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FIBRED KNOTS AND TWISTED ALEXANDER INVARIANTS

JAE CHOON CHA

ABSTRACT. We study the twisted Alexander invariants of fibred knots. We
establish necessary conditions on the twisted Alexander invariants for a knot
to be fibred, and develop a practical method to compute the twisted Alexander
invariants from the homotopy type of a monodromy. It is illustrated that the
twisted Alexander invariants carry more information on fibredness than the
classical Alexander invariants, even for knots with trivial Alexander polyno-
mials.

1. INTRODUCTION AND MAIN RESULTS

Although the classical Alexander invariants of knots in the three space have been
sucessfully used as the most fundamental tools in studying various problems, it is
also well known that they are not sharp enough in many cases. One approach
to overcome this limitation is to consider the twisted Alexander invariants, which
were first defined in the works of Lin [13], Wada [16], and Jiang and Wang [8],
and subsequently studied by several authors including Kitano [11] and Kirk and
Livingston [9], [10].

A common but important question i1s how a particular geometric property is
reflected on the twisted Alexander invariants, and, furthermore, whether it gives
more information on the geometric property than the classical Alexander invariants.
In the remarkable work of Kirk and Livingston [9], [10], they introduced a natural
topological definition of the twisted Alexander polynomial, which turned out to be
an important innovation for this purpose. For a surjection of the fundamental group
7 of a complex X onto Z and a representation of m over a field F', they defined the
twisted Alexander module to be a specific twisted homology group of X, which is
a module over the principal ideal domain F[Z], and defined the twisted Alexander
polynomial to be a polynomial representing the order of (the torsion part of) the
twisted Alexander module. Some known results on the Alexander polynomial were
extended to the twisted case. In particular, they obtained a knot slicing obstruction
from the twisted Alexander polynomials associated to specific representations of
fundamental groups of prime power fold cyclic branched covers, by relating them
with the Casson-Gordon invariants, and illustrated that the obstruction detects
nonslice knots with Alexander invariants of slice knots.

The aim of this paper is to study the twisted Alexander invariants of fibred knots
along the same lines. We establish necessary conditions on the twisted Alexander
invariants for a knot to be fibred, which can be viewed as a generalization of the
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well-known fact that the Alexander polynomial of a fibred knot is monic, i.e., the
coefficients of the highest and lowest degree terms are units. For this purpose, we
generalize the approach of Kirk and Livingston for a Noetherian unique factoriza-
tion domain R which i1s not necessarily a field. Roughly speaking, first we define
the twisted Alexander ideal to be the elementary ideal of the twisted Alexander
module, and then we define the twisted Alexander polynomial to be the greatest
common divisor of specific generators of the elementary ideal. When R is a field, the
twisted Alexander polynomial of ours coincides with that of Kirk and Livingston if
the former is nontrivial. (For details, see Section 2.)

Using the above terminologies, our main result is stated as follows. Suppose that
every submodule of a free module of finite rank over the base domain R is again
free of finite rank. The main example to keep in mind is R = Z.

Theorem 1.1. If K is a fibred knot and p is a representation of the fundamental
group of a cyclic cover of S branched along K that factors through a finite group,
then the twisted Alexander invariants associated to p have the following properties:

(1) The twisted Alexander module is R[Z]-torsion.

(2) The twisted Alexander ideal is a principal ideal generated by the twisted
Alexander polynomial.

(3) The twisted Alexander polynomial is monic.

Note that if R is a field, then the conclusions of Theorem 1.1 hold for any knot
with a nontrivial twisted Alexander polynomial. This is the reason why we work
with the twisted Alexander invariants over a domain R which is not a field.

We also develop a practical computational method. In Section 3, we illustrate
a simple algorithm computing the twisted Alexander invariants of a fibred knot
from (the given representation and) the homotopy type of a monodromy on a fibre
surface, which can be made easier to handle by describing it as a map of a graph,
or equivalently as an automorphism of a free group. Theorem 1.1 is proved using
this method.

The computational method itself can also be viewed as a generalization of the
fact that the classical Alexander invariants can be computed from the homology
type of a monodromy. In addition, in the case of knots that are “homologically”
fibred but not homotopically, it explains why there is potential room for the twisted
Alexander invariants to have more information than the classical ones. The latter
part of this paper is devoted to exhibit that this is indeed true by examples. This is
an interesting fact from the viewpoint of the study of the twisted Alexander invari-
ants; although, it could be shown that our examples are not fibred by some other
methods if one were interested in fibredness only. In Section 4, we show that for any
(possibly fibred) knot K with a nontrivial Alexander polynomial, there exist infin-
itely many knots having the same classical Alexander invariants as K but twisted
Alexander invariants of nonfibred knots, that is, the conclusions of Theorem 1.1 are
not satisfied. For this purpose, we investigate twisted Alexander invariants associ-
ated to “abelian” representations (whose images are abelian subgroups of GL,).

In a recent work of Cochran [3], a similar result has been proved using “higher
order” Alexander modules. For knots with trivial Alexander polynomials, higher
order Alexander modules have no more information than classical ones, as remarked
in [3], and so do twisted Alexander invariants associated to abelian representations,
as explained at the end of Section 4. However, we exhibit an interesting phenome-
non that twisted Alexander invariants associated to nonabelian representations still
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have useful information on fibredness; in Section 5, we show that there are knots
having trivial Alexander polynomials but twisted Alexander invariants of nonfibred
knots.

2. TWISTED ALEXANDER INVARIANTS

We begin with definitions of the twisted Alexander invariants, which general-
ize the twisted Alexander polynomial defined in [9]. Throughout this section, we
assume that R is a Noetherian unique factorization domain. Let X be a finite
CW-complex and X its universal covering space. m1(X) acts on the left of X as
the covering transformation group. Let e: m(X) — (s) be a surjection, where
(s) denotes the infinite cyclic group generated by s. We identify the group ring
R[(s)] with the Laurent polynomial ring R[s,s™!] and denote it by A. Suppose
that 7 (X) acts on the right of a free R-module V of finite rank via a representa-
tion 71 (X) — GL(V). Then A ®g V becomes a A-R[r1(X)] bimodule under the
actions given by s* - (s" @v) = s"T* @v and (s"@v).g = s"¢(g)@v-g for v € V and
g € m(X). Let C, ()N(, R) be the cellular chain complex of X with coefficient R,
which is a left R[m(X)]-module. The twisted cellular complex of X with coefficient
A ®V is defined to be the following chain complex of left A-modules:

Co(X;A @ V) = (MA@ V) @apry (x)) Cu( X R).

The twisted homology H.(X; A®V) is defined to be the homology of C,(X;A® V).
We call Hi(X; A @ V) the twisted Alezander module. For notational convenience,
we denote it by A.

Since V is finitely generated, so is A as a A-module. Since R is Noetherian,
so 18 A, and hence A is a finitely presentable A-module. Choose a presentation
of A, and let n and m be the numbers of generators and relations, respectively.
Let P be the n x m matrix associated to the presentation, i.e., the (¢, j)-entry of
P is the coefficient of the ¢-th generator in the j-th relation. Let D be the set of
the determinants of all n x n submatrices obtained by removing (m — n) columns
from P. The ideal A in A generated by D is called the elementary ideal of A.
It is known that the elementary ideal is an invariant of the A-module A, which is
independent of the choice of P. For a proof, see [4, p.101]. A similar argument
shows that the greatest common divisor A of elements of D is also an invariant of A,
which is well defined up to multiplication of us” with « a unit in R. (If n > m,
A ={0} and A =0 by a convention.) We call A and A the twisted Alexander ideal

and the twisted Alexander polynomuial, respectively.

Remark 2.1. The elementary 1deal of a module is contained in the annihilator ideal.
In particular, elements of A annihilate A.

Remark 2.2. When R is a field and A is A-torsion, our definition 1s equivalent to
that of Kirk and Livingston [9, §2]. In this case A is a principal ideal domain, and
by the classification theorem of finitely generated modules over A, A is decomposed
into a direct sum of cyclic modules €, R[s, s~1]/{d;), where d; is an element of A.
Kirk and Livingston defined the twisted Alexander polynomial to be the product of
all nonzero d;. It is equal to the order of the torsion part of A. Since the diagonal
matrix with diagonals d; 1s a presentation matrix of A, A is equal to the product
of all d;. This shows that the two definitions coincide if A #£ 0, or equivalently A
is torsion. Furthermore, when R is a field, A is the principal ideal (A). In general,
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A is contained in (A), however, the converse is not true if R is not necessarily a

field.

Remark 2.3. Using Fox’s calculus, from a presentation of 71 (X) one can compute
the boundary map C2(X;A @ V) — C1(X;A ® V). Consequently, the twisted
Alexander invariants can also be computed. In [9], this method was used as the
main computational technique and was used to relate this topological version of
twisted Alexander polynomial with Wada’s invariants [16]. Because this method is
not used in this paper, we do not proceed with further details.

Specifically, we define the twisted Alexander invariants of an oriented knot K in
53 as follows. The first homology of the exterior E, which is obtained by removing
an open tubular neighborhood of K from S$2, is an infinite cyclic group generated
by an element ¢ such that lk(K,t) = +1. Let N be the d-fold cyclic cover of E.
The image of the composition 71 (N) — m(E) = Hi(F) = (t) is the subgroup
generated by s = t4. Thus it induces a surjection ¢: w1 (N) — (s) so that the twisted
Alexander invariants of N are defined for any representation of w1 (N). In this paper,
we will consider only representations that factor through the fundamental group of
the d-fold cyclic cover M of S® branched along K. View N as a subspace of M,
and let 4, : 7 (N) — w1 (M) be the homomorphism induced by the inclusion. For
a representation p of w1 (M), we denote the twisted Alexander module, ideal and
polynomial of N associated to € and pi. by A%, A%, and A% | respectively.

Remark 2.4. The twisted Alexander invariants of the exterior E associated to
m(E) — Hi(F) = (&) and a representation of mi(F) are also useful in study-
ing knots. This version appears in some literature including [16], [11], [9], [10],
where the last two concern our version (with field coefficients) as well.

3. COMPUTATION FOR FIBRED KNOTS

Let K be a fibred knot, and let M be the d-fold branched cover of K as before. In
this section, we are interested in a special case of representations that factor through
finite groups; we assume that a given representation p of 7 (M) is decomposed as

p:m (M) 2 G- GL(V)

where ¢ is a homomorphism into a finite group G' and G — GL(V) is a represen-
tation in a free R-module V' of finite rank. Without any loss of generality, we may
assume that ¢ is surjective. In addition, we assume that R has the property that
every submodule of a free E-module of finite rank is again free of finite rank. For
example, the ring Z has this property.

We will compute the twisted Alexander invariants of K associated to p from a
monodromy of K. Let F be a fibre surface of K and h: ' — F' a monodromy such
that

E=RxF/(r,z)~(r+1,h(x)), reR, x €F,

is the exterior of K and {0} x F represents a preferred longitude of K. Then the
d-fold cyclic cover N of the exterior is given by

N=RxF/(r,x) ~ (r+d,h%x)), reR, z€F.

The preferred generator of the covering transformation group acts on N by [r, 2] —
[+ 1, h(x)]. We note that any fibre surface F' is connected, and so is N.
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First, we need to compute m1(N) and m1(M). Since N can be viewed as a
quotient space of [0,d] x F under an obvious identification, 71 (N) is expressed as
an HNN-extension of 71 (F). An explicit description is as follows. For convenience,
we may assume that h fixes a basepoint * on F' by isotoping h. Then m(N) is
presented as

T (N) = (s, m (F) | szs™l = hf(z) for z € m (F)),

where h. is the endomorphism on 71 (F) induced by h. The map € defined in the
previous section is equal to the surjection m(N) — m(N)/m(F) = {s). Since
71 (M) is obtained from w1 (N) by killing s, w1 (M) is isomorphic to the quotient
group of 1 (F) modulo the normal subgroup generated by {z='hd(z) | z € m1(F)}.
Let F be the connected regular covering of F' associated to the composition

a:m(F) = 7 (M) i>G;

that is, the kernel of « is equal to the image of the injection Fl(ﬁ) — m(F)
induced by the covering projection. G acts on F as the covering transformation
group. We need the following lemma, which is an easy exercise in the covering
space theory. Since the author has not found a proof in the literature, we give a
proof for completeness.

Lemma 3.1. Suppose that p: ()N(, Zo) = (X, o) is a regular covering projection,
X and X are connected and locally path connected, and f: (X, 20) = (X, 20) is a
map. If 271 fu(z) € p*ﬂ'l(f() forall z € m (X)), then f is lifted to a map fiX5X
which commutes with the action of covering transformations, i.e., fr = Tf for any
covering transformation T.

Proof. Choose &g € p ~(zo). By the hypothesis fu(2) € z - pom(X ) f*p*ﬂ'l(X) C
pami (X ) Thus there is a lift f of f ﬁxmg Zg by the lifting criterion. Let 7 be a
covering transformation on X. Since fT and Tf are lifts of the same map fp, it
suffices to show that fr(xo) and Tf(l‘o) = 7(&g) coincide, by the uniqueness of a
lift. Let & be a path from o to 7(%g). Then fr(i‘o) is the endpoint of f4. Since
[105_1 pfg] = [105_1 fpg] = [p§]7 f<([pd)) € p*ﬂ'l(f(), the endpoints of fé and &

are the same. O

In our case, z~*h?(z) is contained in the kernel of a for any 2 € m(F). Thus
by the lemma the homeomorphism A%: F — F is lifted to a homeomorphism
h*: F' — F which commutes with the action of . Now (s) ® G acts on R x F by
(s”,9)(r,w) = (r+nd, (hd) (g-w)). Tt is easily checked that the orbit space is N,
and the projection Rx ' — N is a covering projection with covering transformation
group (s) @& G. This shows that R x F is the regular covering of N associated to
the homomorphism ¢ & ¢i, : 7 (N) = (s) @ G, where i.: 1 (N) — 7 (M) is the
map induced by the inclusion.

Recall that the twisted Alexander module A% is defined to be the twisted ho-
mology group H1(N; A ® V) where A = R[(s)]. Tt is equal to the first homology of
the chain complex

(A ®V) @pysyma Cs (R x F;R) =V @pia) C« (R x F;R).

As an R-module, it can be viewed as the twisted homology group H1(R x F; V) =
Hy(F;V). Since F is a connected surface with nonempty boundary, F has the
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homotopy type of a graph (1-complex) with one vertex. Therefore, Hi(F; V) can
be computed from a chain complex

- 0=V @pay RIGT" 25 V @pie) RG] — 0

where n is the number of edges of the graph. Since H (F;V) = Ker(dy) is a
submodule of V @ pg[g R[G]" = V", it is a free R-module of finite rank.

The action of s on H1(F; V) = Hi(V@pga1C«(I7)) is given by the homomorphism
induced by h*: F — F. Let H be a matrix associated to the induced map by
choosing an R-basis of Hi(F'; V). Then obviously sI — H is a presentation matrix
of A%, as a A-module, where [ is the identity matrix. Since it is a square matrix,
A% is the principal ideal generated by Af-(s) = det(s] — H).

We summarize the above discussion as a theorem.

Theorem 3.2. (1) Al is presented by the matriz sI — H, as a A-module.
(2) A% is the principal ideal generated by Af-(s).
(3) A% (s) =det(s] — H).

Now Theorem 1.1 1s easily proved.

Proof of Theorem 1.1. By Remark 2.1, A% is annihilated by A% (s), and so the
first conclusion follows. The second conclusion is no more than Theorem 3.2 (2).
Finally, the coefficient of the highest term of A% (s) is equal to det(I) = 1, and the
constant term of A% (s) is det(H), which is a unit in R since h* is a homeomorphism
on F. This completes the proof. a

The following consequence of our discussion will be useful later.
Corollary 3.3. A} is annihilated by a monic polynomial.

Remark 3.4. If V = R[G] and G — GL(V) is the regular representation, all results
of this section are true without the assumption that every submodule of a free R-
module of finite rank is free of finite rank. For, in this case, the twisted homology
Hy(F; V) isequal to Hl(ﬁ; R), and hence it is always a free R-module of finite rank
since F is a surface without closed components.

We finish this section with an example that illustrates our computational method
for twisted Alexander invariants of fibred knots.

Example. Let K be the trefoil knot. There is a well-known fibre structure of the
exterior of K; e.g., see [15] for a detailed description. We need only the following
fact: a monodromy of K has the homotopy type of a map & on a graph B with
one vertex and two oriented edges = and y, which is defined by h(z) = y~*
h(y) = zy.

Then the fundamental group of the double branched cover M of K is given by

m(M) = (z,y|x=h%z)=y a7t y=h'(y) =y 'ey).

By simplifying relations, 71 (M) is a cyclic group of order 3 generated by = = y.
Let p be the regular representation of w1 (M) over Z.

We will compute the twisted Alexander invariants associated to p. By the above
discussion, A% = H,(B;Z[(s)] @ Z[r(M)]) = Hy(B) where B is the regular cover
of B associated to the homomorphism 71 (B) — Z3 given by #,y — 1. Obviously

and

B is again a graph,; B has 3 vertices vg, v, v2 and 6 edges zg, ©1, 2, Yo, Y1, Yo
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where dx; = Jy; = vi41 — v; (indices are modulo 3), and the covering projection
B — B sends x; and y; to z and y, respectively. m(B) can be identified with the
free subgroup of w1 (B) generated by a = zy~1, b = zaz™!, ¢ = 2%az=? and d = 23,

and hence I (B) is the free abelian group generated by (the homology classes of)

a, b, ¢ and d. The action of s on H;(B) is easily computed by evaluating the values
of h? on a, b, ¢ and d; for example, h?(a) = y~le~ly=la=ly = d~lecad=tc™1d

in m1(B) C m1(B), and by abelianizing, s -a = a — d in H1(B). By computing the
action on the other generators in a similar way, we obtain a matrix

1 0 0 1
0 1 0 1
H= 0 0 1 1
-1 -1 -1 2

which represents the action of s on A%-. Thus A} is presented by sI — H, A} (s) =
det(s] — H) = s* —s® — s + 1, and A% is the principal ideal generated by A%(s).

4. EXAMPLES USING ABELIAN REPRESENTATIONS

Suppose that K; is a knot with a nontrivial Alexander polynomial. In this
section we prove the following using abelian representations:

Theorem 4.1. There exist infinitely many knots sharing a common Seifert matriz
with Ko but having twisted Alexander polynomials of nonfibred knots.

An immediate consequence of Theorem 4.1 is that there are infinitely many
knots with the same classical Alexander invariants as Ky but twisted Alexander
polynomials of nonfibred knots, as mentioned in the introduction.

We begin with a lemma, which is a consequence of well-known classical results.

Lemma 4.2. The Alexander polynomial Ag,(t) of a knot Ky is nontrivial if and
only if the first homology group of the d-fold cyclic cover of S® branched along K
1s nontrivial for some d.

Proof. The order of the first homology of the d-fold cyclic branched cover is given
by the resultant

d—1
Ry = ‘ H AKD(eZﬂ'is/d)
s=0
where Rq = 0 if the homology is an infinite group [5], [7], [2]. Thus if Ag,(?) is
trivial, then Ry = 1 for all d.

Conversely, if Ag,(¢) is nontrivial, the equation Ag,(¢) = 0 has a nonzero
complex root w. If w is a d-th root of unity, then Ry = 0. In [6], Gordon proved that
if w is not a root of unity, then the nonzero values of Ry are unbounded. (Actually,
more is known; Riley proved that the nonzero values of R; grow exponentially
in d [14].) This completes the proof. O

By the lemma, we can choose d such that the d-fold cyclic branched cover My of
the given knot Ky has nontrivial first homology. Choose a surjection xq of Hy(My)
onto a cyclic group Z, of order » > 2, and choose a Seifert surface F' of Ky. From
the given data Ky, yo, and F', we will construct desired knots.

We may assume that F' is a handlebody with one 0-handle and s 1-handles, and
by an isotopy we may assume that F is embedded in S® as in Figure 1, where £ is
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a framed (2s)-string link. By a method of Akbulut and Kirby [1], My is obtained
by surgery on a s(d — 1)-component link L shown in Figure 2. Furthermore, a
presentation of Hy(Mpy) is obtained as follows. Denote meridians of components of
Lbyv; (1<i<s, 1<j<d—1)asin Figure 2, and let A be the Seifert matrix
of F' with respect to the generators of Hi(F') represented by the 1-handles. Then
H,(Moy) is generated by {v;;} and

A4 AT AT

—-A A+ AT
. —AT
T

-4 A+A s(d—1)xs(d—1)

is a presentation matrix of Hy(My) with respect to {v;;}.

AN AN

s
CJ|_||_||_||_. . .JI_II_II_IL>

FIGURE 1

FIGURE 2

We claim that xo(vij) # xo(7i(j+1)) in Z, for some i and j. Suppose not. Then
Xo(7i;) is independent of j; let #; = xo(7s;). Since all relations on 4;; are killed
by xo, we have z(A + AT) — 24 = —2AT + (A + AT) = 0 where z is the row
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vector with entries x;. From this we easily obtain #(A — AT) = 0. Since 4 is a
Seifert matrix of a knot, A — A” is nonsingular and z = 0. This implies that y, is
a trivial map, a contradiction. Thus the claim is true.

The i-th
handle

(@an fﬂﬁ

TN

FIGURE 3

Let K be the knot obtained by tying a knot J along the ¢-th handle of F' so that
the Seifert form is unchanged. See Figure 3. Let M be the d-fold cyclic branched
cover of K. Since the tying operation does not change the Seifert matrix, the
Akbulut-Kirby method gives the same presentations of Hi(M) and H;(My), and

hence there is a natural isomorphism between them. Let x: Hy (M) = Hy(My) Xoy
Z, and let

p:m (M) = H(M) % Z, — GL(Z[Z,))
where the last map is the regular representation of Z,. We will investigate the
twisted Alexander invariants associated to p. Let n be the order of xo(yi;) —
Xo(Vi(j+1)) in Z,. Note that n > 2. Let M; be the n-fold cyclic cover of 53
branched along J. Then

Theorem 4.3. If H1(Mj) is nontrivial, then the twisted Alexander invariant as-
sociated to p does not satisfy the conclusions of Theorem 1.1.

Actually, there exist infinitely many knots J satisfying the hypothesis of Theo-
rem 4.3. For example, the following lemma says that the hypothesis is true for any
knot J having the same Seifert matrix as that of the figure eight knot.

Lemma 4.4. If [(1) _11] 1s a Seifert matriz of J, then the first homology of the
n-fold cyclic cover of S® branched along J is nontrivial for all n > 2.

Proof. Since A is nonsingular, H” — [ is a presentation matrix of the first homology
of the n-fold cyclic branched cover of J, where H = A='AT = [_21 _11]. It suffices

to show that H™ — I is not unimodular for n > 2. Let H” = [g: SZ ] (Note that H

is a symmetric matrix.) Then it is easily shown that a, > 5, b, < =3 and ¢, > 2

for n > 2, by an induction. Since det(H) = 1, we have

det(H" — 1) = (ap — 1)(cp — 1) —bi =det(H")+1—an—cn =2—ap —cn, < —H.
O

Since a different choice of J produces a different knot K (e.g., by the uniqueness
of the torus decomposition of knot complements), Theorem 4.1 follows Theorem 4.3.



4196 JAE CHOON CHA

Proof of Theorem 4.3. Let A = Z[(s)] and N be the d-fold cyclic cover of the exte-
rior of K as before. By definition, A is equal to the twisted homology H;(N;V)
where V = A ®z Z[Z,] = Z[{s) ® Z,].

Let U be an unknotted solid torus in S® — F which links the ¢-th handle of F.
The exterior of K is obtained from the exterior of Ky by removing the interior of U
and by replacing it with the exterior of J along the boundary. The meridian (resp.
the longitude) of J is identified with a curve on U which is homotopic to the core
of U (resp. null-homotopicin U). Since the linking number of U and K is zero, U is
lifted to the d-fold cyclic cover Ny of the exterior of K. N 1s obtained by removing
the interiors of all lifts of U from Ny and filling d copies of the exterior of J along
the boundaries. Viewing Ng as a subspace of Mo, i — 7i(j4+1) is homologous to
the core of a lift of U in My. In N, the boundary of that lift bounds a copy of the
exterior of J. Denote it by E;.

Let Y be the closure of N — E;. Applying the Mayer-Vietoris theorem to N =
E;UY | we obtain an exact sequence

o= Hy(OF;;V) — Hi(Ep; V)@ Hi(Y; V) = Hi(N; V)
— Ho(@EJ;V) — HO(EJ;V) o) HO(EJ;V).

The twisted homologies of Iy and 0F; have a simple structure as follows. First
we observe that (1) the linking number of U and K is zero, and (2) the map x sends
the meridian of J in E; to the element xo(yi; — %’(j+1)), which is of order n in Z,.

From the observations, the ((s)®Z, )-covering E s of E is a union of infinitely many
copies of the n-fold cyclic cover Ny of Ey and we have H.(E; V) = H.(V®z((s)ez,]
Cu(Ej)) = Ho(Ey) = Ho(Ng)/m @z A. Similarly, H,(E;; V) = H (ON;) /" @z A.
Therefore, Ho(0E5;V) — Ho(E5;V) is an isomorphism, and Coker{H1(0Es;V) —
Hy(FE;V)} is isomorphic to Coker{ H(0Ny) — Hl(NJ)}T/n Qz A = Hl(MJ)T/n Q7
A. By the lemma below, an annihilator of H;(N;V) annihilates (M) ®z A as
well.

Lemma 4.5. Suppose that A and B are modules and C' is a submodule of A ® B.
Let p: A® B — A be the canonical projection. Then an annihilator of (A& B)/C
annihilates A/p(C) as well.

Proof. Viewing A and B as submodules of A& B,
(A B)/C=((A+C)+ (B+C)/C=(A+C)/C+ (B+C)/C.

Thus (A+ C)/A = AJANC is a submodule of (A& B)/C. Since p(C) contains
ANC, A/p(C) is a quotient of A/(ANC). The conclusion follows. |

Since Hy(Mjy) is nontrivial, H1(Mys) ® A is never annihilated by any nonzero
monic polynomial, and hence so is A%-. By Corollary 3.3, A% is not a twisted
Alexander module of a fibred knot. O

Remark 4.6. If one were interested in fibredness only, regardless of the relation-
ship with the twisted Alexander invariants, then it could be shown that our ex-
ample K is not fibred by a straightforward argument. In general, if a knot K
has a nontrivial companion J with zero winding number, K is not fibred. For,
m1(Ey) = m(Ek) is an injection, and since the winding number is zero, the image
is contained in the commutator subgroup [m1(Ek), m1(Fx)]. Since m(Ey) is not
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free, [m1(Fx), m1(Fx)] is also not free. This shows that K is not fibred. The author
thanks an anonymous referee for pointing this out.

Remark 4.7. Our construction is similar to one in [9], which was used to illustrate
that the twisted Alexander module of the complement of a knot i1s not necessarily
A-torsion. The above argument shows that an analogous result holds for the twisted
Alexander module of a branched cover of a knot as well; if Hy(My) is free abelian,
Al 1s not A-torsion, since any annihilator of A% annihilates A and hence must
be zero by the proof of Theorem 4.3. This is a significant difference between the
twisted Alexander invariants and the classical Alexander invariants.

Remark 4.8. If a knot K has a trivial Alexander polynomial, twisted Alexander
invariants associated to abelian representations are no more than the classical ones;
indeed all abelian representations are trivial since the first homologies of cyclic
branched covers of K always vanish by Lemma 4.2. However, invariants associated
to nonabelian representations are still interesting, as shown in the next section.

5. EXAMPLES USING NONABELIAN REPRESENTATIONS

In this section we illustrate examples of knots that have trivial Alexander polyno-
mials but do not have twisted Alexander modules of fibred knots using nonabelian
representations.

For a knot J, consider the link shown in Figure 4. Denote its components by
Ly and Ls as in the figure. As usual, J is tied so that the writhe of the diagram is
unchanged. Performing (1/1)-surgery along Ls, the ambient space still remains S3
but the other component L; becomes a knotted circle K.

D M M

[ L,
J

| L
o JIJ oI\’

FIGURE 4

We remark that a similar construction was used to produce a knot with a given
Alexander polynomial in [12] and [15, 7.C.5]. Actually, by the same arguments,
it is easily seen that for any J our construction produces a knot K with a trivial
Alexander polynomial.

Let M be the 3-fold cyclic cover of S® branched along J. Our goal is to prove

Theorem 5.1. If H1(My) is nontrivial, K does not have twisted Alexander invari-
ants of fibred knots.

Proof. First we consider a special case where J is unknotted. Let Ky be the knot
obtained from an unknot J by the above construction. Let My be the double
branched cover of Ky. Cutting S® along the obvious disk bounded by L; and
pasting two copies, we obtain a surgery diagram of My with two components, which
is shown in Figure 5.
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The Wirtinger presentation of the diagram in Figure 5 (forgetting the framing)
is as follows: there are 12 generators a, b, ¢, d, e, f, p, q, 7, s, ¢, u, and 12 relations

a=q¢ Yfq, b=pltap, c=e"tbe, d=ses™t, e=rdr ', f=0b"leb,
p=>b"tub, q=a"lpa, r=t"tqt, s=drd™t, t=csc”!, u=q¢ 1
where any one of the relations i1s redundant. Adding the relations
gpes rTlbfm =1, batd e lquTi =1

which represent the effect of surgery, we obtain a presentation of m (Mpy).
We define a homomorphism ¢g of w1 (M) into As, the group of even permutations

on {1,...,5}, by assigning values to generators as follows. (Cycle notations are used
to represent elements of As.)

$o(a) = (132), éo(b) = (142), $o(c) = (125),

¢o(d) = (243), o(e) = (145), ¢o(f) = (152),

¢o(p) = (13542), ¢0(f1) = (15432), ¢o(r) = (12534),

éo(s) = (14523), $o(t) = (15324), éo(u) = (14352).

It is tedious but straightforward to verify that all relations are killed by ¢g, and in
addition, ¢¢ 1s a surjection.

A representation for the general case is induced by the homomorphism ¢y as
follows. Let K be the knot obtained from a knot J (not necessarily unknotted) by
the above construction. Let U and V' be tubular neighborhoods of the curves o and
[ shown in Figure 5. Then the double branched cover M of K is obtained from My
by removing the interiors of U and V and by filling two copies F; and E’ of the
exterior of J along U and 9V, respectively. By the Seifert-van Kampen theorem,
m (M) is an amalgamated product of m1(Eys), m1(E%}) and m (M — (Ey U EY)).
Let ¢1 and ¢2 be homomorphisms of H1(Ey) and H1(E") into As which send the
meridian to (243) and (253), respectively. Since ¢o(a) = ¢o(ab™!) = (243) and
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$0(B3) = ¢do(pg~t) = (253), the homomorphisms
m (M — (E; UE,)) — w1 (M) 22 As,
m(Ey) = Hi(Ey) 25 As,
m(Ey) — Hi(Ey) 225 A

induce a homomorphism ¢: 7 (M) — As. Let p be the representation of (M)
obtained by composing ¢ with the regular representation of As.

Now we are ready to apply the arguments of the previous section. Since ¢ sends
the meridian of J in Ey to an element (243), that is of order 3 in As, an annihilator
of A% annihilates Hi(M;) ®z A as in the proof of Theorem 4.3. If Hi(My) is
nontrivial, H1(Mjy) ®z A is never annihilated by any monic polynomial, and so
is A% . Therefore, K does not have twisted Alexander invariants of fibred knots by
Corollary 3.3. |

Remark 5.2. As done with the examples in the previous section, the arguments of
Remark 4.6 can also be used to show nonfibredness.

Remark 5.3. By Lemma 4.4, there are infinitely many knots J satisfying the hy-
pothesis of Theorem 5.1, and hence by the above construction we can produce
infinitely many knots K with the desired property.
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