if K’ is a closed subgroup of H < G
with K'C U then gK'g-1C K(r,) for some g € H < G. Suppose for
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r:H— G that K(r) C U. Let (&, g) € H >< G be such that (4, g) - K(r) X
X (h, §)~1C K (r,). For each x € H there is y € H with (hxA~1, g7 (x) g~1)
= (y,7,(y)) and g7 (x) gL = 7o () 7o () 7o (1), so (38.1) follows.

We now consider fiber bundles &: E — X which are co-ordinate
bundles in the sense of STEENROD, and for which the base is connected,
locally connected and paracompact. We suppose that the structural
group G is a compact Lie group which acts effectively on the fiber F,and
F is to be locally compact. We may consider G as a subgroup of the group
of homeomorphisms of F onto itself.

(38.2) Theorem. Let &: E — X be a fiber bundle with structural group
G and fiber F as above. Let H be a compact Lie grouwp which acts on E as a
group of bundle maps, taking each fiber effectively onto itself. Then the
structural group of & can be reduced to the centralizer C(H') of H' in G,
where H' C G 1s the subgroup of homeomorphisms of F corresponding to
H under some coordinate transformation F — F .

Proof. Let (U, ¢;) be a coordinate set for &; that is, U, is open in
X and ¢,;:U,><F —FE has the usual properties. For x ¢ U, let
®;, ¢ Fyp > F denote the homeomorphism ¢;, .(f) = @;(%, f). For & € H,
we let &, ,= @i tho; . and H, .= {h; ,: h € H}. Since each % acts as a
bundle map, then H; ,C G. Let #;,,: H — G denote the homomorphism
7i,2(h) = Ry, o

If x ¢U;n U; then there is a g € G for which 7; ,= g7, g, for

Biye = Q2R = (977 Pra) (P20 @) (952 0s,0) = 8 (%) P,z 81,4 (%),

where g;,;(%) = @i @),

We consider now a coordinate neighborhood (U,, ¢,) where U, is
connected. Fix x, € U,, and consider the subset V C U, consisting of
all x for which there exists a g € G with 7;, ,= g7; ,,g~1. It is clear that
V is closed in U,; it follows from (38.1) that it is also open in U,. Hence
for any x € U; there exists g € G with 7; ,= g7, ; g%. It now follows
from the connectedness of X that if x € U; and v € U, then there exists
g € G with 7;,,= g7, .g~. We fix a homomorphism » : H - G for which
each 7, , is conjugate in G to 7.

There is the space Y of all homomorphisms of H into G which have
the form grg~—'. The space Y is naturally homeomorphic to G/C (H'),
where H' = Image(r) and C(H') is the centralizer of H' in G. For a
given connected coordinate neighborhood U;C X, there is the continuous
map f: U, > Y mapping x ¢ U, into 7;,, € Y. There is the map G- Y
sending g into grg—'. Since Y = G/C(H’), the map G — Y has a local
cross-section. If x, € U, there is a connected neighborhood V; C U, with
%9 € V;and a map x — g, of V, into Gwith g,7g;* = »; . foreach x € V.
We define 0;:V,;<F - §&4(V,) by 0 f) = g:;(x, g-(f)); then
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0,5 = @, 8. Hence (V,, ;) is an admissible coordinate set and for each
% € V; we have
7:i,m(h) = 0;}}1/0:,2: gz_l (P;zlh(pz,zgz = gz_lri,m(h)gz = 7(}”) .

Thus we can find coordinate sets (V;, 6,) covering X such that the homo-
morphism 7;,,: H— G is independent of both j and x ¢ V;. Now if
2 €V;nV; then 07140, ,=0;2h0;,= (0;10,.) (0;146,.) (0;10;,.)
and 7 (k) = g;;(x) - 7(h) - gz' (x) for all A ¢ H. Hence g;;(x) ¢ C(H') and
the theorem is proved.

Suppose now that &: E — X is a fiber bundle with group G and fiber
F. Given a compact Lie group H, we ask in how many ways H can act
on E as a group of bundle maps on E, taking each fibre into itself?
According to (38.2) we must first select an embedding of H into G. If the
structural group of & cannot be reduced to C(H), we discard that
embedding. If is can be reduced to C (H) we select coordinate sets (V;, 6;)
covering X for which 0710, ,€C(H), all x €V, V;. Then H acts on
E as a group of bundle maps via A(0;,,(f)) = 0, 2(A(f)); that is, so that
each 0, , is equivariant. Now (38.2) states that all such actions of H can
be obtained in this way. We now consider H = Z,, a cyclic group of
odd prime order.

(38.3) Theorem. Suppose that &: E — X is an O (m) bundle with fibre
R™ over a connected, locally connected, paracompact base, and that T:E—~E
is @ map of odd prime period p which carries each fiber orthogonally onto
tiself leaving only the zero vector fixed. There are then linear subbundles
EEy>Xof & h=1,...,(p— D2 with E=&+ -+ Ep_p/e and
there exists a complex linear structure on E, such that T (E;) C E, and
T (v) = o*v for v € E;, where p = exp (2milp).

Proof. According to (38.2) and the subsequent discussion, we need to
know the number of orthogonal actions of Z,, on R™ in which the zero
vector is the only stationary point. The irreducible representations of
this type are all two-dimensional. Let T be the generator of Z,. The
irreducible representations have generators given by T : R? —~ R? where
T, is given in complex coordinates by T';(2) = p*z, where ¢ = exp (2mi/p).
It is no restriction to confine ourselves to k=1, ..., (p — 1)/2.

We split T : R™ - R™ into irreducible plane representations. We see
that m = 2n, moreover R =V, + - - - 4+ V(,_y;, Where V is the direct
sum of plane representations on which T = T. There is a complex
structure on V;, such that T(V,) C V, and T (v) = ¢*v for v € V;. We
assume from representation theory that the Ty, ..., T(,_y/e give in-
equivalent linear representations and that V, is the sum of all planes
R? C R™ with T(R?) C R? and T|R? equivalent to T,. The centralizer
C(Z,) = C(T) is now easily obtained. Suppose f €O (wm) is such that
fT=Tf If R*C Vyis such that T(R?) C R? and T|R? is equivalent to
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Ty, thenT (fR%) C fR2and T |fR?is also equivalent to T',.Then f (R?) C V,,
so in fact we have f(V;) C Vi For v €V,, f(o*v) = o¥f(v). Setting
o = a + b1,

af(v) + b1 (iv) = af (o) + bif(v)

and so f(¢v) = f(v). That is, f is complex linear. We see that C(Z,)
consists of all orthogonal f with f(V;) C V, and f complex linear. Thus
we have C(Z,) = U (ny) << U(#n_ps) In O(2n) where #,4----
+ Hp-/e= "

By (38.2) we may as well suppose the structural group of & is reduced
to U(ny) >< - ><U(ng_ps). Letting (U;, 6;) be a coordinate set, we
have 0;10,.(V) CV, and 0;10, . complex linear. Then 0, (V)
=0;,:(Vy). Let E;, =, 0; (V). The theorem (38.3) now follows by
letting &, : E;,— X have fiber 0, ,(V;) = Fy, .. We leave to the reader
the following additions to (38.3).

(38.4) The notation of (38.8) is continued. If & is a differentiable bundle
so is each &, If {: E— E is a map which takes fibves orthogonally onto
Sfibers, and if Tf=fT, then {(E;) C E, and [ is complex linear.

It follows immediately from (38.3) that if 7 : M» — M= is a differen-
tiable map of odd prime period on a closed oriented #-manifold, then the
structure group of the normal bundle to the fixed point set F can be
reduced on each component of F to the unitary group. In particular, the
odd Whitney classes w,; ., of the normal bundle all vanish [8, p. 416].

(88.5) Suppose T : M» —~ M*" is a map of odd prime period on a closed
manifold for which all the odd dimensional Stiefel-Whitney classes of the
tangent bundle vanish; then on each component of the fixed point set all
odd Stiefel-Whitney classes also vanish.

Proof. Let C be a component of F with total Stiefel-Whitney class
w(C), and normal Whitney class »(C). Similarly w(M?) is the total
Stiefel-Whitney class of M/". By the sum theorem w (C) v (C) = *(w (M")),
and w(C) = s*(w(M")) - 7(C) where 7 denotes the class with v9 = 1.
Since v (C) has no terms of odd dimension, then neither does #(C), and
(38.5) follows.

The above is a variant of the fact, known to SmiITH, that if M* is
orientable then so is each component of F. In fact it follows from the
above argument that if w, (/") = 0 then w, (C) = 0.

We now point out a generalization of the bundle involution of
Chapter IV. Let n=mn, + *** + #(,_y,,. We shall define a homomor-
phism,

J: 'Qm(B(U(nl) > U("’(a)—l)/z)))* Qpion1(Zy),

for each odd prime . In doing so, we replace .Qm(B(U(nl) X
>< U(ng_q /2))) by the differentiable bordism group of section 8. In order
that this be meaningful, we use for B(U(n,) >< '+ > U(ng_q) 2
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differentiable manifold which is N-classifying for N > m, say a product
of complex Grassman manifolds. Suppose that f: V™ - B(U(n) ><- - -
> B(U (n,_y5)) represents an element of the differentiable bordism
group. There is the natural action of U (n;) > -+ >< U(#(,_y/s) On the
complex linear space C"= C™ > .- C"-2, Let £: E - V™ be the
bundle with fiber C* induced by f. There is T: C* - C* defined by
T (v) = g¥v for v € C". Then T is in the center of U (1) >< -+ - >< U (ny_ys0);
hence there is induced a 7: E — E.

We must also orient E. It is clear that E is orientable since V™ is
oriented and the fibers have their natural orientation. We orient the
tangent bundle to E so that the orientation of the fiber followed by the
orientation of V™ yields the orientation of E.

Let now B C E denote the bundle of unit spheres of E. Then 7: B~ B
is a differentiable map of period p, preserving the orientation and with-
out fixed points. Hence [T, B] € 2, on_{(Z,). We define

T u(B(U (1) > -+ - < U1ty 1)) > L an-1(Zy)
to send [V™, f] into [T, B] € 2,,,9,_1(Z;). As in Chapter IV, we can
consider a U(ny) ><-- < U(n,_y)-bundle &: E > V™ as generating
an element [£] of Q,,(B(U (ny) >+ + - > U (n,_y))). It is seen that the

above J is well defined and is a homomorphism.
There is also the sum homomorphism

J: ZQu(BU () <+ -+ < Uty 1)) > Lu1(Zy)

summed over all m + 2(n, + ++- + n,_y,) = k. Here by definition
Q. ,(B(U(0))) = 24—y, and J maps 2, _,(B(U(0))) into 0.

Suppose now that (7T, M™) consists of an orientation preserving
diffeomorphism 7T : M™ — M™ of period p on the closed oriented manifold
M=, Each component V of the fixed point set is orientable. The normal
bundle §: E—~V is a U(my)><++« > U(n,_y,)-bundle. We orient V
so that the orientation of the fibre followed by that of V yields the
orientation of E, where E has the orientation of a tubular neighborhood
of ¥V in M™.

Let V,, ..., V, denote the components of F. Each normal bundle
§0:E; >V is a U(ny)>x<--+>xU(n,_y,)-bundle, where the n,
depend on j. Hence [£0)] ¢ .Q*(B(U (n)=<---xU (n,,_l,z))). Obviously
Z1J([6V]) =0€ Q,_,(Z,). There is also the homomorphism U (n;) -
— U(n, + 1) sending the matrix « into (é 2) This will induce a homo-
morphism

Iy : 2, (B(U (1) >< - = >< U (ny_ys))) >

- -Qm(B(U("q F 1) <o Ulng_yp)) -

We can now restate (35.2) as
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(38.6) Let (T, M™ be an orientation preserving diffeomorphism of
period p. Let Vy, ..., V, be the components of the fixed point set, and
EO : ED— V; the normal bundle to V;. Then X' J I, ([ED]) = [T, S*] [M"]
i Q1 (Zy).

39. Actions of Zp X Zp without stationary points

We have seen in section 80 that if (Z,)* acts without stationary
points on M?*, then [M"], = 0. By RocHLIN’s theorem if M™ is oriented
then [M"] €2 £2,. The corresponding facts for (Z,)¥, $ an odd prime, are
more complicated; the additional complexity appears to be related in
some obscure manner to the divisibility properties of Pontryagin numbers.
In this section we settle the matter for Z, >< Z,. While we are getting
ahead of ourselves to consider it now, it provides a non-trivial application
of our methods developed up to this point.

We consider, for each compact Lie group G, the collection of all
bordism classes in £, which admit a representative M» on which G acts,
preserving orientation, without stationary points. We denote by SF,(G)
this collection of bordism classes in £2,, where SF abbreviates “stationary
point free”. It is clear that SF,(G) is a subgroup of ,. Moreover
SF(G) = 2SF,(G) is an ideal in 2, for if G acts on M without stationary
points, then it acts on M™>< V™ without stationary points by g(x, y)
= (gx, y). Thus SF(G) is an ideal.

The case G =Z,, p a prime, is easy to settle. For if Z, acts without
stationary points on M", then Z,, acts freely on M®, so by (19.4) we have
[Mn] = p[M™Z,). Hence SF (Z,) C p 2, and the opposite inequality is
clear so that SF(Z,) = p Q. In generalizing this remark it is useful to
consider it in the following fashion. Let Y? consist of $ distinct points,
and note that Z, acts freely on Y by cyclic permutation. The ideal in
2 generated by [Y*] is SF(Z,).

We consider the case Z, >< Z, = G. There is clearly an action (not
effective) without stationary points of Z,, > Z,, on Y° BoREL has pointed
out an action without stationary points of Z,>=<Z, on P,_,(C), [9].
We denote by T and S the generators of Z,>Z,. In homogeneous
coordinates we set

Tlzy, oo 25 = [0« o) 250 2],
Slayy o 2,) = [z, 025+ - ., 07712,
where o =exp(2ms/p). It is seen that ST = TS, and the resulting

action of Z,><Z, on the complex space has no stationary points. We
shall now prove the following.

(39.1) Theorem. The tdeal SF(Z,><Z,), for p an odd prime, is the
ideal in Q generated by [Y°) and [Y?2?~2], where Y??—2= P,_, (C).
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We begin the proof by recalling the procedure just prior to (35.2).
We fix an M" on which Z,, > Z,, acts, preserving the orientation, without
stationary points. We also fix on M" a Riemannian metric on M* for
which Z,><Z, acts as a group of isometries, Again T, S denote the
generators of Z, < Z,,.

We consider now F (T), the fixed point set of T: M» > M", and let
Vi, ..., V, denote the components of F (T). There is the normal bundle
ED:ED -V, to V, in M». As in section 38, £0) is a U(ny) >+
>< U (n,_ysp)-bundle. We first show

(39.2) In ZQ,(B(U () >< -+ ><U(n,_yp))) the element X7[£0)]
1s divisible by p.

Proof. Consider a component V of F(T); since ST = TS we have
S(F(T)) CF(T) and hence either S(V) =V or V,S(V),..., S»~1(V)
are all disjoint. We first consider the case in which V, S(V), ..., S?-1(V)
are disjoint. Suppose V="V, S(V)=7V,, ..., 5?~1(V) = V. The map
S:V,— V,induces S: E®) — E® between the respective normal bundles.
Since ST = T'S it is seen from (38.4) that

EO 5 Fo

.5(1)l l o)

Vi—V,

has S an equivalence of U(ny) ><---> U(n,_ys)-bundles. Hence
ED ~ @ ~ ..o = E® and [EW] + - - - + [EW] is divisible by $.

Consider next the case S(V)=V. Let V =V,. Note that since
Z, =< Z,has no stationary points, S acts on V; without stationary points.
As before S:V;— V; induces a map S: E® - E®, It follows from
(38.4) that S is a bundle map of the U(n) > -+ - ><U (#,_y,y)-bundle.
There is now a commutative diagram

E® L5 Ems

.5(1)l lg(l)

V,—> VS

where u, v are quotient maps. Moreover &M is also a U(ny)>< -
> U(n,_y)-bundle, and yx is a bundle map Suppose f: VS —
— B(U (ny) >+ + + < U (n,_,sy)) induces the bundle £®; then f» induces
£M. We have identified [V, f»] with [§®] in Q. (B(U(n)><" -
< U (n,,_l,z))). To show [£M] divisible by $, we have only to apply the
following simple extension of (19.4), whose proof we leave to the reader.
It uses, besides the proof of (19.4), Theorem (17.5).

(89.3) Suppose that V™ is a closed oriented manifold on which the group
G of order v acts differentiably, freely and preserving the orientation. Let
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VmIG be oriented so that the orbit map v: V™ — V™G locally preserves
orientation. Let X be a CW-complex for which all torsion in H, (X ;Z)
consusts of elements of order two. If {: V™G X, then [V™, fv]=7 V™G, f]
m Q,(X).

We can apply (39.3) to our case since B(U (ny) >< -+ >< U(n,_y))
has no torsion. Then [£®]= p[E®] is divisible by p and (39.2) is
complete.

We recall now from 38.6 that 2’ J I, [E®] = [Ty, SY] [M*]in Q,,,(Z,).
Since 2'[£@] is divisible by p, we have the following.

(89.4) If Z,<Z, acts on M™, preserving ovientation, without stationary
points, then [T, SY] [M"] is divisible by p in Q, ,(Z,).

We have now reduced (39.1) to a problem involving the £2-module
structure of 2, (Z,).

(89.5) If [Ty, S| [M"] is divisible by p in Q,((Z,), then [M"] is in
the ideal of Q generated by (Y] and [Y?2?-2].

Proof. Again Y° is p points and Y2?-2= P, _,(C). We obtain this
result directly from (35.4). Consider a Milnor base {[Y**]} for £2/Tor with
Y2r-2= P, _ (C) as in (36.4). We can write

[M"] = [M?] + [M%] + p[M3]
where [M?%] is a polynomial in [Y**] with 4k 3= 25 — 2 and where [M%]
is in the ideal generated by [P,_, (C)]. Now from (35.2), [T}, SY] [P, (C}]
is divisible by p. Hence [T, S1] [M%] must also be divisible by . From
(85.4) this is possible only if [M?] itself is divisible by $; therefore
[M"] = [M%] + $ [M%], and (39.5) follows. We have completed the proof
of (39.1).

We might note a corollary of (39.1). BorREL has shown that every
action of Z; > Z; on the Cayley plane has a stationary point [6, p. 237].
It follows from (39.1) that every differentiable action of Z,><Z; on a
closed oriented manifold bordant to the Cayley plane has a stationary
point. We need the Borel-Hirzebruch results for the Pontrjagin numbers
of the Cayley plane [7, p. 535], and we have to compute from MILNOR’S
results that the Cayley plane is a generator of £2/3 0.

40. Fixed point sets with trivial normal bundles

We consider orentation preserving diffeomorphisms 7' : M* — M»
of odd prime period. It is our contention that there are interesting
connections between the geometric properties of such T and the £2-module
structure of Q,(Z,). In this section we shall study a simple case of this
connection.

Here we suppose that all components of the fixed point set F have the
same dimension m << n. The normal bundle &: E — V™ over each com-
ponent is a U(n,) >+ -+ > U(n,_,,) bundle as we saw in section 38.



112 VIII. Fixed points of maps of odd prime period

We shall suppose in this section that the numbers n,, . . ., 0y _y/, are inde-
pendent of the component of F, and that in Q,,,(B(U (my)><---<xU (n,,_l/z)))
each & is bordant to the constant U (ny) >< « = - >< U (1, _y)-bundle over V™.
We shall say in this case that F™ has a trivial normal bundle.

We have an example of such a T at the beginning of the proof of
(36.1). There we considered 7: P, _,(C) - P,_,(C) givenby T [z,, ..., 2,]
= [z, 02, ..., 0°"12,], 0 =exp(2mi/p). This T has p isolated fixed
points; in our present notation at each of these points the normal bundle
is a U(l)><+-+>x<U(1)-bundle. For any V™ let T': P,_,(C) < V™ —
~ P,_1(C) =< V™ be given by T (x, y) = (T (x), ¥). Then the fixed point
set of T” is p copies of V™, and the normal bundle is trivial. We shall
show that any example is similar to this one.

(40.1) Theorem. Let T : M™ — M™ be an orientation preserving diffeo-
morphism of odd prime period p on the closed oriented manifold M.
Suppose the fixed point set is an m-manifold, F™, with trivial normal
bundle. Then [F™] € po+1 Qwhere (a — 1) (2p —2) <n—m = a(2p — 2).
If n —m=a(2p —2) then [M™) € p 2, while if n — m = a(2p — 2) then
[Mr]=b[P,_,(C)]*[F™] in Qp 2 where [F™] = p*[F™] and b== 0 mod p.

Proof. By the assumption of trivial normal bundles, there are integers
gy ooy By_yfe With 0, + <=+ 4 1, _yp= (n — m)/2 and with the normal
bundle £ : E - F™ bordant to a product U (n,) >< * * » < U (n,, _y/,)-bundle
over F™. Then

J: Qu(BU () >+ - » < U1y 1)) > -1 (Zy)
maps [£] into [T, Sm—n—1] [Fm] where S®—™-1 is the unit sphere in
Chi>cee»>xC%-w» and T:S57-m-18n-m-1 has T(v)=gFv for
v € C™, But J([£]) =0, and hence [T, S»—-m™~1] [F™] = 0.

In the 2-module 2, (Z,), we must therefore know the annihilator in
Q of [T, S»~m~1], This requires a slight extension of (36.1).

(40.2) If [T, X2»-1] is an element of !}2,,_1 (Z,) with u([T, X?-1])
F+ 0 CHyy_1(Z,: Z), then the annihilator of [T, X2n-1] is the ideal po+1 Q
where a(2p — 2) <2n—1<(a+ 1) (2p — 2).

Proof. We shall proceed by induction on 2% — 1. It follows by (34.5)
and (34.6) for n = 1. It also follows from (36.1) that the annihilator con-
tains pe+1 Q. Suppose the lemma is proved for 2# — 3. If [T, X2»-1] x
X [M™] =0, then (4, [T, X?n-1]) [M™] = 0 also. Hence if ¢(2p — 2) +
+3=2n—1<(a+ 1) (2p — 2) then [M™] € p2+1 Q by induction and the
assertion follows for 2# — 1. Suppose next that 2n — 1 =4 (2 — 2) + 1.
Then by induction we have [M™] ¢ 8 2, say p3[V™] = [M™]. Then

?a [T, Xa 2»-2) +1] [Vm] — O
[Ty, S1 [Pp—y (O)]F[V™] = 0.
by (36.2) where b= 0modp. By (36.5), b[P,_,(C)]¢[V™] € p 2. Now
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Q/p 2 is a polynomial algebra and hence is without zero divisors. There-
fore [V™] € p Q and [M"] € po+1 Q. This completes (40.2).

We return to the proof of (40.1). If a—1) (2p—2)<n—m =
= a(2p — 2) we have that [F™] € p* Q. With (38.6) we have

[T, St=m+1] [Fm] = [Ty, SY] [M"]
for a suitable (T, S»~m+1), Let [Fm] = p[Fm], then
po[T, SP=m+1] [F™] = [Ty, S'] [M™].

If n—m==a(2p—2), then p*[T,S*—=+1]=0 by (36.1). Then
[T,, S*Y] [M"] =0 and [M"] €5 Q2 by (36.5). If » — m = a(2p — 2) then
$9[T, Sa@»-2+1] = 5[ T}, S'] [P,_; (C)]* by (36.2), where b == 0 mods.
Then [P, _,(C)]*[F™] = [M"] in Q/p Q. Thus (40.1) is proved.

By all odds the simplest case of (40.1) is » = 3. Then (p — 1)/2=1
and the normal bundle é:E — F™ becomes a U(k)-bundle with
k= (n — m)/2. The requirement of (40.1) that F™ have trivial normal
bundle is considerably simplified over the case p = 3. In particular, if
m =0 the requirements are automatically satisfied, and we get the
following:

(40.3) Corollary. Suppose that T :M"— M is an orientation pre-
serving diffeomorphism of period 3 with a finite number of fixed points;
then in Q[3.Q, [M"] is in the polynomial subalgebra generated by [P, (C)].
If [M™] ¢ 3Q then there are at least 35+ fixed points where 4a < n <
= 4(a+ 1.

41. Manifolds all of whose Pontrjagin numbers are divisible by p

In this section we consider the ideal in 2, I(p) = 21, (p), where
I,,(p) consists of those bordism classes all of whose Pontrjagin numbers
are divisible by p, where p is an odd prime. We settle the structure of
1(p) completely, using the techniques of MiLNOR [26].

According to MILNOR [25, 41] there is in each dimension 4% a closed
oriented 4 k-manifold Y** with

1if 2% + 1 not prime power
sp([Y*F]) = {

gif 2k + 1 =g, g a prime

Such a manifold we call a Milnor base element. Our purpose now is to
show

(41.1) Theorem. For each odd prime p, there exist Milnor base elements
Y22 k= 1,2,... with all Pontrjagin numbers of Y***~2 diyisible by
p. The ideal I(p) is the ideal generated by Y° and the Y¥*~2 k= 1,2,.. .,
where YO is the 0-mansfold consisting of P points.

We suppose first that such Milnor base elements exist. Note that the
ideal generated by Y? is precisely p £. Since £ has no odd torsion, p £2

Ergebn, d. Math. N. F. Bd. 33, Conner and Floyd 8
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contains the torsion subgroup T of Q. Fix Milnor base elements Y?#*—2
as above; fill these out arbitrarily to obtain a Milnor base [Y*], 4
=1,2....

We note that the ideal J (p) generated by Y? and the Y2#*~2is con-
tained in I(p). We must prove the converse inclusion. Suppose [M*] €

€1,(p); then
[M] = Za;, 5, [Y¥< o> V48] 4 (V7]

where [V*] € J(p) and no a;  ; [Y#>< -+ > Y**]isin J(p). Suppose
always that 4, = ++- = 7, and order the (s;,...,7;) with 4; ;&0

lexicographically. Consider the largest 7, . . .,7;; then
Sfx- ik [M"] = 617'1' e Sil [Y‘”‘] P Sik [Y4ik:| =0 mOdP .

If a; . ;= O0modp then the term would not appear. Hence a; ;=
£ 0modp and so s;[Y*"] =0modp for some 7. Then 45, = 2p° — 2
for some s, and a; ;[Y#i><--->< Y4 ¢ J(p). It follows that
[M"] € J (#).

It follows that we only need to prove the existence of the Milnor base
elements described above. Let I(p) = X1,(p). We prove the following
via a straightforward use of the methods of MiLNOR [26].

(41.2) For n= 4k, Q,/1,(p) =0. Moreover, 2,,/1,,(p) = Z§®,
where d(R) is the number of partitions of 2k into even inegers, none of
which is of the form pi — 1.

Proof. We follow MILNOR in using the Adams spectral sequence for
the homotopy groups of the Thom spectrum M SO, [26]. There is a
filtration

Qﬂ — {SO, MSO},,, = Bo,n> BLr+tly ..
and a spectral sequence {E}?, d,} with E%f= B%t/Bs+tLt+1 and with
E%t= Homy [H*(M SO; Z,), H*(S°; Z,)],
the Steenrod algebra homomorphisms which lower degree by ¢ The
above cohomology groups are taken to be reduced. MILNOR has shown
the spectral sequence is trivial. It also follows from MILNOR’s construc-

tions that
EY"=0,n=F 4k, E}4* = (Z,)i®) .

We next show that I, (p)= BLn+l. Consider a map f:Sm+"—>
— M5S0 (m) which represents a given element of 2, = {S° M SO0},.
There is f*: H¥*(M SO(m):Z,) - H*(S™+»; Z ), which can be inter-
preted as an A-homomorphism H*(M SO0;Z,) —~ H*(S° Z,) lowering
degree by n. That is, we can interpret f* as an element of E}~»
= Hom?% [H*(M S50; Z,), H*(S%; Z,)]. We assume the fact that the edge
homomorphism of the spectral sequence maps {f} €{S°, M SO}, into the
homomorphism f*. Now B+ consists of all {f} for which f* is trivial.
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A use of the Thom diagram [40] shows BL:#+1 to be all [M"] € 2,
such that, in an embedding of M* in S™+" (m large), the Pontrjagin
numbers of mod  of the normal bundle to M=» are all zero. Use of the
Whitney sum theorem for mod p Pontrjagin classes then shows BLn+1
to be all [M"] whose Pontrjagin numbers (of the tangent structure) are
zero mod p. Hence

Q|1 (p) = 2| BL7+1= EQ»
and (41.2) is proved.

(41.3) I (P))p 824r = (Z,)* P, where &' (k) is the number of partitions
of 2k into even inlegers at least one of which is of the form p7 — 1.

Proof. According to MiLNOR [25, 41], £/p 2 is a polynomial algebra
over Z, with one generator from each dimension 4%. The remark now
follows from (41.2) and

(QIp Q) (p)[p 2) = QI (2) -

We now proceed to prove the existence of the Milnor base elements
Y2*=2 For k=1, P,_,(C) is such a base element. Suppose Y?# —2
exists for [ < k. There is the ideal I'(p) generated by Y?°, Y2r-2,, .,
Y2#*=2, 1t is seen from (41.3) that

L(p) = L(p), n < 2pF+1— 2,

while I, (p) is strictly contained in I, (p) for n = 2p¥+1— 2. Let [M"],
n = 2p*¥+1— 2, denote an element of I{) which is not in I" (p). We show
that
Sn/a (Mn] = ap

where 4 == 0 mod . Suppose on the other hand that s, [M*] = bp? Let
[Y"] be a class with s,/,[Y"] = p. Then

[M™] — bp[Yn] = Za; . [Y#><-+ > Y*#] + torsion
and every non-zero term on the right has 2 = 2.

A repetition of the argument used in the first step of the proof of
(41.1) shows that in every term there is an » for which 47, = 2% — 2.
Naturally s < £. Hence [M*] — bp[Y"] €I'(p), and [M™] €I'(p) con-
trary to the hypothesis. Hence

SpiaM*] =ap, a+0modp.
There exist integers ¢ and 4 with
ac+ prd=1.
Consider now [cM™+d Pyy1 1 (C)]. Wehave that ¢ [M"] 4+ d[Ppi14(c) 1€
€ I(p). Moreover
Saa(C[M"] + @[Pps1 1 (C)]) = acp + dp*+i=p.

Then ¢[M"] + d[Ppes1—;(C)] serves as Y2412,
8%
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42, Fixed point sets with trivial normal bundles; the general case

Again we consider an orientation preserving diffeomorphism
T: M- Mm of odd prime period. Denote by ¥™ an m-dimensional
component of the fixed point set F. The normal bundle §: E — V™ is
then a U(ny) ><+--><U(n,_y)-bundle, as shown in section 38, for
appropriate ny, . . ., %, _yo. We shall suppose that the numbers ny, . .., %y_y/5
only depend on the dimension m, and not on the component V™; that there
are no components of F in dimension n, and finally that for each V™, the
bundle (&) is bordant to the product bundle over V™ in Qm(B(U (ny) >< -~ -
> U(#y_y5)))- We shall say, then, if all these conditions are satisfied
by Fm™ for each m, 0 < m < n, that the fixed point set of (T, M™) has
trivial normal bundle. In this section we shall compute the ideal con-
sisting of all bordism classes admitting a representative M" on which
there is an orientation preserving diffeomorphism whose fixed point set
F has a trivial normal bundle. It turns out to be just the ideal, I (), of
bordism classes all of whose Pontrjagin numbers are divisible by #. This
result has implications about the £2-module structure of 2,(Z,). We
need a general lemma.

(42.1) Lemma. For a space X, let oy, . . ., ot, be homogeneous bordism
classes in 2, (X) and suppose that

Q,(X) 5 H (X;2) > H,(X; Z,)

maps oy, ..., &, tndo linearly independent elements of Hy(X;Z,). If
[M™], ..., [M™] €Q are such that Yoy [M™] =0 in Q.(X), then the
Pontrjagin numbers of each [M™] are all divisible by .

Proof. Suppose that «, is represented by a map f, : V™ — X.
There is the projection = : V™ >< M™— V™. By hypothesis,
2 [Vmes< M, frm,] = 0 € 2,(X). Note that we may as well suppose
my, -+ ny, = constant. It follows as in Chapter II that if ¢ € H*(X; Z,) and
if p,, denotes a product of Pontrjagin classes, taken mod p, then

Z (P (V™>< M™) 2 f (c), o (V™ >< M™)) = 0

in Z,, where ¢ denotes the orientation class.

Suppose now that m, = - - - = m,. We prove the result by induction,
assuming that M™, ..., M"—1 all have Pontryagin numbers 0 mods.
There is a ¢ € H™(X; Z,) with

Cotplog)y=1,4c,tu(e)y=0kF1.
By the additivity theorems for mod p Pontryagin classes
oV M%) = 1® po(M™) + Za, 0 b,
where dega; > 0. Finally &} f¥ (c) = fF(c) ® 1, and the b; are products of
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the Pontryagin classes of M™. Now
<Pw ' U) <fl ) ® po(M U) + 2 <a1 ® b, U)

where dega; > m;. Now

o (V"> M%) = g(V™) < a(M™),
so that
(bo w1 (e), o) = K e), o (V™)) (pu(M™), 0 (M™)) +
+ X o V"" ) (s o (M) .

For I < % the above is zero, by the induction hypothesis about Pontryagin
numbers. For [ > & we have

(), o (V™)) = (e, 1u(og)) =0,
while {4}, (V™)) = 0 since degaj > m;. We thus see that
0=2(po" atfF(c), o)
= (o' 7} fk U)
= (¢, 1 (o)) (P (M™), o (M™))
= (Po(M™), o(M™)) modp .
Now (42.1) follows.

(42.2) If T: M — M*" is an orientation preserving diffeomorphism of
pertod p for which the fixed point set F has a trivial normal bundle, then all
the Pontrjagin numbers of M™ are divistble by p.

Proof. Let &, : E,, > F™ be the normal bundle, considered as
a U(ny) >+ > U(ny_y,-bundle. Now by (38.6), 2JI.([&.])
= [T,, $*] [M™]. But by the assumption that the normal bundle is trivial,
J L ([n)) = [T, S»—™+1] for a suitable periodic map on S*—™+1, and
hence 2'[T, Sn~m+1] [F™] — [T}, S'] [M"] = 0. Now the iu ([T, S*—™+1])

m<n

and ¢ u([T;, S']) are linearly independent in H, (Z,; Z,), so by (42.1) the
Pontryagin numbers of [F™], 0 < m < » and of [M"] are divisible by .

We now set out on the converse problem of (42.2). Namely, given an
element of (2, all of whose Pontrjagin numbers are divisible by p we
must show a representative M and an orientation preserving T: M* — M»
of period , such that the normal bundle of the fixed point set is trivial
in the sense of this section. In view of section 41, it suffices for each %
to find an M*, n = 2% — 2, with s,/, [M"] = p mod p2.

The examples will be iterated complex projective space bundles. We
first summarize the basic facts concerning these, due to BoreL [5] and
Borer-HirzeBrucH (7, p. 513]. Let £: E— X be a U(r)-bundle with
fiber complex space C*. There is the unit sphere bundle £: B— X, and
the action of S (the center of U(#n)) on B given by scalar multiplication
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in each fiber. The generated map #: B/S' - X is the projective space
bundle, with fiber P, _,(C), corresponding to &.

Recall that H*(B(S); Z), the cohomology ring of the classifying
space of S, is a polynomial ring. Denote by a ¢ H2(B(S); Z) its generator.
The characteristic homomorphism ¢ : H*(B(S); Z) -~ H*(B/S'; Z) maps
a in the element g (), which we also denote by a. Since p : H*(B(SY);2) —
— H*(P,_,(C);Z) is an epimorphism the fiber of % is totally non-
homologous to zero in B/S'. Moreover n* : H*(X; Z) — H¥(B/S'; Z) is a
monomorphism and every element of H* (B/S'; Z) is uniquely represented
as

¥ () + an*(xy) + -t an ¥ (x, )

Suppose next that &, and therefore also 7, is a differentiable bundle.
We need here only the case in which the Chern class of £ is factorable as
(14+5;)...(14b,). There is the tangent bundle along the fiber in
B/S'; according to BoreL-HIRZEBRUCH (7, p.514], it has Chern class

(423) A1 —a+n*(®))...(1—a+ n*(b,)). But this bundle is
actually aU(n— 1)-bundle hence

(424) (@—n*()) ... (@ —7* (b)) = 0.

We also need the following remark in order to compute the Chern
classes of certain bundles that we encounter.

(42.5) Suppose that (S, X) denotes a free action of S* on X, and that
the corvesponding principal Sl-bundle X — X|S! has characteristic Chern
class a € H*(X|S'; Z). Consider now X > C* with the action of St on the
product given by b(x, 2z, ..., %) =), i7"z, .., % 2) where
Ny, - - ., Wy are fixed integers. The complex vector bundle &: X >< C¥/S1 —
— X/S' has Chern class (1 + nya) ... (1 + na).

Proof. It is seen that & splits into the Whitney sum of line bundles.
It is then sufficient to check the assertion for the case

E: X ><C/S'— X/St,
where
Hx, 2) = (¢(x), £ 2) .

Consider S' C C and replace X ><C by X > S. Let »: X < S'—>
— X >< §YS! denote the orbit map. There is the map ¢ : X — X > SY/S?
defined by @(x) = »(x, 1). It is seen that

¢(e(®) = ¢(v), e = exp(2mifn)
and that ¢ induces a homeomorphlsm X|Z, = X > 5151, The circle
group SYZ, acts freely on X/Z,. Identifying SYZ, with S! by ¢ — ¢, we
see that
@ (SYZ,, X|Z,) —~ (S, X =< S1SY)
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is equivariant. We are thus reduced to computing the Chern class of
(SYZp, X[Z,).
To do this we look at the Gysin sequence

<+ Hr(X) —> HT-1(X/S}) i)H""'l(X/Sl) NI

where the Chern class is §(1); that is, the image of the unit class under
HO(X/SY) — H?(X/SY). In this Gysin sequence H7-1(X/S!) is really
Hr—1(X/S'; H'(S")), where S! is the fiber of X —» X/S'. We have

HY{X) - HY(X|S") - H*(X|SY)

2Y(X|Z,) -~ H*(X|S") - H?(X]S")

where # occurs since H'(SYZ,) -~ H*(S") has degree #. Now (42.5) will
follow.

We now proceed to the construction of our examples. We set the
examples up in two ways, one for geometrical insight and the other for
computational purposes; consider first the more geometric. Suppose we
are given a differentiable action (v, M™) of the circle group S' on the closed
oriented manifold M». We define two actions t,, 7, of S on I? > M* by

Hz, x) = (t2, %), forz
t(z, x) = (tz, t(x)), for 7,

where ¢ and z represent complex coordinates for S and I? respectively.

Restricting to S'>< M™ we obtain induced actions (z;, S' > M") and
(Tg, St>< M") which we shall show are equivariantly diffeomorphic.
Define ¢ : S1>< M* — S' > M by (¢, x) = (¢, £(x)). It is easy to check
that ¢ is an equivariant diffeomorphism.

Now from the disjoint union (7, I2>< M") U (1, —I? >< M™), we
form a closed oriented (# + 2)-manifold M*+2 and a differentiable action
v of S! on Mn+2 by identifying the boundaries (r,, 2> M") and
(T, 12 >< M™) via ¢.

Thus given (v, M™) we receive (7, M™»+2). Consider now the singularities
of (v, M»+%). Note that in (z;, I2 < M"), S! acts freely on I% > M» —
— (0> Mn), and leaves every point of 0 >< M=» stationary. Also in the
action {1, I* > M"), S acts freely on I% > M" — (0> M™) while the
isotropy subgroup at (0, x) is precisely the isotropy subgroup for (v, M")
at x. Thus the singularities of (v, M™+?) are easily catalogued, as well as
the normal bundles. The following remark, easily verified, reveals the
relevance of this construction to our problem.

(42.6) Consider a differentiable action (v, M™) of S on the closed
oriented manifold M, and the action (v, M"+2) constructed above. There
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are the maps T : M — M» and T': Mr+2— Mn+2 of period p given by
T(x) = po(x), T'(x) = o(x), where o = exp(2as/p). If the fixed point set
of (T, M™) has trivial normal bundle, then so does the fixed point set of
(T, Mn+3),

We look now at the alternate description of (z, M"+32). Consider the
action of S! on S%>< M™ given by ¢[(z, 2,), ¥] = [{t7, ¢2,), :~{y)], and
let S3 > M™/S? be the orbit space. There is the action (7/, $3 >< M"/S?) of
S! which is induced from [ (2, 25), ¥] = [(#21, 25), ¥] on 53 > M™".

(42.7) There is an equivariant diffeomorphism 0 of (', S3 > M™/SY) onto
(v, Mn+3),

Proof. Consider first the set 4 C S3>< M given by {[(z, 25), ¥]:
ol S |z} Define 6, 1 A — I* > M by 0, ([(z1, 20), ¥1) = (2a/2a (2 |2]) - 3)-
Then 6, ([(t2,, t25), £72(9)] = 6:([21, 22), ¥]) and thus 6, induces a map
0,: A/S1-> I? > Mn. Moreover, 0, : (7; A]SY) — (7, 12 > M") is an equi-
variant diffeomorphism.

Consider next B ¢ S > M" given by {[(2, 2), ¥] : |21] = |2,|}. Define
0y: B — I* > M™ by 0,[(2), 23), ] = (21 |2a|¥ |21|*22. (21/]24]) - ). As before
there is an induced map 8,: B/S1-> 12> M=», and 0,: (7', B/SY) —~
— (T,, I? >< M™) is an equivariant diffeomorphism. Finally on 4 N\ B we
have @0, = 0, where @: (7;, S! >< M™) = (t,, S' > M"). There is generated
an equivariant diffeomorphism 6 of S3>< M"/S! onto M"+2 and the
remark follows.

We shall sometimes denote (v, M»+2) by E(vr, M"). Iterating the
function E, we get actions (v, Mn+2¥) = E* (7, M"). Thus from (v, M")
we get a sequence of manifolds Mnr+2k k=10,1,2,... together with
actions of S on Mn+2k,

Repeated use of (42.7) yields an explicit formula for M»+2¥; namely,

Mn+2k ((S3)k >< Mn)/T*
where the %-dimensional toral group T* acts by
* (b - oo ) (o @), - - s (200 @), )
= ((h21, hwy), (T 20 bawy), - - -, (2102 BwR), 3 () -

There is the action of 7% on (5%* obtained from (*) by deleting y.

Let L2k = (S3)%¥/T*, There is the characteristic homomorphism

o: H*(B(T*; Z)—~ H*(L**; Z) .
Consider H*(B(T*); Z)=Z[a,, . .., 4], and denote the characteristic
classes p(a;) also by a;.

(42.8) The cohomology ring H* (L2*; Z) is generated by two dimensional
elements a, . .., ay and these are subject only to the relations a% =0,
dd=a;a;_;, 257k In particular H2*(L2¥;Z) is generated by
(a)* = aya,. . . ay.
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Proof. For 2 = 1, L? = S% and the remark is clear. Suppose now the
result is valid for £ — 1. We let 7% = T*-1>< S1. There is the projection
(S%)* — (S3)k~1 given by (x;, ..., %) —> (¥4, . . ., #x_,), and it is seen to
be equivariant with respect to the 7%-1-actions. There is then induced

E: (S3)k/Tk~1 - (S3)k-—-1/Tk—-1 — LZk—-Z s

an S3-bundle. It is seen that £ is the sphere bundle of a complex plane
bundle &: E — L**~% where E = (S3)k-1>< C¥T*-1 is defined just as
was L%, Now (S%)¥/T* = ((S})¥/T*~1)/(T*/T*-1) is just the projective
line bundle associated with & We receive then #:L%* - L2k-2 with
fibre P, (C) = S2

We must know the Chern class of §. We have introduced (42.5) for
this purpose; it shows that ¢(£) = 1 4 43 _;. We now apply (42.3) and
(42.4). We have that n*: H*(L?*-%) — H*(L?¥) is a monomorphism,
that every element of H* (L%*) has a unique representation as n* (x,) +
+ a - n* (%), and from (42.4) that (@ — a;_,) = 0. We note that 4 is the
characteristic class ;. Hence by induction we obtain the remark. We
now come to our main assertion.

(42.9) Theorem. Consider the action (v, M22~2%) where M??~2 is com-
plex projective space P,_, (C) and where 7 is the action of S' on M?*?»—2
gienbytlz, ..., 2] = [z, L2y, . . ., 17712, ). Weoblatn manifolds M320+2%-2,
k= 0. The mawmifolds M», for n=2p% — 2 have s, [M*] = p modp?,
and hence are Milnor base elements of the bordism algebra Q/p Q. _

Proof. Consider P,_;(C) = $22~1/S! in the usual fashion. We may
regard M2?+2k-2 a5 (S3)k 5 S22-1/Tk+1 where T*+1 acts as

TR ) N (R ) R W 70 R C AR )

= ((hzn, bwy), - - Giabez Bewr), Gega e G M k%o - - o0 b P 1 %,)

Now then we have a (2p — 1)-sphere bundle

E: (S%* >< S2o-1T% _» [2k
and z:M?2+2k-2 L2k js the associated complex projective space
bundle. It is then seen from our discussion of projective space bundles
that n*: H* (L?*) - H*(M??+%¥-2) is a monomorphism and that every
element of H* (M?2+2%-2) is uniquely represented as
N* (%) + Appan* (%) + 00 + ai;;n*(xp—l) )

where a,, . . ., a;,; denote the characteristic classes of the T%+1-action.

It is seen by (42.5) that the Chern class of & is

(I4+a)(1+2a)...0+ (P~ Day).

The tangent bundle p to M?22+2%-2 splits as p = u, + @y, where p, is
the tangent bundle along the fiber and g, is the normal bundle to the
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fiber. By (42.3) the Chern class of g, is
cl) = (1 —axpy) (1 — ap g+ % (@) - - (1= appy + (2 — 1) 7% (ay)
and by (42.4)

B r1(@r— 1% (@) - - (@ — (P — 1) 7*(a)) = 0.
We shall denote a;_, by b and #*(a;) by a. We see from (42.8) that
akb?-1 is a generator of H2»+2k—2(J)f2r+2k-2) while for < p — 1,
avtk—i-1pi =0 by dimensional considerations. The formulas above
become

@ bb—a)...b—(p — a)=0,

@ cl)=01-0b(1-b+4a)...(1=b+(p—1)a)

Let n = 24* — 2, and consider M". Recall now the universal Pontr-
yagin class $,;4(#1, #3 - ..). For a vector space bundle 7, let s, (7)
= Su/4($1(%), po(7), . . .). If the base space of v is an oriented manifold
Vn, let s,75([r]) = {Sn/a{t), 0 (V™). Recall also the additivity theorem of
Troum [41]

Sn/a (1 + Ta) = Spja(T)) + Sw/a(72)
modulo 2-torsion.

We now have

Sn/a [M™] = Spiq (1] = Spa [pa] + Snzala] s
and

Snjalts] = {Snfa(Pr(pta), - - ), o (M™))
= (n* (%/4(?’1(”" -), o (M)}
= (Spa(P1(L2F), . . ), mu (0 (M™))
=0.

Hence s,/ {M™"] = 5,4 [p5,]. It follows from (ii) that the total Pontryagin
class of y, is

A+ +0—a?...(1+ (- (p—1a))

and
S () = BN (0 — @Ik (0= (p— D)

We shall now show that

Saia(p) = pa¥*=*be=1 mods? H* (M 2)
Since a?*~#b?-1! is a generator of Hn(Mn), it will then follow that
Snja [M"] = p mod p%.

Since by (i)
0=0(b—a)...(b—(p—1)a)=0b?— a?~1bmodp
we have
b? = a?-1b + pc  for some c.
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Then,
b1 = (pr)r-1pr-1
= (a?~1b + pc)p-1hr-1
= (a2 H1pr-14 p(p — 1)a?* 3P F2pr—2c)pr—1 mod p?
— ap2—31>+2b2p—3(ap—-lb + p(p — 1) C)
= gt* 3P +2pp-3(gp=1p | p¢) (a?~10 + p(p — 1)¢)
= g~ Ppr-1modp?.
Similarly we leave to the reader that
b 1= gt*—Ppr-1modp?.
Ifr=1,...,—1, then
(b — ra)? = b? — rPa? modp
= q?~1b — 74? modp
=a?~1(b —ra)modp .
From the above computation,
(b — ra)?*~'= a?*~? (b — ra)?~1 mod $2.
Then
Swialp) = #2714 4 (b — (p — 1) @)~ mod? —
= pat*~*h?-1 mod $*
and the theorem (42.9) is proved.

(42.10) Theorem. The ideal in £2 whose homogeneous elements admits
representatives M™ on which there is an orientation preserving diffeo-
morphism T : M»— M™ of period P for which the normal bundle to the
fixed point set is trivial is precisely the ideal I(p) comsisting of those
bordism classes all of whose Ponirjagin numbers are divisible by .

Proof. Half of our theorem follows from (42.2). Consider M2?-2
= P,_,(C) as in Theorem (42.9). There is the action of S! on M27-2;
according to the proof of (36.1), the map T': M27-2— M27-2 given by
T (x) = p(x), o = exp(2ai/$) has trivial normal bundle as defined in this
section. We use now (42.9), (42.6) and the results of section 41 to prove
the theorem.

Our main reason for making the above constructions is to gain
additional knowledge concerning the module structure of 3,(Z,). We
consider generators {[7, S?»~1]} for ,(Z,), and let y, = [T, S*»-1].
We ask how many, and what are relations of the form

v (M) 4+ s [M¥] 40 = 02
We shall see that the examples of (42.10) give a host of such relations.
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Consider the sequence of manifolds M? = p points, M2?7-2= P, _,(C),
M2, ..., as constructed in (42.9). As in (42.10) there is the map
T : M2r+2k_y M22+2k of period p. It is seen inductively that the com-
ponents of F (7T), together with their appropriate orientations, are

M2p+2k—2’ __M2p+2k—4, s, (_ 1)kM2p—2, (_ 1)k+1M0 .
The normal bundles & are trivial. Using X' J(§) = 0, we get a relation
(4211) [T} Sl] [M2p+2k—2:| _ [T} 53] [M2p+2k-—-4:| 4o
+ (= 1)F[T, S**1] [Py, (C)] + (= 1)¥+1p [T, SP2+2871] = 0,

where T:829-15 §24-1 < p 4 Risgiven by T'(z,, .. ., 2) = (02, . . -, 023).
However T : S22+2k-1_5 §2p+2k-1isgiven by T (%1, . . ., ¥p_1,%, « - +» Zk41)

= (0%, -+, 071 Hp_1, 021, - - -, 0%k41)- i
We shall return in section 46 to put these relations in final form.

CHAPTER IX

Actions of finite abelian groups of odd prime power order

We now deal with problems of $ odd similar to those of Chapter V
for p =2. We lead off in section 43 with differentiable, orientation
preserving actions of (Z,)%, $ an odd prime, on closed oriented manifolds
Vn. The primary aim is to give existence theorems for stationary points
of such actions. Our interest in such problems has been aroused by the
work of BOREL [6, 9], although we attack the problem from a different
point of view. An example of a corollary of our results is that if V» has
one of its Pontryagin numbers not divisible by p then the action has a
stationary point. We go on to note that if a toral group acts on V" with-
out stationary points then [V*] represents a torsion element of £,.

We give in section 44 those fragments that we know concerning
KonNeETH formulas for £, (X >< Y). Then in section 45 we consider
differentiable, orientation preserving actions of a finite abelian group
G of odd prime power order p* on V™ Here our real aim is in studying
periodic maps of odd prime power period; that is, the case G = Z * We
succeed in giving existence theorems for stationary points entirely
analogous to those of section 43 for the special case G = (Z,)%. It must
be admitted that the proofs here are quite difficult; it is to be hoped that
we have overlooked some simpler proof. A surprise in connection with
these theorems is that analogous results for maps of period a power of
two are false.

These last two chapters having dealt almost entirely with questions
concerning the structure of 2, (Z,) as an 2-module, it seems appropriate
in the last section 46 to summarize what we know about 2,(Z,). Of
course in Chapter VII we settled completely the additive structure of
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0,(Z,). We now point out that we know considerable concerning
0,(Z,) as an 2-module, but presumably not enough to settle all our
questions.

43. Actions of (Zp)*

We illustrate the methods of this chapter by discussing actions of
(Z,)%, p an odd prime.

Given an action (G, V") and a subgroup H of G, denote by F(H, V")
theset of all x € V* with H x = x. The singular set S (G, V") is defined to be
the union U F(H, V"), where the union is taken over all subgroups H
of G with H = {1}. Clearly S(G, V") is the minimal invariant subset
such that G acts freely on the complement. Often S (G, V») is not a
finite disjoint union of submanifolds, but the following lemma provides
us with a case in which it is.

(48.1) Suppose that the abelian group G acts on V", and that H is a
subgroup of G with G/H = Z,, p prime. Suppose also that H acts freely on
V. Consider the family K of subgroups of G with G = K >< H. We have
K = Z, for each K. Moreover the family F (K, V") is pairwise disjoint and
S(G, V™) = vug F(K, V7).

Proof. Consider a subgroup K’ of G with K’ = {1} and with
F(K', V") +=¢. Then K'nH={1} since H acts freely. Hence the
projection G — G/H = Z, is a monomorphism on K'. Since K’ {1},
then K'=~ Z,. Since K’ maps isomorphically onto G/H, it is also seen
that G = K' < H.

It follows now that the F(X, V») are pairwise disjoint. For if
F(K;, V) nF(K,, V" = @, then F (XK', V") &= 0 where K’ is spanned by
K, and K,. Then K'~Z, and hence K; = K, The remark follows.

Suppose given a differentiable, orientation preserving action of (Z,)*
on a closed oriented manifold V*, p an odd prime. Suppose also given a
Riemannian metric on V* invariant under the action. We define in-

ductively a sequence
Vn Vntl ., Vrtk

of closed oriented manifolds together with actions of (Z,)* on V**, Here
we consider {Z,)* as the group generated by elements T, ..., T with
the relations Tf =1, T;T;=T;T;. Denote by (Z,)* the subgroup
spanned by T4 _z4p0 -+ +» T

Suppose that V»+t has been defined, ¥ < %, together with a differen-
tiable, orientation preserving action of (Z,)¥ on V»+% Suppose also a
Riemannian metric has been fixed on ¥»+% invariant under the action.
We also take as an induction hypothesis that (Z,)t acts freely on Vr+2 There
is an action of (Z,)* on the unit cell I2 = {z: || < 1} of the complex
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numbers given by
z for j=hk—-1%
Tyl = {gz for j=k—1%
where p = exp(27i/p).

Now (Z,)* acts on I2> V7+t via the diagonal action; consider in
particular the action ((Z,)2*1, I > V»+%). It is seen that

S((Z)1+1, I >< Va+t) = 0 < S((Z,) 141, Vn+1)

Since (Z£,)* acts freely on V»*1, we are now in the setting of (43.1) with
G = (Z,)**, H = (Z,)*. Hence

S((Z,)t+1, Ve+1) = UgF (K, Vn+1)

where the right hand side is a finite disjoint union, taken over all K with
(Z,)*+! splitting into the direct product of K and (Z,)%

In particular, S((Z,)**1, I2 > V" +1) is now a finite disjoint union of
closed submanifolds. Thereis the product Riemannian metricon I2>< F/n+?
invariant under the action of (Z,)*. We consider a tubular neighborhood
N, of small radius, of S((Z,)t*!, I2>< V»+%) in I? > V»+%, Since S is
invariant under (Z,)*, so are N and N. Moreover N inherits an orientation
from that of I2 > V»+%, as then does N. Moreover the action of (Z,)*
on N preserves this orientation. Clearly (Z,)*+! acts freely on N, since
we have excised the singular set. We now let Vo+t+1= N, with its natural
action of (Z,)*.

We thus receive by induction the sequence V=, ..., V»+k of closed
oriented manifolds, carrying orientation preserving actions of (Z,)*. We
call the sequence a free resolution of ((Z,)%, V™).

In the above, V#+1+1 was the normal sphere bundle to 0> S ((Z,)t+2,
Vr+1)in I2 > V». We thus get the following.

(43.2) Vn+t+l s the bundle space of a sphere bundle

£ Vnrtel s e F (K, Vr+h)

where the union is over all subgroups K of (Z,)1+! with (Z,) 1+ the direct
product of K and (Z,)t. The map & is equivariant with respect to (Z,)*-
actions.

Of course in the above we allow the dimension of the spherical fiber
to vary from component to component of F (X, V7).

(43.3) Consider an action ((Z,)*, V™) without stationary points. In the
free resolution Vr, ..., Vn+k we have Vntk= @.

Proof. Consider the composed map 7 of

Vr+t+l_, S((ZP)IH, Vn+t)C Vn+t
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According to (43.2), each #{x) is then fixed under a subgroup K.,
of (Z,)**1 with (Z,)t*! the direct product K; ,;>< (Z,}). Consider now the
composition ¥': Vr+k— P of

Vatk_s Pr+k—1_y ... 5 o+l P

For each W(x), there are subgroups Ky, ..., K, of (Z,)* with K,;¥(x)
= W(x) and each K, as above. It is seen inductively that (Z,)*+! is the
direct product K, > K, >+ -+ > K,;. Then W(x) is fixed by the direct
product K > -+ < K; = (Z,)*. That is, ¥ maps V*+¥into F((Z,)*, V™).
The remark follows.

We proceed now to the computation of [(Z,)¥, V*+¥] € Q. ((Z,)%);
it turns out to depend only on [V*]. However we need first an under-
standing of Q, (T*%).

Let T% = S1>< -5 8%, and select a point x, € S*. By a standard
torus T*C T* we mean a product X, >< - - - > X, C T* where each X is
either x, or SL. Each such torus receives a product orientation from the
orientation of S'. It follows from (18.1) that the bordism classes [T, id] €
€ ,(T*) form a basis for the free £2-module 2, (T*). Note that for each
standard torus Tt T* there is a dual torus T*-t=Y,>x---xY;
where Y; = St iff X, = x,.

Let f: V*»— T* be a map of a closed oriented #-manifold into T*.
For each standard torus 7t C T* there is by (10.4) a differentiable ap-
proximation g to f which is transverse regular on 7 It follows from
THOM [40] that g~1(T?) is a closed oriented (# + I — k)-submanifold of
V. It can alsobeseen that [g1(TH] € 2, ., _isindependent of the choice
of the approximation g; we may thus simply writeit as [f~1(T%)] €£2, 11—

(43.4) Let f: V- T* be a map of the closed oriented manifold V™ into
Tk Then [V, f]1 =0 in Q,(T% if and only if for each standard torus
T*C T* we have [f~1(TH] =01n 2, 1 _4

Proof. Suppose [f~1(T?)] = O for each Tt We can write
[V, f1= 21T id] [M™~*]

by (18.1). Suppose now that we have shown that for each standard torus
T™ with m > I that [M»-™] = 0. We shall show for a given standard
torus T that [M*»-1] =0,

Now [V, f] = 2'[T%,id] [M»~*], where the sum is over all standard
tori of dimension ¢ < 1. Form the pair (¥#, f) where V» is the disjoint
union ;<5 T% > Mn—%, and where § maps T% > Mr—% into T* by pro-
jecting onto T¢C T*. Then [V, f] = [V, f1in Q,(T%).

We seek now an approximation to f which is transverse regular on
T%-1, the dual of T% Select y, € S with y, near x, but y,= %, Define
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tori 7" analogous to T except that the role of x, is played by ¥,. There
are natural maps 7: Tt - T, all close to the identity. Let g=f on
Tt>< Mn—* and g = rf on T*%> Mn»—*t with T* distinct from 7. It can
now be seen that g(T*>< M"-%) N T*-t=¢ if T* is distinct from 7T*
and ¢ < 1. Since 7% and 7%-* intersect orthogonally in the point
(%9, - - -, %) it is seen that g is transverse regular on 7%-%, and

[ (T%0)] = [F(T*-2)] = (M= = 0.

The lemma then follows by induction on & — 1.

We can now return to free resolutions. On the A-dimensional torus
T* consider the free action of (Z,)* given by

Tz, ooy 20) = (21 - -, 0%, .-, %)

where ¢ = exp(2zi/p). This gives a free action of (Z,)* on T*%, whose
class we denote by y = [(Z,)%, T*] € £,((Z,)").

(43.5) Theorem. Given a differentiable, orientation preserving action
of (Z,)% on the closed oriented manifold V*, comsider a free vesolution
Ve, Vatl, ., Vntkof (Z,)%, V™). The element [(Z,)%, Vo+¥] of 2, 1((£,)%)
18 given by

[(Zo), Vo+¥] = [(Z,)¥, T¥] [V"]
in Ry, 1(Z,)-

Proof. Denote by 7 the action of (Z,)¥ on T% > V* given by g(x, ¥)

= (gx,y). Foreach 0 = I < %, let (Z,)* act on the torus T*-% by

(B, - 02 - TS R—1

Tizy, oo or 23y) = {(zl, e Zgg) i >R—1T.

We interpret the torus 7° as consisting of a single point. For each
0 = I < % define a free action 7, of (Z,)® on T*-tx< V*+t by g{(x,y)
= (gx, gy). Here (3, V" *¥) is just the free resolution ((Z,)*, V»+¥).

We shall first prove that [t%, T >< V"] = [7,, T% >< V*] in 2,((Z,)").
There is the projection map T%>< V» - T*, equivariant in both the
actions 7 and 7,. There are induced maps of orbit spaces

7 (TH(Z,)*) < VP — T*|(Z,)* for 7,
7y (TF < VM(Z )% —~ T*/(Z,)* for =, .

We regard m; and 7, as inducing the actions 7 and 7, from the action
((Zy)%, T*). It can be seen that in order to prove [r, T% > V7]
= [1y, T® > V*] it is sufficient to prove that =, and =, represent the
same element of £, .(T*(Z,)*). Now T*/(Z,)* is just a torus, so we may
use (43.4). Denote T*/(Z,)k by T'*.
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The standard tori in 7”* have the form X, ><« -+ > X,/(Z,)* where
each X is either S or the subgroup Z,, C SL. Since m,, 7, are differentiable
fiber maps they are transverse regular on each standard torus in 7%,
Now

Ay (T'Y) = T't < Vn,
i HT') = (Xy >< -+ o< Xy) < VH(Z,)* .
If I > O clearly [#71(7'Y)] = 0. We also know from (19.4) that
PP (T = [Xy < < Xy < V7]
Hence if I > 0 then $*[z31(7'Y] = 0. Since £ has no odd torsion then
[z 1 (T'Y] = 0. If I = 0, it is seen that
[ 1(T7%)] = [ {(T"%)] = [V"].
Applying (43.4), we have [t, T* > V*] = [7,, T*>< V*].
We shall next show that [v,, T~ 1< Vn+1] = [7; ,, TF-1-lsc Pn+1+1]
in £, :(Z,)¥). Let
B”+k+1= S%]) e .. Sb,_l_l)x Iz > Vn+t .
There is an action 7j of (Z,)* on B*+¥+1 entirely analogous to 7, except
that on 51 is replaced by I2 In fact,

(7}, Bﬁ+k+1] = (—1)k=1-1[g,, Th=Ixc Pn+1],
Now

S, Br+¥+1) = Shy>< -+ > Sh_g_1y>< 03 S((Z,)+1, V7+1)
A tubular neighborhood M of S((Z,)*, Br+*+1) is then given by
M= Shy><-+<S},_j_y=<N
where N is a tubular neighborhood of 0 >< S((Z,)t+1, V*+1)in [2 > Vn+t,
Hence
M = ('—‘ l)k_l_ls}l) XX S}k—l—l) V”+1+1
— (_ l)k—l—lTk-t-—lx Vﬂ+1+1 .
Considering the free action of (Z,)* on B*+*¥+1\Int M, we have
[(Z,)%, (Br+*+\Int M)']
— (.__ l)k—l—l([rl, Tk—lx 'Vn+1] — [TI+1’ Tk—l—lx 'Vn+t+l:|) —_ 0 .
Hence finally
[v, T* > V"] = [vy, V**¥],

which is the assertion of the theorem.

(43.6) Corollary. Consider a differentiable, orientation preserving action
of (Z,)* on the closed oriented manifold V. Suppose the action has no
stationary points. Then [V™] annihilates the element y = [(Z,)%, T*] of
2:.((Z,)%); that is, y - [V*] = 0 in 2, .(Z,)%).

Ergebn. d. Math, N. F. Bd. 33, Conner and Floyd 9
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Proof. Consider the free resolution V», ..., V»+k According to
(43.3), V»+¥= ¢, Hence from (43.5), y - [V*] = 0.

(43.7) Corollary. Consider a differentiable, orientation preserving
action of (Z,)* on the closed oriented manifold V™. If there are no stationary
points, then the Pontryagin numbers of V* are all divisible by p.

Proof. By (43.6), [V'*] annihilates the torus y in £2,((Z,)*). However
under the composition

‘Qk((zn)k) - Hk((Zp)k; Z) - Hk((Zp)k; Zp) ’

y is seen to map into a non-zero element. The result then follows from
(42.1).

(43.8) Corollary. Consider a differentiable action of the toral group T*
on a closed oriented manifold V™. If there are no stationary points, then the
Pontryagin numbers of V* are all O and hence [V*] represents a torsion
element of Q,.

Proof. Consider (Z,)*C T*. For p sufficiently large, it is seen that
(£ ,)* acts without stationary points. By (43.7), the Pontryagin numbers
of V» are divisible by  for all large primes p. Hence the Pontryagin
numbers of V' are zero.

A closed subgroup H of a compact connected Lie group G is of maximal
rank if it contains a maximal toral subgroup. Following Borel, it is of
maximal p-rank if it contains a maximal elementary p-group (Z,)*. We
now obtain the following, precisely of the type of Hopf-Samelson.

(43.9) Corollary. Suppose that G is a compact connected Lie group, and
that H is a closed subgroup. If some Stiefel-Whitney number of G/H 1s
not zero, then H is of maximal p-rank. If GJH is orientable and has some
Pontryagin number non-zero mod p for p a prime, then H is of maximal
p-rank. If G/H is orientable and has some Poniryagin number not zero,
then H s of maximal rank.

Proof. Suppose for example that (Z,)* is a maximal elementary
p-group. Let (Z,}* act on G/H via ({, gH)->¢gH. This action has a
stationary point if and only if some conjugate of (Z,)* is contained in
H. The results now follows from (30.1), (43.7) and (43.8).

In section 39 we introduced the notation SF(G)= X,SF,(G),
where SF, (G) consists of those classes of £2,, admitting a representative
V= upon which G acts differentially, preserving the orientation and with-
out stationary points. It follows from Chapter VIII that SF(Z,) = p @,
while SF(Z,>Z,} is the ideal generated by p and [P,_,(C)]. Unfor-
tunately we have not settled the structure of SF((Z,)*) for £ > 2. Con-
sider Milnor base elements Y°=p, Y222, . Y22 as in
section 41 with all Pontryagin numbers divisible by p. We have now
shown that SF((Z,)*) is contained in the ideal generated by Y?°,
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Y2r-2, .., Y?"'~% . We conjecture that SF ((Z,)F) is the ideal gen-
erated by Y?, ..., Y2#*7—2 Note also that we have

SF(T* C torsion ideal of 2.

We conjecture this to be an equality also.

44. Kiinneth formulas

In studying actions of (Z,)%, it would be most helpful to have com-
plete information on £, ((Z,)¥). Of course a Kiinneth formula for the
structure of 2, (X > Y) would be very useful. We do not know how to
obtain such a formula in general; this section contains such fragments
as we do know.

Recall that in section 6 we have defined a homomorphism

X 'Qm(X) ® 'Qq(Y)"> pra(X < Y),
with
(V™ 1@ [W, gl) = [Vm><Wn, f><g].
It is easy to see that commutativity holds in
'Qp+a(X>< Y) ® 'Qr(Z)

T |

2,(X) @ 2,(Y) ® 2,(2) Qpiesr(X® Y0 2)

2p(X) ® Dy, (Y < Z) .

Letting Y be a single point, commutativity in the above diagram shows
that

2:82,(X)® 2,(2) > 2, (X =<2)
can be factored through 2, (X) ® o2, (Z). Here we assume a knowledge
of the tensor product of graded modules over a graded ring; for example,
see CARTAN [12]. We thus arrive at a homomorphism

2:82:(X) ®p802,(2) > 2, (X < 2),
the oriented analogue of the homomorphism of section 8.
(44.1) Theorem. Suppose that Y is a finite CW complex with 2, (Y)
a free Q-module. For each CW complex X, the homomorphism
1: 2u(X) @024 (¥) > 2, (X< Y)

s an isomorphism.
Proof. For X a single point, the result is seen to be true since
0, (p) = Q. We show next an isomorphism
22 (I S" ) @2, (Y) > 2,(In< Y, 51 Y).

Ergebn. d. Math. N, F. Bd. 33, Conner and Floyd 9*
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Study of the triple I" < Y, S#»-1< Y, I"" 1> Y reveals a boundary iso-
morphism
Q,(I"< Y, 51 Y) > Q, (SP 1< ¥, "1 ¥V) = 2, ("< ¥, S~ 2< Y).
The isomorphism 8, (I, $7—1) = 2, (I"~1, S»~2) when tensored with
0,(Y) yields a commutative diagram

Q,(I7, 571 @0 2, (V) - 2, (I" < Y, $7-1 Y)

; }

0, (I71, 57 2) @, 0,(Y) > Q2,(I" 1< Y, 5" 2xY).
The isomorphism
g 02, (I 571 @n02,(Y) > 2,(In< Y, 5" 1< Y)
follows by induction on #».
Next we induct on the number of cells of X. Suppose the theorem
true if X has no more than 2 — 1 cells, and consider now a X with %
cells. There exists a closed subcomplex X, of X containing all but one

of the cells of X.
From the exact triangle

024 (Xy) —> £4(X)

\

L (X, X))
there results, since £2,(Y) isa free £-module, the exact triangle
Q4 (X)) @2, (Y) —> 2,(X) ®02,(Y)

\

QX <Y, X, ><Y)
We now obtain the commutative d1agram

-Q( )®99()

X><Y—>!2 ><Y)

X><Y X><Y

Q,(X, X) @,;

Diagramm wird zeichnerisch erganzt — the d1agram will be completed by drawing
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We have by induction that y; is an isomorphism. Also (X, X)) is
relatively homeomorphic to (I7, 5*~1) and (X =< Y, X; < Y) to
(In><Y,S5"1x<Y). Hence y; is an isomorphism. It now follows from
the five lemma that y, is an isomorphism. The theorem then follows for
Y finite. The extension to an arbitrary C W complex is left to the reader.

A simple example of (44.1) will eventually be of interest, so we
dispose of it now. Namely consider a closed oriented M*, and consider
£, (S1>< M*¥). Denote by «, = [S%,1d] € £,(S?) the class represented by
the identity map of S, and by ay = [#,, 1] € £2,(S") the class represented
by the inclusion of a point x, €S! into SL Then ,(S") is the free
£-module generated by «, and ;. According to (44.1), we may use y
to identify Q, (51> M¥) with 2, (5 ®, 2, (M*), and we do so. Hence
given a map f: V" — Sl>< M* where ¥V is a closed oriented manifold,
there exist 8, € £, (M*) and 8, _, € 2, _, (M*) with

(Vhfl=0® Boit % ® fy

in Q, (51> M¥). We wish to have at hand explicit formulas for f, and
Bn_1. It is easy to do this, following the style of (43.4).

Let m:S'> M* - M* be projection. Define B, € 2,(M*) to be
[V», af]. To define §,_,, choose an approximation f': V™ — 51> M*
which is transverse regular on the submanifold x, > M*C S >< M* We
shall suppose f =/f. Define V»—1=f-1(x,>< M*)C V", and define
Bar= [V, wf] €y (M¥).

(44.2) With the notation as above, we have

[V fl=01® oyt % ® B

wn 2, (S1>< M*¥).

Proof. According to (44.1), every [V, f] can be writtenas o, ® f§,_; +
+ o, ® B, A proof can now be obtained precisely in the style of (43.4).

Our immediate interest is in £, ((Z,)*), where (44.1) does not apply.
We go on to show a weaker result in this case.

(44.3) Theorem. Suppose that B(Z,) is a classifying space for Z,, p
an odd prime. For any CW complex Y the homomorphism

% 24(B(Z,)) ®a 24 (Y) > 24 (B(Z,) < Y)
1S a monomorphism.
Proof. We shall take a particular B(Z,). Consider the universal
space E(Z,) as the union of the odd dimensional spheres
S1, 81681, 81081081, ...

considered as joins of circles. Consider Z,C St as the pth roots of unity,
and let Z, act on S! by complex multiplication and diagonally on
Sn-1—8§loSlc- -+ 05 We make E(Z,) into a CW complex by pre-
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scribing its skeletons to be
Z,, 8,802,508, 8080Z,,....

Inspection shows that E(Z,) has exactly p &-cells for each %, and these
are permuted by Z,,.

There is then the classifying space B(Z,)= E(Z,)/Z,, which we
denote by L. Let L* denote the %-skeleton of L. Note that L has exactly
one cell in each dimension, so that (L¥+1, L¥) is relatively homeomorphic
to (I*¥+1, S¥). Note also that L2¥-1is a closed oriented manifold, namely
a lens space.

We prove by induction on % that
1 Qu(LY) @0 2u(Y) > Qu(L* < V)
is a monomorphism.
Suppose first that this is true for £ = 2#. The boundary
9: Q,(L2n+1, L2 > Q, (L2
is trivial, since 2, (L2"+1, L2%) is a free £2-module generated by a mani-
fold without boundary. Hence
0> 0, (L2) > Q, (L3+1) > Q, (L2 +1, [27) > ()
is exact. By right exactness of the tensor product,
QI 80 2, (V) > 2y (L) 84 2, (Y) >
> Q, (L1, L27) @ 5 2,(Y) - 0
is also exact. Also
0: 2, (L2 Y, L2"< Y) — 2, (L"x<Y)
is seen to be trivial, since
QL2+ Y, [27 < Y) = Q, (L4, [27) @, Q*(Y)
by the discussion of (44.1). We thus receive the commutative diagram
Q0 (L2780 2% (V) 2y (12%+1) @ g 24 (V) 2, (L1, L77) @, 2, (V)0

lx; lx. lx-
0 2, (L2 < Y) > Q, (L2 +1x V) > Q, (L2 1< Y, L2 =< Y) - 0

where ¥, is an isomorphism and x, is a monomorphism. It follows readily
from the diagram that y, is a monomorphism.
We next suppose that it has been proved that

1 Qu(L2) 00 2y (¥) > (L1 Y)
is a monomorphism, In order to proceed, we must show that
8: Q, (L2, L2»-1) > Q, (L2»-Y)
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is a monomorphism. Consider the diagram

Dy (27, L3 ——> Dy y (L2

l# l#
Hyq (L%, L2#-1) S Hypy (L*1) .

It is seen that @ 4 maps a generator « of £,,(L?", L2"-1) into 4 f§ where
fis a generator of Hy, _;(L?*-1). Consider then «’ = d«, and note that u
maps a' into p f. Since L?#-1 is a manifold, choose a neighborhood U
so that (L%#-1, L2»—-1\U) is relatively homeomorphic to (I2#-1, S2»-2),
Now Q. (Ln-1 [2n-1\[)) is a free Q-module. It is also seen that
Qo 1 (L¥1) > Qy, _,(L2#~1, [2»-1\U) maps a into $ times a gene-
rator of Q. (L~1, L2#»-1\T)). Since $ is odd and £ has no odd torsion,
it follows finally that «' is not annihilated by any element of 2 (except 0).
Hence 0: Q, (L?», L27-1) > Q, (L?**~1) is a monomorphism.

We have then the short exact sequence

0> Q, (L7 L2n-1) o> Q, (L2r-1)  Q, (L) > 0

and the exact sequence
0 (L2, L2013 0, (¥) > 2, (L0 @ Q4 (¥) 2, (L27) ® 2 2, (¥) 0.

Consider now the commutative diagram
QuL2n, L20-1)@ 4 2, (V)24 (L2 ) ® 5 2, (V)24 (L2) @5 2, (Y) >0

lxx ll: lla
0, (L2 > Y, L2n-15< V) > Q, (L#*~1x< ¥) - Q, (L?" > Y)

where ¥, is an isomorphism and y, is a monomorphism. It follows readily
from the diagram that y, is a monomorphism.
We have thus shown that

12 (1Y ®g 24 (V) > 2,(LF < Y)
is a monomorphism for every . It can be seen that
Q4 (L) ®g 24 (¥) » 24(L < V)
is a monomorphism.
Recall that 2, ((Z,)*) = Q,(B((Z,)*) = Q4(B(Z,) > -+ < B(Z,)).
We thus obtain a natural homomorphism

Q4(Z) ®g** ®g 04 (Z,) Q*((Zm)k) .
(44.4) Corollary. For p an odd prime,
Q,(Z,) ®q -+ @ 2¥(Z,) - 24((Z,)%)

1S a monomorphism.
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Recall that in section 43 there arose the problem of determining the
annihilator of the torus y € £,((Z,)%). Letting oy = [Z,, S1] € £,(Z,) and
identifying 2,(Z,) ®o " - ®g £24(Z,) with a submodule of 2,((Z,)%),
we have p=o;® -++ ® a;. At least the problem of computing the
annihilator of y is thus reduced to a problem concerning the £2-module
2.(2,).

We set up now the application of (44.2) and (44.3) that we use in the
next section.

Suppose that Z,, > H acts differentiably on the closed oriented mani-
fold V», preserving the orientation. Suppose also that the restriction of
this action to the subgroup H is free. We thus receive an element
B. = [H, V"] € ,(H). Consider also 2,(Z,), and the elements
oy = [Z,, Z,] and ay = [Z,, S']. In @, Z, acts on itself by left multipli-
cation; in ey, the chosen generator T acts by T'(z) = pz.

Consider now the action of Z, > H on 5! where Z, acts as in «; and
where H acts trivially. There is the diagonal action of Z, > H on S >< V',
which we denote by (v, St >< V") It is seen that 7 is a free action, and
we wish to compute [7, St >< V"] € £,.,(Z, > H). This we are not able
to do, but we do obtain partial information. By (44.3), we may consider
0,(Z,) ®, 2, (H) as embedded in Q,(Z, >< H).

(44.5) Waith the notation as above, there exists Pn 1€ 2 1 (H) with

[7. St V*] =2, ® Bu+ 2 ® fuia
in Q,.,(Z,><H).

Proof. Use for the classifying space B(H) a closed oriented manifold
which is N-classifying for NV large. We may suppose that the action
(H, V) is induced by a differentiable map g: V#/H — B(H), arising
from an equivariant map g: V" E(H). Under the identification
Q. (H) = Q,(B(H)) of section 19, [H, V*] is identified with [V*/H, g].

Consider now S V#/Z,, which has a free action of H on it. It
contains the space Z, > V"/Z,,. That is, we consider (H, V") as given by
an invariant subset of S > V*/Z  namely Z,> V*Z, We may then
extend g: V*— E(H) to an equivariant %: S'>< V*/Z, — E(H), which
we may as well suppose differentiable.

Let z denote the projection S'>< V*— Sl, and » the orbit map
St>< V*— Sl V»/Z,. There is then

f:S15< V> St E(H)

given by f(x) = (7 (%), kv (x)). Using the product action of Z, < H on
St >< E (H), it may be checked that fis Z, > H-equivariant. As in (44.3),
we may regard S! also as the 1-skeleton of E(Z,). The induced map of
orbit spaces

F:Si<VZ,<H S < E(H),
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where S'1= SYZ_, is such that under the identification Q4 (Z, < H) =
= Q.(B(Z,) < B(H)), [Z, > H, St = V"] is identified with [S1>< V"/Z, >
> H,{f] with { the inclusion S'* =< B(H)C B(Z,) >< B(H).

We now consider the element of £, (S’ > B(H)) which frepresents.
Letting x, be the appropriate base point of S'1, we see that

fﬁl(xox B(H)) =27, VMZ,~<H

which has been identified with V#/H. Also f on f-1(xy> B(H)) is seen
to be identified with g: V*/H — B(H). Applying (44.2), we see that
there exists B,.1 € 2, ., (H) with

[0, 1< VP =0, ® B+ % ® fri1
in 0., (2, > H).

45. Actions of groups of odd prime power order

We establish in this section existence theorems for fixed points of
periodic maps T of odd prime power period. The proofs very much
resemble the proofs of section 43 on actions of (Z,)¥, but are more difficult
in that the results of section 44 are used. While we are about it, we make
the proofs for actions of any abelian group G of odd prime power order.

Oddly enough, the result of this section do not hold for maps of
period 2%, as we show by examples.

We begin by considering a version of the setting of (43.1). Namely,
suppose the finite abelian group Z, > H acts differentiably on the closed
oriented manifold V*, preserving the orientation. Suppose also that the
restriction of the action to H is a free action. Let Z, > H act on the unit
cell I? of the complex numbers C by letting H act trivially and letting
the chosen generator T" of Z,, act via T'(z) = p2z. We obtain the diagonal
action (Z, > H, I? > V*). Using (43.1), the singular set is

S(Z,<H,PPx<V"=0xS(Z,<H,V*)=v, 0x<F(K, V"

where K ranges over the subgroups of Z, > H for which Z, > H splits
as the direct product of K and H.

It now follows that S(Z, > H, I*> V™) is a finite disjoint union of
closed submanifolds. We may then take a tubular neighborhood N of
S(Z,><H,I?> V" in 12> V*, of small radius and with orientation
induced by that of I2 > V. We then have a free action of Z, > H on
Vn+1, preserving the orientation. For want of a better name, we call
(Z,>< H, V*+1) the free extension of (Z, > H, V™).

There is the action of Z,, > H on S! > V", the restriction of the action
on I?> V* Since Z,> H acts freely on Wr+2= [2> V"\IntN, and
since

(Zpy>< H, Wnt2) = (Z, < H, St < V") U (Z, < H,—Vr+1)
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we see that

[Z,><H,S'>< V"] = [Z,>< H, V*+1]
in 2,,,(Z,><H). Now let 8, = [H, V"] € Q,(H). We see now from the
above equation joined with (44.4) that there exists ;. € £, 1, (H) with

(45.1) [Zy><H, VP =, ® B, + a4 ® fri1

in 02, (Z, > H), where the notation is that of (44.4).
We can now make the main definition of the section.
Definition. Suppose that G is a finite abelian group of odd prime
power order $¥, and that
0CH,C " CHy=6

is a sequence of subgroups with H, ,/H,=Z, for 0 < I <k Let
L;=H,H;_,, 0 <] < k, and choose a specific isomorphism of L; onto
Z,. Suppose now that G acts differentiably on the closed oriented mani-
fold V#, preserving the orientation. By a free resolution of the action
(G, V") we mean first of all a sequence of closed oriented manifolds

Vn, Va+l, |, ViR,

Secondly, we require that there exist on each V#+t a differentiable
action of (G/H,) >< L, >+ + + > L, preserving the orientation. In addition,
the following are required.

(a) The action of L, >--+> L, on V*+? shall be free. Note that

Lypa>X}X Lyt X LiC(GIHy) X} Ly < - = - < 4

and hence L, y><Ly>--+>=L; acts on V*+t with L,>--->=L,
acting freely. Note also that L, ;>< L, ><- - - >< L, acts freely on V7 +1+1,

(b) It is required that the action (L;,1>< -+ > Ly, V*+1+1) be a free
extension of the action (L;;;><(Ly><+-->L;), V*+?) in the sense
described earlier in this section.

Note in (b) that we had previously identified L, ., with Z,.

It follows from (b) that there is the sphere bundle map

PrHtil, S(L, <+ » < Ly, Vntd)

which goes along with resolutions, and that this map is equivariant with
respect to the L, ><- -+ > L;-actions. We obtain now a map as the
composition

PrttHlos §(Ly i< -+ = >< Ly, Vn+t) C Pntt,

(c) It is required that the map V»*+*— V'* obtained as the composi-
tion of
o+l Patti-1_y ... 5, Pn

map P+t into the set F(H,, V7) of stationary points of H,, and that the
map V#+t— F(H,, V*) be equivariant with respect to G/H,-actions.
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This completes the definition!

Consider now a given action (G, V*). What must be done to construct
a resolution ? Suppose that V*,..., V»+ have been constructed, to-
gether with actions, so that (a)—(c) hold thus far. Following condition
(b), there is just one choice for the space V#+%+1, namely the free ex-
tension of (Ly,1>< (Ly><+++>L;), V**). This also fixes the action of
L, 1><++-> L, on V*+% There is now also fixed the sphere bundle map
&:Ynitil, Urtl We show that w: Ve+t+l % maps V#+1+1 into
F(Hy.., V*) and that p(gx) = u(x) for g€Ly,><Ly><---xL,;.
Suppose the corresponding fact has already been proved with I+ 1
replaced by I. Consider x € V#+1+1 By the properties of a free extension,
&(x) € V»+1 s fixed under a subgroup K of Ly ,>< Ly <+ -+ > L; with
L, 1><+-->L, the direct product of K and L;><---><L;. If g€
€Ly ><++><L;, then g=%] where €K and I €Ly;><--->x<L;.
Hence

p(g (@) = nERIx) = nE@A (x)) = n(I(EW)) = n&(x) = u()

where 77: 7+t 7%, We leave it to the reader to prove that since & (#) is
fixed under K (G/Hy) ><L;><+++>L;, then n&(x) = u(x) is fixed
under H, ,;/H, considered as operating on F(H,, V™). Hence u(x) is
fixed under H, ;.

All that is left to do is to construct an action of G/H, ., on V»+i+1
so that V»+t+1 F(H, ,,, V™ is equivariant with respect to the G/H,4 ;-
actions. This is the delicate part of the construction of a free resolution;
we take care of it in the following theorem.

(45.2) Theorem. Let G be a finite abelian grouwp of odd prime power
order p*. Every differentiable action (G, V*), preserving the orientation on
the closed ortented manifold V', possesses a free resolution.

Proof. The above list of requirements for a free resolution is pre-
sumably not sufficiently large to allow us to proceed by induction on I.
For purposes of proof, we therefore add the following requirement.

(d) We require that each T+ be a finite disjoint union of sub-
manifolds V;'”, each invariant under the action of (G/H,) ><Ly><+++><L,.
It is furthermore required that for each 7 there exists a toral group
TCL,>--->L;, with T depending on ¢, and an extension of (G/H,) ><
>xLy>-+->xL to an action of (G/H,)> T such that the map
Vi+1> V" has the action of T on V7*! covering the trivial action of
T on V™

We now assume given a partial resolution V%, ..., V*+?, satisfying
(a)—(d) as far as it goes. As remarked already, V*+*+1 is determined.
It remains to find a suitable action of (G/H, ;) on V#+t+1,

Inorder to consider V' +2+1 we must consider I2 < P +1= U [2>< P¥+1,
By the inductive assumptions, there is for each 7 a toral group



140 IX. Actions of finite abelian groups of odd prime power order

T>OLy>< > L, sothat (G/H,y) > T acts on V}*! as in (d). We next
put an action of (G/H,) >< T on I2. Let T act trivially on I% Let L, 4
= H, ,1/H, = Z, act on I* with the generator of Z, acting by z - pz. Put
differently, we let L, ,; act on I? by choosing a homomorphism L, ,;— S!
= U(1). It follows from the character theory of finite abelian groups
that the homomorphism L, ;— S! can be extended to a homomorphism
G/H, — S1,since L, ,; C G/H,. We thus obtain an operation of (G/H,) < T
on I% Consider finally the diagonal action ((G/H,)>< T, I*>< VI+T),

We now go on to consider the free extension of (L; ;><+ > L,
V2+1), Consider the singular set

S(Lyqa>< < L, I2< ViFT)

According to our previous discussion, it is the union U 0 < F (K, V1),
taken over all subgroups K of L, . y>< -+ > Lysuchthat L, ;><--->xL;
splits into a direct product of K and L, ><--->L,. Note that there
are just a finite number of choices for K, and choose such a K.

We next express F (K, V%*%) as a disjoint finite union

F(K, V*h = UF;(K, V1) |
% 7 %

Here F; is obtained by choosing a component D of F(K, V#*1) and
letting F; = v gD, the union taken over all g € (G/H,) >< Ly><+-- > L.

We shall now define the pieces V#**+1 of V#+2+1 needed for condi-
tion (d). Namely consider a tubular neighborhood N of 0><F; in
I2 > V3t and let V#*+*+1= N. The tubular neighborhoods are assumed
to be of small radius, and taken with respect to a Riemannian metric
on V#** which is invariant with respect to the action of (G/H,;) > T.

Note that K = Z,. In fact it can be seen that there is a homomor-
phism ¥: L, ., — L, >< - - > L; so that K is the set of points (x, ¥ (x)) in
Ly < (Ly><---><L)CLyy><T. The component D'=0xD of
0> F (K, V#*%) is then a component of the fixed point set of a map of
prime period 4.

We may thus use the results of section 38. The normal bundle &(D")
to D' in I2 > V#** is then in a natural way a U (n;) >+ - >< U (#,_y1,)
bundle, where the #; depend on D’. Consider g € (G/H,) >< T and suppose
g maps D' into a component D", Then g induces a bundle map of &(D’)
onto §(D"), and in particular &(D’) and &(D”) are U(ny)><:--
>< U (#,_yj5)-bundles for the same #;, . .., #,_y75. Let F; = gD’, for all
g €(G/H,) >< T. The normal bundle N - F] = 0><F;is then a U (1;) >
>< U(n,_yp)-bundle. Moreover (G/H,;)>< T acts on N as a group of
bundle maps.

Denote by T' the center of U(ny) >< - --> U(n,_y,). Note that T’
is a torus (ST)™>< (SY)*>< -+ - >< (S)"»~ Y2 Now T’ acts on the sphere
bundle V*+*+1= N, and commutes with every bundle map V#+¥+1
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- V#*t+1 Hence (G/H,) >< T >< T' acts on VP11 Consider now the
subgroup K (G/H,) > T. Recalling that N is made up of normal
bundles to components of a fixed point set of K = Z,, we see from
section 38 that K C (G/H,) > T acts on N, and hence on V#*+¥t1 ag
actions of elements of 7. Otherwise put, there isa ¢ : L, ,;— T” so that
in Ly;y>< T > T' we have that each (v, ¥(x), ¢(x)) acts trivially on
V‘r,t+l+1.

] The homomorphisms ¥:L,,;— T and ¢:L, ;- T’ can be ex-
tended to homomorphisms ¥: G/H,—~ T and ¢:G/H,— T'. We can
now define the action of G/H, ;; on V?***1, First of all, let G/H, act by
letting x € G/H, act as does (x, ¥(x), @(¥)) € (G/H;) >< T > T'. Then
L, .1 CGJH, acts trivially, and we thus obtain an action of (G/H,)/L, .,
=G[Hy 4y

As we have already seen, it is automatic that V»++1- " maps
Vn+t+l into F(H,,,, V*). We have finally to check equivariance of
pr+t+lo, In o with respect to the G/H,,,-actions. Note that the map
Vettlo F(K, V3*t) has the action of 7" covering the trivial action
of T' on V#*1 Hence the map VF*t*1- T'» has the action of T > T”
covering the trivial action on V*. Let now g € G/H,, which represents an
element of G/H,,;. The action of g on VF***1 now covers the action
of g < ¥(g) on V#*t which covers the action of g on V. It is seen that
conditions (a)—(d) now hold for V=, ... Vr++l, The theorem is then
proved.

We can now extend (43.6). As in (43.6), y = [(Z,)*, T*] € 2:((Z,)*)
denotes the class of the natural action of (Z,)* on the torus T,

(45.3) Theorem. Let G be a finite abelian group of odd prime power
order p*, and suppose given a differentiable, orientation preserving action
of G on the closed oriented manifold V». If there are no stationary points,
then [V*] € Q, annihilates the element y = [(Z,)*, T*] in Q,((Z,)%).
That is, y - [V*] = 0 in Q1 1(Z,)).

Proof. Consider a free resolution V%,..., V#+% of the action, the

existence of which is guaranteed by (45.2). The sequence 0 C H; CH,C - - -
C H; = Gisassumed fixed, as are the isomorphisms L, ,, = H, .,/H, =Z,,.
We then obtain specific isomorphisms L, ><+ - » >< L, = (Z,)%.
Foreach 1 £ I < &, denote by f,4,€ £,,:((Z,)) the [Ly>< -+ < L,,
Vn+1], It follows from (44.2) that g,,,= o, [V*], where oy = [Z,, S1].
Since the action (G, V™) has no stationary points, it follows from require-
ment (c) of a free resolution that f,, ;= 0. It also follows from (45.1) and
the definition of a free resolution that for each 1 < I < % there exists
Brrr+1in Oy yz4:((Z,)%) with

Prizri= 01 ® Buyst % ® Brigyr,
where we consider 2, (Z,) ®q 2,((Z,)?) as embedded in 2,((Z,)**).
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Putting these facts together, we shall now prove inductively that
Prie=0,08® Bryz1=0,..., 08 -y ® f,,;=0.

Suppose thenthat o ® * - - ® o ® B, ;341= 0, where thereare 2 — T — 1
terms oy. It follows from (44.4) that

.Q*(Z,,) ®g " ®g .Q*(Z,,) ®q Q*((Zp)Hl)

is embedded isomorphically in £, ((Z,)¥), and it is in that sense that we
interpret the above equation.
We now have

a1®°"®051®ﬂn+1+“1®"'®“0® ﬂ;+1+1=0

in 2,((Z,)%). But since 2, (Z,) = £,(Z,) ® 2, in the fashion of reduced
bordism, we see that

'Q* (Zp) ®qg " ®q -Q* (Zy) ®q Q*((Zp)l)c 'Q*((Zp)k)
splits into the direct sum of

'Q* (Zp) ®n-** ®g Q* (Zp) ®q 'Q*((Zp)l)
and
Q4(Z,) ®g "+ ®q 2y ®g 2u((Z,)Y) -

Since oy ® *** @ oy ® Pryq belongs to the first of these groups, and
4 ® ® oy ® By to the second, we thus see that o ® - - -
e 0 ® By =0.

Hence o ® ® o ® =0, and (4, ® - ® o) [V*]=0 in
2, . ((Z,)*). The theorem then follows.

Just as in (43.7), we have the following corollary.

(45.4) Corollary. Suppose that the finite abelian group G of odd prime
power order P* acts differentiably on the closed oriemted manifold V=,
preserving the orientation and without stationary points. Then the Pontryagin
numbers of V* are all divisible by p.

We have promised to show such results false in case $ = 2. In order
to do so, we construct certain maps T of period 4. Consider T : P, (C) —
— P, (C) given by

T (2, 25, 23) = [271, — %3 ) -

Inspection of T shows that it has a single fixed point [1, 0, 0], and that
[1, 0, 0] is also an isolated fixed point of T2. We thus get an orientation
preserving action of Z, on P, (C) with just one stationary point. Moreover
Z, acts freely on a deleted neighborhood of that point. Taking the
diagonal action of Z, on P,(C) > P,(C), we also get such an action on
P, (C) >< Py(C). Finally, we get such an action of Z, on P,(C) by taking
T with
T (21, 29, 23, 24, 25) = (7, — %, s — %0 — 7)) -
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We get then orientation preserving actions of Z, on P4(C) and on
P, (C) > P,(C). Each action has just one stationary point, and Z; acts
freely on deleted neighborhoods of the stationary point.

From representation theory, taking orientation into account there
are precisely two ways in which Z, can act orthogonally on an 8-ball with
the origin the only singularity. By excising neighborhoods of the station-
ary points of P4(C) and P, (C) > P, (C), and fitting the results together
along the boundary, we thus get a manifold V8 upon which Z, acts with-
out stationary points. We can choose an orientation so that Z, preserves
orientation and so that [V8] = [P,(C)] & [P,(C) >< P,(C)]. If necessary
we can now add two copies of P, (C) >< P,(C) to make the sign positive.

(45.5) Example. There exists a differentiable, orientation preserving
action of Z, on a closed oriented manifold V8, without stationary points and
with

[V9] = [P(C)] + [Py (C) < Po(C)].

Note that V8 has Pontryagin numbers not divisible by two. For
example,
$2[V8] =5, [P4(C)] = 5.

Recall the symbol SF(G) = 2SF,(G), where SF,(G)C £, consists
of those bordism classes admitting a representative V* upon which G
acts differentiably, preserving the orientation and without stationary
points. It appears from the above that SF(Z,) is rather large. A likely
possibility for it is to all bordism classes of even Euler characteristic;
that is, all [V'*] with w, [V#] = 0. On the other hand, for $ odd 2, (Z)
is not nearly so large. All we know is that it is between p 2 and the
annihilator of y € 2((Z,)¥). For all we know, it can be that SF(Zu) = $ Q.
A test case here could be SF(Z,). It can be seen using our techniques
that SF(Z,) contains 32 and is contained in the ideal generated by
3 and [P,(C)].

Question. Is there a closed oriented manifold V4, bordant to P,(C),
upon which there acts a periodic differentiable map of period 9, preserving
the orientation and without fixed points.

The examples used in (45.5) also raise a question, in connection with
which we make the following conjecture.

Conjecture. There cannot exist a periodic differentiable map of odd
prime power period acting on a closed oriented manifold V», # > 0,
preserving the orientation and possessing exactly one fixed point.

46. The module structure of 2, (Zp)

Here we summarize what we know concerning the module structure
of 2,(Z,). Our first theorem continues section 42.
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(46.1) Consider the generating set ogy_y:k=1,2,... for Q4(Z,), 9
an odd prime, where dyr_y= [T, S**71] 4s given by T(z,...,2)
= (02, . . ., 02x). There exist closed oriented manifolds M**, k= 1,2, ...,
such that for each k,

Pooryat [M*] ogp g+ [MPlogp gt =0
m 24(Z,).

Proof. We define inductively a sequence M2, M*4, . . . of closed oriented
manifolds, together with differentiable maps T : M2* — M2* of period 4.

To define M2, recall that [T, S*] = 0. Hence there exists a closed
oriented 2-manifold M2 and a T : M?— M? of period $, having exactly
$ fixed points, each having an oriented neighborhood 1% in which T is
given by T'(z) = pz.

Suppose now that (T, M?*) has been defined. Consider (z;, 2 > M?2F)
and (7o, I% > M?¥), where 1, and 7, are actions of Z,, given by 7, (x, ¥)
= (0%, y) and 7, (%, y) = (ox, ¢y). Accordingly to (35.2), [z, 12 >< M2*] and
(7o, 12 >< M?¥] are equal in 2, ,,(Z,). There exists then a differentiable
fixed point free action 7 of Z, on a compact oriented B2*+2 with

(7, sz+2) = (71, 12> M2¥) — (g, 12> M2¥)
Define (T, M?*+2) by suitable identification of boundaries in
(zy, 12 >< M2¥) — (1, B2*+2) — (1, [2 > M2F) .

Hence we obtain M2, M4, ... . Itis seen inductively that the fixed
point set of (T, M?¥), together with appropriate orientation, consists of
M2k—2’ _M2k—4’ M2k—6' el (__ l)k—lMO
where M° = $ points. The normal bundles are trivial in a suitably strong

sense, so that
oy (M52 — g [M25 =] o g [M25=6] — - (— ) oty 4= 0.

Since £2,1+2 contains only 2-torsion and each a,,_, is of odd order, it
is seen that alternate terms of this expression are zero. We thus obtain

Pogr_1+ [M*] otgr_5-+ [MB] oty =0.

The remark is then proved.

Suppose now for each % we select M4, M8, . . ., possibly depending on
k, with

ak—1= Poog gt [M*] agp_5+ [M¥] ogp_o+ -+ =0

in Q,(Z,).

(46.2) Consider the free Q-module C with generator oy, o, &g, . . . and
0:C— C given by 0oty 1= 0 and dogy, = Por—y. Then Q. (Z,) = H,(C)
as 2-modules.
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Proof. Define the submodule C® C C to be the submodule generated
by &, %, . . ., . Then
Occ(l)cc(z)c . .CC

is a filtration of the chain complex C, and there is a spectral sequence
{'E}, ;). Also 'E* is associated with a filtration of H,(C). Note that

'E}, = Hy o(CPICO).
A straight-forward analysis shows
"Egrq=0,"Ey_1,,= 2,0 £,

Just as with the bordism spectral sequence for B(Z,), the spectral
sequence is trivial. Moreover H,(C) and £,(Z,) are seen to have the
same order.

Define a homomorphism C—» 2,(Z,) given by oy _,— [T, S2%-1],
oy = 0. There results a homomorphism H, (C) - £2,(Z,), seen to be an
epimorphism. Since H,(C) and £2,(Z,) are finite groups of the same
order, this must be an isomorphism. The remark follows.

(46.3) Theorem. Consider the generating set ogy_,:k=1,2,... for
0Q,(Z,), and closed oriented manifolds M**, k= 1,2, ..., such that for
each k

Bor—1=Poor_1+ [M*] dtgr 5t [MB] oty ot - -=0.
The ideal of Q generated by p and all the [M?*] coincides with the ideal
of all elements of 82 whose Pontryagin numbers are all divisible by p. Moye-
over 2,(Z,) is isomorphic as an -module to the quotient of the free
0Q-module generated by oy, oy, . . . by the submodule generated by Sy, fs, . . . .

Proof. We already have from (46.1) and (46.2) all the conclusions
except those dealing with Pontryagin numbers. That the Pontryagin
numbers of M*¥ are all divisible by 4 follows from (42.1). We shall now
prove that M%#*~2 js a Milnor base element for Q/p £2; this will conclude
the proof.

For each fixed % we shall show that there exist manifolds V°, 74, ...
with
*) Vapro1= [V°] tgpeyt+ -+ + [V oy €9 Q24 (Z,)
and with V2#*~2 a Milnor base element of Q/p 2. Suppose this granted
for the moment. According to (46.2)

Vepp1=P Y + b Popr1t [W*] Boprs+ -,
for suitable [W4*] and y, in the free module generated by o, a;, . . . .
Then
(VA2 = p (V2] o b [MH2) - (W] (M0

Since [V*#*7*] is a Milnor base element of £/ 2, then b= 0 mods and
Ergebn, d. Math, N. F. Bd. 383, Conner and Floyd 10
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[M?#*~%] is a Milnor base element of 2/p 2. Hence we have only to find
relations of the type (*). But these follow directly from (42.11).

For an element y € 2,(X), the annihilator 4 (y) is the ideal of 2
consisting of all [M"] with y - [M"] = 0. There has arisen in (43.4) the
problem of computing the annihilator 4 (y;) of the toral action 9 ¢
€ U(Z,)k, T*] € 2,((Z,)¥). In the notation of section 45, y,, = & . . . oy and
it follows from section 44 that we may as well compute the annihilator
in the submodule 2,(Z) ®q** ®4 £24(Z,). Unfortunately we cannot
compute this annihilator, but we have the following.

(46.4) The annihilator A (v ,q) contains the elements p, [M2?-2], . ..,
[M?*#*=2] where the M** are as in (46.3).

Proof. The proof is by induction on k. For & = 0, the assertion is the
known fact that p; = 0. Suppose it has been proved for £ — 1, so that
the ideal generated by p, [M22-2], ..., [M**™~2] annihilates y;. Now
from (46.3),

(M oy = — Mo — - — potg ey -

Moreover it follows from section 41 that the coefficients of the right hand
side are in the ideal generated by p, [M2?-2], ..., [M?#*'~2]. Then

M2 oy ooy = — o ([MPP 8 oy o) — -
=0.

—ogp—1 (P ... o)
The remark follows.
We have already conjectured that A (y;.;) is precisely the ideal
generated by #, [M27~2], ..., [M?#*~2], but the proof of the opposite
inclusion appears difficult.
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