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APPROXIMATING HOMOTOPY EQUIVALENCES BY
HOMEOMORPHISMS.

By T. A. CaapMaN and STEVE FERRY.*

1. Introduction.

Let M",N" be topological n-manifolds, n >5, and let f: M—N be a proper
map (i.e., a map such that inverse images of compacta are compact). The
purpose of this paper is to answer the following question: When is f close to a
homeomorphism? Our answer is phrased in terms of local homotopy restrictions
on f which give us necessary and sufficient conditions for f to be close to a
homeomorphism.

Here is the basic definition. If « is an open cover of N, then the proper
map f:M—N is said to be an a-equivalence provided that for some map
g:N—M there are homotopies 6, from fg to the identity on N, and ¢, from gf to
the identity on M, such that

(1) for each m € M, there is a U € a containing { fo,(m)|0<t <1},
(2) for each n €N, there is a U € « containing {f,(n)|0<t<1}.

Thus an a-equivalence is a special type of homotopy equivalence in which we
place restrictions on the size of the homotopies fg=~id and gf==id. It is easy to
show that if f is close to a homeomorphism, then f must be an a-equivalence
(for a a fine open cover). Here is our main result.

a-APPROXIMATION THEOREM. Let N" be an n-manifold n>5. For every
open cover a of N there is an open cover B of N such that any B-equivalence
f:M"—>N" which is already a homeomorphism from dM to 9N is a-close to a
homeomorphism h:M—N (i.e., for each mE M, there is a U Ea containing
fim) and h(m)).

An a-approximation theorem was first proved for Q-manifolds (Q = Hilbert
cube). In [5] the second author proved that if N€ is a Q-manifold, then there is
an open cover a of N such that any a-equivalence f: M°—N@ is close to a
homeomorphism h:M—N. The proof given there involved global mapping
cylinder constructions which do not seem to have analogs in finite-dimensional
topology. By means of these mapping cylinder constructions it was shown in [5]
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584 T. A. CHAPMAN AND STEVE FERRY.

that the homeomorphism h: M—N can be chosen to depend continuously on f,
thus leading to a proof that the homeomorphism group of a compact Q-mani-
fold is an ANR. The proof we give here is a handle-by-handle approach in
which we lose the continuous dependence of h on f.

In [13] Siebenmann proved that if f:M"—>N" is a proper surjection of
n-manifolds, n > 5, which is already a homeomorphism from dM to 9N, and for
which each point inverse f ~(n) has the Borsuk shape of a point, then f can be
approximated arbitrarily closely by homeomorphisms. (Such maps f are called
CE.) It follows immediately from Lacher [10] that any CE map f: M—N is an
a-equivalence, for any a. Thus our a-Approximation Theorem generalizes the
CE approximation theorem of [13].

Our proof of the a-Approximation Theorem is similar to Siebenmann’s
proof of the CE approximation theorem. In Section 3 we formulate a handle
problem, which is solved by a torus trick. In Section 4 we use Siebenmann’s
inversion idea of [13] to solve a second handle problem. This is used in Section
5 to prove the a-Approximation Theorem by induction on handles. Of crucial
importance in the handle problems of Sections 3, 4 is the Splitting Theorem,
which is established in Section 6. The proof given there was suggested to the
authors by R. D. Edwards and L. C. Siebenmann. It is an improvement over an
earlier proof that the authors had, which was modeled on the splitting theorem
of [12]. The earlier proof used handlebody theory and was limited to dimensions
>6.

The a-Approximation Theorem will be generalized in a subsequent paper
by the second author [6]. In that paper it will be proven that the a-Approxima-
tion Theorem is true if the map f is merely assumed to be a 8-domination rather
than a B-equivalence. This, in turn, is used to show that maps between
manifolds of dimension >5 which have small point inverses are homotopic to
homeomorphisms. This verifies a conjecture of Kirby and Siebenmann [13].

As an application of the a-Approximation Theorem we establish the
following result, which gives us a way to homotopically detect locally trivial
bundles with compact n-manifold fibers. It is a finite-dimensional version of a
corresponding Q-manifold result [2].

BunpLE THEOREM (Section 7). Let p: E—B be a Hurewicz fibration such
that E and B are locally compact metric spaces, B is locally path connected and
locally finite-dimensional, and the fibers p~'(b) are compact n-manifolds, n
fixed and > 5. Define 9E= U {3p ~'(b)|b € B}, and assume that p|dE:3E—B
is a locally trivial bundle. Then p is also a locally trivial bundle.

The idea of the proof given in Section 7 is to use lifting functions to
establish complete regularity of the map p:E—B, and then apply the main
result of [7].
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We also mention that the Bundle Theorem is related to a question raised
by Raymond in [11]. He conjectured that a Hurewicz fibering of a compact
n-manifold without boundary over an ANR must be locally trivial. Husch [8]
gave an example of a Hurewicz fibering of S®X S* over S! in which all the
fibers but one are S5, the singular fiber being S3/a, where aCS3 is a
non-cellular arc. Our theorem shows that Raymond’s conjecture is true (even
without assuming the total space to be a manifold) if the fibers are assumed to
be manifolds of dimension > 5.

2. Some Preliminaries.

The purpose of this section is to introduce some more notation and
establish some results which will be needed in the sequel. All spaces will be
locally compact, separable, and metric.

If f,g: X—Y are maps and a is an open cover of Y, then we say that f is
a-homotopic to g (written f= g) if there is a homotopy F,:fo~g, t€I1=[0,1],
such that the track of each point, {F,(x)|0<t<1}, lies in some element of a.
We call F, an a-holmotopy. If h:Y—Z is a map and B is an open cover of Z,

then we write f =~ "g to indicate that f is h~'( 8)-homotopic to g, where
h~Y(B) is the open cover of Y defined by h™Y(B)={h"YU)|UERB}. If a
metric is specified for Y and € >0 is given, then we write f = g to indicate that
there is a homotopy F,: f~g such that the diameter of the track of each point is

less than €. If h: Y—Z is as above and a metric for Z is specified, then we write
h-1
Ry g to indicate that there is a homotopy F, : f~g such that the diameter of
each h({F,(x)|0<t<1}) is less than e.
Our first result is just an estimated version of the usual homotopy extension
theorem.

ProrosiTiON 2.1 (Estimated homotopy extension theorem). Let A C X be
closed, and let f,: A—Y be an a-homotopy such that f, extends to foiX?Y-
Assume that (1) both A and X are ANRs or (2) Y is an ANR. Then f, is
a-homotopic to a map f,: X—Y which extends f,. :

Proof. (1) We proceed in the usual manner. Choose an open set U in X
containing A for which there is a retraction

r:(XX{0})U(UXI)—(Xx{0}) U (AXI).

If U is close to A, then r does not move points very far. By moving point§ in the
I-direction we can construct a map g: X X I->(X X{0})U (U XI) which is the
identity on (X X{0})U(AXI). Let h:(XX{0})U(AXI)-Y be defined by
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x,0)=fy(x) and h(x,t)=Ff,(x). Then we define f,:X—Y by f,(x)= hrg(x,?).
Note that each track {f,(x)|0<t<1} is a single point for x& U. For x€ U we
may choose r and U so that the track {fj(x)J0<t<1} is close to some
{£.(x)|0<t< 1}, where x' €A. Thus f, is an a-homotopy.

(2) For the case in which Y is an ANR, let h:(X X {0})U(AXI)->Y be
defined as above, and use the fact that Y is an ANR to extend h to h:G—Y,
where G is an open set in X X I containing (X X {0})U (A XI). If the map g
above is constructed appropnately, then it will carry X X I into G. Thus we can
define f,: X— Y by f,(x)=hg(x, ). Q.ED.

If o is an open cover of X and A C X, define

St(A,a) = U {AUUIANU#Dand U Ea}.

Using this, we can inductively define open covers St*(a) of X by St%a)=a and
St"*l(a)={St(A,a)|A €St*(a)}. The symbol id will be overworked. It will
sometimes mean the identity map of a space to itself, and other times it will be
used to denote inclusion maps.

The following is a local version of the well-inown result that the notions of
weak deformation retraction and strong deformation retraction are equivalent
for ANR pairs. Our proof is a slight modification of the standard proof of this
fact (see [15, p. 31]).

Lemma 2.2. Let Y be an ANR, let ACY be closed with closed neighbor-
hood A, and let XCY be a closed ANR. For some open cover o of Y let
g:A—X be a map such that g=id (in Y) and glAnX=id (in X). If
St(A St( ) CA, then there exists a map §:A—X such that §AN X=id and

s
g t_ id relAN X (in Y). (See Figure 1.)

A = shaded region

Ficure 1.
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Proof. By Proposition 2.1 we conclude that g is a-homotopic to g, : A>X

such that gllAﬂX—ld Thus g, f(v Lid (in Y). Let F: AXI>Y be such a
homotopy, where F,=id and F,=g,. Deﬁne a homotopy

G:[(AX{0)u((AnX)XI)u(Ax{1})]xT->Y (J=[0,1])
by the equations

G((x,0),¢)=x for xEA,
G((x,s),t)=F(x,(1—1t)s) for x€ANX,
G((x,1),t)=F(gy(x),1—¢t) for xEA.

Observe that in order for the third equation to make sense we must have
g,(A)CA. This is the reason for requiring that St(A,St(a)) be contained in A,
Also note that g, og,|A=g,|A, because g,(A)CAN X.

Note that G, can be extended to F|AXI and G is a St(a)-homotopy. By
Proposition 2.1 we can extend G, to a map H:A X I—Y which is St(a)-homo-
topic to F|A X I. This implies that H is a St*(a)-homotopy. Then §=g;|A fulfills
our requirements. Q.E.D.

Let f: X—Y be a proper map, let AC Y, and let a be an open cover of Y.
We say that f is an a-equivalence over A if there exists a map g:A—X such
that

fe2id and gf|f(a) 27id

We call g an a-inverse for f over A. If h: Y—Z and a metric is specified for Z,

—1

then f is an h~'(¢)- equwalence over A if there is a g: A— X such that fg ~ 1d

and gf|f~! ( ﬁz « )1d. Note that if f: X—Y is an a-equivalence over Y, then

f must be an a-equivalence in the sense of Section 1. Also note that if f: X—>Y
is an a-equivalence, UCY is open, and ACU, then the restriction
flf {(U):f ~Y(U)>U is an a-equivalence over A provided a is chosen so that
no element of St(A,a) meets Y— U. For example, if A is closed, a can always
be chosen fine enough so that this is the case.

If f:X—Y is a proper map, then the mapping cylinder of f,M(f), is the
decomposition space (X XI)UY/~, where ~ is the minimal equivalence
relation generated by (x,1)~f(x). We represent M(f) by X X[0,1)U Y, so that
lim,_,,(x,¢)=f(x). Thus Y is naturally identified with a subset of M(f), called
the base, and we identify X with X X {0} in M(f), called the top. There is a
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natural retraction ¢: M(f)—Y defined by c|Y =id and c(x,t)=f(x). It is called
the collapse to the base. The intervals {x}X[0,1)U{ f(x)} in M(f) are called
the rays of M(f).

The following result will be needed several times in the sequel. It says that
we can sew together a-equivalences.

ProrosiTioN 2.3. Let Y be an ANR unth open cover a, and let A|,A,CY
be closed with closed neighborhoods A,,A,, respectively. Then there exists an
open cover B of Y such that if X is any ANR and f:X—Y is a proper map
which is a B-equivalence over A, and Ay, then f is an a-equivalence over
A U A,

Proof. Form the mapping cylinder, M(f), which is an ANR, and let
c:M(f)—Y denote the collapse to the base. Since f is a B-equivalence over A,
we have a map g;: A,—X such that

14, )f'l(ﬂ)

feiid and gflf id.

This gives us a map g;:c ~'(A;)—X defined by g;=g,c|c "}(A,). Certainly
c 1
gle (&) nx" 2 (@mx),
c Y B)

and we have a homotopy g; Rg id (in M(f) given by g;=g,c>~fg,c~c=~id,
where the first homotopy arises by deforming down the rays of M(f), the
second arises from fg;~~id, and the third arises by coming back up the rays of
M(f).

Using Lemma 2.2 we can choose B such that there is a closed nelghbor-
hood A of A, A,CA,, and a map g,:c~}(4,)>X such that g|c " nX—nd
and g;~~id relc " !(A;)N X, where this is a St*c ~!( B)- homotopy Let F ' ~YA)
X I->M(f) be such a homotopy for which F§=g, and Fj=id. _

Let ¢:A;UA;—1I be a map such that ¢(A)={0} and @(A,—A,)={1}.
Deﬁne hl :C - 1(Al U Az)—)M(_f) by

hy(x) = x for xEc‘l({z—Xl),
Fl(x,pc(x)) for x€c YA;N(A,UAy)).

The effect of h, is to take ¢ "}(A,) into X. Clearly h, is ¢ ~* St*( 8)-homotopic to
id relf ~}(A; U Ay). If B is chosen so that h,c ~'(A,) Cc~}(Ay), then we define
hy:c™(A,UAy)—X by

hy(x) = {hl(x) for xecY(A)),
2 Fihy(x) for xEc™Y(A,).



APPROXIMATING HOMOTOPY EQUIVALENCES BY HOMEOMORPHISMS. 589

Since F' and F? are ¢ ~'St*( 8)-homotopies, we conclude that h,, is ¢ ~*St% 8)-
homotopic to id relf "(A; U A,).

Now define g:A,UA;,—X by g=hy|A;UA,. We have fg= ch2|A1UA2,
and this is St° 8)-homotopic to id. Also gf|f~%A;UAy)=hec|f (A, UA,),
which is f 7 St% B)-homotopic to id. Q.ED.

We use R" to denote euclidean n-space and rB"=[—r,r]" CR", with
1B"=B". In the usual manner, dB" denotes the boundary of B" (also written
$"~1), and B" denotes its interior. The standard norm on R™ is given by

n 1/2
llx = yll = ( P (xi—yf)z) :
where x=(x,,...,%,) and y=(y,,...,y,). In general, if M is a topological
manifold, dM will denote its boundary. (We will not need a symbol for
topological boundary.) If A C X, then A will denote the topological interior of A
in X. If X has a specified metric and x € X, then B,(X) will denote the open
e-ball in X around x.

If f,g: X—Y are maps and A C Y, then the statement f=g over A means
that f~'(A)=g~'(A) and f|f'(A)=g|f "X(A). The statement f is a homeo-
morphism over A means that f|f ~}(A):f ~}(A)—A is a homeomorphism.

3. The Handle Lemma.

The purpose of this section is to establish the Handle Lemma, which is the
main step in the proof of the Handle Theorem of Section 4. Our proof is based
on the proof of an analogous result from [13] (see Main Lemma 2.2 of [13]), in
which all the maps are CE. Some care must be taken to avoid this restriction to
CE maps. In particular, we will need the Splitting Theorem of Section 6, but it
is not needed until steps III and IV of the proof given below, so there is no
need to burden the reader with a statement at this point.

For notation, let V" be a topological manifold, n=m+k>5, and let
f:V—>B*XR™ be a proper map such that 3V=F"'0B*XR™) and f is a
homeomorphism over (B*— B") XR™,

HaNDLE LEMMA.  For every € >0 there exists a 8 >0 so that if f is a
d-equivalence over B*xX3B™ and m > 1, then

(1) there exists an e-equivalence F:B* X R™—B* X R™ such that F=id
over (B¥— 2 B*)X R™ U B*X (R™— 4B'")

(2) there exists a homeomorphism ¢:f ~ U)—F ~Y(U) such that Fp=
fIf~(U), where U=(B*— gék)xamuBk X2B™,
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Remarks. (1) The 8 in the above statement depends only on n and .
(2) The € and § in the above statement are calculated with respect to the
standard metric on B¥X R™ (see Section 2).

Proof of the Handle Lemma. We first set up the notation necessary to
apply the now standard torus wrapping and unwrapping trick. Let S’ C R® be
the set of complex numbers of absolute value 1, and let e:R—S' be the
covering projection defined by e(x)=e™/*. The product covering projection of
R™ onto the m-torus T"=S"X -+ X S' is given by e™=eX - - - X e. Choose a
point x, € T™—e™(2B™), and let T§"=T™ — {x,}, the punctured torus. A map
is an immersion if it is locally an open embedding, and it follows from [4] that
there is an immersion i : T;*—>2.5B™. By the Schoenflies theorem we can adjust
i so that ie™|2B™:2B™—>2B™ is the identity (see [9, p. 48] for more details).
We will work our way through the following diagram of spaces and maps. The
e-equivalence F that we are looking for appears at the top of the diagram in
Figure 2.

BkxxR®"—E—> BkxR™

fT , Tf

B*XR™ ————> Bk X R™

id X e"'¢ iid X e™

h fa
B*XT™ €— W,—> BfxT"

U U
fo ]
W, —> B¥ X T™ — D"

N N

h

Wy —>  (B*XT™) — (3B X {x})

U U

fo
W,—> B:XTr

W e

f
V — B*XR™

FIGURE 2.
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L. Construction of W, W, is formed by taking the pullback,

Wo = {(x.y) € VX(B*X Tg")| f(x) = (id % i)(y) }.

Here i, and f, are restrictions of projection maps. It is easy to see that i, is an
immersion, so W is a topologlcal n-manifold. Also fo Y(dB*X Tg")=0W,, and f,
is a homeomorphism over (B*— L B*)x T,

Now write Tg"=Y,U(S™~ 1><[O o)) and let Y,=Y,uU(S™ *X[0,t]). We
arrange notation so that Y, (S™7*X [0, 0))=8""1x {0} and $™~'X {0} is
collared in Y,. Note that T™— Y, is an m-ball containing x,.

ASsSERTION.  For any 8,>0 we can choose § >0 small enough so that f is
a 8yequivalence over B¥ X Y, (where &, is calculated with respect to any
convenient choice of a metric on B* X T¢".)

Proof. By definition we have a map g: B¥ X3B™—V such that

felid and gf|f~}(B*x3B™) X id.

8
We need a map g,: B* X Y;— W, such that fog(,zoid and

g fol fo '(B* X Y. ) 0— id.

Since Y; is compact, we can choose y>0 so that id X i|B,(y) is 1-1 for each
y € B* X ;. Choose & small enough so that By((id X i)( y)) C (1d>< i)B,(y) for all
y € B* X Y;. This enables us to define g,: B¥ X Y,—W, by

gl y) = (glidxi)(y), [ (dx i)B,(y) ]~ (felid xi)(y)))-

We need to check that g, fulfills our requirements.

By definition we have f, gy(y) € B,(y), which implies that fog0 ~id for p
small. Let ¢,:f Y(B*X3B™—V be a f~Y(8)-homotopy such that @,=
gflfY(B*x3B™) and @, =id. Consider the homotopy 6,:f; (B* X Y;)—» W,
defined by

8(x.y) = (p(x). [ (dxD)IB,(y)] " (fou(x))).

Then 6, is an f;~'( p)-homotopy of g, fy| fo(B* X Y,) to id. Q.E.D.

II. Construction of W,. By adding a copy of (B*— 2B¥)X {x,} to W, we
can form a manifold W, containing W, so that f, extends to a proper map



592 T. A. CHAPMAN AND STEVE FERRY.

fi: Wy—(B* X T™)— (2 B* X {x,}) which is a homeomorphism over (B*— 2B¥)
X T™. Using Proposition 2.3, it follows that f, is a §,-equivalence over

BXX T™ —[§B*X(T"~Y,)],
for a small choice of &,
IIL. Construction of W,. Consider the open set
G =[$B*x (1"~ 1) ] ~[3B*x(T"~ Y,)],

which is a copy of $® !X R. For the moment let us identify G with S"~! X R.
Then we see that if §, is sufficiently small, f; restricts to a proper map
AlATNS* X R):f7 {(S* !X R)—>S""*X R which is a §,-equivalence over
S"1x[—2,2]. If §, is sufficiently small, then it is possible to find an (n 1)-
sphere S C f;*(S"! X (—1,1)) which is bicollared, which separates f;"*(S" !
X {—1}) from £ }(S" 1 X {1}) and for which £,|S:S—>S""'XRisa homotopy
equivalence. The existence of S follows immediately from the Splitting Theo-
rem of Section 6. Observe that we do not require the full strength of the
Splitting Theorem, for the Splitting Theorem only requires 8,-control in the

R-factor. Since we are given that fi|f;7(S""'XR) is a 81—equ1valence over
S"~1x[—2,2], we have 8,-control in both the S" ! and R-factors.

Define an n-ball by

D" =3B*x (T™-Y,),

and let W, be the closure of the component of W) — S containing f,~ (Y,). Our
map f,: W,—B¥ X T™ — D" is defined by f,= f1|We. This makes sense, because
for 8, small we must have f,(W,) C BXX T™— D",

IV. Construction of W;. Wj is constructed from W, by attaching to W,
the cone over S. W; is a compact n-manifold which is homotopy equivalent to
B*X T™. In fact, we will show that for 8, small, there is a 8;-equivalence
f3: Wy—B*X T™ which agrees with f, over (B*— SBYXT™UB*X Y, We
start by extendmg fo: WysB* X T™— D" to f3 3—->Bk X T™ so that f; takes
W, — — W, into 2B*X(T™—Y,). The remainder of this step is concerned with
showing that f3 can be modified to get our desired 8,-equivalence f,: W,—B*
X T™. The argument is straightforward but tedious. We suggest that on first
reading the reader should accept this and go on to step V.

Choose evenly spaced balls D", 0<i <5, such that Df=D", D3 = B*X
(T™—Y,), and D} cDp,. We may assume that S C f;~X( (DP—D™) andf3 W,—



APPROXIMATING HOMOTOPY EQUIVALENCES BY HOMEOMORPHISMS. 593

Wz) Cﬁl It follows from the Addendum to the Splitting Theorem that for &,
sufficiently small, _fl D”)n W, deforms into S relS, with the deformatlon
taking place in f;}(Dj,) n W,, for 1<i<4. This implies that (f;)~!

contracts to a point in (f;)~}(D/% ) for 1<i<4. To see this we just note that

(f:;)_l(Di") = (fl_l(Din)n Wz) U (Ws_ Wz)’

which is easily checked.

We know that f,: W,—>B*X T™—(3B*X{x}) is a 8,-equivalence over
B¥X T™— D" so we can choose a 8 -inverse g,:B¥x T™— D"—-)Wl Let
Z;: B*X T™— Dy—W, be defined by g,=g,|B*x T™— Dj. [ThlS is certainly
deﬁned because for 8, small we must have g,(B* X T™— D°2 YCfi {(B* X T'"

Dy), which lies in W,.] Note that for §, small we must have g,(0D3) C fiX(
N Wz, which lies in (f;)~*(D§). Since (f3)~ ) contracts to a point in
(f3)~ (D), we can extend g, to g3: B* X T'"—-)W S0 that gyD3)c(fs)!

AsserTION 1. figi~id, with a homotopy that is a &,-homotopy on
B*X T™—Dg, and on Dy it takes place in Dj.

Proof. We have f;g3=f,g; on B¥XT™— Dy, and since g, is a §,-inverse
of f,, we have

% k m °n61-
;B X T™ — Dy =id.,

If 8, is small, then the restriction of this homotopy to 0D;' takes place in Dy,
Thus f; g5|dD;'~id extends to a homotopy f;gs|Dg'~~id which takes place in
Dy, QED.

ASSERTION 2. g fy=~id, with a homotopy that is an (f3)~ l) hmnotopy
on (f3)"YB*X T™—Dp), and on (f3)~'(D}) it takes place in (f3)~'(D§)

Proof. We have g3f3 g fi on (f3)~ B"XT"‘ DM =fX BkXT"'
Dg') and thus have an f;* 81) -homotopy g5 f3| fa YB*xT™— D3 )==id. This
homotopy takes place in f;"}(B* X T™— Dy)= (fa)~ Bk XTm— Dz") so it is an
(f)~" -homotopy The restnctlon of this homotopy to ( f3) 8D") takes

place in f3 Y(DF). But (f;)~'(DJ) contracts to a pomt in (f3)”(Dg), so
g fil(fs)~ 8D3 )=~id extends to a homotopy g; f3|(f3) ~'(D¥)~id whlch takes
place in (f3)~}(D2). Q.E.D.

We note that if D were a small ball in B*X T™, then f; would be a
8,-equivalence and we would be done. To remedy this let 8: B¥ X T™—B* X T™
be a homeomorphlsm such that §(DZ) has small diameter (<8;) and which is
supported on 2B x(T™— Y,). Define f,=0f;: W;—B*XT™ and g;=
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g0 ~1: Bk X T™ > W,. We have
frga = 0(f;2)0 ™ = 6(id)8 ~* = id.
If 8, is small, then this must be a 8;-homotopy. Moreover, if 8, is small, then
8afs=g's0 ~'0f;=g'5 fi~id is an f; *(8;)-homotopy.

V. Construction of h. We want h: W,—B* X T™ to be a homeomorphism
which agrees with f; over (B*— 2 B*)X T™ and which is homotopic to f;. For
details see [13, p. 280}, where three proofs are given.

VL Construction of F’. F':B*XR™—B*XR™ is the covering of f;h ™"
which is the identity on (B¥— 2B*)x T™. Since f;h~'~id, it follows from
elementary covering-space theory that F’ is bounded, i.e.,

{IIF'(x)—x|||x€B*xR™}

is bounded above, where || || is the standard norm on R**™ (see Section 2). If
d; is small, then we can prove that F’ is an e-equivalence (just as we proved
that f; is a §,-equivalence).

VIL Construction of j. Define J: R"—4B* x4B™ to be the radial homeo-
morphism which is fixed on 2B* X2B™. Then j: B* X R™—B* X R™ is defined
by restricting J. It follows that j is an open embedding.

VIIL Construction of F. We define F: B* X R™—B* X R™ as follows:
jF'i Y (x) for x€j(B*xR™),

F(x) =
x for x&j(B*XR™).
We observe that F=id on [(B*— 3B*)x R™]U[B* X (R™—4B™)], F=F'j!
over B¥X2B™, and F is still an e-equivalence.

IX. Construction of ¢. It is easy to check that we have a commutative
diagram,
F
F~YB*x2B™) —>B*x2B™

h(id X e"‘)i_lJ/ \Lid X e™

fo
fO_ l(id X em)(Bk X 2B™) —> (id X em)(Bk X 2B™)

N L

f
fY(B*x2B™) —>B*x2B™
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The vertical arrows are homeomorphisms, and by composing the inverses of the
two on the left we get a homeomorphism

y:fY(B¥x2B™) —» F "} (B*x2B™)

which satlsﬁes F\[x flf ~4B*x2B™) (recall that ie™|2B™ =id). Note that x[/ f
over (B*— B )yX2B™. Thus ¥ extends to a homeomorphism ¢:f~!

“(U) by defining ¢=fonf}((B*—3B*)x R™). Q.E.D.

4. The Handle Theorem

We now use the Handle Lemma to prove the main result needed in the
proof of the a-Approximation Theorem. Our strategy is to use the inversion
trick of [13] to switch the roles of 0 and co in the Handle Lemma.

For notation let V" be a topological manifold, n=m+k>5, and let
f:V>B*XR™ be a proper map such that 3V=f"'(9B*xXR™) and f is a
homeomorphism over (B* — %Bk) XR™.

MaIN THEOREM. For every € >0 there exists a 8 >0 so that if f is a
8-equivalence over B* X3B™, then there exists a proper map f:V>B*XR™
such that

f is an e-equivalence over B*x25B™,
) f=f over [(B*~ 2Bk x R™]U[B*X (R™—2B™)],
) fisa homeomorphzsm over B¥ X B™.

Remark. As in the Handle Lemma, § depends only on n and e.

Proof of the Handle Theorem. We first treat the somewhat easier case
m=0. In this case V is compact and f: V"—>B" is a 8-equivalence which is a
homeomorphlsm over B"— 1 B, We want an e-equivalence f: V—B" such that
f=F over B~ 2B" and f is a homeomorphism (and therefore f will automati-
cally be an e-eqmvalence) To see this we only need to note that f *(3B") is a
contractible n-manifold bounded by an (n—1)-sphere, and therefore 1t must be
an n-ball. Clearly f|f~'(B"— 2B") extends to our desired homeomorphism f.

We now treat the cases m>1 For any 8, >0 we can choose § small
enough so that if f is a 8-equivalence over B*X3B™, then there exists a
81-equ1valence F:B*XR™—>B*XR™ and a homeomorphlsm o:f {U)>
F~YU) as described in the Handle Lemma. Consider the restriction

B* x R™— F~}(B*x {0})5113" X (R™—{0}).
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For any compactum in B* X (R™— {0}), 8, can be chosen small enough so that
F| is a 8,-equivalence over this compactum. Since F=id over a neightborhood
of 00, we can identify S™ with R™ U {0} and extend F| to F,: V,—B* x (S™—
{0}), where V, is an n-manifold. This extension can be carried out so that F, is
a homeomorphism over (B*— %ék)X(S"‘— {0}). Also F, will be a §8,-equiva-
lence over any conveniently chosen compactum in B* X (S™—{0}).

Again using the Handle Lemma, there exists (for §, small) a §,-equivalence
F,: B*x(S™—{0})—B* X(S™—{0}) such that F,=id on

[(B*—£B*)x(sm—{0})] U [ B¥x (B™~{0})],

and there exists a homeomorphism ¢,:F,"(U))—>F; }(U,) such that Fyp,=
F,|F,"Y(U,), where

0, =[(B*- 84 x (57~ (0)] 0 [ B* (57~ 7).

Note that Fop,¢ = f over

[(B*~5B%)x (R~ {0}) ] u [ B*x(2B"~3B")].

Extend F, to F,:B*X $™—B*%S™ by defining Fy|B* X {0} =id. Then F, is
still a 8,-equivalence.
Now consider the open set

G = (3B*x2B™) - ($B*xiB™),

which is homeomorphic to $”~!XR. Using the Splitting Theorem we can
construct a bicollared submanifold S of f~'(G) such that f|S:S—G is a
homotopy equivalence and S is an (n — 1)-sphere.

AsSERTION. S bounds an n-ball B in f~'(B*x2B™) which contains
fTUFB X 3B™).

Proof. (Compare with step IV in the proof of the Handle Lemma.)
Choose evenly spaced n-balls D, 0<i<2, such that Df=¢B*x $B™, Dy

=IB*x2B™, and DrcDy,,. We may assume that S Cf‘l(Dl D{). Let B
be the compact connected n-manifold in f ~(Dj) bounded by S. We will prove
that B is contractible. For & small it is clear that B contracts to a point in
fDp). By the Addendum to the Splitting Theorem there exists a retraction of
YD - B onto S. This extends to a retraction r: :f ~Y(D3)—B. Then the
composition of r with the contraction of B to a point in f~(Dy) yields a
contraction of B to a point in B. Thus B is contractible, and it must be an
n-ball. Q.ED.
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Using the Schoenflies theorem, let B’ be the n-ball in F, {(B*xX2B™)
bounded by S’=¢,@(S). Choose a homeomorphism h: B—B’ so that h|S:S—§’
is given by @,¢. We define f: V—>B*x R™ by

:_ | f on V—B,
F,h  onB.

Clearly f=f over [(B*— ZB*)X R™]U[B*X(R™~2B™)], and f is a homeo-
morphism over B¥ X B™. To see that f is an e-equlvalence over B¥X2.5B™ we
just apply Proposition 2.3. Finally we note that 7 may be replaced by £ to give
condition (2) in the statement of the Main Theorem Q.ED.

5. The Approximation Theorem

We now use the Handle Theorem to prove the main result of this paper.
The idea is to pass from the Handle Theorem to a global theorem. This requires
an examination of the process of adding on a single handle, which is carried out
in the following Lemma 5.1.

For notation let M",N" be topological manifolds, n >5 and IM=9N={,
and let f:M—N be a proper map. Let P"CN be a submanifold which is
compact, and let Q" CN be obtained from P by adding on a handle. Assume
that f is a homeomorphism over a neighborhood P of P, and let U CN be any
neighborhood of Q — P. Finally, let C CN be a compactum containing Q U U in
its interior, and let € be a compactum containing C in its interior.

LemMma 5.1, For every open cover a of N there is an open cover B such
that if the map f mentioned above is a B-equivalence over C, then there is a
proper map g: M—N such that g is a homeomorphism over Q, g=f over N— U,
and g is an a-equivalence over C.

Proof. By slight abuse of notation we may assume that B*XR™ is an
open subset of U— P such that

(B¥XR™)N P=09B*xX R™ c 9P

and such that Q=P U (B* X B™). We may also assume that (B*— 1 B*) X R™
P. The restriction

fl:fY(B¥XR™) - B*x R™

is a homeomorphism over (B*— 1 B*)x R™ and a 8-equivalence over B* X 3B™,
where 8 is small corresponding to a small choice of 8. The Handle Theorem
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gives us a proper map f:f ~!(B*¥ X R™)—B* X R™ such that

ji is an e-equivalence over B¥ X2.5B™,
) f=f over [(B*— 3 B*)x R™]U[B*X(R™—2B™)],
(3) fis a homeomorphism over B¥ X B™,

Define g: M—N by g=f over N—(B*X R™) and g=f over B X R™. By
Proposition 2.3 we conclude that g is an a-equivalence over C. QED.

The following is now a straightforward consequence of Lemma 5.1 in a
standard way.

Lemma 5.2. Let f:M"—>N" be a proper map, where IM=, n > 5, and
N is an open subset of R". Choose a compactum CCN with compact
neighborhood C. Then for every o there exists a B such that if f is a
B-equivalence over C, then there is a proper map g: M— N which is a-close to f
and which is a homeomorphism over C.

Remarks on the Proof. Choose a linear triangulation of N so fine that
each handle in the standard handle decomposition of this triangulation which
meets C must lie in (C)°. Then inductively work through the handles which
meet C by using Lemma 5.1 to deform f to a homeomorphism over C. The g
that we get must be close to f, because all of the k-handles can be taken care of
simultaneously. For more details see [13, Section 3.2]. Q.E.D.

Proof of the a-Approximation Theorem. With Lemma 5.2 we are now in a
position to complete the proof of our Approximation Theorem. For the case
ON=¢ write N= U > N, where each N, is openly embeddable in R", and
where {N,}2,isa star- fmlte cover of N. Moreover, let C, C C;C N, be compact,
so that C,c(C,)° and U2,G=N. By Lemma 52 there is a proper map
g :f {N)—N, approx1matmg fIf~Y(N,) which is a homeomorphism over C,.
By the Deformation Theorem of [3] we can glue the embeddings g;|C; together
to obtain a homeomorphism g: M—N approximating f.

If ON#(, consuier the restriction f|M—0M:M—0M—N—0N. [We may
assume that f (N —0N)=M—9dM] Let 0N X[0,1]C N be a boundary collar,
ON=0N X {0}. By a simple extension of the above case we can find a proper
map g': M — M —)N ON which approximates f|M —0M and which is a homeo-
morphism over (GN X [ )g If f is already a homeomorphism over
aN X[0,1], then

AIFH (N (3,
glf (o (3,



APPROXIMATING HOMOTOPY EQUIVALENCES BY HOMEOMORPHISMS. 599

are embeddings which are close in the majorant topology. By the Deformation
Theorem of [3] we can therefore piece together these embeddings to obtain a
homeomorphism g: M— N approximating f. For more details see [13, Section 3].

QED.

6. The Splitting Theorem

In this section we will prove the following Splitting Theorem, which was of
crucial importance in the proof of the Handle Theorem.

For notation let W" be an n-manifold, n>5 and 0W#J, and let f: W—
S""!X R be a proper map which is a p~! (€)-equivalence over $"~1X[—2,2],
where p:S" !X R—R is the projection map.

SpLITTING THEOREM. If €=¢€(n) is sufficiently small, then there is an
(n—1)-sphere S C(pf) ' (—1,1) such that f|S:S—S""'XR is a homotopy
equivalence, § is bicollared, and S separates the component of W containing
(pf)"N[—1,1]) into two components, one containing (pf)~'(—1) and the other
containing (pf)~}(1).

AppENDUM. It also follows that if C, is the closure of the component of
(pf)~Y(—1,%)— S containing (pf)~'(1), and C, is the closure of the component
of (pf)"*(—1,2)—S containing (pf)~ (1), then C, deforms into S relS, with
the deformation taking place in C,.

Our method is to find an open subset X C(pf)~'(—1,1) which is homeo-
morphic with S"~*X R. Here is a proposition, due to Siebenmann [13], which
allows us to recognize such an X.

A manifold X is said to be 1-L.C at o if for each compactum C C X there is
a compactum D C X such that C C D and every map f: S'—X — D is homotopic
to a constant map in X — C.

ProposiTiON 6.1 [13, Lemma 2.5, p. 288]. If X" is an n-manifold, n >5
and 3X =, which is homotopy equivalent to S"~' X R and 1-LC at o, then X
is homeomorphic to S" ' X R. Q.ED.

Throughout this section we will retain the notation preceding the state-
ment of the Splitting Theorem. Thus, W will denote an n-manifold, f: W—
$"~ !X R will denote a proper map which is a p~*(€)equivalence over $" !X
[—2,2], and g:S" !X [—2,2]>W will denote a p~'(e)-inverse for f. We will
be concerned with the construction of the splitting (n—1)-sphere SC
(pf)"(—11). The Addendum follows immediately from the proof of the
theorem.
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Definition 6.2. By a collection of chambers in W we will mean a
collection {U,}7.., of subsets obtained as follows. Let —1<t, <.+ <t,,;<1
be a subdivision of (—1,1), and let U;=(pf) '[t,t,,]. We will denote
(pf)~(t;) by V,. {U; Y7, is said to be nice if |, — | >3e for all i. (See Figure
3.)

We are interested in nice collections of chambers because of the next
proposition. If AC B C C C X, we say that C deforms into B relA in X if there
is a homotopy H,:C— X such that H,, is inclusion, H,(C)C B, and H,(a)=a for
alla€A and 0<t< 1.

ProposiTION 6.3. If {U,}7, is a nice collection of chambers in W, then

(i) there is a deformation of U,U U, into U, relV,, with the deforma-
tion taking place in U;U U, U U,

(i) there is a deformation of U,,,UU,,, into U1+2 relV, 5, with the
deformation taking place in U;U U,;,,U U,

Proof. We will only construct the deformatlon of (1) The deformation of
(ii) is entirely similar. Let g=2t+1t,, and b=34+3 2t .1 Also let

(pf) [—2,2]1-W be a (pf)~! )homotopy from the mcluswn map to
f| pf)~'[—2,2]. Define a homotopy s,: S ™' X[~2,2]—>8""' X[—2,2] by

s(x,u) = (x,(1—t)u+tbh,).

Puttmg all of this together, we then define a homotopy h, of (pf) by, t; 4] into
(Pf)~ (@ t;45]) by
Hy,(x for 0<t<%,
o) = | <<t
gso_1 f(x) for <t<L

w § U Uy Unn g

pf

N 2 '3 tm {1 o tee

FiGURE 3.
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h, is a homotopy from the inclusion to gs, f such that

1 ) g1 f(pf) _1[ tiv2] C( Pf)—l[avtiﬂ]’
hy|(pf)~!(by) is a (pf) ™ (€)-homotopy.

By Lemma 2.1 we can extend the homotopy h,|(pf) ™" b) to a homotopy
pf) 14,b]—(pf) " '[t;, t;41] such that h;=id on (pf) " '[t.,a] and h,=h, on
pf !(b,). Piecing h; and h, together, we get our des1red deformation of
(P)™ 't ti1o] into (pf) ™'t ti4)- QED.

Here is a crucial result which is the key ingredient in the proof of our
Splitting Theorem.

PROPOSITION 6.4 [14, Sections 2, 3].  There exists an integer N= N(n) such
that if {U;}7, is a nice collection of chambers in W and k is an integer,
2N+k<m, then there is an isotopy h,: W—W, supported on U;U--- U
Un + 1 Such that hy=id and hy,(U,U --- U Uy)D U,U - - U Uy 41

Remarks on the Proof. 1In case W is a PL n-manifold, the desired isotopy
is constructed by engulfing a skeleton from the left and a dual skeleton from the
right (as in Stallings [16]). The strategy in [14] is to carry out a topological
version of this idea.

We now use Proposition 6.4 to prove the next result, which will be used to
produce our open subset of (pf)~(—1,1) which is homeomorphic to $"~* X R.

PROPOSITION 6.5. There exists an integer N=N(n) such that if {U}3~, is a
nice collection of chambers in W, then there is a homeomorphism h: W—W,
supported on U U - - - U Ugy, such that

@ VU UUpnCh(Uu---UUyCUU- - UUgps
(i) UU--UUsyChXUyu--- UUy)CUU- - UUsy
(iii) UyU--+ UUyCh¥Uu--- UUy)CUU--- UUgy.

Proof. By Proposition 6.4 there is an integer N such that there are
homeomorphisms h, hy, hy: W— W satisfying

(1) hyg is supported on U U -+ U Uy and hy(U,U - -+ U Uy)D U, U
U Usns

(2) hy is supported on Upy, U -+ U Ugy and hy(Usyy U -+ U Usy)D
Uon+1U " U Usy,

(3) hy is supported on Uy, U -+ U Ugy and hy(Upy4 U -+ U Usy)D
Uve1U - U Uy
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(See Figure 4.) Define h to be the homeomorphism h = hyh,h,. Since h, and h,
have disjoint supports, they commute, and one easily verifies that

h(UyU -+ UUy) = ho(UyU -+ U Uy),
h*(UyU -+ U Uy) = hiho(UU -+ - U Uy),
R} (U U -+ U Uy) = hohiho(U,U - -+ U Uy).

The desired properties follow immediately. QED.

Definition 6.6. We are now ready to define our open subset of W which
will be homeomorphic to $* !X R. Let

Y=h(Uu---UlUy)—(U,u--- Uy,

o0
X= U hi(Y),
1= — 00

where h is the homoemorphism of Proposition 6.5, and h* means the composi-
tion of h with itself i times, for i >0, and for i <0, hi=(h %)~ . To finish the
proof of the Splitting Theorem all we have to do is prove that X is open, X is
1-LC at o0, and f|X:X—S" !X R is a homotopy equivalence, for then X will
be homeomorphic to $”~* X R by Propositon 6.1 and therefore X will contain a
splitting (n — 1)-sphere S.

ProrposiTiON 6.7. X is an open subset of W.

Proof. It certainly suffices to prove that Y U h(Y) contains h(Vy, ) in its
interior. Using properties (i) and (ii) of Proposition 6.5 it is easy to argue that
h(Vy4,) lies in Usy, U+ UU,y and Upy, U -+ - U Usy lies in YU A(Y).
Thus (Upy 4, U -+ + U Usy)° is an open set in Y U h(Y) containing h(Vy,.,). (See
Figure 5.) Q.E.D.

The following deformation result enables us to prove that X is 1-LC at o
and f]X:X—S" !X R is a homotopy equivalence.

ho

} Al
Vl v V2N+'I VBNH V4N+l V5N+| V6N+l V7N'1 VBNH

hq

L |

Ficure 4.
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\ V V.,

1 N+1 2N+1

\

3N+1

VY v V. v

SN+1 6N+1 IN+1 8N+1

M
AN

t 1

4
Y = shaded region
g h(VN” ) h2(VN+1) h3(V

)

N+1

Ficure 5.

ProrposiTiON 6.8. With Y as above,

(i) there is a deformation of Y U h(Y) into Y rel Vy,,, with a deforma-
tion that takes place in Y Uh(Y)U h%(Y);

(ii) there is a deformation of h(Y)U h*(Y) into h*(Y) relh3(Vy..,), with a
deformation that takes place in Y Uh(Y)U h¥(Y).

Proof. We refer the reader again to Figure 5. Using Proposition 6.5, one
readily verifies the following four properties of h:

(1) YUR(Y)C Uy U~ U Usy,

(@) YUh(Y)Uh¥Y)D Uy, U - U Uy,

B) h*(Y)D UgysqU-+ U Uy,

@ [R(Y)URA(Y)IN(U U - UUszy) CUgyy U+ U Uy,

By Proposition 6.3 (i) there is a deformation of Uy, ,U ‘- - U gy into Uy,
rel Vy , ,, with a deformation which takes place in Uy, ,U "+ U gy, Proper-
ties (1) and (2) imply that the restriction of such a deformation to Y U h(Y)
suffices to establish (i). Similarly, one uses Properties (2), (3), and (4) and
Proposition 6.3 (ii) to establish (ii). Q.ED.

ProposiTION 6.9. X is 1-LC at o, and f|X:X—S""!XR is a homotopy
equivalence.

Proof. 'We will first prove that f|X is a homotopy equivalence. Recall the
map g:S" "' X[—2,2]—>W. We will use it to prove that X is simply connected.
If a: S'>X is a map, then repeated use of Proposition 6.8 allows us to homotop
o to a map @:S'>U,y, ;. @ is easily seen to be homotopic in Uy U Uy, U
Usjnv+o to a constant map. To see this we first use the homotopy from
gf|(pf)~'[—2,2] to the inclusion to homotop & to gf&, and the fact that S* ' is
simply connected allows us to homotop f&@ to a constant map. Then gfa is
homotopic to a constant map. The (pf) '(e)-control on the homotopy
gfl(pf)~'[—2,2] shows that this homotopy of & to a constant map takes place
in UyyU Ugy41U Ugy o
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It now suffices to show that f induces isomorphisms on homology groups.
This is roughly the same as the argument on m,. Choose tER so that
g(S" ' X {t})C Uyyy,- Then g|S" " X {#}:S" !X (t}>X is a map for which
fg|S" !X {t}~id. Thus f induces surjections on homology. On the other hand,
Proposition 6.8 implies thaat the inclusion induced map i, : Hy(h(Y ))—>Hy(X)
is onto. Just as in the =, argument above, isa=g«(f|h(Y))sxa for each
a € Hy(h(Y)). Thus f, is 1-1, and we are done.

To prove that X is 1-L.C at oo it suffices to show that the inclusion-induced
maps

o Own)) > O win)

i=2 i=1

o0 w) om0t

i=—o00
are zero. This is done exactly as in the 7, argument given above. Q.ED.

Proof of the Splitting Theorem (conclusion). If W satisfies the hypotheses
of the Splitting Theorem, choose €(n) sma]l enough so that there is a nice
collection of chambers {U;}%Y, in (pf)"'(—1,1), and construct X as above. By
Proposition 6.1 there is a homeomorphlsm k:S""1x R—)X Then S=k(S" !X
{0}) is our bico]lared (n—1)-sphere in (pf)~'(—1,1) which separates

(pf)~*(—1) from (pf) (1) by construction. QED.

Finally we remark that in dimensions > 6 one can prove a much stronger
theorem.

Tueorem 6.10. Let W™ be a CAT manifold (CAT= TOP, PL, or Diff),
n>6, and IW=., and let f: W—K X R be a proper map, where K is a finite
simplicial complex. Moreover, assume that f is a p~'(¢)-equivalence over
K X[—2,2], where p: K X R—R is the projection map. If € = €(n) is sufficiently
small, then there is a well-defined obstruction in the projective class group
KoZ[m,(K)], which vanishes iff there is a codimension 1, bicollared, compact,
CAT submanifold S of (pf)~Y(—1,1) such that S separates (pf)~'(—1) from

(pf)" ') and f|Sis a homotopy equivalence.

Remarks on Proof. The idea is to proceed as above to construct an open
set X C(pf)~*(—1,1) such that X is proper homotopy equivalent to K X R. The
desired obstruction in K,Z[7,(K)] is then Siebenmann’s obstruction to putting
a boundary on X [12]. The obstruction is well defined, since Siebenmann’s
obstruction is well defined, and different choices of X can be forced to overlap.

QED.
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7. Proof of the Bundle Theorem

Before giving the proof of the Bundle Theorem we will need to introduce
some more terminology and preliminary results. Recall from [7] that a proper
surjection p: E—B of spaces is completely regular if for each byEB and € >0,
there is a § >0 such that d(by,b) <8 implies that there is a homeomorphism
h:p~'(b)>p~'(b,) such that d(h,id)<e. We will need the following result
from [7]. ’

Proposition 7.1. Let p:E—B be completely regular. If B is locally
finite-dimensional, and the homeomorphism group of each point-inverse is
locally contractible, then p: E—B is a locally trivial bundle.

Recall from [1] that a proper surjection p:E—B is strongly regular if for
each by € B and €>0, there is a § >0 so that d(b,,b) <8 implies that there are
€-maps

and e-homotopies

fe=id,  gf<id.

(The given homotopies must take place in their respective point inverses.) We
will need the following result from [1].

ProposiTioN 7.2. Let p:E—B be a Hurewicz fibration such that p is
proper and surjective, and B is locally path connected. Then p is strongly
regular.

Proof of the Bundle Theorem. We are given a Hurewicz fibration p: E-B
such that B is locally finie-dimensional and locally path connected, and each
fiber p~'(b) is a compact n-manifold. Moreover, p|9E : 9dE—B is a locally trivial
bundle map. Without loss of generality we may assume that p is a surjection,
and it is easy to argue that p is proper. To show that p: E—B is a locally trivial
bundle it suffices, by Proposition 7.1, to show that p is completely regular.
(Recall from [3] that the homeomorphism group of any compact n-manifold is
locally contractible.)

Choose any b, € B. By Proposition 7.2 it follows that if b is close to by,
then there are small maps

p~'(b)=2p~(bo)

|~
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and small homotopies 6, : fg=~id, ¢,:gf=~id. Since f is a small map, fo,:p ~'(b)
—p~(by) is a small homotopy. All this implies that if € >0 is given, then there
is a 8 >0 such that d(b,, b) <8 implies that there is an e-equivalence f:p ~*(b)—
p~!(by) for which d( f(x),x) <e.

Since p|dE:dE—B is a locally trivial bundle, we may assume that the 8
chosen above is small enough so that d(by,b)<8 implies that there is a
homeomorphism h : 3p ~(b)—dp ~(b,) for which d(h,id) <e. Now

flap=X(b):9p =Y (b) — p~(by),
h:3p~}(b) > p~*(by)

are maps into p ~!(b,) which are within 2€ of each other. Thus there is a small
homotopy f|dp ~'(b)=<h. By Proposition 2.1 we can therefore adjust f slightly
to get f':p~(b)—p ~!(b,) which agrees with h on p ~*(b). Since f is close to f,
f’ must be a small equivalence, so that by the a-Approximation Theorem there
is a small homeomorphism of p~'(b)—p~'(b,). This establishes complete
regularity. QE.D.
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