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Abstract

Signature invariants of odd dimensional links from irregular covers and non-
abelian covers of complements are obtained by using the technique of Casson and
Gordon. We show that the invariants vanish for slice links and can be considered as
invariants under Fm-link concordance. We illustrate examples of links that are not
slice but behave as slice links for any invariants from abelian covers.

1. Introduction

In the theory of link concordance, various covers of complements of links give rise
to invariants. It is sometimes natural to think of extra structures on links [1, 11, 14,
15]. An extra structure on a link is usually given by a homomorphism from the link
group to another group and this defines a cover of the complement. Invariants under
concordance with an extra structure are derived from the cover induced by the extra
structure, but it is hard to see whether they are invariants under the ordinary link
concordance. In the case of higher odd dimensional boundary or Fm-links, it was
shown that invariants derived from the free cover completely determine the bound-
ary orFm-link concordance classes [1, 5, 11, 12, 17]. However, it is not known whether
the information from the free cover is invariant under the ordinary link concordance.

Abelian covers can always be obtained without imposing any extra structure on
links and they have been used to obtain link concordance invariants. (We say a cover
is abelian if it is associated to a homomorphism that factors through the abelianiza-
tion.) For example, the link signature is extracted from finite cyclic covers and, in [1],
a link concordance invariant is obtained by abelianizing the information from the
free cover. Abelian covers of link complements always give concordance invariants,
but they are not sharp enough to distinguish some of interesting link concordance
classes [12].

In this paper, signature invariants of arbitrary odd dimensional links are extracted
from irregular covers and non-abelian covers of complements and are shown to be
sharper than invariants from abelian constructions. For irregular or non-abelian cov-
ers, it is not easy to show directly that the information from the covers is invariant
under ordinary link concordance due to the difficulty of algebraic setup. To show
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Fig. 1

the invariance, we decompose irregular or non-abelian covers into compositions of
two abelian covers and apply the technique of Casson and Gordon [2, 3], that was
originally used to show that the Seifert form of a given 1-dimensional knot does not
determine its concordance class. In Section 2, we describe the irregular covers and
non-abelian covers of a bouquet that are used to obtain our invariants and how to
decompose it into two abelian covers and illustrate examples of a dihedral cover and
an irregular cover. Irregular or non-abelian covers of complements of Fm-links that
are pull-backs of these covers of bouquet will be used to extract invariants of links.

The Casson–Gordon invariant of a knot depends on the choice of characters on
the first homology of a branched cover along the knot. In general, the group of
characters is not invariant under link concordance. This is a difficulty in showing that
information from irregular or non-abelian covers for arbitrary links are invariants
under link concordance. In Section 3, however, we show the following main result:
let p be a prime. For two concordant links L0 and L1, there is a 1–1 correspondence
between the order p characters of Zpa1 ⊕ · · · ⊕ Zpam -branched covers of L0 and L1

and the Casson–Gordon invariants associated to the corresponding characters which
factor through Z are equal (see Theorems 1 and 2). We note that the correspondence
of characters depends on the choice of link concordance; nevertheless the finite set
of all Casson–Gordon invariants for these characters is a link concordance invariant.

In the case of Fm-links, the situation can be understood more systematically. In
Section 4, we show that there is a canonical correspondence between order p char-
acters determined by the Fm-structure of Fm-concordant Fm-links, and the Casson-
Cordon invariants associated to the corresponding characters become Fm-link con-
cordance invariants and the characters are not required to factor through Z (see
Theorems 3, 4 and 5).

In Section 5, we show that our invariants are computed from Seifert matrices
of Fm-links and show that they vanish for all slice links (see Theorem 7). We give
computational examples of non-slice links detected by our invariant but not detected
by the invariants from abelian covers. One of them is the boundary link in Fig. 1
and we show that it is not a slice link as conjectured in [11] by using invariants from
irregular covers. These examples show that irregular or non-abelian covers contain
useful information on link concordance.
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2. Covers of bouquets

LetBm =
∨m

S1 be the bouquet withm circles. In this section we describe a family
of covers of Bm which contains irregular covers and abelian covers and illustrate
examples. The covers of this section are extended to a branched cover of the 2-
complex obtained by attaching m disks to Bm, where the boundary of the ith disk
is identified with the ith circle of Bm. By pulling back this branched cover along
Fm-structures, covers of ambient spheres branched along Fm-links are obtained. In
Section 5 we will illustrate examples of concordant invariants which are extracted
from branched covers of link corresponding to the examples of this section.

We identify π1(Bm) with the free group Fm overm generators x1, . . . , xm such that
xi represents the ith circle. For m positive integers a1, . . . , am, let B̃m → Bm be a
covering map associated to the projection map Fm → Za1 ⊕· · ·⊕Zam which sends xi
to the ith standard generator (0, . . . , 1 + aiZ, . . . , 0). Then π1(B̃m) is isomorphic to a
subgroup of Fm which is generated by conjugates of xaii and commutators. Let α be
a homomorphism from π1(B̃m) onto Zp that kills conjugates of xaii . This condition
is needed to extend covers to branched covers as mentioned in the beginning of this
section. Let B̄m be the cover of B̃m determined by α. Then B̄m → B̃m and B̃m → Bm
are regular abelian covers, but the composite B̄m → Bm of the two coverings is not
necessarily regular nor abelian, as shown in the following examples.

Example 1. Regular non-abelian case

Consider the case of m = 2, a1 = a2 = 2, which is the simplest nontrivial one. The
cover B̃2 of B2 is shown in Fig. 2, and π1(B̃2) is isomorphic to the subgroup generated
by x1x2x

−1
1 x−1

2 and conjugates of x2
1, x

2
2. Let α:π1(B̃2) → Z2 be the homomorphism

defined by α(x1x2x
−1
1 x−1

2 ) = 1 + 2Z. The cover B̄2 of B̃2 associated to α is illustrated
in Fig. 3.

The composite covering B̄2 → B2 is regular but non-abelian. The covering trans-
formation group F2/π1(B̄2) is presented by

〈x1, x2 | x2
1 = x2

2 = (x1x2x1x2)2 = 1〉.
By substituting a = x1, b = x1x2, it is transformed into

〈a, b | a2 = b4 = 1, aba−1 = b−1〉
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which is the dihedral group D4. Indeed, the cosets of a, x2 and b correspond to the
reflections along the lines u, v and the (π/2)-rotation, respectively.

Example 2. Irregular case

Let m = 3, a1 = a2 = a3 = 2. In this case, the cover B̃3 is as in Fig. 4 and
π1(B̃3) is isomorphic to the subgroup of F3 generated by x1x2x

−1
1 x−1

2 , x1x3x
−1
1 x−1

3 ,
x2x1x3x

−1
1 x−1

3 x−1
2 , x2x3x

−1
2 x−1

3 , x1x2x3x
−1
2 x−1

3 x−1
1 and conjugates of x2

i . Let α be the
homomorphism from π1(B̃3) onto Z2 which sends x2x3x

−1
2 x−1

3 to 1 + 2Z and all other
generators to zero. Fig. 5 illustrates the cover B̄3 associated to α. Even though both
coverings B̄3 → B̃3 and B̃3 → B3 are regular, the composite B̄3 → B3 is not regular.
In fact, the lift based at p of the loop represented by x2x3x2x3 is a loop and the lift
based at q is not a loop.
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3. Invariants

We define Casson–Gordon invariants following [6]. For a connected manifold M
and a group G, a homomorphism φ:π1(M ) → G is called a G-structure on M . In
this case we call (M,φ) a G-manifold. We will denote a G-manifold (M,φ) by M
when its G-structure φ is obvious. Two G-structures are equivalent if they are equal
up to inner automorphisms of G. A disconnected manifold is called a G-manifold if
its components have G-structures. A submanifold of a G-manifold has an induced
G-structure.

Let M be a closed (2q + 1)-manifold and let d be a positive integer. A character
φ in Hom (H1(M ),Zd) determines a Zd-structure on M . Since the bordism group
Ω2q+1(Zd) is finite, there exists a (2q + 2)-dimensional Zd-manifold W and a positive
integer r such that ∂W = rM as Zd-manifolds. We can obtain Zd-covers W̃ → W
and M̃ → M such that ∂(W̃ → W ) = r(M̃ → M ). The covering transformation on
W̃ corresponding to 1 ∈ Zd induces an automorphism t of order d on Hq+1(W̃ ; C),
which is an isometry with respect to the intersection form. Let s(W ) be the signature
of the restriction of the intersection form to the e2πi/d-eigenspace of t. (We adapt the
convention that the signature of a skew-hermitian form A is the signature of iA.)
Let s0(W ) be the signature of the intersection form on Hq+1(W ; C). Define σ(M,φ) =
(1/r)(s(W )−s0(W )); this is well defined, by bordism arguments (see [6, 7] for details).

We need the following application of Milnor’s exact sequence [16]. Let (X,A)
be a pair and p: X̃ → X be an infinite cyclic cover induced by a homomorphism
π1(X)→ Z. Let t be the covering transformation corresponding to 1 ∈ Z. Let Xd be
the Zd-cover of X corresponding the composition of π1(X) → Z and the canonical
projection Z → Zd. Let Ã ⊂ X̃ and Ad ⊂ Xd be the pre-images of A in X̃ and Xd,
respectively.

Lemma 1. Suppose that d = pr for some prime p and let i be given.

(1) If Hi(X,A; Zp) = 0 then Hi(Xd, Ad; Zp) = 0.
(2) If H i(X,A; Zp) = 0 then H i(Xd, Ad; Zp) = 0.
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Proof. By Milnor [16], there is an exact sequence

· · · → Hi(X̃, Ã; Zp)
t−1−→ Hi(X̃, Ã; Zp)

p→ Hi(X,A; Zp)→ Hi−1(X̃, Ã; Zp)→ · · ·
If Hi(X,A; Zp) = 0, t − 1 on Hi(X̃, Ã; Zp) is surjective and t − 1 on Hi−1(X̃, Ã; Zp)
is injective. Since td − 1 = (t − 1)d over Zp, td − 1 on Hi(X̃, Ã; Zp) is surjective and
td − 1 on Hi−1(X̃, Ã; Zp) is injective. From Milnor’s sequence for (X̃, Ã)→ (Xd, Ad),
Hi(Xd, Ad; Zp) = 0. The proof of (2) is similar. q

An m-component n-link is an oriented submanifold of Sn+2 diffeomorphic to the
disjoint union of m copies of Sn. We will consider odd dimensional links only. Let
n = 2q− 1. We will assume that components of links are ordered and when n = 1 we
will assume that the linking number of any two distinct components is zero.

Let E(L) = Sn+2−(open tubular neighbourhood of L) be the exterior of L, so that
H1(E(L)) is isomorphic to Zm and generated by meridians. For m positive integers
a1, . . . , am, consider a canonical projection H1(E(L))→ Za1⊕· · ·⊕Zam which carries
the ith meridian to the ith standard generator (0, . . . , 1, . . . , 0). This map induces the
Za1⊕· · ·⊕Zam-cover X(L) of E(L), and the Za1⊕· · ·⊕Zam-branched cover M (L) of
Sn+2 along L is constructed fromX(L) by filling in with (

∏
ai;
∑
a−1
i ) copies of Sn×D2.

We will study Casson–Gordon invariants of M (L). For φ ∈ Hom (H1(M (L)),Zd),
define σ(L, φ) = σ(M (L), φ).

Two m-component n-links L0 and L1 are concordant if there is an oriented proper
submanifold L in Sn+2 × I such that L is diffeomorphic to the union of m copies
of Sn × I and the boundary of the ith component of L is the union of the ith
component of −L0 ⊂ Sn+2 × 0 and the ith component of L1 ⊂ Sn+2 × 1. In order
to obtain a link concordance invariant from the invariant σ, we will investigate
the group Hom (H1(M (L)),Zd) which is identified with H1(M (L); Zd) by the the
universal coefficient theorem. From now on, we fix a prime p and assume that links
have m-components and that a1, . . . , am are powers of p.

Theorem 1. Let L be a concordance between two links L0 and L1. Then there is an
isomorphism

Φ(L):H1(M (L0); Zp)→ H1(M (L1); Zp)

which is determined by L.

Φ(L) will be denoted by Φ if the choice of L is clear.

Proof. Denote the exterior of the concordance L by E(L), the Za1⊕· · ·⊕Zam-cover
of E(L) by X(L) and the Za1 ⊕ · · · ⊕ Zam-branched cover of Sn+2 × I along L by
M (L). Then subsets of the boundaries of E(L), X(L) and M (L) are identified with
−E(L0) x E(L1), −X(L0) xX(L1) and −M (L0) xM (L1), respectively. We need the
following lemma.

Lemma 2. Hj(M (L),M (Li); Zp) = Hj(M (L),M (Li); Zp) = 0 for all j and i = 0, 1.

Proof. It is easy to see that X(L) is obtained from E(L) by taking Zan-covers
repeatedly for n = 1, . . . ,m. Each Zan-cover corresponds to the composition
H1(E(L)) % Zm → Z → Zan , killing all but the nth meridian. Repeated appli-
cations of Lemma 1 with the initial condition Hj(E(L), E(Li); Zp) = 0 show that
Hj(X(L), X(Li); Zp) = 0 for all j. By Mayer–Vietoris arguments for

(M (L),M (Li)) = (X(L), X(Li)) x k(Sn × I ×D2, Sn × {i} ×D2),
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where k =

∏
ai;
∑
a−1
i and the union is taken along k(Sn × I × S1, Sn × {i} × S1),

we have Hj(M (L),M (Li); Zp) = 0. Similar argument proves the second conclusion.

Proof of Theorem 1 (continued). By Lemma 2, the maps from H1(M (L); Zp) to
H1(M (Li); Zp) are isomorphisms for i = 0, 1. Therefore the composition

Φ:H1(M (L0); Zp)→ H1(M (L); Zp)→ H1(M (L1); Zp)

is also an isomorphism.

Theorem 2. Suppose that L0 and L1 are concordant links and φ is a character in
H1(M (L0); Zp) which factors through the canonical projection Z → Zp. Then Φ(φ) also
factors through Z → Zp and σ(L0, φ) = σ(L1,Φ(φ)), where Φ is the isomorphism of
Theorem 1.

Proof. We use notations of the proof of Theorem 1. Consider the commutative
diagram

H1(M (L),M (L0))→H1(M (L)) α→H1(M (L0))→H2(M (L),M (L0))
f ↓ ↓ g

H1(M (L); Zp)
β→H1(M (L0); Zp)

where f , g are induced by Z→ Zp and the top row is exact. By Lemma 2,

H1(M (L),M (L0))⊗ Zp = 0

and

H1(M (L),M (L0)) = Hom (H1(M (L),M (L0)),Z) = 0.

Since the top row is exact, we have an exact sequence

Cokerα ∆→ Coker f → Coker g → 0

by the snake lemma. Since pH1(M (L); Zp) is trivial, pCoker f is also trivial. By
Lemma 2, H2(M (L),M (L0)) is a finite abelian group without p-torsion elements and
so is Cokerα. Thus Cokerα is a direct sum of finite cyclic groups whose orders are
coprime to p and pCokerα = Cokerα. Therefore ∆ is a trivial map. This shows that
Imf = Imβ−1g. Hence β−1(φ):H1(M (L)) → Zp factors through Z → Zp. Applying
this argument to (M (L),M (L1)), it is proved that Φ(φ) also factors through Z→ Zp.

Suppose W0 is a (2q + 2)-dimensional Zd-manifold whose boundary is the dis-
joint union of r copies of (M (L0), φ). Then W1 = W0 xrM (L0) rM (L) has an induced
Zd-structure and its boundary is the disjoint union of r copies of (M (L1),Φ(φ)). To
prove σ(L0, φ) = σ(L1,Φ(φ)), it suffices to show that s(M (L)) = s0(M (L)) by addi-
tivity of signatures. In fact we will show that both s(M (L)) and s0(M (L)) vanish.
By Lemma 2, Hq+1(M (L),M (L0); Zp) vanishes and so Hq+1(M (L),M (L0); Q) also
vanishes. Therefore s0(M (L)) vanishes.

Let M̃ → M (L) be the Zp-cover and ∂0M̃ be the pre-image of M (L0). Then
Lemma 1 can be applied to show that Hq+1(M̃, ∂0M̃ ; Zp) = 0 since β−1(φ) factors
through Z → Zp. Therefore the intersection form of M̃ vanishes and s(M (L)) van-
ishes. q

Because the isomorphism Φ(L) between the character groups of two concordant
links L0 and L1 depends on the choice of a link concordance L, we cannot see what
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character of L1 is the correspondent of a given character of L0 if we do not know L.
But the finite set of values of σ(L, φ) for all φ ∈ H1(M (L); Zp) is a link concordance
invariant. In the next section, we will show that we need not to consider the set of all
values in the case of Fm-concordance, because there is a canonical correspondence
between characters. Moreover, in Section 5, we will show that if L is a slice link then
σ(L, φ) = 0 for all φ.

We finish this section with a remark that the arguments of this section do not
work for characters of order pa. It is not clear whether the results of this section
hold.

4. Fm-links

Anm-component n-linkL is called a boundary link if there existm disjoint oriented
(n + 1)-manifolds N1, . . . , Nm in Sn+2 such that ∂Ni is the ith component of L,
equivalently if there exists a group homomorphism θ:π1(E(L)) → Fm such that
θ(µi) = xi for some choice of meridians µ1, . . . , µm ∈ π1(E(L)) [11]. Note that θ
induces an isomorphism on the first homology. The union

⋃
Ni is called a Seifert

surface for L. We consider a boundary link as a pair (L, θ), sometimes called an Fm-
link and θ is called an Fm-structure of L [1]. In this section we will study σ(L, φ) of
Fm-links. Firstly, we will observe that the covers constructed in Section 3 are pull-
backs of the covers of Bm along the Fm-structure. Recall that Bm is the bouquet of
m circles.
θ can be considered as a map E(L) → Bm on spaces, since Bm is the Eilenberg–

MacLane space K(Fm, 1). Let B̃m be the Za1 ⊕ · · · ⊕ Zam-cover of Bm described in
Section 2. Then

X(L) Bm
θ

X(L) Bm
θ

~~

is a pull-back diagram where θ̃ is the lift of θ. Since B̃m is a 1-complex, π1(B̃m) is a
free group and has the same rank as H1(B̃m). By computing the Euler characteristic,
rankH1(B̃m) = 1 + (m− 1)

∏
ai.

Let B̂m be the 2-complex obtained from B̃m by attaching (
∏
ai;
∑
a−1
i ) 2-cells

along each lift of xaii (1 6 i 6 m). Since π1(M (L)) is the quotient group of π1(X(L))
by a normal subgroup generated by lifts of µaii and B̂m has the homotopy type of a
1-complex, θ̃ is extended to θ̂:M (L)→ B̂m.

Now we will show that all characters φ of M (L) that are used to define σ(L, φ) are
pull-backs of characters of B̂m and therefore factor through Z.

Lemma 3. θ̂ induces an isomorphism between H1(M (L))/(torsion coprime to p) and
H1(B̂m).

Proof. We apply the argument in the proof of Theorem 1 to a mapping cylinder.
LetM be the mapping cylinder of θ and considerE(L) as a subset ofM . Let M̃ denote
the Za1 ⊕ · · · ⊕ Zam-cover of M . Repeated applications of Lemma 2 with the initial
condition H1(M,E(L); Zp) = H2(M,E(L); Zp) = 0 show that both H1(M̃,X(L); Zp)
and H2(M̃,X(L); Zp) are also trivial. Since M̃ is the mapping cylinder of θ̃, the



Signature invariants of links 75
map H1(X(L); Zp)→ H1(B̃m; Zp) induced by θ̃ is an isomorphism. Since θ induces a
surjective map on fundamental groups, so does θ̃ on fundamental groups and thus
on the first homologies. Thus H1(X(L)) modulo torsion coprime to p is isomorphic
to H1(B̃m) under θ̃. By the remark on π1(M (L)) and π1(X(L)) mentioned before, the
conclusion follows. q

From Lemma 3, it is easy to see that H1(M (L)) has no p-torsion elements.

Theorem 3. For an Fm-link (L, θ), θ̂ induces an isomorphism between H1(B̂m; Zp)
andH1(M (L); Zp). In addition, each character inH1(M (L); Zp) factors through Z→ Zp.

Proof. Immediate consequences of Lemma 3. q

Note thatH1(B̂m) is a free abelian group of rank 1+(m−1−∑ a−1
i )
∏
ai. Therefore

there are nontrivial characters in H1(M (L); Zp) unless a1 = · · · = am = 1.

Theorem 4. Suppose that L0 and L1 are two concordant links and L0 or L1 is con-
cordant to a boundary link. Then σ(L0, φ) = σ(L1,Φ(φ)) for any φ in H1(M (L0); Zp)
where Φ is the isomorphism of Theorem 1.

Proof. An immediate consequence of Theorems 2 and 3. q

Two Fm-links (L0, θ0) and (L1, θ1) are Fm-concordant if there is a concordance
L ⊂ Sn+2 × I between L0 and L1 and a map Θ:π1(Sn+1 × I − L) → Fm such that
the composition with π1(Sn+2 × {i} − Li) → π1(Sn+1 × I − L) is the map θi up to
inner automorphisms for i = 0, 1. Sometimes such a concordance is called an Fm-
concordance. Under Fm-concordance, the invariant σ behaves more systematically
since the isomorphism Φ is well-understood as follows.

Theorem 5. Let (L0, θ0) and (L1, θ1) be two Fm-concordant links. Then for any char-
acter φ in H1(B̂m; Zp), σ(L0, φθ̂0) = σ(L1, φθ̂1).

Proof. We have the commutative diagram

M(L0)

M(L) Bm
ˆ

M(L1)

θ0
ˆ

θ1
ˆ

Therefore Φ(φθ̂0) = φθ̂1 where Φ is the isomorphism in Theorem 1. By Theorem 4,
the conclusion is proved. q

Theorem 5 shows that σ(L, φθ̂) is an Fm-link concordance invariant for any char-
acter φ in H1(B̂m; Zp) and therefore we need not to consider the set of all values of
σ(L, φ) as in the case of ordinary link concordance.

Most results of this section hold for homology boundary links. A homology boundary
link is a link together with a surjection θ:π1(E(L))→ Fm. In this case, the m-tuple
(r1, . . . , rm) of elements of Fm is called a pattern of L if for some choice of meridians
µ1, . . . , µm ∈ π1(E(L)), θ(µi) = ri [4]. To work with homology boundary links, we
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need to modify the construction of the complex B̂m so that 2-disks are attached
along lifts of powers of elements of a pattern instead of generators xi. Then similar
arguments work. Note that boundary links are homology boundary links that admit
the pattern (x1, . . . , xm).

5. Calculation

Let (L, θ) denote an Fm-link. Let N = N1 x · · · x Nm be a Seifert surface for
(L, θ). We assume that θ is obtained by a Thom–Pontryagin construction for N ⊂
E(L). The Seifert pairing V :Hq(F ) × Hq(F ) → Z is defined by V (x, y) = lk (i+x, y)
where i+:H∗(F ) → H∗(Sn+2 − F ) is the map induced by a slight translation along
the positive normal direction of F in Sn+2 and lk denotes the linking number. By
choosing a basis ofHq(Ni)/torsion for each i, the Seifert pairing on (Hq(Ni)/torsion)×
(Hq(Nj)/torsion) is represented by a matrix Aij . The matrix A = (Aij) consisting of
submatricesAij is called a Seifert matrix for (L, θ) (see [11]). We haveAij = (−1)q+1ATji
for i� j.

We can construct M (L) and an (n + 3) manifold W bounded by M (L) over B̂m as
follows. Let N ′i be the proper submanifold of Dn+3 obtained by pushing the interior
of Ni ⊂ Sn+2 into Dn+3 slightly. Let Y = Dn+3 − (open tubular neighbourhood of
N ′i ) and let Mi ⊂ Y denote the trace of pushing. Let Y (j1, . . . , jm) denote a copy of
Y − (open tubular neighbourhood of

⋃
Mi) for 1 6 ji 6 ai; this is homeomorphic to

Dn+3. Let

c+
i (j1, . . . , jm), c−i (j1, . . . , jm):Mi → ∂Y (j1, . . . , jm)

be the inclusions corresponding to the positive and negative normal directions, re-
spectively. Let

Ai = {(j1, . . . , jm) | 1 6 ji 6 ai − 1, 1 6 jl 6 al for l� i}
for 1 6 i 6 m. For λ = (j1, . . . , ji, . . . , jm) ∈ Ai, let λ+ denote (j1, . . . , ji + 1, . . . , jm).
Let W be the manifold constructed from building blocks Y (j1, . . . , jm) pasted as
follows.

W =
⋃

(j1,...,jm)

Y (j1, . . . , jm)
/ ∼

where c+
i (λ)(z) ∼ c−i (λ+)(z) for 1 6 i 6 m,λ ∈ Ai, z ∈Mi. Then ∂W = M (L).

We consider the graph G consisting of
∏
ai vertices {v(j1, . . . , jm) | 1 6 ji 6 ai}

and (
∏
ai)(m−

∑
a−1
i ) edges {ei(λ) | 1 6 i 6 m,λ ∈ Ai}. The edge ei(λ) joins two ver-

tices v(λ) and v(λ+). By choosing a basepoint from the 0-skeleton of B̃m, we obtain a
bijection from the set of vertices ofG onto the 0-skeleton of B̃m carrying v(j1, . . . , jm)
to the image of the basepoint under the covering transformation corresponding to
(j1, . . . , jm) ∈ Za1 ⊕ · · · ⊕ Zam . It is extended to a homotopy equivalence between
G and B̂m. Orient edges of G such that ∂ei(λ) = ε(λ);(v(λ) − v(λ+)) for 1 6 i 6 m,
λ ∈ Ai, where ε(j1, . . . , jm) = 1 if

∑m
i=1(ji−1) is even, −1 otherwise. The construction

of W is the ‘pull-back’ of the construction of G, that is, Y (j1, . . . , jm) corresponds to
v(j1, . . . , jm) and identifications along Mis in the construction of W correspond to
edges ofG. From this we can see that the map θ̂: ∂W%M (L)→ B̂m extends overW .

Let M̃ denote the union of the images of Mi in W under c+
i (λ), 1 6 i 6 m, λ ∈ Ai.

Then a Mayer–Vietoris argument for W = (W −M ) x (open bicollar of M̃ ) shows
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that Hq+1(W )%Hq(M̃ ). Since Mi and Ni are homotopy equivalent, we have

Hq+1(W )%
m⊕
i=1

( ⊕
λ∈Ai

Hq(Ni(λ))
)
,

where Ni(λ) is a copy of Ni. An element x ∈ Hq(Ni(λ)) is represented by the (q + 1)-
chain z′x x z

′′
x where z′x, z′′x are (q + 1)-chains in Y (λ), Y (λ+), respectively, such that

∂z′x = ε(λ);c−i (λ)(x) and ∂z′′x = ε(λ+);c+
i (λ+)(x). Therefore the intersection number

of two elements of Hq+1(W ) represented by x ∈ H1(Ni(λ)) and y ∈ H1(Nj(µ)), where
λ ∈ Ai, µ ∈ Aj , is given by

x;y =



V (x, y) + εV (y, x), i = j and λ = µ
V (x, y), i = j and λ = µ+

εV (y, x), i = j and λ+ = µ
V (x, y), i� j and either

λ = µ, λ+ = µ, λ = µ+ or λ+ = µ+

0, otherwise.

where ε = (−1)q+1.
A function from the set of edges ofG to Zp is called a voltage assignment (see [8]). A

voltage assignment α induces a map ᾱ:π1(G)→ Zp; conversely, any map π1(G)→ Zp

is realized by a voltage assignment. Hence it suffices to consider characters of the
form ᾱθ̂:H1(M (L))→ Zp for some voltage assignment α, by Theorem 3.

For a given voltage assignment α for G, the Zp-cover Gα of G induced by α is
constructed as follows.Gα has p

∏
ai vertices labelled by v(s) and p(

∏
ai)(m−

∑
a−1
i )

edges labelled by e(s), where v is a vertex of G, e is an edge of G and s ∈ Zp. The
directed edge ei(λ)(s) (1 6 i 6 m, λ ∈ Ai) runs from v(λ)(s) to v(λ+)(s−ε(λ)α(ei(λ))).
The covering projection Gα → G sends v(s) to v, e(s) to e. The preferred generator t
of the covering transformation group acts onGα by t(v(s)) = v(s+1), t(e(s)) = e(s+1)
(indices are modulo p).

We can construct the Zp-cover W̃ of W induced by ᾱθ̂ via the ‘pull-back’ of
the construction of Gα. Let Y (j1, . . . , jm)(s) denote a copy of Y (j1, . . . , jm) for
1 6 ji 6 ai, s ∈ Zp. Let c+

i (j1, . . . , jm)(s) and c−i (j1, . . . , jm)(s) be the inclusions
Mi → Y (j1, . . . , jm)(s). Then

W̃ =
⋃
s∈Zp

(j1,...,jm )

Y (j1, . . . , jm)(s)
/ ∼

where c−i (λ)(s)(z) ∼ c+
i (λ+)(s− ε(λ)α(ei(λ)))(z) for 1 6 i 6 m,λ ∈ Ai, s ∈ Zp, z ∈Mi.

The intersection form of W̃ can also be described. A Mayer–Vietoris argument
shows that

Hq+1(W̃ )%
m⊕
i=1

( ⊕
λ∈Ai,s∈Zp

Hq(Ni(λ)(s))
)
,

where Ni(λ)(s) is a copy of Ni. An element x ∈ Hq(Ni(λ)(s)) is represented by the
(q + 1)-chain z′x x z′′x where z′x is a (q + 1)-chain in Y (λ)(s) and z′′x is one in
Y (λ+)(s − ε(λ)α(ei(λ))), such that ∂z′x equals ε(λ);c−i (λ)(s)(x) and ∂z′′x equals
ε(λ+);c+

i (λ+)(s− ε(λ)α(ei(λ)))(x).
In our case, all eigenspaces can be described as in [9]. For x ∈ Hq+1(W̃ ; C),

uω(x) =
∑p−1

k=0 ω
−ktk(x) is a ω-eigenvector of t if ω is a pth root of unity. By
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dimension counting, we have Hq+1(W̃ ; C) = V0 ⊕ · · · ⊕ Vp−1 where Vk is the e2πki/p-
eigenspace {ue2πki/p(x) | x ∈ Hq(Ni(λ)(0)), λ ∈ Ai}. Let ω = e2πi/p. The intersection
number of uω(x) and uω(y) is given by

uω(x)uω(y) =



p(V (x, y) + εV (y, x)), i = j, λ = µ
pωε(µ)α(ej (µ))V (x, y), i = j, λ = µ+

pω−ε(λ)α(ei(λ))εV (y, x), i = j, λ+ = µ
pV (x, y), i� j, λ = µ
pωε(µ)α(ej (µ))V (x, y), i� j, λ = µ+

pω−ε(λ)α(ei(λ))V (x, y), i� j, λ+ = µ
pω−ε(λ)α(ei(λ))+ε(µ)α(ej (µ))V (x, y), i� j, λ+ = µ+

0, otherwise.

where x ∈ Hq(Ni(λ)(0)), y ∈ Hq(Nj(µ)(0)), λ ∈ Ai, µ ∈ Aj .
We summarize these results.

Theorem 6. Let (L, θ) be an Fm-link. Let A = (Aij) be a Seifert matrix. Let α be a
voltage assignment for G with voltage group Zp. Then

σ(L, ᾱθ̂) = sign (S̃)− sign (S)

where S = (S(i,λ),(j,µ))16i,j6m,λ∈Ai,µ∈Aj and S̃ = (S̃(i,λ),(j,µ))16i,j6m,λ∈Ai,µ∈Aj are the
matrices given by

S(i,λ),(j,µ) =



Aii + εATii, i = j and λ = µ
Aii, i = j and λ = µ+

εATii, i = j and λ+ = µ
Aij , i� j and either λ = µ,

λ+ = µ, λ = µ+ or λ+ = µ+

0, otherwise,

S̃(i,λ),(j,µ) =



Aii + εATii, i = j and λ = µ
ωε(µ)α(ej (µ))Aii, i = j and λ = µ+

ω−ε(λ)α(ei(λ))εATii, i = j and λ+ = µ
Aij , i� j and λ = µ
ωε(µ)α(ej (µ))Aij , i� j and λ = µ+

ω−ε(λ)α(ei(λ))Aij , i� j and λ+ = µ
ω−ε(λ)(α(ei(λ))+α(ej (µ)))Aij , i� j and λ+ = µ+

0, otherwise.

Note that if L is (concordant to) a boundary link, then σ(L, φ) is an integer for
any character φ.

A link is said to be a slice link if it is concordant to a trivial link. As a consequence,
we prove that our invariant vanishes for slice links as mentioned in the introduction.

Theorem 7. If L is a slice link, σ(L, φ) = 0 for all character φ.

Proof. It suffices to show for the trivial link. Since the null-matrix is a Seifert
matrix, σ vanishes by Theorem 6. q

We remark that Theorem 7 can directly be proved by using the argument in the
proof of Theorem 2.
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Fig. 6

Finally we illustrate some examples. In the simplest case ofm = 2, p = a1 = a2 = 2,
we have

S =


A11 + εAT11 0 A12 A12

0 A11 + εAT11 A12 A12

A21 A21 A22 + εAT22 0
A21 A21 0 A22 + εAT22

 .
For the voltage assignment α given by

α(e) =
{

1, if e = e1(1, 1)
0, otherwise

we have

S̃ =


A11 + εAT11 0 A12 −A12

0 A11 + εAT11 A12 A12

A21 A21 A22 + εAT22 0
−A21 A21 0 A22 + εAT22

 .
We note that this case corresponds to the first example of Section 2.

Let L be a 2-component n-link with a Seifert matrix

A =


0 1 2 0
0 1 0 −1
2 0 0 0
0 −1 1 1

 .
where n is odd. By realization theorems (e.g. see [11]), such a link L exists in any
odd dimension. Fig. 2 illustrates L in the classical dimension. Note that the classical
link signatures [10, 13] of L vanish.

A calculation aided by a computer shows that sign (S) = 0 and sign (S̃) = 4 if
n ≡ 1 (mod 4). Thus by Theorem 6, σ(L, ᾱθ̂) = 4, and by Theorem 7, L is not a slice
link.

In the case of m = 3, p = a1 = a2 = a3 = 2 and α given by

α(e) =
{

1 if e = e1(1, 1, 1)
0 otherwise
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we have

S =



B11 A12 A12 A13 A13

B11 A12 A12 A13 A13

B11 A12 A12 A13 A13

B11 A12 A12 A13 A13

A21 A21 B22 A23 A23

A21 A21 B22 A23 A23

A21 A21 B22 A23 A23

A21 A21 B22 A23 A23

A31 A31 A23 A23 B33

A31 A31 A23 A23 B33

A31 A31 A23 A23 B33

A31 A31 A23 A23 B33



,

S̃ =



B11 A12−A12 A13−A13

B11 A12 A12 A13 A13

B11 A12 A12 A13 A13

B11 A12 A12 A13 A13

A21 A21 B22 A23 A23

−A21 A21 B22 A23 A23

A21 A21 B22 A23 A23

A21 A21 B22 A23 A23

A31 A31 A23 A23 B33

−A31 A31 A23 A23 B33

A31 A31 A23 A23 B33

A31 A31 A23 A23 B33



,

where Bii = Aii + εATii for 1 6 i 6 3. We note that this case corresponds to the
second example of Section 2.

Let L be a 3-component n-link with a Seifert matrix

A =



0 1 1
0 0 1
1 0 1 1 0

0 −1 0 0
0 −1 −1 0
0 1 0 0

1 1 0 0 1
0 0 0 −1

−1 0 0 −1
0 0 0 1


,

where n is odd. By realization theorems, such a link L also exists in any odd dimen-
sion. The link L is suggested in [11]. Fig. 1 illustrates L in the classical dimension.

Again a calculation aided by a computer shows that sign (S) = 0 and sign (S̃) = −4
if n ≡ 1 (mod 4). Therefore by Theorem 6, σ(L, ᾱθ̂) = −4, and by Theorem 7, L is
not a slice link.
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In [11], it was proved that L is not boundary or Fm-concordant to the trivial link.

Our computation extends that result. We note that the necessary condition from the
classical link signatures [10] fails to detect that L is not a slice link. Moreover, the
necessary condition obtained by abelianizing the Γ-group obstruction from the free
cover [1] also fails to detect it, as mentioned in [11, 12]. In [18], it was mentioned
without details that L can be shown not to be a slice link by using a G-signature
invariant.
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