LZ-COHOMOLOGY AND INTERSECTION HOMOLOGY
OF SINGULAR ALGEBRAIC VARIETIES

Jeff Cheeger, Mark Goresky, and Robert MacPherson

§1. Introduction

In this largely expository paper we describe some generalizations to
the singular case of the special cohomological properties of nonsingular
complex projective algebraic varieties which are usually proven using
Kihler geometry. One avenue of generalization is to suitably modily the
properties so that they remain true of the ordinary cohomology of a singular
variety (see 1.3 below). Here we take the point of view that the properties
themselves need not be weakened provided that the cohomology theory to
which they apply is suitably modified.

1.1. Let M be a compact complex algebraic manifold of dimension n em-
bedded in complex projective space CPM, and let {1 be the restriction
to M of the Kihler form on CPY. The cohomology of M with complex
coefficients satislies several remarkable theorems which we refer to col-

lectively as the Kahier package :

1. Pure Hodge decomposition:

(1.1) HiW) = @ HPY  (with HPA = HOP)
ptgei
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2, Hard Lefschetz: the map

ulay

(1.2) HY ) - Hr )

is an isomorphism.

3. Poincaré duality: the pairing

(1.3) HIM) = H2™w) & C

given by cup product and evaluate on the fundamental class is, nonsingular.

(Equivalently the pairing

(1.4) H (M) x H,, (M) = C

given by intersecting transverse cycles and counting points with their
multiplicities, is nonsingular.)

4. The Lefschetz hyperplane theorem.

3. The Hodge signature theorem.

1.2. Aside from the Lefschetz hyperplane theorem, all the theorems of the
Kahler package can be deduced using L2 analytic methods. (Of course
Poincaré duality and Hard Lefschetz [D4] can also be proved by other
means.)

The first step is De Rham's theorem that the topological invariant

H*(M) has an analytic expression as H;E[H} . the cohomology of differen-

tial forms. Then the results can be viewed as formal consequences of a)

the Hodge theorem that every cohomology class contains exactly one har-
monic form, b) the fact that the action of the almost complex structure ]

on differential forms carries harmonic forms to harmonic forms; and c) the
fact that the harmonic forms are just the forms which are closed and

co-closed.

1.3. There have been several deep studies of how to extend various
theorems of the Kihler package to the cohomology of a singular variety.
The Zeeman spectral sequence [ZE], [MC], studies Poincaré duality; Ogus’
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De Rham depth [O] studies the Lefschetz hyperplane theorem; and Deligne's
mixed Hodge theory [D1], [D2], [D3] studies the Hodge (p,q) decomposi-
tion. All of these theories proceed by filtering the cohomology (roughly by
how "‘tied to the singularities’ a cocycle is), Then they express the
“"degree of failure’’ of the theorem as stated in the nonsingular case in
terms of this filtration. The picture we present here does not oppose, but

rather compliments, that of these theories, (see §7).

1.4. Let X be a complex n dimensional projective algebraic variety. The
invariants of X which concern us in this paper are the middle intersection
homology groups IH,(X). Roughly, IH(X) is the homology of a certain
subcomplex of the homology chain complex of X, defined by certain
geometric conditions on how the chains enter the singularities of X.
(Theze will be recalled in §2; see [GM1], [GM2], [GM3] for details.) For
cycles of this special type the intersection pairing is well defined and
leads to a perfect pairing (1.3). The groups IH_(X) are topological in-

variants but not homotopy invariants. There are natural maps

IH,(X)

- LN

H2M=irx) H(X) .

If X is nonsingular these are all isomorphisms, but in some cases IH_(X)
is much bigger than either homology or cohomology.

The local calculation of IH_(X) has an interesting result, For any
¥ ¢ X let B be the intersection of X with a small open ball of radius ¢
about % and let S be the intersection of X with a sphere of radius ¢ /2
about x. Then (using chains with compact support)

lHil[S] for i1<n
(1.6) IH,(B) =
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In fact, an appropriately stated version of this local calculation char-
acterizes the groups [H_(X). (See §2.2.)

1.5. The main idea of this paper is the following program: the theorems of

the Kihler package should hold without modification in the singular case,

provided that intersection homology is used in place of ordinary homology.
We present several conjectures relating to this program and possible

L? methods of proof. We also give a number of examples and consequences.

The current status of the program is summarized in %6. Briefly, all
parts of the Kihler package but those relating directly to the Hodge (p,q)
decomposition have been proved in general (by other than L? methods,
for the most part). The (p,q) decomposition is known in many classes of

examples,

1.6. The original motivation for the program was the existence of L?
methods on certain singular varieties which turned out to be appropriate
for the study of intersection homology theory [C1], [C2], [C3].

Let X C CPY be a singular variety and let £ be its singularity set,
One studies the smooth incomplete Riemannian manifold X- X with the
metric {! induced by the inclusion. The ith .2 cohomology group
H%z ](KJ of X is just the quotient space of smooth i forms & on X-2%
which are L?, by the subspace ldytl, where ¥ is a smooth i-1 form
with ¢, d¢ ¢ L? (see §3).

If X has conical singularities (see §3 for definitions) then two some-
what surprising results hold [C3], §6.3:

1) H%z}[]{} is isomorphic to the space of closed and co-closed

harmonic forms.

2) The calculation of the local groups is dual to that of (51.6) and

therefore HE'2 }(I} is the cohomology theory dual te IH_(X).

These results are analogues of the Hodge theorem and the De Rham
theorem so they lead one to expect L2 proofs of the Kihler package

theorem for intersection homology theory.
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1.7. Although the possible existence of an appropriate L? theory on the
incomplete Kahler manifold X-X was the main source of motivation for
the above conjectures, of course it is not the only possible method of
attack. In fact, at present the most general results have been obtained by
other methods, Moreover, as the first author realized after the publication
of [C3], the assertion made there that the conjectures are formal conse-
gquences of Hodge Theory, is not correct in the context of incomplefe
metrics. The reason is that on incomplete manifolds, an L? harmonic
form is not necessarily closed and co-closed. Thus although a) and b) of
§1.3 above are automatic, c) is not. In particular, the assertion of [C3],
that the Hodge Theorem proved there implies the ‘'Kihler package’’ for
algebraic varieties for which the induced metric has conical singularities,
is still unsubstantiated, except in certain special cases in which it can be
checked directly that ] preserves the space i closed and co-closed

L? harmonic forms; (see §6.4 and [C41). A general proof of this assertion,
(which seems extremely delicate), must make use of the assumption that
the singularities of the metric are conical in a complex analytic (rather
than just piecewise smooth) sense. Otherwise, the topological conclusions

can definitely be false.

1.8. The above-mentioned difficulty disappears for the case of complete
metrics on X-X, since on a complete manifold L? harmonic forms are
automatically closed and co-closed; (see [DR], [AV] and §3). Thus
another possible approach is to attempt to construct a complete metric on
X-% (oron X-3 for suitable £ 2%, for which the space K is dual
to IH;. But in return for the great advantage offered by completeness one
pays a certain price in that H! becomes more difficult to calculate in
geneml.* In either program formidable difficulties arise at the outset
because even in very simple cases, the riemannian geometry of singular
algebraic varieties and their complements has been little studied and, it

seems fair to say, is very poorly understood,

ar eay mar

“See however, [M], [ZU1]), and [ZU2].
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1.9. In summary, although at present, the results on the ""Kihler package'’
which can be obtained from L? methods are quite modest as compared to
those which can be obtained by other techniques, we emphasize the L2
theory here for several reasons. First, it was the original source of moti-
vation for the conjectures and should be basic to an eventual complete
understanding. Second, just as in the nonsingular case, these methods are
based on the existence of a Kihler metric rather than the more special
property of being an algebraic variety. Thus, when successful they work
in more generality. Third, the Kidhler metrics (complete and incomplete) on
the nonsingular parts of algebraic varieties, provided a rich source of as

yet unstudied problems in geometry and analysis.

1.10. Hrestorical note

The ideas in this paper had three independent sources.

1} The intersection homology groups were defined in piecewise linear
topology by Goresky and MacPherson to study intersection theory
of cycles on a singular variety.

2) The study of L? cohomology on the nonsingular part of a variety
with conical singularities was initiated by Cheeger; this was sug-
gested by points which arose in the study of analytic torsion.

3) A procedure for extending to all of M, a variation of Hodge struc-
ture on M-D, {(where M is a nonsingular complex algebraic
variety, and D is a divisor with normal crossings), was dis-
covered by Deligne, generalizing work of Zucker, and was used to
study the mixed Hodge theory of sheaf cohomology.

All of these procedures led to the same seemingly strange local calcu-
lation of (§1.6). This coincidence was observed in 1976 by Sullivan (for 1)
and 2)) and by Deligne (for 1) and 3)). Deligne then proposed a sheaf
theoretic construction of intersection homology.

The natural hypothesis was that all three approaches give the same
group—i.e,, that a single invariant has definitions by topological, analytic,
and algebraic means. This hypothesis led, in conversations between
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MacPherson and Cheeger in 1977, to the conjecture that the theorems of
the Kahler package hold for that invariant. Now the hypothesis has been
proved ((56.3) and [C3] for 1) und 2); IGM3] for 1) and 3)) and much of the
Kihler package has been established as well,

We would like to thank the ILH.E.S. for its hospitality while this paper
was being written. We are grateful to D. Burns, P. Deligne, 0. Gabber,

W. Fulton, and D. Sullivan for helpful conversations.

§2. Intersection homology theory

2.1. In this section we recall the definition and basic properties of the
“middle’’ intersection homology groups IHkI{I] (iGm1], IGM2]. Since
there is no canonical piecewise-linear structure on an algebraic variety, it
is technically convenient to use subanalytic chains in the definition of
IHk[}{] . However, we remark that one could just as well choose a P.L.
structure on X, use P.L. chains to define [Hk[I]; and the result is
independent of the P.L. structure. This is the point of view which is
adopted at the end of Chapter 3. The reader who is unfamiliar with the
subanalytic category can think in terms of P.L. chains in this section as
well.

Let X be an ndimensional complex analytic variety contained in
some nonsingular variety. We choose an analytic Whitney stratification

(IMA], IT]). This consists of a filtration by {closed) analytic subvarieties

XpCX, CXyConCX, = X

such that:

(a) X,-X, ;, is a(possibly empty) complex analytic i-dimensional
manifold (the components of which are called the strata of complex
dimension i ).

(b) Whitney's condition B holds with respect to any pair of strata R
and 5, i.e., suppose ;€ 5 is a sequence of points converging to some

point % ¢ R and suppose y, ¢ R is a sequence converging to x. Suppose
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the secant lines Xi.¥; converge to some line [ and the tangent planes

TH]IS converge to some limiting plane r (with respect to any coordinate

system on the ambient nonsingular variety). Then we demand that [ Cr.

The groups IH (X) will be constructed using this stratification but
the result is independent of the stratification.

Let C_(X) denote the chain complex of compact (real) subanalytic
chains on X with complex coefficients. The homology of this complex
coincides with the singular homology groups H_{X;C) by Hardt [H]. For
any &« ICi{K] we let |£] denote the support of £ it will be a (real)
i-dimensional subanalytic subset of X. !

Define the subcomplex IC_(X) of allowable chains by the condition ;
X IC,(X) if

dim &1 NX, <i-n+k-1

and

dim |af|ﬂthi—n+k—1 .

DEFINITION. IH;(X) is defined to be the ith homology group of this
chain complex, IC_(X).

It is possible to define an intersection product IH.(X) = IHj{I] -
[H;,: 5,(X) by following the original method of Lefschetz [L). 1f £elC(X)
and q:lﬂj(]{] are transverse, then the intersection |£| N |n| carries the

structure of an i+j-2n dimensional subanalytic chain such that

HENy = () Ng+(-1EN Iy

For any chain £, almost all chains 7 are transverse to £. Therefore

transverse intersection induces a pairing on the intersection homology
groups.

THEOREM (Poincaré duality). If X is compact, the intersection pairing

in complementary dimensions is nonsingular, i.e., the composition

IH,(X) x H,, (X) + Hy(X) + C
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induces an 1somorphism

H(X) = Hom(IH, ,(X),C).

Relation with cohomology
The intersection homology groups lie ‘'between’' cohomology and

homology, in the sense that for compact X we have the following:

THEOREM. There are canonical homomorphisms
HY(X) + TH,, (X)) = H,y (%)

which factor the Poincaré duality map N (X]:HY(X) +H,, (X). If X is
nonsingular, these are both isomorphisms. The intersection product ex-

fends to a module siruciure

HI(X) x TH;(X) = TH;_(X)

which i1s compatible with cup and cap products.

These maps may be constructed for compact varieties X which are
embedded in some nonsingular variety of dimension N as follows: choose
a subanalytic neighborhood with boundary (U,dU) of X in the ambient
space, such that X is a deformation retraction of U, and dU is a topo-
logical manifold. By Lefschetz duality Hiﬁ}l = H,\_;(U,dU} soany
cohomology class may be represented by a (relative) subanalytic chain £
on (U, dU} which we may take to be transverse to X. The intersection
£ N X then satisfies the allowability condition, so it determines a chain
in IC, (X), thus inducing H'(X) + IH, .(X).

Similarly if 5« ll.'_':j[I} then £ may also be chosen transverse to 7
so £NnelC j_i{I} , thus inducing the module structure.

Finally the map [H.(X) - Hiﬂ'{] is induced by the inclusion of chain
complexes IC_(X) C C_(X).
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Functorality

DEFINITION. Let {:Y -+ X be the inclusion of a subvariety Y. f is
said to be a normally nonsingular inclusion (of relative complex dimension
c)if f is proper and there is an analytic manifold M (of codimension ¢ )
in the ambient projective space, such that M is transverse to each stratum
of X and ¥ = MNX. Such a subvariety inherits a stratification from that
of X.

Such a map [ determines a pushforward

fy TH(Y) « TH(X)

since f({) is an allowable chain in IC,(X) whenever £ is an allowable

chain in IC(Y). Dualizing we obtain a pullback:

£%: 1H(X) & Hom (IH,, (X),C) » Hom(IH,, ,(¥),C) 2 IH, , (Y).

DEFINITION. Let f:Y « X be a proper smooth map. This will be a topo-
logical fibre bundle whose fibres are complex manifolds. We shall assume

they all have dimension d. Such a map is called a normally nonsingular
projection of relative dimension -d. The stratification of X pulls back

to a stratification of Y.
Such a projection [ induces a pullback

*

7 IH(X) » TH,, 4(Y)
since the pre-image f'lif} satisfies the allowability conditions on Y
whenever £ ¢ IC,(X). We obtain by duality a push forward map

f* . [Hk{T] - ]]-Ik(}\'.} .

DEFINITION. A normally nonsingular map [ is any map which can be
factored into a normally nonsingular inclusion followed by a normally non-

singular projection. The relative dimension of f is defined to be the sum

of the relative dimensions of its factors.
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For normally nonsingular maps the homology, cohomology, and inter-

section homology groups map both ways. ([FM], [GOJ).

Branched coverings

It f:¥ «X is a finite branched covering then { induces homomor-
phisms f_:IH(Y) » IH(X) and f* TH(X) + IH,(Y). Simply stratify X
and Y compatibly with the map [ and observe that for any allowable
chain £ in Y the image H&) is allowable in X . Similarly, for any

allowable chain n in X, the pre-image { '(5) is allowable in Y .

2.2. The local calculation

We now give an intuitive description of the local calculation (1.6). In
this case, any allowable cycle £ ¢ IC,(B) is the boundary of the allowable
chain ¢(£) (the cone on &) provided i > n. Thus IH,(B) =0 if i>n.

For i< n, any allowable chain &« ICi[E] cannot contain the singu-
lar point p, so it may be deformed into a chain on § by "pushing along
the cone lines.”” (This corresponds to the homotopy operator of (3.27).)
Furthermore, any allowable chain n ¢ IC i{S} is allowable in B, so0 we
conclude TH.(B) = IH.(S) for i< n. This agrees with the analogous
calculation for L? cohomology (3.23) since for nonsingular S we have
H(5) = IH(S).

Using this local calculation in the Mayer-Vietoris exacl sequence, we

obtain the following
COROLLARY. Suppose X has a single isolated singularity x. Then

Hi{.‘.{] if i>nmn
TH;(X) = {Image (H,(X-x) + H(X)) of iw=n
Hl-{x-x',l if i<nm.

2.3, Axiomaiic characierization
A complex of sheaves on X is a collection of sheaves 'EE;{ ol
C-vector spaces, together with sheaf maps

P q, gP+1 4, sP+2
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such that dod = 0. If each $P is fine, we shall use HP(X;S’) to denote
the pth cohomology group of the complex

P 8% -+ NX; 81 » IX; 82) » -

while the local cohamology sheaf HP(S') denotes the sheaf (ker dP/Im dP~1).
Using the same method as that in [GM3], we obtain the following char-

acterization of the intersection homology groups:

THEOREM. Let § be a complex of fine sheaves on X such that:

(1) s%-0 forall k<0.

(2) The local cohomology sheaves EP (87) are locally constant on
each stratum X.-X, ..

(3) There is a sheaf map Ex_xnhl +SWX-X__,) which induces
isomorphisms on the local cohomology sheaves, where EI—IH__]
denotes the constant sheal on X - X_ , .

(4) For each point % « X;-X; , there is a peighborhood UCX-X, |
of %, such that

HY(U;S'IU) = 0 forall k >n-i

and HY(U;§'|U) & HN(U-X;;S'I(U-X,)) for all k <n-i-1 where

the isomorphism is induced by restriction.

Then HN(X;S') @ M, 1(X).

REMARKS (1) Condition (4) above is a functorial version of the local
homology calculation (1.6) and §2.2.
(2) The above theorem remains valid when X is a pseudo-

manifold with a stratification by strata of even dimension (see §3.4),

§3. L2.Cohomology _

In this section we recall the basic definitions and facts concerning
Lz—cahum-}lﬂgﬁr. and indicate the connection with IH_ in the conical case;
(see [C3] for further details).
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3.1. Let Y be any (in general incomplete) riemannian manifold with
metric g. Assume JY =¢. Let A', h}_.l denote the spaces of C¥
i-forms and C™ i-forms of compact support, and let L? denote the space
of square integrable i-forms with measurable coefficients. Let

d, :AY LAY be exterior differentiation. We can define an unbounded

operator (in the Hilbert space sense), also to be denoted by d., by setting

(3.1) domd; = lacAINL?|dae AT NLAY

As usual,

(3.2) ker d; = lacAllda=01,

(3.3) range d‘i = Ine |"||.I”1'|diu.-=q, for some a¢dom -:ljl

The simplest definition of LE{ﬂhamﬂlngy is
(3.4) H:I}{':"} = ker d,/range d, , .

Note that I-"I‘i:2 }{?] depends only on the quasi isometry class of g; (g’ is
1

quasi isometric to g if for some k >0, EEE B < kg ).

Set di.ﬂ = d-lh\i \ ELD = ﬁilr‘h%. where 51 is the differential operator

(-GN g and dom &, is defined as in (3.1). Let A* denote the
adjoint of an operator A. Then, since dom Ei+1 o= h%ﬂ is dense, and
by Stokes’ Theorem,

(3.5) <da, B> = <a,88>

whenever a edomd,, [ ¢dom 5i+1.ﬂ' it follows that d; has a well-
%
i+1,0°

d; --l;'li-n =n means that a ¢« L* and there exist @ ¢ dom d; such that

a; ~a, dﬂj + 1. Clearly :I_i . E:”'ﬂ are closed operators (i.e. they have

closed graphs) and dom Ei C dom 45’.:“'“ . E;_l'ﬂ

one can show that in general, Ei = E:'H 0 (see [C3], [GA1]). Then one

defined weak closure, & There iz also a strong closure d_i , of

ldom Ej = Ei . In fact,

might also consider
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(3.6) H:” fY) = ker d_i.-"’range Ei

as a possible candidate for Ll—c:uhnmnlng}r. However, as shown in [C3],
the natural map Hiyy(Y) « Hiy, ,(Y) is always an isomotphism. Thus one
can use either definition as convenience dictates. There are natural

pseudo norms on H:-r: }{Y}, HEE}. ,(T], given by

(3.7 jUF = inf fali .
ael)

These are preserved by the isomorphism above. It follows immediately
that the pseudo norm is a norm if and only if the range of Ei is a closed
subspace; (i.e. if Ei}'j -1 implies n =d-il,£! for some 4 ). Since 1:1_1| is
a closed operator, it is a standard consequence of the Open Mapping
Theorem that range d, | is closed if H}z}[‘f.'l = HEEJ, #Y) is finite

dimensional.

EXAMPLE 3.1. Let Y =R, the real line. If { isa C™ function such
that f(x) = % for Ix| > 1, then fdx ¢ ker El . Clearly, the most general
function a such that da = f(x)dx satisfies a =logx+c for x> 1.
But then, a { L? so fdx { range d,. Since HEIJ' = H;'EL#* also fdx ¢
range Eﬂ . Let ¢ be a smooth function which is supported on [-2, 2],
such that &l[-1,1]=1. Set ¢ (x) = ¢(x/n). Then easy estimates show
d(¢ a) - fdx in L*. Thus range d, is not closed and H:H{r} is

infinite dimensional.

Let V denote the closure of a subspace V. Define H' to be the
space of i-forms h, such that h« Lz. dh = &h = 0. Kodaira has
observed that one always has the Weak Hodge Theorem

(3.8) L? = Tange 3;,, o® range d;_, o @}

where the sum is orthogonal and preserves AN L?. This is a conse-
quence of local elliptic regularity for the Laplacian A =d& + &d.
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Note that there is a natural map, By H - H:E}(Y)- We say that the

Strong Hodge Theorem holds for Y, if iH is an isomorphism, or equiva-

lently if range Ei--l = range d; ; 5. Clearly, this property depends only

on the quasi isometry class of the metric. The surjectivity of i W s

equivalent to range d_j .y Jranged. | ,, and follows in particular if
range d;_, is closed.
The injectivity of iH follows if d = 8%, or equivalently, (since

A** - A for closed operators), if d* = &. In this case, as usual,

(3.9) <h,dff> - <Bh, B> - 0,
As indicated above, in general, E:j.-rl.ll = E:i:l,{l —_Ei. Thus,
(3.10) d, =8; , =5 d' =D, ==

ﬂi = di,ﬂ — Ei+1 b E—i+l.l}'

3.2. ¥ Y is complete then by [GA2], (3.10) holds. We brielly indicate
the argument under the assumption that there exists y r Y, such that Py
the distance function from y is smooth; in the general case one uses
regularization to obtain a smooth approximation to Py - Let l.jf:n be as in
Example 3.1, and set { = t_i'.'inﬂp}r. Then one checks that if a ¢ dom dj‘
then (f ) +a, dirof_fnu} =d.a, which implies dh“ =d,.

®

In certain incomplete cases of interest below, one can show Ei=5“1

without the availability of a cutoff function. However, in the complete
case using f_ ., one can prove the strong additional property that h ¢ Lir
Ah =0 implies he H': (i.e. dh =8h =0); see [DR], [AV]. In the incom-
plete case, this properly is quite delicate. It is not an invariant of the
guasi isometry class of the metric and can fail to hold even if d=0>;

e.g. it fails for the double cover of the punctured plane with the pulled
back (flat) metric. This phenomenon is responsible for the difficulties of

the incomplete case which were described in the introduction.
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In the complete case, if heL?, Ah =0, we have, by Stokes’
Theorem,
2
(3.11) *:Edh,t'“h}—{t'ndh,zdfnnh:: = <fydh, f,dh>

(3.12)  <dbh,f3h> + <f_Bh,2+(df_ash)> = <f _5h,f Sh>

Since |<a,b>| < %ﬂin,a} + ;— <b,b>

(3.13) % <f dh,f dh>+2<di_ah,df_ah> > |<f dh,2df_ah>|

LTI ST

{(3.14) {fnﬁh,inﬁh} +2<df avh,df a*h> > f< [nﬁh,ﬂi‘{&f“h*h]}l .

Adding (3.11), (3.12) and using (3.13), (3.14) and Ah =0, we get

(3.15) 5 (<todh, £ dh> « <£ 5h, 5h>)

< !{{dfnah,dfnahh + <diy a*h,di a+h>) .

As n -+, it is easy to see that the right-hand side of {3.15) - 0. Since
f, -1, it follows that dh = Sh =0,

To account for the possibility that range d; ;, may not be closed, it
is customary to define the reduced Lz-:ohamn]ﬂgy by setting

(3.16) ﬁ}:ﬂ]['f} = ker d,/range d;_, .

If d=5%, then automatically, ﬁf{:}ﬁ} = Hi, Suppose that one now

takes as his objective to find some topological interpretation of the space
H! and then to derive properties of the resulting object from general
properties of harmonic forms; e.g. if Y is any complete Kdhler manifold
then H* , {which might possibly be infinite dimensional for some i),
satisfies the Kahler package. Then ﬁi':z]{'f} can be viewed as a “"bridge"’;
i.v:'z. to interpret Hi it suffices to calculate EEE }{?}. If in fact ﬁ}j: ](‘1"} =
Hh ](’:"}, one can calculate on open subsets and apply the usual exact
cohomology sequences; see [C3]. But since ﬁF?}{?] is not the cohomology
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of a complex of cochains, these sequences may not hold if ﬁ%z Y} £
H{,(Y): compare [APS].

3.3, We now describe the L”-cohomology for the simplest singularity in
the compact case, that of a metric cone. Let N™ be a riemannian mani-
fold with metric . The metric cone CT(N™) is by definition the comple-

tion of the emooth incomplete riemannian manifold C(N) = RYxN, with
(3.17) g = dr @ dr + r°g .

We denote by Cr r{Hm} the subset (r,, r}xNC C(N™): Suppose that
[ Ll
X™+l g a compact metric space such that for some finite set of points
N

|pji, X-U Pj is a smooth riemannian manifold. We say that X1 hag
i=1

isolated metrically conical singularities if there exist smooth compact

riemannian manifold H;n, and neighborhoods Uj of P such that Ui-pj

is isometric to C, rI!_']"'l"“) . We say that X has isolated conical singulari-
"l

ties if the metric on X- Upj is gquasi isometric to a metric of the above
type. We define H;: (X) by

. . N
(3.18) Hiy (X) = Hip(X- U p)).
=1

In [C3], it is shown that HEE }{]':} does not change if further points are re-
o

moved from X - U p;. Thus H},,(X) is well defined.
j=t

The Poincaré Lemma in this situation takes the following form.

HIN™ i< m/2
(3.19) H{,(Cp ;(N™)) =
0 i>m/f2 .

This corresponds to the calculation in §2.2, for IH, of a truncated cone.
When combined with the standard exact sequences, (3.19) yields the tabu-
lation of HEH[K““'} given in §2.2 for m+1 even. In particular, Hh,(x"‘*‘;-

is finite dimensional which implies that a—i—l has closed range.




320 J. CHEEGER, M. GORESKY, R. MACPHERSON

If m+l =2k, or in case m+1 - 2k+1, if Hh(Nzh,E} =0, then
d =&". Thus in these cases, the Strong Hodge Theorem holds, If m+l =
2k+1 and dim Hkﬂ"llzk. R) >0, then dy, # 5:” . Moreover a calculation
based on (3.19) shows that Poincaré duality also fails in this case. These
interesting phenomena demonstrate that the global topelogy of the link
plays a significant role in the theory. However, they do not occur for
algebraic varieties, and thus will not be discussed further here; see how-
ever [C1],1C2],1C3],[C5]). (The point here is that algebraic varieties i
admit a stratification by strata of even codimension.)

The calculation in (3.19) can be made intuitively plausible as follows.
Let s be the natural projection of Cﬂ.l[Hm} onto N™. ( CH.I[H"‘} is
topologically (0,1} = N® ). If ¢ is an i-form on N™, then the point-
wise norm of n;{q':] at a point (r,x) is ! times the norm of ¢ at x.
Since the cross sectional area of ':D,I{Hm} varies as r™, the condition
for H;Eqﬂ to define an element of H?H{CJEN’”}}; (i.e. for m3(c) to be
in L*), is just m-2i > -1, or equivalently i< %

The proof of (3.19) uses the following homotopy operators. Let &r,x)
=@, x) + draclr, x) and let a «(0,1). Set

(3.20) Ko =

Appropriate estimates show that the integrals converge and define bounded

operators on LY. A computation and some estimates show that

0 - ¢(a) i<med
(3.21) (dK + Kd) 8 -
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The cases i=- 2t .

2
result is (3.19).

—

+ 1 are a little more delicate, but the end

F=d

3.4. Let X" be a pseudomanifold—i.e. a simplicial complex such that
each point is contained in a closed n-simplex, each n-1 simplex is a
face of exactly two n-simplices, and the n-simplices can be compatibly
oriented, We assume X" is embedded as a subcomplex of some piecewise
linear triangulation of B™. Let X! denote the closed i-skeleton of X%,
The induced metric on X"~ "2, gives X" X2 {he structure of a
smooth flat riemannian manifold; (a neighborhood of a point on an (n-1)-
simplex is isometric to an open subset of R ). If X" is now given the
siructure of a metric space in such a way that the induced metric on
X0_En-2 g guasi-isometric to the flat metric then this metric space will
be called a riemanman pseudo-manilold with conical singularities; (e.g.
the metric on X" induced from the embedding in R™ obviously has this
property).

Define H:n[.'{] = II%I}[IwE] . The results on isolated conical singu-
larities: d = 5® and the strong Hodge theorem extend to this case. If X
also has a stratification by even dimensional strata, then the axioms of
§2.2 are satisfied by the complex of sheaves of locally L2-differential
forms on X-X which are in dom(d). We conclude that H{kz }{K} o
IH,_ (X} = Hom(IH(X), (). This isomorphism is also constructed
directly by integration in [C3]. Here it is most convenient to use a certain
subcomplex ( 8% of [C3], p. 136) of the L2 forms, which has the same
cohomology, but for which integration over chains which satisfy the
“"middle intersection group allowability condition’' is always defined.

Finally we mention the following three general facts. The usual
cohomology groups H*(X™ can be represented by forms whose norms are
uniformly bounded on xpr_3n-2., e.g. forms on an open neighborhood of
X" C R™. From this it follows that H{,(X™) is a module over H¥*(X").

For each pseudomanifold X there is an associated space X, the

normalization of X [GM2). Since X and X have the same nonsingular



322 J. CHEEGER, M. GORESKY, R. MACPHERSON

parts, H, }r;i} & H(,y(X). (Infact, X is topologically just the metric
completion of the nonsingular part X-X.)

Consider a finite covering of X-£""2. If one pulls back and com-
pletes the Riemannian metric on X-X, one obtains a space X' and a
map m:X" - X which is a (topological) branched covering (see [FI). There
is a natural map #*:Hp,(X) + Hl,(X). By Poincaré duality, #* is an
injection. {Note that analytic properties on X do not carry over auto-
matically to properties on X°. For example, the torus T2 is a branched
cover of the sphere 52, so C(T?) is a branched cover of C(5%) = R3.
But dim HY(TZ,R) £ 0 so d, £585 on C(T? )

3.5. Let X be a compact analytic variety which admits an embedding in
some compact Kéhler manifold (e.g. complex projective space). Any choice
p:X +M of such an embedding determines a metric '[IP on the nonsingu-
lar part X-X of X by restriction of the Kidhler metric on M.

PROPOSITION. The quasi-isometry class of ﬂp is independent of the
embedding p.

As in §3.4 we define H, {X) to be HEH(J{—E] with the metric .
By the proposition, it is independent of p.

We note that we do not know the general fact about normalization of
§3.4 in the analytic context because we do not know that the metric on the
nonsingular part of X is quasi-isometric to that of X. A similar remark
applies to branched coverings.

Let VCCN bean analytic subvariety. We say that V is a cone at
pe¢V if for some union W of affine complex lines through p and some
neighbothood U of p, we have VNU = WNU. For example any sub-
variety of C¥ defined by homogeneous equations is conical at 0.

DEFINITION. An analytic variety X is locally analytically conical if
each point p¢ X has a neighborhood U and an analytic embedding
p:U s C such that p(U) is a cone at p(p).




L?.COHOMOLOGY AND INTERSECTION HOMOLOGY 323

EXAMPLES 1. Not all cones at 0 are locally analytically conical: for
example X*Z = Y3 fails the test at p=1(0,0.1).
2. Single condition Schubert varieties (see §5.2) are locally

analytically conical.
PROPOSITION. Locally analytically conical varieties are conical.

In other words, the nonsingular part of a locally analytically conical
variety is quasi-isometric to an open dense subset of a polyhedron. The
converse is false: all algebraic curves are conical in the quasi-isometry

sense,

COROLLARY. For a locally analytically conical variety X, Hh]{x] o
Hom (IH,(X), C).

As remarked in §1.7, this does not in itself imply the theorems of the
““Kahler package'' for locally analytically conical varieties. But it is
known for other reasons: see the section on algebraically conical singu-
larities of §6.2.

3.6. We close this section by noting the following construction of com-
plete Kahler metrics. Let X be a projective algebraic variety. Then as
is well known, there exists an algebraic map n:X » CPM which is a
branched covering. Let Z C CPM denote the branch locus, and let £ be
the line bundle over CPY corresponding to Z, equipped with a
Hermition metric. Let {l denote the Kihler form of the usual metric on
CPY. Then, if ¢ is a holomorphic section of £ which vanishes on 2
and ¢ is a smooth function such that ¢|Z =1, & =0 off and ¢-tubular
neighborhood of Z, then as in [CG), for small «°,

(3.22) ¢ J~1(dd® log log? @llef®) + 0

defines the Kihler form of a complete Kihler metric on CPY-Z. We do
not know if the L%-cohomology of this metric is isomorphic to the usual

cohomology of CPM . If so, it makes sense to ask if the L*-cohomology
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of the pulled back metric on X-vY2Z) is isomorphie to TH*(X). This
would imply that the “*Kahler package'' holds for X.

&4. Conjectures

In this section X will denote a complex n-dimensional projective
variety. Conjecture A states that the intersection homology groups
IH,(X) satisfy the conditions of the ‘'Ké&hler package.”” Conjectures B
and C state that the De Rham and Hodge theorems hold for the L? differ-
ential forms on the nonsingular part of X.

Let I denote the singular set of X. We shall denote the L?
cohomology of X-X (with the metric induced from the embedding in pro-
jective space) by H&]{J{].

Conjecture A : The Kihler package

Al (..Fure Hodge (p,q) decomposition). There iz a natural direct sum

decomposition

IH(X) == &3] {p q)(x]
n+q=k

such that

ip q}{m = ii{q p){x}
This decomposition is compatible with {* and f_ when { isa
branched covering or is normally nonsingular. For example, if f:Y - X

is normally nonsingular with relative dimension m then

o THp (V) = TH, (X)
and

The map from cochomology Hj{I} +IH, (X)) is a morphism of Hodge

structures.

Zn-i
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A.2. (Hard Lefschetz). Let H be a hyperplane in the ambient projective
space, which is transverse to a Whitney stratification of X. Let {l¢ H(X)
denote the cohomology class represented by H N X (as in §2.1) and let
L:TH,(X) » IH, ,(X) denote multiplication by this class. Then the map

LK (0« H(X)

is an isomorphism for each k.
If we define the primitive intersection homology F,, .(X) = ker (L1
then we have the Lefschetz decomposition TH_(X) =@ L“[Pm“{x)}. This
k

decomposition is compatible with the Hodge decomposition.
A.3. Poincaré duality. The intersection pairing

IH(X) = Hy,

is nonsingular in complementary dimensions.,

A4, Lefschetz Hyperplane Theorem: If H is a hyperplane which is
transverse to each stratum of X, then the homomorphism induced by
inclusion ) i

H(XNH:Z) ~ H(X; Z)

is an isomorphism for k < n-1 and a surjection for k = n-1.

A.5. Hodge Signature Theorem. For € ¢ P{P q ® primitive intersection

homology class of dimension k = p+q, we have
(VDP -tk D2 kgEng) > 0

If o(X) denotes the signature of the intersection pairing {A.3) on [Hn{I]

then
oX) = ¥ (1P dim Hp 0y(X) .
prg=0imad 2)

Conjecture A would follow from the stronger Conjectures B and C below.
(In fact, for this implication, it would suffice to substitute ﬁ?z], for H?I}

in what follows.)
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Conjecture B. The L? cohomology group H}‘I J{I} is finite dimensional
and is isomorphic to the subspace Hk of AN L? which consists of the
square summable differential k-forms which are closed and co-closed.

Furthermore, the operator | preserves this subspace Hk

Conjecture C. For almost any chain £ ¢ C(X) and almost any differential
form 0 AX N L2, the integral I.fﬂ is finite, and _,F&qﬂ = [ d0 whenever
n

both sides are defined. The induced homomorphism

HY, (X) —— Hom (IH,(X), ©)

is an isomorphism.

§5. EXAMPLES
In this section we consider two classes of examples: varieties with
isolated conical singularities and single condition Schubert varieties.

These examples will be used as illustrations throughout the rest of the

paper.
*  In each case we will give a stratification and a resolution. We also

calculate the cohomology and the intersection homology of these examples
and verify that the intersection homology has a Hodge (p,q) decomposition.

5.1. [Isolated alfebraically conical singularities
We will treat the case where X has a unique algebraically conical
singular point x. The case of several isolated algebraically conical

singular points is entirely similar.

DEFINITION. The isolated singularity x « X is said to be algebraically
conical if the Hopl blowup #:X - X of X at x is nonsingular and the

exceptional division D = 7 l(x) is nonsingular.

EXAMPLE. A locally analytically conical varieties (33.5) with one

singular point is algebraically conical.
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Let L - D be the normal complex line bundie of D and let 5§ - D
be its circle bundle, which is the boundary of a tubular neighborhood of

™

D in X. Consider the Gysin sequence

nc,L 8 « nc,L
Hi(D) —— H; (D) —— H;_|(§) —— H; (D} —— H; (D)

where C,L denotes the first chern class of L. Since D = 7 Mx) is the

exceptional divisor it must satisfy the {ollowing

Blowing down condition : C,L can be represented by a Kihler formon D,
so NC,L satisfies hard Lefschetz,

Since X is a space with isolated singularities we have:

H(X) for i>n
IHi{J{] = { H(X-x} for i<n
Im{H {(X-x) + Hi(X)) for i=n.

The column and rows in the following diagrams are exact:

I H; ,(8)

/ \

H(D) ——= H(X) —= H(X) —H;_,(D) —= H,_;(X)

1 H; ()
A
H{(X-D) ——= Hi(X) —= H;_,(D) ——= H;_,(X-D) ——=H;_,(X)
H2n-ic)
i H,(D)

I nc, L
H!n- I{x] - Hl{i_[]} —p Hl{i] e Hi[il i"‘u) - Hj,.-.]{n:'

y
Hi(X, D) = H(X) .
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If i>n it follows from the blowing down condition and the Gysin

sequence that a = 0. Therefore
IH{(X) = coker (H;(D) + H;(X))
which has a Hodge (p,q) decomposition induced from that on X.
Similarly if i<n then =0 so
TH(X) = ker (H(X) + H;_,(D))

which is also pure.
Finally, if i = n, the map NC,L of diagram 11l is an isomorphism,
so IH (X) = ker(H (X) = H_ (D)) which is pure.

3.2. Single condition Schubert varieties
Fix integers i,j,k, ! suchthat j+k<f, and

Let Fic [:E denote a fixed j-dimensional subspace and let Ek(l:E}

denote the Grassmann variety of k planes in [.f. Define

§ - IVKGChldim(vknFl) > il .
Such an @ is called a single condition Schubert variety. It has complex
dimension i(j—-i)+(k-i)(f-k). Define

j
. | .o C F'oe ‘
§ = { partial flags (W!c vEc ¢hw! . C

-
vk

The map 0 0 {given by mWi C "-i"h} = "Il"'k] is a resolution of singu-
larities. ® is stratified by the single-condition Schubert subvarieties

5, - VK G ChHidim(VENF) > pl

e — - — —
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for i< p<min(j, k). The codimension of :':'s in & is C= {p—l}{p+|+f'-] k).

K x fr’bp SP” . then dim(m~(x)) = i(p-i). Emce i{p-i) < EC o isa

small resolution of ® and consequently TH (&) = H*{E} {see [GM3ID. It

follows that TH,_(d) inherits a Hodge (p,q) decomposition from that of 5.

(It is known that Hp.q{é‘} = 0 unless p=q so the same is true of [Hp,qfa}‘}
We now give the Poincaré polynomials for these spaces. Define

F'n{t} = 1(1 +t1]{1 sttt LI +t?"“?}. The Poincaré polynomial

Q':.tft:l for Gf{[]k} is
Py(t)
%O - R0

The Poincaré polynomial for IH (5} is Qk(t} QF_'[t] The Poincaré
polynomial for H'(d) is

-k oy 2§~
PR OIS OTEE R

“p<min(j, k)

(Each term in this sum is a contribution arizsing from a stratum.)
The map H(d) - HT(d) & [H*{:E{l i1s an injection. One may verify
from the Poincaré polynomials that it is in general [ar from being a

surjection.

86. Status of the conjectures

In this section, we present the currently available evidence for the
conjectures of Chapter 4.

In §6.1 we discuss the parts of the Kéhler package that have been
proved for all complex projective varieties. The methods of proof are
topological or algebraic: they do not use L? anslysis. The main gap at
present is that there is no general proof of the existence of a pure Hodge
{p,q) decomposition.

Even in the nonsingular case, establishing a conjugation invariant

{p,q) decomposition requires analysis. Two possible approaches to the
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singular case are to reduce it to a related nonsingular space—e.g. a reso-
lution of singularities, or to develop L? analysis directly on the singular
variety. As for the first possibility there is a conjecture that the inter-
section homology of a variety X is always a direct summand of the
homology of any resolution X and that the inclusion of IH,(X) into
H.(X) respects the Hodge decomposition of H(X) (see [GM3]). This con-
jecture of course would imply the existence of a pure Hodge decomposition
on X, but the conjecture itself appears to be very difficult in general. In

56.2 we give a number of special cases in which this conjecture can be
established.

As for analysis on X itself, there are again two approaches as indi-
cated in §1.8 and §3. One is to use the incomplete metric on X-X induced
by the inclusion X C CPM, and the other is to fabricate a complete metric.
In both cases the analysis is extremely delicate and it depends on as yet
unexplored aspects of the metric structure of X near a singularity. To
carry this out for general X may well be even more difficult than the pro-
cedure using X, but the resulting understanding of the differential
geometry of the singularities of X would be extremely interesting in

itself. The progress to date on this is sketched in 56.4.

b.1. Results for general varietres
Poincare Duality: As mentioned in 52 the Poincaré duality theorem
{IHi{J'.'.:I » lHin_i{K} + C is nonsingular) is true for all projective varieties X,

Weak Lefschetz: The weak Lefschetz theorem (54.A4) has been
proven for all complex projective varieties. There is a sheaf-theoretic
proof [GM3] following ideas of Artin [A]. There is also a proof using the
Morse-theoretic techniques of [GM4].

Hard Lefschetz: We have been informed by 0. Gabber that he has
found a proof of the hard Lefschetz theorem (4.A.2) for the [-adic analogue
of IH (X) when X is a variety defined over a field of characteristic p.
This implies the same result in characteristic O.
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Purity 1n characteristic p: The proof of Gabber also shows that the
f-adic analogues of IH_(X) are pure in the sense of Deligne (all eigen-
values of the Frobenius action have the same absolute value). According
to the heuristic dictionary of Deligne [D1] §3, this is the characteristic p
analogue of conjecture 4.A.1. But it is moral evidence only. It does not

imply the existence of a (p,q) decomposition.

Mixed Hodge structures : Verdier has informed us of the existence of
sheaf-theoretic techniques which may be used to put a mixed Hodge struc-
ture on JH,_(X). It would remain to show that this mixed Hodge structure

s pure.

6.2. Special classes of varieties

Curves and surfaces: The Hodge (p,q) decomposition conjecture
(4.A.1) is true for varieties X with complex dimension 1 or 2. For
curves this is true because IH_(X) = IH*{f] where X is the normaliza-
tion of X, which is always nonsingular. For surfaces the (p,q) decom-
position of TH,(X) may be deduced from that of H*{J-{',I where X is the
minimal resolution of X. The proof is similar to that in $5.1 but uses
Grauvert’s blowing down condition in place of the ampleness condition on

the normal bundle of the exceptional divisor.

Schubert varieties: For the single condition Schubert varieties of
§5.2, IH_(X) is isomorphic to the cohomology of the small resolution X
and therefore has a Hodge (p,q) decomposition.

Algebraically conical singularittes :

DEFINITION. A monoidal transformation n:Y - Y withcenter ZCY is
called a clean blowup if
1. Z is nonsingular.
2. D+~ Z is a topological fibration, where D = v }(Z) is the excep-
tional divisor.

3. The inclusion DCY is normally nonsingular (32).
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A variety X is said to have algebraically conical singularities if it
can be desingularized by a sequence of clean blowups. (The sequence of
centers £ may be chosen so as to have increasing dimension.) For
example, a locally analytically conical variety (53.5) has algebraically
conical singularities, but not vice-versa.

For varieties with algebraically conical smgulnnhes the {p} q) de-
composition of IH_(X) is induced from that of IH {J{] where X is the
resolution produced by the sequence of clean blowups. This may be
proven in @ manner analogous to the case of isolated conical singularities
(§85.1) using as ingredients the hard Lefschetz theorem of Gabber, and
Deligne's criterion for the degeneration of a spectral sequence [D6] related
to the [ibrations D - Z .

Rational homology manifolds: An example of a rational homology
manifold is the quotient of any smooth compact manifold by the smooth
action of any finite group.

Suppose X is an algebraic variety which is a rational homology mani-
fold. Since (for any rational homology manifold) the cohomology coincides
with the intersection homology |GM2], it suffices to find a Hodge (p, q)
decomposition of the cohomology. However Deligne shows this exists by
observing that Poincaré duality on X implies that the cohomology of X
injects into the cochomology of any resolution of X, and therefore inherits

8 Hodge structure from the resolution.

6.3. Results in special dimensions

The lirst Betti number: For all projective varieties X, dim (IH, (X))
is even (as would be predicted by the existence of a conjugation invariant
{p,q) decomposition). This follows from inductive application of the weak
Lefschetz theorem and a direct verification for surfaces (see 56.2). It is
always true that IH,(X) = H,{i] where X is the normalization of X
[GM2]. Therefore we obtain the following corollary, which was pointed

out to us by Horrocks:
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COROLLARY. For any normal projecive vartety X, the first Betti

number of X (for ordinary homology) is even.

Varieties with small singular sets: Suppose the singular set of X
has dimension < p. Then if we iterate the process of taking a generic
hyperplane section p+1 times, we obtain a nonsingular variety. By re-

peated application of the Lefschetz hyperplane theorem, we have

THEOREM. [H (X} has a pure Hodge (p,q) decomposition for all
k<n-p-1 andall k>n+ps+1l.

REMARKS 1. If we also use the fact that IH_(X) has an appropriately
natural mixed Hodge structure (see §6.1), this theorem can be extended to
the cases k=n-p-1 and k-n+p+l.

2. The same idea shows that the hard Lefschetz map
Lk: IH, 4 (X) +IH _,(X) is an isomorphism for all k>p+1.

6.4. L%-cohomology

As explained in 53, for compact spaces with conical singularities
HI?I (X} = IH*(X) and the Strong Hodge Theorem holds. However, if in
addition the metric on the nonsingular part of X is Kahler this is still
not enough to imply the “Kihler package'' because the almost complex
structure | may nol preserve the space Hi: (we still conjecture that ]
does preserve HP if the singularities are conical in a suitable complex
analytic sense, e.g. if X is an algebraic variety with metric induced from
its embedding in CPY; see §4). At present, there are two cases when ]

can be shown to preserve H! ., see [C4] for details.

Isolated metrically conical singularities
Let C(N™} be a metric cone, where m = 2k-1 is odd. Then it can be
shown that he L%, Ah =0, implies h« i, with the possible exception

of the cases 1| = m—z-! , ""_2.1. \ m_éﬂ- . Thus if the metric on C(N™) is

Kahler, ]{Hi} - Hi except possibly in these dimensions. Now assume

further that the complex structure is invariant under the 1-parameter group
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of dilations of C(N™); e.g. suppose C(N™) is a complex affine cone.
Then it can be checked directly that ] preserves the space of forms @&
such that @, d6 50,456,830 ¢ L2. This suffices to show that for compact
Kdhler manifolds with isolated metrically conical singularities, such that
] commutes with dilations, ]{Hi] = Hi. More generally, the same follows
if the metric and complex structure satisfy these conditions to sufficiently

high order at the singular point.

Precewise flat spaces

The arguments in the example above can be generalized to certain
piecewise flat spaces by induction, and ‘‘the method of descent’’; (compare
[CT], example 4.5). Rather than giving a general definition of this class
of spaces we will indicate how to construct some examples. Let Y be a
compact Kiahler manifold such that the metric g is flat and let Z be an
arbitrary union of compact totally geodesic complex hypersurfaces. Let
m:X +Y bea finite branched covering of Y, branched along Z. Then
the completion of the metric »*(g) on X-n {(Z) gives X the structure
of a piecewise flat space with metrically conical singularities, and
J(HY = Hi on X. More generally, ¥ and Z might be quotients of piece-

wise flat spaces in this construction. For example, let Y be the space
n

obtained by dividing m by the group generated by the standard
lattice, together with multiplication by -1 in each factor and permutations
of the factors. Then Y is homeomorphic to CP™.

Note that in both of the above cases, it is only the Kidhler property
that is relevant. Thus X need not be an algebraic variety.

Complete metrics (see [M], [ZU1], [ZU2)

In (ZU2),* Zucker considers H?“{r X), the L? cohomology of
of quotients of symmetric spaces by arithmetic groups, for which the
natural metric is complete and has finite volume. In the Hermitian cases,
the metric is Kihler. He shows that in certain cases HEZ}(F “X) is
naturally isomerphic to IH*T"\X*), where I"\X* is the Baily Borel
compactification of \X.

[]
Other strong evidence is provided by [ZUI].
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§7. Relations with mixed Hodge theory
In [D1], [D2], [D3] Deligne defines a mixed Hodge structure on the

cohomology of any algebraic variety X . This gives a filtration

woCw, C o Cwge = HY(X)

1

such that wj,-"wj_] has a Hodge (p,q) decomposition with p+q = j
{“wjfwj_l has pure weight j'’). He shows:

(7.1) X compact =5 w; = W; 4 = =W

i+ 21

(7.2) Xsmooth ==w,=w, = =w, ;, =0.

In 57.1 we give a (conjectural) relation between the mixed Hodge
structure on the cohomology of X and the (conjectured) pure Hodge
structure on IH_(X). In §7.2 we deduce both structures from the pure
Hodge structure of a resolution of X, when X has isolated singularities.
We find that an additional criterion is needed for the procedure to work
with intersection homology. This criterion is sharpened in §7.3 and gives
rise to new {conjectural) necessary conditions for blowing down.

7.1. Conjecture, wi_l{Hi[H]} = ker EHi(K} «TH,
Notice that the kernel always contains w, | if the Hodge (p,q) decom-

X)) for compact X.

position conjecture (4.A.1) is true (because the map is strictly compatible
with the filtration [D2] 2.3.5). A consequence of this conjecture is that

the (conjectural) pure Hodge structure on IH (X) determines the one

Zn-i
from mixed Hodge theory on w,/w; , . The reverse is not true. For single
condition Schubert varieties (§5.2) the map w;/w; ; +1H, .(X) is not
surjective.

2n-1

Conjecture 7.1 is true for the examples of §5 by direct calculation.

Deligne has suggested [D5] the existence of a technique whereby the
Hodge structures on the other “j"lrwj—l could be similarly determined
using the pure Hodge structures on other intersection homology groups.
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This technique would apply to the hypercohomology of complexes of
algebraic sheaves (as well as to the ordinary cohomology) thereby extend-

ing mixed Hodge theory to such hypercohomology groups.

7.2. In this section we describe Deligne's construction of the weight
filtration on the cohomology of a space with an isolated singularity. This
induces a mixed Hodge structure on intersection homelogy.

Let D be any compact subvariety of a nonsingular n-dimensional
compact complex variety X. We first construct a mixed Hodge structure
on the cohomology of X/D (the space obtained by collapsing D toa
point). In the case that X/D admits the structure of an algebraic variety
X (compatibly with the projection X - X )}, this calculation gives the
mixed Hodge structure on X . Consider the exact sequence of the pair

(diagram II of 5.1):

~ HE0 — 1D L) — i) - Hi) L HiE)

Here, W = Hj[x]
w; ; = coker (H-1(x) = H" (D))

W -wj{Hi_I{D]} for j<i-1.

One can see directly from the exact sequence (and the fact that each
homomorphism is strictly compatible with the filtration) that W "I"'"j-i has
a pure Hodge (p,q) decomposition of weight j.

Since HY(X) = IH, (X} for i>n and Hom (HI(X), () = TH,(X])
for 1 <n, we obtain mixed Hodge structures on [Hj{}f.] for all j £ n.
(However (7.1) is not satisfied even though X is compact.}) It is easy to
see from diagram I1I of §5.1 that [Hn{]{] has a pure Hodge structure of
weight n. Note: this mixed Hodge structure on IH_ (X} depends only on

the algebraic structure of X -D, the nonsingular part of X.

This gives the following result:

PROPOSITION. A necessary and sufficient condition that IH (X) have

a pure Hodge structure, i1s that the map
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8:HY(X) - HYD)
be a surjection for all i > n, or equivalently

Hj'[IT,I . Hj{:{} 15 an njection for all j > n.

Observe that in the example of §5.1, this condition is guaranteed by
the blowing down condition. However even in this example, the cohomology
has only a mixed Hodge structure. Thus, to prove that the intersection
homology of a variety with an isolated singularity has a pure Hodge struc-
ture, one must verify the above condition on any resolution. We do not
know how to de this in general, although the preceding construction of the
mixed Hodge structure {on H* and IH_ } requires no further condition.
Thus the existence of a pure Hodge structure on IH_(X) appears to in-
volve more subtle structure of the variety than does the existence of a

mixed Hodge structure on cohomology.

7.3. We now turn the question around and ask what blowing down condi-
tions are implied by these ideas.
Let D be an arbitrary (compact) subvariety of a nonsingular compact

n-dimensional variety X and suppose X = X/D is algebraic.

Conjecture, Hj{[}} . Hj{.i'.} is an injection for all j > n and this holds
for local reasons near D, i.e. if T is a tubular neighborhood of D in
i’., with boundary 5, then HjI:T] + Hj{T,S} 15 an injection for all j > n.

(This conjecture is a consequence of the “‘direct sum conjecture’’ in [GM3].)

REMARKS. The local condition is stronger than the global condition

because of the factorization
H{(D) & H(T) — Hj{i} —_— Hjii,i_m
)

Hj[T, 3)

This conjecture has two interesting consequences:
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Consequence I. For all j > n the mixed Hodge structure on

Hj{D} = lt!:r{Hi[i} - IHi(x}] is actually pure.

Consequence 2. The map given by pushing into X and then restricting

to D, .
H(D) & Hy(T) — H(T,$) = " Y1) = H2"ip)

is an injection.

Consequence 2 is part of the blowing down condition from the example
in 85.1 since the map Hi{D} - H:“'i[D} +H; ,(D) coincides with NC,L.

If X isa surface and D is a divisor with normal crossings, Grauert's
necessary and sufficient blowing down criterion is that the intersection
form be negative definite. Our necessary condition (2) is that the inter-

section form be nonsingular.
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