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L2-SIGNATURES, HOMOLOGY LOCALIZATION, AND

AMENABLE GROUPS

JAE CHOON CHA AND KENT E. ORR

Abstract. Aimed at geometric applications, we prove the homology cobor-
dism invariance of the L2-betti numbers and L2-signature defects associated
to the class of amenable groups lying in Strebel’s class D(R), which includes
some interesting infinite/finite non-torsion-free groups. The proofs include the
only prior known condition, that Γ is a poly-torsion-free abelian group (or
potentially a finite p-group.) We define a new commutator-type series which

refines Harvey’s torsion-free derived series of groups, using the localizations of
groups and rings of Bousfield, Vogel, and Cohn. The series, called the local de-
rived series, has versions for homology with arbitrary coefficients, and satisfies
functoriality and an injectivity theorem. We combine these two new tools to
give some applications to distinct homology cobordism types within the same
simple homotopy type in higher dimensions, to concordance of knots in three
manifolds, and to spherical space forms in dimension three.

1. Introduction

In their paper [14], Cochran, Orr, and Teichner introduced L2-signature defects
(equivalently, von Neumann ρ-invariants, or Cheeger-Gromov invariants) to study
concordance of knots, or more generally, homology cobordism classes of 3-manifolds.
They showed the invariance of L2-signature defects under integral homology cobor-
dism over a poly-torsion-free abelian group, that is, a group with a descending
series admitting successive Z-torsion free quotients. Since then, L2-signatures have
appeared as a key ingredient of several interesting papers on homology cobordism
and concordance by authors including Cha, Cochran, Friedl, Harvey, Heck, Horn,
Kim, Leidy, Orr, and Teichner.

This paper substantially extends the above L2-invariance under homology cobor-
dism to a much larger class of groups, and incorporates homology with twisted
coefficients as well.

Achieving this result requires a small shift of paradigm. The Cochran-Orr-
Teichner results used the following property of a poly-torsion-free abelian group Γ:
the group ring ZΓ embeds into a skew field which is a module over the Cohn lo-
calization of ZΓ. This implies that a homology cobordism looks like a product to
the skew field. For the groups Γ we consider, ZΓ may not embed in a skew field,
requiring an entirely new approach. Our new approach, which uses neither Cohn
localization nor a skew field, subsumes poly-torsion-free abelian groups as a special
case. We employ directly L2-methods with coefficients in the von Neumann algebra
NΓ by using a result of Lück on L2-dimension zero modules (see Theorem 6.3).

We consider the class D(R) of groups defined and studied by Strebel [28]; for a
commutative ring R with unity, a group G lies in D(R) if given any homomorphism
of projective RG-modules α : P → Q, then if α ⊗ 1R injective so is α. Our result
below applies to the class of amenable groups in D(R), a class which includes
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interesting infinite and finite non-torsion-free groups, as well as, using the case
R = Z, poly-torsion-free abelian groups (e.g., see Lemma 6.8). The following
theorem gives a special case of Theorem 7.1.

Theorem. Suppose G is an amenable group lying in Strebel’s class D(R). If
W is an R-homology cobordism between two closed n-manifolds M and M ′ with
restrictions to group homomorphisms φ and φ′ of ψ : π1(W ) → G to π1(M) and
π1(M

′), then the L2-signature defects ρ(M,φ) and ρ(M ′, φ′) are equal.

To prove this, we use a new technique to control the L2-dimension of homology
with von Neumann group algebra NΓ coefficients, as shown in the following special
case of Theorem 6.6. This not only plays a key role in the proof of the above
theorem, but we anticipate using this for future applications as well:

Theorem. Suppose G is an amenable group in D(R), and C∗ is a finitely generated
free chain complex over ZΓ. View R as a ZΓ-module with trivial Γ-action. If
H∗(C∗ ⊗ZΓ R) = 0, then H∗(C∗ ⊗ZΓ NΓ) has L2-dimension zero.

We apply our new theorem on L2-signatures to study homology cobordism classes
of topological manifolds in dimension three and higher, focusing on space forms,
and three manifolds whose groups have torsion elements.

We also employ an additional and essential new tool for these results—a new
commutator series, analogous to the Harvey derived series of a group [10], but
often much smaller, allowing us to extract additional information from quotients.
We prove a type of Stallings injectivity theorem, similar in character to those first
developed by Cochran and Harvey in [10], and proved similarly. The significance
of this new series over the Harvey series is the use of the Cohn localization of rings
and modules, which yields a functorial and often computable series, in place of the
Ore localization used by Harvey. To define this series, we use group localization
as well. We call this new series, which can be defined for any coefficient R, the
Vogel-Cohn R-local derived series. We define and investigate the analogous series
using Bousfield localization as well. (For more details, see Section 1.2 and 3.1.)

As an application involving non-torsion-free groups, we give a homology cobor-
dism version of a theorem of Chang and Weinberger [8] on homeomorphism types
of manifolds with a given homotopy type. In this paper we denote by Z(p) the
classical localization of Z away from p, while Zp denotes Z/pZ.

Theorem 8.2. Suppose M is a closed (4k − 1)-manifold with π = π1(M), k ≥ 2.
Let p be prime and π(n) be the Zp or Z(p)-coefficient Vogel-Cohn local derived series

of π. If π has a torsion element which remains nontrivial in π/π(n) for some n, then
there exist infinitely many closed (4k − 1)-manifolds M0 = M , M1, M2, . . . such
that each Mi is simple homotopy equivalent and tangentially equivalent to M but
Mi and Mj are not homology cobordant for any i 6= j.

In the proof, we make use of a nonvanishing property for certain L2-signatures
associated to non-torsion-free groups due to Chang and Weinberger [8], and apply
our result to capture the invariance of these L2-signatures under homology cobor-
dism as well as homeomorphism. The Zp coefficient analogue of Theorem 8.2 holds
as well (see Section 8.1.)

Additionally we apply these techniques to spherical 3-space forms and prove the
following. We say that M is homology equivalent to N if there is a map M → N
which induces isomorphisms on the homology.

Corollary 8.5. For any generalized quaternionic spherical 3-space form M , there
are infinitely many closed 3-manifolds M0 = M , M1, M2, . . . such that the Mi are
homology equivalent to M and have identical Wall multisignatures (or equivalently
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Atiyah-Singer G-signatures) and Harvey L2-signature invariants ρn [19], but no two
of the Mi are homology cobordant.

1.1. Injectivity theorems. The surprising injectivity theorem of Cochran and
Harvey [10] compares the commutator series quotients of groups with similar ho-
mological properties, much as Stallings’ famous theorem did for the lower central
series. By an injectivity theorem, we mean a theorem of the type first proven
by Cochran and Harvey [10], and modeled after Stallings’ seminal work on the
low dimensional homology of groups and central series [27]. Cochran and Harvey
work with a suitable commutator series of a group first suggested by Harvey, and
which we call here the Harvey series. They show that every group homomorphism
π → G which induces an isomorphism H1(π,Q) → H1(G,Q) and an epimorphism
H2(π,Q) → H2(G,Q) also induces a monomorphism modulo terms of the Harvey
series. The Harvey series and associated Cochran-Harvey injectivity theorem un-
derlie many recent applications of the von Neumann ρ-invariants to understanding
concordance of knots and links, and homology cobordism of manifolds.

1.2. A new functorial commutator series and injectivity theorem. We con-
sider the category GΓ of groups π over a fixed group Γ, i.e., π is endowed with a
homomorphism π → Γ. (In the special case Γ = {e}, GΓ canonically identifies with
the category of groups.) In Section 3, for a given coefficient ring R we define a new
series

π ⊃ π(0) ⊃ π(1) ⊃ · · · ⊃ π(n) ⊃ · · ·

of normal subgroups π(n) for each π ∈ GΓ which we define in terms of the Bousfield
RΓ-homology localization of groups and rings. We call this {π(n)} the Bousfield RΓ-
local derived series to emphasize this is a functor on the category GΓ. Similarly, we
define the Vogel-Cohn RΓ-local derived series using the Vogel localization of groups
and Cohn localization of rings. Indeed the series can be defined in a more general
situation; for a precise description of these local derived series, see Definition 3.2.

We prove that the RΓ-local derived series has the following properties:

Theorem. Let {π(n)} be the Bousfield (resp. Vogel-Cohn) RΓ-local derived series
for π in GΓ.

(1) (Functoriality) For any morphism π → G in GΓ, there are induced homo-
morphisms π(n) → G(n) and π/π(n) → G/G(n) for any n.

(2) (Injectivity) If π → G is a group homomorphism which is 2-connected on
H∗(−;RΓ) (resp. 2-connected on H∗(−;RΓ) with π finitely generated, G
finitely presented), then the induced map π/π(n) → G/G(n) is injective for
any n.

The above theorem combines portions of Lemma 3.3 and Theorem 3.8 from the
body of the paper.

In Section 5, we give computational examples which illustrate that our local
derived series π(n) differs from the Harvey series and other derived series discussed
below. In particular, we illustrate that π/π(n) may have torsion and/or infinite

order elements, by comparison to the torsion free groups π/π
(n)
H .

The above two advances, regarding local commutator series and L2-invariants,
come together in the following theorem.

Theorem 7.2. Let R be either Zp, Z(p), or Q. For a closed manifold M over an
amenable group Γ, view π = π1(M) as a group over Γ and denote the RΓ-coefficient
Vogel-Cohn local derived series of π over Γ by {π(n)}. For the canonical map

φn : π → π/π(n), the L2-betti numbers b
(2)
i (M,φn) and the L2-signature ρ(2)(M,φn)

are RΓ-homology cobordism invariants of M for any n <∞. In particular, when Γ

is trivial, b
(2)
i (M,φn) and ρ(2)(M,φn) are always R-homology cobordism invariants.
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This applies to concordance of knots within a fixed homotopy class of a three
manifold.

Corollary 1.1. (Compare to the Ph.D. thesis for Prudence Heck [20].) Let M
be a three manifold with amenable fundamental group, let g ∈ Γ = π1(M). Let
π = π1(M − K) for some knot K ⊂ M with K in the homotopy class g, and let
π(n) be the nthRΓ-local derived series subgroup. If π(n)/π(n+1) 6= 0, then there
are infinitely many concordance classes of knots in the homotopy class of g which
for which no two are concordant to each other, and which are detected by the L2-
signature associated to π → π/π(n+1).

Theorems concerning concordance of knots in general three manifolds and us-
ing L2-methods were first explored and proven in the Ph.D. thesis of Prudence
Heck [20]. The above argument follows hers, with Theorem 7.2 applied at the ap-
propriate place in the argument, which the reader will find apparent. We refer the
reader to this thesis [20].

1.3. Comparison to other commutator series of groups. Let R be a subring
of the rationals or a finite cyclic ring. Recall that for a group π, the (non-local) R-
coefficient derived series, or just R-derived series, is defined recursively as follows:
π0 = π, and given πn, then

πn+1 = Ker

{
πn −→

πn

[πn, πn]
⊗
Z

R

}
.

Here, [π, π] is the usual commutator subgroup of the group π, the subgroup gen-
erated by commutators [a, b] = aba−1b−1 where a, b ∈ π. When R = Z, πn is the
ordinary derived series. More generally, it is the fastest descending series such that
successive quotients are abelian and R-torsion free. (This definition of this series
directly parallels the R-lower central series of earlier authors, but was first applied
in [19].)

To discuss alternative derived series of groups relevant in this work, we first
discuss group localization.

In [2], Bousfield constructed the H∗(−;R) localization of a space. Roughly,
Bousfield associates to a space X, a space E(X) (up to homotopy type) and a map
of spaces X → E(X) which is initial with the property that given an homology
equivalence X → Y , there is a unique (homotopy class of a) map Y → E(X)
making the following diagram homotopy commute. (A more general definition of
localization is given in Section 2.)

X Y

E(X)
��?

??
??

??
//

��

Bousfield showed that the group π1(E(X)) depends only on the group π1(X).
Thus, one can define a functor on the category of groups and group homomorphisms
by E(π) = π1(E(Bπ)), where Bπ = K(π, 1) is the classifying space of the discrete
group π. Bousfield showed that π → E(π) localizes groups and group homomor-
phisms with respect to R-homologically 2-connected homomorphisms; if π → G is
R-homologically 2-connected, the induced map E(π) → E(G) is an isomorphism.
Here π → G is said to be R-homologically 2-connected if the induced homomor-
phism Hi(π;R) → Hi(G;R) is an isomorphism for i = 1 and an epimorphism for
i = 2.

Alternatively, in [29] Vogel defined a localization π → E(π) with respect to R-
homologically 2-connected homomorphisms π → G with π finitely generated and G
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finitely presented. (See Section 2 for more details.) Vogel developed this variation
of Bousfield’s work to study homology types of compact manifolds, embeddings
of compact manifolds, homology cobordism, and the Cappell-Shaneson homology
surgery groups. (See also [3].)

The following series appears first in print in a paper of Cochran and Harvey [11]
where they only consider Vogel group localization. In the definition below, E(π)
represents either Vogel or Bousfield localization of groups, yielding distinct functors.

Definition 1.2. The universal R-local derived series of a group π, denoted using
braces, as π{n}, is recursively defined as follows: π{0} = π. Given the definition of
π{n}, define

π{n+1} = Ker

{
π{n} −→ E(π){n} −→

E(π){n}

[E(π){n}, E(π){n}]
⊗
Z

R

}
.

We caution the reader that the universal R-local derived series does not equal,
in general, the R-derived series defined in a prior paragraph. Since E2 = E, one
can see easily that E(π){n} = E(π)n and π{n} is the preimage of E(π)n under
π → E(π). In particular, the R-local and R-derived series agree for local groups.

One easily proves the following analogue of Stallings’ theorem. Cochran and
Harvey [11] first investigated this in depth, together with the above series, but the
theorem below appears to have been known already to experts in the field. In
particular, Cochran and Harvey state the Vogel case in terms of “R-closures” given
in [6]. (See also [22].) We label it a folklore theorem, but wish to pay homage the
aforementioned important contribution of Cochran and Harvey.

Folklore Theorem.

(1) (Bousfield case) Denote by π{n} the Bousfield universal R-local derived se-
ries. Suppose α : π → G is R-homologically 2-connected. Then α induces
an injection π/π{n} → G/G{n} for all n.

(2) (Vogel case) Denote by π{n} the Vogel universal R-local derived series. Sup-
pose α : π → G is R-homologically 2-connected with π finitely generated and
G finitely presented. Then α induces an injection π/π{n} → G/G{n} for
all n.

Proof. By construction π/π{n} → E(π)/E(π){n} is injective for any π and n. Since
E(π) = E(G), we have inclusions

π/π{n} ⊂ G/G{n} ⊂ E(π)/E(π){n} = E(G)/E(G){n}. �

The Harvey series [10] may be thought of as a rational coefficient approxima-
tion to the Vogel universal local derived series, and the Cochran-Harvey injectivity
theorem may be viewed as a Harvey series version of this Folklore Theorem. One
issue with the universal local derived series is that the series as described is neither
defined implicitly (that is it uses the construction of E(π) in its definition) nor is
it readily computable. By contrast, the Harvey series consists of subgroups of π
defined entirely from the structure of the group π without making use of the group
localization E(π), and one can compute this in many useful circumstances.

On the other hand, a weakness of the Cochran-Harvey approach is that their
series and the resulting quotients are not functorial under homomorphisms of

groups. That is, a group homomorphism π → G does not induce π
(n)
H → G

(n)
H

nor π/π
(n)
H → G/G

(n)
H in general.

The RΓ-local series of this paper might be viewed as a compromise theory —
one that lies closer to the ideal (i.e., the universal local derived) series, that works
for a wider range of (twisted) coefficient systems, that is computable, that provides
an injectivity theorem, and importantly, that is functorial.
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For Γ = {e}, the Vogel-Cohn local derived series refines the Harvey series and
lies closer to the universal local derived series, as the following comparison theorem
shows.

Theorem 4.1. Let Γ = {e} and {π(n)} be the Vogel-Cohn RΓ-local derived series

of a group π. Let {πn}, {π{n}}, {π
(n)
H } be the R-derived series, Vogel universal

R-local derived series, and the Harvey series, respectively. Then, for any π and n,
we have

πn ⊂ π{n} ⊂ π(n) ⊂ π
(n)
H .

In a future paper we will combine our results on homology with L2-coefficients
(Theorem 6.6 and its applications), the universal RΓ-local derived series, and some
computations using compact, orientable, three manifold groups whose group local-
ization contains torsion, to obtain further examples of homology equivalent three
manifolds which are not homology cobordant.

1.4. Organization of the paper. In the first half of this paper (Sections 2–5), we
define and investigate the RΓ-local derived series. In Section 2, we give necessary
preliminaries on localizations of groups and rings. In Section 3, we define the
RΓ-local derived series and prove its functoriality and the injectivity theorem. In
Section 4, we compare the local derived series with related commutator-type series,
including the Harvey series. In Section 5 we give some computational examples of
the local derived series which will be used in later applications.

In the latter half of this paper (Sections 6–8) we study homological properties of
L2-theory and applications to manifolds. In Section 6 we prove our main theorem,
the “L2-dimensional” local property of the von Neumann group ring of an amenable
group, which play a crucial role in our applications of the local derived series to
manifolds. For those most interested in this result, one may read this section in-
dependently of the prior sections. In Section 7 we investigate homology cobordism
invariance of L2-signature defects associated to quotients of local derived series of
fundamental groups. In Section 8 we give some applications, including Theorems 8.2
Corollary 8.5, and some generalizations.

Acknowledgements. This work was partly supported by a Korea Science and
Engineering Foundation grant funded by the Korean government (MOST) (R01–
2007–000–11687–0) and by a Korea Research Foundation grant funded by the Ko-
rean Government (MOEHRD) (KRF–2007–412–J02302). The second author was
supported by NSF grant DMS-0707078. The first author thanks the Department
of Mathematics, Indiana University, for supporting his visit in 2008 summer.

2. Localizations of groups and rings

In this section we discuss basic definitions and properties of homology localiza-
tions of groups and rings, which are essentially due to Bousfield, Vogel, and Cohn.
Theorems and propositions in this section are not new and have been widely known
(at least to experts in related fields). We will focus on those facts that we will need
in later sections.

We begin with the general definition of a localization functor in a category.

Definition 2.1. Suppose Ω is a collection of morphisms in a category C.

(1) An object A in C is local with respect to Ω if for any π → G in Ω and for
any π → A, there exists a unique morphism G → A making the following
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diagram commute:

π G

A

//

�� ��

(2) A localization functor with respect to Ω is a functor

E : C −→ {local objects in C}

endowed with a natural transformation {pG : G→ E(G)}G∈C such that for
any morphism G → A into a local object A, there is a unique morphism
E(G) → A making the following diagram commute:

G E(G)

A

//pG

��
�
�
�
�
�
�
�
�

��

The following statements are consequences of the universal properties stated
above. We omit proofs.

Proposition 2.2.

(1) A localization functor is unique (up to a natural equivalence).
(2) A localization functor E is an idempotent, i.e., E2 = E.
(3) If E is a localization functor with respect to Ω, then every π → G in Ω

induces an equivalence E(π) → E(G).

2.1. Localizations of groups. We will give a very brief introduction to a homol-
ogy localization theory of groups due to Bousfield and Vogel. Let GΓ be the category
of groups over a fixed group Γ. Precisely, the objects of GΓ are homomorphisms of
a group π into Γ. A morphism from π → Γ to G → Γ is a homomorphism π → G
making the following diagram commute:

π G

Γ
��?

??
??

//

����
��

�

We abuse notation and denote an object π → Γ of GΓ by π.
As a special case, when Γ is a trivial group, GΓ is canonically equivalent to the

category of groups.
Let R be either a finite cyclic ring Zd or a subring of Q. For an object π in

GΓ, the homology H∗(π;RΓ) with local coefficients is defined, where RΓ denotes
the group ring of Γ over R. We will consider localizations with respect to RΓ-
coefficient homology. Specifically, let HR be the collection of morphisms α : π → G
in GΓ which are 2-connected on H∗(−;RΓ), that is, α induces an isomorphism on
H1(−;RΓ) and an epimorphism on H2(−;RΓ). A localization functor on GΓ with
respect to HR is called the Bousfield HR-localization.

Regarding applications to geometric topology (especially to the study of com-
pact manifolds), one is naturally led to consider the subcollection of morphisms on
finitely presented groups. Motivated by this, we also consider the subcollection Ω0

of morphisms α : π → G in HR with π and G finitely presented. A localization
functor on GΓ with respect to Ω0 is called the Vogel localization.
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The following results are essentially due to Bousfield [1, 2] and Vogel [29].
(See also Farjoun-Orr-Shelah [17], Levine [22], and Cha [6] for equation-based ap-
proaches. Levine appears to have first observed these combinatorial approaches
within the context of Vogel localization, with Farjoun and Shelah doing so later
but independently in the context of Bousfield’s work.)

Theorem 2.3 (Bousfield [2, 1], Vogel [29]). For any R and Γ, there exist a Bousfield
HR-localization functor and a Vogel localization functor on GΓ.

In the case of the Vogel localizationE, the map π → E(π) is not always contained
in Ω0, even when π is finitely presented. In this case, one can enlarge Ω0 to a
collection, Ω0 which contains π → E(π), and for which the resulting localization
functors agree on classes in Ω0. Let Ω0 be the collection of morphisms π → G such
that for any given commutative diagram

A B

π G

//

�� ��
//

of morphisms in GΓ with A and B are finitely presented, there is A0 → B0 in Ω0

which fits into the following commutative diagram:

A B

A0 B0

π G

//

��

$$

��

zz
//

zz $$
//

Remark 2.4. It is easily seen that Ω0 ⊂ HR, since any homology class of a free
chain complex is supported by a finitely generated subcomplex.

Theorem 2.5 (Bousfield [2, 1], Vogel [29]).

(1) For the Bousfield HR-localization E, π → E(π) is in HR for all π ∈ GΓ.
(2) The Vogel localization E is a localization with respect to Ω0, and in this

case, π → E(π) is in Ω0 for all π ∈ GΓ.

We sketch the proofs of Theorems 2.3 and 2.5 in an appendix for the convenience
of our readers.

Remark 2.6. In known applications of the localization theory to the study of
manifold embeddings, one is naturally led to consider localizations with respect to
certain morphisms α : π → G in Ω with the property that Ker{G→ Γ} is normally
generated by the image of Ker{π → Γ}. (See, for instance, [21].) It is known
that Theorems 2.3 and 2.5 also hold for the analogues of HR, Ωc and Ωc with this
normal generation condition. It can also be seen that all results in this paper hold
under the normal generation condition.

Remark 2.7. Following Vogel, one may also consider only homomorphisms π → G
in HR such that the π and G have a number of generators and relations each
bounded below by a fixed cardinal, c. For instance, the Vogel localization of groups
is localization with respect to HR homomorphisms and the cardinal c = ℵ0. How-
ever, one can show that for any cardinal c > ℵ0, the resulting localization equals
the usual Bousfield HR localization. Analogous observations apply equally to the
(module and) ring localizations which will de discussed below.
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2.2. Localizations of rings. We begin by recalling Cohn’s classical ring local-
ization. Let R and S be rings with unity, together with a ring homomorphism
ǫ : R → S.

The Cohn localization, Λ, of the homomorphism ǫ : R → S is a ring endowed
with a ring homomorphism R→ Λ satisfying the following conditions:

(1) Given any square matrix A over R, then A ⊗R S in invertible if and only
of A⊗R Λ is invertible, and

(2) R → Λ is initial among homomorphisms of R satisfying (1), that is, if
R→ Λ′ is another ring homomorphism satisfying (1), then there is a unique
ring homomorphism Λ → Λ′ making the following diagram commute:

R Λ

Λ′

//

��?
??

??

��

In [16], Cohn constructed this localization and showed uniqueness and functori-
ality up to isomorphism. We give an alternative description of Cohn localization
here as a localization of modules with a naturally imposed ring structure. (Of par-
ticular interest in this paper is the case of Rπ → RΓ induced by a homomorphism
π → Γ in GΓ.)

Let W be the collection of homomorphisms α : F → F ′ between (right) free
R-modules F and F ′ with the same rank such that

α⊗ 1S : F ⊗R S −→ F ′ ⊗R S

is an isomorphism. (Note that the rank of F and F ′ may be an arbitrary cardinal.)
Recall that, with respect to W , a local R-module is defined to be an R-module such
that for any α : F → F ′ in W ,

α∗ : Hom (F ′,M) −→ Hom(F,M)

is an isomorphism. A localization functor with respect to W

E : {R-modules} −→ {local R-modules}

in the sense of Definition 2.1 is called the Bousfield HZ-localization functor. (See
Remark 2.9.)

We also consider module localization with an additional finite rank condition:
let W0 be the collection of α : F → F ′ in W such that rankF = rankF ′ is finite.
We call the resulting localization functor of R-modules the Cohn localization. The
following existence results are essentially due to Bousfield and Cohn:

Theorem 2.8 (Bousfield [2], Cohn [16]). For any R→ S, there exist the Bousfield
HZ-localization and Cohn localization of modules.

The Bousfield HZ and Cohn localization of modules have the following proper-
ties:

(1) If E represents either the Bousfield HZ and Cohn localization functor of
R-modules, then the R-module E(R) admits a natural ring structure such
that R→ E(R) is a ring homomorphism.

(2) The Bousfield HZ-localization E(R) has the following universal property
as a ring: let CW be the category of rings Λ endowed with a ring homo-
morphism R → Λ such that for any α : F → F ′ in W ,

α⊗ 1Λ : F ⊗R Λ −→ F ′ ⊗R Λ

is an isomorphism. Then E(R) is the initial object of CW .
(3) The Cohn module localization of R with the ring structure from (1) has

the universal property analogous to (2) where W0 plays the role of W .
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We give proofs in an appendix. Property (3) says that the Cohn localization of
the R-module R agrees with the aforementioned Cohn localization of the ring R
(endowed with ǫ : R → S). In parallel to this, we call E(R) in (2) the Bousfield
HZ-localization of the ring R endowed with ǫ : R→ S. We note that this viewpoint
enables us to regard both ring localizations as special cases of Definition 2.1 and to
use standard properties of a localization functor.

Remark 2.9. In [2], Bousfield originally defined HZ-localization of Rπ-modules
for Rπ → RΓ induced by a group homomorphism π → Γ. He localizes with respect
to the class of Rπ-module homomorphisms α : A → B such that TorRπi (RΓ, A) →
TorRπi (RΓ, B) is an isomorphism for i = 0 and a surjection for i = 1. He dealt

mainly with the case of Γ = {e} and R = Z, so that the terms TorRπi (RΓ,−)
equal Hi(π;−), but his arguments extend to the case of any Γ and R. This module
localization agrees with the module localization with respect to W described above.
We prove this in an appendix.

We note that by applying the universal property of the Bousfield HZ (or Cohn)
localization Λ for ǫ : R→ S, there is a unique homomorphism Λ → S such that the
following diagram commutes:

R Λ

S

//

��?
??

??

��

The Bousfield HZ (resp. Cohn) localization is the initial object of the subcategory
of objects of CW (resp. CW0) admitting such a diagram.

Notation 2.10. Given π → Γ an element of the category GΓ, we denote the Cohn
and Bousfield HZ-localization of Rπ (endowed with Rπ → RΓ) by L(π) = Λ and
observe that this is functorial on morphisms in GΓ.

2.3. Ring localizations and homology. The following property of the ring lo-
calizations will play a key role later. It is essentially due to Vogel.

Theorem 2.11 (Vogel [30]). Suppose π → G is a morphism in GΓ.

(1) The Bousfield HZ-localization Λ of RG satisfies the following: every π → G
in HR is 2-connected on H∗(−; Λ).

(2) The Cohn localization Λ of RG satisfies the following: every π → G in Ω0

is 2-connected on H∗(−; Λ).

Proof. We first prove (2). Suppose π → G is in Ω0. Let C∗(G, π; Λ) be the Λ-
coefficient CW chain complex of the mapping cylinder M of K(π, 1) → K(G, 1).
All CW-complexes are over K(Γ, 1).

For a cycle z in Ci(G, π; Λ) (i = 1, 2), there is a finite subpair of (M,K(π, 1)) in
which z is supported. Therefore, we obtain the following commutative diagram in
GΓ

A B

π G
��

//

��
//
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such that A and B are the finitley presented fundamental groups of this subpair
and z is the image of some cycle in C∗(B,A; Λ). Since π → G is in Ω0, we obtain

A B

A0 B0

π G

//

��

$$

��

zz
//

zz $$
//

where A0 → B0 is a morphism in Ω0.
Since z is the image of a cycle in C∗(B0, A0; Λ), in order to conclude z bounds

it suffices to prove the following claim: Hi(B0, A0; Λ) = 0 for i = 1, 2. Since
Ci(B0, A0;RG) can be assumed to be RG-free module of finite rank for i ≤ 2,
the claim is proved by a standard partial chain contraction argument, which is
originally due to Vogel. (For example, refer to [30], [23], [14].) This completes the
proof of (2).

The proof of (1) is similar but easier since we do not have to consider A → B
and A0 → B0; we can directly apply the above chain contraction argument to
C∗(G, π;Rπ) to show that Hi(G, π; Λ) = 0 for i = 1, 2. �

3. Local derived series and injectivity

Fix R and let GΓ be as before. In this section we consider a collection Ω of
morphisms in GΓ, a localization functor E on GΓ, and a localization functor L for
group rings; suppose (Ω, E, L) is either one of the following two cases:

(i)






Ω = HR

E = Bousfield HR-localization

L = Bousfield HZ-localization





or (ii)






Ω = Ω0

E = Vogel localization

L = Cohn localization






We will define a commutator-type series for each π ∈ GΓ which is determined
by R and (Ω, E, L) and prove that it admits an injectivity theorem. Indeed all the
properties of (Ω, E, L) we need are the following, which are easily verified for the
above cases (i) and (ii), by our discussion in the previous section (in particular see
Theorems 2.5 and 2.11):

(1) E is a localization functor on GΓ with respect to Ω.
(2) π → E(π) is in Ω for any π ∈ GΓ.
(3) Every π → G in Ω is 2-connected on H∗(−; Λ), where Λ = L(G).

Definition 3.1. We call (Ω, E, L) a homology localization triple if the above (1),
(2), and (3) hold. We call the homology localization triples (i) and (ii) described
above the Bousfield localization triple and Vogel-Cohn localization triple, respec-
tively.

Throughout this section, (Ω, E, L) is always assumed to be a homology localiza-
tion triple, and π̂ denotes E(π) for π ∈ GΓ.

3.1. RΓ-local derived series.

Definition 3.2. For each π in GΓ, (Ω, E, L) a homology localization triple, and for
each ordinal n, the RΓ-local derived series {π(n)} is defined transfinite-inductively
as follows:

π(0) = Ker{π −→ Γ},

and assuming π(n) has been defined, π(n+1) is defined by

π(n+1) = Ker

{
π(n) −→

π(n)

[π(n), π(n)]
= H1

(
π; Z

[ π

π(n)

])
−→ H1(π; Λπ)

}
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where Λπ designates the ring localization L(π̂/π̂(n)), and recall that π̂ = E(π). For
a limit ordinal n, define π(n) =

⋂
k<n π

(k).

By an induction one easily verifies that each π(n) is a normal subgroup of π
forming a normal series

π ⊃ π(0) ⊃ π(1) ⊃ · · · ⊃ π(n) ⊃ · · · .

Lemma 3.3. For any n, the associations π → π(n), π → π/π(n) are functors
GΓ → GΓ. In particular, any morphism π → G in GΓ induces group homomorphisms
π(n) → G(n) and π/π(n) → G/G(n).

Proof. We use a transfinite induction on n to show that a morphism π → G gives
rise to a group homomorphism on the normal subgroups (−)(n) and so on their
quotients. For n = 0, the conclusion is obvious. Assume that the conclusion holds

for n. Let Λπ = L(π̂/π̂(n)) and ΛG = L(Ĝ/Ĝ(n)) as before. Then since L is
functorial, there is an induced map Λπ → ΛG. So we have a commutative diagram

π(n) H1

(
π; Λπ

)

G(n) H1

(
G; ΛG

)��

//

��
//

where the horizontal maps are the compositions appearing in the definition of π(n+1)

and G(n+1). From this it follows that π(n+1) is sent into G(n+1).
For a limit ordinal n, assuming the conclusion holds for k < n, the conclusion

for n follows immediately by taking the limit. �

Remark 3.4. The above naturality is essentially due to the functoriality of L and

E used in the above definition. By contrast, the Harvey series {π
(n)
H } defined in [10]

is not functorial on the category of groups since the Ore localization of group rings
is not functorial.

The following Lemma is proven easily from the definition of the local derived
series.

Lemma 3.5. Suppose (Ω, E, L) and (Ω′, E′, L′) are homology localization triples
(possibly for distinct R) and there are natural transformations E → E′ and L→ L′.
Then the local derived series determined by (Ω, E, L) is contained in the local derived
series determined by (Ω′, E′, L′).

Definition 3.6. We have the following special cases of Definition 3.2 using the
Bousfield and Vogel-Cohn homology localization triples, cases (i) (resp. (ii)) de-
scribed in the beginning of section 3. We denote this series {π(n)} and call it the
Bousfield (resp. Vogel-Cohn) RΓ-local derived series of π over Γ.

Proposition 3.7.

(1) If R ⊂ R′, then the R-coefficient Bousfield local derived series is contained
in the R′-coefficient Bousfield local derived series. Similarly for the Vogel-
Cohn case.

(2) For any R ⊂ Q, the Vogel-Cohn local derived series is contained in the
Bousfield local derived series.

The existence of the required natural transformations follows from the universal
property of a localization and the facts Ω0 ⊂ HR and W0 ⊂ W . We omit details.
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3.2. An injectivity theorem.

Theorem 3.8. Suppose (Ω, E, L) is a homology localization triple and let {π(n)}
be the associated local derived series. Then for any π → G in Ω and for any
ordinal n, the induced homomorphism π/π(n) → G/G(n) is injective. In particular,
π/π(n) → π̂/π̂(n) is injective.

Proof. We use a transfinite induction on n to prove the first statement. Once we
prove this, the second statement follows immediately since π → π̂ is in Ω.

Since
π G

Γ

//

��?
??

??

����
��

�

commutes, π(0) = Ker{π → Γ} is exactly the inverse image of G(0) = Ker{G→ Γ}.
Therefore the conclusion holds for n = 0.

Suppose it holds for n. Denote L(π̂/π̂(n)) by Λπ as before. To show the conclu-
sion for n+ 1, consider the commutative diagram

1 π(n)/π(n+1) π/π(n+1) π/π(n) 1

1 G(n)/G(n+1) G/G(n+1) G/G(n) 1

// //

��

//

��

//

��
// // // //

with exact rows. By the five lemma and the induction hypothesis, it suffices to
show the injectivity of the homomorphism π(n)/π(n+1) → G(n)/G(n+1).

Since π → G is in Ω, we have π̂ ∼= Ĝ and Λπ ∼= ΛG. Therefore, we have the
following commutative diagram, where π(n+1) and G(n+1) are the kernels of the
horizontal arrows:

π(n) H1(π; Λπ)

G(n) H1(G; Λπ)
��

//

��
//

By the defining properties of a homology localization triple, π → G is 2-connected
on H∗(−; Λ) where Λ = L(π). Since there is a natural homomorphism Λ → Λπ by
the naturality of the ring localization L, π → G is also 2-connected on H∗(−; Λπ).
Consequently the rightmost vertical arrow in the above diagram is an isomorphism.
From this it follows that the inverse image of G(n+1) ⊂ G(n) under π(n) → G(n) is
exactly π(n+1). This proves the conclusion for n+ 1. The limit ordinal case follows
by taking limits. �

Remark 3.9.

(1) Consider the case of the rational Bousfield or Vogel-Cohn derived series
over Γ = {e}. Then as a part of the hypotheses of Theorem 3.8, we have
an H1-condition that π → G induces an isomorphism on H1(−; Q). This
can be weakened to only require that the induced map on H1(−; Q) be
injective. For, one can think of an appropriate map from the free product
π ∗F with a free group F into G which is 2-connected, so that (π ∗F )/(π ∗
F )(n) → G/G(n) is injective by Theorem 3.8. Since π → π ∗ F has a left
inverse, so does π/π(n) → (π ∗F )/(π ∗F )(n) by functoriality. It follows that
π/π(n) → G/G(n) is injective.

(2) For the Vogel-Cohn derived series over Γ = {e} (for any R), one can prove
the following Dwyer-type injectivity theorem, which is similar to a result



14 JAE CHOON CHA AND KENT E. ORR

in [12]: if a homomorphism π → G between finitely presented groups in-

duces an isomorphism π̂ ∼= Ĝ and an epimorphism

H2(π;R) −→ H2(G)/ Im
{
H2(G

(n);R) −→ H2(G;R)
}
,

then π/π(n+1) → G/G(n+1) is injective. The proof is omitted.

4. Comparison with Harvey series

In this section, for Γ = {e}, we compare the RΓ-local derived series with the
Harvey series [10] and other related series. Because we need to distinguish several
series, we use the following notation (temporarily): Fix a coefficient ring R, and for
a group π, let {πn}, {π{n}}, and {π(n)} be the R-coefficient derived series (defined
immediately above Definition 3), universal local derived series (see Defintion 3),
and Vogel-Cohn R-local derived series (see Definition 3.6). (In defining π{n} and

π(n) we assume Γ = {e} so that the series are defined for any group π.) Let {π
(n)
H }

be the Harvey derived series [10].

Theorem 4.1. For any group π and for any n, πn ⊂ π{n} ⊂ π(n) ⊂ π
(n)
H .

Proof. We use an induction on n. For n = 0, the conclusion holds since the initial
(zeroth) terms of all the concerned series are π itself by definition. Suppose the
conclusion holds for n. Let L(G) be the Cohn localization of the augmentation map
RG → R. For a group G such that ZG is an Ore domain, we denote by K(G) the
Ore localization ZG(ZG−{0})−1 of ZG. (In this proof K(G) is always well-defined
whenever the notation K(G) is used.)

We consider the following commutative diagram; note that, by definition, the
(n+ 1)-st terms of the concerned series equal the kernels of the rows. (To see that
the kernel of the second row is π{n+1} = Ker{π → π̂/π̂(n+1)}, note that π̂{n} = π̂n.)

πn H1

(
π;R

[ π
πn

])
=

πn

[πn, πn]
⊗
Z

R

π{n} H1

(
π;R

[ π

π{n}

])
H1

(
π̂;R

[ π̂

π̂{n}

])
=

π̂{n}

[π̂{n}, π̂{n}]
⊗
Z

R

H1

(
π̂;R

[ π̂

π̂(n)

])
H1

(
π̂;L

( π̂

π̂(n)

))

π(n) H1

(
π;R

[ π

π(n)

])
H1

(
π;L

( π̂

π̂(n)

))

H1

(
π;L

( π̂

π̂
(n)
H

))
H1

(
π;K

( π̂

π̂
(n)
H

))

π
(n)
H

H1

(
π; Q

[ π

π
(n)
H

])
H1

(
π;K

( π

π
(n)
H

))

//

��

∩
��

//

��

∩

��

//

��

//

//

��

∩

��

//

77ooooooooo
α

��

//

// //

77oooooooo β

Note that in order to obtain the diagram we need the existence of the following
natural maps:
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(1) L(π̂/π̂
(n)
H ) → K(π̂/π̂

(n)
H ). Since π̂/π̂

(n)
H is known to be a poly-torsion-free-

abelian group [10], from Strebel’s result [28] it follows that the morphism

R[π̂/π̂
(n)
H ] → K(π̂/π̂

(n)
H ) is an object of the category CW0 we described in

Subsection 2.2 in order to define the Cohn localization. Therefore, since

L(π̂/π̂
(n)
H ) is an initial object of CW0 , the desired map exists.

(2) K(π/π
(n)
H ) → K(π̂/π̂

(n)
H ). Since π/π

(n)
H → π̂/π̂

(n)
H is injective [10, 6], it

induces an injection K(π/π
(n)
H ) → K(π̂/π̂

(n)
H ) between (skew) fields.

Observe the following:

(1) α is an isomorphism by Theorems 2.5 and 2.11.

(2) β is injective since any K(π/π
(n)
H )-module, especially H1(π;K(π/π

(n)
H )), is

free and K(π̂/π̂
(n)
H ) is flat over its sub(skew)field K(π/π

(n)
H ).

Using the above observations, the desired result for n+ 1 follows from a straight-
forward diagram chase. The limit ordinal case is immediate. �

The next result deals with the special case of R = Zp.

Theorem 4.2. Suppose R = Zp and π is finitely generated. Then πn = π{n} = π(n)

and π/πn ∼= π̂/π̂n for n <∞.

To prove this we need:

Lemma 4.3 (Strebel, Levine). For any finite p-group G, the Cohn localization of
the group ring ZpG is ZpG itself.

Lemma 4.3 follows immediately from Strebel’s work [28] or Levine’s argument
used in the proof of [23, Lemma 4.3, p89]. We omit details.

Proof of Theorem 4.2. We will show that πn = π(n) and π/πn ∼= π̂/π̂n by an induc-
tion on n. For n = 0, everything holds obviously. Suppose the desired conclusion
holds for n. We have

π(n+1) = Ker

{
πn −→ H1

(
π; Zp

[ π
πn

])
−→ H1

(
π;L

( π

πn

))}
.

It is known that π/πn is a finite p-group if π is finitely generated (e.g., see [9].) By
Lemma 4.3 stated above, L(π/πn) is equal to Zp[π/π

n] and henceH1(π;L(π/πn)) =

(πn/[πn, πn]) ⊗Z Zp. It follows that π(n+1) is equal to πn.
To prove that π/πn+1 ∼= π̂/π̂n+1, it suffices to show that πn/πn+1 → π̂n/π̂n+1

is an isomorphism, by applying the five lemma to the following diagram:

1 πn/πn+1 π/πn+1 π/πn 1

1 π̂n/π̂n+1 π̂/π̂n+1 π̂/π̂n 1

// //

��

//

��

//

��
// // // //

Since πn → H1(π;L(π/πn)) is surjective, πn/πn+1 ∼= H1(π;L(π/πn)), and similarly
π̂n/π̂n+1 ∼= H1(π̂;L(π/πn)). The natural map H1(π;L(π/πn)) → H1(π̂;L(π/πn))
is the map α in the proof of Theorem 4.1, which was shown to be an isomorphism.
This completes the proof. �

Remark 4.4. Using Theorem 4.2, one can prove the result of Cochran and Harvey
on the mod p derived series [9, Corollary 4.3] using the newer tools of this paper.
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5. Examples of computation

We will discuss examples illustrating interesting properties and elementary com-
putational techniques of the local derived series. Some examples relate to later
geometric applications.

The following lemma helps us compute lower terms of the Vogel-Cohn R-local
derived series.

Lemma 5.1. Suppose R is a subring of Q (and Γ = {e}). Then lower successive
quotients of the Vogel-Cohn local derived series {π(n)} of a group π are given as
follows:

π(n)

π(n+1)
=

{
H1(π; Z)/S-torsion for n = 0

H1

(
π; Z[π/π(1)]

)
/Σ-torsion for n = 1

where S = {s ∈ Z | s is invertible in R}, Σ = {x ∈ Z[π/π(1)] | ǫ(x) ∈ S}, and
ǫ : Z[π/π(1)] → Z is the augmentation map.

Using the lemma, π(n+1) can be computed as the kernel of the obvious map
π(n) → π(n)/π(n+1). (For example, for a group π with a presentation, the Reidemeister-
Schreier method may help in computing π(n+1) from π(n)/π(n+1).)

Proof. For n = 0, the conclusion is trivial. For n = 1, note that π(1) is the kernel
of

π −→ H1(π; Z) −→ H1(π;R) = H1(π; Z) ⊗R.

From this the conclusion follows, since the first map is surjective and the kernel of
the second map is the S-torsion subgroup of H1(π; Z).

For n = 2, first note that since π̂/π̂(1) is abelian, the Cohn localization Λ of the

augmentation map R[π̂/π̂(1)] → R is isomorphic to Σ̂−1R[π̂/π̂(1)] where Σ̂ = {x ∈
Z[π̂/π̂(1)] | ǫ̂(x) ∈ S} and ǫ̂ is the augmentation Z[π̂/π̂(1)] → Z. Therefore π(2) is
the kernel of

(∗) π(1) −→ H1

(
π; Z

[ π

π(1)

]) α
−−→ H1

(
π; Z

[ π̂

π̂(1)

])

β
−−→ H1(π; Λ) = H1

(
π; Z

[ π̂

π̂(1)

])
⊗

Z[ bπ

bπ(1)
]

Σ̂−1Z
[ π̂

π̂(1)

]
.

For the last equality, note that in this case, Λ a commutative localization, and
therefor flat.

Since π/π(1) → π̂/π̂(1) is injective, we view π/π(1) as a subgroup of π̂/π̂(1).
Let W be a set of coset representatives. As Z[π/π(1)]-modules, for each g ∈ W ,
g · Z[π/π(1)] is a submodule of Z[π̂/π̂(1)] isomorphic to Z[π/π(1)] and we have

(∗∗) Z[π̂/π̂(1)] =
⊕

g∈W
g · Z[π/π(1)].

Also, we have

(∗∗∗) H1

(
π; Z

[ π̂

π̂(1)

])
∼= H1

(
π; Z

[ π

π(1)

])
⊗

Z[ π

π(1)
]
Z
[ π̂

π̂(1)

]
∼=

⊕

g∈W
g ·H1

(
π; Z

[ π

π(1)

])
.

In particular the map α in (∗) is injective and we can view H1(π; Z[π/π(1)]) as a
submodule of H1(π; Z[π̂/π̂(1)]).

We assert that for any x ∈ H1(π; Z[π/π(1)]), r ·x = 0 for some r ∈ Σ̂ ⊂ Z[π̂/π̂(1)]
if and only if t · x = 0 for some t ∈ Σ ⊂ Z[π/π(1)]. The if part is clear. For the

only if part, suppose r · x = 0 for some r ∈ Σ̂. We can write r =
∑
g∈W g · tg

with tg ∈ Z[π/π(1)] using (∗∗). Since x ∈ H1(π; Z[π/π(1)]), summands of r · x =∑
g∈W g · (tg ·x) are contained in distinct direct summands in (∗∗∗). It follows that
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tg · x = 0 for each g. Let t =
∑

g∈W tg ∈ Z[π/π(1)]. Obviously t · x = 0, and t is in

Σ̂ since ǫ(t) =
∑
ǫ(ti) = ǫ̂(r).

Note that for the map β in (∗), Kerβ is equal to the Σ̂-torsion submodule of
H1(π; Z[π̂/π̂(1)]). Therefore, by the above assertion, Kerβα = (pre-image of Kerβ)
is exactly the Σ-torsion submodule of H1(π; Z[π/π(1)]). Since the first map in (∗)
is surjective, from this it follows that π(1)/π(2) ∼= H1(π; Z[π/π(1)])/Σ-torsion. �

Example 5.2. We will illustrate that in general the (integral) local derived series
is distinct from the ordinary derived series and the Harvey series. Let π = Zp⋊Z2,
where p > 1 is an odd integer and Zp is viewed as a Z[Z2]-module via the negation
action of Z2 on Zp. That is, denoting by t the generator of Z2, t

−1rt = −r in π for
r ∈ Zp.

First we will show that the ordinary derived series is as follows:

πn =






π for n = 0,

Zp for n = 1,

0 for all n ≥ 2.

Proof. From the above definition of the t action, it is easily seen that Zp is in the
kernel of the abelianization map and so π/π1 = Z2, π

1 = Zp. Since π1 is abelian,
πn = 0 for n ≥ 2. �

On the other hand, for any finite group π (including our case), it can be seen

easily that the Harvey series {π
(n)
H } is given as follows:

π
(n)
H = π for all n.

Now we will show that the Vogel-Cohn local derived series of π (for R = Z and
Γ = {e}) is given by

π(n) =

{
π for n = 0,

Zp for n ≥ 1.

Proof. By Lemma 5.1, π(0) = π and π/π(1) = H1(π; Z) = Z2 and thus π(1) = π1 =
Zp. Also by Lemma 5.1, π(1)/π(2) = H1(π; Z[Z2])/Σ-torsion where

Σ = {a+ bt ∈ Z[Z2] | ǫ(a+ bt) = a+ b = 1}.

For r ∈ Zp = π1/π2 and a+ (1− a)t ∈ Σ, the action is given by (a+ (1− a)t) · r =
(a− (1 − a))r = (2a− 1)r. In particular r is annihilated by a+ (1 − a)t ∈ Σ when
a = (p+ 1)/2. It follows that H1(π; Z[Z2]) is Σ-torsion. Therefore π(2) = π(1). �

Example 5.3. We will illustrate that even the rational (i.e., the largest) local
derived series may be strictly smaller than the Harvey series. Our example is a
group which is rationally Vogel-Cohn solvable but not Harvey solvable. This results
from using the Cohn localization to compute the local derived series in place of the
Ore localization used in the Harvey series, as our computation shows. Observe
from this example that the Ore localization inverts excessively many ring elements,
enlarging the size of the Harvey series.

Let π = A⋊ Z, where

A =
Z[t, t−1]

〈(t− 1)2〉

and a preferred generator, say t ∈ Z, acts on A by multiplication. Let R be any
subring of Q and π(n) be the R-coefficient Vogel-Cohn local derived series of π. We
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will show:

π(n) =






π for n = 0,

(t− 1)A ∼= Z for n = 1,

0 for n ≥ 2.

Proof. It can be seen that [π, π] = (t−1)A ∼= Z and H1(π; Z) = π/[π, π] ∼= Z×Z is a
torsion free abelian group generated by (the cosets of) 1 ∈ A and t ∈ Z. Therefore,
by Lemma 5.1 π/π(1) = H1(π; Z) = Z × Z and so π(1) = [π, π]. Since π(1) is
abelian, π(1) = H1(π; Z[Z × Z]). It can be verified easily that the Z × Z-action
on H1(π; Z[Z × Z]) ∼= (t − 1)A is trivial. From this it follows that no nontrivial
element in H1(π; Z[Z × Z]) is Σ-torsion, where Σ is as in Lemma 5.1. Therefore
0 = π(2) = π(3) = · · · by Lemma 5.1. �

Now we will compute the Harvey series to show

π
(n)
H =

{
π for n = 0,

(t− 1)A ∼= Z for n ≥ 1.

Proof. Since H1(π; Z) is torsion free, π
(1)
H = [π, π] = (t − 1)A ∼= Z and π/π

(1)
H =

H1(π; Z) = Z × Z. To compute π
(2)
H , recall that π

(2)
H is the kernel of

π
(1)
H = H1(π; Z[Z × Z]) −→ H1(π; Z[Z × Z]) ⊗

Z[Z×Z]
K(Z × Z)

where K(Z×Z) denotes the Ore localization of Z[Z×Z]. Since the action of Z×Z

is trivial on π
(1)
H , every element of π

(1)
H is annihilated by any r 6= 0 ∈ Z[Z×Z] which

auguments to zero (i.e., ǫ(r) = 1). It follows that the above homomorphism is a

zero map. Therefore we have π
(1)
H = π

(2)
H = · · · . �

We remark that the elements r used above (such that ǫ(r) = 0) are inverted in
the Ore localization but not inverted in the Cohn localization.

Example 5.4. For a finitely generated free group F , all the concerned commutator-

type series agree; it is known that Fn = F
(n)
H for any n [10], and so by Theorem 4.1,

it follows that Fn = F {n} = F (n) = F
(n)
H for any n.

Example 5.5. In what follows we describe the Vogel-Cohn local derived series of
all the fundamental groups of 3-dimensional linear spherical space forms, that is,
all finite groups acting on S3 linearly without fixed points (see Milnor [25]). Since
Lemma 5.1 (together with the Reidemeister-Schreier method if necessary) applies
effectively, we omit details of the computation. Let R be a fixed subring of Q.

(1) π = Q8n = 〈x, y | y2n = x2 = (xy)2〉 with n ≥ 1: write n = 2r · n0 with n0

odd. If 1/2 /∈ R, then

π(n)

π(n+1)
∼=

{
Z2 × Z2 generated by x and y, n = 0,

Z2r+1 generated by y2, n = 1,

and

π(n) =

{
〈y2 | (y2)2n = 1〉 ∼= Z2n, n = 1,

〈y2r+2

| (y2r+2

)n0 = 1〉 ∼= Zn0 generated by y2r+2

, n = 2.

If 1/2 ∈ R, then π(n) = π for all n.
(2) π = P48 = 〈x, y | x2 = (xy)3 = y4, x4 = 1〉: if 1/2 /∈ R, then

π(n)

π(n+1)
∼=

{
Z2 generated by x, n = 0,

0 n ≥ 1,
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and
π(n) = 〈u, v | u2 = v3, uv2uv2u = v, u4 = 1〉

for n ≥ 1, where u = y2, v = xy. If 1/2 ∈ R, then π(n) = π for all n.
(3) π = P120 = 〈x, y | x2 = (xy)3 = y5, x4 = 1〉: π is perfect and so π(n) = π

for any n and any R.
(4) π = D2k(2n+1) = 〈x, y | x2k = 1, y2n+1 = 1, xyx−1 = y−1〉: if 1/2 /∈ R,

then
π(n)

π(n+1)
∼=

{
Z2k generated by x, n = 0,

0 n ≥ 1,

and for n ≥ 1,

π(n) = 〈y | y2n+1 = 1〉 ∼= Z2n+1.

If 1/2 ∈ R, then π(n) = π for all n.

(5) π = P ′
8·3k = 〈x, y, z | x2 = (xy)2 = y2, z−1xz = y, z−1yz = xy, z3k

= 1〉: if
1/3 /∈ R, then

π(n)

π(n+1)
∼=

{
Z3k generated by z, n = 0,

0 n ≥ 1,

and for n ≥ 1,

π(n) = 〈x, y | xyx−1 = y−1, x2 = y2〉.

If 1/3 ∈ R, then π(n) = π for all n.
(6) π = Zd × G where G is either trivial or any group listed above: first

consider π = Zd. If 1/d /∈ R, then Z
(n)
d = 0 for any n ≥ 1 . If 1/d ∈ R, then

Z
(n)
d = Zd for any n. For the case of a product π = Zd ×G, the following

lemma applies.

Lemma 5.6. For the direct product π = G ×H of two groups G and H, π(n) =
G(n) ×H(n) for any n.

We remark that this product formula holds for the local derived series determined
by any homology localization triple.

Proof. We use an induction on n. For n = 0, the conclusion is trivial. The con-
clusion for a limit ordinal follows easily by taking limits. To consider the case of a
successor ordinal, suppose π(n) = G(n) ×H(n). Consider the following diagram:

G(n) ×H(n) H1

(
G;L

( Ĝ

Ĝ(n)

))
×H1

(
H ;L

( Ĥ

Ĥ(n)

))

π(n) H1

(
π;L

( π̂

π̂(n)

))

//

��

φ

//

where the map φ is the product of the maps induced by the inclusions of G and
H into π. Note that there are induced maps on the homology coefficients by the
functoriality of (−)/(−)(n) and L. By the functoriality of the group localization,

the projection induces π̂ → Ĝ which is a left inverse of Ĝ → π̂. Therefore there

is an induced map α : H1(π;L(π̂/π̂(n))) → H1(G;L(Ĝ/Ĝ(n))). A similar argument

applied to H gives a map β : H1(π;L(π̂/π̂(n))) → H1(H ;L(Ĥ/Ĥ(n))). Then the
map (α, β) on H1(π;L(π̂/π̂(n))) is a left inverse of the map φ. Therefore φ is
injective. From this it follows that π(n+1) = G(n+1) ×H(n+1) by a diagram chase.

�
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We finish this section by emphasizing that π/π(n) may have nontrivial torsion
elements (e.g., see Example 5.5). In contrast to this, the Harvey series quotient

π/π
(n)
H is always torsion-free. The existence of torsion elements enables us to make

some interesting applications of the local derived series to homology cobordism of
manifolds, as discussed in later sections.

6. L2-dimensional local property of von Neumann group algebras

In this section we will prove that the von Neumann group algebra of a group
ring behaves much like a Cohn local module over the underlying group ring for
an appropriate collection of groups. This “L2-dimensional Cohn local property”
of the von Neumann group algebra NG (Theorem 6.6), has significant geometric
applications related to homological properties. The essential new contribution is
that it holds even for a class of groups G that may have torsion (as well as infinite
order elements). We start by defining the notion of an L2-equivalence.

6.1. L2-dimension and L2-equivalences. Suppose G is a countable group with
von Neumann group algebra NG. Following Lück’s book [24, Chapter 6], the L2-
dimension function

dim(2) : {NG-modules} −→ [0,∞] = [0,∞) ∪ {∞}

is defined as follows. For a finitely generated projective NG-module P , dim(2) P is
defined to be the von Neumann trace of a square matrix over NG whose row space is

isomorphic to P . For an arbitrary module M over NG, dim(2)M = sup{dim(2) P |
P is a finitely generated projective submodule of M}.

In this paper we will frequently use the following basic properties of the L2-
dimension function:

(1) dim(2) NG = 1 and dim(2) 0 = 0.

(2) If 0 → M ′ → M → M ′′ → 0 is exact, then dim(2)M = dim(2)M ′ +

dim(2)M ′′. In particular, if N is either a submodule or a homomorphic

image of M , then dim(2)N ≤ dim(2)M .

For proofs, see [24, Chapter 6]. Here we adopt the usual convention ∞ + d = ∞
for any d ∈ [0,∞].

Definition 6.1. An NG-module homomorphism f : M → N is said to be an L2-

equivalence if dim(2) Ker f = 0 = dim(2) Coker f .

Remark 6.2.

(1) If f : M → N is an L2-equivalence, dim(2)M = dim(2)N = dim(2) Im f .

(2) If dim(2)M = dim(2)N < ∞, then we have dim(2) Ker f = dim(2) Coker f
for any f : M → N . In particular in this case f is an L2-equivalence if and

only if either Ker f or Coker f has dim(2) = 0.

A group G is called amenable if NG ⊗CG C is nonzero. For other equivalent
definitions (which are more often used in the literature) and related discussions,
the reader is referred to Paterson’s book [26] and Lück’s book [24, p. 256]. For our
purpose, the following fact on amenable groups will play an essential role.

Theorem 6.3 (Lück [24, Theorem 6.37]). Suppose G is an amenable group. Then

NG is L2-dimension flat over CG, that is, dim(2) TorCG
p (M,NG) = 0 for any

CG-module M and for any p > 0.

Lemma 6.4. Suppose G is amenable. If M and N are free CG-modules with the
same finite rank and f : M → N is an injection, then f ⊗ 1NG : M ⊗CG NG →
N ⊗CG NG is an L2-equivalence.
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Proof. Let C = Coker f . From 0 →M → N → C → 0 we obtain

0 −→ TorCG
1 (C,NG) −→ M ⊗

CG
NG −→ N ⊗

CG
NG −→ C ⊗

CG
NG −→ 0.

By Theorem 6.3, dim(2) TorCG
1 (C,NG) = 0. Since M ⊗CGNG and N ⊗CGNG are

finitely generated free NG-modules with the same rank, they have the same finite

dim(2). It follows that f ⊗ 1NG is an L2-equivalence. �

The following is an L2-equivalence analogue of the observation that a chain map
which is an isomorphism induces an isomorphism on the homology.

Lemma 6.5. Suppose φ∗ : C∗ → C∗ is a chain map of a chain complex C∗ over NG.

If dim(2) Ci <∞ and φi : Ci → Ci is an L2-equivalence for some i, then the induced
map (φi)∗ : Hi(C∗) → Hi(C∗) is an L2-equivalence.

Proof. Let Zi, Bi ⊂ Ci be the submodules of cycles and boundaries, respectively.
Consider φi|Zi

: Zi → Zi. Since Kerφi|Zi
= Zi∩Kerφi is a submodule of Kerφi and

dim(2) Kerφi = 0, we have dim(2) Kerφi|Zi
= 0. Since dim(2) Zi ≤ dim(2) Ci < ∞,

it follows that φi|Zi
is an L2-equivalence.

Coker{(φi)∗ : Zi/Bi −→ Zi/Bi} = Zi/(Bi + φi(Zi))

is a homeomorphic image of Cokerφi|Zi
= Zi/φi(Zi) and therefore

dim(2) Coker(φi)∗ ≤ dim(2) Cokerφi|Zi
= 0.

Since dim(2) Zi/Bi ≤ dim(2) Ci <∞, it follows that (φi)∗ is an L2-equivalence. �

6.2. NG-homology and Strebel’s class D(R). Suppose R is a commutative
ring. We always assume that a commutative ring R has unity and 1 6= 0 in R,
i.e., the natural map Z → R is nonzero. In [28], Strebel defined and studied the
class D(R) of groups G with the following property: whenever f : M → N is a
homomorphism between projective RG-modules such that f ⊗ 1R : M ⊗RG R →
N ⊗RGR is injective, f itself is injective. (Here R is viewed as an RG-module with
trivial G-action.)

In the following theorem, we relate the class D(R) with the L2-dimension of
NG-homology modules.

Theorem 6.6. Suppose R is a commutative ring, G is an amenable group, and
G → Γ is a group homomorphism with kernel in D(R). Suppose C∗ is a bounded
below chain complex over ZG such that Ci is finitely generated and free as a ZG-

module for i ≤ n. If Hi(C∗⊗ZGRΓ) = 0 for i ≤ n, then dim(2)Hi(C∗⊗ZGNG) = 0
for i ≤ n.

Remark 6.7.

(1) Theorem 6.6 will be useful in proving our results onRΓ-coefficient homology
cobordism. Our primary examples applying this theorem will use the rings
R = Zp and R = Q in Theorem 6.6. One can consider subrings R ⊂ Q

(including Z and Z(p)), but this serves no purpose since in this case, D(R) =
D(Q). On the other hand, the classes D(Q) and D(Zp) are distinct. For
example, a finite p-group is in D(Zp) but not in D(Q). See also Lemma 6.8.

(2) It is well known that a similar result to Theorem 6.6 holds for the Cohn
localization of ZG → ZΓ. (See, for instance, [30].) In this sense, we can
interpret the conclusion of Theorem 6.6 as follows: the von Neumann group
ring NG is an L2-dimension Cohn local ZG-module.

Proof of Theorem 6.6. We will show that the zero map of Hi(C∗ ⊗ZG NG) into
itself is an L2-equivalence. From this the desired conclusion follows immediately.
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Our argument is similar to Vogel’s argument used in [30] but requires Lemma 6.4
at a crucial point. Since Hi(C∗ ⊗ZG RΓ) = 0 for i ≤ n, there is a partial chain
homotopy

si : Ci ⊗
ZG

RΓ −→ Ci+1 ⊗
ZG
RΓ (i ≤ n)

such that ∂s + s∂ = 1C∗⊗ZGRΓ. It is easily seen that si lifts to a partial chain
homotopy Di : Ci → Ci+1 (i ≤ n) such that D⊗ZG1RΓ = s. Let N = Ker{G→ Γ}.
For the partial chain map φ = ∂D +D∂ on C∗,

(φi ⊗
Z

1R) ⊗
RN

1R : (Ci ⊗
Z

R) ⊗
RN

R −→ (Ci ⊗
Z

R) ⊗
RN

R

can be identified with

φi ⊗
ZG

1RΓ : Ci ⊗
ZG

RΓ −→ Ci ⊗
ZG

RΓ

which is the identity map (i ≤ n). Therefore, since N is in D(R),

φi ⊗
Z

1R : Ci ⊗
Z

R −→ Ci ⊗
Z

R

is injective. Note that for any (possibly infinite) index set A, a homomorphism
ZA → ZA is injective if the induced map RA → RA is injective. From this it
follows that φi : Ci → Ci is injective. Now, by Lemma 6.4,

φi ⊗ 1NG : Ci ⊗
ZG

NG −→ Ci ⊗
ZG

NG

is an L2-equivalence. Therefore, by Lemma 6.5 it follows that φi induces an L2-
equivalence

φ∗ : Hi(C∗ ⊗
ZG

NG) −→ Hi(C∗ ⊗
ZG

NG).

Because of D∗, the induced map φ∗ is zero for i ≤ n. �

Note that if Γ is trivial in Theorem 6.6, or more generally if Γ is amenable, then
G is amenable if and only if Ker{G→ Γ} is amenable, since the class of amenable
groups is closed under extensions and taking subgroups and quotients. Therefore
the hypothesis of Theorem 6.6 leads us to consider the class of groups which are
amenable and in D(R). We list some known cases (e.g., see [26], [24], and [28]).

(1) Poly-torsion-free-abelian (PTFA) groups are amenable and in D(R) for any
ring R.

(2) Finite p-groups are amenable and in D(Zp).
(3) A direct limit of amenable groups (resp. groups in D(R)) is amenable (resp.

in D(R)).
(4) If G admits a subnormal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}

such that each Gi/Gi+1 is amenable (resp. in D(R)), then G is amenable
(resp. in D(R)).

The following consequence will be used later. We say that a group G has no
torsion coprime to p if the order of any finite order element in G is a power of p.
(Note that G may have infinite order elements and may be infinitely generated.)

Lemma 6.8. Suppose G is a group admitting a subnormal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}

whose quotients Gi/Gi+1 are abelian.

(1) If every Gi/Gi+1 has no torsion coprime to p, then G is amenable and in
D(Zp).

(2) If every Gi/Gi+1 is torsion free, then G is amenable and in D(R) for any
commutative ring R.
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Proof. (1) It suffices to show that Gi/Gi+1 is amenable and in D(R). Note that
Gi/Gi+1 is the direct limit of its finitely generated subgroups. Since Gi/Gi+1 is
abelian and has no torsion coprime to p, each finitely generated subgroup H of
Gi/Gi+1 is a direct sum of abelian p-groups and free abelian groups. Therefore
H is amenable and in D(Zp). It follows that Gi/Gi+1 is amenable and in D(Zp).
(Amenability of Gi/Gi+1 also follows immediately from that it is abelian.)

(2) In this case, Gi/Gi+1 is torsion-free and so is a direct limit of finitely gener-
ated free abelian groups. It follows that G is amenable and in D(R). �

7. L2-invariants and homology cobordism

For a CW-complex X and a group homomorphism φ : π1(X) → G, we define the

L2-Betti number by b
(2)
i (X,φ) = dim(2)Hi(X ;NG). When X = M is a (4k − 1)-

dimensional manifold, we denote by ρ(2)(M,φ) the L2-signature defect of a bound-
ing 4k-manifold over G.

For the reader’s convenience, we sketch the definition of ρ(2)(M,φ). It is known
that there exist a compact 4k-manifold W with ∂W = M , an injection G → H
of groups, and a homomorphism ψ : π1(W ) → H such that the following diagram
commute:

π1(M) G

π1(W ) H

//φ

��
�
�
�
�
�
�
�
�

i∗

��
//

ψ

Applying the spectral theory to the NH-coefficient intersection form

H2k(W ;NH) ×H2k(W ;NH) −→ NH

H2k(W ;NH) can be written as an orthogonal sum V+ ⊕ V− ⊕ V0 where the inter-
section form on V+, V−, and V0 are positive definite, negative definite, and zero,
respectively. The L2-signature of (W,ψ) is defined to be

sign(2)(W,ψ) = dim(2) V+ − dim(2) V−.

Now the ρ-invariant ρ(2)(M,φ) is defined to be the L2-signature defect ofW , namely

ρ(2)(M,φ) = sign(2)(W,ψ) − sign(W )

where sign(W ) is the ordinary signature of W . It is well known that ρ(2)(M,φ) is a
well-defined real-valued invariant of (M,φ), which agrees with the Cheeger-Gromov
invariant. For more details and related discussions, the reader may be referred to,
for example, Cochran-Orr-Teichner [14], Chang-Weinberger [8], Lück [24], Har-
vey [19], and Cha [7].

We also need the induction property: if φ : π1(M) → G is a homomorphism and
f : G→ H is an injection, then ρ(2)(M,φ) = ρ(2)(M, fφ).

We say that a (connected) complex X is over a group Γ if X is endowed with
a homomorphism π1(X) → Γ. For two closed manifolds M and M ′ over Γ and
a commutative ring R, a bordism W over Γ between M and M ′ is called an RΓ-
homology cobordism if the inclusions of M and M ′ into W induce isomorphisms on
H∗(−;RΓ). If such W exists, M and M ′ are said to be RΓ-homology cobordant.

Theorem 7.1. Suppose R is a commutative ring, G is an amenable group, and
G → Γ is a homomorphism with kernel in D(R). Suppose W is an RΓ-homology
cobordism between closed manifolds M and M ′ over Γ. If φ : π1(M) → G and
φ′ : π1(M

′) → G are restrictions of a homomorphism ψ : π1(W ) → G, then the
following hold:
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(1) b
(2)
i (M,φ) = b

(2)
i (M ′, φ′) for all i.

(2) When M and M ′ are (4k − 1)-dimensional, ρ(2)(M,φ) = ρ(2)(M ′, φ′).

Note that W is a ZpΓ-homology cobordism if and only if W is a Z(p)Γ-homology
cobordism. Using this fact we can combine the Z(p)-coefficient Vogel-Cohn local

derived series with the L2-signatures associated to amenable groups in D(Zp). A
precise statement is as follows.

Theorem 7.2. Let R be either Zp, Z(p), or Q. For a closed manifold M over
an amenable group Γ, view π = π1(M) as a group over Γ and denote the R-
coefficient Vogel-Cohn local derived series of π over Γ by {π(n)}. For the canonical
map φn : π → π/π(n), b(2)(M,φn) and ρ(2)(M,φn) are RΓ-homology cobordism
invariants of M for any n < ∞. In particular, when Γ is trivial, b(2)(M,φn) and
ρ(2)(M,φn) are always R-homology cobordism invariants.

We remark that in many cases the group π1(M)/π1(M)(n) may have torsion ele-
ments. (For instance, see our computation for spherical space forms: Example 5.5.)
Prior to this work, only L2-signatures associated to poly-torsion-free-abelian groups
have been known to be useful in studying homology cobordism. Theorem 7.2 is the
first result on the homology cobordism invariance of L2-signatures associated to
non-torsion-free groups.

Proof of Theorem 7.1. Since Hi(W,M ;RΓ) = 0, applying Theorem 6.6 to the chain

complex C∗ = C∗(W,M ; ZG) we obtain dim(2)Hi(W,M ;NG) = 0 for all i. From
the NG-coefficient homology long exact sequence for (W,M), it follows that the
map Hi(M ;NG) → Hi(W ;NG) is an L2-equivalence. The same argument applies

to M ′. Therefore b
(2)
i (M,φ) = b

(2)
i (W,ψ) = b

(2)
i (M ′, φ′).

For (2), note that ρ(2)(M,φ) − ρ(2)(M ′, φ′) is the difference between the L2-
signature of the NG-intersection form of W and the signature of the ordinary
(untwisted) intersection form of W . We will show that both signatures are zero.

The non-singular part of the NG-intersection form is supported by the coker-
nel of H2k(M ;NG) → H2k(W ;NG) which is contained in H2k(W,M ;NG). Since

dim(2)H2k(W,M ;NG) is zero, the L2-signature of W is zero. Similarly, the ordi-
nary signature of W is zero, since H2k(W,M ; Q) = 0. �

Proof of Theorem 7.2. We first consider the case R = Z(p). Suppose W is a RΓ-

homology cobordism between M and M ′. Let G = π1(W )/π1(W )(n), and let
φ : π1(M) → π1(W ) → G and φ′ : π1(M

′) → π1(W ) → G be the compositions. By
the injectivity theorem, π1(M)/π1(M)(n) injects into G. Therefore by the induction
property, ρ(2)(M,φn) is equal to ρ(2)(M,φ), and similarly for M ′. So it suffices to
show that ρ(2)(M,φ) = ρ(2)(M ′, φ′).

By the following lemma, Ker{G → Γ} = π1(W )(0)/π1(W )(n) is amenable and
in D(Zp). From the amenability of Ker{G → Γ} and Γ, the amenability of G

follows. Therefore by applying Theorem 7.1, we obtain ρ(2)(M,φ) = ρ(2)(M ′, φ′).
It can be seen that a similar argument works for R = Q and Zp. �

Lemma 7.3. Suppose π is a group over Γ.

(1) Let R be either Zp or Z(p) and π(n) be the R-coefficient Vogel-Cohn local

derived series of π over Γ. Then π(0)/π(n) is amenable and in D(Zp) for
any n <∞.

(2) Let π(n) be the rational Vogel-Cohn local derived series of π over Γ and
R be any commutative ring. Then π(0)/π(n) is amenable and in D(R) for
any n <∞.
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Proof. For (1), consider the normal series {π(i)/π(n)}0≤i≤n of π(0)/π(n). The i-th

quotient is isomorphic to π(i)/π(i+1), which is the image of a map factoring through
H1(π;R[π/π(i)]) by the definition of π(i+1). Since H1(π;R[π/π(i)]) has no torsion
coprime to p for both R = Zp and Z(p), so does π(i)/π(i+1). It follows that π(0)/π(n)

is amenable and in D(Zp) by Lemma 6.8. The second part is proved similarly. �

8. Applications

8.1. Distinct homology cobordism types with the same simple homotopy

type. In [8], Chang and Weinberger proved the following result on homeomorphism
types of manifolds having the same simple homotopy type using L2-signature in-
variants:

Theorem 8.1 (Chang-Weinberger [8]). Suppose M is a closed (4k − 1)-manifold
with π = π1(M), k ≥ 2. If π has a nontrivial torsion element, then there exist
infinitely many closed (4k − 1)-manifolds M0 = M , M1, M2, . . . such that each Mi

is simple homotopy equivalent and tangentially equivalent to M but Mi and Mj are
not homeomorphic for any i 6= j.

Using our results, we will prove a homology cobordism version of the Chang-
Weinberger theorem.

Theorem 8.2. Suppose M is a closed (4k − 1)-manifold with π = π1(M), k ≥ 2.
Let p be prime and π(n) be the Zp or Z(p)-coefficient Vogel-Cohn local derived series

of π. If π has a torsion element which remains nontrivial in π/π(n) for some n,
then there exist infinitely many closed (4k − 1)-manifolds M0 = M , M1, M2, . . .
such that each Mi is simple homotopy equivalent and tangentially equivalent to M
but Mi and Mj are not homology cobordant for any i 6= j.

Note that π/π(n) has no torsion coprime to p but may have p-torsion elements.
We also remark that the RΓ-homology generalizations of Theorem 8.2 are true for
R = Z, Zp, and Z(p) when M is over an amenable group Γ. (Indeed the same proof
works.)

In the Zp-coefficient case of Theorem 8.2, πn = π(n) by Theorem 4.2. Therefore
Theorem 8.2 specializes to the following result, which can also be proved directly
by using the homology cobordism invariance of L2-signatures associated to finite
p-groups:

Corollary 8.3. Suppose M is a closed (4k − 1)-manifold, k > 2, and let {πn}
be the Zp-derived series of π = π1(M). If π has a torsion element which is not
contained in πn for some n, then the conclusion of Theorem 8.2 holds.

Proof of Theorem 8.2. Following the argument of the proof of [8, Theorem 1], we
consider the action of the surgery obstruction group L4k(π) on the structure set
S(M) of simple homotopy equivalences of closed (4k − 1)-manifolds into M : for
each a ∈ L4k(π), by the Wall realization theorem there is a 4k-dimensional bordism,
say Wa, between M and another element S(M), say (represented by) Ma, over π
such that a is represented by the Zπ-coefficient intersection form of Wa. We will
show that we can choose infinitely many a, including a = 0 (i.e., M = Ma for some
a) so that Ma is not homology cobordant to Ma′ for any a 6= a′.

Let G = π/π(n) and φ : π1(M) → G and φa : π1(Ma) → G be the obvious maps.
Then ρ(2)(M,φ)−ρ(2)(Ma, φa) is equal to the L2-signature defect of the intersection
form on H2k(Wa;NG). The proof of [8, Theorem 1] shows the following: for any
group G which is not torsion free, there exist infinitely many o ∈ L4k(G) such that
the L2-signature defects of the forms representing o are all nonzero and distinct.
The elements o are constructed as follows. Switching to the Q-coefficients and
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considering forms over projective modules makes no difference, since the map of
L4k(G) = L4k(ZG) into the relevant L-group L4k(QG) induces an isomorphism
modulo 8-torsion for any G. (We omit decorations in the L-group notation.) An
order r > 1 element in G determines a map L4k(Q[Zr]) → L4k(QG), and the images
of direct sums of the 1×1 form [1] on the projective Q[Zr]-module Q has the desired
property.

Returning to our case, we have an element in π with finite order, say d, whose
image in G has order r for some divisor r > 1 of d . This gives us the followiung
commutative diagram:

L4k(Q[Zd]) L4k(Qπ)

L4k(Q[Zr]) L4k(QG)

//

�� ��
//

Since the class of the form [1] in L4k(Q[Zr]) is in the image of L4k(Q[Zd]), the
elements o ∈ L4k(QG) described above are all in the image of L4k(Qπ).

It follows that there are infinitely many a ∈ L4k(π) such that ρ(2)(M,φ) −
ρ(2)(Ma, φa) are all nonzero and distinct. From the homology cobordism invariance
of ρ(2)(M,φ) (see Theorem 7.2) the desired conclusion follows.

�

8.2. Homology cobordism types of 3-manifolds. In the below statement, π(n)

denotes the R-coefficient Vogel-Cohn local derived series of a group π, where R =
Zp, Z(p), or Q.

Theorem 8.4. Suppose M is a closed 3-manifold with π = π1(M). If π(n)/π(n+1)

is nontrivial for some n > 0, then there exist infinitely many closed 3-manifolds
M0 = M , M1, M2, . . . satisfying the following properties:

(1) For any i, there is a map M →Mi which induces isomorphisms on H∗(−; Z)
and on π1(−)/π1(−)(k) for any k.

(2) For any i and j, Mi and Mj have identical Wall multisignatures (or equiv-
alently Atiyah-Singer G-signatures).

(3) For any i 6= j, Mi and Mj are not homology cobordant.

Corollary 8.5. For the spherical 3-space form M = S3/Q8n with fundamental
group Q8n = 〈x, y | y2n = x2 = (xy)2〉 (see Milnor [25]), there are infinitely many
closed 3-manifolds M0 = M , M1, M2, . . . such that the Mi are homology equivalent
to M and have identical Wall multisignatures (or equivalently Atiyah-Singer G-
signatures) and Harvey L2-signature invariants ρn [19], but no two of the Mi are
homology cobordant.

Proof. Due to our previous computation (Example 5.5), π = Q8n has non-trivial
π(1)/π(2), where π(n) denotes the Z(2)-coefficient Vogel-Cohn local derived series.
Therefore Theorem 8.4 applies. Harvey’s invariant ρn vanishes for any rational
homology sphere. �

Remark 8.6.

(1) While Harvey’s L2-invariants ρn cannot distinguish the homology cobor-
dism types in Corollary 8.5, our proof illustrates that L2-signatures, com-
bined with our injectivity theorem, are effective even for rational homology
spheres.

(2) Our computation for π = Q8n says that π(n)/π(n+1) is a 2-group for n ≤ 1;
it enables an alternative proof of Corollary 8.5 using either the result of
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Levine [23], or the L-group-valued Hirzebruch-type invariants from iterated
2-covers which were defined and studied by the first author [4, 5].

Proof of Theorem 8.4. Choose a simple closed curve η in M representing a nontriv-
ial element in π(n)/π(n+1). We will use a construction sometimes called an infection
along η by a knot: identify a tubular neighborhood of η with η×D2, choose a knot
K, and let EK be the exterior of K. Let

M(η,K) =
(
M − (η × intD2)

)
∪∂ EK

where the pasting map is an orientation reversing homeomorphism on the boundary
such that η × {∗}, {∗} × S1 ⊂ η × S1 are identified with a meridian and longitude
of K on ∂EK . We will show that the 3-manifolds Mi can be obtained in this way
by choosing the knots K appropriately.

Let K0 be the unknot. Then there is a homology equivalence EK → EK0 that
extends a homeomorphism on the boundary preserving the periphral structure.
Pasting this with the identity map on M − (η × intD2), we obtain a homology
equivalence M(η,K) →M(η,K0) = M .

LetG = π1(M(η,K)). Then the induced mapG→ π is 2-connected on homology
(for any R). Therefore by the injectivity theorem 3.8, the induced map G/G(k) →
π/π(k) is injective for any k. Since π1(EK) → π1(EK0) is surjective, G → π is
surjective. It follows that G/G(k) → π/π(k) is an isomorphism for any k.

Since n ≥ 1, [η] = 0 in H1(M). From this it follows that Wall’s multisignatures
of M(η,K) are identical with those of M (e.g., see [18] and Section 5 of [4]).

In order to distinguish the homology cobordism classes of the M(η,K), we will
use L2-signatures. Consider ρ(2)(M(η,K), ψ), where ψ is the quotient map G →
G/G(n+1) ∼= π/π(n+1).

By previously known arguments (e.g., see [15], [13]), we have

ρ(2)(M(η,K), ψ) = ρ(2)(M,φ) + ρ(2)(MK , α)

where φ is the quotient map π → π/π(n+1), MK is the zero-surgery manifold of K,
and α : π1(MK) → π/π(n+1) is the map induced by the restriction of ψ on EK .

Let d be the order of [η] in π/π(n+1). (d may be ∞.) Since π(n) is a normal sub-
group and π1(MK) is normally generated by a meridian ofK which is identified with
a parallel copy of η, Imα is contained in π(n)/π(n+1) which is an abelian group. It
follows that Imα is isomorphic to Zd (where Z∞ is understood as the infinite cyclic
group if d = ∞). Therefore by the induction property, ρ(2)(MK , α) = ρ(2)(MK , β)
where β is the surjection π1(MK) → Imα ∼= Zd. Appealing to Lemma 8.7 below,
we can choose infinitely many knots K0 (= unknot), K1, K2, . . . such that the
values ρ(2)(MKi

, β) are mutually distinct. It follows that the ρ(2)(M(Ki, η), φKi
)

are all distinct. By the homology cobordism invariance of ρ(2)(M(Ki, η), ψ) (The-
orem 7.2), the 3-manifolds Mi = M(η,Ki) are not homology cobordant. �

Lemma 8.7. Suppose K is a knot in S3 such that zero-surgery on K yields the
three manifold M . Let A be a Seifert matrix for K. Let

σK(ω) = sign
(
(1 − ω)A+ (1 − ω−1)AT

)

be the Levine-Tristram signature function of K which is defined for ω ∈ S1 ⊂ C.
(1) [15, Proposition 5.1] For the abelianization map φ : π1(M) → Z, we have

ρ(2)(M,φ) =

∫

S1

σK(ω) dω

where the integral is over S1 normalized to unit length.
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(2) Suppose φd : π1(M) → Zd is a surjection. Then

ρ(2)(M,φd) =
1

d
·
d−1∑

k=0

σK(ζkd )

where ζd = e2π
√−1/d is the dth primitive root of unity.

Proof. Construct in the usual way, a compact 4-manifold W with boundary M
over Z whose Z[t, t−1]-coefficient intersection form is (1− t)A+ (1− t−1)AT . (1) is
proved in [15] by computing the L2-signature of the intersection form of W . One
can prove (2) similarly, as follows: let G = Zd. Since G is finite, the von Neumann

group ring NG is equal to the ordinary group ring CG, and d ·dim(2)M = dimC M
for any NG-module M . Viewing the bordism W described above as a bordism over
G, the NG-coefficient intersection form is exactly

(1 − g)A+ (1 − g−1)AT

where g is the generator of G which is the image of the positive meridian. It can
also be seen that the ordinary signature of W is equal to σK(1), which is always
zero. From these observations (2) follows. �

Appendix A. Remarks on module and ring localizations

A.1. Two definitions of the Bousfield module localization. In [2], Bousfield
defined and studied localization of Zπ-modules with respect to the class HZ of
Zπ-module homomorphisms α : A → B such that the induced map Hi(π;A) →
Hi(π;B) is an isomorphism for i = 0 and a surjection for i = 1. His arguments
readily extend to the case of a group π over another group Γ. Namely, there
is a localization functor with respect to the class, which will be denoted by HZ

as well, of Rπ-module homomorphisms α : A → B that induces an isomorphism
A⊗Rπ RΓ → B ⊗Rπ RΓ and a surjection TorRπ1 (RΓ, A) → TorRπ1 (RΓ, B).

Our goal is to show that the Bousfield localization with respct to HZ is equal
to the localization with respect to the following class: let W be the collection
of Rπ-module homomorphisms α : F → F ′ such that F and F ′ are Rπ-free and
α⊗1: F ⊗RπRΓ → F ′⊗RπRΓ is an isomorphism. Although surely well-known, we
could find no proof in the literature for the following, and provide the proof here.

Theorem A.1. A Rπ-module M is local with respect to HZ if and only if M is
local with respect to W.

The following is an immediate consequence:

Corollary A.2. The localization with respect to HZ is equal to the localization
with respect to W.

Proof of Theorem. Observe that the class W is contained in HZ. It follows that if
M is local with respect to HZ, then M is local with respect to W .

To prove the converse, suppose M is local with respect to W , and consider a
diagram

A B

M

//α

��

with α in HZ. We have to show that there is a unique map B → M making the
diagram commute.
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Let N = Ker{π → Γ} and I = Ker{Rπ → RΓ}. Choose a set of generators {bi}i
of B. Since

A ⊗
Rπ

RΓ ∼= B ⊗
Rπ

RΓ ∼= B/〈gb− b | g ∈ N, b ∈ B〉

we can write each bi as

bi = α(ai) +
∑

j

rijbj

where ai ∈ A and rij ∈ I. We consider the following system of equations with
variable xi (one variable for each generator bi):

S =
{
xi = ai +

∑

j

rijxj

}

i

When S is a system of equation in A as above, we define AS to be the module
obtained from A by adjoining the variables xi as additional generators satisfying
the relations given by the equations in S. Precisely,

AS = (A⊕ F 〈xi〉)
/〈

xi − ai −
∑

j

rijxj

〉

where F 〈xi〉 denotes the free Rπ-module generated by the xi. Note that the natural
map A → AS induces an isomorphism A ⊗Rπ RΓ → AS ⊗Rπ RΓ provided rij ∈ I.
Also, in our case, there is a well-defined map AS → B sending xi to bi.

Choose a surjection F → A of a free Rπ-module F . Let S′ be a system of
equations in F which is a lift of S, that is, S′ is obtained from S by replacing each
ai by a pre-image of ai in F . We have the following commutative diagram:

F FS′

A AS B

M

//

�� ��

��

//

��

//

Since F → FS′ is in W , there is FS′ →M making the diagram commute.
It can be checked that Ker{FS′ → AS} is equal to the image of KerF → A under

F → FS′ . Therefore, FS′ →M induces AS →M . Observe the following facts:

(1) AS ⊗Rπ RΓ ∼= A⊗Rπ RΓ ∼= B ⊗Rπ RΓ.

(2) TorRπ1 (AS , RΓ) → TorRπ1 (B,RΓ) is surjective, since so is TorRπ1 (A,RΓ) →
TorRπ1 (B,RΓ).

Let K = Ker{AS → B}. Looking at the Tor long exact sequence obtained from
0 → K → AS → B → 0, from the above observations it follows that RΓ⊗RπK = 0.
By the lemma stated and proved below, it follows that the image of K in M under
AS → M is zero. Therefore, from (1), it follows that there is an induced map
B →M . The map B →M is uniquely determined since FS′ →M is unique. �

Definition A.3. For π over Γ, an Rπ-module N is perfect if N ⊗Rπ RΓ = 0.

Lemma A.4. If M is local with respect to W, then M has no nontrivial perfect
submodules. Consequently any map of a perfect module into M is zero.

Proof. Suppose N is a perfect submodule of M . Choose generators {ai} of N .
Since N ⊗Rπ RΓ = N/〈ga − a | g ∈ Ker{π → Γ}, a ∈ N〉 = 0, we can write each
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ai as ai =
∑
j rijaj where rij ∈ I = Ker{Rπ → RΓ}. Let F 〈xi〉 be the free Rπ-

module generated by variables xi (one variable xi for each bi) as before, and define
α : F 〈xi〉 → F 〈xi〉 by α(xi) = xi −

∑
j rijxj . Consider

F 〈xi〉 F 〈xi〉

M

//α

��
�
�
�
�
�
�
�
�
�

0

��

φ

Observe that α is in W . The map φ : F 〈xi〉 → M given by φ(xi) = ai makes the
diagram commute. Instead of φ, the zero map also makes it commute. Therefore,
since M is local with respect to W , φ = 0 by the uniqueness. It follows that
ai = 0. �

A.2. Ring localization as module localization. Suppose π is a group, R is a
commutative ring with unity, Ω is a collection of Rπ-module homomorphisms, and
E is a localization functor on the category of Rπ-modules with respect to Ω, which
is endowed with a natural transformation M → E(M). Our goal is to give a proof
that E(Zπ) is a ring localization in the sense of Section 2.2.

Theorem A.5. There is a ring structure on Λ = E(Rπ) satisfying the following:

(1) The map Rπ → Λ is a ring homomorphism.
(2) For any Rπ-module M , there is a natural isomorphism E(M) ∼= M ⊗Rπ Λ.
(3) For any α : A→ B in Ω, α⊗ 1: A⊗Rπ Λ → B ⊗Rπ Λ is an isomorphism.
(4) Rπ → Λ is initial among objects satisfying (3), that is, if a ring homomor-

phism Rπ → Λ′ satisfies (3), then there is a unique ring homomorphism
Λ → Λ′ making the following diagram commute:

Rπ Λ

Λ′

//

�� ��

Proof. (1) Denote by i the map Rπ → E(Rπ) = Λ. The ring structure on Λ is
defined as follows. Since Rπ ⊗Rπ Λ ∼= Λ and the functor E commutes with direct
sum, for any free Rπ-module F , we have the following commutative diagram:

F ⊗Rπ Rπ F

F ⊗Rπ Λ E(F )

//
∼=

��

1⊗i
��

//
∼=

Choose a free resolution F0 → F1 → Λ over Rπ. Then we have

F0 ⊗Rπ Λ F0 ⊗Rπ Λ Λ ⊗Rπ Λ 0

E(F0) E(F1) E(Λ) 0

//

��

//

��

//

// // //

Rows are exact since tensoring and E are right exact, and vertical arrows are
isomorphisms. Since E is an idempotent, it follows that there is an isomorphism

m : Λ ⊗
Rπ

Λ −→ Λ = E(Λ)
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which gives ring multiplication on Λ. Obviously Rπ → Λ is a ring homomorphism.
(2) For a given Rπ-module M , choose a presentation F0 → F1 → M → 0 with

F0, F1 free. Replacing the resolution of Λ in the above argument of (1) by the
resolution of M , we obtain an isomorphism M ⊗Rπ Λ → E(M). It can be verified
that this isomorphism is independent of the choice of the presentation.

(3) Any α : A → B in Ω induces an isomorphism E(A) → E(B) since E is a
localization with respect to Ω. Since E(A) ∼= A ⊗Rπ Λ, the desired conclusion
follows.

(4) Suppose a ring homomorphism j : Rπ → Λ′ satisfies (3). First we will show
that Λ′ is a local Rπ-module with respect to Ω. Suppose α : A → B in Ω and
φ : A→ Λ′ is given.

A B

A ⊗
Rπ

Λ′ B ⊗
Rπ

Λ′

Λ′

Λ′ ⊗
Rπ

Λ′

//α

��?
??

??
??

��

φ

��?
??

??
??

��

φ⊗1

//α⊗1

∼=

����?
??

??
??

In the above diagram, α⊗ 1 is an isomorphism by (2). Let m′ : Λ′ ⊗Rπ Λ′ → Λ′ be
the ring multiplication and let ψ : B → Λ′ be the composition of B → B ⊗Rπ Λ′

and m′(φ × 1)(α ⊗ 1)−1. Then ψα = φ. If ψ′α = φ for some ψ′ : B → Λ′, then
ψ′⊗1: B⊗RπΛ′ → Λ′⊗RπΛ′ should be equal to (φ⊗1)(α⊗1)−1, being the unique
map making the triangle commute. From this it follows that φ′ = φ by a diagram
chase. This proves that the Rπ-module Λ′ is local.

By the universal property of the module localization Λ = E(Rπ), there is a
unique Rπ-module homomorphism f : Λ → Λ′ making the following diagram com-
mute:

Rπ Λ

Λ′

//i

��

j

��
f

We claim that f is a ring homomorphism. To prove this, consider the following
diagram, where m, m0, m

′ are ring multiplication.

Rπ ⊗
Rπ

Rπ Λ ⊗
Rπ

Λ

Λ′ ⊗
Rπ

Λ′
Rπ Λ

Λ′

//i⊗i

��
�
�
�
�
�
�

j⊗j

��?
??

??
??

?? m0

��?
??

??
??

??

m

wwoooooooooooooo

f⊗f

��?
??

??
??

??

m′

//
i

��
�
�
�
�
�
�
�

j
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It can be seen that the diagram commutes. Now look at m′(f ⊗ f)m−1 : Λ → Λ′.
Then by a diagram chase, one can verify

m′(f ⊗ f)m−1i = m′(f ⊗ f)(i⊗ i)m−1
0 = m′(j ⊗ j)m−1

0 = j.

From the uniqueness of f , it follows that m′(f ⊗ f)m−1 = f , that is, f is a ring
homomorphism. �
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