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TOPOLOGICAL INVARIANCE OF WHITEHEAD
TORSION.

By T. A. CHAPMAN.*

1. Introduction. In this paper we use infinite-dimensional topology to
prove that Whitehead torsion is a topological invariant for compact connected
CW-complexes. This answers affirmatively a question raised by Whitehead in
[12]. Our techniques are motivated by the work of Kirby-Siebenmann (7],
where handle straightening was used to prove the invariance of torsion for
compact connected PL manifolds. This type of approach very strongly uses the
fact that PL manifolds have nice neighborhoods of each point, a property which
is not generally satisfied for CW-complexes.

Our proof of torsion invariance uses some recent results concerning Hilbert
cube manifolds (or Q-manifolds), where a Q-manifold is a separable metric
manifold modeled on the Hilbert cube Q. The first key idea involved in the
proof is the following result of West [10]: If X is any compact CW-complex,
then X X Q is a Q-manifold. This has the effect of converting a CW-complex
into a space which has nice neighborhoods of each point. Indeed any point in a
Q-manifold lies in an open set which is homeomorphic to Q X[0,1) [2].

The second key idea in the proof is an infinite-dimensional version of the
finite-dimensional handle straightening idea which was used in [7]. This infinite-
dimensional handle straightening technique is the main result of [4] and is
summarized in Section 2 of this paper. Combining these ideas we obtain the
following characterization of simple homotopy equivalences in terms of
homeomorphisms of Q-manifolds. We remark that the “only if” part of this
characterization is essentially Corollary 3 of [10] (see our Lemma 2.2).

MaIN THEOREM. Let X and Y be compact connected CW-complexes and
let f: X—Y be a map (i.e. a continuous function). Then f is a simple homotopy
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equivalence if and only if the map

xx 0 yx0

is homotopic to a homeomorphism of X X Q onto Y X Q.

We now obtain invariance of torsion as a straightforward consequence of
the Main Theorem.

TueoREM 1 (Invariance of torsion). Any homeomorphism between com-
pact connected CW-complexes is a simple homotopy equivalence.

We can also use the Main Theorem to characterize simple homotopy types
in terms of homeomorphisms of Q-manifolds.

Tueorem 2. If X and Y are compact connected CW-complexes, then X
and Y have the same simple homotopy type if and only if X X Q=Y X Q (i.e.
X X Q is homeomorphic to Y X Q).

A topological space X is said to be a Q-manifold factor provided that
XXQ is a Q-manifold. In particular X could be an n-manifold, or more
generally any space which is locally a CW-complex (by the aforementioned
result of West). In [5] it was shown that every compact Q-manifold Y can be
triangulated, i.e. Y=|K|X Q, for some finite simplicial complex K. Using this
result and Theorem 2 it follows that each compact connected Q-manifold factor
can be given a well-defined simple homotopy type. In [7] a method was given
for assigning to each compact connected n-manifold a well-defined simple
homotopy type; namely the type of any of its normal disc bundles triangulated
as a PL manifold.

TueoREM 3.  Each compact connected Q-manifold factor X can be given
a well-defined simple homotopy type; namely the type of any simplicial
complex K for which XX Q=|K|XQ. In case X is an n-manifold, this
assignment agrees with a triangulation of its normal disc bundle.

In connection with Theorem 3 it should be remarked that the following
question is open [1]: Is every compact ANR (metric) a Q-manifold factor?

In [1] the following question was raised: If X and Y are compact Q-
manifolds of the same homotopy type, then are X and Y homeomorphic? We
can easily use Theorem 2 to answer this question negatively. We remark that by
using different techniques Philip Martens has also claimed a negative answer to
this question.

THEOREM 4. There exist compact Q-manifolds of the same homotopy
type which are not homeomorphic.
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In Section 2 we give a brief summary of all the infinite-dimensional results
which we will need. Thus no prior experience with infinite-dimensional to-
pology is necessary in order to read this paper. In Section 3 we summarize the
results on Whitehead torsion which we will need, but for the most part we
assume familiarity with the standard results in this area (see [8] and [12]). The
proof of the Main Theorem is by induction and in Section 4 we prove the
inductive step. In Section 5 we prove the Main Theorem and finally in Section
6 we prove Theorems 14.

2. Infinite-Dimensional Preliminaries. We use the notation Q=II{2,I,
where each I, is the closed interval [—1,1]. Let 0=(0,0,...)€Q and for any
integer k>0 let

Qe=LXL X .

R" denotes Euclidean n-space, B, denotes the standard n-ball of radius r, S"~!
denotes the boundary of B, and Int(B")=B"\S" .. In general Bd(A) and
Int(A) denote the topological boundary and interior, respectively, of a subset A
of a space X.

Let M be a PL manifold (i.e., a finite-dimensional manifold equipped with
a PL structure). A handle in M X Q is an open embedding h: R" X Q—M X Q.
We say that a handle h:R" X Q—M X Q can be straightened provided that
there exists a homeomorphism f:Bg' X Q—By'X Q, an integer k>0, and a
compact PL submanifold N of M X I* such that

1. f|Sg~ X Q=1id (the identity),

2. hf(BF X Q)= N X Oy
3. BA(N) is a PL submanifold of M X I* which is PL bicollared.*

The following is the main result of [4].

Lemma 2.1. (Handle straightening theorem). If h:R"XQ—->M X Q is a
handle, for n > 2, then h can be straightened.

The case n=1 can also be done using the techniques of [4], but we won’t
need it here. We remark that the proof of Lemma 2.1 requires infinite-
dimensional surgery and an infinite-dimensional version of the torus
homeomorphism technique involved in handle straightening in finite-
dimensional manifolds.

*Bd(N) is PL bicollared means that there exists a PL open embedding a:Bd(N)X(—1,1)
—M X I* which satisfies a(n,0)=n, for all n €Bd(N).
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We will also need the following result which is essentially due to West
[10]. This result is not explicitly given in [10], but a simple modification of the
proof of Corollary 3 of that paper easily gives it (see [4], Lemma 4.1, for details
of the simplicial case).

Lemma 2.2. If X and Y are compact connected CW-complexes and
f:X—>Y is a simple homotopy equivalence, then fXid:XXQ—YXQ is
homotopic to a homeomorphism of X X Q onto Y X Q.

In the proof of Theorem 3 we will need the following bundle-trivialization
result.

Lemma 2.3. If §é=(E,p,B) is a locally-trivial bundle with paracompact
base space B and fiber F= Q, then £ is trivial.

Proof. In [3] it was shown that if £ =(E’,p’,B’) is any locally-trivial
bundle with paracompact base space B’ and fiber F’=1, (separable infinite-
dimensional Hilbert space), then £ is trivial. The same proof goes through if we
replace I, by Q.

3. Torsion preliminaries. If X and Y are compact connected CW-
complexes* and f:X—Y is a cellular homotopy equivalence, then the
Whitehead torsion 7(f) is defined as an element of the Whitehead group
Wh(7,(Y)). Some of the more well-known properties of torsion which we will
need are listed below. We refer the reader to [8] and [12] for details. For (1),
(2), and (3) let X, Y, and Z be CW-complexes.

1. If f:X—>Y is any cellular homotopy equivalence, then 7(f)=0 if and
only if f is a simple homotopy equivalence (in the geometric sense).

2. If f,g: X—Y are homotopic cellular homotopy equivalences, then 7( f)
=7(g)-

3. If f: X—>Y and g: Y—Z are cellular homotopy equivalences, then

T(gf)=r(g)+ger(f),

where g, : Wh(7,(Y))—>Wh(m,(Z)) is the isomorphism induced by g.

Since any map between CW-complexes is homotopic to a cellular map, it
follows from (2) that we can define 7(f) for any homotopy equivalence
f:X>Y. ,

We will need a sum theorem for simple homotopy equivalences.

*In the sequel all of our spaces will be compact and connected (with the possibility of obvious
exceptions).
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LemMma 3.1. Let X,Y be CW-complexes which are the union of subcom-
plexes X=X,U X, and Y=Y,U Y,. Assume that Xo=X N X, and Yo=Y N Y,
are connected and let f: X—Y be a cellular map such that f;=f|X;:X,—>Y, isa
simple homotopy equivalence, for i=0,1,2. Then f is also a simple homotopy
equivalence.

Proof. In [6] it was shown that
7(f)=(i)a7(f1) + (i) 7 (f2) = (io)x 7 (fo):

where j;: Y;C Y is inclusion, for i=0,1,2. Since each 7(f)=0 it follows that
7(f)=0.

We will also need the following result which can be found on page 51 of
[12].

Lemma 3.2. If X is any CW-complex, then X has the simple homotopy
type of a simplicial complex.

Finally we will need the following result of Stallings [9].
LemMma 3.3. Wh(Z+Z+ -+ +Z)=0, where * denotes free product.

4. The Inductive Step. Our proof of the Main Theorem is by induction
on the n-skeleta of one of the given CW-complexes. The inductive step is given
in Lemma 4.2 below. For convenience we use the term PL space for a
topological space equipped with a PL structure. We also use f=g to indicate
that maps f and g are homotopic.

For spaces X and Y let f: X X Q—Y X Q be a homeomorphism. For any
integer k >0 we use f;: X—Y X I* to denote the composition

X0 f P
X—>XXQ—>YXQ—>YXI*
where Y X [°=Y, X0 is defined by X0 (x)=(x,0), and p, is just projection. A
PL space X is said to have Property P provided that for any PL space Y and

homeomorphism f:X X Q—Y X Q, 7(f,)=0. If p: Y XI*-Y denotes projec-
tion, then 7(p)=0 and f,= pf;. Since

7(fo) =7(p)+ Pe7(fi),

it follows that 7(f,)=0 if and only if 7(f;)=0, for any fixed k>0.
Our first result establishes the invariance of Property P.
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Lemma 4.1.  Let X, and X, be PL spaces such that X, X Q= X, X Q. If X,
has Property P, then X, also has Property P.

Proof. Let Y be a PL space and let f:X,XQ—>YXQ be a
homeomorphism. We want to show that 7(f;)=0. Let g:X; X Q—X,X Q be
the given homeomorphism. We have the following diagrams.

g f
X;XQ —> XoXQ — YXQ
T 1 d
X — X, —> Y
&o fo
fe
X\ XQ —™ YXQ
T d
X, —> Y,
(fe)o

where the vertical arrows are either X0 or projection. It is easy to check that
(f8)o=fo g Since X, has Property P it follows that 7(( fg),) =0, hence 7(f, g,
=0. Once more using the fact that X, has Property P it follows that 7( gy)=0. It
then follows from the formula

7(fog0) =7(fo) + (fo)»7( o)
that 7( f,)=0.

We now turn our attention to the inductive step in the proof of the Main
Theorem. First we make some remarks to simplify the proof. Let X be a PL
space and assume that given any PL manifold M and homeomorphism f:X X
Q—-M X Q, fy: X—>M satisties 7(f;)=0. It then follows that X has Property P.
To see this let Y be a PL space and let g: X X Q— Y X Q be a homeomorphism.
It is clear that there exists a PL. manifold M and a simple homotopy equivalence
a:Y—M. [Just take a PL. embedding of Y into some Euclidean space and let M
be a regular neighborhood of the image.] Using Lemma 2.2 there exists a
homeomorphism B:Y X Q—M X Q such that B=aXxid. Thus Bg:X X
Q—>M X Q is a homeomorphism. By our assumption it follows that
(Bg)o: X—>M satisfies 7((8g)y)=0, “and since (Bg)o=Byg, it follows that
7(Bygo)=0. We chose B so that B=a Xid, thus B,=a. This implies that
7(By) =0, and as '

7(Bogo) =7(Bo) +(Bo)x(20)
it follows that 7( g,)=0.
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Lemma 4.2. Let X be a PL space and let h:R"—X be a PL open
embedding, for n>2. If X,=X\h(Int(B})) has Property P, then X also has
Property P.

Proof. Let M be a PL manifold and let f:XXQ—->MXQ be a
homeomorphism. We will show that 7(f;)=0, and by the above remarks it will
then follow that X has Property P.

Using Lemma 2.1 we can find an integer k>0, a PL submanifold N of
M X I*, and a homeomorphism g: X X Q—M X Q such that

1. g|(X\h(B3))xX Q= f| (X\h(B3)) X Q,
2. g(h(By)X Q)=NX Q1
3. Bd(N) is a PL submanifold of M X I* which is PL bicollared.

Note that g=f. Thus g; = f, and 7(g,)=0 if and only if 7(f;) =0. Therefore all
we need to do is prove that 7(g,)=0.

Using the fact that Bd(N) is PL bicollared it easily follows that there exists
a PL map g’: X—M X I* such that

L g=g,

2. g'(Xy) C My=(M X I*)\Int(N) and g'|X,= g|Xo(in M),

3. g’h(B}')CN and g'|h(Bf)=g|h(By) (in N),

4. g’h(SP~YCcBd(N) and g'|h(SP ™) =glh(S{~") (in BA(N)).

Since X, has Property P it follows that the map g|X,:X,—M, satisfies
7(g/Xo)=0. By Lemma 3.3 we have Wh(7,(S]))=0 and for any n>>2 we have
Wh (7,(SF71))=0. Thus the map glh(S]™!):h(S{™")>Bd(N) satisfies
7(g|h(Sp~1))=0. Since h(B]) is contractible it follows that the map
g|h(B}):h(Bf)—N also satisfies 7(g|h(B]'))=0. Using (2), (3), and (4) above
and Lemma 3.1 it follows that 7(g’)=0. Then by (1) above we have 7(g)=0.

5. Proof of the Main Theorem. We have already observed that the “only
if” part (which is stated in Lemma 2.2) is due to West. For the proof of the
other half we will first consider the PL case. Thus let X and Y be PL spaces and
let f:X—Y be a map such that fXid:XXQ—YXQ is homotopic to a
homeomorphism g:X X Q—Y X Q. We must prove that 7(f)=0. Since f=g,
all we need to do is prove that 7(g,)=0. In the language of Section 4 this
entails proving that X has Property P. For this we will regard X as |K|, the
underlying space of a simplicial complex K. Let n=dim|K| and let K; denote
the i-skeleton of K. We will inductively prove that each |K,| has Property P.
This will fulfill our requirements.
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For i=1 note that ,(|K,|) is a free product Z+Zx - - - +Z (as |K,| has the
homotopy type of a finite bouquet of 1-spheres). It follows from Lemma 3.3
that Wh(7,(|K,|))=0. Thus |K,| has Property P.

Now assume that |K;| has Property P, for some i satisfying 1< i<n. We
want to prove that |K;,,| has Property P. Let {0,}].; be the collection of
(i+1)-simplices of K, , ;. Then let A be the union of all closed simplices of K", ,
which meet |K;| (where K/, is the second barycentric subdivision of K, ;).
Note that A and |K;| have the same simple homotopy type. Thus Lemma 2.2
implies that A X Q=|K;| X Q, and by Lemma 4.1 it follows that A has Property
P. For each j, 1< j<r, let o/ be the closure of 6,\A. Then we can apply
Lemma 4.2 to inductively add the cells o/ to A to conclude that AU (Uj.,9;)
=|K,, | has Property P. This completes the inductive step and therefore the
proof of the PL case.

Now assume that X and Y are CW-complexes and let f: X X Q—Y X Q be
a homeomorphism. We must prove that 7(f,)=0. It follows from Lemma 3.2
that there exist PL spaces X,,Y; and simple homotopy equivalences
a:X;—>X,B:Y-Y,. Using Lemma 2.2 it follows that a X id: X; X Q—X X Q is
homotopic to a homeomorphism a: X; X Q—X X Q and 8 Xid: Y X Q—>Y, X Q
is homotopic to a homeomorphism B’: Y X Q— Y, X Q. We have the diagrams

xle;/M(XQ ! YxQ d Y, xQ
I |1 L1 !
X, —> X Y Y,
(o fo (8%
Bfa’

X, XQ———>Y, XQ

|

X, ————> Y
! (B'fa)o !

We have just shown that 7((8'fa’),)=0. But (B'fa")g=(B"), fola o= Bfoer.
Since 7(a)=0 and 7(8)=0 we can use the formula

T(Bfo"‘)=7(:8)+ﬁ*"'(fo)+ﬁ*(fo)*”(“)
to conclude that 7( f;)=0.

6. Proofs of Theorems 1-4. We have already observed that Theorem 1 is
an immediate corollary of the Main Theorem. The “only if” part of Theorem 2
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is a consequence of West’s theorem. For the other half we note that if
f: XX Q—Y X Q is a homeomorphism, then we have shown that 7( f;) =0. Thus
X and Y have the same simple homotopy type.

For the proof of Theorem 3 let M be a finite-dimensional manifold and let
E be the total space of a triangulated normal disc bundle of M. Then
Kirby-Siebenmann assign to M the simple homotopy type of E. Note that
M X Q is a Q-manifold, and by the triangulation result of [5] it follows that
M X Q=X XQ, for some PL space X. In Section 1 we assigned to M the simple
homotopy type of X. We must prove that E and X have the same simple
homotopy type. We are given a bundle projection p: E—>M so that {=(E,p,M)
is a locally-trivial bundle with fiber F= B[, for some n>0. Consider now the
associated bundle £*=(E X Q,p*, M), where p*:EXQ—M is defined by
p*(e,q)=p(e). Then £* is a locally-trivial bundle with fiber B! X Q=0Q. It
follows from Lemma 2.3 that £* is trivial. Thus EXQ=M X Q, and by
Theorem 2 it follows that E and X have the same simple homotopy type.

For the proof of Theorem 4 let X and Y be PL spaces which have the same
homotopy type but not the same simple homotopy type [11]. Then Theorem 2
implies that X X Q and Y X Q are nonhomeomorphic Q-manifolds of the same
homotopy type.
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