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Abstract

We study the group of rational concordance classes of codimension two
knots in rational homology spheres. We give a full calculation of its algebraic
theory by developing a complete set of new invariants. For computation, we
relate these invariants with limiting behaviour of the Artin reciprocity over
an infinite tower of number fields and analyze it using tools from algebraic
number theory. In higher dimensions it classifies the rational concordance
group of knots whose ambient space satisfies a certain cobordism theoretic
condition. In particular, we construct infinitely many torsion elements. We
show that the structure of the rational concordance group is much more
complicated than the integral concordance group from a topological view-
point. We also investigate the structure peculiar to knots in rational homol-
ogy 3-spheres. To obtain further nontrivial obstructions in this dimension,
we develop a technique of controlling a certain limit of the von Neumann
L2-signature invariants.
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CHAPTER 1

Introduction

In this paper we study a classification problem of knots in rational ho-
mology spheres. More precisely, a closed manifold with the rational homol-
ogy of the sphere of the same dimension is called a rational sphere, and a
codimension two locally flat sphere embedded in a rational sphere is called
a rational knot. Two rational knots K and K ′ with the same dimension are
said to be (rationally) concordant if there is a rational homology cobordism
between their ambient spaces which contains a locally flat annulus bounded
by K ∪ −K ′. Under connected sum, concordance classes of n-dimensional
rational knots form an abelian group which we call the rational knot con-
cordance group and denote by Cn. Our main aim is to study the structure
of Cn.

There are some interesting motivations of our research. We list a few of
them below. First, rational knot concordance has a close relationship with
concordance of links in the ordinary sphere. While there is a known frame-
work of the study of link concordance (e.g., see Cappell–Shaneson [3] and Le
Dimet [30]), it still remains far more elusive than knot concordance because
of a lack of our understanding of related homotopy theoretical and surgery
theoretical problems. In the remarkable work of Cochran and Orr [10, 12],
it was first proposed that problems on link concordance can be transformed
into ones on rational knot concordance. Based on this idea they proved the
long-standing conjecture that not all links are concordant to boundary links.
For some further developments and applications, see subsequent work of Ko
and the author [7, 8].

Since these successful applications, more systematic study of rational
concordance has been called on. Note that rational knot concordance is a
natural generalization of ordinary concordance of knots in the sphere which
has a deep and rich theory. For results on ordinary knot concordance par-
ticularly related to this paper, see Levine [33, 32], Kervaire [26], Cappell–
Shaneson [3], Casson–Gordon [5, 6], and Cochran–Orr–Teichner [13, 14].
Regarding this, it is natural to ask whether one can establish an analo-
gous theory for rational knots. The only result which has been known is
that the knot signature function [45, 38, 44, 37, 33] extends to rational
knots [12, 7]. Indeed all the known applications to link concordance depend
on this signature invariant.
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2 1. INTRODUCTION

We also remark that Cochran and Orr pointed out in an unpublished
note that rational concordance is closely related with the rational homology
surgery theory developed by Quinn [39] and Taylor and Williams [43]. From
this viewpoint, rational concordance can be regarded as a particular instance
of rational homology surgery which provides computational techniques and
examples.

In this paper we perform through analysis of the structure of the rational
knot concordance group Cn. As one of the results, we give a full calculation
of its algebraic theory by constructing new algebraic invariants and com-
puting them. In particular, we discover infinitely many independent finite
order elements in Cn for odd n > 1. Compared with the ordinary knot con-
cordance group from a topological viewpoint, it turns out that the rational
knot concordance group has a very different structure. We also investigate
the structure peculiar to knots in rational 3-spheres. In this dimension we
develop a computational technique of further obstructions to rational con-
cordance using the von Neumann ρ-invariants.

In this paper we work in the category of oriented piecewise linear man-
ifolds. Submanifolds are always assumed to be locally flat. Our results
also hold in the categories of smooth and topological manifolds with minor
modifications if necessary.

1.1. Integral and rational knot concordance

We begin by recalling known results on the group of concordance classes
of codimension two knots in Sn+2, which we call the integral knot concor-
dance group and denote by CZ

n . In higher dimensions, CZ
n is classified using

abelian invariants of knots which can be extracted using several different
techniques. For n > 1, Kervaire [26] and Levine [33, 32] first computed
the structure of CZ

n using Seifert surfaces and Seifert matrices. Cappell
and Shaneson applied their homology surgery theory to identify CZ

n with
a surgery obstruction Γ-group [3]. In [23, 24], Kearton showed that the
same classification can be obtained using the Blanchfield form [1] for odd
n > 1. We remark that CZ

n is isomorphic to the set of integral homology
concordance classes of knots in integral homology spheres for n > 1. This
justifies our terminology “integral (homology) concordance”.

By work of Cochran, Orr, Ko, and the author [12, 7, 8], a framework
of the rational concordance theory has been initiated. Its basic strategy
is similar to the above integral theory, but, it involves more sophisticated
topological and algebraic constructions that produce objects whose struc-
tures have not been fully understood.

The essential difference between the integral and rational theories is il-
lustrated in the following general observation which introduces the notion
of complexity. Suppose that M is a properly embedded connected subman-
ifold of codimension two in W . If H1(W ; Z) = H2(W ; Z) = 0, then from
the Alexander duality, it follows that H1(W −M ; Z) is the infinite cyclic
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group Z generated by a meridian of M . On the other hand, if we assume
a weaker condition that H1(W ; Q) = H2(W ; Q) = 0, instead of the inte-
gral homology condition, then the torsion-free part of H1(W −M ; Z) is still
Z, but in general, the meridian no longer generates it. The duality (with
rational coefficients) merely says that the meridian represents a nonzero el-
ement in Z, and its absolute value c measures the extent of this failure.
We call c the complexity. Because the complexity can be an arbitrarily
large integer, one cannot apply key arguments of the integral concordance
theory to the rational case. For example, suppose that an n-dimensional
knot K in Sn+2 is a slice knot, that is, there exists a pair (∆,D) of an
(integral homology) (n + 3)-ball ∆ and an embedded (n + 1)-disk D such
that ∂(∆,D) = (Sn+2,K). From the above observation it follows that the
abelianization homomorphism π1(S

n+2 − K) → Z extends to π1(∆ − D2).
This enables us to extract obstructions to being an integral slice knot from
abelian invariants of knots. In contrast to this, if ∆ were a rational ball,
then the homomorphism would not extend in general. In this case it can be
seen that a homomorphism π1(S

n+2 − K) → Z sending a meridian to the
complexity c of D ⊂ ∆ does extend. But the value of c is unknown unless a
particular (∆,D) is given.

From the viewpoint of [7] based on Seifert surfaces and Seifert matrices,
the notion of complexity discussed above is also related to the fact that a
rational knot may not admit any Seifert surface while every integral knot
does. Instead, for a rational n-dimensional knot K with n > 1, there is
a positive integer c such that the union of c parallel copies of K bounds
an embedded submanifold, which is called a generalized Seifert surface of
complexity c (a framing condition is required for n = 1; see Section 2.1 for
a precise description).

If n is odd, a Seifert matrix of a generalized Seifert surface is defined in
the usual way. A difference from the integral theory is that our Seifert matrix
has rational entries in general. Using Seifert matrices, we can define an
algebraic analogue of Cn, which is called the algebraic rational concordance
group and denoted by Gn, together with a homomorphism Φn : Cn → Gn.
This may also be viewed as an analogue of Levine’s homomorphism of CZ

n

into the algebraic (integral) concordance group of Seifert matrices. Roughly
speaking, for each c, we form the algebraic concordance group Gn,c of Seifert
matrices of generalized Seifert surfaces of complexity c as Levine did in [33],
and define Gn = lim−→c

Gn,c to be the limit of a direct system consisting of
the Gn,c and certain homomorphisms. This construction can be viewed as
a functorial image of Q = lim−→c

(1/c)Z. (In Section 2.2, a purely algebraic

definition of Gn is given.)
Given a rational n-dimensional knot, a Seifert matrix of a generalized

Seifert surface of complexity c represents an element in Gn,c, and sending it
by the canonical homomorphism into the limit, an element in Gn is obtained.
For odd n > 1, it gives rise to the homomorphism Φn : Cn → Gn. For n = 1,
it turns out that a homomorphism Φ1 into G1 is defined on a subgroup sC1
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of C1 which fits into an exact sequence

0 −→ sC1 −→ C1 −→ Q/Z −→ 0.

(For details, see Section 2.1.) In [12, 7] it was shown that Cn contains a
subgroup isomorphic to Z∞ by investigating a signature invariant of Gn and
pulling it back via Φn.

In spite of the importance of Gn and Φn in the study of Cn, several inter-
esting questions on their structures have not been answered. For example,
it has not been known whether Gn and Cn have torsion elements. Also there
has been no geometric answer to the question how much structure of Cn can
be revealed via Φn.

1.2. Main results

1.2.1. The structure of Gn. As an answer to the above questions, we
give a full calculation of the structure of the limit Gn.

Theorem 1.1. The group Gn is isomorphic to Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

Although it is abstractly isomorphic to the integral (algebraic) knot
concordance group of Levine, we do not have any natural identification which
is topologically meaningful. In fact it turns out that, from a topological
viewpoint, their structures are drastically different. It will be discussed in a
later subsection.

In Chapter 3, we construct a complete set of invariants of Gn, and by
realizing and computing them, we prove Theorem 1.1. Briefly, our invariants
of Gn can be described as follows. We need to start with known invariants
of the integral algebraic concordance group Gn,c. An algebraic number z
is called reciprocal if z and z−1 are conjugate, i.e., if they share the same
irreducible polynomial over Q. It is known that the concordance group of
Seifert matrices maps into the direct sum of Witt groups of nonsingular
hermitian forms on finite dimensional vector spaces over number fields Q(z)
equipped with the involution z̄ = z−1, where z runs over reciprocal numbers.
This associates to a Seifert matrix A a Witt class of a hermitian form Az

over Q(z), which is called the z-primary part of A. The signature of Az

(defined for |z| = 1 only), the modulo 2 residue class of the dimension r of
Az, and the discriminant

disAz = (−1)
r(r+1)

2 det Az ∈
Q(z + z−1)×

{uū | u ∈ Q(z)×}
give rise to invariants of the integral algebraic concordance group.

To construct invariants of Gn, we take “limits” of the above invariants.
Let P be the set of all sequences α = (. . . , α2, α1) of reciprocal numbers αi

such that (αri)
r = αi for all i and r. (P can be viewed as the limit of an

inverse system consisting of the sets of reciprocal numbers and morphisms
z → zr.) Let P0 be its subset consisting of α = (αi) with |αi| = 1. For
an element A in Gn represented by a Seifert matrix A of complexity c, we
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consider the invariants of A associated to the c-th coordinate αc of α ∈ P
(or P0). That is, we define

s(A) = (signature of Aαc)α∈P0 ∈ ZP0,

e(A) = (dimension of Aαc mod 2)α∈P ∈ (Z/2)P .

A discriminant invariant of Gn is also defined in a similar way, but its value
lives in a more complicated object since the codomain of the discriminant
of Az depends on z. We form a limit

lim−→
i

∏

α∈P

Q(αi + α−1
i )×

{uū | u ∈ Q(αi)×}
,

and define the third invariant d(A) to be the element in the limit represented
by

(disAαc)α∈P ∈
∏

α∈P

Q(αc + α−1
c )×

{uū | u ∈ Q(αc)×}
.

We remark that the above invariants of A do not carry full information
on (the concordance class of) the representative A. Indeed, observing that αc

has the property that for any r there exists a reciprocal r-th root (= αrc),
it can be seen that not all reciprocal numbers appear as the concerned
parameter αc. An interesting result is that this limited information gives rise
to well-defined invariants of Gn, and furthermore, it is enough to classify Gn.

Theorem 1.2. The invariants s, e, and d form a complete set of invari-
ants of Gn.

Pulling back via Φn : Cn → Gn, s, e, and d give rise to invariants of the
rational knot concordance group.

In Section 3.2 we discuss the above construction in detail and prove The-
orem 1.2. We remark that our invariant s(A) is equivalent to the signature
invariants studied in [12, 7]. Compared with other invariants e and d, the
signature s is much easier to define and use, since the crucial condition of
α = (αi) that αi must have a reciprocal r-th root for all r is automatically
satisfied whenever αi has unit length.

In the proof of Theorem 1.1, concrete examples of infinitely many in-
dependent order 2 and 4 elements in Gn are constructed. Some order 2
elements can be detected by using the invariant e. Since its value lives in a
simple domain (Z/2)P , it is easier to handle than d. The crucial step is to
find elements α in P which are not contained in P0 so that the αc-primary
parts have no contribution to the signature. (See Corollary 3.19.)

For order 4 elements, much more complicated algebraic arguments are
involved because we must compute the invariant d that lives in a limit.
The Artin reciprocity, which is one of the central machinery in algebraic
number theory, plays a crucial role in our computation. In what follows
we discuss our idea briefly. In order to show the nontriviality of d in its
codomain, we need to investigate the norms of field extensions of the form
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Q(αc)/Q(αc + α−1
c ) where α ∈ P , and study their limiting behaviour as c

goes to infinity. For a fixed c, by the Hasse principle, this global problem
is reduced into a local problem over completions Q(αc)

v/Q(αc + α−1
c )v with

respect to valuations v of Q(αc + α−1
c ). Now we appeal to the local Artin

reciprocity, which asserts that there is an epimorphism

Q(αc + α−1
c )×v −→ Gal(Q(αc)

v/Q(αc + α−1
c )v)

whose kernel consists of nonzero norms of Q(αc)
v/Q(αc + α−1

c )v. We in-
vestigate the limiting behaviour of the effect of this local Artin map on the
discriminant, as c goes to infinity. In general, it seems a hard algebraic
problem requiring a deep understanding of number theoretic phenomena.
Fortunately, by constructing Seifert matrices carefully, we are led to a very
specific instance of the problem for which we can control the limiting be-
haviour. One of the key steps is to find suitable valuations v. For this we
do inductive analysis of prime splitting over a tower of field extensions of an
arbitrary height (see Section 3.5 for details). This enables us to construct
desired finite order elements in Gn.

1.2.2. The structure of Φn. Sections 4.1 and 4.2 of this paper are
devoted to a geometric study of the structure of the homomorphism Φn. An
obvious observation is that Φn is not injective; for instance, Φn does not
detect the effect of the action of the rational homology cobordism group
of rational (n + 2)-spheres on Cn given by connected sum with ambient
spaces. In order to avoid such complications from ambient spaces, we think
of a subgroup bCn of Cn which is generated by knots in rational spheres
bounding parallelizable rational balls. The following result shows that this
geometrically defined subgroup bCn is crucial in understanding the homo-
morphism Φn; in higher odd dimensions, it is a largest subgroup which is
classified by Φn.

Theorem 1.3.
(1) For even n, bCn is trivial.
(2) For odd n > 3, the restriction Φn|bCn

: bCn → Gn is an isomorphism.
(3) For n = 3, Φ3|bC3 is an isomorphism of bC3 onto an index two

subgroup of G3 which is isomorphic to Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.
(4) For n = 1, Φ1|bC1∩sC1 is a surjection onto G1.

This can be compared with the results of Kervaire [26] and Levine [33]
on integral knot concordance. In the topological category, the above (2)
holds for n = 3 instead of (3). An immediate consequence of Theorem 1.3
is that for odd n > 1 the exact sequence

0 −→ Ker Φn −→ Cn Φn−−→ Im Φn −→ 0

splits, and therefore, bCn ∼= ImΦn
∼= Gn (or its index two subgroup if n = 3)

is a direct summand of Cn. From this it follows that Cn contains infinitely
many independent elements of order 2, 4, and infinite.
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In Section 4.1, the surjectivity is shown by a constructive realization
algorithm of Seifert matrices of rational knots. In general, our algorithm
produces a knot in an ambient space which is not necessarily an integral
homology sphere, since a given Seifert matrix may have non-integral entries.
We also remark that a characterization theorem of Alexander polynomials
of rational Seifert matrices is proved in Section 3.5 (see Theorem 3.22).

Section 4.2 is devoted to the injectivity. For this we mainly use tech-
niques of ambient surgery. In comparison with the integral case, we need
more complicated arguments because we should perform ambient surgery in
a rational ball which may have nontrivial homotopy groups even below the
middle dimension.

We remark that when n is even our argument shows more than Theo-
rem 1.3 (1). For more details, see Theorem 4.13.

1.2.3. Comparison with the integral knot concordance group.

As remarked above, although bCn ∼= CZ
n for n > 1, we have no canonical

identification between them. A natural topological way to compare their
structures is to study the canonical map CZ

n → bCn ⊂ Cn. In Section 4.3,
using our invariants of Gn, we prove the following results:

Theorem 1.4.
(1) For odd n, the kernel of CZ

n → bCn contains a subgroup isomorphic
to (Z/2)∞.

(2) For odd n > 1, the cokernel of CZ
n → bCn contains a summand

isomorphic to Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

This illustrates that the geometric structures of integral and rational
knot concordance groups are drastically different. Cochran (using work of
Fintushel and Stern [17]) showed that the figure eight knot is a nontrivial
element in the kernel of CZ

1 → bC1, and Kawauchi showed that an analogous
higher dimensional knot is nontrivial and contained in the kernel of CZ

n → bCn
for n = 4k + 1 > 1 [22]. Theorem 1.4 (1) is a generalization of these
results. Theorem 1.4 (2) is a generalization of a previous result of Ko and
the author [7].

Most of our results in higher dimensions extend to the case of knots in
R-homology spheres for any subring R of Q. This is discussed in Section 4.4.

In an unpublished note by Cochran and Orr, they studied rational con-
cordance in higher dimensions using the rational homology surgery theory
due to Quinn [39] and Taylor and Williams [43]. Our algebraic results can
be viewed as computation of surgery obstruction Γ-groups which are related
to their work. (See Remarks 3.42 and 4.20.)

1.2.4. Knots in rational 3-spheres. From the above results, it fol-
lows that the concordance class of a knot representing an element in bCn is
determined by its Seifert matrix for odd n > 1. However, it is not true for
n = 1:
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Theorem 1.5. There exist knots in S3 which have Seifert matrices of
integral slice knots but are not rational slice knots.

This can be viewed as a generalization of the result of Casson and Gor-
don [6, 5] that the integral concordance classes of knots in S3 are not
determined by Seifert matrices. More recently, Cochran, Orr, and Teich-
ner [13, 14] have developed a new obstruction to being an integral slice
knot. Although they partially considered rational concordance, no informa-
tion on the structure of C1 was extracted via their obstruction because of
the same sort of difficulty that the complexity may be nontrivial.

In Chapter 5, we extend methods and results of Cochran–Orr–Teichner
[13, 14] to rational concordance. These results hold in the topological cate-
gory (where submanifolds are assumed to be locally flat) as well as the piece-
wise linear and smooth categories. To discuss out results, we recall some
basic ideas of the work of Cochran–Orr–Teichner. For h = 0, 0.5, 1, 1.5, . . . ,
they define a rational (h)-solution of a closed 3-manifold M to be a 4-
manifold W bounded by M whose intersection form over a solvable group
ring coefficient satisfies certain surgery theoretic conditions. When a ratio-
nal knot K admits a generalized Seifert surface, it determines a well-defined
zero-framing, and we can think of the zero-surgery manifold M of K. If M
admits a rational (h)-solution W , we say K is rationally (h)-solvable. This
is a refinement of the rational slice condition; a rational solution W can be
viewed as an “approximation” of a slice disk exterior in a rational 4-ball.

Concordance classes of rationally (h)-solvable knots form a subgroup FQ

(h)

of C1 which gives a filtration

{0} ⊂ · · · ⊂ FQ

(n.5) ⊂ F
Q

(n) ⊂ · · · ⊂ F
Q

(0.5) ⊂ F
Q

(0) ⊂ sC1 ⊂ C1.

(In [13], rational solvability was considered only for knots in S3. In Sec-
tion 5.1, we give a reformed version of the original definition in [13] for
rational knots.)

We investigate the structure of this filtration. First, in Section 5.1, we
give a characterization of rationally (0)- and (0.5)-solvable knots. For h = 0,
it turns out that the rational (h)-solvability of a knot is indeed none more
than a condition on its ambient space; a knot is rationally (0)-solvable if
and only if its ambient space admits a rational (0)-solution. In general, the
solvability condition of the ambient space is not sufficient, since there are
further complications from knotting. For h = 0.5, it turns out that the
limit of Seifert matrices gives rise to an obstruction to being a rationally
(0.5)-solvable knot. In fact in Section 5.1 we prove the following result:

Theorem 1.6. FQ

(0)/F
Q

(0.5)
∼= G1

∼= Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

For a further investigation of the structure of the filtration, we use the
von Neumann ρ-invariants of Cheeger–Gromov [9] which were first consid-
ered by Cochran–Orr–Teichner [13, 14] for knots. This enables us to prove
the following result:
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Theorem 1.7. FQ

(1)/F
Q

(1.5) has infinite rank.

In fact we construct integral knots in S3 with metabolic Seifert matrices

which generate an infinite rank subgroup in FQ

(1)/F
Q

(1.5) (see Theorem 5.25).

From this Theorem 1.5 follows.
In [13, 14], Cochran–Orr–Teichner showed that certain von Neumann

ρ-invariants are obstructions to having a rational (n.5)-solution of a given
complexity c (n is an integer), where the complexity of a rational solution
W is defined in a similar way as the general discussion in Section 1.1. The
essential problem in applying Cochran–Orr–Teichner’s idea to rational con-
cordance is that the obstruction depends on the value of c which can be
an arbitrary positive integer. Their main results on integral concordance in
[13, 14] are obtained by considering the special case of c = 1.

The main idea of the proof of Theorem 1.7 is to control the concerned von
Neumann ρ-invariant as c varies. Very roughly speaking, the von Neumann
ρ-invariants are determined by elements in a metabolizer of the Blanchfield
form on a certain Alexander module, where the structures of the Alexander
module, Blanchfield form, and the metabolizer configuration depend on the
value of c. To handle an arbitrary value of c, we investigate the limiting
behaviour of them as c goes to infinity. Even in the case of integral knot
concordance, calculation of the configuration of metabolizers is the most
difficult step in applying this machinery. Our contribution in this regard
is to give a concrete construction of knots with the following property: for
any c there is a unique proper nontrivial submodule in the Alexander mod-
ule associated to complexity c. This enables us to compute explicitly the
metabolizer for any complexity c and to control the behaviour of the von
Neumann ρ-invariant. In fact, we show that there is a family of infinitely
many knots such that a particular von Neumann ρ-invariant, which is inde-
pendent of c, gives an obstruction to admitting a rational solution of any
complexity c (see Theorem 5.21).





CHAPTER 2

Rational knots and Seifert matrices

2.1. Generalized Seifert surfaces

In this section we discuss a generalization of Seifert surfaces to the ra-
tional knot case. We will sometimes contrast the sophistication peculiar to
rational knots by comparing it with the counterpart in integral concordance
theory. Basically most of the ideas of this section are from [7]. We sup-
plement some technical reformulations for use in later sections. While [7]
deals with a general theory of rational links, we focus on the case of knots.
We remark that in the work of Cochran and Orr [12] Blanchfield forms were
used instead of Seifert matrices. Our approach will be particularly useful for
the geometric study of rational knots, as well as for practical computation
of algebraic invariants. For instance, we will give a constructive realization
algorithm of rational Seifert matrices in Section 4.1.

Definition 2.1. An embedded n-sphere in a rational (n + 2)-sphere is
called a (rational) n-knot.

Recall that we always assume that all submanifolds are locally flat.
Sometimes we view a rational knot K in Σ as a manifold pair (Σ,K). When
the ambient space of a knot is the honest sphere Sn+2, we occasionally call
it an integral knot.

Definition 2.2 ([7]). Two rational n-knots (Σ,K) and (Σ′,K ′) are
called (rationally) concordant if there is a rational homology cobordism W
between Σ and Σ′ and a properly embedded Sn×[0, 1] in W which is bounded
by K ∪ −K ′. If (Σ,K) is rationally concordant to the unknot in Sn+2, we
call it a (rational) slice knot.

When K and K ′ are knots in Sn+2×0 and Sn+2×1 and W is Sn+2×[0, 1]
in Definition 2.2, it becomes the definition of ordinary concordance. In
this case we sometimes say that K and K ′ are integrally concordant, to
distinguish it from rational concordance.

From now on, a “knot” means a rational knot unless it is clear from the
context that it is an integral knot, and similarly for “concordance”.

We denote the set of concordance classes of n-knots by Cn, and denote
the set of integral concordance classes of integral n-knots by CZ

n . Cn shares
some basic properties with CZ

n ; Cn is an abelian group under the addition and
the inversion operations given by connected sum of pairs (Σ,K)#(Σ′,K ′) =

11
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(Σ#Σ′,K#K ′) and orientation reversing −(Σ,K) = (−Σ,−K), respec-
tively. The identity of Cn is the concordance class of (rational) slice knots.
An n-knot (Σ,K) is in this class if and only if there is a rational (n+3)-ball
∆ bounded by Σ and a properly embedded (n+1)-disk in ∆ bounded by K.

Definition 2.3. For a knot K, a codimension one submanifold bounded
by K in the ambient space is called a Seifert surface.

For an integral knot, there always exists a Seifert surface by a transver-
sality argument. Seifert surfaces play an important role in the study of
concordance; for example, Kervaire [26] and Levine [33, 32] computed the
structure of CZ

n for n > 1 using Seifert surfaces.
The first remarkable difference of the rational and integral theories is

that a rational knot may not admit any Seifert surface. This leads us to
consider a generalized notion of a Seifert surface. Precisely, we adopt the
following definition of [7].

Definition 2.4. For an n-knot K in Σ, an (n + 1)-submanifold F in
Σ is called a generalized Seifert surface if F is bounded by the union of c
disjoint parallel copies of K which are taken along a framing of K (i.e., a
trivialization of the normal bundle) for some positive integer c. For n = 1,
we require that F induces a framing on K which is fiber homotopic to the
framing used in taking parallel copies. c is called the complexity of F .

We remark that in dimension three, the framing requirement is crucial
in later results, and it seems the minimal condition required to extract con-
cordance invariants. For n > 1, we do not need the framing condition since
any framings of K are fiber homotopic.

Example 2.5. Consider the lens space Σ = L(2, 1) obtained by (2/1)-
surgery along an unknotted circle C in S3. The meridian of C can be viewed
as a rational knot K in Σ. In Figure 1, a surface bounded by C and two
parallel copies K1, K2 of K is illustrated. It can be seen that the surface
induces the (2/1)-framing on C. Thus, by attaching a disk along a parallel
copy of C, we obtain a surface F in Σ which is bounded by K1∪K2. However,
according to the definition above, F is not a generalized Seifert surface since
F gives rise to the (1/1)-framing on the Ki while the Ki are taken along the
(0/1)-framing.

In fact, it turns out that K does not admit any generalized Seifert surface
by appealing to Theorem 2.6 below.

In [7], it was shown exactly when a generalized Seifert surface exists.
The result in [7] was stated and proved for the more general case of links.
For our purpose, it suffices to consider knots only, and in this case, the result
can be described in a simpler way as follows.

Theorem 2.6 ([7]).
(1) For n > 1, any knot admits a generalized Seifert surface.
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Figure 1.

(2) For n = 1, a knot admits a generalized Seifert surface if and only
if its Q/Z-valued self-linking in the ambient space is trivial.

When n = 1, it can be easily seen that the Q/Z-valued self-linking is a
concordance invariant of rational knots. From Theorem 2.6 (2), it follows
that a knot admits a generalized Seifert surface if and only if so does every
knot in the same concordance class. Denoting the subgroup of concordance
classes of 1-knots admitting generalized Seifert surfaces by sC1, we have the
following consequence:

Corollary 2.7. sC1 fits into a short exact sequence

0 −→ sC1 −→ C1 −→ Q/Z −→ 0.

Proof. By Theorem 2.6 (2), it suffices to show that the self-linking map
C1 → Q/Z is surjective. For this purpose we generalize the construction of
Example 2.5. For an arbitrary positive integer r, consider the lens space
Σ obtained by (r/1)-surgery along a component of a Hopf link in S3, and
view the other component as a knot K in the lens space. In a similar way
as Example 2.5, we can construct a surface F in Σ such that ∂F consists
of r parallel copies of K and F ∩ K consists of a single point. Thus the
self-linking of K is (1/r) + Z ∈ Q/Z. �

Since we need to use the argument of the proof of Theorem 2.6 in the
next section as well, we will give a formal proof which is specialized for knots.
Another reason to give the proof is that it illustrates the role of the notion of
“complexity” of a codimension two pair, which is crucially important in the
study of rational concordance. We start with a definition. Suppose M is a
codimension two connected submanifold properly embedded in W such that
H1(W −M ; Q) is a one-dimensional vector space generated by a meridian
of M .

Definition 2.8. The complexity of (W,M) (or simply M) is defined
to be the absolute value of the element represented by a meridian of M in
H1(W −M ; Z)/torsion ∼= Z.
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Note that this definition must be distinguished from the complexity of
a generalized Seifert surface. The complexity of (W,M) is always a positive
integer. As examples to keep in mind, we can think of the complexity when
(W,M) is one of the followings:

(1) a knot in a rational sphere,
(2) a slice disk in a rational ball, and
(3) a rational concordance in a rational homology cobordism between

rational spheres.

In any case, the Alexander duality shows that (W,M) has the above prop-
erty.

Assuming that M is framed in W , we identify its regular neighborhood
with M×D2 and denote the exterior W−int(M×D2) by EM . In particular,
M × S1 is identified with a subspace of ∂EM . For a space X, we denote by
pc

X the composition

pc
X : X × S1 −→ S1 −→ S1

of the projection onto S1 and the map on S1 given by z → zc, where S1 is
viewed as the unit circle in the complex plane.

Definition 2.9. f : EM → S1 is called an S1-structure of complexity c
if the composition

M × S1 →֒ EM
f−−→ S1

is equal to pc
M : M × S1 → S1.

For simplicity we assume that both ∂M and ∂W are connected (or
empty). Viewing ∂M as a framed submanifold of ∂W , we assume that
(∂W, ∂M) satisfies our assumption above so that its complexity is defined.
Denote its exterior by E∂M .

Lemma 2.10. Suppose that an S1-structure f : E∂M → S1 of complexity
c is given and the homomorphism H1(M)→ H1(EM )/torsion induced by

M × {pt} −→M × S1 −→ EM

is a zero homomorphism. If c is a multiple of the complexity of M , then f
extends to an S1-structure EM → S1 of complexity c.

Proof. Define a map

f ∪ pc
M : E∂M ∪

∂M×S1
(M × S1) −→ S1

by glueing f : E∂M → S1 and the map pc
M : M × S1 → S1. We will extend

this map to obtain a desired S1-structure EM → S1.
The induced map f∗ on H1 factors through the torsion-free quotient as

follows:
f∗ : H1(E∂M ) −→ H1(E∂M )/torsion = Z

α−−→ Z

where α sends a meridian to c since f has complexity c. By the definition
of the complexity, there is a unique homomorphism

β : H1(EM )/torsion = Z −→ Z
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sending a meridian of M to c.
By obstruction theory, it suffices to show that the diagram below com-

mutes:

H1(M × S1)

H1(EM ) H1(EM )/torsion = Z Z

H1(E∂M ) H1(E∂M )/torsion = Z

(pc
M )∗

β

α

where the vertical homomorphisms are induced by inclusions. The commu-
tativity of the upper triangle can be seen by considering the definition of
pc

M and the following facts: β sends a meridian to c and H1(M × S1) →
H1(EM )/torsion kills cycles from M × {pt}. On the other hand, the lower
triangle commutes since both α and β send meridians to c and meridians
are nonzero in H1(E∂M )/torsion and H1(EM )/torsion. �

Now we apply Lemma 2.10 to the case of rational knots to show the
existence of generalized Seifert surfaces.

Proof of Theorem 2.6. Let K be an n-knot in a rational (n + 2)-
sphere Σ and let E be its exterior.

Suppose n > 1 and c is a nonzero multiple of the complexity of K.
K always has a trivial normal bundle in Σ and all framings are equivalent
so that we can view K as a framed submanifold in a canonical way. Now,
since H1(K) = 0, we can appeal to Lemma 2.10 to obtain an S1-structure
f : E → S1 of complexity c. (Note that K and Σ are both closed so that we
do not need any maps on the boundary.) By a transversality argument, we
can pick a regular value of f whose pre-image is a submanifold F in E. F is
a generalized Seifert surface of complexity c.

For n = 1 we remark that, although K has a trivial normal bundle, the
above argument does not work since framings are not unique and H1(K) is
nontrivial. Indeed this gives rise to our self-linking obstruction. First we
show the necessity of the vanishing of the obstruction. If there is a gen-
eralized Seifert surface F of complexity c, then the Q/Z-valued self-linking
of K is equal to, modulo Z, (1/c)(F · K) where · denotes the intersection
number in Σ. By the framing condition in the definition of a generalized
Seifert surface, F ·K = 0. Thus the linking is trivial.

For the converse, suppose that the Q/Z-valued self-linking is trivial.
Identify ∂E with K×S1 by choosing a framing on K, and let λ = K×{pt}
and µ = {pt} × S1 be the associated longitude and meridian, respectively.
Choose a 2-chain u in Σ bounded by rλ (r 6= 0) such that u meets K
transversally. The self-linking of K is, modulo Z, (1/r)(u · K). Since it
vanishes, u · K = kr for some integer k. This shows that r(λ + kµ) = 0
in H1(E). Since λ + kµ is the preferred longitude of some framing, we
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may assume that rλ = 0 in H1(E) by changing the framing. Therefore
H1(K × {pt}) → H1(E)/torsion is trivial. Now by using Lemma 2.10 and
a transversality argument as above, we can produce a generalized Seifert
surface of complexity c for any multiple c of the complexity of K. �

Remark 2.11. The proof of Theorem 2.6 shows that an n-knot K admits
a generalized Seifert surface of complexity c if and only if c is a multiple of
the complexity of K (and in addition, for n = 1, K has vanishing Q/Z-valued
self-linking).

2.2. Limits of Seifert matrices

Now we focus on odd dimensional knots. For notational convenience,
let n = 2q − 1 and ǫ = (−1)q+1. We recall some fundamental results about
integral concordance: for an integral knot with a Seifert surface F , the
Seifert pairing

S : Hq(F ; Z)×Hq(F ; Z) −→ Z

is defined by S(x, y) = lk(x+, y) for q-cycles x and y on F where x+ denotes
the cycle obtained by pushing x slightly along the positive normal direction
of F . Choosing a basis of Hq(F ; Z) modulo the torsion subgroup, A matrix A
is associated to S. A is called a (integral) Seifert matrix. An integral Seifert
matrix A has the property that A− ǫAT is unimodular (i.e., invertible over
Z) where AT designates the transpose of A. In fact this characterizes integral
Seifert matrices; a square integral matrix A with this property is a Seifert
matrix of an integral knot.

Definition 2.12. A square matrix A is called metabolic if it is of even
dimension, say 2g, and congruent to a matrix whose top-upper g×g subma-
trix is zero. Two square matrices A and B are called cobordant if the block
sum A⊕ (−B) is a metabolic matrix.

In [33], Levine proved that cobordism is an equivalence relation of in-
tegral Seifert matrices, and their equivalence classes form an abelian group
under block sum, which is called the algebraic concordance group. We denote
it by GZ

n. He also proved that Seifert matrices of integrally concordant knots
are cobordant. This establishes a group homomorphism CZ

n → GZ
n. The fol-

lowing result of Levine transforms the geometric problem of (integral) knot
concordance in higher dimensions into an equivalent algebraic problem:

Theorem 2.13 (Levine [33]). CZ
n → GZ

n is an isomorphism for odd
n > 3, an injection onto an index two subgroup of GZ

n for n = 3, and a
surjection for n = 1.

Furthermore Levine computed GZ
n using associated isometric structures.

Theorem 2.14 (Levine [32]). GZ
n
∼= Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

It can be seen that the image of CZ
3 → GZ

3 is abstractly isomorphic to
the same group too. This gives us a full calculation of the integral knot
concordance group for n > 1.
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Returning to the discussion of rational knots, a Seifert matrix of a ratio-
nal knot can be defined in a similar way, using generalized Seifert surfaces.
(However, as we will see later, a rational analogue of the algebraic concor-
dance group GZ

n is constructed in a more sophisticated way.) For this pur-
pose we need the rational-valued linking number, which is a straightforward
generalization of the integral linking number in Sn+2. For concreteness, we
give a definition below.

Definition 2.15. Let x and y be disjoint p-cycle and q-cycle in a rational
(p + q + 1)-sphere Σ, respectively. Then the linking number of x and y in Σ
is defined to be lkΣ(x, y) = (1/b)(x · v), where v is a (q + 1)-chain bounded
by by for some b 6= 0.

It is straightforward to check that the linking number is well-defined.

Remark 2.16.
(1) The rational-valued linking number is defined for disjoint cycles

only, and not well-defined on the homology classes; its modulo Z
reduction is the usual Q/Z-valued linking which is well-defined for
homology classes.

(2) If x is a connected submanifold of dimension p which is embedded
in Σ, then Hq(Σ − x; Q) can be identified with Q in such a way
that for any q-cycle y in Σ − x, the linking number of x and y is
the element [y] in Hq(Σ − x; Q) = Q. In particular, a meridian of
x corresponds to 1 ∈ Q.

(3) For a computation formula of the linking number from a surgery
description of Σ, see [7].

Suppose K is an n-knot admitting a generalized Seifert surface F . Now
a bilinear pairing over Q

S : Hq(F ; Q)×Hq(F ; Q) −→ Q

can be defined by the same formula as the integral Seifert pairing, using the
rational-valued linking number.

For n = 1, it turns out that homology classes from boundary components
of F have no interesting information.

Lemma 2.17. For a generalized Seifert surface F of a 1-knot, S(x, y)
vanishes if either x or y is a cycle from ∂F .

Proof. Suppose y is a component of ∂F . Then F can be viewed as
a 2-chain bounded by cy, where c 6= 0 is the complexity of F . Since F is
disjoint from x+ for any 1-cycle x on F ,

S(x, y) = (1/c)(x+ · F ) = 0.

The same argument also works when x is from ∂F . �

From this it follows that S gives rise to a well-defined pairing on the
cokernel of H1(∂F ; Q)→ H1(F ; Q).
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Definition 2.18. S is called the (rational-valued) Seifert pairing of F .
For n > 1, a matrix associated to S by choosing a basis of Hq(F ; Q) is called
a (rational) Seifert matrix of complexity c, where c is the complexity of F .
For n = 1, a matrix associated to the induced pairing on the cokernel of
H1(∂F ; Q)→ H1(F ; Q) is called a (rational) Seifert matrix of complexity c.

A rational Seifert matrix has the following property which is analogous
to the characterization property of integral Seifert matrices:

Lemma 2.19. If A is a Seifert matrix, then for some rational square
matrix P , P (A− ǫAT )P T is integral and even unimodular over Z.

Here “even” means that all diagonal entries are even. Lemma 2.19 is an
immediate consequence of the fact that A− ǫAT represents the rational in-
tersection form on Hq(F ; Q), which is obtained from the integral intersection
form on Hq(F ; Z) by tensoring Q.

Remark 2.20. In Section 4.1, we will show that the property described
in Lemma 2.19 is a characterization of a (rational) Seifert matrix. In fact,
in Theorem 4.1, we give a constructive realization: for a matrix A having
the property in Lemma 2.19 and an arbitrary positive integer c, there is a
knot which has A as a Seifert matrix of complexity c.

Now we use rational Seifert matrices to construct an abelian group Gn

which can be viewed as a “rationalization” of GZ
n. We will also construct

group homomorphisms Φn : Cn → Gn for odd n > 1 and Φ1 : sC1 → G1 for
n = 1, which are analogous to the Levine homomorphism CZ

n → GZ
n. Indeed

Gn is a limit of Levine’s ordinary algebraic cobordism groups of matrices.
As before, we continue to use the convention n = 2q − 1 and ǫ = (−1)q+1.
Consider the set of all rational square matrices A having the property in
Lemma 2.19. As in the case of integral Seifert matrices, an argument in [32]
shows that matrix cobordism is an equivalence relation on this set, and
the set of cobordism classes of matrices with the property in Lemma 2.19
becomes an abelian group under the block sum. We denote this group by
Gn. The cobordism class of A will be denoted by [A].

Sometimes we call a matrix A with the property in Lemma 2.19 a (ratio-
nal) Seifert matrix, as an abuse of terminology at this time. As mentioned
in Remark 2.20, it will be justified later.

Remark 2.21. In [7], rational Seifert matrices were viewed as represen-
tatives of elements of another group GQ

ǫ ; they considered all square matrices
A such that A− ǫAT is nonsingular, instead of the property in Lemma 2.19,
and formed the group GQ

ǫ of cobordism classes of such matrices. For odd q
(i.e., ǫ = +1), it turns out that GQ

ǫ coincides with Gn. For, if A−AT is non-
singular, then it is congruent to a block sum of 2 by 2 matrices

[

0 1
−1 0

]

since

it is skew-symmetric. For even q, however, Gn is a proper subgroup of GQ
ǫ .

A way to see this fact is to observe the following property: if [A] ∈ Gn, then
det(A + AT ) is a square in Q. This condition is not necessarily satisfied by
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elements in GQ
ǫ . For example, for A = [ 1 3

0 1 ], [A] is an element of GQ
ǫ which

is not in Gn.

For a square matrix A, we denote by irA the matrix














A A A · · · A
ǫAT A A · · · A
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consisting of r × r blocks (submatrices below the diagonal blocks are ǫAT ,
and all the other submatrices are A). Then A → irA gives rise to an
endomorphism on Gn, which we also denote by ir. Note that if A is a
Seifert matrix of a generalized Seifert surface F , irA is a Seifert matrix of
the union of r parallel copies of F .

Let Gn,c = Gn for each positive integer c, and let φc,d : Gn,c → Gn,d

be id/c for every pair (c, d) of positive integers such that c | d. Then
({Gn,c}, {φc,d}) becomes a direct system.

Definition 2.22. The limit Gn = lim−→c
Gn,c is called the algebraic ratio-

nal concordance group.

We denote the natural homomorphism Gn,c → Gn by φc.
For n > 1, we define Φn : Cn → Gn as follows. For any n-knot K, there

is a Seifert matrix A of complexity c for some c > 0. The image of the
concordant class of K under Φn is defined to be φc[A], i.e., the image of
[A] ∈ Gn = Gn,c under φc : Gn,c → Gn. For n = 1, we define Φ1 to be a
homomorphism of sC1; since a 1-knot representing an element in sC1 has a
generalized Seifert surface, we can associate an element of Gn in the same
way.

Theorem 2.23. Φn is a well-defined group homomorphism.

Proof. First we prove the additivity. Suppose K1 and K2 are knots
with Seifert matrices A1 and A2 of complexity c1 and c2, respectively. Then
ic2A1 and ic1A2 have the same complexity c1c2. For n > 1, by a Mayer–
Vietoris argument it is easily seen that A = ic2A1⊕ ic1A2 is a Seifert matrix
of complexity c1c2 for K1#K2. For n = 1, although it might not be true,
arguments in the proof of [7, Theorem 1.2 (4)] show that ic2A1 ⊕ ic1A2 is
cobordant to a Seifert matrix A of complexity c1c2 for K1#K2. It implies
the desired additivity: φc1 [A1] + φc2[A2] = φc1c2[A] in Gn.

Now it suffices to show that Φn is well-defined for rational slice knots.
Once it is proved, general well-definedness follows from the additivity. We
give a unified proof for any odd n. Suppose that ∆ is a rational (n + 3)-ball
with boundary Σ, and D is a properly embedded (n + 1)-disk in ∆ whose
boundary is a knot K in Σ. Suppose F is a generalized Seifert surface of
complexity c for K and A is a Seifert matrix defined on F . Note that D
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has a unique framing in ∆ and its restriction on K agrees with the framing
induced by F . Choose a common multiple r of c and the complexity of
(∆,D). Taking r/c parallel copies of F and applying a Thom–Pontryagin
construction, we obtain an S1-structure f : EK → S1 of complexity r such
that f−1(pt) is a generalized Seifert surface with Seifert matrix ir/cA. Since

H1(D) = 0, we can apply Lemma 2.10 to obtain an S1-structure g : ED → S1

which extends f . By a transversality argument for g, we construct a (n+2)-
submanifold R in ∆ such that

∂R = (r parallel copies of D) ∪
∂

(r/c parallel copies of F ).

Hq(∂R; Q) is isomorphic to the direct sum of r/c copies of

Coker{Hq(∂F ; Q) −→ Hq(F ; Q)}
which is equal to Hq(F ; Q) for n > 1, and ir/cA represents a bilinear pairing
on Hq(∂R; Q), for any odd n including n = 1. As in [33],

Ker{Hq(∂R; Q) −→ Hq(R; Q)}
is a half-dimensional subspace on which this pairing vanishes. Thus ir/cA is
metabolic. It completes the proof. �

The above proof shows that, if A is a Seifert matrix of complexity c for
a knot K which admits a slice disk of complexity c′ in a rational ball, then
for any common multiple r of c and c′, ir/cA is metabolic. For later use, we
state an analogue for concordant knots:

Corollary 2.24 (Corollary to the proof of Theorem 2.23). Suppose that
K1 and K2 are concordant via a concordance of complexity c′. If A1 and
A2 are Seifert matrices of complexity c1 and c2 for K1 and K2, respectively,
then ir/c1A1 and ir/c2A2 are cobordant for any common multiple r of c1, c2,
and c′.

Proof. Let C be a concordance between K1 and K2 in a rational ho-
mology cobordism W between their ambient spaces. Choosing an arc γ on C
joining K1 and K2 and removing a regular neighborhood of γ from (W,C),
we obtain a pair (∆,D) of a rational ball ∆ and a slice disk D of K1#(−K2).
Since EC

∼= ED, the complexity of D is c′. Now, ir/c1A1⊕ ir/c2A2 is (cobor-
dant to) a Seifert matrix of complexity r for K1#(−K2), and from the proof
of Theorem 2.23, it follows that ir/c1A1 ⊕ (−ir/c2A2) is metabolic. �



CHAPTER 3

Algebraic structure of Gn

3.1. Invariants of Seifert matrices

In this section we discuss some known invariants of Gn. Levine [32]
first revealed the structure of Gn using invariants of isometric structures
associated to Seifert matrices. We will follow another approach using relative
Witt groups of linking forms.

We begin by recalling the definition of the relative Witt group Wǫ(R,S)
(as a general reference, refer to Ranicki’s book [40]; see also Hillman’s
book [20]). Let R be a commutative ring with an involution r → r̄, S
be a multiplicative subset in R, and ǫ = ±1. S−1R/R has an induced in-
volution which will also be denoted by the same notation. If a sesquilinear
map B : V × V → S−1R/R on a finitely generated S-torsion R-module V is
nonsingular and ǫ-hermitian, then we call it an ǫ-linking pairing over (R,S).

Here ǫ-hermitian means that B(x, y) = ǫB(y, x), and nonsingular means
that the adjoint map V → Hom(V, S−1R/R) is bijective. (For our purpose,
the usual homological dimension condition is not needed.) V together with
B is called an ǫ-linking form over (R,S). As an abuse of notation, we some-
times denote it simply by B. The direct sum of two ǫ-linking forms are
defined in an obvious way.

An ǫ-linking form B : V × V → S−1R is said to be hyperbolic if there is
a submodule P ⊂ V such that

P⊥ = {x ∈ V | B(x, y) = 0 for all y ∈ P}
is equal to P . Two ǫ-linking forms B1 and B2 are said to be Witt equivalent
if B1 ⊕ B′ ∼= B2 ⊕ B′′ for some hyperbolic ǫ-linking forms B′ and B′′. It is
an equivalence relation, and the equivalence classes form an abelian group
under the direct sum operation. It is called the relative Witt group Wǫ(R,S).

For the study of the algebraic concordance group Gn, first we relate
Gn with a particular relative Witt group Wǫ(Q[t±1], S), where Q[t±1] is the
Laurent polynomial ring equipped with the involution t̄ = t−1 and S is the
multiplicative subset of all nonzero elements in Q[t±1]. Then, the structure
of Wǫ(Q[t±1], S) is well-understood via “devissage”, using the key advantage
of this case that Q[t±1] is a PID.

Definition 3.1. A polynomial λ(t) in Q[t±1] is called reciprocal if λ(t) =
uλ(t−1) for some unit u in Q[t±1]. An algebraic number z is called reciprocal
if its irreducible polynomial is reciprocal.

21
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A prime ideal in Q[t±1] is preserved by the involution if and only if
it is generated by a reciprocal irreducible polynomial λ(t). In this case,
Q[t±1]/〈λ(t)〉 becomes a field with an induced involution. Then we can think
of the ordinary Witt group Wǫ(Q[t±1]/〈λ(t)〉) of nonsingular ǫ-hermitian
forms b : V × V → Q[t±1] on finite dimensional vector spaces V over the
field Q[t±1]/〈λ(t)〉.

Proposition 3.2. There are injective homomorphisms

Gn −→Wǫ(Q[t±1], S) −→
⊕

Wǫ(Q[t±1]/〈λ(t)〉)
where the sum is taken over all reciprocal irreducible polynomials λ(t).

For later use, we briefly describe the homomorphisms. For a represen-
tative A of an element of Gn, the Q[t±1]-module V presented by the matrix
tA − ǫAT is a torsion module since its determinant is a polynomial whose
evaluation at t = 1 is det(A − ǫAT ) 6= 0. The matrix (1 − t)(tA − ǫAT )−1

gives rise to an ǫ-linking pairing B on V . (V,B) is called the Blanchfield
form associated to A. It is straightforward to verify that this gives rise to
a well-defined group homomorphism Gn → Wǫ(Q[t±1], S). This is the first
homomorphism in Proposition 3.2. Kearton showed an analogous homo-
morphism of GZ

n is injective [24]. Although he considered integral Seifert
matrices only, exactly the same argument works for rational Seifert matrices
as well. We do not repeat the details.

The second homomorphism in Proposition 3.2 is described as follows.
Let B be an ǫ-linking form on a torsion Q[t±1]-module V . Since Q[t±1] is a
PID, V is canonically decomposed into the direct sum of primary subspaces:
V =

⊕

Vλ(t) where

Vλ(t) = {v ∈ V | λ(t)Nv = 0 for some N}
and λ(t) runs over reciprocal irreducible polynomials. A standard argument
shows that the restriction B|Vλ(t)

is Witt equivalent to a linking form Bλ(t)

on a Q[t±1]-module annihilated by λ(t) (e.g., see [32] or [20, page 131]).
Then Bλ(t) can be viewed as an ǫ-hermitian pairing over Q[t±1]/〈λ(t)〉. This
gives rise to the desired homomorphism. A devissage argument shows that
it is injective. For a detailed proof, see [40] or [20].

Remark 3.3. It is well known that the Blanchfield form can be described
geometrically; For an n-knot with n = 2q − 1, a generalized Seifert surface
induces an S1-structure via the Thom–Pontryagin construction, which gives
us a Q[t±1] local coefficient system on the knot exterior EK . The homology
module Hq(EK ; Q[t±1]) is presented by tA− ǫAT , and (t− 1)(tA − ǫAT )−1

is known to be the torsion linking pairing on Hq(EK ; Q[t±1]) due to Blanch-
field [1]. In [12], the algebraic rational concordance group was defined in
terms of this geometric linking form.

Sometimes it is convenient to parametrize the above number fields using
reciprocal numbers instead of polynomials. For a zero z of λ(t), we identify
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Q[t±1]/〈λ(t)〉 with Q(z) via t → z. Given a Seifert matrix, we obtain an
associated Witt class of a hermitian form over Q[t±1]/〈λ(t)〉 = Q(z) via
the composite map in Proposition 3.2. We call it the λ(t)-primary part or
z-primary part.

Now we define invariants of Gn via Wǫ(Q(z)). The scalar multiplication
by (z − z−1) induces an injection

W−(Q(z)) −→W+(Q(z))

for z 6= ±1, and W−(Q(±1)) = W−(Q) is trivial since any skew-hermitian
form over Q is hyperbolic and so Witt trivial. So we focus on W+(Q(z)).
For a Witt class [b] in W+(Q(z)) which is represented by a hermitian form
b, let r be the Q(z)-dimension of the underlying vector space of b. Then we
define rank[b] ∈ Z/2 to be the residue class of r modulo 2 and dis[b] to be
the discriminant

dis[b] = (−1)r(r+1)/2 det b ∈ Q(z + z−1)×

N×
z

where

N×
z = {uū | u ∈ Q(z)×}.

For |z| = 1, we can also define the signature sign[b] by viewing b as a complex
hermitian form via the embedding Q(z) ⊂ C. Then it is known that they
are well-defined, and furthermore,

Proposition 3.4 ([36]). If z 6= ±1 is reciprocal, then sign, rank, and
dis form a complete set of invariants of W+(Q(z)). In other words, [b] ∈
W+(Q(z)) is trivial if and only if sign[b], rank[b], and dis[b] are trivial.

For z 6= ±1, we can define analogous invariants sign, rank, and dis of
elements in W−(Q(z)) by composing the above invariants with the injection
into W+(Q(z)). Then these invariants for W−(Q(z)) are also complete.

Consider [A] ∈ Gn and a reciprocal number z. In addition if ǫ = −1,
suppose that z 6= ±1. We denote sign Az, rankAz, and disAz of the z-
primary part Az ∈ Wǫ(Q(z)) by sz[A], ez[A], and dz[A], respectively. For
notational convenience, we define sz[A], ez [A], and dz[A] to be trivial when
ǫ = −1 and z = ±1. Recall that Az is always Witt trivial in this case.

Remark 3.5. For z = ±1 and ǫ = +1 (i.e., q is even), the above in-
variants of W+(Q(z)) = W+(Q) are not complete. Indeed the structure of
W+(Q) is quite different since the involution is trivial. For integral knots, it
is known that the (±1)-primary part of an integral Seifert matrix is always
trivial for any q and so we do not need to consider this in investigating the
structure of GZ

n. While elements of our Gn have trivial (+1)-primitive part,
the (−1)-primary part is not necessarily trivial. In fact, such an example can
be produced by using our realization theorem that will be proved later (The-
orem 3.22). This shows that our invariants of Gn are not complete. However
it will turn out that a complete set of invariants of Gn can be extracted from
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these invariants. Hence we do not discuss the structure of W+(Q) in this
paper. Interested readers may refer to Milnor–Husemoller [36].

It is known that we can sometimes evaluate the invariants directly from
A, without computing the z-primary part explicitly.

Proposition 3.6.
(1) If the irreducible polynomial of z does not appear (i.e., has exponent

zero) in the factorization of the Alexander polynomial

∆A(t) = det(tA− ǫAT ),

then the z-primary part of A is trivial. In particular, sz(A), ez(A),
and dz(A) are trivial.

(2) For |z| = 1, sz[A] is the jump of the signature function S1 → Z
given by

w −→











sign
wA− ǫA

w − 1
for ǫ = 1

sign(w − w̄)
wA− ǫA

w − 1
for ǫ = −1

at w = z.
(3) ez[A] is congruent, modulo 2, to the exponent of the irreducible

polynomial of z in the factorization of the Alexander polynomial
∆A(t).

(4) sz and ez are additive, i.e.,

sz([A] + [B]) = sz[A] + sz[B],

ez([A] + [B]) = ez[A] + ez[B].

For dz, we have

dz([A] + [B]) ≡ (−1)ez [A]ez[B]dz[A]dz[B] mod N×
z .

In particular, dz(2[A]) ≡ (−1)ez [A] mod N×
z .

Proof. Let B be the Blanchfield form of A. Recall that the order of
a Q[t±1]-module is defined to be the determinant of a square presentation
matrix. The order of the underlying module V of B is equal to ∆(t) since V
is presented by tA−AT . On the other hand, writing the underlying module
V of B as a direct sum of cyclic modules Q[t±1]/〈pi(t)

ni〉, where pi(t) is
irreducible, the order of V is

∏

pi(t)
ni . Thus ∆A(t) =

∏

pi(t)
ni . Further-

more, from the above decomposition of V , we can observe that the primary
subspace Vλ(t) is trivial if λ(t) 6= pi(t) (up to units) for all i. From this (1) fol-
lows. (2) was proved in [35]. For (3), let λ(t) be the irreducible polynomial
of z and e be the exponent of λ(t) in the factorization of ∆A(t). Then λ(t)e

is the order of the subspace Vλ(t) of V . From the fact that the order of the

underlying module of a hyperbolic linking pairing is of the form f(t)f(t−1),
it follows that the modulo 2 residue class of the exponent e is a Witt invari-
ant of B. Thus we may assume that the Vλ(t) is annihilated by λ(t), as in



3.2. INVARIANTS OF LIMITS OF SEIFERT MATRICES 25

the discussion below Proposition 3.2. Writing Vλ(t) = (Q[t±1]/〈λ(t)〉)r , we
have

λ(t)r = (order of Vλ(t)) = λ(t)e.

(4) is proved by a straightforward computation based on our definitions.
(Note that the value of dz lives in a multiplicative group.) �

3.2. Invariants of limits of Seifert matrices

This section is devoted to an algebraic study of invariants of Gn. As
before, n = 2q − 1 and ǫ = (−1)q+1 throughout this section.

Recall that Gn is the limit of the direct system consisting of Gn,c = Gn

and the homomorphisms φc,rc = ir. The following result, which is called
the reparametrization formula, is crucial in understanding the relationship
between this direct system and the invariants of Gn which were discussed in
the previous section.

Lemma 3.7. If z is reciprocal, then zr is reciprocal for any positive in-
teger r.

Proof. First observe that an irreducible polynomial p(t) is reciprocal
if and only if p(w) = 0 = p(w−1) for some w. Let λ(t) and µ(t) be the
irreducible polynomials of the given z and zr, respectively. Since z is a zero
of µ(tr), µ(tr) is a multiple of λ(t). Since λ(t) is reciprocal, λ(z−1) = 0 and
so µ(z−r) = 0. It follows that µ(t) is reciprocal. �

Lemma 3.8 (Reparametrization formula). Suppose [A] ∈ Gn, z is a
reciprocal number, and r is a positive integer. Then

(1) sz(ir[A]) = szr [A] for |z| = 1.
(2) ez(ir[A]) = ezr [A].
(3) dz(ir[A]) ≡ dzr [A] mod N×

z .

The conclusion for the signature is already known; Cochran and Orr [12]
proved the signature formula using the Blanchfield form. Ko and the author
gave an algebraic proof of the signature formula using Seifert matrices [7]. As
related work in dimension three, see also Kearton [25] and Litherland [34].
Here we give a single unified proof of all the conclusions above including the
new parts (2) and (3).

Proof. First we claim that

Gn Wǫ(Q[t±1], S)

Gn Wǫ(Q[t±1], S)

ir t→tr

is commutative, where the horizontal homomorphisms are the inclusions
discussed in the previous section and the left vertical homomorphism is
induced by t → tr. One way to see the commutativity is to appeal to the
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geometric interpretation of the horizontal homomorphism (Remark 3.3), as
follows: A → irA is induced by taking r parallel copies of a generalized
Seifert surface, and hence its effect on the Q[t±1]-coefficient system on the
knot exterior discussed in Remark 3.3 is exactly t→ tr.

For concreteness, we outline a purely algebraic argument based on our
definitions. Suppose A is a d × d Seifert matrix. First we show that the
presentation tirA−ǫirA

T on rd generators is reduced into a new presentation
trA− ǫAT on d generators by suitable row and column operations. Indeed,
let

P =
r−1
∏

i=1









Ii−1

ǫAT I
A I

Ir−i−1









,

Q =

1
∏

i=r−1









Ii−1

−ti I
I 0

Ir−i−1









where Ik is the kd×kd identity matrix and I = I1 (the products are expanded
from left to right). Then we can check that both P and Q are unimodular
over Q[t±1] (here we need that A−ǫAT is nonsingular) and that P−1(tirA−
ǫirA

T )Q−1 is of the form

R =













I

∗ . . .
...

. . . I
∗ · · · ∗ trA− ǫAT













.

Under the convention that columns of a presentation matrix represent rela-
tions, P is our generator changing matrix. Since its bottom-right d×d block
is I, the generators of the new presentation are exactly the last d generators
of the old presentation. Thus the linking pairing for irA is given by the
bottom-right d× d block of

P T · (t− 1)(tirA− ǫirA
T )−1 · P = (t− 1)P T Q−1R.

By a straightforward calculation we can check that it is equal to

(tr − 1)(trA−AT )−1.

This proves the claim.
Now suppose [b] ∈Wǫ(Q[t±1], S). Denote its image under t→ tr by [irb].

We will compute the z-primary part of irb. Consider a special case that b
itself is a single primary part. Then we can assume that b is defined on
a module V annihilated by a reciprocal irreducible polynomial λ(t), i.e.,
V = (Q[t±1]/〈λ(t)〉)d. Let

λ(tr) = µ1(t) · · ·µm(t)



3.2. INVARIANTS OF LIMITS OF SEIFERT MATRICES 27

be the factorization of λ(tr) into distinct irreducible factors. Note that there
is no repeated factor since λ(t) has no multiple root. Then the underlying
module of irb is

(Q[t±1]/〈λ(tr)〉)d ∼=
m

⊕

i=1

(Q[t±1]/〈µi(t)〉)d,

where its µi(t)-primary part is the (Q[t±1]/〈µi(t)〉)d-summand. Since

(Q[t±1]/〈µi(t)〉)d −→ (Q[t±1]/〈λ(tr)〉)d

is the multiplication by
∏

j 6=i µj(t), the µi(t)-primary part of irb is given by

(ei
k, e

i
ℓ) −→

(

∏

j 6=i

µj(t)µj(t
−1)

)

·
(

b(ek, eℓ)|t→tk
)

where {ei
k} and {ek} are the standard bases of (Q(t)/〈µi(t)〉)d and V , re-

spectively.
This shows that the z-primary part of irb is nontrivial if and only if z

is a zero of µi(t) for some i, or equivalently zr is a zero of λ(t). In this
case the above computation shows ez(irA) = d = ezr(A). Moreover, if B is
a matrix over Q(zr) representing b (which is the zr-primary part of itself),
ww̄B represents the z-primary part of irb where w =

∏

j 6=i µj(z). It follows

that sz(irA) = szr(A) for |z| = 1 and dz(irA) ≡ dzr(A) modulo N×
z . Note

that when ǫ = −1 and zr = ±1, b is automatically Witt trivial and hence
the desired conclusions are immediate consequences of our convention.

To reduce the general case to the above special case, we can think of
each primary part of b instead of b. The only remaining thing we have to
check is that two distinct primary parts of b never give rise to the same
primary part of irb. Indeed, if λ1(t) and λ2(t) are irreducible polynomials
such that λ1(t

r) and λ2(t
r) have a common factor µ(t), then λ1(t) and λ2(t)

have a common root and hence λ1(t) = λ2(t) up to units. It completes the
proof. �

Remark 3.9. The argument of the proof of Lemma 3.8 also proves
another version the reparametrization formula for the Alexander polynomial:
∆irA(t) = ∆A(tr) up to multiplication by units in Q[t±1] [7].

Remark 3.10. In [12, page 532], a weaker conclusion on signatures was
stated and shown: sz(irA) = ±szr(A). The sign ambiguity was introduced
by a typo in their proof; the w̄ factor in the matrix representation ww̄B of
the z-primary part of irb was missing.

Now we define our invariants of Gn. Roughly speaking, one can view the
reparametrization formula as a contravariant naturality of the invariants
of Gn,c: the direct system consisting of A → irA is transformed into an
inverse system of the morphisms zr ← z on the set of reciprocal numbers.
To take limits of invariants of Gn,c, we consider the limit of the latter inverse
system, which is exactly our parameter set P introduced in Section 1.2.
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Recall that P is the set of all sequences α = (. . . , α2, α1) of reciprocal
numbers αc such that (αrc)

r = αc for any r and c. Sometimes we denote
α = (αc). Let P0 be the subset of P consisting of all α = (αc) such that
|α1| = 1. Note that this implies |αc| = 1 for all c.

For A ∈ Gn, choose [A] ∈ Gn,c which represents A, i.e., A is the image of
[A] under the homomorphism φc : Gn,c → Gn. We define the signature and
rank invariants of A by

s(A) = (sαc [A])α∈P0 ∈ ZP0,

e(A) = (eαc [A])α∈P ∈ (Z/2)P .

To define our discriminant invariant, first we construct its codomain as
follows. For c | d and α = (αc) ∈ P , Q(αc + α−1

c )× is a subgroup of
Q(αd + α−1

d )×. Taking the product of induced homomorphisms over all
α ∈ P , we obtain

∏

α∈P

Q(αc + α−1
c )×

N×
αc

−→
∏

α∈P

Q(αd + α−1
d )×

N×
αd

.

We consider the limit

lim−→
c

∏

α∈P

Q(αc + α−1
c )×

N×
αc

of the direct system consisting of the above homomorphisms. For A ∈ Gn

represented by [A] ∈ Gn,c as before, we denote by d(A) the element in the
limit represented by

(dαc [A])α∈P ∈
∏

α∈P

Q(αc + α−1
c )×

N×
αc

.

Theorem 3.11. s(A), e(A), and d(A) are well-defined invariants of
A ∈ G.

Proof. Suppose [A] ∈ Gn,c and [B] ∈ Gn,d are sent to the same element
A ∈ Gn by φc and φd, respectively. Then ird[A] = irc[B] for some r. For
α ∈ P , we have

dαc [A] = d(αrcd)rd [A] ≡ dαrcd
ird[A]

= dαrcd
irc[B] ≡ d(αrcd)rc [B] = dαd

[B] mod N×
αrcd

by the reparametrization formula (Lemma 3.8). This shows that (dαc [A])α∈P

and (dαd
[B])α∈P give rise to the same element in the limit. Similar argu-

ments work for s(A) and e(A). �

As an immediate consequence of Proposition 3.6, we have the following
additivity of our invariants. To state the additivity of d, we use the following
notation: for an element x = (xα)α∈P ∈ (Z/2)P , let denote the element
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((−1)xα)α∈P ∈
∏

α∈P {±1} by (−1)x. Note that the multiplicative group
∏

α∈P {±1} acts on
∏

α∈P

Q(αc + α−1
c )×

N×
αc

by coordinatewise multiplication. It gives rise to an action of
∏

α∈P {±1} on

lim−→
c

∏

α∈P

Q(αc + α−1
c )×

N×
αc

.

Proposition 3.12.
(1) s(A+ B) = s(A) + s(B).
(2) e(A + B) = e(A) + e(B).

(3) d(A + B) = (−1)e(A)e(B)d(A)d(B).

The remaining part of this section is devoted to the proof of the com-
pleteness of our invariants:

Theorem 3.13. An element A ∈ Gn is trivial if and only if the invariants
s(A), e(A), and d(A) are trivial.

The following observations are useful in proving Theorem 3.13.

Lemma 3.14.

(1) If p(t) is non-reciprocal and irreducible, then p(tr) never has a re-
ciprocal irreducible factor for all r.

(2) If w is a zero of an irreducible polynomial p(t) and q(t) is an ir-
reducible factor of p(tr), then there is a zero z of q(t) such that
zr = w.

Proof. (1) If an irreducible factor q(t) of p(tr) is reciprocal, then q(z) =
0 = q(z−1) for some z, and hence p(zr) = 0 = p(z−r). Thus p(t) is reciprocal.

(2) Choose any zero z′ of q(t). Then w′ = (z′)r is a zero of p(t) and
so there is a Galois automorphism h on the algebraic closure of the base
field such that h(w′) = w. Let z = h(z′). Then z is a zero of q(t) and
zr = h(z′)r = h(w′) = w as desired. �

Lemma 3.15. Suppose λ(t) is an irreducible polynomial and c is a pos-
itive integer. Then λ(tr) has a reciprocal irreducible factor for all positive
integer r if and only if there exists α ∈ P such that λ(αc) = 0.

Proof. If λ(αc) = 0 for some α, then αrc is a root of λ(tr). The
irreducible polynomial of αrc is reciprocal and divides λ(tr).

For the converse, we may assume c = 1 by coordinate shifting. Indeed,
for any α = (αi) in P , α′ = ((αi)

c) is also in P and its c-th coordinate is
(αc)

c = α1.
First we choose a sequence 1 = n1, n2, n3, . . . of positive integers such

that ni+1 is a multiple of ni and every integer r divides some ni. For example,
we may enumerate all primes as p1, p2, . . . and put ni+1 = pi

1p
i
2 · · · pi

i.



30 3. ALGEBRAIC STRUCTURE OF Gn

We will construct a sequence of reciprocal irreducible polynomials λ(t) =
λ1(t), λ2(t), . . . such that

(1) λi(t
r) has a reciprocal irreducible factor for all r, and

(2) λi+1(t) divides λi(t
ni+1/ni) for all i ≥ 1

by an induction. Assume that λi(t) has been chosen. Consider the irre-
ducible factorization

λi(t
ni+1/ni) = µ1(t) · · · µk(t).

We claim that for at least one factor, say µ1(t), µ1(t
r) has a reciprocal

irreducible factor for all r. Then we can put λi+1(t) = µ1(t). Suppose the
claim is not true. Then we can choose ri such that all irreducible factors of
µi(t

ri) are non-reciprocal. By Lemma 3.14 (1), for any common multiple r
of the ri,

λi(t
rni+1/ni) = µ1(t

r) · · · µk(t
r)

has no reciprocal irreducible factor. It contradicts the induction hypothe-
sis (1).

Now we will choose a certain zero αni
of λi(t) inductively. Let αn1

be any zero of λ1(t). Suppose αni
has been chosen. Since λi+1(t) divides

λi(t
ni+1/ni), we can choose a zero αni+1 of λi+1(t) satisfying (αni+1)

ni+1/ni =
αni

by appealing to Lemma 3.14 (2). We note that the chosen numbers

satisfy (αni
)ni/nj = αnj

for any i > j.

For any positive integer c, choose ni divided by c and let αc = (αni
)ni/c.

αc is well-defined, independent of the choice of ni; for, if c divides both ni

and nj where i > j, then

(αnj
)nj/c = ((αni

)ni/nj )nj/c = (αni
)ni/c.

Since αni
is reciprocal, so is αc. Moreover, for any r and c, there is some ni

divided by rc, and

(αrc)
r = ((αni

)ni/rc)r = (αni
)ni/c = αc.

Therefore α = (αc) is an element of P such that λ(α1) = 0. �

Proof of Theorem 3.13. Suppose that [A] ∈ Gn,c represents A ∈ Gn

and s(A), e(A), and d(A) vanish. By replacing [A] with [i2A] ∈ Gn,2c, we
may assume that the (±1)-primary parts of [A] are trivial, since

∆i2A(±1) = ∆A((±1)2) = ∆A(1) 6= 0.

By definitions, sαc(A) = 0 for α ∈ P0 and eαc(A) = 0 for α ∈ P . For d,
there exists r such that dαc(A) ∈ N×

αrc
for all α ∈ P . By replacing [A] ∈ Gn,c

by [irA] ∈ Gn,rc, we may assume that dαc(A) ∈ N×
αc

for any α ∈ P by the
reparametrization formula (Lemma 3.8).

Without any loss of generality, we may assume that A has only one
nontrivial primary part, say the z-primary part for some reciprocal z 6= ±1.
Let λ(t) be the irreducible polynomial of z. If λ(tr) has no symmetric factor
for some r, then [irA] = 0 in Gn by Proposition 3.6 (1), and thus A = 0
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in Gn. Unless, by Lemma 3.15, there is α ∈ P such that αc is a zero of λ(t).
Thus by the above paragraph, sz[A] (when |z| = 1), ez[A], and dz[A] vanish.
Since z 6= ±1, it follows that [A] = 0. It completes the proof. �

Theorem 3.16. Every element in Gn has order 1, 2, 4, or ∞.

Proof. Let A be an element in Gn. By Proposition 3.12 (2) and (3),
e(4A) and d(4A) are always trivial. If s(A) is nontrivial, then A has infinite
order by the additivity of s. Suppose that s(A) is trivial. Then, s(4A) is
trivial by Proposition 3.12 (1). From this it follows that 4A = 0 in Gn, by
Theorem 3.13. �

In future sections, we will frequently use the following “coordinates” of
our invariants. For A ∈ Gn and α ∈ P0, we denote sα(A) ∈ Z be the α-th
coordinate of s(A) ∈ ZP0 . For α ∈ P , eα(A) ∈ Z/2 is defined similarly. We
denote by dα(A) the image of d(A) under the canonical map

lim−→
c

∏

α∈P

Q(αc + α−1
c )×

N×
αc

−→ lim−→
c

Q(αc + α−1
c )×

N×
αc

.

If A is the image of [A] ∈ Gn,c, then the coordinates can be described in
terms of invariants of [A]: sα(A) = sαc [A] and eα(A) = eαc [A]. dα(A) is the
image of dαc [A] under

Q(αc + α−1
c )×

N×
αc

−→ lim−→
c

Q(αc + α−1
c )×

N×
αc

.

sα, eα, and dα also have additivity properties similar to Proposition 3.12.
For dα, the additivity can be expressed as

dα(A+ B) = (−1)eα(A)eα(B)dα(A)dα(B).

3.3. Computation of e(A)

In the remaining part of this chapter we give a full calculation of the
algebraic structure of Gn using our invariants discussed in the previous sec-
tion. We remark that the torsion-free part of Gn is already well understood:
in [12, 7] it was shown that there are infinitely many independent elements
of infinite order in Gn.

In this section we focus on the computation of order two elements in Gn.
Although there are 2 and 4-torsion elements in Gn,c (e.g., the argument of

Levine’s work [32] on the structure of GZ
n can be applied), it has been still

unknown whether there are nontrivial torsion elements in Gn since Gn,c → Gn

may kill torsion elements.

Example 3.17 (Kawauchi [22]). Consider a Seifert matrix

A =

[

1 1
0 −1

]
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of the figure eight knot. It is well known [A] ∈ Gn = Gn,c has order 2 (when
n ≡ 1 mod 4). However, since the irreducible factors of the Alexander
polynomial

∆i2A(t) = ∆A(t2) = (t2 − t− 1)(t2 + t− 1)

are all non-reciprocal, [i2A] = 0. Therefore the image of [A] in Gn is trivial.

In the above example, the key property is that ∆A(tr) is factored into
non-reciprocal factors for some r. For any such A, the image of [A] in Gn

is trivial. Appealing to Lemma 3.15, this property may be rephrased as
follows: for any α = (αi) ∈ P and c > 0, αc is not a zero of ∆A(t). Thus,
in order to obtain a nontrivial element in Gn, we need to construct A such
that ∆A(αc) = 0 for some α = (αi) ∈ P . Of course when ∆A(t) has a zero
of unit complex length, we can easily find such an α ∈ P0. However, in this
case, α may have nontrivial contribution to the signature invariant so that
the order is not finite.

The first step of our construction of nontrivial torsion elements in Gn is
to find elements in P − P0 which automatically have no contribution to the
signature.

Proposition 3.18. Suppose λ(t) = at2 − (2a + p)t + a, where a is a
prime and p is an integer such that p 6≡ 0 mod a and p 6≡ −2a±1 mod a2.
Then λ(tr) is irreducible for any positive integer r.

Proof. Our proof consists of elementary arguments. Suppose

λ(tr) = at2r − (2a + p)tr + a

= (bkt
k + · · ·+ b1t + b0)(clt

l + · · · c1t + c0)

where bi and cj are integers, k + l = 2r, and k, l < 2r.
Since b0c0 = a is a prime, we may assume that b0 = 1 and c0 = a. By

looking at the coefficients of t1, t2, . . . , we have

0 = b0ci + b1ci−1 + · · ·+ bic0

for 1 ≤ i ≤ r − 1, and hence inductively

0 ≡ c0 ≡ · · · ≡ cr−1 mod a.

Similarly cr ≡ −p 6≡ 0 mod a.
Computing the coefficients of t2r, t2r−1, . . . from the higher degree terms

of the two factors, we have

0 = bkcl−i + bk−1cl−i+1 + · · ·+ bk−icl

for 1 ≤ i ≤ r − 1 and

−(2a + p) = bkcl−r + bk−1cl−r+1 + · · · + bk−rcl.

Since a = bkcl is a prime, we have two cases.
Case 1: bk = ±1 and cl = ±a. Then

cl−1 ≡ · · · ≡ cl−r+1 ≡ 0,

cl−r ≡ ±p 6≡ 0 mod a.
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Thus r ≤ l − r. It contradicts l < 2r.
Case 2: bk = ±a and cl = ±1. Then similarly

bk ≡ · · · ≡ bk−r+1 ≡ 0,

bk−r 6≡ 0 mod a.

Thus k − r ≥ 0. Since cl 6≡ 0, l ≥ r. Hence k = l = r. Now looking at the
tr term, we have

−(2a + p) ≡ brc0 + br−1c1 + · · ·+ b0cr ≡ b0cr = ±1 mod a2.

It contradicts the hypothesis. �

We have the following consequence of Proposition 3.18 and Lemma 3.15.

Corollary 3.19. Suppose λ(t) is as in Proposition 3.18, z is a zero
of λ(t), and c is a positive integer. Then there is α = (αi) ∈ P such that
αc = z.

Remark 3.20.
(1) The polynomial in Proposition 3.18 has two different real zeros

which are not ±1 if p(4a + p) > 0. In particular, the element α in
Corollary 3.19 is not in P0.

(2) There are infinitely many pairs (a, p) satisfying the assumption of
Proposition 3.18. For example, if a > 3 is a prime and 0 < p < a,
then (a, p) satisfies the assumption.

Remark 3.21. If λ(t) = at2 − (2a + p)t + a is as in Proposition 3.18,
then the conclusion of Proposition 3.18 also holds for λ(−t). For, it is easily
seen that (a, p) satisfies the assumptions of Proposition 3.18 if and only if
so does (a,−4a− p), and thus we can apply Proposition 3.18 for

λ(−t) = at2 + (2a + p)t + a = at2 − (2a + (−4a− p))t + a.

In order to construct Seifert matrices whose Alexander polynomials are
as in Proposition 3.18, we appeal to the following general characterization
and realization theorem for Alexander polynomials. Recall from Section 2.2
that a rational Seifert matrix is defined to be a square matrix A such that
P (A − ǫAT )P T is integral, even, and unimodular over Z for some rational
square matrix P . Note that a rational Seifert matrix is always of even
dimension.

Theorem 3.22. A polynomial ∆(t) is the Alexander polynomial of some
2g × 2g rational Seifert matrix if and only if

(1) ∆(t) = ∆(t−1)t2g,
(2) ∆(ǫ) is a square in Q, and
(3) ǫg∆(1) is a nonzero square in Q.

Remark 3.23. There is a well-known characterization of the Alexander
polynomial of an integral Seifert matrix A (i.e., A− ǫAT is unimodular) by
Levine [33]. Our characterization gives a larger class of polynomials than
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integral Alexander polynomials. For example, there are integral polynomials
∆(t) which can be realized as Alexander polynomials of rational Seifert
matrices but ∆(1) 6= ±1. No integral Seifert matrix has such an Alexander
polynomial.

Proof. Our argument is similar to [33]. Suppose that ∆(t) = det(tA−
ǫAT ) for some 2g × 2g rational Seifert matrix A. (1) is immediate. Since
ǫA− ǫAT is skew-symmetric, (2) follows. For (3), ∆(1) 6= 0 since A − ǫAT

is nonsingular. If ǫ = 1, (2) implies (3). If ǫ = −1, the signature of U =
P (A + AT )P T is known to be divisible by 8 and so

∆(1) = det(A + AT ) ≡ det(U) = (−1)g

modulo squares.
For the converse, we will use an induction on g to show that ∆(t) =

det(tA − ǫAT ) for some rational Seifert matrix A satisfying the following
auxiliary condition: the (1, 1)-cofactor of tA− ǫA is

(−ǫ)g−1(t− 1)2g−2(t− ǫ).

For g = 1, ∆(t) is of the form at2 + bt + a. If ǫ = 1, ∆(1) = u2 implies that
b = u2 − 2a, where u ∈ Q×. Then it can be verified that

A =

[

a u
0 1

]

satisfies all the desired properties. If ǫ = −1, ∆(−1) = u2 and ∆(1) = −v2

for some u ∈ Q, v ∈ Q× and hence a = (u2− v2)/4, b = −(u2 + v2)/2. Then
we can take

A =

[

u2−v2

4 u

0 1

]

.

In this case, for

P =

[

1
v

−u+v
2v

− 1
v

u+v
2v

]

,

P (A + AT )P T is an even unimodular integral matrix.
Now suppose g > 1. Given ∆(t) satisfying the above (1)–(3), let a =

−(−ǫ)g−1∆(0), and choose ∆0(t) such that

∆(t) = −a(−ǫ)g−1(t− 1)2g−2(t− ǫ)2 + ǫt∆0(t).

Then it can be checked that ∆0(t) satisfies (1)–(3) where g − 1 plays the
role of g. By our induction hypothesis, ∆0(t) = det(tA0 − ǫAT

0 ) for some
(2g−2)×(2g−2) rational Seifert matrix A0 satisfying the auxiliary condition.
Let

A =













0 1 a
0 0 1
ǫa ǫ

A0













.
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Then we can check that det(tA− ǫA) = ∆(t) and A satisfies all the desired
properties including our auxiliary condition. It completes the proof. �

Using the above results, we can construct examples with nontrivial e(A).
Let

λ(t) = −a

p
t2 +

(2a

p
+ 1

)

t− a

p
where a and p are nonzero integers. Then from Theorem 3.22 it follows that

∆(t) =

{

λ(t) for ǫ = 1

(t + 1)2λ(t) for ǫ = −1

is always the Alexander polynomial of a rational Seifert matrix.

Theorem 3.24. Suppose a and p are positive integers satisfying the
hypothesis of Proposition 3.18 and A is a rational Seifert matrix whose
Alexander polynomial is ∆(t) given above. Then the image A of [A] un-
der φc : Gn = Gn,c → Gn has order 2 or 4 for any c.

Proof. First we claim that s(A) = 0. For ǫ = 1, it follows from the
fact that ∆(t) has no zero of unit length. For ǫ = −1, although z = −1 is
a zero of ∆(t), it has no contribution to the signature s(A). (In fact, the
(−1)-primary part is a skew-symmetric form over Q(−1) = Q and hence
automatically Witt trivial.)

From the claim, A has finite order in Gn. Thus it suffices to show that
A is nontrivial. Let z be a zero of λ(t). Then by Corollary 3.19, there is
an element α = (αc) ∈ P such that αc = z. By Proposition 3.6, the α-th
coordinate eα(A) = eαc [A] ∈ Z/2 of e(A) is the exponent of the irreducible
polynomial λ(t) of z in ∆(t), which is equal to 1. Thus e(A) is nontrivial. �

Remark 3.25. In some cases we can explicitly determine the order of
A constructed above without computing d(A). Suppose ǫ = 1, a is an odd
prime, and p = 1. Then in the above proof we can choose A as an integral
Seifert matrix of an n-knot in Sn+2 with Alexander polynomial ∆(t); for,
it is easily checked that our polynomial ∆(t) has integral coefficients and
satisfies the conditions of Levine’s realization theorem [33, Proposition 1].
It is known that if every prime ≡ −1 mod 4 has an even exponent in the
factorization of 4a + 1, then [A] has order 2 in Gn (e.g. see [32, Corollary
23 (c)]). Thus, for such a, A has order 2 in Gn.

In particular, if both a and 4a + 1 are primes, then A has order 2 in Gn.
This relates the structure of Gn with a well-known open problem in number
theory: are there infinitely many pairs of primes of the form (a, 4a+1)? If the
answer is affirmative, then Theorem 3.24 can be used, without computing
d(A), to produce infinitely many order 2 elements that generate a (Z/2)∞

summand of Gn.
At present, the author does not know any method to construct (Z/2)∞

and (Z/4)∞ summands of Gn without computing d(A). In the next two
sections we compute d(A) explicitly.
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3.4. Artin reciprocity and norm residue symbols

The most crucial difficulty in the computation of d(A) is to detect non-
trivial elements in the limit

lim−→
c

∏

α∈P

Q(αc + α−1
c )×

N×
αc

where the value of d(A) lives. To study the limit, first we consider an easier
problem whether an element in Q(z + z−1)× is contained in

N×
z = {ww̄ | w ∈ Q(z)×}.

The main tool we will use is the Artin reciprocity, which is one of the
central machinery in algebraic number theory. In this section, for readers not
familiar with this, we give a quick review of necessary results from algebraic
number theory, which can be used as a reference for later sections. We claim
no originality on the materials discussed in this section. There are several
good general references on algebraic number theory, e.g., [4, 42, 29].

In the next section, we will investigate the limiting behaviour of the
Artin reciprocity, as an interesting application of these number theoretic
tools which is related with the structure of limits of Seifert matrices.

Let L be an abelian extension of a number field K and let NL
K : L× → K×

be the norm. Of course the main example we keep in mind is L = Q(z)
and K = Q(z + z−1) where z is a reciprocal number. In this case the
(multiplicative) subgroup N×

z in Q(z+z−1)× can be identified with the group
of nonzero norms for L over K, i.e., the image of NL

K . Motivated from this,

we consider the problem of detecting nontrivial elements of K×/NL
K(L×). By

the Hasse principle, the global problem can be reduced into a local problem.
For a valuation v of K, we denote the completion of K with respect to v by
Kv and the completion of L with respect to an extension of v by Lv.

Theorem 3.26 (Hasse principle). An element x in K× is a norm for L
over K if and only if x is a norm for Kv over Lv for every valuation v on
K.

In the local case, the local Artin reciprocity relates norms with an asso-
ciated Galois group.

Theorem 3.27 (Local Artin reciprocity). There is a surjection

ϕv : K×
v −→ Gal(Lv/Kv)

whose kernel is the set of nonzero norms of Lv over Kv.

The above homomorphism ϕv is called the local Artin map. From this the
group K×

v /NLv

Kv
(Lv×) can be identified with the Galois group Gal(Lv/Kv),

and hence our problem can be solved by computing ϕv and the structure
of Gal(Lv/Kv).
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Furthermore, for the case of a Kummer extension, this association can
be described in terms of the norm residue symbols (or Hilbert symbols). Al-
though it can be done for any Kummer extension, we will focus on quadratic
extensions L = K(

√
a) (a ∈ K), which will be sufficient for our purpose.

In this case Lv = K(
√

a)v is isomorphic to Kv(
√

a) and ±√a are all the
conjugates of

√
a. Thus a Galois automorphism of Lv over Kv is either the

identity or
√

a→ −√a.

Definition 3.28. For a, b ∈ K×, the (quadratic) norm residue symbol
(a, b)v is defined by the equation

ϕv(b)(
√

a) = (a, b)v
√

a

where ϕv : K×
v → Gal(Kv(

√
a)/Kv) is the local Artin map discussed above.

Obviously (a, b)v = ±1. We summarize basic properties of the norm
residue symbol:

Proposition 3.29 ([4, 42]).
(1) ( , )v : K× ×K× → {±1} is symmetric and bilinear.
(2) (a, b)v = 1 if and only if b is a norm for Kv(

√
a) over Kv.

(3) For any a, b ∈ K×, (a, b)v = 1 for all but finitely many v. Further-
more

∏

(a, b)v = 1 where v runs over all valuations on K.

A consequence of Proposition 3.29 and the Hasse principle is that b is a
norm for K(

√
a) over K if and only if (a, b)v = 1 for every v.

For computation, the following results are useful:

Proposition 3.30 ([4, 42]).
(1) If Kv = C, then (a, b)v = 1 for any a, b.
(2) If Kv = R, then (a, b)v = 1 if and only if a > 0 or b > 0.
(3) If v is a non-archimedian valuation associated to a prime p of K

over an odd prime p ∈ Z, then

(a, b)v =
(

(−1)v(a)v(b) av(b)

bv(a)

)
pf(p,p)

−1
2

where f(p, p) = [OK/p : Z/p] is the degree of the residue field
extension OK/p over Z/p, and OK is the ring of integers of K.
(The right-hand side is viewed as a formula in OK/p.)

(4) If K = Q and v is the 2-adic norm, then

(a, b)v = (−1)e(a
′)e(b′)+v(a)w(b′)+v(b)w(a′)

where a = 2v(a)a′, b = 2v(b)b′, and e(x) and w(x) denote the modulo
2 residue class of (x− 1)/2 and (x2 − 1)/8, respectively.

Remark 3.31. In the case of a general number field K other than Q,
the computation of (a, b)v for a valuation v associated to a prime p over 2
is more complicated. We will not use this.
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In our computation of the norm residue symbols using Proposition 3.30,
we will use the following results on splittings of primes. Suppose A is a
Dedekind domain with quotient field K, L is a finite extension over K of
degree n, and B is the integral closure of A in L. For a prime p in A, let

pB =
∏

q|p
q
e(q,p)

be the splitting in B where q runs over the primes of B over p. Let f(q, p)
be the degree of B/q over A/p. Then we have

Lemma 3.32 ([4, 42, 29]).
(1) n =

∑

q|p e(q, p)f(q, p).

(2) e(r, p) = e(r, q)e(q, p) and f(r, p) = f(r, q)f(q, p) if r is over q and
q is over p.

For quadratic extensions, the splitting of a prime is well understood:

Lemma 3.33 ([42]). Suppose L = K(
√

σ) for some σ ∈ A which is not
square. If B = A[

√
σ] is the integral closure of A in L and p is a prime in

A which does not contain 2, then pB splits into primes in B as follows:

pB =











(p,
√

σ)2 if σ ≡ 0 mod p

pB if σ 6≡ x2 mod p for any x ∈ A

(p, x−√σ)(p, x +
√

σ) if 0 6≡ σ ≡ x2 mod p for some x ∈ A

In the last case, (p, x−√σ) and (p, x +
√

σ) are different primes in B.

For the computation in later sections, we also need the following gener-
alization of the last case of Lemma 3.33.

Lemma 3.34. Suppose A, K, σ, L, and p are as in Lemma 3.33, and
suppose B is the integral closure of A in L (without assuming B = A[

√
σ]).

If 0 6≡ σ ≡ x2 mod p for some x ∈ A, then pB splits into the product of
two different primes (p, x−√σ) and (p, x +

√
σ).

Since the author could not find a proof of Lemma 3.34 in the literature,
he gives a proof for concreteness.

Proof. By [42, Proposition III.12], the integral closure C of Ap (local-
ization of A away from p) in L is given by C = Ap[β] for some β ∈ C. Since L
is quadratic, β2 +aβ = b for some a, b ∈ Ap. Since 1/2 ∈ Ap, we may assume

a = 0 by completing the square, i.e., β =
√

b. Since
√

σ ∈ B ⊂ C = Ap[
√

b],

we can write
√

σ = u+v
√

b for some u, v ∈ Ap. From σ = u2 +v2b+2uv
√

b,
it follows that u = 0 since v = 0 implies that σ is square. Writing v = s/r
where s ∈ A, r ∈ A − p, we have r2σ = s2b. Since r and σ are not in p, so
are s and b, i.e., vp(v) = 0. Therefore

b = v−2σ ≡ (v−1x)2 6≡ 0 mod pp.

Now by Lemma 3.33, pp splits into two different primes in C, and thus so
does p in B.
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On the other hand, from 2σ /∈ p, it follows that p + (2σ) = (1) and
p2 + 2σp = p in A. Therefore

(p, x −√σ) · (p, x +
√

σ) = (p2, (x−√σ)p, (x +
√

σ)p, x2 − σ)

⊃ (p2, 2
√

σp) ⊃ (p2, 2σp) ⊃ pB

in B, that is, (p, x − √σ) · (p, x +
√

σ) divides pB. This completes the
proof. �

We finish this section with the following elementary lemma, which will
be used in the next section for the computation of our discriminant invariant.

Lemma 3.35. Suppose K is a finite extension of a number field F .

(1) If p is a prime of K which is over a prime q of F , then

f(p, q)vp(−) = vq(N
Kvp

Fvq
(−))

where vp and vq are the valuations associated to the primes p and
q, respectively.

(2) For any prime q of F ,
∏

p|q
N

Kvp

Fvq
(−) = NK

F (−)

where p runs over all primes of K which are over q.

For a proof, see [4] or [42].

3.5. Computation of d(A)

3.5.1. 2-torsion. Returning to the study of the torsion elements of Gn,
we will show that there are infinitely many order 2 elements. Consider a
specialization of the polynomial ∆(t) used in Theorem 3.24 obtained by
letting p = 1:

∆(t) =

{

λ(t) for ǫ = 1

(t + 1)2λ(t) for ǫ = −1

where
λ(t) = −at2 + (2a + 1)t− a.

As in Section 3.3, it is the Alexander polynomial of a rational Seifert ma-
trix A.

Theorem 3.36. If a is a prime such that a ≡ 1 mod 4 and A is a
rational Seifert matrix whose Alexander polynomial is ∆(t) given above, then
the image A of [A] under Gn = Gn,c → Gn has order 2 for any c.

Proof. By Theorem 3.24, A 6= 0. Thus it suffices to show that A+A =
0 in Gn. The invariants s and e vanish for A + A by additivity (Proposi-
tion 3.12). We will show that i2[A⊕A] has vanishing discriminant invariants,
i.e.,

dz(i2[A⊕A]) ≡ 1 mod N×
z
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for all z. Then it follows that d(A+A) is trivial, and the proof is completed.
(Indeed i2[A⊕A] = 0 is proved.)

Note that i2(A ⊕ A) has Alexander polynomial ∆(t2)2. Since λ(t2) is
irreducible, the λ(t2)-primary part is the only nontrivial primary part of
i2(A ⊕ A). (Note that for ǫ = −1 the (t + 1)-primary part of i2(A ⊕ A) is
automatically trivial.) Hence, in order to show the above claim, it suffices
to consider a zero

z =

√
4a + 1 + 1√

4a

of λ(t2). By Proposition 3.6,

dz(i2[A⊕A]) ≡ −1 mod N×
z .

So the question is whether −1 is a norm for the extension L = Q(z) over K =

Q(z + z−1). Straightforward calculation shows that K = Q(
√

a(4a + 1))
and L = K(z − z−1) = K(

√
a). Thus, by Section 3.4, we need to show

(−1, a)v = 1 for every valuation v on K. We consider the following three
cases:

Case 1: Suppose v is archimedian, i.e., Kv
∼= R or C. Then (−1, a)v = 1

by Proposition 3.30.
Case 2: Suppose v is induced by a prime p of K which divides 2. If

√
a is

contained in Kv, then −1 is automatically a norm for Kv(
√

a) over Kv, and
we are done. Assume not. We consider the following diagram of quadratic
field extensions:

Kv(
√

a)

Kv Q2(
√

a)

Q2

where Q2 is the 2-adic completion of Q. Since the norm

N
Q2(

√
a)

Q2
: Q2(

√
a)× −→ Q×

2

is the restriction of

N
Kv(

√
a)

Kv
: Kv(

√
a)× −→ K×

v ,

it suffices to show that −1 is a norm for Q2(
√

a) over Q2. By Proposi-
tion 3.30,

(−1, a)2 = (−1)e(−1)e(a) = (−1)e(a) = 1

since a ≡ 1 mod 4.
Case 3: Suppose v is induced by a prime p of K which divides an odd

prime p ∈ Z. Then by Proposition 3.30,

(−1, a)v = (−1)v(a)pf(p,p)
−1

2 .
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We will show v(a) is even. p divides a if and only if p divides a. So if p 6= a,
then v(a) = 0. Hence we may assume that p = a. Now by Lemma 3.33, p = a

splits into p2 in K = Q(
√

a(4a + 1)) where p =
(

a,
√

a(4a + 1)
)

. (Note
that Q and our K play the roles of K and L in Lemma 3.33, respectively.)
Therefore v(a) = 2 and (−1, a)v = 1 as desired. �

3.5.2. 4-torsion. Now we construct 4-torsion elements in Gn. We again
use the polynomials considered in Theorem 3.24: let

∆(t) =

{

λ(t) for ǫ = 1,

(t + 1)2λ(t) for ǫ = −1,

where

λ(t) = −a

p
t2 +

(2a

p
+ 1

)

t− a

p
.

Theorem 3.37. Suppose that a and p are different primes such that
p ≡ −1 mod 4 and p 6≡ −(2a+1) mod a2. If A is a rational Seifert matrix
whose Alexander polynomial is ∆(t) given above, then the image A of [A]
under Gn = Gn,c → Gn has order 4 for any c.

Proof. Because A is not of infinite order, it is of order 1, 2 or 4. Thus
it suffices to show that A+A is nontrivial. Let z be a zero of λ(t). Choose
α ∈ P such that αc = z by appealing to Corollary 3.19. This gives us
a choice of an r-th root of z for each r: we denote z1/r = αcr. We will
show that the “α-th coordinate” dα(A + A) of d(A + A) is nontrivial. By
Proposition 3.12, we have

dα(A+A) = (−1)ez [A] = −1 ∈ lim−→
i

Q(αi + α−1
i )×

N×
αi

.

Thus, appealing to Section 3.4, it suffices to show that −1 is not a norm for
Q(z1/r) over Q(z1/r + z−1/r) for all r.

As a special case, suppose that r = 2k for some k. In this case we
decompose the extension Q(z1/r + z−1/r) over Q into a tower of quadratic
extensions which are easier to understand. For notational convenience, let
denote

Ki = Q(z1/2i

+ z−1/2i

),

Li = Q(z1/2i

) = Ki(z
1/2i − z−1/2i

).

Let

mi =

{

(2a + p)2 for i = 0,

a(2a +
√

mi−1) for i > 0.

Then it can be checked inductively that z1/2i
+ z−1/2i

=
√

mi/a and so
Ki = Q(

√
mi). Furthermore, since

(z1/2i − z−1/2i

)2 = (z1/2i

+ z−1/2i

)2 − 4 = mi/a
2 − 4,

we have Li = Ki(
√

σi) where σi = mi − 4a2.
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We will construct a prime pi in the ring of integers OKi
such that mi ≡

4a2 mod pi, using an induction. Let p0 = (p). Then

m0 = (2a + p)2 ≡ 4a2 mod p0

as desired. Suppose pi has been defined. Consider the splitting of pi in
Ki+1: since p ∤ 4a2, mi ≡ 4a2 6≡ 0 mod pi. Since Ki+1 = Ki(

√
mi),

piOKi+1 = (pi,
√

mi − 2a)(pi,
√

mi + 2a)

by Lemma 3.34. Let pi+1 = (pi,
√

mi − 2a). Then

mi+1 = a(2a +
√

mi) ≡ 4a2 mod pi+1

as desired.
Let vi be the valuation on Ki associated to the prime pi. We will show

that (−1, σi)vi
= −1 for every i. By Proposition 3.30,

(−1, σi)vi
= (−1)vi(σi)

pf(pi,p)
−1

2 .

Thus we have to show that f(pi, p) and vi(σi) are odd. (Recall that p ≡ −1
mod 4 by our hypothesis.)

Let

f(pi, pj) = [OKi
/pi : OKj

/pj ]

be the degree of the extensionOKi
/pi over OKj

/pj for i > j. Then since Ki is
a quadratic extension of Ki−1 and pi−1 splits into two distinct primes in Ki,
f(pi, pi−1) = 1 by Lemma 3.32 (1). Thus, f(pi, p) = 1 by Lemma 3.32 (2).

Since σ0 = p(4a + p) and p 6= a, v0(σ0) = 1. For i ≥ 1, first note that

[(Ki)vi
: (Ki−1)vi−1 ] = e(pi, pi−1) = 1.

Therefore

(Ki)vi
= (Ki−1)vi−1 = · · · = (K0)v0 = Qp

and vi on (Ki)vi
is the p-adic valuation on Qp. Viewing

√
mi as an element

of Qp, we can write
√

mi ≡ kp + 2a mod p2 since
√

mi− 2a ≡ 0 mod pi+1.

By an induction, we can show that k ≡ 4−i mod p. Indeed, by squaring
the above equation, we obtain

a(2a +
√

mi−1) = mi ≡ 4akp + 4a2 mod p2,

and by the induction hypothesis for i− 1, the conclusion for i follows. Thus

σi = mi − 4a2 ≡ 4−i+1ap 6≡ 0 mod p2.

This shows vi(σi) = 1. It completes the proof for the special case r = 2k.
Now we consider the general case. Given r ≥ 1, write r = 2is where s

is an odd integer. In addition to the notations used in the previous special
case, let

K = Q(z1/r + z−1/r),

L = Q(z1/r) = K(
√

σ)
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where
σ = (z1/r − z−1/r)2 = (z1/r + z−1/r)2 − 4 ∈ K.

Then we have the following field extensions:

L

p K

Li

pi Ki

p K0 = Q

We need to find a prime p of K such that (−1, σ)vp
= −1 for the valuation

vp associated to p; in other words, both vp(σ) and f(p, p) must be odd by
Proposition 3.30. Indeed we will find p which is over the prime pi of Ki

constructed in the above special case. Basically the existence of such a
prime p is guaranteed by a parity argument based on the fact that K is an
odd degree extension over Ki. For this purpose we use Lemma 3.35. In our
case it follows that

(∗)

∑

p|pi

f(p, pi)vp(σ) =
∑

p|pi

vi(N
Kvp

(Ki)vi

(σ))

= vi

(

∏

p|pi

N
Kvp

(Ki)vi

(σ)
)

= vi(N
K
Ki

(σ)).

Now NK
Ki

(σ) can be computed as follows. It is easily seen that [L : K] ≤ 2

and [K : Ki] ≤ s. Since vi(σi) = 1,
√

σi is not contained in Ki and [Li :

Ki] = 2. From the irreducibility of λ(t2
is) and λ(t2

i
), [L : Li] = s and so

2s = [L : Ki] = [L : K][K : Ki].

This shows [K : Ki] = s and [L : K] = 2. From this we obtain

NK
Ki

(σ) = NK
Ki

((z
1
r − z−

1
r )2)

= NK
Ki

(−NL
K(z

1
r − z−

1
r ))

= −NL
Ki

(z
1
r − z−

1
r ) = −NLi

Ki
NL

Li
(z

1
r − z−

1
r ).

The conjugates of z1/r over Li are z1/rζk for k = 0, 1, . . . , s− 1 where ζ is a
primitive s-th root of unity. Thus

NL
Li

(z
1
r − z−

1
r ) =

s−1
∏

k=0

(z
1
r ζk − z−

1
r ζ−k)

= ζ
s(s−1)

2

s−1
∏

k=0

(z
1
r − z−

1
r ζ−2k)

= z
1
2i − z−

1
2i =

√
σi
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since s is odd. Therefore

NK
Ki

(σ) = −NLi

Ki
(
√

σi) = σi.

Now (∗) becomes
∑

p|pi

f(p, pi)vp(σ) = vi(σi) = 1.

By a parity argument, it follows that there exists at least one prime p over
pi such that both f(p, pi) and vp(σ) are odd. It completes the proof. �

3.5.3. Structure of Gn. Fix c > 0. Since there are infinitely many
primes a ≡ 1 mod 4, we can construct infinitely many Seifert matrices Ai

such that Ai = φc(Ai) has order 2 in Gn using Theorem 3.36. Similarly, since
there are infinitely many pairs (a, p) satisfying the condition of Theorem 3.37
(e.g., first choose a prime p ≡ −1 mod 4 and choose sufficiently large prime
a), we can construct infinitely many Seifert matrices Bi such that Bi =
φc(Bi) has order 4 in Gn. Furthermore, we can show the following result:

Theorem 3.38. The subgroup H generated by the Ai and Bi is isomor-
phic to (Z/2)∞⊕(Z/4)∞ and is a summand of (the torsion subgroup of) Gn.

Proof. Since (the irreducible decompositions of) the Alexander poly-
nomials of the Ai and Bi are distinct, the nontrivial primary parts of the
Ai and Bi are “orthogonal” in the following sense: let zi 6= −1, wi 6= −1 be
zeros of ∆Ai

(t) and ∆Bi
(t), respectively. Then the zi and wi are mutually

distinct complex numbers such that the z-primary part of Aj (resp. Bj) is
trivial for all z ∈ {zi, wi} but z = zj (resp. wj)

By Corollary 3.19, there exist αi, βi ∈ P such that (αi)c = zi, (βi)c = wi.
Combining the above orthogonality with the computation in the proofs of
Theorems 3.36 and 3.37, we have the following properties:

(1) For α ∈ {αi, βi}, eα(Ai) is nontrivial if and only if α = αi, and
eα(Bi) is nontrivial if and only if α = βi.

(2) dβi
(2Bj) is nontrivial if and only if i = j.

Suppose that
∑

aiAi +
∑

biBi = 0, where all but finitely many ai and
bi are zero. Taking eαi

of both sides and using the property (1) above, we
obtain

0 ≡ ai · eαi
(Ai) = ai mod 2

for each i. Similarly, taking eβi
, it is shown that bi is even for each i. Since

Ai has order two, aiAi = 0 so that the relation becomes
∑

b′i(2Bi) = 0
where bi = 2b′i. Taking dβi

of both sides and using the property (2) above,
it follows that b′i is even, i.e., bi is a multiple of 4 for each i. Since Bi has
order four, biBi = 0. This proves that H ∼= (Z/2)∞ ⊕ (Z/4)∞.

To show that H is a summand of the torsion subgroup T of Gn, we appeal
to the following result from group theory: a subgroup H of an abelian group
G is called a pure subgroup if kG ∩H ⊂ kH for all k.
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Lemma 3.39. Suppose G is an abelian group and H is a pure subgroup
of G. If rH = 0 for some r > 0, then H is a direct summand of G.

For a proof, see [41, p. 199].
In our case, 4T = 0 and hence 4H = 0. To verify that our H is a pure

subgroup of T , i.e., kT ∩ H ⊂ kH for all k, we write k = 2s · k′, where k′

is odd. Since 4H = 0 = 4T , k′T = T and k′H = H. Thus kT = 2sT and
kH = 2sH. Again appealing to 4T = 0 = 4H, we may assume that s = 1,
i.e., it suffices to check 2T ∩H ⊂ 2H. Suppose

∑

aiAi +
∑

biBi = 2A where
A ∈ T . As before, by taking eαi

and eβi
, ai and bi are even. Hence

∑

aiAi +
∑

biBi = 2
(

∑

b′iBi

)

∈ 2H

where bi = 2b′i. This completes the proof. �

Corollary 3.40. Gn is isomorphic to Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

Proof. Obviously Gn is the direct sum of its torsion subgroup T and
the free abelian group Gn/T . It is already known that the rank of Gn/T is
infinite (e.g., see [7]). Since 4T = 0, T is a direct sum of cyclic groups of
order 2 and 4, by Prüfer’s theorem (e.g., see [41, p. 197]). Combining this
with Theorem 3.38, the conclusion follows. �

Example 3.41. We give concrete examples of Seifert matrices repre-
senting finite order elements in Gn. The Alexander polynomial described in
Theorem 3.36 can be realized by a Seifert matrix by Theorem 3.22. In fact,
by the algorithm used in the proof of Theorem 3.22, we obtain the following
Seifert matrix:

[

−a 1
0 1

]

, if ǫ = 1,









0 1 a 0
0 0 1 0
−a −1 −1 0
0 0 0 1









, if ǫ = −1.

Therefore the image of this matrix under Gn = Gn,c → Gn is of order two.
In a similar way, we obtain a Seifert matrix

[−a
p 1

0 1

]

, if ǫ = 1,









0 1 a
p 0

0 0 1 0
−a

p −1 −1 0

0 0 0 1









, if ǫ = −1,

whose Alexander polynomial is as described in Theorem 3.37, so that its
image under Gn = Gn,c → Gn is of order four.

We obtain infinitely many matrices by choosing different values of a
and p in the above construction, and by Theorem 3.38, the elements in
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Gn represented by these matrices generate a summand of Gn isomorphic to
(Z/2)∞ ⊕ (Z/4)∞.

Remark 3.42. As a consequence of the results of this section, we can
compute some surgery obstruction Γ-groups. First we rephrase our computa-
tion in terms of relative Witt groups. From Theorem 3.22, the group Gn,c in-
jects into the Witt group Wǫ(Q[Z], S′) where S′ = {f(t) ∈ Q[Z] | f(1) 6= 0}.
Consider a direct system consisting of Wi = Wǫ(Q[Z], S′) and homomor-
phisms Wi → Wri induced by t → tr. Then our arguments in this section
show that

lim−→Wi
∼= Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

On the other hand, every finitely generated Q[Z]-module has homo-
logical dimension one, since Q[Z] is a PID. Thus the relative Witt group
Wǫ(Q[Z], S′) can be identified with the relative L-group Ln+3(Q[Z], S′),
which is easily seen to be isomorphic to Ln+3(Q[Z], S0) where S0 = 1+Ker ε
and ε : Q[Z] → Q is the augmentation map. From exact sequences relating
Γ-groups, relative L-groups, and localizations (e.g., see Ranicki’s book [40]),
we have

Γn+3

















Q[Z] Q[Z]

Q[Z] Q

id

id ε

ε

















∼= Ln+3(Q[Z], S0) ∼= Wi.

Taking limits, it follows that

Γn+3

















Q[Q] Q[Q]

Q[Q] Q

id

id ε

ε

















∼= Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞.

This Γ-group is closely related to Cochran and Orr’s homology surgery the-
oretic approach to rational knot concordance.



CHAPTER 4

Geometric structure of Cn

4.1. Realization of rational Seifert matrices

The aim of this section is to prove the following realization theorem of
rational Seifert matrices. As before we adopt the convention ǫ = (−1)q+1.

Theorem 4.1. Suppose A is a rational square matrix and c is a positive
integer. Then A is a Seifert matrix of complexity c for some (2q − 1)-knot
in a rational sphere bounding a parallelizable rational ball if and only if
there is a rational square matrix P such that P (A − ǫAT )P T is an integral
unimodular (i.e., invertible over Z) matrix with even diagonal entries. In
addition, we require sign(A + AT ) ≡ 0 mod 16 when q = 2.

We remark that in contrast to the integral case, the “even” condition
gives further restriction when ǫ = −1 since P and A have rational entries. It
can be omitted when ǫ = 1. In the topological category (where submanifolds
are assumed to be locally flat), the signature condition for q = 2 is not
required.

The only if part was already discussed. For the if part, we may assume
that Q = A − ǫAT is an integral unimodular matrix with even diagonals
by replacing A by PAP T . We will describe a concrete construction of a
rational knot equipped with a generalized Seifert surface of complexity c
whose Seifert matrix is A.

4.1.1. Special case: complexity one. First we consider the special
case c = 1. Since Q has even diagonal entries, we can choose an integral
matrix B such that Q = B − ǫBT . Indeed, denoting Q = (qij) and B =
(bij), we can choose bij arbitrarily for i < j, and then, let bii = qii/2 and
bji = qji + ǫbij for i < j.

By Levine [33], there is a Seifert surface E of a (2q−1)-dimensional knot
in S2q+1 such that E consists of one 0-handle and 2g q-handles, and B is its
(integral) Seifert matrix with respect to the basis {xi} of Hq(E) where xi is
an embedded q-sphere in E obtained by attaching a q-disk in the 0-handle
to the core of the i-th q-handle.

We will do surgery on S2q+1 along q-spheres in S2q+1 − E so that E
becomes a desired Seifert surface in a rational sphere. Write aij − bij =
mij/nij , where A = (aij) and mij and nij are integers. Choose a collection
of disjoint embedded q-spheres

{c+
ij , c

−
ij | 1 ≤ i ≤ j ≤ 2g}

47
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in S2q+1 − E such that

lk(c+
ij , xk) = δik,

lk(c−ij , xk) = δjkmij,

lk(c+
ij , c

+
kl) = lk(c−ij , c

−
kl) = 0,

lk(c+
ij , c

−
kl) =

{

δikδjl · nij for i < j,

δikδjl · 2nij for i = j,

where lk denotes the linking number in S2q+1 and δij is the Kronecker delta.
See the schematic picture in Figure 1. Let Σ be the result of surgery on
S2q+1 along {c±ij}, where c±ij is framed as follows. (We call it the null-

framing.) Viewing S2q+1 as the boundary of D2q+2, we can choose disjoint
embedded (q + 1)-disks D±

ij in D2q+2 which meet S2q+1 orthogonally at c±ij .

Then the normal bundle of D±
ij in D2q+2 admits a unique trivialization (up

to fiber homotopy) which induces a trivialization of the normal bundle of
c±ij in S2q+1. Our Σ is the result of surgery along this framing on the c±ij .

Figure 1.

Now E becomes a Seifert surface F in Σ. We claim that

lkΣ(x+
i , xj) = lk(x+

i , xj) +
mij

nij

where x+
i is the q-sphere obtained by pushing xi slightly along the positive

normal direction of F and lkΣ denotes the rational linking number in Σ.
Then it follows that F has Seifert matrix A since

lkΣ(x+
i , xj) = bij +

mij

nij
= aij .

To prove the claim, we appeal to the following lemma which is a higher
dimensional version of [7, Theorem 3.1]:
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Lemma 4.2. Suppose K1, · · · ,Km are disjoint framed q-spheres embed-
ded in S2q+1 such that surgery on S2q+1 along the Ki produces a rational
sphere Σ. For two disjoint q-cycles a and b in S2q−1 which are disjoint to
the Ki, the linking number of a and b in Σ is

lkΣ(a, b) = lkS2q+1(a, b)− xT L−1y

where x = (ai) and y = (bi) are column vectors given by ai = lkS2q+1(a,Ki)
and bi = lkS2q+1(b,Ki) and L is the linking matrix whose (i, j)-entry is the
linking number of Ki and the preferred parallel of Kj obtained by pushing
Kj slightly along the given framing.

The special case of q = 1 was proved in [7, Theorem 3.1]. Since the same
argument also works for any q, we omit the details.

Returning to the proof of Theorem 4.1, we apply Lemma 4.2 to compute
the linking of x+

i and xj in Σ. Our linking matrix L is the block sum of the

following 2× 2 matrices representing the linking of {c+
kl, c

−
kl}:

[

0 nkl

nkl 0

]

for k < l,

[

0 2nkl

2nkl 0

]

for k = l.

L−1 is the block sum of their inverses:
[

0 1/nkl

1/nkl 0

]

for k < l,

[

0 1/2nkl

1/2nkl 0

]

for k = l.

By our choice of c±kl, the only nontrivial contribution of the xT L−1y term of

the formula in Lemma 4.2 is from the block associated to {c+
ij , c

−
ij}. Indeed

lkΣ(x+
i , xj) is given by

bij −
[

1 0
]

[

0 −1/nij

−1/nij 0

] [

0
mij

]

for i = j,

bij −
[

1 mij

]

[

0 −1/2nij

−1/2nij 0

] [

1
mij

]

for i = j.

In both cases it is equal to bij + mij/nij, as desired. This proves the claim
and completes the construction for c = 1.

Example 4.3. We again consider the matrix

A =

[−a
p 1

0 1

]

which represents a 4-torsion element in Gn for n ≡ 1 mod 4. The algorithm
described above gives us a rational knot K which has Seifert matrix A.
Figure 2 illustrates K for n = 1. We have an obvious Seifert surface F
of K with one 0-handle and two middle-dimensional handles. One middle
dimensional handle of F is twisted once so that the core has self-linking
number 1. Another handle of F is untwisted so that the core has vanishing
self-linking number. There are a pairs of null-framed surgery spheres where
each pair has linking number 2p and each sphere has linking number 1 with
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the latter handle of F . The ambient space of K is obtained by performing
surgery along these 2a spheres. Figure 2 can also be viewed as a schematic
picture of a rational knot in higher odd dimensions, which has order 4 in Cn.

Figure 2.

4.1.2. General case. Suppose c > 1. Given A, from the above special
case, there is a knot K ′ in a rational (2q + 1)-sphere Σ′ equipped with a
generalized Seifert surface F ′ of complexity 1 whose Seifert matrix is A. We
apply the construction of [7, p. 1179–1180] to produce a generalized Seifert
surface of complexity c: choose an embedded (2q − 1)-sphere K bounding
a 2q-ball B disjoint to K ′ in Σ′, and choose a simple closed curve C in
Σ′− (K ′∪K) which meets B and F ′ transversally at a negative intersection
point and c positive intersection points so that the linking numbers of C
with K and K ′ are −1 and c, respectively. See the schematic picture in
Figure 3 (a).

By our construction of Σ′ in the special case above, we can view Σ as
a result of surgery on S2q+1 so that the “null-framing” on C and K ′ are
defined. Note that F ′ induces the null-framing of K ′. We perform null-
framed surgery on Σ along C and a parallel K ′ which is taken with respect
to the null-framing. The result is again a rational (2q + 1)-sphere, which we
denote by Σ. We can view K as a knot in Σ.

A generalized Seifert surface of K is constructed as follows. Consider
the union of F ′ and c parallel copies of B. Puncturing it at the intersection
with C and attaching c pipes, we obtain a submanifold F ′′ in Σ′ bounded
by K ′ and c parallel copies of K. Since F ′ induces the null-framing on K ′,
there exists a 2q-disk in Σ − int(F ′′) bounded by K ′. Attaching this disk
to F ′′, we obtain a generalized Seifert surface F of complexity c for K. See
Figure 3 (b).

F and F ′ have the same Hq (or Coker{Hq(∂−) → Hq(−)} if q = 1).
For any q-cycles x and y on F ′, the linking numbers lkΣ(x+, y) in Σ and
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Figure 3.

lkΣ′(x+, y) in Σ′ are the same. Indeed for q > 1, since Hq(Σ
′−(C∪K ′); Q) =

0, we can choose a (q+1)-chain u in Σ′−(C∪K) such that ∂u = rx+ for some
r > 0, and then both lkΣ(x+, y) and lkΣ′(x+, y) are equal to (1/r)(u · y).
For q = 1, using the fact that both x+ and y have linking number zero with
C and K ′, we can apply Lemma 4.2. This shows that A is a Seifert matrix
of F .

The only remaining thing to verify is that our ambient space Σ bounds a
rational ball with stably trivial normal bundle. For this purpose we think of
the trace of the surgery giving Σ, and perform surgery on the interior of the
trace to obtain a desired rational ball. Details are as follows. From the fact
that Σ is obtained by performing null-framed surgery on S2q+1, we can see
that a framed (2q+2)-manifold W with boundary Σ is obtained by attaching
to B2q+2 a 2q-handle, a 2-handle, and even number of (q +1)-handles. Note
that the (q + 1)-handles give rise to a symplectic basis of Hq+1(W ; Q), with
respect to the intersection form, by the above construction of Σ. Standard
surgery techniques shows that we can perform framed surgery on W to
kill the homology classes of W represented by the 2-handle and half of the
(q + 1)-handles forming a Lagrangian (they are all spherical obviously). An
alternative ad-hoc method to see this is as follows: the union of B2q+1

and the concerned handles (the other handles are ignored) is embedded in
S2q+1 = ∂B2q+2 and the spheres along which we want to do surgery bound
disjoint disks in B2q+2. So we can do null-framed surgery. The result is a
rational ball ∆ which is framed and has boundary Σ.

4.2. Construction of slice disks in rational balls

In this section we study the subgroup bCn in Cn generated by concordance
classes of knots in rational spheres bounding a parallelizable rational ball.
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We start with some preliminary lemmas. First, the following result will be
used to simplify rational balls.

Lemma 4.4. Suppose q > 2 and Σ is a rational (2q−1)-sphere bounding
a parallelizable rational ball. Then Σ bounds a parallelizable rational ball
which is (q − 2)-connected.

This can be proved by applying standard techniques of surgery. It suf-
fices to perform surgery below the middle dimension, and hence we have no
nontrivial obstruction. What follows is (a sketch of) a proof using framed
surgery.

Proof. Suppose ∂W = Σ, W is a parallelizable rational 2q-ball. Then
we can perform framed surgery on the interior of W , below dimension q−1,
to construct a parallelizable (q−2)-connected 2q-manifold V bounded by Σ.
By surgery killing the homology class α of an embedded i-sphere (i ≤ q−2),
Hi+2, . . . ,Hq are left unchanged; Hi+1 is left unchanged if and only if α is
of infinite order in Hi; the rank of Hi+1 increases if α is torsion. Hence
Hq(V ) = Hq(W ) but Hq−1(V ) may have nontrivial free part. By surgery
again, we can kill the generators of the free part of Hq−1(V ) keeping Hq(V )
unchanged. This gives us a desired rational ball. �

A similar argument proves the following result for even dimensional ra-
tional spheres:

Lemma 4.5. Suppose q > 1 and Σ is a q-parallelizable rational 2q-sphere
(i.e., the restriction of the normal bundle on the q-skeleton is stably trivial).
In addition, if q is odd, suppose Σ has vanishing Arf invariant. Then Σ
bounds a rational ball which is (q − 1)-connected.

Proof. First we perform framed surgery on Σ to make it a PL 2q-
sphere. Capping the trace of surgery with a (2q + 1)-ball, we obtain a
q-parallelizable (2q + 1)-manifold W bounded by Σ. By framed surgery on
the interior of W killing some i-spheres, i ≤ q − 1, we may assume that W
is (q − 1)-connected.

Now we do surgery on W to kill the free part of Hq(W ). Let α be
an embedded q-sphere in W representing an infinite order class in Hq(W ).
Since ∂W is a rational sphere, from the duality with rational coefficients it
follows that the natural homomorphism Hq+1(W )→ Hq+1(W,W −α) ∼= Z,
which is given by the intersection with α, is a nontrivial map. Its image
is an ideal generated by a positive integer c. It can be seen that surgery
along α kills the homology class of α but introduces a new order c element
to Hq(W ) (e.g. see [27, Lemma 5.6]). Repeating this, we can kill the free
part of Hq(W ) (but the torsion part may grow). This gives a rational ball
bounded by Σ. �

Consider the following codimension one ambient surgery problem: sup-
pose that M is an m-manifold embedded in the boundary of an (m + 2)-
manifold W , α is an embedded i-sphere in M , and δ is an properly embedded
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(i + 1)-disk in W bounded by α. When can one do ambient surgery on M
using the disk δ? In other words, when can one obtain an (i + 1)-handle at-
tached on M by thickening δ? The following result is proved by well-known
arguments (c.f., [2, p. 86], [33, p. 235]).

Lemma 4.6. There is an obstruction o ∈ πi(S
m−i) which vanishes if and

only if we can do ambient surgery along α on M using δ in W .

Proof. The normal bundle ξ of δ ⊂ W can be identified with δ ×
Dm−i+1 in a unique way, being a bundle over a contractible space. The
associated sphere bundle restricted on α is a trivial sphere bundle α×Sm−i.
By restricting on α the positive normal direction of M in ∂W , which is
uniquely determined by the orientations, we obtain a section α→ α×Sm−i,
which gives rise to an element o ∈ πi(S

m−i).
If o is trivial, the section α → α× Sm−i extends to δ → δ × Sm−i, and

the orthogonal complement of this direction in ξ ∼= δ ×Dm−i+1 gives us an
(i + 1)-handle that can be used to do surgery on M along α. The converse
is proved in a similar way. �

The followings are consequences of (the proof of) the above lemma.

Lemma 4.7.
(1) If 2i < m, we can always do ambient surgery along α on M using

δ in W .
(2) If 2i = m and W is a rational ball, the obstruction o ∈ πi(S

i) = Z
is given by the linking number of α and a pushoff of α along the
positive normal direction of M in the rational sphere ∂W .

4.2.1. Slicing odd dimensional rational knots. In this subsection
we discuss how to construct a slice disk in a rational ball for an odd-
dimensional rational knot. First we focus on the special case of knots of
complexity 1, i.e., knots bounding a Seifert surface. We will call such knots
primitive, following [7]. The below proposition reduces the problem into the
case of simple knots: we call a primitive (2q − 1)-knot simple if it bounds a
(q − 1)-connected Seifert surface.

Proposition 4.8. Suppose K is a primitive (2q − 1)-knot in a ratio-
nal (2q + 1)-sphere Σ bounding a parallelizable rational ball. Then K is
concordant to a primitive simple knot in a rational sphere bounding a par-
allelizable rational ball. In addition, they are concordant via a concordance
of complexity 1.

Although its statement is very similar to a corresponding result of [33]
for integral knots, the proof of Proposition 4.8 requires more sophisticated
arguments since a rational (2q + 2)-ball bounded by Σ may have nontrivial
homotopy groups even below the middle dimension. See the latter half of
the proof below.

Proof. For q = 1, the conclusion is obvious. Suppose q > 1. Let denote
by ∆ a parallelizable rational ball with boundary Σ. The first part of the
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proof is similar to an argument of [33] for ordinary knots; we do ambient
surgery on a Seifert surface F of K, in the rational ball ∆, to obtain a
(q − 1)-connected submanifold in ∆. If we were doing abstract surgery, it
would suffice to do surgery on F along suitable disjoint spheres of dimension
≤ (q−1). To do this in the ambient space ∆, first we assume that ∆ is (q−1)-
connected by appealing to Lemma 4.4. Then we can choose immersed disks
of dimension ≤ q in ∆ which are bounded by these spheres, and by general
position, we can assume that these disks are embedded and mutually disjoint
since ∆ is (2q + 2)-dimensional. Then by appealing to Lemma 4.7 (1), we
can do ambient surgery on F using these disks. The trace of surgery is a
2-sided (2q + 1)-submanifold W in ∆ which is a cobordism, relative to the
boundary, between F and a (q − 1)-connected 2q-manifold F ′.

We remark that, in the case of ordinary knots, ∆ = B2q+2 and it is able
to find a honest ball in the interior of ∆ whose intersection with W is F ′,
using an engulfing technique as in [33], so that ∂F ′ is a desired simple knot
in the boundary of the honest ball. In contrast to this, in our case, such a
ball may not exist. The best we can do is construct a rational ball instead.
The remaining part of our proof is devoted to this construction.

Let V be ∆ cut along W . Then, by a general position argument, πi(V ) ∼=
πi(∆) for i ≤ q, since W is obtained by attaching handles of index ≤ q to
F × [0, 1]. In particular, πq(V ) ∼= πq(∆) ∼= Hq(∆) is finite. Let r = |πq(V )|.
Note that F ′ consists of a 0-handle and 2g q-handles by handle theory. For
each q-handle, choose an immersed q-sphere in F ′ representing r times the
generator of Hq(F

′) represented by the q-handle. While we can assume that
each of these q-spheres is embedded by isotopy, two different q-spheres may
meet at several points. Let X be the union of these q-spheres. Then we may
assume that X has the homotopy type of

(

2g
∨

Sq) ∨ (
m
∨

S1).

We will construct a complex Y with the homotopy type of (
∨2g Sq) by

attaching 2-disks to X killing the S1-factors. Let N be a regular neighbor-
hood of X in F ′. Since q ≥ 2,

π1(∂N) ∼= π1(N −X) −→ π1(N) ∼= π1(X)

is surjective. Thus we can choose disjoint circles γk on ∂N representing
generators of π1(X). We claim that there are disjoint embedded 2-disks in
F ′ − int N bounded by the γk. Then the union of N and these 2-disks is a
desired complex Y . If q ≥ 3, the claim follows from π1(F

′−X) ∼= π1(F
′) = 0.

For q = 2, we need more sophisticated ad-hoc arguments. As done
in [33, p. 235], by taking connected sum with some copies of S2× S2 in the
ambient space ∆, we may assume that F ′ is homeomorphic to #gS2 × S2

with a puncture. We can view F ′ as a handlebody with a 0-handle B4 and
2g 2-handles attached along a split union of Hopf links K1

i ∪K2
i (i = 1, . . . , g)

contained in ∂B4. We can choose r-punctured spheres C1
i and C2

i properly
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embedded in B4 such that Cj
i is bounded by the union of r parallel copies

of Kj
i , Cj

i ∩ Cj′

i′ = ∅ for i 6= i′, and C1
i ∩ C2

i consists of r2 points. Figure 4

illustrates the configuration of C1
i and C2

i as a “movie” along the radial

direction of B4, i.e., the intersection of Cj
i with the level sphere {x ∈ R4 :

|x| = t}, viewing B4 as the unit ball in R4. Attaching parallel copies of the

cores of the 2-handles of F ′ to the union of all the Cj
i , we obtain a complex

X which is homotopy equivalent to

(

2g
∨

S2) ∨ (

r2−1
∨

S1).

In Figure 4, the dotted lines represent (r2 − 1) 2-disks in B4 ⊂ F ′ whose
boundaries are the concerned curves γk representing the S1-factors of X.
Attaching these 2-disks to X, we obtain the complex Y .

Figure 4.

Now we use the complex Y to construct a rational ball whose boundary
contains F ′. Recall that W is the trace of ambient surgery producing F ′

from F . For notational convenience, we identify a bicollar of F ′ in W with
F ′×[0, 1], where F ′ ⊂ ∂W is identified with F ′×0. Y ×0 ⊂ F ′×0 ⊂ V (= ∆
cut along W ) is null-homotopic in V by our choice of r. By the engulfing
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theorem of Hirsch [21], there is a (2q +2)-cell C in V such that Y ×0 ⊂ ∂C.
Let

Z = C ∪ (Y × [0, 1
2 ]) ∪ (F ′ × 1

2)

and view it as a subset of ∆. H∗(Z) is trivial except H0(Z) = Z, Hq(Z) =
(Z/r)n. Choose a regular neighborhood ∆′ of Z in ∆ such that F ′ × 1 ⊂
∂∆′. ∆′ has the homotopy type of Z and hence is a rational ball. Being
a codimension zero submanifold of ∆, ∆′ is parallelizable. Now it is easily
seen that K is concordant to the rational knot ∂F ′ × 1 ⊂ ∂∆′, via the
concordance

S2q−1 × [0, 1] ∼= ∂W − int(F )− F ′ × [0, 1) ⊂ ∆− int(∆′),

and F ′ × 1 is a (q − 1)-connected Seifert surface of ∂F ′ × 1.
Finally, by the Thom–Pontryagin construction with the codimension one

submanifold
W − F × [0, 1) ⊂ ∆− int(∆′),

we obtain an S1-structure E → S1 of complexity 1 where E is the exterior
of the concordance, that is, it induces a homomorphism H1(E)/torsion =
Z → Z sending a meridian to 1 ∈ Z. This shows that the concordance has
complexity 1. �

Remark 4.9. Although we do not need it in this paper, the following
generalization of Proposition 4.8 can be proved by similar arguments; if a
(2q − 1)-knot in a rational sphere bounding a parallelizable rational ball
admits a generalized Seifert surface of complexity c, then it is concordant
to a knot in a rational sphere bounding a parallelizable rational ball, which
admits a (q − 1)-connected generalized Seifert surface of complexity c. In
addition, they are concordant via a concordance of complexity ≤ c.

The following is a weaker version of our slicing theorem for primitive
simple knots:

Proposition 4.10. Suppose q > 1 and K is a primitive (2q − 1)-knot
in a rational sphere Σ bounding a (q − 1)-connected parallelizable rational
ball ∆. If K admits a (q − 1)-connected Seifert surface F with a metabolic
Seifert matrix, then there is a rational 2q-disk in ∆ bounded by K.

Proof. Since F is (q − 1)-connected, Hq(F ) is free of even rank, say
2g, and we can view Hq(F ) as a subgroup of

Hq(F ; Q) = Hq(F )⊗Q.

Let H ⊂ Hq(F ; Q) be a metabolizer of the Seifert pairing

S : Hq(F ; Q) ×Hq(F ; Q) −→ Q.

Then it can be checked that H0 = H ∩ Hq(F ) is a rank g summand of
Hq(F ). Choose a basis {xi} of H0 which extends to a basis of Hq(F ). Let
r = |πq(∆)| = |Hq(∆)|, which is finite.

We claim that the classes rxi can be represented by disjoint embedded
q-spheres αi in F . For q > 2, the claim follows from the Whitney trick
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since the intersection number of rxi and rxj in F is given by S(rxi, rxj)−
ǫS(rxj, rxi) = 0. For q = 2, we again appeal to the arguments in [33].
As in the proof of Proposition 4.8, we may assume that F ′ is obtained
by attaching 2g 2-handles to a 4-ball along a split union of g Hopf links
contained in the boundary of the 4-ball, and furthermore, we may assume
that xi is represented by the core of the 2-handle attached along the first
component of the i-th Hopf link by the arguments in [33, p. 236]. Now
desired spheres αi are obtained in a similar way as the construction of the
complex Y in the proof of Proposition 4.8; αi is the union of the surface
C1

i ⊂ B4 illustrated in Figure 4 and r parallel copies of the core of the i-th
2-handle.

By our choice of r, there are immersed disjoint disks δi in ∆ bounded
by αi. By Whitney trick again, we may assume that the δi are disjoint
embedded disks since the intersection number of δi and δj is given by
S(rxi, rxj) = 0. Appealing to Lemma 4.7 (2), we can do surgery on F
using the δi, since the self-linking of αi in Σ is zero. It is easily seen that the
resulting submanifold in ∆ is a rational disk, which is bounded by K. �

Remark 4.11. The rational disk constructed in the above proof is (q−1)-
connected and parallelizable, and has a trivial normal bundle, since F is
(q − 1)-connected and the trace of the ambient surgery in the above proof
is a parallelizable two-sided codimension one submanifold in ∆.

Now we are ready to prove our slicing theorem in higher odd dimensions.

Theorem 4.12. Suppose q > 1 and K is a rational (2q − 1)-knot in a
rational sphere Σ bounding a parallelizable rational ball. If K has a Seifert
matrix A such that irA is metabolic for some r > 0, then K is a rational
slice knot, i.e., K bounds an honest 2q-disk in a rational ball bounded by Σ.

Proof. Suppose F is a generalized Seifert surface for K on which the
Seifert matrix A is defined. We may assume that F has no closed component
by piping (this does not change the Seifert matrix for q > 1). Furthermore
we may assume that A is metabolic (i.e. r = 1) by replacing F by r parallel
copies of F .

Suppose F has complexity c, that is, ∂F consists of c parallel copies of K.
Since F has no closed component, Σ−F is connected. We join components
of ∂F using (c − 1) bands whose interiors are disjoint to F . It gives us a
primitive knot K0 which is a band sum of ∂F , together with a Seifert surface
F0 of K0 which is the union of F and the bands. Note that there is a c-
punctured disk C in Σ×[0, 1] bounded by K×0∪−K0×1. By Proposition 4.8,
K0 is concordant to a primitive knot K1 ⊂ Σ1 which has a (q−1)-connected
Seifert surface F1. We denote the concordance by (W0, C0); W0 is a rational
homology cobordism between Σ and Σ1 and C0

∼= S2q−1× [0, 1]. Since there
is a concordance of complexity 1 between K0 and K1, the Seifert matrix of
F1 is also metabolic. By Proposition 4.10, there is a rational 2q-disk C1 in a
rational (2q + 2)-ball ∆1 such that ∂(∆1, C1) = (Σ1,K1). Gluing the above
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pairs along the boundaries, we construct a pair

(∆,D) = (Σ × [0, 1], C) ∪
(Σ×1,K0×1)

(W0, C0) ∪
(Σ1,K1)

(∆1, C1)

of a rational (2q + 2)-disk ∆ and a c-punctured rational 2q-sphere D which
is bounded by (Σ, ∂F ).

Denote by V the manifold obtained by attaching a 2q-handle D2q ×D2

to ∆ along K. We will construct a slice disk complement U for K by killing
H2q(V ; Q) ∼= Q generated by the 2q-handle. Attaching c parallel copies of
the core of the 2q-handle to D, we obtain a rational 2q-sphere S in V . To kill
H2q(V ; Q), we perform “surgery” on V along S as follows (indeed this kills
r times the generator of H2q(V ; Z) represented by the 2q-handle). Since C1

is parallelizable, S is q-parallelizable. If q is odd, we may assume that S has
vanishing Arf invariant by replacing the original generalized Seifert surface
F with the union of two parallel copies of F at the beginning and applying
the above arguments (this gives S#S instead of S). So, by Lemma 4.5,
there is a rational (2q + 1)-ball B bounded by S. The normal bundle of S
in V is trivial, since the obstruction lives in

H2(S;π1(SO2)) ∼= H2(C1;π1(SO2))

and C1 has trivial normal bundle. Identifying a tubular neighborhood of S
in V with S ×D2, we remove int(S ×D2) from V and fill it in with B × S1

along the boundary to obtain

U = (V − int(S ×D2)) ∪
S×S1

(B × S1).

Note that ∂U is the surgery manifold of K, and H̃∗(U ; Q) vanishes except
H1(U ; Q) = Q which is generated by the meridian of K. Attaching a 2-
handle D2×D2q to U along the meridian, we obtain a rational ball and Σ is
recovered as its boundary. The cocore 0×D2q of the 2-handle is an honest
disk bounded by K. This completes the proof. �

As consequences of Theorem 4.1 and Theorem 4.12, Theorem 1.3 (2),
(3), and (4) follow.

4.2.2. Slicing even dimensional rational knots. Using similar tech-
niques, we prove the following slicing theorem in even dimensions.

Theorem 4.13. Suppose K is a 2q-knot in a parallelizable rational (2q+
2)-sphere Σ. If q is odd, or q is even and Σ has vanishing Arf invariant,
then K is a rational slice knot.

Proof. By Lemma 4.5, there is a q-connected rational (2q + 3)-ball ∆
bounded by Σ. Choose a generalized Seifert surface F for K. As done in
the proof of Proposition 4.8, we will do ambient surgery on F in ∆, to make
it q-connected. Since F is parallelizable and (2q + 1)-dimensional, there is a
collection of disjoint spheres of dimension ≤ q in the interior of F such that
(abstract) surgery along those spheres gives rise to a q-connected manifold.
Since ∆ is (2q+3)-dimensional and q-connected, we can find disjoint disks of
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dimension ≤ q +1 in ∆ which are bounded by the above spheres. Appealing
to Lemma 4.7, we can do the desired ambient surgery using these disks.
This gives us an honest sphere with punctures which is properly embedded
in ∆ and bounded by parallel copies of K. Now the argument of the last
part of the proof of Theorem 4.12 can be used to show that K is a rational
slice knot. �

Theorem 1.3 (1) is a corollary of Theorem 4.13.

4.3. Rational and integral concordance

In this section we study the natural homomorphism of the integral knot
concordance group CZ

n into the rational knot concordance group Cn. Since
CZ

n = 0 for even n, we assume that n is odd, say n = 2q− 1, throughout this
section. Since the image of CZ

n → Cn is contained in the subgroup bCn, we
will consider the induced homomorphism CZ

n → bCn. Note that for n > 1
there is a commutative diagram

CZ
n bCn

Gn,1 = Gn Gn = lim−→c
Gn,c

φ1

where the vertical homomorphisms are injective.

4.3.1. Kernel of CZ
n → bCn. It has already been known that CZ

n → bCn
is not injective. In fact, in Example 3.17, we described a Seifert matrix
A such that for n = 4k + 1 > 1, the concordance class of any n-knot in
Sn+2 with Seifert matrix A is a nontrivial order two element in the kernel
of CZ

n → bCn. We generalize Example 3.17 as follows:

Theorem 4.14. For any odd n > 1, the kernel of CZ
n → bCn contains a

subgroup isomorphic to (Z/2)∞.

In the proof of Theorem 4.14, we need the following results of Levine [33,
32] on integral Seifert matrices of knots in honest spheres. (Because of
different sign conventions, some signs have been changed appropriately)

Lemma 4.15.
(1) A polynomial ∆(t) with integer coefficients is an Alexander poly-

nomial of a 2g × 2g Seifert matrix A of an n-knot in Sn+2 if and
only if ∆(t−1)t2g = ∆(t), ∆(1) = ǫg, and ∆(ǫ) is square.

(2) Suppose A is a Seifert matrix of an n-knot in Sn+2 with Alexander
polynomial ∆A(t) = λ1(t)λ2(t) · · · λk(t) where the λi(t) are distinct
reciprocal irreducible polynomials of degree 2. Then A is of order
2 if and only if A has vanishing signature invariants and, for any
λi(t) and for any prime p ≡ 3 mod 4, the exponent of p in the
prime factorization of λi(1)λi(−1) is even.
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Proof of Theorem 4.14. First we consider the case q is odd. For a
positive integer a, let

A =

[

a 1
0 −a

]

.

A is a Seifert matrix of an n-knot K in Sn+2 by Lemma 4.15. We claim that
K is in the kernel of CZ

n → bCn. It suffices to show that φ1[A] = 0 in Gn.
Since

∆A(t) = −a2t2 + (2a2 + 1)t− a2,

the reparametrization formula gives us

∆i2A(t) = ∆A(t2) = −a2t4 + (2a2 + 1)t2 − a2 = −(at2 + t− a)(at2 − t− a).

Since both irreducible factors are not reciprocal, [i2A] = 0 in Gn by Propo-
sition 3.6. This shows the claim.

Now we show that K has order two in CZ
n . It suffices to show that [A] is

of order two in Gn. Since ∆A(t) is irreducible, [A] is nontrivial in Gn (if one
wants, the invariant ez(A) can be used). Note that A is a Seifert matrix of
a 1-knot Ka in S3 which is illustrated in Figure 5. Since Ka is amphicairal
(i.e., Ka is isotopic to −Ka), −[A] = [A] in Gn.

Figure 5.

Furthermore, different values of a give us different matrices A which are
independent in Gn since they have relatively prime Alexander polynomi-
als (one may use ez(A) again). Therefore the associated knots K are also
independent. This completes the proof for odd q. For later use, we ob-
serve the following fact: by Lemma 4.15 (2), the exponent of p in the prime
factorization of −(4a2 + 1) = ∆A(1)∆A(−1) is even for any prime p ≡ 3
mod 4.

Now we consider the case q is even. Let

∆(t) = (t2 − 3t + 1)(a2t2 − (2a2 + 1)t + a2),



4.3. RATIONAL AND INTEGRAL CONCORDANCE 61

where a is a positive integer such that ∆(−1) = 5(4a2 + 1) is square. Then
by Lemma 4.15 (1), ∆(t) is the Alexander polynomial of a Seifert matrix
A of an n-knot K in Sn+2. As before, by observing the factorization of
∆i2A(t), [i2A] = 0 in Gn and thus [A] is in the kernel of Gn → Gn. It follows
that K is in the kernel of CZ

n → bCn.
Note that ∆(t) has two irreducible factors f(t) = t2 − 3t + 1 and g(t) =

a2t2 − (2a2 + 1)t + a2. By the observation above, for any prime p ≡ 3
mod 4, the exponents of p in the factorization of f(1)f(−1) = −1 and
g(1)g(−1) = −(4a2 + 1) are always even. Therefore, by Lemma 4.15 (2), A
has order two in Gn. It follows that K has order two in CZ

n .
As before, different values of a gives us different Seifert matrices A which

are independent in Gn. Therefore, to complete the proof, it suffices to show
that there are infinitely many a such that 5(4a2 + 1) is square. For this
purpose, we consider a Diophantine equation

x2 − 5y2 = −1

which is a specific form of Pell’s equation. It is known that there are infinitely
many solutions (x, y) of this equation. A concrete description is as follows.
Let (x0, y0) = (1, 0), (x1, y1) = (2, 1), and

xn+2 = 4xn+1 + xn

yn+2 = 4yn+1 + yn

for n ≥ 0. Then it can be shown that x2
n− 5y2

n = (−1)n by an induction. In
particular, (x2n+1, y2n+1) is a solution of our Diophantine equation. These
solutions are different since {xi} is increasing. Since x2n+1 is even and

5(x2
2n+1 + 1) = (5y2n+1)

2, the integer a = x2n+1/2 has the desired property.
This completes the proof for even q. �

For n = 1, the above arguments do not work. However, Cochran proved
that the kernel of CZ

1 → bC1 is nontrivial. In fact he showed that the figure
eight knot, which has order two in CZ

n , is a rational slice knot using a Kirby
calculus argument similar to that of Fintushel and Stern [17]. Generalizing
his arguments, we prove the following result.

Theorem 4.16. The kernel of CZ
1 → bC1 contains a subgroup isomorphic

to (Z/2)∞.

Proof. We will show that the knot Ka in S3 illustrated in Figure 5 is a
rational slice knot. Since the concordance classes of the Ka have order two
in CZ

1 and are independent, as we observed in the proof of Theorem 4.14, it
proves the desired conclusion.

Let M be the 3-manifold obtained by null-framed surgery on S3 along
Ka. In a similar way as [17], we will construct a rational homology cobor-
dism between M and S2 × S1. First, starting with M × [0, 1], we construct
a cobordism W1 between M and another manifold M ′ as illustrated by the
Kirby diagrams in Figure 6. W1 is obtained by attaching a 1-handle and
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a 2-handle, and it can be seen that the 2-handle kills the generator intro-
duced by the 1-handle (over the rationals). Thus W1 is a rational homology
cobordism.

On the other hand, Figure 7 illustrates that the underlying link of the
Kirby diagram describing M ′ is concordant to the link L shown in the last
diagram in Figure 7. Figure 7 can be viewed as a “movie” illustration of a
concordance in S3 × [0, 1]; it illustrates the intersection of the concordance
with the level spheres S3× t. From this it follows that there is a Z-homology
cobordism between M ′ and the result of surgery M ′′ along L with respect
to framings 2, 0, and −2. It is easily seen that M ′′ ∼= S2 × S1, and thus
W = W1∪M ′ W2 is a rational homology cobordism between M and S2×S1.

Let V = W ∪S2×S1 D3 × S1. V is bounded by M and has the rational
homology of S1, where H1(V ; Q) is generated by the meridian of Ka. At-
taching a 2-handle to V along the meridian of Ka, we obtain a rational ball
bounded by S3. The cocore of the 2-handle is an honest 2-disk bounded
by Ka. This shows that Ka is a rational slice knot. �

4.3.2. Cokernel of CZ
n → bCn. We will investigate the structure of the

cokernel of Gn → Gn and then pull it back along

Coker{CZ
n −→ bCn} −→ Coker{Gn −→ Gn}.

In [12] and [7], some periodicity of the signature invariant of Gn was used
to investigate Coker{Gn → Gn}. We generalize it for our invariants of Gn.
Recall that for A ∈ Gn, sα(A), eα(A), and sα(A) denote the “α-coordinates”
of the invariants s(A), e(A), and d(A), respectively. (See the last part of
Section 3.2.)

Theorem 4.17. If A ∈ Gn is contained in the image of φc : Gn,c → Gn,
then for any α = (αi) and β = (βi) ∈ P such that αc = βc, the followings
hold:

(1) sα(A) = sβ(A) provided α, β ∈ P0.
(2) eα(A) = eβ(A).
(3) dα(A) = dβ(A).

Proof. Suppose that [A] ∈ Gn = Gn,c is sent to A ∈ Gn via φc. Since
αc and βc are the same complex numbers, we have eαc [A] = eβc

[A]. (Recall
that ez[A] is the modulo 2 residue class of the rank of the αc-primary part
of [A] ∈ Gn.) By our definition,

eα(A) = eαc [A] = eβc
[A] = eβ(A).

The same argument works for the invariants s and d. �

Now we apply Theorem 4.17 to study the structure of the torsion part of
Coker{Gn → Gn}. Recall that in Corollary 3.40 we constructed a summand
H of (the torsion part of) Gn isomorphic to (Z/2)∞⊕(Z/4)∞. H is generated
by order 2 elements of the form φc[Ai] and order 4 elements of the form
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M =

= M ′

Figure 6.

φc[Bi], where [Ai], [Bi] ∈ Gn and c > 0 is a positive integer. Henceforce we
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Figure 7.

fix c = 2 and consider the subgroup

H ⊂ Im{φ2 : Gn −→ Gn} ⊂ Gn

generated by Ai = φ2[Ai] and Bi = φ2[Bi].

Proposition 4.18. H ∩ Im{φ1 : Gn → Gn} = {0}.
Proof. As in the proof of Theorem 3.38, choose zeros zi, wi 6= −1 of

∆Ai
(t), ∆Bi

(t) and choose αi, βi ∈ P such that (αi)2 = zi, (βi)2 = wi.
In addition, by Remark 3.21, there are α′

i, β
′
i ∈ P such that (α′

i)2 = −zi,
(β′

i)2 = −wi. Since the (−z)-primary parts of Ai, Bi are trivial for any
z ∈ {zi, wi}, we have the following property, in addition to the properties
(1) and (2) in the proof of Theorem 3.38:

(3) For α ∈ {α′
i, β

′
i} and A ∈ {Ai,Bi}, eα(A) and dα(A) are trivial.

Suppose that A =
∑

aiAi +
∑

biBi is contained in Im{φ1}, where ai, bi

are integers. Observe that

(αi)1 = z2
i = (−zi)

2 = (α′
i)1,
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and similarly (βi)1 = (β′
i)1. Thus by Theorem 4.17, we have eαi

(A) = eα′

i
(A)

and eβi
(A) = eβ′

i
(A). Taking eαi

and eα′

i
of

∑

aiAi +
∑

biBi, it follows that

each ai is even, from the properties (1) and (3). Considering eβi
(A) and

eβ′

i
(A) in a similar way, we can see that each bi is even. Letting bi = 2b′i,

A =
∑

b′i(2Bi). Now since dβi
(A) = dβ′

i
(A), it follows that b′i is even from

the properties (2) and (3). This shows that A = 0. �

In [7, Theorem 1.3], it was proved that Coker φ1 contains Z∞. Indeed its
proof shows, using signature invariants, that there is a subgroup H ′ ∼= Z∞

in Gn such that H ′ ∩ (Im φ1 + T ) = {0}, where T is the torsion subgroup
of Gn. From Proposition 4.18 and the fact that H is a summand of T , it
follows that H ′ ⊕H is a summand of Gn such that

(H ′ ⊕H) ∩ Im φ1 = {0}.
Therefore we have the following consequence:

Corollary 4.19. Coker φ1 has a direct summand isomorphic to Z∞ ⊕
(Z/2)∞ ⊕ (Z/4)∞.

Note that, for odd n > 3, Coker{CZ
n → bCn} ∼= Gn/S where S is the

image of the composition

CZ
n −→ Gn

φ1−−→ Gn.

Since S ⊂ Imφ1, (H ′ ⊕ H) ∩ S = {0}. Thus the second conclusion of
Theorem 1.4 follows: Coker{CZ

n → bCn} contains a summand isomorphic to
Z∞ ⊕ (Z/2)∞ ⊕ (Z/4)∞. For n = 3, by replacing Gn with its index two
subgroup Im{Cn → Gn}, the same argument works.

Remark 4.20. On the same lines as Remark 3.42, the results in this
section can be rephrased in terms of surgery obstruction Γ-groups: for odd
n, the kernel and cokernel of the homomorphism

Γn+3
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id

id ε

ε

















−→ Γn+3

















Q[Q] Q[Q]

Q[Q] Q

id
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have a subgroup isomorphic to (Z/2)∞ and a summand isomorphic to Z∞⊕
(Z/2)∞ ⊕ (Z/4)∞, respectively.

4.4. Subrings of rationals

We remark that, for any subring R of Q, most of our higher-dimensional
arguments can be applied to knots in R-homology spheres. Let S be a set
consisting of primes, I be the set of positive integers which are coprime to
all p ∈ S, and R be the subring of Q generated by {1/c ∈ Q | c ∈ I}. We
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can define R-concordance of n-knots in R-homology (n+2)-spheres and the
R-concordance group CR

n of such knots in an obvious way. The geometric
arguments in Sections 4.1 and 4.2 also work in this case. For odd n, instead
of our Gn,i and Gn, we need to consider the algebraic concordance group

GR
n,i of Seifert matrices over R and their limit

GR
n = lim−→

i∈I

GR
n,i.

Then a homomorphism CR
n → GR

n is defined, by appealing to the property
that the complexity of a knot in an R-homology sphere is coprime to all
p ∈ S, which follows from the Alexander duality with R-coefficients. Most
proofs carry over R, although some statements need to be modified a little;
e.g., in case of Theorem 3.22 (3), “nonzero square in Q” should be read as
“unit square in R”.

In particular, the structure of GR
n can be calculated in the same way as

Sections 3.2, 3.3, and 3.5. If 2 /∈ S, we can obtain complete invariants of
GR

n , using parameter sets

PR = {(αi)i∈I | (αir)
r = αr for r ∈ I},

PR
0 = {(αi) ∈ PR | |αi| = 1},

and in this case our algebraic construction of torsion elements also works
in GR

n .
If 2 ∈ S, the situation is so simpler that we do not need to use the

full power of our algebraic results. Indeed in this case the morphisms
GR

n,i → GR
n,ri defining the limit GR

n are all injective (e.g., see [12, Propo-

sition 2.1]). Since all the elements in GR
n,i survive in GR

n , the existence of

torsion elements in GR
n is immediate. From this it follows that all the ana-

logues of the theorems in the introduction (Chapter 1) hold for any R. Also,
the analogues of the results on Γ-groups discussed in Remarks 3.42 and 4.20
hold.



CHAPTER 5

Rational knots in dimension three

5.1. Rational (0)- and (0.5)-solvability

Let G be a group. For two elements a and b in G, the commutator of
a and b is defined by [a, b] = aba−1b−1. For two subgroups A and B in G,
we define [A,B] to be the subgroup generated by {[a, b] | a ∈ A and b ∈ B}.
The n-th derived subgroup G(n) is defined inductively by

G(0) = G, G(n+1) = [G(n), G(n)].

To kill torsion elements in quotients of G by derived subgroups, we consider

the rational derived subgroup G
(n)
Q as in [11] and [19]:

Definition 5.1. The n-th rational derived subgroup G
(n)
Q is defined by

G
(0)
Q = G, G

(n+1)
Q = {g ∈ G

(n)
Q | gr ∈ [G

(n)
Q , G

(n)
Q ] for some r 6= 0}.

It is known that G
(n)
Q is a normal subgroup of G [11, 19].

For a 4-manifold W with fundamental group G, there is an intersection

form on the homology of W with Q[G/G
(n)
Q ]-coefficients:

λn : H2(W ; Q[G/G
(n)
Q ])×H2(W ; Q[G/G

(n)
Q ]) −→ Q[G/G

(n)
Q ].

Denote by X(n) the regular cover of a CW-complex X associated to the nor-

mal subgroup π1(X)
(n)
Q in π1(X). The homology module H2(W ; Q[G/G

(n)
Q ])

is identified with the rational homology H2(W
(n); Q) of the cover W (n).

Now we are ready to define the rational solvability of 3-manifolds and
1-dimensional knots following [13].

Definition 5.2. For a closed 3-manifold M and a nonnegative integer
n, a 4-manifold W is called a rational (n)-solution of M if

(1) ∂W = M ,
(2) H1(M ; Q)→ H1(W ; Q) is an isomorphism, and
(3) there exist elements

v1, . . . , vm, u1, . . . , um ∈ H2(W
(n); Q)

such that λn(ui, uj) = 0, λn(ui, vj) = δij (the Kronecker delta),
and the images of the ui, vi in H2(W ; Q) under the covering map
form a basis of H2(W ; Q).

67
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We call W a rational (n.5)-solution of M if, in addition to (1), (2), and
(3) above,

(4) there exist elements

u′
1, . . . , u

′
m ∈ H1(W

(n+1); Q)

such that λn+1(u
′
i, u

′
j) = 0 and the above ui is the image of u′

i under
the covering map.

If there is a (h)-solution W , then M is called rationally (h)-solvable.

Remark 5.3. Definition 5.2 is slightly different from the original def-
inition of Cochran, Orr, and Teichner [13, Definition 4.1] which uses the

ordinary derived series G(n) instead of the rational derived series G
(n)
Q . In

fact, it turns out that our definition is a more accurate description of the
geometric property which is detected by solvable poly-torsion-free-abelian
(PTFA) coefficient systems. A rational (h)-solution in the sense of [13, Def-
inition 4.1] is a rational (h)-solution in the sense of Definition 5.2. All the
results in [13] about rational solvability hold when the original definition is
replaced by Definition 5.2.

Henceforce we consider only 1-dimensional (rational) knots. In order to
apply the notion of rational solvability to knots, we consider the surgery
manifold obtained by filling the exterior with a solid torus. For this we
need a fixed choice of a framing. In case of integral knots, the zero-linking
framing is an obvious choice. However, a rational knot might not allow such a
canonical framing; every pushoff of a given knot may have nontrivial linking
number with the knot, since the linking number is rational-valued. Hence
we are naturally led to consider knots admitting a longitude with linking
number zero. It is equivalent to the condition that the knot has vanishing
(Q/Z)-valued self-linking, or that there exists a generalized Seifert surface,
by Theorem 2.6. Note that this is a necessary condition for a knot to be
a rational slice knot. For such knots, we call the framing induced by a
generalized Seifert surface the zero-framing and call the result of surgery
along this framing the zero-surgery manifold.

Definition 5.4. A rational knot K with vanishing (Q/Z)-valued self-
linking is called rationally (h)-solvable if the zero-surgery manifold M of K
is rationally (h)-solvable.

The subgroup of the classes of rationally (h)-solvable knots in sC1 ⊂ C1
is denoted by FQ

(h).

Remark 5.5. In case of a knot in S3, the ordinary derived subgroup and
the rational derived subgroup of the fundamental group of the zero-surgery
manifold are equal, so that the definitions of rational solvability in this paper
and [13] are equivalent.

In Definition 2.8, the complexity of a knot K was defined in terms of
the meridian in the integral homology of the knot exterior. It is easily seen
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that the complexity can also be defined by considering the surgery manifold
M , instead of the exterior: H1(M ; Q) = Q is generated by the meridian
of K by the Alexander duality, and hence H1(M ; Z)/torsion is isomorphic
to Z. The meridian of K generates a nontrivial subgroup in Z, and its
positive generator is the complexity of K. This is equivalent to our previous
definition.

The complexity of a rational solution W of M is defined in a similar
way. Since H1(W ; Q) ∼= H1(M ; Q) = Q, H1(W ; Z)/torsion is isomorphic to
Z, and the meridian of K is a nontrivial element in this group.

Definition 5.6. For a rational (h)-solution W of the zero-surgery man-
ifold M of a knot K, the positive generator of the subgroup generated by
the meridian of K in H1(W ; Z)/torsion ∼= Z is called the complexity of W .

Since H1(M ; Z)/torsion → H1(W ; Z)/torsion is injective, the complexity
of a knot is a divisor of the complexity of its rational solution.

Of course a rational slice knot is rationally (h)-solvable for any h. Indeed
a rational solution of a knot can be viewed as an “approximation” of a
rational slice disk complement, and in this sense, the rational solvability is
a measurement of “how close” a knot is to a rational slice knot.

Similarly, we can think of the rational solvability of a rational 3-sphere
as a measurement of the extent of failure to bound a rational 4-ball. Gener-
alizing naively the fact that the ambient space of a rational slice knot must
bound a rational 4-ball, one may expect that if a knot is “close” to a ratio-
nal slice knot, then its ambient space must be “close” to the boundary of
a rational 4-ball in the above sense. Indeed it follows from the proposition
below, which is a general statement that certain surgery preserves rational
solvability.

Proposition 5.7. Suppose M is a rationally (h)-solvable 3-manifold
and i : S1 ×D2 →M is an embedding such that [i(∗ × S1)] = 0 in H1(M −
S1 × 0; Q) and [i(S1 × ∗)] 6= 0 in H1(M ; Q), where ∗ ∈ S1. Then the
3-manifold

N = M − int i(S1 ×D2) ∪
S1×S1

D2 × S1

obtained from M by surgery is also rationally (h)-solvable.

Proof. Suppose W is a rational (h)-solution of M . Let V be the 4-
manifold obtained from W by attaching a 2-handle along i(S1×D2) in such
a way that ∂V = N . We will show that V is a rational (h)-solution of N .

Let denote µ = i(S1 × ∗). Then obviously π1(V ) = π1(W )/H where H
is the normal subgroup generated by µ. Furthermore, by our hypothesis,
H1(N ; Q) = H1(M ; Q)/〈µ〉. Combining this with H1(M ; Q) ∼= H1(W ; Q), it
follows that the map H1(N ; Q) → H1(V ; Q) induced by the inclusion is an
isomorphism.
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Next we verify the intersection pairing condition. Let

R′
n = Q[π1(W )/π1(W )

(n)
Q ],

Rn = Q[π1(V )/π1(V )
(n)
Q ].

Since the surjection π1(W )→ π1(V ) sends π1(W )
(n)
Q into π1(V )

(n)
Q , it gives

rise to a ring homomorphism of R′
n into Rn. Hence we can think of the

Rn-coefficient homology H∗(W ;Rn) as well as H∗(W ;R′
n). Consider the

following diagram:

H2(W ;R′
n) H2(W ;Rn) H2(V ;Rn)

H2(µ; Q) H2(W ; Q) H2(V ; Q) H1(µ; Q) H1(W ; Q)α β

The bottom row is exact by a Mayer–Vietoris argument. Since H2(µ; Q) = 0
and β is an injection, α is an isomorphism. If h = n is an integer, by
the rational (n)-solvability of W , there are elements ui, vj ∈ H2(W ;R′

n)
satisfying Definition 5.2. From the naturality of the intersection pairing and
that H2(W ; Q) ∼= H2(V ; Q), it follows that the images ūi, v̄j in H2(V ;Rn)
also satisfy Definition 5.2. This shows that V is a rational (n)-solution of Σ.
Similar argument works for the case h = n + 0.5. �

As a consequence, if Σ is a rational 3-sphere and K is a rationally (h)-
solvable knot in Σ with vanishing (Q/Z)-valued self-linking, then letting the
zero-surgery manifold and Σ play the role of M and N above, respectively,
it follows that Σ must be rationally (h)-solvable by Proposition 5.7.

However, by Proposition 5.8 below, it turns out that this application to
rational knots is less interesting.

Proposition 5.8. If a rational 3-sphere Σ is rationally (0)-solvable,
then Σ is rationally (h)-solvable for any h.

Proof. Suppose W is a rational (0)-solution of Σ. Then H1(W ; Q) =
H1(Σ; Q) vanishes and thus

π1(W )/π1(W )
(1)
Q = H1(W ; Z)/torsion = 0.

It follows that π1(W )
(n)
Q = π1(W ) for all n, that is, the cover W (n) is nothing

more than W itself. Therefore W is a rational (h)-solution for any h by
Definition 5.2. �

Remark 5.9. From Proposition 5.8, we can also see that any attempt
to find further obstructions for a rational 3-sphere to bound a rational 4-ball
from PTFA coefficient systems (and associated von Neumann invariants) in
a similar way as [13] will fail.
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From the viewpoint of knot theory, our main interest is to investigate
further obstructions to being rationally (h)-solvable obtained from the com-
plication of knotting, beyond rational solvability of ambient spaces. The
following result deals with the cases of h = 0 and 0.5.

Theorem 5.10. Suppose K is a knot in a rational sphere Σ with van-
ishing (Q/Z)-valued self-linking. Then

(1) K is rationally (0)-solvable if and only if so is Σ.
(2) K is rationally (0.5)-solvable if and only if Σ is rationally (0)-

solvable and there exists a generalized Seifert surface with a meta-
bolic Seifert matrix.

Remark 5.11. This result may be compared with the analogues for
integral knots discussed in [13]: an integral knot is integrally (0)-solvable if
and only if the Arf invariant is zero, and is integrally (0.5)-solvable if and
only if its Seifert matrix is metabolic. For integral knots the ambient space
condition is unnecessary since S3 bounds D4. For rational knots, we have
no condition on the Arf invariant; we have no Arf invariant over Q. We
note that the Arf invariant condition for integral knots is required since an
integral (0)-solution must be a spin 4-manifold by definition.

Recall a special case of Theorem 4.1: for any pair of a positive inte-
ger c and a rational Seifert matrix A, there is a knot K in a rational 3-
sphere Σ bounding a rational 4-ball which has a generalized Seifert surface
of complexity c with Seifert matrix A. In particular, this Σ is rationally
(0)-solvable, and hence K is rationally (0)-solvable by Theorem 5.10 (1).
From this it follows that any element in G1 is realized by a rationally (0)-
solvable knot. Combining this with Theorem 5.10 (2), we obtain Theo-

rem 1.6: FQ

(0)/F
Q

(0.5)
∼= G1.

Proof of Theorem 5.10. First we prove the if direction. Suppose
that ∆ is a rational (h)-solution of Σ where h = 0 or 0.5. Let V be the
manifold obtained from ∆ by attaching a 2-handle along the zero-framing
of K so that ∂V is the zero-surgery manifold M .

Let F0 is a generalized Seifert surface in Σ. Pushing the interior of F0

into the interior of ∆ and attaching parallel copies of the core of the 2-
handle, we obtain a closed surface F in V . Since F is boundary parallel,
there is a canonical framing of the normal bundle of F , and using this, we
identify a regular neighborhood of F in V with F ×D2.

Let X = V − int(F ×D2). Choose a handlebody R bounded by F , and
let

W = X ∪
F×S1

R× S1.

We will show that W is a rational (h)-solution of M . First, from duality
and Mayer–Vietoris arguments it follows that

π1(W )/π1(W )
(1)
Q
∼= H1(W ; Z)/torsion ∼= Z
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and it is generated by a meridian of F (not a meridian of K!). There-
fore H1(M) → H1(W ) is an isomorphism. (Throughout this proof Hi(−)
designates Hi(−; Q).)

Now we compute the second homology and the intersection pairing of W .
Let W̃ = W (1) be the infinite cyclic cover of W induced by

π1(W ) −→ π1(W )/π1(W )
(1)
Q = Z.

We will use a standard cut-paste construction of W̃ . Denoting the infinite
cyclic cover of X by X̃ , we have

W̃ = X̃ ∪
F×R

R× R.

Recall that F is boundary parallel in V . Thus there is a proper embed-
ding f : F × [0, 1] → X such that f(F × 1) ⊂ ∂V ⊂ ∂X and f(F × 0) ⊂
∂X−∂V induces our framing on F in V . Let Y be X cut along f(F× [0, 1]).
There are inclusions

i+, i− : F × [0, 1] −→ ∂Y

corresponding to the positive and negative normal directions of f(F × [0, 1])

in X, respectively. Then X̃ is given by

X̃ =

(

∐

n∈Z

tnY

)/

i−(z) ∼ ti+(z) for z ∈ F × [0, 1],

where tnY is a copy of Y so that t can be viewed as a deck translation in a
natural way.

Since Y ∼= V = ∆ ∪ (2-handle),

Hi(Y ) =

{

Hi(∆) for i 6= 2,

H2(∆)⊕Q for i = 2.

By a Mayer–Vietoris argument, there is an exact sequence

· · · −→
⊕

n∈Z

H2(F )
α−−→

⊕

n∈Z

H2(t
nY ) −→ H2(X̃)

−→
⊕

n∈Z

H1(F ) −→
⊕

n∈Z

H1(t
nY ) −→ H1(X̃) −→ 0

It can be seen that
⊕

H1(t
nY ) = 0,

⊕

H1(F ) = Q[t±1]2g where g is the
genus of F , and α is the map

Q[t±1] −→ (H2(∆)⊗Q[t±1])⊕Q[t±1]

sending a to (0, (t− 1)a). Thus

H2(X̃) ∼= (H2(∆)⊗Q[t±1])⊕Q⊕Q[t±1]2g.
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On the other hand, by a Mayer–Vietoris argument for W̃ = X̃ ∪ (R × R),
we have a long exact sequence

H2(F )
β−−→ H2(X̃)⊕H2(R) −→ H2(W̃ )

−→ H1(F )
γ−−→ H1(X̃)⊕H1(R) −→ H1(W̃ ) −→ 0

where the cokernel of β is exactly

H2(X̃) ∼= (H2(∆)⊗Q[t±1])⊕Q[t±1]2g

and γ is the projection Q2g → Qg. From this we obtain H1(W̃ ) = 0 and an
exact sequence

0 −→ (H2(∆)⊗Q[t±1])⊕Q[t±1]2g −→ H2(W̃ ) −→ Qg −→ 0.

Furthermore generators are explicitly identified as follows. Choose 1-
cycles e1, . . . , e2g in F which form a basis of H1(F ) such that eg+1, . . . , e2g

generate the kernel of H1(F ) → H1(R) and e1, . . . , eg are dual to them.
We may assume that i±(ei × 0) ⊂ ∂∆, viewing ∆ as a subset of Y ∼=
V = ∆ ∪ 2-handle. Appealing to the fact that ∂∆ is a rational sphere, we
can choose 2-chains c+

i , c−i in a collar neighborhood of ∂∆ ⊂ ∆ such that
∂c±i = i±(ei× 0) for i = 1, . . . , 2g. From our choice of the ei, we can assume

that there are 2-chains di in R × R such that ∂di = i−(ei × 0) in W̃ for
i = g + 1, . . . , 2g. Then c+

i · c−j = S(ei, ej) where S is the Seifert form of F0.

(To verify this, one may appeal to the properties of rational-valued linking
number mentioned in [7, p. 1169].)

Let

vi = c−i ∪ −tc+
i for i = 1, . . . , 2g,

ui = c−i ∪ −di for i = g + 1, . . . , 2g.

Then they can be viewed as 2-cycles in W̃ , and from the above computation,
it follows that the vi form a basis of Q[t±1]2g ⊂ H2(W̃ ) and the images of

the ui under H2(W̃ )→ Qg form a basis of Qg.

From the intersection data of c±i , the intersection form of H2(W̃ ) is
computed as follows:

vi · vj = S(ej , ei) + S(ei, ej)− t−1S(ej , ei)− tS(ei, ej),

vi · uj = S(ej , ei)− t−1S(ei, ej).

In other words, the restrictions of the intersection form on 〈vi〉 × 〈vi〉 and
〈vi〉 × 〈ui〉 are represented by

(1− t)A + (1− t−1)AT ,

AT − t−1A,

respectively, where A is the Seifert matrix of F0 with respect to {ei}.
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H2(W ) is computed from the above results as follows. Milnor’s result
on infinite cyclic covers [37] gives us a long exact sequence

· · · −→ H2(W̃ )
t−1−−→ H2(W̃ ) −→ H2(W ) −→ H1(W̃ )

t−1−−→ H1(W̃ ) −→ · · · .
From this it follows that H2(W ) is isomorphic to the cokernel of t − 1 on

H2(W̃ ), since H1(W̃ ) = 0. Applying the snake lemma to the commutative
diagram

0 (H2(∆)⊗Q[t±1])⊕Q[t±1]2g H2(W̃ ) Qg 0

0 (H2(∆)⊗Q[t±1])⊕Q[t±1]2g H2(W̃ ) Qg 0

t−1 t−1 t−1=0

we can see that H2(W ) ∼= H2(∆)⊕Q2g, where the Q2g factor is generated by
the images v̄1, . . . , v̄g, ūg+1, . . . , ū2g ∈ H2(W ) of v1, . . . , vg, ug+1, . . . , u2g ∈
H2(W̃ ). Furthermore, the intersection form on H2(W ) is also obtained by
plugging in t = 1 into the above computation: on 〈v̄i〉× 〈v̄i〉 and 〈v̄i〉× 〈ūi〉,
the intersection forms are given by

[

(1− t)A + (1− t−1)AT
]

t=1
= 0,

[

AT − t−1A
]

t=1
= AT −A,

respectively. Since the latter is the intersection form on F , it follows that
{v̄i} and {ūi} are dual. Since ∆ is a rational (0)-solution, there is a basis
{x1, . . . , xk, y1, . . . , yk} of H2(∆) such that λ0(xi, xj) = 0, λ0(xi, yj) = δij .
Then the v̄i, xj , ūi, yj form a basis of H2(W ) ∼= H2(∆)⊕Q2g which satisfies
the definition of a rational (0)-solution.

In case of h = 0.5, our hypothesis is that ∆ is a rational (0.5)-solution
of Σ and the Seifert form S of F0 is metabolic. If

H ⊂ H1(F ) = Coker{H1(∂F0) −→ H1(F0)}
is a metabolizer of S, then it can be seen that the pre-image of H under

H1(F ; Z) −→ H1(F ; Z)⊗Q = H1(F )

is a half-dimensional summand. Choosing a basis of H and dual elements,
we obtain a basis {e1, . . . , e2g} of H1(F ; Z) such that the Seifert matrix A
and the intersection matrix AT −A are of the following form:

A =

[

0 ∗
∗ ∗

]

, AT −A =

[

0 I
−I 0

]

.

We may assume that {ei} is a standard symplectic basis of H1(F ; Z) so that
there is a handlebody R bounded by F such that 〈eg+1, . . . , e2g〉 is the kernel
of H1(F ) → H1(R). Now, by performing the above computation using our
{ei} and R, W is a rational (0)-solution, and in addition, the intersection
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form of H2(W̃ ) vanishes on the submodule generated by the pre-images

v1, . . . , vg ∈ H2(W̃ ) of v̄1, . . . , v̄g. Let

x′
i = xi ⊗ 1 ∈ H2(∆)⊗Q[t±1] ⊂ H2(W̃ ).

Then v1, . . . , vg, x
′
1, . . . , x

′
k are elements in H2(W̃ ) which are sent to the

basis elements v̄1, . . . , v̄g, x1, . . . , xk ∈ H2(W ) and the intersection form of

H2(W̃ ) vanishes on them. It follows that W is a rational (0.5)-solution.
This completes the if parts.

The only if part of (1) follows from Proposition 5.7. For the only if part
of (2), suppose W is a rational (0.5)-solution of the zero-surgery manifold M .
Let c be the complexity of W . Since c is a multiple of the complexity of
K, there is a generalized Seifert surface of complexity c, and by attaching
parallel copies of the core disks of the added 2-handle in M , we obtain a
closed surface F in M . The Thom–Pontryagin construction produces a map
f : M → S1 associated to F . It induces H1(M ; Z)→ Z sending the meridian
of K to c, and thus, it factors through

H1(W ; Z) −→ H1(W ; Z)/torsion = Z.

Hence f extends to W → S1. A transversality argument gives us a properly
embedded 3-manifold R in W bounded by F .

Now we modify R so that H = Ker{H1(F )→ H1(R)} becomes a metab-
olizer of the Seifert form of F , by proceeding in a similar way to the proof
of [13, Proposition 9.2]. We denote the first solvable cover W (1) by W̃ as

before. We may assume that the elements u′
i ∈ H2(W̃ ) described in Defini-

tion 5.2 are in the image of H2(W̃ ; Z) → H2(W̃ ) by taking multiples of u′
i.

Appealing to [13, Lemma 7.4], we may assume that the images ui ∈ H2(W )

are represented by disjoint surfaces Fi ⊂ W which are lifted to W̃ . More-
over, we may assume that the Fi are disjoint to R by a standard argument
removing intersections in the cover W̃ ; W̃ is obtained by a cut-paste con-
struction using R ⊂W so that the intersection of a fixed lift of R and a lift
F̃i of Fi is a 1-manifold which is null-homologous in F̃i. We can “surger” R
along subsurfaces in F̃i to remove the intersection.

Let L be the subgroup in H2(W ) generated by the Fi. By Definition 5.2,
L⊥ = L with respect to the intersection form on H2(W ). Given 1-cycles x,
y on F representing elements in H, there are 2-chains c, d in R and c′ in
M such that ∂c = ∂c′ = nx and ∂d = ny for some n 6= 0. Since c − c′

is disjoint to the Fi, c − c′ represents an element in L⊥. Since L = L⊥,
m(c− c′) is a linear combination of the Fi in H2(W ; Z) for some m 6= 0. By
subtracting this linear combination from mc, we obtain a 2-chain c′′ such
that c′′ −mc′ = 0. Now the Seifert pairing at (x, y) is given by n2S(x, y) =
c′ · y+ (intersection in M). It is equal to the intersection c′ · d+ in W , where
d+ denotes pushoff from R. Since c′′ −mc′ = 0 and the Fi are disjoint from
R, mc′ ·d+ = c′′ ·d+ = 0. This proves the claim that H is a metabolizer. �
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5.2. Effect of complexity change

In this section we investigate the effect of change of poly-torsion-free-
abelian (PTFA) group coefficients on the higher-order Alexander module,
Blanchfield form, and von Neumann ρ-invariant. We start by recalling nec-
essary results of Cochran, Orr, and Teichner [13] with a little technical
addendum.

5.2.1. Obstructions to admitting a rational solution of a fixed

complexity. In this subsection we discuss an inductive construction of
PTFA coefficient systems using the Blanchfield duality, which was used
in [13] to define obstructions to admitting a rational solution of a fixed
complexity. We will focus on only results that we need to use later. For full
details and proofs, see [13].

Let M be a 3-manifold and φ : π1(M) → Γ be a homomorphism into a
PTFA group Γ. Let K = QΓ(QΓ− {0})−1 be the skew field of quotients of
the Ore domain QΓ which is obtained by inverting nonzero elements from
right. Let R be a subring of K containing QΓ. Then, the homology group
H∗(M ;R) with R-coefficient is defined. We recall its definition for later
use. Let X be the regular cover of M associated to π1(M) → Γ. The
cellular chain complex C∗(X; Z) becomes a Z[Γ]-module via the covering
transformation action of Γ. H∗(M ;R) is defined to be the homology of the
chain complex

C∗(M ;R) = C∗(X; Z)⊗Z[Γ] R.

The associated (rational) Alexander module is defined to be the homol-
ogy module A = H1(M ;R). There is a nondegenerated linking form

Bℓ : A×A −→ K/R
which is called the Blanchfield form [13]. For later use we give a geometric
description of Bℓ. Given 1-cycles x and y in C1(M ;R), there is a 2-cycle u
in C2(M ;R) such that ∂u = ax for some nonzero a ∈ R since A is a torsion
R-module (e.g., see [13]). Then

Bℓ(x, y) =
1

a
· I(u, y) +R ∈ K/R

where I(u, y) denotes the R-valued twisted intersection number of u and y.
By a universal coefficient spectral sequence argument and a standard

interpretation of the first group cohomology as the set of derivations, we
have

Hom(A,K/R) ∼= H1(M ;K/R) ∼= {derivations π1(M)→ K/R}
{principal derivations} .

Given an element x ∈ A, the adjoint map A → K/R sending y to Bℓ(y, x)
gives rise to a derivation d : π1(M)→ K/R which is unique up to principal
derivations. By the universal property of the semidirect product, it induces
a homomorphism

ϕ = ϕ(x, φ) : π1(M) −→ K/R⋊ Γ
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given by ϕ(g) = (d(g), φ(g)). In [13] it was shown that ϕ is well-defined up
to K/R-conjugation.

This construction is applied inductively to construct coefficient systems
of the surgery manifold of a knot over the following PTFA groups.

Definition 5.12. The n-th rationally universal group Γn is defined in-
ductively by

Γ0 = Z, Γn+1 = Kn/Rn ⋊ Γn (n ≥ 0)

where Kn is the skew field of quotients of QΓn and

Rn = Q[Γn](Q[Γn,Γn]− 0)−1 ⊂ Kn.

(In [13] our Γn was denoted by ΓU
n .)

Henceforth we view Γ0 as the multiplicative infinite cyclic group 〈t〉
generated by t.

Suppose that K is a knot in a rational sphere with vanishing Q/Z-valued
self-linking. Let M be the result of surgery along the zero-framing of K on
the ambient space. Fix a positive multiple c of the complexity of K. We
construct Γn-coefficient systems φn on M , which depend on the choice of c.
Let

φ0 : π1(M) −→ Γ0 = 〈t〉
be the homomorphism sending the (positively oriented) meridian of K to
tc ∈ 〈t〉, which (uniquely) exists by our choice of c. Suppose φn : π1(M) →
Γn has been defined. Choosing xn ∈ An = H1(M ;Rn), a new coefficient
system

φn+1 = φn+1(xn, φn) : π1(M) −→ Γn+1

is induced as discussed above.
Given a closed 3-manifold M and a group homomorphism φ : π1(M)→

G, there defined the von Neumann signature invariant ρ(M,φ) ∈ R (see
Cheeger–Gromov [9]). The following theorem of Cochran–Orr–Teichner [13]
states that for a certain choice of xn, ρ(M,φn) gives an obstruction to being
rationally (n.5)-solvable via a rational (n.5)-solution of complexity c.

Theorem 5.13 (c.f., Theorem 4.6 of [13]). Suppose K is a rational knot
with vanishing Q/Z-valued self-linking, M is the surgery manifold of K,
and φ0 : π1(M) → Γ0 is the homomorphism sending the meridian of K to
tc, where c is a positive multiple of the complexity of K. If W is a rational
(n)-solution of complexity c for K, then the following statements hold:

(0) φ0 : π1(M)→ Γ0 factors through π1(W ). It gives rise to the Alexan-
der module A0 = H1(M ;R0) and the Blanchfield form

Bℓ0 : A0 ×A0 −→ K0/R0.

(0.5) ρ(M,φ0) = 0.
(1) P0 = Ker{A0 → H1(W ;R0)} is self-annihilating with respect to

Bℓ0, and for any x0 ∈ P0, the induced coefficient system

φ1 = φ1(x0, φ0) : π1(M) −→ Γ1
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factors through π1(W ). It gives rise to the Alexander module A1 =
H1(M ;R1) and the Blanchfield form

Bℓ1 : A1 ×A1 −→ K1/R1.

(1.5) ρ(M,φ1) = 0.
...

(n) Pn−1 = Ker{An−1 → H1(W ;Rn−1)} is self-annihilating with re-
spect to Bℓn−1, and for any xn−1 ∈ Pn−1, the induced coefficient
system

φn = φn(xn−1, φn−1) : π1(M) −→ Γn

factors through π1(W ). It gives rise to the Alexander module An =
H1(M ;Rn) and the Blanchfield form

Bℓn : An ×An −→ Kn/Rn.

In addition, if W is a rational (n.5)-solution of complexity c, then the fol-
lowing statement holds:

(n.5) ρ(M,φn) = 0.

Remark 5.14. In the original work of Cochran, Orr, and Teichner [13],
they discussed this result under the following restrictions:

(1) They considered rational solvability of knots in S3 only. We gen-
eralizes it for rational knots admitting well-defined zero-surgery
manifolds.

(2) They stated the hypothesis on φ0 in terms of the notion of “mul-
tiplicity”, rather than complexity. In particular, they considered
only the case that the extension π1(W ) → Z of φ0 : π1(M) → Z is
surjective. We do not require it.

In spite of this, their original proof works for Theorem 5.13 without any
substantial modification. We do not repeat the details.

We emphasize again that the obstructions in Theorem 5.13 depends on
the choice of c. To handle all the possible values of c, we investigate the
effect of change of c in the next subsection.

5.2.2. Change of coefficient systems. In this subsection we observe
naturality of higher order Alexander modules, Blanchfield forms, and asso-
ciated ρ-invariants with respect to coefficients.

Suppose that φ : π1(M) → Γ and φ′ : π1(M) → Γ′ are PTFA coeffi-
cient systems and h : Γ → Γ′ is an injection making the following diagram
commute:

π1(M) Γ

Γ′

φ

φ′ h
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Note that in this case the von Neumann invariants ρ(M,φ) and ρ(M,φ′) are
the same by the following result.

Proposition 5.15 (Subgroup property). If φ : π1(M) → G is a homo-
morphism and i : G→ G′ is an injection, then ρ(M,φ) = ρ(M, i ◦ φ).

This is due to Cheeger–Gromov [9]. See also [13, Proposition 5.13].
We investigate the relationship of induced coefficient systems obtained

from φ and φ′. Let K be the skew field of quotients of QΓ and R be a
subring such that QΓ ⊂ R ⊂ K as before, and QΓ′ ⊂ R′ ⊂ K′ similarly.
Let A = H1(M ;R) and A′ = H1(M ;R′) be the Alexander modules and Bℓ
and Bℓ′ be the Blanchfield forms associated to φ and φ′, respectively. We
assume that the induced homomorphism K → K′ sends R into R′ so that
R′ can be viewed as an R-module.

Theorem 5.16. If R is a PID, then the followings hold:

(1) A′ = A⊗R R′.
(2) The Blanchfield form Bℓ′ : A′ ×A′ → K′/R′ is given by

Bℓ′(x⊗ a, y ⊗ b) = a ·Bℓ(x, y)h · b̄

where Bℓ(x, y)h is the image of Bℓ(x, y) under the induced homo-
morphism K/R → K′/R′.

(3) For x′ = x⊗ 1 ∈ A⊗R′ = A′, the coefficient system

ϕ′ = ϕ′(x′, φ′) : π1(M) −→ K′/R′ ⋊ Γ′

induced by x′ and φ′ is given by ϕ′ = h̄ ◦ ϕ, where h̄ is the homo-
morphism induced by h.

π1(M) K/R⋊ Γ

K′/R′ ⋊ Γ′

ϕ

ϕ′ h̄

(4) h̄ is injective if and only if the pre-image of R′ under K → K′ is
exactly R. In this case, we have

ρ(M,ϕ) = ρ(M,ϕ′).

Proof. Denote the regular coverings of M associated to φ and φ′ by X
and X ′, respectively. Since X ′ is the disjoint union of copies of X indexed
by cosets of h(Γ) in Γ′, the cellular chain complex of X ′ is given by

C∗(X
′; Z) = C∗(X; Z)⊗ZΓ ZΓ′.
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Thus the R′-coefficient chain complex C∗(M ;R′) can be computed in terms
of C∗(M ;R):

C∗(M ;R′) = C∗(X
′; Z)⊗ZΓ′ R′

= C∗(X; Z)⊗ZΓ R′

= (C∗(X; Z) ⊗ZΓ R)⊗R R′

= C∗(M ;R) ⊗R R′.

Since R′ ⊂ K′ and R injects into K′, R′ is R-torsion free. Since R is a PID,
R′ is R-free (one may appeal to a noncommutative version of the structure
theorem of modules over a PID, e.g., see [15]). Hence (1) follows from the
universal coefficient theorem.

Furthermore the R′-valued intersection form

(C1(M ;R)⊗R′)× (C2(M ;R)⊗R′) −→ R′

is given by (x ⊗ a, y ⊗ b) → ā · (x · y)h · b where (x · y)h is the image of
the R-valued intersection of x and y under R → R′. Thus (2) follows from
the geometric description of the Blanchfield form discussed in the previous
subsection.

From (2), the derivation π1(M)→ K′/R′ associated to x⊗ 1 ∈ A′ is the
composition

π1(M)
d−−→ K/R −→ K′/R′

where d is the derivation associated to x ∈ A. Thus by the definition,
ϕ′ = h̄ ◦ ϕ. This shows (3).

For (4), observe that

h̄ : K/R⋊ Γ −→ K′/R′ ⋊ Γ′

is an injection if and only if so is K/R → K′/R′, since h : Γ→ Γ′ is injective
by the hypothesis. The last conclusion follows from the subgroup property.

�

Applying Theorem 5.16 inductively to the construction of rationally uni-
versal coefficient systems discussed in the previous subsection, we obtain the
following corollary: suppose c is a multiple of the complexity of K, and

φ0, φ′
0 : π1(M) −→ Γ0 = 〈t〉

are homomorphisms sending the meridian of K to tc and trc, respectively.
Let hn : Γn → Γn be the homomorphism induced by h0 : Γ0 → Γ0 sending t
to tr. hn gives rise to another Rn-bimodule structure on Rn via r · x · s =
hn(r)xs. For a right Rn-module M, we denote the tensor product of M
and Rn with this module structure byM⊗hn

Rn.

Corollary 5.17.
(0) Suppose A0 is the Alexander module associated to φ0 and Bℓ0 is

the Blanchfield form on A0. Then
– The coefficient system φ′

0 is given by φ′
0 = h0 ◦ φ0.
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– The Alexander module A′
0 associated to φ′

0 is given by

A′
0 = A0 ⊗h0 R0.

– The Blanchfield form Bℓ′0 on A′
0 is given by

Bℓ′0(x⊗ a, y ⊗ b) = a ·Bℓ0(x, y)h0 · b̄.
– ρ(M,φ0) = ρ(M,φ′

0).
(1) Suppose φ1 = φ1(x0, φ0) : π1(M) → Γ1 is the coefficient system

corresponding to x0 ∈ A0, A1 is the associated Alexander module,
and Bℓ1 is the Blanchfield form on A1. Then for x′

0 = x0⊗1 ∈ A′
0,

– The coefficient system φ′
1 = φ′

1(x
′
0, φ

′
0) is given by φ′

1 = h1◦φ1.
– The Alexander module A′

1 associated to φ′
1 is given by

A′
1 = A1 ⊗h1 R1.

– The Blanchfield form Bℓ′1 on A′
1 is given by

Bℓ′1(x⊗ a, y ⊗ b) = a ·Bℓ1(x, y)h1 · b̄.
– ρ(M,φ1) = ρ(M,φ′

1).
...

(n) Suppose φn = φn(xn−1, φn−1) : π1(M) → Γn is the coefficient sys-
tem corresponding to xn−1 ∈ An−1, An is the associated Alexan-
der module, and Bℓn is the Blanchfield form on An. Then for
x′

n−1 = xn−1 ⊗ 1 ∈ A′
n−1,

– The coefficient system φ′
n = φ′

n(x′
n−1, φ

′
n−1) is given by φ′

n =
hn ◦ φn.

– The Alexander module A′
n associated to φ′

n is given by

A′
n = An ⊗hn

Rn.

– The Blanchfield form Bℓ′n on A′
n is given by

Bℓ′n(x⊗ a, y ⊗ b) = a ·Bℓn(x, y)hn · b̄.
– ρ(M,φn) = ρ(M,φ′

n).
...

Proof. The only one thing we need to check is whether the homomor-
phism f : Kn → Kn induced by hn satisfies f−1(Rn) = Rn. This implies
that hn is injective for all n. For this we appeal to the fact that

Rn = QΓn(Q[Γn,Γn]− {0})−1

is isomorphic the Laurent polynomial ring K[t±1] over the skew field of
quotients K of Q[Γn,Γn], where t is represented by a generator of Γ0 = Z
(see [13]). Thus Kn is isomorphic to the skew field of rational functions
K(t), and the concerned homomorphism f : K(t)→ K(t) is given by

∑

ti · ai −→
∑

tri · (ai)
hn
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where a→ ahn denotes the homomorphism on K induced by hn. Combining
this with the long-division algorithm, it follows that, for any P (t), Q(t) ∈
K[t±1], if f(P (t)) divides f(Q(t)) then P (t) divides Q(t). This shows

f−1(K[t±1]) = K[t±1]. �

From Corollary 5.17, we can see that if the metabolizer Pn ⊂ An in
Theorem 5.13 can be controlled in an appropriate way as c varies, then we
can choose elements xn ∈ Pn such that the value of the associated ρ-invariant
in Theorem 5.13 is independent of c. In this case a single ρ-invariant would
obstruct the existence of rational solutions of any complexity. The next
section is devoted to a construction of examples for which we can control
the first metabolizer P0 as desired.

5.3. Realization of Alexander modules by ribbon knots

In this section we discuss realization of certain classical Alexander mod-
ules and Blanchfield forms by ribbon knots. Recall that the classical Alexan-
der module of a knot K in S3 is defined to be H1(S

3−K; Z[t±1]) where the
Z[t±1]-coefficient system is induced by π1(S

3 − K) → H1(S
3 − K) = 〈t〉

sending the meridian to t.

Theorem 5.18. For any polynomial P (t) with integer coefficients such
that P (1) = ±1 and P (t−1) = P (t) up to multiplication by ±tn, there is a
ribbon knot K in S3 whose classical Alexander module is Z[t±1]/〈P (t)2〉.

We remark that some special cases of Theorem 5.18 were considered by
Kim [28] and Friedl [18]. Theorem 5.18 generalizes their ad-hoc methods.
We also remark that there are well-known realization results of Alexander
polynomials by slice knots. Since the author could not find the necessary
realization result of Alexander modules in the literature, he gives a proof of
Theorem 5.18 for concreteness.

Proof. For notational convenience we may assume that P (t) is of the
form

P (t) = agt
g + · · ·+ a1t + a0 + a1t

−1 + · · ·+ agt
−g

and P (1) = 1 without any loss of generality.
The knot K is obtained by a surgery construction which is similar to [31,

16]. See Figure 1. We perform (+1), (−1), and (−1)-surgery on S3 along the
curves α1, α2, and α3 illustrated in Figure 1, respectively. In Figure 1 (±ai)
denotes the number of full twists. α1 may be viewed as a knot obtained by g
band sum operations on a link with (g+1) unknotted components C0, . . . , Cg

satisfying lk(C0, Ci) = ai and lk(Ci, Cj) = 0 for i, j > 0. The band joining
C0 and Ci wraps i times the unknotted circle K0 for i = 1, . . . , g. Similarly
for α2; observe the symmetry of Figure 1 with respect to the reflection about
a horizontal mirror. The result of surgery along α1, α2, and α3 is again S3,
and K0 becomes a (nontrivial) knot K in S3.
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Figure 1.

We will show that this knot K has the desired properties. First we
compute the classical Alexander module of K. The infinite cyclic cover
of the complement of the unknotted circle K0 is R3, and the pre-image of
each αi consists of infinitely many simple closed curves tjβi where t denotes
the covering transformation corresponding to the meridian of K0. Figure 2
illustrates these curves in R3.

The infinite cyclic cover of the complement of K is obtained by perform-
ing surgery along the curves tjβi, j ∈ Z, i = 1, 2, 3. The surgery framings in



84 5. RATIONAL KNOTS IN DIMENSION THREE

Figure 2.

Figure 2 can be verified using the equation

(framing on βi) +
∑

j 6=0

lk(βi, t
jβi) = (framing on αi).

Here we need the fact that P (1) = 2(ag + · · ·+a1)+a0 = 1 and lk(βi, t
jβi) =

a|j| if i = 1, −a|j| if i = 2.
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By the Alexander duality, the exterior X of
⋃

i,j tjβi has H1(X; Z[t±1]) =

Z[t±1]3 which is generated by the meridian ei of βi, i = 1, 2, 3. Filling X
with copies of S1×D2, we obtain the infinite cyclic cover of the complement
of K, and its first Z[t±1]-homology is the quotient of H1(X; Z[t±1]) by the
Z[t±1]-submodule generated by the parallels of the βi corresponding to the
framings, i = 1, 2, 3. From mutual linkings and framings of tjβi, it follows
that the relations from surgery gives us a presentation matrix





P (t) 0 1
0 −P (t) 1
1 1 −1





of the classical Alexander module of K.
Adding the last row to the first and second rows, we can eliminate the

last row and column from the presentation. This gives us a new matrix
[

P (t) + 1 1
1 −P (t) + 1

]

.

Adding (P (t) − 1) times the first row to the second row, we can eliminate
the first row and the second column, and the resulting 1× 1 matrix gives us
the module Z[t±1]/〈P (t)2〉 as desired.

Now it remains to show that K is ribbon. For this purpose we transform
Figure 1 as in Figure 3. First, since the simple closed curves α1 and α2 in
Figure 1 are unknotted, Figure 1 can be isotoped to the first Kirby diagram
in Figure 3, where T represents a tangle and −T is its mirror image with
respect to a vertical mirror. Next, by performing “Rolfsen twist” on α1 and
α2, we obtain the second Kirby diagram in Figure 3. By this, as illustrated
in the second diagram, the curve α3 becomes the boundary of a 2-disk D2,
and K0 becomes a knotted circle K1 in S3. Observe that K1 bounds a
ribbon disk D in S3 since it is a connected sum of a knot and its mirror
image. Furthermore, the intersection of D and the 2-disk D2 consists of
disjoint arcs in the interior of D2. Finally we perform another Rolfsen twist
along ∂D2. It gives us our knot K illustrated in the last diagram in Figure 3.
In fact, K is obtained from K1 by cutting S3 along D2 and pasting along
a full rotation on D2. This operation transforms the ribbon disk D of K1

into a ribbon disk of K. It completes the proof. �

Remark 5.19. By a straightforward computation, it can also be seen
that the Blanchfield form of K

Bℓ : A×A −→ Q(t)/Z[t±1]

is given by

Bℓ(f(t), g(t)) =
f(t)g(t)(P (t) − 1)

P (t)2
∈ Q(t)/Z[t±1]

where the Alexander module A is identified with Z[t±1]/〈P (t)2〉 in such a
way that the meridian e1 of α1 is identified with 1, as in the above proof.
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Figure 3.
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5.4. Knots which are not rationally (1.5)-solvable

In this section we construct a family of knots in S3 which have metabolic
Seifert matrices but are not rational slice knots. In fact we will show that
for each knot in the family a single von Neumann ρ-invariant obstructs the
existence of rational solutions of any complexity.

In the construction we need the following special case of Proposition 3.18,
which will play a crucial role in controlling the configuration of metabolizer
in the rational Alexander module for an arbitrary complexity.

Lemma 5.20 (A special case of Proposition 3.18). Suppose λ(t) = at2 −
(2a + 1)t + a where a is an odd prime. Then λ(tr) is irreducible for any
positive integer r.

In the following statement, M is the zero-surgery manifold of a knot K
in S3 and A0 is its rational Alexander module associated to φ0 : π1(M) →
Γ0 = 〈t〉 sending the meridian to t.

Proposition 5.21. Suppose λ(t) is a polynomial satisfying Lemma 5.20
and K is a knot in S3 such that A0 = Q[t±1]/〈λ(t)2〉. If K has a rational
(1.5)-solution of any complexity, then for any element x0 of the form

x0 = f(t)λ(t) + 〈λ(t)2〉 ∈ A0

where f(t) is a polynomial, the von Neumann invariant ρ(M,φ1) associated
to

φ1 = φ1(x0, φ0) : π1(M) −→ Γ1

vanishes.

Proof. Suppose that there is a rational (1.5)-solution. Let denote its
complexity by c. Let φ′

0 : π1(M) → 〈t〉 be the homomorphism sending the
meridian of K to tc and h0 : Γ0 → Γ0 be the map t → tc as in Section 5.2.
By Corollary 5.17, the Alexander module A′

0 associated to φ′
0 is given by

A′
0
∼= A0 ⊗h0 R0

∼= Q[t±1]/〈λ(tc)2〉.
Since λ(tc) is irreducible, A′

0 has a unique proper submodule λ(tc)A′
0 =

P ⊗h0 R0 where P = λ(t)A0 ⊂ A0.
By Theorem 5.13, there is a self-annihilating submodule P ′ ∈ A′

0 such
that ρ(M,φ′

1) = 0 for any φ′
1 : π1(M) → Γ1 associated to an element in P ′.

Since P ′ is a proper submodule, P ′ must be equal to P ⊗h0 R0. Since
x0 = f(t)λ(t) + 〈λ(t)2〉 is contained in P , x′

0 = x0 ⊗ 1 is contained in P ′.
Let

φ′
1 = φ′

1(x
′
0, φ

′
0) : π1(M) −→ Γ1.

Then from Corollary 5.17, it follows that ρ(M,φ1) = ρ(M,φ′
1) = 0. �

For any polynomial λ(t) satisfying Lemma 5.20, we can choose a rib-
bon knot with classical Alexander module Z[t±1]/〈λ(t)2〉 by appealing to
Theorem 5.18. This knot satisfies the hypothesis of Proposition 5.21.
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We will modify this knot, without altering the Alexander module, to
realize a nontrivial value of the concerned ρ-invariant. For this purpose,
as in [13, 14, 28], we use a well-known construction which is sometimes
called “satellite construction”, “grafting construction”, or “genetic modifi-
cation”. Let K ′ be a knot in S3 with zero-surgery manifold M ′, and η be
an unknotted simple closed curves in S3−K ′. Let J be another knot in S3.
We modify K ′ by “tying J along η” as follows. Remove an open tubular
neighborhood Uη of η, and fill it in with the exterior EJ of J along an orien-
tation reversing homeomorphism between their boundaries which identifies
the meridian and the zero-linking longitude of J with the zero-linking longi-
tude and the meridian of η, respectively. Then we obtain again S3, but K ′

becomes a new knot, say K. The zero-surgery manifold M of K is given by
M = (M ′ − Uη) ∪∂ EJ . It is known that the ρ-invariant of K is expressed
in terms of the ρ-invariant of K ′ and the signature function of J . Let

ρ(J) =

∫

σw(J) dw

be the integral of the knot signature function

σw(J) = sign
(

(1− w)A + (1− w−1)AT
)

of J over the complex unit circle normalized to length one, where A is a
Seifert matrix of J .

Lemma 5.22 ([14, 28]). If φ′ is a homomorphism of π1(M
′) into a PTFA

group Γ, then there is a unique homomorphism φ : π1(M)→ Γ such that the
compositions

π1(M
′ − Uη) −→ π1(M)

φ−−→ Γ

π1(M
′ − Uη) −→ π1(M

′)
φ′

−−→ Γ

are identical and the composition

π1(EJ) −→ π1(M)
φ−−→ Γ

factors through H1(EJ). Furthermore,

ρ(M,φ) =

{

ρ(M ′, φ′), if φ′(η) = 1,

ρ(M ′, φ′) + ρ(J), otherwise.

The existence of φ and its uniqueness easily follow from the fact that
H1(EJ) is an infinite cyclic group generated by the meridian of J . For the
proof of the ρ-invariant formula, see [14, Proposition 3.2].

Returning to the construction of our example, choose a polynomial λ(t)
satisfying Lemma 5.20, and choose a ribbon knot K ′ with zero-surgery man-
ifold of M ′ such that the rational Alexander module H1(M

′; Q[t±1]) associ-
ated to φ′

0 : π1(M
′) → 〈t〉 sending the meridian of K ′ to t is isomorphic to
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Q[t±1]/〈λ(t)2〉. Choose a curve η in S3 −K ′ such that lk(η,K ′) = 0 and η
represents the element

1 + 〈λ(t)2〉 ∈ Q[t±1]/〈λ(t)2〉 ∼= H1(M
′; Q[t±1])

We may assume that η is an unknotted simple closed curve by crossing
change. Choose a knot J in S3 such that the Arf invariant vanishes and
ρ(J) 6= 0. For example, the connected sum of two trefoil knots has this
property. By tying J along η as above,we obtain a new knot K.

Theorem 5.23. The knot K is integrally (1)-solvable but not rationally
(1.5)-solvable.

Proof. Since η ∈ [π1(M
′), π1(M

′)] and J has vanishing Arf invariant,
K is integrally (1)-solvable by Proposition 3.1 of [14].

Let M be the zero-surgery manifold of K and φ0 : π1(M) → 〈t〉 be the
canonical map sending the meridian to t. Let denote the rational Alexander
module H1(M ; Q[t±1]) associated to φ0 by A0. As in the above discussion,
M = (M ′−Uη)∪∂ EJ , and a standard Mayer–Vietoris argument shows that

M ←− (M ′ − Uη) −→M ′

gives rise to an isomorphism

A0 = H1(M ; Q[t±1]) ∼= H1(M
′; Q[t±1]) = Q[t±1]/〈λ(t)2〉.

Let

φ1 = φ1(x0, φ0) : π1(M) −→ Γ1,

φ′
1 = φ′

1(x0, φ
′
0) : π1(M

′) −→ Γ1

be the homomorphisms determined by

x0 = λ(t) + 〈λ(t)2〉 ∈ Q[t±1]/〈λ(t)2〉.
Since K ′ is ribbon, ρ(M ′, φ′

1) = 0 by Proposition 5.21. We claim that
ρ(M,φ1) is nontrivial. Since η represents a generator of the cyclic module
A0 and the Blanchfield form Bℓ0 on A0 is nondegenerated, Bℓ0(η, x0) is
nontrivial. (Or alternatively, we can use the formula of the Blanchfield form
given in Remark 5.19.) Therefore φ1(η) is nontrivial (see the discussion on
the induced homomorphism ϕ = ϕ(x, φ) at the beginning of 5.2.1). By the
definition of our isomorphism between rational Alexander modules of K and
K ′, we can apply Lemma 5.22 to obtain

ρ(M,φ1) = ρ(M ′, φ′
1) + ρ(J) = ρ(J) 6= 0.

From Proposition 5.21, it follows that K is not rationally (1.5)-solvable. �

By using different knots J , our construction produces infinitely many
knots which are integrally (1)-solvable but not rationally (1.5)-solvable. In
fact, if we use an appropriate family of knots J described below, it can be
shown that these knots are linearly independent modulo rationally (1.5)-
solvable knots.
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Proposition 5.24 (Proposition 2.6 in [14]). There is a family of knots
Ji, i = 0, 1, 2 . . ., such that Ji has vanishing Arf invariants and the real
numbers ρ(Ji) are linearly independent over the integers.

For a proof, see [14].

Theorem 5.25. There are infinitely many integrally (1)-solvable knots

in S3 which are linearly independent in FQ

(1)/F
Q

(1.5).

Proof. For i = 1, 2, . . . , let Ki be the knot obtained by the construction
of Theorem 5.23, using the knot Ji given in Proposition 5.24 in place of J .
Since Ji has vanishing Arf invariant, Ki is integrally (1)-solvable as in the
proof of Theorem 5.23.

We will show that the Ki are linearly independent in FQ

(1)/F
Q

(1.5). Sup-

pose a linear combination

K =
n
#
i=1

aiKi

is rationally (1.5)-solvable for some integers ai, where # denotes the con-
nected sum operation. We may assume that each ai is positive by dropping
vanishing terms and taking −Ki instead of Ki if necessary. Since K1 is not
rationally (1.5)-solvable, we may also assume that a1 ≥ 2 if n = 1.

Let denote the zero surgery manifold of Ki and K by Mi and M , re-
spectively. As in [14] and [28], we can construct a 4-manifold W with the
following properties:

(1) ∂W = M1 and W is a rational (1)-solution of K1.
(2) For any homomorphism φ : π1(M1) → Γ into a PTFA group Γ

which extends to π1(W ), the associated ρ-invariant is given by

ρ(M1, φ) =

n
∑

i=1

ciρ(Ji)

for some integers ci.

The arguments in [14, 28] construct an integral solution W with similar
properties under an analogous integral solvability assumption. Since a minor
modification of their argument constructs our W , we give a rough sketch
only. By attaching 2-handles to the disjoint union

⋃

aiMi× [0, 1], we obtain
a cobordism C from

⋃

aiMi to M . Since each Ki is (1)-solvable, there exists
an integral (1)-solution Wi of Ki. From the assumption that K is rationally
(1.5)-solvable, there is a rational (1.5)-solution W0 of K. Attaching W0, C,
(a1 − 1)W1, a2W2, . . . , anWn along boundaries, we obtain a 4-manifold W
with boundary M1. In [28], it was shown that W is an integral (1)-solution
when each W0 is an integral solution. In our case, the same argument shows
that W is a rational (1)-solution, whose complexity is the same as the that
of W0. Since φ factors through π1(W ), ρ(M1, φ) can be computed via the
intersection form of W . As in [14, 28], since W0 is a rational (1.5)-solution,
W0 has no contribution to the ρ-invariant by appealing to [13, Theorem 4.2].
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So does C by a simple homological argument. So it suffices to consider the
contribution from the Wi. Recall that Ki is obtained from a ribbon knot K ′

given in Theorem 5.18 by a satellite construction using Ji. Thus we have a
specific (1)-solution Wi which is obtained by attaching a (0)-solution W ′

i of
Ji to the exterior W ′ of a slice disk of K ′ along a solid torus. As before, W ′

has no contribution to the ρ-invariant by appealing to [13, Theorem 4.2].
The contribution of W ′

i is either trivial or ρ(Ji), depending to whether the
image of the meridian of Ji is trivial in Γ. For more details, refer to [14, 28].

Now we use W to compute a particular ρ-invariant of M1. Let c be
the complexity of the rational solution W . Comparing with the integral
case [14, 28], the main difficulty of our case is again that we do not know c.
We control the metabolizer and the ρ-invariant as follows. Let

φ0, φ′
0 : π1(M1) −→ Γ0 = 〈t〉

be the maps sending the meridian of K1 to t, tc, and let A0, A′
0 be the

associated rational Alexander modules, respectively. By the property (1)
above and Theorem 5.13, there is a proper submodule P0 in A′

0 such that
for any x′

0 ∈ P0, the associated map

φ′
1 = φ′

1(x
′
0, φ

′
0) : π1(M1) −→ Γ1

factors through our rational solution W . On the other hand, as in the proof
of Proposition 5.21, A0 = Q[t±1]/〈λ(t)2〉 and

A′
0 = A0 ⊗h0 R0 = Q[t±1]/〈λ(tc)2〉

has a unique proper submodule λ(t)A0 ⊗h0 R0. Therefore P0 must agree
with this submodule, and in particular, we can think of x′

0 = x0 ⊗ 1 where

x0 = λ(t) + 〈λ(t)2〉 ∈ A0.

Recall from the proof of Theorem 5.23 that ρ(M1, φ1) = ρ(J1) where φ1 =
φ1(x0, φ0). Combining this with the property (2) above and Corollary 5.17,
we have

ρ(J1) = ρ(M1, φ1) = ρ(M1, φ
′
1) =

n
∑

i=1

ciρ(Ji).

This contradicts the linear independence of the ρ(Ji). �
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