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ABSTRACT

In this lecture we address some topological questions connected with the exis-

tence on a general spacetime manifold of diffeomorphisms connected to the identity

which reverse the time-orientation.

1 Introduction

If one regards Quantum Gravity as an attempt to unify two distinct but
equally fundamental physical theories; quantum mechanics on the one hand
and general relativity on the other, one can ask what elements of either the-
ory is it most likely that one will have to sacrifice in the eventual unification.
Perhaps the most fundamental innovations of general relativity relate to its
treatment of the notion of time. One of most striking features of quantum
mechanics is its use of complex amplitudes. One may argue that the intro-
duction of complex numbers into the basic structure of quantum mechanics is
closely connected to the treatment in that theory of the notion of change and
of time evolution. It therefore seems reasonable to regard the use of complex
numbers in conventional quantum mechanics as a potential casuality. More
precisely, one may argue that if, as is commonly supposed in quantum cos-
mology, the classical idea of time is an emergent concept, valid only at late
times, low energies and large distances, then so too is our usual idea of a
quantum mechanical Hilbert space with its attendant complex structure. In

other words, the complex numbers in quantum mechanics should be thought

of as having an essentially historical origin. Some ideas along these lines
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were discussed within the context of the semi-classical approach to quantum
cosmology in [16–17].

A related question is to ask: how in a theory in which one assumes that
spacetime has an everywhere well-defined Lorentzian metric are the proper-
ties of quantum fields in those spacetimes affected by such global properties
of the spacetime as the existence of closed timelike curves (‘CTCs ’), a lack
of time-orientability or some other pathology which would normally be ex-
cluded in a globally hyperbolic spacetime? Are there restrictions on the
possible spacetimes for example? One possible restriction comes about by
demanding that spacetime admit a spin or pin structure [6]. Another possible
restriction arises by demanding that the spacetime has a time-orientation. If
it does not, one may argue that one may not be able to construct a quantum
mechanical Hilbert space endowed with a complex structure. This suggestion
was made some time ago [25] and it has received further support from the
work of Bernard Kay [7].

One motivation for asking this question is to try to extend the range of
applicability of quantum field theory in a fixed background. Another mo-
tivation might be to answer questions about what possibilities the laws of
physics in principle allow. This has provided much of the impetus behind
recent work on CTCs . Another, and possibly more cogent, reason for consid-
ering non-globally-hyperbolic spacetimes is that in the path integral approach
to quantum gravity in which one sums over all possible Lorentzian metrics
there is a priori no good reason for excluding them. One might attempt to
perform the functional integral by first freezing the metric and integrating
over all matter fields on that spacetime, and then summing over all space-
times. The first part of the integral is then tantamount to quantizing matter
fields on a fixed background. It is customary in the Euclidean formulation to
replace the sum over Lorentzian metrics by a sum over Riemannian metrics
but one may ask what happens if one tries to avoid this step.

In the Euclidean version one is often concerned with anomalies that may
arise when functional determinants fail to be well-defined, for example they
may not be invariant under spacetime diffeomorphisms. The diffeomorphisms
in question may either be continuously connected to the identity or not. The
latter type of global anomalies are closely related to discrete symmetries, or
lack of them, such as parity or orientation. They may also be investigated
from an Hamiltonian point of view . However, this does not address the
possibility of anomalies of a purely Lorentzian kind which manifest them-
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selves only in non-globally-hyperbolic spacetimes. An example is a break-
down of spin structure. If one assumes that spacetime is both time and
space-orientable, this can only occur in a spacetime which is not globally hy-
perbolic . If one drops the requirement of space-orientability, however, there
may exist pin structure even though the spacetime is globally hyperbolic. An
example is provided by RP2 × R2, endowed with the product metric formed
from the standard ‘round’ metric on RP2 and the Minkowski metric on R2

(with either signature) [6].
One possible viewpoint on the difficulties experienced with non-time-

orientable spacetimes is precisely that there is some sort of anomaly. Roughly
speaking, for each complex amplitude in the functional sum one must, if there
is no global time-orientation, include its complex conjugate which is associ-
ated to the time-reversed amplitude. The result must then necessarily be real
and so no true quantum interference is possible. It is interesting to note that
this sort of problem would also arise in some attempts to generalize the usual
quantum formalism being made by Gell-Mann and Hartle [22] since they also
make use of complex amplitudes and they incorporate a rule relating complex
conjugation to time reversal of a sequence of observables.

The purpose of this lecture is to explore some of these issues in more
depth. In particular, we will discuss the relation between the topology of a
time-orientable spacetime {M, g} and the existence and properties of various
kinds of time-reversing diffeomorphisms. We shall, for the sake of mathemat-
ical precision, mainly concentrate on spacetime manifolds M which are com-
pact and without boundary, but we will comment on the case of non-compact
spacetimes and spacetimes with boundaries.

As well as the motivations given above, our results are also relevant to
suggestions like that of Sakharov [18] that the early universe may simply
be a time reflection of the late universe. Such a viewpoint is essentially a
Lorentzian version of the (historically later) no-boundary proposal or the
idea of a universe born from nothing [23].

2 Compact Spacetimes

An assumption of compactness in spatial directions is quite natural when
discussing topological questions because one has in mind a situation where
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the non-trivial topology can be localized, at least to the extent that it is not
allowed to escape from the spacetime altogether. Compactness in the time
direction is less easy to justify (unless there are spacelike boundaries) because
it necessarily implies the existence of closed timelike curves . Formerly this
was thought to rule out consideration of such spacetimes but more recently,
with the advent of studies of the properties of time machines, this view has
been abandoned and so we shall not be put off by this feature.

In fact the Euler number χ(M) of a compact spacetime of arbitrary
dimension must vanish:

χ(M) = 0, (1)

and in four dimensions:
χ = 2 − 2b1 + b2, (2)

where bi are the Betti numbers. Thus a compact spacetime must have an
even second Betti number and infinite fundamental group, and so its universal
covering space is non-compact. In this sense it may be thought of as a non-
compact spacetime which has been periodically identified and this is indeed
typically how examples of time machines are constructed in the literature.
However, the reader is cautioned that there is, as we shall see later, no logical
connection between whether or not a curve is closed and timelike and whether
or not it is homotopically trivial. In general, one expects the fundamantal
group π1(M) to be non-Abelian. This is what one expects in the case of two
or more time machines, for example if the spacetime has in a connected sum
decomposition two summands of the form S1×S3 with time running around
the S1 factors.

In the exceptional case that the fundamental group is Abelian, it may
be shown [8–11] that the possible Betti numbers (b1, b2) must belong to the
set: {(1,0), (2,2), (3,4), (4,6)} . This is because for any closed orientable
manifold of any dimension which has an Abelian fundamental group one has
the inequality:

1

2
b1(b1 − 1) ≤ b2 (3)

The result follows from (1) which holds for any spacetime dimension and
(2) which holds in four dimensions.

The significance of this non-Abelian-ness in the case that homotopically
non-trivial time machines are present is presumably that some physical effects
may depend upon the order in which one enters the time machines. It would
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be interesting to explore this point further. In that connection, it is perhaps
worth recalling why it is that non-simply-connected four-manifolds are not
classifiable [26]. The point is that by taking the connected sum #kS

1×S3 of k
copies of S1×S3 one obtains a four-manifold whose fundamental group is the
free group on k generators (which of course is maximally non-Abelian). One
may now perform surgery on this manifold to obtain a new manifold whose
fundamemtal group has k generators and r arbitrarily chosen relations. Since
there is no algorithm for deciding whether two different presentations give
an isomorphic group there can be no algorithm for deciding whether two
four-manifolds are homeomorphic .

The process of surgery can be described as follows. Given an element g ∈
π1(M′) of a four-manifold M′ one can represent it by a closed curve γ ∈ M′.
Now surround this closed curve γ by a tube or collared neighbourhood N of
the form N = D3×γ ≡ D3×S1 where D3 is a closed 3-dimensional disc. The
boundary ∂N of this tube has topology ∂N ≡ S1×S2. One now removes the
tube N from M′ and replaces it with the simply connected manifold D2×S2

which has the same boundary. The result is a new manifold M′′ whose
fundamental group differs from that of M′ only by the imposition of the
relation g = 0. This process is called ‘killing an element of the fundamental
group’. It may be shown that by a succesion of such killings one may obtain
from #kS

1 × S3 a manifold with any desired finitely generated fundamental
group.

From a physical point of view it is interesting to note two things. Firstly
that the undecidability problem reviewed above may give rise to limitations
on what is ‘in principle’ allowed by the laws of physics when it comes to the
sort of wormhole and time machine engineering envisaged by Thorne and
others. The possibility arises of having two sets of instructions for building
a multiple time machine but having no algorithm for deciding whether the
two spacetimes have the same topology. Whether or not this is true is not
obvious from the general result quoted above because a compact spacetime
must have vanishing Euler number. We do not know whether such manifolds
are classifiable or not.

The second point is that the process of surgery gives rise to a manifold
which physically looks rather like one containing the creation and annihi-
lation of an extra Einstein-Rosen throat. If the 2-disc D2 has coordinates
X + iT = r exp

(

it− iπ
2

)

where the cyclic ‘time’ coordinate t which param-
eterizes the original curve γ runs between 0 and 2π then ‘half-way round’,
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i.e. on the real axis T = 0, the interior of the tube N has been replaced
by a manifold which has the same topology as the Kruskal manifold of a
black hole and therefore it has embedded in it a three-manifold which has
the topology of a bridge, i.e. of R×S2. If these sorts of manifolds do arise in
a Lorentzian form of quantum gravity it seems reasonable to think of them
as containing ‘virtual black holes’.

This interpretation receives some support from the observation that the
Riemannian manifolds used as instantons or real tunnelling geometries in the
Euclidean approach to vacuum instability and black hole pair creation may
be obtained by surgery on a circle , which we would like to associate with
the world line of a virtual black hole, from the corresponding false vacuum
spacetime. Thus the Euclidean Schwarzschild manifold (R2×S2) may be ob-
tained from the hot flat space manifold S1×R

3, the Ernst instanton manifold
(S2 × S2 − {pt}) for the creation of pairs of oppositely charged non-extreme
black holes from a constant electromagnetic field (topology R4), and the Nar-
iai and Mellor-Moss Instantons (both with topology S2 × S2) are obtained
from the De Sitter manifold (S4). In Kaluza-Klein theory, Witten [27] has
argued that the five-dimensional Schwarzschild solution (topology R2 × S3)
is the bounce solution which mediates the decay of the Kaluza-Klein vac-
uum (topology S1 × R4 ). The five-dimensional manifold corresponding to
a magnetic field also has topology S1 × R

4. This may decay via Witten’s
instability but it may also decay into a monopole-anti-monopole pair. The
instanton for this process has topology S5 − S1 ≡ R2 × S3 and so may also
be obtained by surgery on a circle from the false vacuum spacetime manifold.

3 Time Reversal in a General Spacetime

Let {M, gL} be a time-orientable spacetime. Thus the bundle of time-
oriented frames SO↑(n − 1, 1)(M, gL) falls into two connected components.
One typically thinks of time reversal Θ as a diffeomorphism:

Θ : M → M

which reverses time-orientation, whose lift to SO↑(n−1, 1)(M, gL) exchanges
the two connected components and is an involution of order two:

Θ2 = id.
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It need not necessarily be an isometry (in general the spacetime will not
admit any isometries). One could imagine considering a more general finite
group action but presumably one could always find a Z2 subgroup and we
shall assume that this can be done.

In a general non-globally-hyperbolic spacetime it is not obvious whether
Θ should reverse space-orientation, or total orientation (assuming {M, gL}
to be space or time-orientable respectively) , whether it should act freely
on M or fix a three-surface for example, or whether it should belong to
the identity component Diff0(M). The existence and uniqueness and other
properties of Θ depends both on the topology of the manifold M and on the
Lorentz metric gL.

To illustrate these subtleties, consider even the simplest globally hyper-
bolic spacetime M ≡ R × Σ with coordinates t,x, t being timelike and Σ
being an orientable (n− 1)-manifold. Naively we might take

ΘT : (t,x) → (−t,x)

but nothing prevents us from considering

ΘJ : (t,x) → (−t,x∗)

where
J : x → x∗

is an involution on the (n − 1)-manifold Σ. Clearly ΘT fixes the three-
manifold Σ and reverses total orientation. It therefore lies outside the identity
component Diff0(M). On the other hand, we might arrange for J to act freely
on Σ, possibly reversing or not reversing space-orientation.

These seemingly rather artificial examples actually arise in some appli-
cations. In quantum field theory in De Sitter spacetime, dSn, Σ is the
(n − 1)-sphere and J its antipodal map. This preserves space-orientation
if the spacetime dimension n is even. The map ΘJ is an isometry and is
the centre of the isometry group O(n, 1). One may identify points under the
action of ΘJ to obtain the ‘elliptic interpretation’. This then provides a pos-
sible non-singular realisation of Sakharov’s ideas of a Lorentzian model of a
universe born from nothing. The idea immediately generalizes to a Friedman
model whose scale factor is an even function of time. Sakharov’s idea was
in fact to impose some sort of time-reflection symmetry about a singular big
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bang at which the scale factor vanishes. He did not use the involution J . In
spatially closed models the scale factor often starts from a zero value at the
big bang, t = 0, rises to a maximum at t = tmax say, and then symmetrically
decreases to a vanishing value at the big crunch at t = 2tmax. This has led
Gold [2] to conjecture that the ‘arrow of time reverses’ in the contracting
phase. In effect he proposed that the entire quantum state is invariant under
a time-reversing involution whose action on spacetime is given by:

ΘG : t→ tmax − t.

By contrast Davies [1] (see also Albrow [4]) prefers to continue through the
Big Bang and Big Crunch to get a model in which the arrow of time reverses
in sucessive cycles. In other words, one imposes invariance under the action
of semi-direct product Z ⊙ Z2 given by

t→ t+ 2tmax

and
t→ −t.

It is clear that similar options are available for non-singular periodic models
in which there is neither a Big Bang nor a Big Crunch. Thus for example, in
the case of Anti-De Sitter spacetime AdeSn, the scale factor is a sinusoidal
function of cosmic time but the vanishing of the scale factor is an artefact of
a poor choice of coordinates. In fact M ≡ S1 ×Hn−1 where Hn−1 ≡ Rn−1 is
hyperbolic space and time t runs around the circle, 0 ≤ t < 2π. The center
of the isometry group O(n − 1, 2) does not reverse time (it sends (t,x) to
(t + π,−x)). Intuitively, it seems clear that time reversal must have fixed
points since we must reverse t and compose with an involution J which may
be thought to act on Euclidean space.

In the examples so far (at least if we wish to maintain the boundary condi-
tions) there was no natural choice of Θ in the identity component Diff0(M).
However in more exotic situations, as we shall see in detail shortly, this seem-
ingly paradoxical situation can occur. Now if no possible Θ lies in the identity
component Diff0(M) it is reasonable to say that the spacetime {M, gL} has
an intrinsic sense of the passage of time (even though time itself may not be
defined!). If however there exists a Θ which does lie in the identity compo-
nent this is not reasonable. The general situation with respect to Diff(M)
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appears to be quite difficult to analyse and so we shall restrict attention here
to a simpler question. Is there a homotopy rather than a diffeomorphism
carrying the metric gL with one time-orientation to the same metric with the
opposite time-orientation? If there does exist a suitable Θ in the identity
component Diff0(M) then a homotopy will certainly exist (simply pull back
gL by a curve fs, 0 ≤ s ≤ 1 of diffeomorphisms joining f1 = Θ to the identity
f0 = id). However the converse is not necessarily true. Given a homotopy
gL

t of Lorentz metrics there may exist no diffeomorphism producing it. Now
from the point of view of homotopy theory, a closed time-oriented Lorentzian
spacetime {M, gL} contains no more information than a Riemannian man-
fold M equipped with a unit vector field V. The spacetime with the opposite
time-orientation corresponds homotopically to the same manifold equipped
with the negative unit vector field −V.

4 Mathematical Interlude

This following mathematical interlude follows some conversations with Graeme
Segal.

4.1 Linear and General Homotopies

We suppose that M is a closed, n-dimensional time-orientable Lorentzian
manifold. We may, in the standard way, endow M with a Riemannian metric
and hence deduce that M admits a global section V of the bundle S(M) of
unit vectors over M . At each point x in M the fibre Sx of S(M) is an n− 1
sphere.

Pulling the Lorenzian metric back under the action of diffeomorphisms
induces an action on V and we would like to know whether there exists a
diffeomorphism f : M →M which takes V to its negative, i.e. which reverses
the direction of time. In particular we would like to know whether there exits
such a diffeomorphism f contained in the identity component Diff0(M) of the
diffeomorphism group Diff(M). An easier question to ask is whether there
exists a homotopy taking V to −V since if there exists a diffomorphism in
the identity component a homotopy is given by a curve ft in Diff0(M) joining
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f to the identity. The converse is however not sufficient because, as we shall
see, if one considers M = S1 × S2n−1 with the vector field running around
the S1 factor one finds that this cannot be reversed by a diffeomorphism but
it may be reversed by a homotopy

A homotopy Vt between V and −V thus gives at each point x in M
a continuous path γx(t) from the north pole to the south pole of Sn−1. In
other words a general homotopy Vt provides a global section sZ of a bundle
Z(M) whose fibres Zx are the space of paths from the north to the south
pole of Sn−1. Since any path from the north pole to the south pole of Sn−1

is homotopic to a closed path on Sn−1 one sees that from the point of view
of homotopy the fibre Zx is equivalent to the loop space Ω(Sn−1) of based
loops on Sn−1 .

Consider now a special or linear homotopy from V to −V. By definition
this is one for which, at each point x in M , V(x)t lies in a an oriented two
plane π(x) spanned say by the vectors V0 and Vt1 where 0 < t1 < 1. A
linear homotopy gives a particular kind of path γx(t) from the north to the
south pole of Sn−1, one which is along a great circle in the 2-plane defined
by by the vectors V0 and Vt1. The set of such great circles is parameterized
by where the great circle intersects the equatorial Sn−1.

The existence of a linear homotopy is thus equivalent to the existence of a
global section sY of the Sn−2 bundle Y (M) of unit vectors orthogonal to the
vector field V (x). One may think of this Sn−2 fibre Yx as the equatorial Sn−2

in the Sn−1 fibre Sx of the bundle S(M). It follows that the bundle Y (M) is
a sub-bundle of the bundle Z(M). The question of whether every homotopy
can be deformed into a linear homotopy then reduces to the question whether
every section sZ may be deformed to a section sY .

It should also be clear that the existence of the vector field and a linear
homotopy is equivalent to a non-vanishing section of the bundle Vn,2(M) of
dyads, i.e of ordered pairs of linearly independent vectors e1 and e2 say.
The fibre of the dyad bundle Vn.2(M) is the Stiefel manifold Vn,2 of dyads.
In addition a linear homotopy provides a global section sG of the bundle
Gn,2(M) of oriented 2-planes whose fibre is the Grassman manifold Gn,2.
The existence of a section sG is, in fact, the necessary and suffient condition
that a manifold admit a metric of signature (n− 2, 2).

We note en passant the following
Lemma If M is even dimensional a sufficient condition for M to admit

a linear homotopy is that it admit an almost complex structure J . In four
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dimensions this condition is also neccessary.

The point is that one may then take

Vt = etπJV0

In four dimensions the existence of an almost complex structure is also nec-
essary since given the dyad field one obtains an almost complex structure
by extending the rotation through π

2
in the two-plane spanned by the two

vectors to the unique orthogonal two-plane. The sign ambiguity may be fixed
by the convention that the associated two-form is anti-self-dual.

A simple example is provided by the manifold mentioned earlier: S1 ×
S2n−1. As is well known this is a complex manifold and hence it certainly
admits a complex structure. Thus the vector field which just winds around
the S1 factor can certainly be reversed by a homotopy but it is clear, by
using a metric to convert the vector to a one-form and considering the
line integral of the one-from around the circle, that it cannnot be reversed
by a diffeomorphism. To see that S1 × S2n−1 is a complex manifold one
notes that S1 × S2n−1 ≡ C2n/Z where the integers Z act on C2n ≡ R4n by
(z1, z2, . . . , zn) → (λmz1, λmz2, . . . λmzn, ) where m ∈ Z and λ is a real num-
ber not equal to zero or unity.

Now it is known, eg. from Morse theory, that the homotopy type of
the fibre Yx of loops on Sn−1 is that of a cell-complex corresponding to the
geodesic paths. Thus there is a cell corresponding to going once around the
sphere, the descending directions parmetrizerized by the equatorial Sn−1, and
next comes a cell S2(n−2) and so-forth. If n > 4 this second cell is higher in
dimension than the dimension of the base M of the bundle Y (M). It follows
from obstruction theory that there is no obstruction to pushing points of any
section sY in the fibre Yx down onto the Sn−2 of the fibre Yx of the dyad
bundle Y (M). In other words we have the following
Proposition: In dimensions greater than 4 a general homotopy is deformable

to a linear homotopy and thus the necessary and sufficient condition for a

general homotopy is the existence a global section of the Sn−2 bundle Y (M),
or equivalently a global section of the dyad bundle Vn,2(M).

Atiyah [15] (see also Thomas [14]) has obtained some necessary conditions
for the existence of a non-singular dyad field. From their work one has one
has the following
Proposition A necessary condition that a 4k dimensional manifold, k >
1 admit a time revesing homotopy is that the signature τ(M) be divisible
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by 4. A necessary condition that a 4k + 1 dimensional manifold admit a

time-reversing homotopy is that the real Kervaire semi-characteristic k(M)
vanish.

The real Kervaire semi-characteristic is defined by

k(M) =
∑

b2p mod 2

where b2p are the Betti numbers, b2p = dimH2p(M ; R).

4.2 Four-dimensional case

In four dimensions the situation is more delicate because the cell-decomposition
of the fibre Yx contains a 4-sphere which has the same dimension as the base.
We now turn to a more detailed discussion of the four dimensional case. We
begin with some general facts about S2 and S3 bundles over oriented four
manifolds.

Firstly note that oriented 3-plane, or equivalently S2 bundles Q → M
have characteristic classes w2 ∈ H2(M ; Z/2) and p1 ∈ H4(M ; Z) which sat-
isfy:

p1 = w2
2 mod 4

The characteristic classes w2 and p1 subject to this condition determine and
are determined by the bundle Q. Moreover, the bundle Q admits a cross
section if and only if there exists an element ξ ∈ H2(M ; Z) such that

ξ = w2 mod 2

and
ξ2 = p1.

The class ξ may be thought of as follows. A non-zero section s of an
oriented three-plane bundle gives rise to an oriented 2-plane bundle whose
fibres consist of vectors orthogonal to the section s. This oriented two-plane
bundle may be thought of as a complex line bundle and ξ is its first Chern
class c1.

Similarly, in four dimensions, real four-dimensional oriented vector bun-
dles E → M determine and are determined by classes w2 ∈ H2(M ; Z/2) and
p1, e ∈ H4(M ; Z) such that

w2
2 = p1 + 2emod 4.
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Given E one may pass to the bundle of two forms Λ(E). Giving the fibres
a positive definite metric we obtain two 3-plane bundles, Λ± of self-dual or
anti-self-dual two forms. We have

w2(E) = w2(Λ
+) = w2(Λ

−)

and
p1(Λ

±) = p1(E) ± 2e(E)

We are of course interested in the case when E is the tangent bundle of
the manifold M . Then w2 is the second Steifel-Whitney class w2(M), e its
Euler class e(M), and p1 its Pontryagin class p1(M). The Pontryagin class
is related to the signature τ by

p1(M) = 3τ(M),

moreover
τ = emod 2

Now if E admits a global section sE (which can happen if and only if the
euler class e vanishes) then the bundles Λ+(E) and Λ−(E) are isomorphic.
This is because given any vector u orthogonal to the section sE we get a self
or anti-self dual two form, i.e.

u ∧ sE ± ⋆u ∧ sE.

Thus both Λ+ and Λ− are isomorphic to the bundle of vectors orthogonal to
sE, E⊥. The set of such unit vectors corresponds to the equatorial two-sphere
in the three-sphere in our general discussion above.

An almost complex structure or equivalently a linear homotopy therefore
exists if and only if there exists a section uE⊥. Such a section exits if and
only if there exists an an element ξ ∈ H2(M ; Z) such that

ξ = w2 mod 2

and
ξ2 = p1 = 3τ.

Now in four dimensions F 2(M) = H2(M ; Z)/Tor(M) is an integral lattice
since it is equipped, via the cup product, with an integral valued bilinear
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product: the intersection form Q( , ). By Wu’s formula the second Stiefel
Whitney class satisfies

Q(w2, x) = Q(x, x)

for all x ∈ F 2(M) and thus

Q(ξ, x) = Q(x, x) mod 2

for all x ∈ F 2(M), in other words the element ξ is a so-called character-

istic element of the integral lattice F 2(M). It follows on purely arithmetic
grounds, by a lemma of Van der Blij [24], that for such an element

Q(ξ, ξ) = τ mod 8.

The other condition on ξ becomes

ξ2 = p1 = 3τ

that is, eliminating ξ2

2τ = 0 mod 8

or
τ = 0 mod 4.

Lemma A neccessary condition that a closed Lorentz 4-manifold admit a

linear homotopy is that the signature is divisible by 4

Moreover we have also shown that
Proposition A Lorentz 4-manifold admits a linear homotopy if and only

if it admits an almost complex structure

These conditions are non-trivial because, while for a spin manifold τ =
0 mod16 [14], in general one only knows that if the Euler characteristic nan-
ishes then τ = 0mod2. In fact to obtain an example of a Lorentz 4-manifold
which does not admit a linear homotopy consider the connected sum of 2n
copies of CP2 with n + 1 copies of S1 × S3. This has τ = 2n, and does not
admit a spin structure, even if n is a multiple of 8. Unless n is divisible by
4 it cannot admit a linear homotopy.

We may relate this discussion to the question of the existence of global
sections of the bundle of dyads V4,2(M), a subject studied by Hirzebruch and
Hopf [28]. Generically a section will have singularities isolated at points in
the manifold M . Surounding each point by small 3-sphere we get a map
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from S3 → V4,2. Since π3(V4, 2) ≡ Z ⊕ Z one has an index consisting of two
integers (a, b) associated with each singularity. If α = Q(ξ, ξ) where ξ is a
characteristic element of H2(M ; Z) then the allowed values are given by

(a, b) =
1

4
(α− 3τ − 2e, α− 3τ + 2e).

In terms of Betti numbers one has

1

4
(3τ + 2e) =

1

4
(b+ − b−) + 1 − b1

and
1

4
(3τ − 2e) =

5

4
(b+ − b−) − 1 + b1

So the integrality of (a, b) is automatic. In the present case e = 0 and if we
have a global section then there exists a characteristic element ξ ∈ H2(M ; Z)
such that

ξ2 = 3τ

This is of course the same condition that we used above.
Our necessary condition for the existence of an almost complex structure

may also be obtained by considering the index of the associated Dolbeault
complex. This is called the arithmetic genus, ag(M). In dimension 4

ag(M) =
1

4
(χ+ τ) =

1

2
(b+ + 1 − b1)

and thus under our assumption that χ = 0 this again leads to the neces-
sary condition for the existence of an almost complex structure is that the
signature τ be divisible by 4.

Consider the more general problem of whether a general homotopy exists.
This requires the existence of a section of the bundle Z(M). As always, the
potential obstructions lie in H i(M ; πi−1(Zx)). Since M is four dimensional
H i(M ; πi−1(Zx)) for i > 4, so we need only consider πi(Zx) for i ≤ 3. Now
Zx is the space of based loops on S3 and so

πi(Zx) = πi+1(S
3).

15



The possible obstructions are therefore in H i(M ; πi(S
3)). Thus there are two

potential obstructions: the primary one, which is an element ofH3(M ; Z) and
a secondary one which is an element of H4(M ; Z/2).

The primary obstruction coincides with the obstruction for the bundle
Y (M) and is the third integral Stiefel Whitney class W3(M) which is the
obstruction to lifting the second Z/2-Stiefel Whitney class w2 ∈ H2(M ; Z/2)
to an integral class ξ. It is the obstruction to the introduction of a Spinc

structure, ξ being the Chern class of the circle bundle.. This is well known
to vanish for an orientable four-manifold. There remains the secondary ob-
struction. In the case of the bundle Y (M) this vanishes if ξ2 = p1. In the
case of the bundle Z(M) it vanishes under the weaker condition that

ξ2 = p1 = 3τ mod 8

But as before ξ2 is congruent to τ mod 8 and thus we have the following
Proposition The necessary and sufficient condition for general homotopy is

τ = 0 mod 4.

The necessary and sufficent condition for a general homotopy is the same
as the necessary condition for a linear homotopy obtained above. It is a
non-trivial requirement as the examples constructed above illustrate. The
remaining question, whose answer is not known at present, is whether the
necessary condition is sufficient. This boils down to a purely arithmetic ques-
tion about the possible intersection forms Q.

5 Some Examples

Every odd dimensional sphere S2r+1 admits a time-orientable Lorentz metric
gL. One takes:

gL = gR − 2V♭ ⊗V♭,

where gR is the standard round metric, V♭ is the one-form dual to the vector
field V obtained by using the musical isomorphism (i.e. lowering the index
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with the metric gR) and the unit vector field V is tangent to the Hopf fibra-
tion. If Za, a = 1, . . . 2r + 2 are complex coordinates for R2r+2 ≡ Cr+1 then
the Hopf fibration corresponds to the SO(2) ⊂ SO(2r + 2) action :

Za → exp(it)Za

and

V =
∂

∂t
.

The case r = 1 should be familiar because it is encountered in the Taub-
NUT solutions of Einstein’s equations. The general case also arises in higher
dimensions as we shall describe later.

Atiyah’s result tells us that if r is even, r = 2k, then the Lorentz structure
described above cannot be obtained by a diffeomorphism which is connected
to the identity to the Lorentz structure whose light cones differ merely by
being upside down. On the other hand, we may trivially reverse the light
cones by using the diffeomorphism Γ consisting of r reflections ∈ O(2r + 2),
i.e. by complex conjugation:

Γ : Za → Z̄ ȧ.

Now if r is odd then Γ lies in the identity component SO(2r + 2) of
O(2r + 2) and hence in the identity component Diff0(S

2r+1) of Diff(S2r+1).
If however r is even, r = 2k, then Γ is not in the identity component of
O(4k + 2) and, by Atiyah’s result, not in Diff0(S

4k+2) either.
Thus Lorentz metrics on S4k+1 of the type we have been considering fall

into two classes with opposite time-orientation. This is similar to the situa-
tion with respect to orientation (i.e. combined space and time-orientation).
An oriented manifold may or may not be diffeomorphic to the same mani-
fold with the opposite orientation. Manifolds which are, are called reversible.
Manifolds which are not, are called irreversible or sometimes chiral. Of course
in this latter case the diffeomorphism must lie outside the identity component
Diff0(M).

Chiral manifolds are analogous to enantiomorphic crystal forms, such as
seen in quartz for example. In that case, they arise because the point group
of the crystal is contained in SO(3) and thus includes no orientation reversing
isometries of Euclidean space. In our case, however, we are not requiring our
diffeomorphism to be an isometry of any metric.
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The spheres Sn are obviously reversible because they admit reflections.
By contrast, some of the three-dimensional lens spaces, Lp,q (with p and q
co-prime) are chiral, as first noticed by Kneser. They are obtained from S3

by identifying points under the action of the cyclic group Cp given by [12–13]:

Z1 → exp

(

2πi

p

)

Z1

Z2 → exp

(

2πqi

p

)

Z2

Because the action of the cyclic group commutes with the Hopf fibration the
time-orientable Lorentz metric described above descends to all of the lens
spaces.

The topological classification of the lens spaces depends on the bi-linear
map:

λ : H1(M; Z) ×H1(M; Z) → Q/Z

called the linking form defined on the first homology groupH1(M; Z) ≡ Z/pZ.
The linking form λ changes sign under reversal of orientation.

Now the integral curve of the timelike vector field V gives a generator γ
of H1(M, Z) with linking invariant:

λ(γ, γ) =
q

p
.

The remaining elements α of H1(M, Z) are of the form α = xγ, x =
0, 1, . . . p− 1. The bilinearity of λ(, ) implies that

λ(α, α) = x2 q

p
.

To exhibit a chiral lens space it suffices to find a pair of co-prime natural
numbers (p, q) such that for no x = 0, 1, . . . p− 1 is it true that:

x2 q

p
= −

q

p
(mod p).

Thus L3,1 is an example of a chiral three-dimensional spacetime. On the
other hand, the action of the cyclic group Cp may or may not commute with
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the reflection Γ. If it does, then the action of Γ will descend to the quotient
and then we can still reverse time.

We remark here that, consistent with our general idea, the partition func-
tion Z(M3) for Witten’s topological field theory is invariant under all dif-
feomorphisms whether or not they are in the identity component Diff0(M),
and obeys:

Z(M3) = Z(M3)

where M is the same manifold as M but with the opposite orientation. Thus
for reversible manifolds it is real, and conversely if it is complex, then the
manifold must be chiral.

Turning to four-dimensional manifolds: a standard example of an irre-
versible four-manifold is CP2. Notationally one distinguishes between CP2

and CP
2. The Euler characters χ are the same, but the Hirzebruch signa-

tures τ = b+2 − b−2 are opposite in sign:

τ(CP
2) = 1 = −τ(CP

2).

Quite generally, a four-manifold with non-vanishing Hirzebruch signature
cannot admit an orientation-reversing diffeomorphism. Now consider, for
example the connected sum of K3 with 12 copies of S1 × S3. This has van-
ishing Euler characteristic and signature 16. It therefore admits no total
orientation-reversing diffeomorphism but the Lorentz structure gL is homo-
topic to the time-reversed Lorentz structure. We do not know, however,
whether there exist diffeomorphisms (connected to the identity or not) which
will produce this time-reversal.

6 Generalized Taub-NUT Spacetimes

The four-dimensional Taub-NUT solution of Einstein’s vacuum equations
has provided many examples of the possible exotic behaviour of Lorentzian
metrics. In this section we provide a family of higher-dimensional examples,
based on some work by Bais and Batenberg [3] on the associated Riemannian
metrics, which serve to illustrate our general results.

Suppose {B, gB, ωB} is a 2p-dimensional Einstein-Kähler manifold with
Kähler form ωB which obeys the Dirac quantization condition, i.e., it repre-
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sents an integral class
[

1

2π
ωB

]

∈ H2(B; Z)

Then ωB may be thought of as the curvature of an S1 bundle over B. Let

e0 = dt+ A

where 0 ≤ t < 2π be a coordinate on the S1 fibre and A the connection such
that:

dA = ωB

Then the (2p+ 2)-dimensional time-orientable Lorentzian metric

F−1(r)dr2 + (r2 +N2)gB − 4N2F (r)e0 ⊗ e0

is Ricci flat, provided

F (r) =
r

(r2 +N2)p

∫ r

(s2 +N2)pds

s2

The function F (r) contains two arbitrary constants, the generalized ‘NUT
’ charge N and an arbitary constant of integration. If p = 1 then {B, gB, ωB}
is CP1 ≡ S2, the S1 bundle is S3 and we recover the usual Taub-NUT solution.
Indeed, when p = 1 we have

F (r) =
r

(r2 +N2)
(r −

N2

r
− 2m)

where m is a constant of integration. One now recovers the usual Taub-NUT
metric [5] with A = cos θdφ, t = ψ and r = t.

For higher values of p one finds that

F (r) =
1

(r2 +N2)
(

r2p

(2p− 1)
+
pN2r2p− 2

(2p− 3)
+ ...−N2p− 2mr)

=
1

(r2 +N2)
(

r2

(2p− 1)
P (r) −N2p− 2mr)

where P (r) is a polynomial of degree 2(p − 1) containing only even powers
of r, all of whose coefficients are positive. It follows that the numerator of
F (r) has just two real roots.

20



In these higher p generalisations we can choose {B, gB, ωB} to be CPp and
then the S1 bundle becomes S2p+1 with its standard Hopf fibration. In this
case, the isometry group of the spacetime is U(p+ 1) which acts transitively
on S2p+1 and contains a U(1) factor acting as time translations. The group
acting on the base B is SU(2p)/Z2p.

The resulting (2p+2)-dimensional spacetime may be thought of as a time-
orientable two-plane bundle over B carrying an SO(2)-invariant Lorentzian
metric on the fibres with local coordinates t, r. Its structure is independent
of the particular metric on the base B. Because the numerator of F (r) has
only two real roots the structure is qualitatively the same as that of the
usual four-dimensional Taub-NUT case. In particular, the Penrose diagram
is the same as that shown on page 177 of [5]. Note that if the constant
of integration m is chosen to vanish, the metric has an additional discrete
isometry r → −r, interchanging different asymptotic regions.

From the point of view of this paper, we are interested in whether one can
find a diffeomorphism which reverses the time-orientation. If we consider the
case when B ≡ CPp, and we confine ourselves to diffeomorphisms keeping the
coordinate r fixed, then we are in the same position as above in our discus-
sion of the odd-dimensional spheres S2p+1. Thus if p is odd, we can and if p
is even, we cannot reverse the sense of time by means of a diffeomorphism in
the identity component Diff0(M). Presumably this means that there is no
invariant significance in the sign of the NUT charge N if p is odd but there
may be if p is even. Presumably therefore if p is odd, as it is in the usual

four-dimensional case, then a Taub-NUT solution should be considered as its

own anti-particle.

7 Time-Reversal for Dynamical Systems

The topological ideas about time reversal discussed in this lecture may be ap-
plied in a different but related context. Suppose we have a finite-dimensional
autonomous dynamical system with a compact phase space. That is, we
have a symplectic manifold {M2r, ω} with symplectic form ω and Hamilto-
nian vector field

H = ω−1dH.
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Now time reversal is an anti-symplectic involution

f : M2r → M2r; f
2 = id

such that
f ∗ω = −ω.

and
f ∗H = H

and therefore
f∗H = −H

The standard (non-compact) example is of course R2r ≡ T ∗(Rr) for which
f : (q,p) → (q,−p). To get a compact example, one may replace R

r by any
configuration space manifold Q. If Q were compact and we had a Hamil-
tonian action of some symmetry group G, we might pass to the symplectic
quotient which might be compact.

Since the r-th power:
ω ∧ . . . ∧ ω

defines a volume form on M2r, time reversal is orientation-reversing if r is
odd and orientation- preserving if r is even.

Thus if r is odd, it cannot live in the identity component Diff0(M2r).
Therefore if r is odd and M2r is irrevesible, then no such f can exist. Thus

if such an {M2r, ω} exists, it would mean that no dynamical sytem on this

phase space, whatever its Hamiltonian function, could be invariant under

time reversal!
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