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Homological ring epimorphisms and recollements from exacpairs, |.

Hongxing ChenandChangchang Xi

Abstract

Homological ring epimorphisms are often used in modernasgmtation theory and algebrdic
theory. In this paper, we give some new characterizationghefn a universal localization related to an
‘exact’ pair of ring homomorphismsis homological. Thesareltterizations are flexible and applicable to
many cases, thus give rise to a wide variety of new recollés{ehderived module categories) which have
become of interest in and attracted increasing attentimmards to understanding invariants in algebra
and geometry. As a consequence, we show that R — Sis an injective homological ring epimorphism
between commutative ringdandS, then the derived module category of the endomorphism ririgeo
R-moduleS® SR always admits a recollement of the derived module categari&k and the tensor
productS®rEndk(S/R). In particular, this result is applicable to localizaticofsintegral domains by
multiplicative sets in commutative rings.
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1 Introduction

The investigation of homological ring epimorphisms hasralbistory, and there is a large variety of litera-
ture. For example, in representation theory, homologiogl€pimorphisms were used to study perpendicular
categories and sheaves, recollements and stratificatfasherived module categories of rings (seé [9], [5]),
and to construct infinitely generated tilting modules (€8¢ [In algebraicK-theory, Neeman and Ranicki
used homological ring epimorphisms to establish a usefuy kexact sequence of algebradiegroups (see
[12]), which generalizes many earlier results in the litera. Also, in Banach algebra, homological ring
epimorphisms were topologically modified to investigate #malytic functional calculus (se€e [17]), where
they were called “localizations”.

Let R be an associative ring with identity. Suppose thaR— Sandu: R— T are two homomorphisms
of rings. We may form the coprodu& g T of SandT overR. Letp:S— SLRT and@: T — SLIRT be
the canonical ring homomorphisms given by the definitionagroducts ofR-rings. Then one may define a
homomaorphisn® of the following rings:
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fors € Sandtj € T withi =1,2.

For simplicity, we denote b the former 2« 2 triangular matrix ring, and b@ the latter 2x 2 full matrix
ring Ma(SURT) overSURT.

The ring homomorphismd : B — C is of particular interest in representation theory: It carrégarded
as the universal localization & at a homomorphism between finitely generated proje@&iweodules, and
therefore it is a ring epimorphism with T%(C,C) = 0 (seel[16]), and yields a fully faithful exact functor
0. : C-Mod — B-Mod, called the restriction functor, between the categursll left C-modules and the one
of all left B-modules.

Generally speakingd is not always homological. Iff], there is a sufficient condition fd to be ho-
mological. Concisely, assume that R — Sis injective, and choosg€ to be the endomorphism ring of the
R-moduleS/Randp: R— T to be the ring homomorphism defined by (x+— xr) forr € Randx € S/R.

If A is additionally a ring epimorphism with T@f& S) =0, thenB is isomorphic to the endomorphism ring
of the R-module S& SR. Moreover, ifgS has projective dimension at most 1, theis homological. In
particular, the (unbounded) derived categoryB) of the ring B admits a recollement witl#(C) on the
left-hand side and@/(R) on the right-hand side (s€®]). This was used iri [5] to establish the so-called Hap-
pel’'s Theorem for infinitely generated tilting modules andghow that the Jordan-Holder theorem fails for
stratifications of derived module categories by derived ulmadategories. Here, the condition g8 only
ensures that thB-moduleS¢ SR is a tilting R-module of projective dimension at most 1 (seg [2, 9]), and
consequently, the homomorphismtself is homological.

However, in general, for an arbitrary homological ring epiphismA : R — S, the projective dimension
of RSmay be greater than 1 (see the examples in the last sectibug, T is certainly of interest in stratifica-
tions of derived categories and in algebrKig¢heory to find some other new and applicable criterionfor
to be homological under a more general setting. Namely,alh@fing question arises naturally:

Question. Given a pair (A, ) of ring homomorphisms with being homological, when i8: B — C
homological, or equivalently, when is the derived functd®D : 2(C) — 2(B) fully faithful ?

In the present paper, we shall provide some answers to teistiqn. Here, we assume neither thas
injective, nor thatS® SR is a tilting R-module of projective dimension at most 1. Furthermore, ava
some flexibilities for the choice of the ring homomorphismR — T. Under these general settings, we
shall provide some new and handy characterizations forthersal localizatiord to be homological. Our
characterizations will be given in terms of vanishing of lwdogy groups oR-modulesT andS, or in terms
of another ring homomorphism between two rings which areel to both(A, 1) and the coproduct dand
T overR. In particular, the vanishing condition on homology groeps be applied in many cases.

As a consequence of these characterizations, we can pradacge variety of new recollements which
could be used to understand stratifications of derived neoclatlegories, or of derived categories of coherent
sheaves over geometric manifolds as well as to calculasbedgcK-theory of rings (se€ [2]16][19]/12]).
Moreover, we show in the present paper that i§ an injective homological ring epimorphism between two
commutative ringR and S and if p is the ring homomorphism frorR to the endomorphism ring of the
R-moduleS/R, defined by the right multiplication, thehis always homological, and therefore, the derived
category of the rindd is a recollement of the derived module categorieR ahd the tensor product &and
Endk(S/R) overR.

To state our results more precisely, let us first introduceesdefinitions that will be employed throughout
the paper.



Given a pair of ring homomorphisms. R— Sandu: R— T, there ardr-R-bimodule structures c8and
T, respectively, and natural homomorphism&eR-bimodulesN’ =A® T : T — ST defined byt — 1t
fort € T,andy’ = S® u: S— S®RT defined bys+— s® 1 forse S The pair(A, n) of ring homomorphisms

U-/

_)\/
K. Then one can check thKtis indeed a ring and that there is a canonical ring homomsnphi: R — K,
defined byr — ((r)A, (r)u) for r € R. The pair(A, p) is calledexactif it is semi-exact and is an isomorphism
of rings. There is a recipe to get semi-exact pairs:IiLe¢ an arbitrary ideal dRfori =1,2. DefineS:=R/I;
andT := R/I,. LetA andp be the canonical surjective ring homomorphisms. Then tire(pay) is always
semi-exact, and it is exact if and onlylifnl, = 0.

Now we can state our main result in this paper as follows.

is calledsemi-exacif the map( ) :SOT — S®RT is surjective. The kernel of this map is denoted by

Theorem 1.1. Let (A, ) be an exact pair of ring homomorphisihs R— S and it R— T. Suppose that
A :R— S is homological. Then the following assertions are eqeival

(1) The ring homomorphisré : B — C is homological.

(2) The ring homomorphismp: T — SURT is homological.

(3) Tor(T,S) = 0Oforalli > 1.

If one of the above assertions holds, then there exists dieawent of derived module categories:

/\ =
2(Endr (T ®r9)) 2(B) 2(R) .
~— Nl

Note that the ring EnglT ®rS) in Theoren_LlL is isomorphic to the coprod®itir T (see Lemma
[3.8(2)), which is Morita equivalent to the rir@

Clearly, 7(B) is always a recollement a?(T) and Z(S), in which the category(R) is not involved.
However, Theorern 111 provides us a different recollemen#f(B). A remarkable feature of this recollemnt
is that it containgZ(R) as its member, and thus provides a way to understand pregeftthe ringR through
those of the ring®, SandT. This idea will be discussed in another paper.

As a consequence of Theoréml1.1, we obtain the followingltregiich can be seen as a concrete real-
ization of Theoreri 111.

Corollary 1.2. (1) Let R be aring, and letland |, be ideals of R withjln I, = 0. If the canonical surjective
ring homomorphism R» R/I1 is homological (for instance, the idealis idempotent and projective as a left
module), then so is the canonical surjective ring homomisrptR/I, — R/(l1 +12), and therefore there is a
recollement of derived module categories:

= T RN
Z(R/(l1+12)) 7(B) 7(R)
~N~— N~

where B:= ( OR/Il R/(Ilql/ltb) )

(2) Suppose that : R— S is a homomorphism of rings and M is an S-S-bimoduleA LBix M — Sx M
be the ring homomorphism between trivial extensions indificenA. ThenA is homological if and only if
so isA. In particular, if A is homological, then there is a recollement of derived medalegories:

T N
Z(Sx M) 2(B) —— 2(R),
N N

. (S SxM
WhereB._<O RxM)'

Another realization of Theorem 1.1 occurs in universal ligesions.



Given aring homomorphisih: R— S we may considek as a complexQ® of left R-modules withRand

Sin degrees-1 and 0, respectively. Then there exists a distinguishadgh’eRL s-5LQ — R[1] in the
homotopy category? (R) of the category of alR-modules. This triangle induces a canonical ring homomor-
phism fromR to the endomorphism ring @° in 7 (R), and therefore yields a ring homomorphignfrom
Rto the endomorphism ring @° in Z(R), which depends oh (see Section 412). LS := Endyr) (Q*).
Observe that ifA is injective, thenQ® can be identified inZ(R) with the R-moduleS/R, and consequently,
the mapi coincides with the map frorR to Endck(S/R) by the right multiplication.
Further, letA := Endyg) (S® Q®), and letr* be the induced map Homg (S& Q°, 1) : Homy,r) (S
Q*, §) — Homyr) (S® Q*, Q*), which is a homomorphism of finitely generated projectivenodules. Let
A 1 A — Ay stand for the universal localization Afat Tt* in the sense of Cohn and Schofield (s€é [8, 16]).
If A is a ring epimorphism such that T8, S) = 0 = Homg(S Ker())), then we shall prove in Section
[4.2 that the paifA, 1) is exact. Hence, the following corollary follows from Theor1.1.

Corollary 1.3. If A : R— S is a homological ring epimorphism such thdad;mR(S Ker()\)) =0, then the
following assertions are equivalent:

(1) The universal localizatioA : A — Ay of A at T is homological.

(2) The ring homomorphism: S — SLIgS is homological.

(3) Tor}(S,S) = 0forany i> 1.

In particular, if one of the above assertions holds, therréhexists a recollement of derived module
categories:

T 2N
2(Ends (S ®rYS)) Z(N) 7(R)
~—_ ~_—___—

As an application of Corollarly_11.3, we obtain the followirgsult which generalizes the first statement
of [B, Corollary 6.6(1)] since we do not require that the ragimorphism\ is injective. In this general case,
the moduleS@® S/R may not be a tiltingR-module.

Corollary 1.4. LetA : R— S be a homological ring epimorphism such tthmR(S Ker()\)) =0. Then we
have the following:

(1) If gS has projective dimension at mdsthenA : A — Ay is homological.

(2) The ring/As is zero if and only if there is an exact sequelcer P, — Py — rS — 0 of R-modules
such that Pis finitely generated and projective for= 0,1. In this case, the rings R andl are derived
equivalent.

As another application of Corollaty 1.3, we have the follogvresult, which extends greatly the second
statement of([5, Corollary 6.6(1)] since we do not impose rsyriction on the projective dimension gf.

Corollary 1.5. Suppose that : R— S is an injective homological ring epimorphism between catative
rings R and S. Then there exists a recollement of derived imadtegories:

T T~
2(S2rS) 2(Enck(S®S/R) —— Z(R) ,
~— ~—_

where $:= Endk(S/R) is a commutative ring.

We remark that ifR is a commutative ring and is a multiplicative subset oR (that is, 0 # ® and
st € ® whenevels,t € ®), then the localizatiolR — ® 'R of Rat ® is always homological. If : R— Sis
a homomorphism from the ringB to another commutative rin§, then the image of a multiplicative subset
of Runderf is again a multiplicative set i8. So, as a direct consequence of Corollary 1.5, we obtain the
following result which may be of its own interest in commiutatalgebra.
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Corollary 1.6. Suppose that R is a commutative ring witha multiplicative subset of R. Let S be the
localization® 'R of R at®, and letA : R— S be the canonical ring homomorphism. If the map injective
(for example, if R is an integral domain), then there existsallement of derived module categories:

T T T
(WS P (Enck(S® S/R) —— (R)
\_/ v

where 8:= Endr(S/R), andW is the image ofp under the ring homomorphism: R— S associated ta.

The contents of this paper are outlined as follows. In Se@jave fix notation and recall some definitions
and basic facts which will be used throughout the paper. hiqudar, we shall recall the definitions of
universal localizations, recollements and coproductsngfst and prepare several lemmas for our proofs. In
Sectior B, we prove Theordm 1L.1. In Section 4, we prove allllzsies mentioned in Sectidd 1. Also, in this
section, we show a few other consequences of our resultallfim Sectiori b, we give several examples to
explain the necessity of some assumptions in our results.

2 Preliminaries

In this section, we shall recall some definitions, notatiod aasic results which are closely related to our
proofs.

2.1 Notation

Let C be an additive category.

Throughout the paper, a full subcategaByof C is always assumed to be closed under isomorphisms,
thatis, ifX € BandY € CwithY ~ X, thenY ¢ B.

Given two morphismg : X — Y andg:Y — Zin C, we denote the composite bfandg by fgwhich is a
morphism fromX to Z. The induced morphisms Hor(Z, f) : Hom-(Z,X) — Hom¢(Z,Y) and Homy(f,2) :
Hom¢(Y,Z) — Hom¢(X,Z) are denoted by* and f,., respectively.

We denote the composition of a functer ¢ — D between categorigs and? with a functorG: D — £
between categorie® andE by GF which is a functor fromC to £. The kernel and the image of the functor
F are denoted by KéF) and Im(F ), respectively.

Let 9 be a full subcategory of. By Ker(Hom.(—,9")) we denote the left orthogonal subcategory with
respect tgY’, that is, the full subcategory @f consisting of the object’ such that Hom(X,Y) = 0 for all
objectsY in 9. Similarly, KefHom.(9",—)) stands for the right orthogonal subcategorycofvith respect
toY.

Let € (C) be the category of all complexes ow€mwith chain maps, and? (C) the homotopy category
of €(C). When( is abelian, the derived category ¢fis denoted byZ((C), which is the localization of
2 (C) at all quasi-isomorphisms. It is well known that bo#i(C) and () are triangulated categories.
For a triangulated category, its shift functor is denotedIbyiniversally.

If T is a triangulated category with small coproducts (that @products indexed over sets existdr),
then, for each objedd in 7', we denote by Tri@J ) the smallest full triangulated subcategorytontaining
U and being closed under small coproducts. We mention thesolg properties related to Tiid ):

LetF : 7 — 7' be a triangle functor of triangulated categories, and)/ldie a full subcategory of”.
We defineF ~19 := {X € T | F(X) € 9}. Then

(1) If o is a triangulated subcategory, thent9 is a full triangulated subcategory Gf.

(2) Suppose that and‘7’ admit small coproducts and thatcommutes with coproducts. if is closed
under small coproducts i@’, thenF ~19 is closed under small coproductsdn In particular, for an object
U € 7, we haveF (Tria(U)) C Tria(F (U)).



In this paper, all rings considered are assumed to be aise@ad with identity, and all ring homomor-
phisms preserve identity. Unless stated otherwise, allutesdare referred to left modules.

LetRbe aring. We denote bg-Mod the category of all unitary leR-modules. By our convention of the
composite of two morphisms, ff: M — N is a homomorphism dR-modules, then the image = M under
f is denoted by(x) f instead off (x). The endomorphism ring of tHe-moduleM is denoted by Eng(M).

As usual, we shall simply writ&' (R), .7 (R) and Z(R) for ¢ (R-Mod), .# (R-Mod) and Z(R-Mod),
respectively, and identifiR-Mod with the subcategory a?(R) consisting of all stalk complexes concentrated
in degree zero.

Let (X®,dx-) and(Y*,dy.) be two chain complexes ov&Mod. The mapping cone of a chain mabp:

X* — Y*is usually denoted by Cofle®). In particular, we have a trianghk® My — Congh®) — X°*[1]
in # (R), called adistinguished triangle For eachn € Z, we denote byH"(—) : Z(R) — R-Mod then-th
cohomology functor. Certainly, this functor is naturapmorphic to the Hom-functor Hopg) (R, —[n]).

The Hom-complex Ho(X*,Y*) of X* andY* overRis defined to be the comple¥iom}(X*,Y*), d{(‘.y.) neZ
with

Hom(X®,Y*®) := rLHomR(Xp,Yp”‘)
pe

and the differentiatly. . of degreen given by

(FP)pez = (FPAP" — (—1)"df £PF1)

for (fP)pez € Homix(X*,Y*®). For example, iX € R-Mod, then we have

Homg(X,Y*) = (Homg(X,Y"), Homg(X,d}.) )

nez’

if Y € R-Mod, then

Homi(X*,Y) = (Homg(X ™", Y), (—1)™*Homg(dy" %, Y))

nez:

For simplicity, we denote Hof(X,Y*) and Hongk(X*,Y) by Homr(X,Y*) and Hong(X*®,Y), respectively.
Note that Homa(X*®, Y) is also isomorphic to the compldklomg(X~",Y), Homg(dy" 1, Y))
Moreover, it is known that"(Homg(X*,Y*)) ~ Hom ;g (X®,Y*[n]) for anyn € Z.
Let Z* be a chain complex ové®R°P-Mod. Then the tensor complex® @ X* of Z* and X® overRis
defined to be the complefZ® @RX*®,85. x.) ., With

nez’

nez

Z*pX* == P ZP or X" P
peZ

and the differentiadz. x. of degreen given by
22X+ (2)d5 @ X+ (—1)Pz® (X)dy.

for ze ZP andx € X" P. For instance, iK € R-Mod, thenZ* @ X = (Z"@rX,d3. © 1)
denoteZ® @ X simply by Z®* @r X.

The following result establishes a relationship betweemH@mplexes and tensor complexes.

Let Sbe an arbitrary ring. Suppose that = (X", dg. ) is a bounded complex d&?-S-bimodules. 1frX"
is finitely generated and projective for alk Z, then there is a natural isomorphism of functors:

e In this case, we

Homg(X*,R) ®x— — Homx(X*, —) : €(R) — € (S).

To prove this, we note that, for afg:S-bimoduleX and anyR-moduleY, there is a homomorphism of
Smodules:dx y : Homg(X,R) ®rY — Homg(X,Y) defined byf ® y+— [x— (x)fy] for f € Homg(X,R),
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y €Y andx € X, which is natural in bottX andY. Moreover, the mapy y is an isomorphism igX is finitely
generated and projective. For any € ¢(R) and anyn € Z, it is clear that

Homg(X*, R)®RY* = HHomg(X P, R) ®rY" P and Hong(X*,Y*) = 5 Homg(XP,YP")
peZ peZ

sinceX* is a bounded complex. Now, we defit. y. := ¥ ez (—1)P™ P8y 5 yn-», which is a homo-
morphism ofS-modules from Hom(X*, R)®RY* to Honfy(X*,Y*). Then, one can check thag. y. :=
(8%« y+) ez, i @ chain map from Hog(X*,R) @& Y* to Homk(X*,Y*). SincerX P is finitely generated and
projective for eactp € Z, the mapdyx-» yn-» is an isomorphism, and so is the ma. .. This implies that

DS ve - HOMR(X®,R) @R Y* — HOMZ(X*,Y*)

is an isomorphism ir¥’(S). Since the homomorphisd vy is natural in the variableX andY, it can be
checked directly that
Ay. _ tHOmMg(X*,R) @k — — HOMX(X®, —)

defines a natural isomorphism of functors fr@fiR) to €'(S).

In the following, we shall recall some definitions and baaitt$ about derived functors defined on derived
module categories. For details and proofs, we reféerlto [}, 11

Let # (R)p (respectively,# (R),) be the smallest full triangulated subcategory6{R) which

(i) contains all the bounded above (respectively, boundgdw) complexes of projective (respectively,
injective) R-modules, and

(ii) is closed under arbitrary direct sums (respectiveisect products).

Note that’#’ (R)p is contained in’ (R-Proj), whereR-Proj is the full subcategory d®-Mod consisting
of all projectiveR-modules. Moreover, the composition functors

H (Rp— #(R)—»2(R) and % (R) — % (R)— Z(R)

are equivalences of triangulated categories. This meatsftir each compleX*® in Z(R), there exists a
complexpX*® € J# (R)p together with a quasi-isomorphispX® — X*, as well as a compleX*® € .7 (R),
together with a quasi-isomorphis¥? — i X*. In this sense, we shall simply ca)K* the projective resolution
of X*in . (R). For example, i is anR-module, then we can choogX to be a deleted projective resolution
of rX.

Furthermore, if eitheX*® € # (R)p or Y* € J#(R);, then Homy () (X®,Y*®) =~ Homgy g (X*®,Y*), and
this isomorphism is induced by the canonical localizatianctor from.# (R) to Z(R).

For any triangle functoH : #(R) — J#(S), there is a total left-derived functdtH : Z(R) — 2(9)
defined byX* — H(,X*), a total right-derived functdRH : Z(R) — Z(S) defined byX*® — H(;X*). Observe
that, if H preserves acyclicity, that i$j (X*) is acyclic wheneveK® is acyclic, thenH induces a triangle
functorD(H) : Z(R) — 2(S) defined byX® — H(X*®). In this case, we haveH = RH = D(H) up to
natural isomorphism, anid(H ) is then called the derived functor bf.

Let M® be a complex oR-S-bimodules. Then the functors

M*@%—: #(S) — #(R) and Homk(M®,—):.# (R) — % (S)

form a pair of adjoint triangle functors. Denote by ®]§ — the total left-derived functor df1* @3 —, and by
RHomg(M*, —) the total right-derived functor of HoltM*®, —). Itis clear that(M® ®§ —, RHomg(M*, —))
is an adjoint pair of triangle functors. Further, the cop@wding counit adjunction

£:M* @ RHomg(M*, —) — ldgg)
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is given by the composite of the following canonical morpfisin Z(R): M* @5 RHomg(M*®, X*) = M* @5
Homgk(M*,iX*) =M* ®§(pHom;{(M', iX*)) — M*@gHomy(M*, i X*) — i X* — X*. Similarly, we have
a corresponding unit adjunction : Idg s — RHomg(M*, M* ®% —), which is given by the following
composites foY* € 2(S): Y* — pY* — Homg(M*,M* @& (pY*)) — Homk(M*,i(M* @2 (pY*))) =
RHOmMg(M*,M* ®%(pY*)) = RHomg(M*,M* @%Y*).

ForX*® € 2(R) andn € Z, we haveH"(RHomg(M*, X*)) = H"(Hom&(M*,iX*)) =~ Hom (&) (M*,iX*[n])
~ Homgg) (M*,iX*[n]) ~ Homgy,g) (M*, X*[n]).

2.2 Homological ring epimorphisms and recollements

LetA : R— Sbe a homomorphism of rings.

We denote by, : SMod — R-Mod the restriction functor induced By, and byD(A,) : 2(S) — Z(R)
the derived functor of the exact functdr. We say thal\ is aring epimorphismif the restriction functor
A : SMod — R-Mod is fully faithful. Itis proved thah is a ring epimorphism if and only if the multiplication
mapS®rS— Sis an isomorphism &-S-bimodules if and only if, for any two homomorphismis f,: S— T
of rings, the equalityA f; = A f, implies thatf, = f,. This means that, for a ring epimorphism, we have
X®sY ~ X®rY and Homy(Y,Z) ~ Homg(Y, Z) for all right SmodulesX, and for allSmodulesY andZ.
Note that, for a ring epimorphisth: R— S, if Ris commutative, then so B

Following [9], a ring epimorphism : R — Sis calledhomologicalif TorR(S,S) = 0 for alli > 0. Note
that a ring epimorphism is homological if and only if the derived funct@(A,) : 2(S) — Z(R) is fully
faithful. This is also equivalent to saying thatnduces an isomorphis®=i S~ Sin #(S). Moreover, for
a homological ring epimorphism, we have f6X,Y) ~ Tor>(X,Y) and Exk(Y,Z) ~ Extx(Y,Z) for all i > 0
and all rightS-modulesX, and for allSmodulesY andZ (see[[9, Theorem 4.4]).

Clearly, if A : R— Sis a ring epimorphism such that eithg® or & is flat, thenA is homological. In
particular, ifRis commutative an is a multiplicative subset dR, then the canonical ring homomaorphism
R— ® 1Ris homological, where 1R stands for the (ordinary) localization Bfat ®.

As a generalization of localizations of commutative ringsiversal localizations of arbitrary rings were
introduced in([8] (see alsd [16]) and provide a class of ripgn®rphisms with vanishing homology for the
first degree. Note that universal localizations were rermhasgenoncommutative localizations [n [12]. Now
we mention the following basic fact on universal localizas.

Lemma 2.1. (see[[8], [16])Let R be a ring and leE be a set of homomorphisms between finitely generated
projective R-modules. Then there is a ring &d a homomorphismiy : R— Ry of rings such that

(1) As is Z-inverting, that is, ifa : P — Q belongs toZ, then R ®r0 : R ®rP — Ry ®rQ is an
isomorphism of Rmodules, and

(2) As is universalZ-inverting, that is, if S is a ring such that there exist&-#énverting homomorphism
¢ : R— S, then there exists a uniqgue homomorphisnRy — S of rings such thad = Ay.

(3) As : R— Ry is a ring epimorphism witfor}(Rs,Rs) = 0.

TheAs : R— Rs in Lemmd2.1 is called theniversal localizatiorof Rat>. One should be aware thiag
may not be flat as a right or leR-module. Even worse, the map in general is not homological (see [13]).
Thus it is a fundamental question to find conditionsXgtto be homological. Obviously, if T(Rs,Rs) = 0
for alli > 2, thenAs is homological.

Now, we recall the notion of recollements of triangulatetegaries, which was first defined inl [3] to
study “exact sequences” of derived categories of cohet@aves over geometric objects.



Definition 2.2. Let D, 9’ andD” be triangulated categories. We say tfiats arecollementof D" and D"
if there are six triangle functors among the three categorie

i* I
Q)“ = D - Q)’
N NS
i j«
such that
(1) (i*,1.), (ir, i), (1, j') and(j*, j.) are adjoint pairs,
(2) i, j« and ], are fully faithful functors,
(3)i'j, = 0 (and thus alsg'i; = 0 andi* j, = 0), and
(4) for each objecK € D, there are two triangles ifv:

it (X) — X — iLi*(X) — 1" (X)[1].

By definition, we have the following property of recollemgntvhich will be frequently used in our
proofs.
For any objectX € 2’ andY € D", we have

HomD(J'(X)7|*(Y)) =0= HomD(i*(Y)7 J*(X))

A typical example of recollements of derived module categors given by triangular matrix rings:
A N
0 B
ring associated witlh, B andN. Then there is a recollement of derived module categories:

Suppose thah andB are rings, and thall is anA-B-bimodule. LetR = > be the triangular matrix

2(A) 2(R) 2(8B).
N N

In this case, the six triangle functors in Definition]2.2 candescribed explicitly:

Lete:= < 8 g) € R Then we have

jl =Rexg —, |' =eR®g —, j. = RHomg(eR —), i* = A®K —, i, = A®% —, i' = RHomg(A, —),

whereA is identified withR/ReR Note that the canonical surjectiéh— R/ReRis always a homological
ring epimorphism.
As a further generalization of the above situation, it wasaghin [14, Section 4] that, for an arbitrary
homological ring epimorphism : R— S there is a recollement of triangulated categories:
N T
2(9) 2(R) Tria(Q"®)
N N

whereQ?* is given by the distinguished triangFeL S— Q* — R[1] in Z(R). In this case, the functap
is the canonical embedding and

' =(Q[-1])®k—,i" = S®g —, i. = S©g —i' = RHOMR(RS, -).

Moreover, we haveZ(S) ~ Ker(Homy, g (Tria(Q*),—)) := {X* € Z(R) | Homyg)(Y,X*) =0 forall Y e
Tria(Q*)}. This clearly implies that Homyg) (Q®, X*[n]) = O for all X* € Z'(S) andn € Z.



2.3 Coproducts of rings

Next, we recall the definition of coproducts of rings defingddohn in [7], and prove some basic properties
of coproducts.

Let Ry be a ring. AnRy-ring is a ring R together with a ring homomorphisixg : Ry = R. An Rg-
homomorphisnfrom anRy-ring Rto anothelRy-ring Sis a ring homomorphisnf : R— Ssuch thais = Agrf.
If Ry is commutative and the image bk : Ry — Ris contained in the centé(R) of R, thenR is called an
Ro-algebra

Thecoproductof a family {R; | i € I} of Ry-rings withl an index set is defined to be Rg-ring Rtogether
with a family {p;i : R — R|i € |} of Ry-homomorphisms such that, for aRy-ring Swith a family of Ry-
homomorphismdT; : R — S|i € |}, there exists a uniquy-homomorphismd : R — Ssuch that; = p;d
foralliel.

It is well known that the coproduct of a famif§R; | i € |} of Ro-rings exists. We denote this coproduct
by Lir,Ri. Clearly,RyUr, S= S= SUr, Ry for everyRy-ring S

In general, the coproduct of twRy-algebras may not be isomorphic to their tensor product ByeFor
example, given a field, the coproduct ovek of the polynomial ringk[x] andk][y] is the free ringk(x,y) in
two variables< andy, while the tensor product ovérof k[x] andk]y] is the polynomial ring[x,y]. However,
under some extra assumptions, coproducts can be intat@stensor products of rings.

Lemma 2.3. [5, Lemma 6.3Let R, be a commutative ring, and let Be an R-algebra for i= 1,2. If one of
the homomorphismksg, : Ro — Ry andAg, : Ry — Ry is a ring epimorphism, then the coproduct Bk, Ry is
isomorphic to the tensor product Rr, Ry, that is, the canonical maps;R+ Ry ®r, R and R — Ry ®r, Rz
define the coproduct.

Another realization of coproducts may be the so-calledatir@xtensions.

Lemma 2.4. Suppose that : R— S is a ring epimorphism and M is an S-S-bimodule eRx M — Sx M
be the ring homomorphism between trivial extensions indiuyer. Then the coproduct Sg (Rix M) is

isomorphic to S M, that is, the inclusion S» Sx M and\ define the coproduct.

Proof. Letp: R— Rx M andp : S— Sx M be the inclusions of rings. Note th&andRx M areR-rings
via A and, respectively, and thatp = pA : R— Sx M. We claim thatSx M, together withp andA, is
the coproduct o5andRx M overR. Suppose thaf : Rx M — A andg: S— A are ring homomorphisms
such that g= p f. In the following, we shall show that there is a unique ringiemnorphismh: Sx M — A
such thatlh = f andph = g. Clearly, if such & exists, therh must be defined bys,m) — (m)f + (s)g for
se Sandm e M. This shows the uniquenessof So, it remains to show that the above-defined im&pa
ring homomorphism. Certainlyy is a homomorphism of abelian groups. We have to showhimeserves
multiplication.

Lets € Sandm; € M fori = 1,2. On the one hand(s1,m;) (s, M) ) h= (15, S1Mp +MiSp)h = (spmp+
mis) f + (s152)9 = (s1me) f + (Mus2) f + (s1)g(S2)g. On the other hand((s, mu))h((s2,mg) ) h = ((ma) f +
(s1)9) (M) T +(s2)9) = (M0) (M)  + (M) F (S2)g+ ()9 (M) F + (51)9 ()9 = (Mump)  + (M) F(s2) 9+
(s1)9(mp) f + (s1)9(s2)9 = (M) F(2)g + (s1)9 (M) f + (s1)9(s2)g sincemum, = 0. This implies that if
(sump) f = (s1)g(mp) f and (mysp) f = (M) f ()9, then ((se, M) (s2,M2))h = ((s1,my))h((sz,mp) ). So,
to prove thah preserves multiplication, we need only to verify these aoldial conditions under the assump-
tions of LemmaZ2.4.

Now, we show thatsm) f = (s)g(m) f and(ms)f = (m)f (s)g for se Sandme M.

To show the former, we first fix am € M and define two maps as follows:

¢:S— A, s— (smfandyP:S— A, s— (s)g(m)f.

10



One can check that boih and ) are homomorphisms d®-modules such that¢ = AP due tohg = puf.
Note thatA : R — Sis a ring epimorphism and\ is an Smodule. This implies that the homomorphism
Homg(A,A\) : Homg(S,A) — Homg(R,A) is an isomorphism, and sp= . Similarly, we can show that
(mgf = (m)f (s)g. Consequently, the mdppreserves multiplication and is actually a ring homomasphi
Thus the ringSx M, together withp andA, is the coproduct o8andR x M overR. [

Now we prove a couple of properties on coproducts of ringsclvbur later proofs will rely on.

Lemma 2.5. Let Ry be aring, and let Rbe an R-ring with ring homomorphismg : Ry — R fori=1,2.
(1) If Ag, : Ro — Ry is aring epimorphism, then so is the canonical homomorplpsnR, — R; LI, Ro.
(2) Let | be an ideal of R and let J be the ideal of Ryenerated by the imagé)Ag, of | under the map
Ar,. If R1 = Ro/l and Ag, : Ry — Ry is the canonical surjective map, thea Bz, R, = Ry/J.

Proof. (1) It follows from the definition of coproducts of rings thi, p1 = Ar,p2 : Ro — RiUg, R2. We
point out thaip; is a ring epimorphism. In fact, if, g : R; Lir, R; — Sare two ring homomorphisms such that
p2f = p2g, thenAr,p2f = Ar,p20. This means thatg, p1 f = Ag,p10, and thereforg, f = p1g sinceAg, is a
ring epimorphism. By the universal property of coproduats,haveg = f. Thusp, is a ring epimorphism.

(2) Let p2 : R, — Ry/J be the canonical surjection, and pt: Ry — Ry/J be the ring homomorphism
induced byAg, sinced = Ry(1)Ar,R2 D (I)Ag,. Now, we claim thaiR,/J together withp; andp, is the
coproduct ofR; andR; overRy. Clearly, we hava\g, p1 = Ar,p2 : Ry — Ry/J. Further, assume thaf : Ry —
Sandty : R — Sare two ring homomorphisms such thg{ 12 = Ag, T1. Then(l)Ag,12 = (I)Ag,T1 =0, and
therefore(J)1, = 0. This means that there is a unique ring homomorphsm,/J — Ssuch thatr, = p20.

It follows thatAg, T1 = AR, T2 = AR,P20 = AR, P10. SinCeAg, is surjective, we have; = p10. This shows that
Rll—lRo Ry, = RZ/J. O

The next result tells us that universal localizations asserved by taking coproducts of rings.
Lemma 2.6. [5, Lemma 6.2]Let R, be a ring,Z a set of homomorphisms between finitely generated projec-

tive R-modules, ands : Ry — Ry := (Ry)s the universal localization of Rat=. Then, for any gring Ry, the
coproduct RLg, Ry is isomorphic to the universal localizatiqiR;), of R, at the sef\ := {Ro®g, f | f € Z}.

3  Proof of Theorem[1.1

From now on, we keep the notation introduced in Sedtion 1.
Given ring homomorphisms : R— Sandu: R— T, we have defined

. S SXJRT . . S|_|RT S|_|RT
B'_<0 T > C'_MZ(S“RT)_<SuRT Sl_lRT>’

and a ring homomorphis: B — C in Sectior 1.
Summing up our notation introduced before, we reach at thewimg commutative diagram it# (R)
with two rows being distinguished triangles:

A S T Q. \Y R[l]

R
H‘/ u/l
)\/

(%)

11



wherep and@ come from the definition of coproducts Bfrings, the magh is defined bys®t — (s)p(t)@

for s€ Sandt € T, andp® := (W)icz is the chain map defined ! := p, W° := p’ andp' = 0 fori # —1,0.
/

_u;\/

of this map is denoted bi. It is clear thai is indeed a subring of the direct sus® T of the ringsSand

T. If, moreover, the canonical ring homomorphism fréhto K is an isomorphism, thef\, ) is called an

exact pair of ring homomorphisms. Note thjat ) is exact if and only if the mapping cone

Recall that(A, p) is semi-exact if the homomorphis :S@T — S®RT is surjective. The kernel

W
0— R g TQS@RT—m

of the chain map® in 4’ (R) is an exact sequence Bfmodules. Clearly, this is equivalent to saying that
is a quasi-isomorphism ¥ (R), that is, the chain map® : Q°* — Q®* ®gT is an isomorphism i (R).

Sete; = ( é 8 ),ez:: ( 8 (1) ) € B, and Iet¢:Be_L—>Be2bethemapsendiné S > to < Séé)l )
for se€ S Under the isomorphism HagiBe;,Bey) ~ S®r T, the mapp corresponds to @ 1 in SRRT.

Let P* be the complex 6+ Be L Be, — 0 overB with Be; andBe, in degrees-1 and 0, respectively.
Clearly,P* is a bounded complex ov@rconsisting of finitely generated projectidemodules, and there is a
distinguished triangle iz (B):

Be % Be, s P* — Bey[d].

Note thatBe, andBe, are also righR-modules via\ andy, respectively, and that the mags actually a
homomorphism of righR-modules. Hence, we can easily see that the above triangledsa distinguished
triangle in.# (B®z R”). In addition,Be;, andBe, can be regarded as a righimodule and a right -module,
respectively.

The mapd will play an important role in our discussion below.

Lemma 3.1. [16, Theorem 4.10, p. 59The universal localization of B at¢ coincides with the ring
homomorphisn® defined in Introduction. In particular, we haveg B-C.

Combining Lemma2]1 with Lemnia 3.1, the ring homomorph&nB — C is a ring epimorphism, and
therefore the restriction functé, : C-Mod — B-Mod is fully faithful. Now, we define a full subcategory of
2(B):

2 (B)ewms = {X* € 2(B) | H"(X*®) € C-Mod for all n€ Z}.

Clearly, we haveX[n] € Z(B)c.woq for all X € C-Mod and alln € Z. Also, by [5, Proposition 3.3(3)], we have
2 (B)cmos = Ker(Homy g (Tria(P®), —)) = {X* € Z(B) | Homyg)(P*,X*[n]) = Ofor all n€ Z},
or equivalently,
Z(B)cwoa = {X* € 2(B) | H"(Homg(P*,X*)) =0 for all ne Z}.

The following result is taken from_[5, Proposition 3.6(ad4(iv)(4-5)]. See alsd [12, Theorem 0.7 and
Proposition 5.6].

Lemma 3.2. Let i, be the canonical embedding &f(B)c.w.« into Z(B). Then there is a recollement

i*
|

2(B)cmos —— Z(B) —— Tria(P*)
N— ~_

such thatf is the left adjoint of j. Moreover, the map : B— C is homological if and only if H(i*i*(B)) =0
for all n # 0. In this case, the derived functor(B.) : 2(C) — Z(B)c_mod iS an equivalence of triangulated
categories.

12



To realize TridgP®) in Lemmal3.2 by the derived category of a ring, we first esshbiome connec-
tions between semi-exact pairs of ring homomorphisms atigbgbogonal complexes in derived module
categories. Recall that a compl¥® in Z(B) is calledself-orthogonalif Hom g (X*, X*[n]) = O for any

n=0.

Lemma 3.3. (1) Endy g, (P*) ~ K as rings.
(2) The pair (A, p) is semi-exact if and only Hlomy, g, (P*,P*[n]) = 0 for any n# 0.

Proof. (1) Note thatP*® is a bounded complex oves consisting of finitely generated projecti&
modules. It follows that Englg(P*) ~ End,, ) (P*) as rings. Since HogiBe,Be) = 0, we see that
Endy (g)(P*) ~ Endyg)(P*). Moreover, if Eng(Be;) and Eng(Be;) are identified withSand T, respec-
tively, then each chain map in Epg) (P°®) corresponds uniquely to an elementafit is easy to check that
this correspondence is a ring isomorphism. Thus&gdP®) ~ K as rings.

(2) Itis clear that Hom,g) (P*,P*[n]) ~ Hom (g (P*,P*[n]) = O for all n € Z with |n| > 2. Since
Homg(Bez, Bey) = 0, we get Hom,g) (P*,P*[—1]) = 0. Observe that Homp g, (P*,P*[1]) = 0 if and only if
Homg(Be,Bey) = ¢Ends(Bey) + Ends(Bey)¢. If we identify Homg(Bey, Bey), Ends(Ber) and Eng(Bey)
with S®r T, SandT, respectively, then the latter condition is equivalentiat the map

!/
< _u)\, ) :SET — S®RT, (st)—s®1-1t,seSteT,

is surjective, that is, the pafi, 1) is semi-exact by definition. This finishes the proof 2f. O

Corollary 3.4. If (A,p) is semi-exact, then there is a recollement of derived mochtkgories:
N N
P (B)cyos — 2(B) ——— 2(K) .
N N

Moreover, if(A, ) is exact, then the K can be replaced by R in the recollement.

Proof. Since(A, 1) is semi-exact, we see from Leminal3.3 that the compact coridlesxself-orthogonal
with Endy g (P*) ~ K. Now, it follows from [11, Corollary 8.4, Theorem 8.5] thatid{P*) is equivalent to
2(K) as triangulated categories. Thus we get the above recoileri®w, the last statement of Corollary
[3.4 follows immediately from the definition of exact pairshid finishes the proof]

As a consequence of Corolldry B.4 and Lenima 3.2, we get thmnviolg important result which will be
used in the proof of Theoreim 1.1.

Corollary 3.5. Suppose thaf\, 1) is an exact pair. 1B: B— C is homological, then there exists a recollement
of derived module categories:
T RN
.@(SURT) —_— .@(B) —_ @(R) .
N N~

Throughout the rest of this sectiome always assume thatA, 1) is an exact pair.

Thus, it follows from Corollary 314 that there exists a réealent of triangulated categories:

() 2(B)cws — Z(B) —— Z(R)
it I«
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wherei, is the canonical embedding and the other functors will beifpd in the next lemma. In particular,
if€:jijt — Id(g) is the counit adjunction with respect to the adjoint [air j'), then, for anyx*® € 2(B),
there exists a canonical triangle

BTXT) 25 X — LX) — X[,

Before we state the next lemma, we first deffté := Homg(P*, B) which is isomorphic to the complex
0— eB L e1B — 0 overB°P with ;B ande;B in degrees 0 and 1, respectively. Clearly, the latter is a
complex ofR-B-bimodules. Here, the le®-module structures af;B ande,B are given via the maps and

L, respectively.
Lemma 3.6. In the recollementx), we have

jl=P°®g—, j' =Homg(P*, ), j. = RHomg(P**, ).
Moreover, the functor'jinduces a triangle equivalence frofinia(P®) to Z(R).

Proof. The idea of our proof is motivated by [11]. Sine&is a complex oB-R-bimodules, the total left-
derived functoP® ®% — : 2(R) — 2(B) and the total right-derived funct@Homg(P*, —) : 2(B) — 2(R)
are well defined. Moreover, sinde® is a bounded complex of finitely generated projectd«nodules,
the functor Horg(P*,—) : 2 (B) — % (R) preserves acyclicity, that is, Hg{P*,M*) is acyclic whenever
M* € ¥(B) is acyclic. This automatically induces a derived func{B) — Z(R), which is defined by
M* — Homg(P*,M*). Therefore, we can replad@Homg(P*, —) with the Hom-functor Horg(P*,—) up to
natural isomorphism.

Now, we claim that the functd?® @ — is fully faithful and induces a triangle equivalence frantR) to
Tria(P*®).

To prove this claim, we first show that the func@Y®k — : 2(R) — 2(B) is fully faithful.

Let

% = {Y* € Z(R) | P* @k — : Homyg) (R Y*[n]) — Homy g, (P* @k R P* @5 Y*[n]) for all ne Z}.

Clearly,% is a full triangulated subcategory &f(R). SinceP® @ — commutates with arbitrary direct sums
and sinceP* is compact inZ(B), we know from the property (2) in Sectign P.1 thét is closed under
arbitrary direct sums it¥ (R).

In the following, we shall show tha? containsR. It is sufficient to prove that

(1) P* @ — induces an isomorphism of rings from Exg (R) to Endy g, (P* ®gR), and

(2) Homy,g) (P* @ R,P* @5 R(n]) = 0 for anyn # 0.

SinceP* @k R~ P* in 2(B), we know that(1) is equivalent to saying that the right multiplication map
R — Endy g (P*) is an isomorphism of rings, and the) is equivalent to Hom g, (P*,P*[n]) = O for any
n# 0. Actually, since(A,) is an exact pair(1) and (2) follow directly from Lemma3.8 (1) and (2),
respectively. This showR € #'.

Thus we have? = 7(R) sinceZ(R) = Tria(R). Consequently, for any* € Z(R), there is the following
isomorphism:

P* ®g — : Homggr) (R Y*[n]) — Homg, ) (P* ®K R,P* ®g Y*[n]) for all ne Z.
Now, fix N* € Z(R) and consider

e = {X* € 2(R) | P* @k — : Homy g (X*,N°[n]) — Homy, g (P* @ X*,P* @k N°[n]) for all n€ Z}.
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Then, one can check thaty. is a full triangulated subcategory 6#(R), which is closed under arbitrary
direct sums inZ(R). SinceR e Zy. and Z(R) = Tria(R), we getZy. = Z(R). Consequently, for any
M* € Z(R), we have the following isomorphism:

P* @k — : Homyg) (M*,N°[n]) — Homy,g) (P* ®gM*,P* @k N°[n])

for all n € Z. This means tha®* @k — : 2(R) — 2(B) is fully faithful.

Recall that TrigP*) is the smallest full triangulated subcategorya(B), which containd®® and is closed
under arbitrary direct sums i@(B). It follows that the image of?(R) underP* @k — is Tria(P*) (see the
property (2) in Section 211) and thBt @k — induces a triangle equivalence fra(R) to Tria(P*).

Note that Horj(P®,—) is a right adjoint ofP* @5 —. This means that the restriction of the functor
Hom§(P*,—) to Tria(P®) is the quasi-inverse of the funct®® ®f — : Z(R) — Tria(P*). In particular,
Homg(P*, —) induces an equivalence of triangulated categories:

Tria(P*) —— 2(R).
Furthermore, it follows from [5, Proposition 3.3(3)] that
2(B)c-mod = {X* € Z(B) | Homyg)(P*,X*[n]) =0 for all n€ Z} = Ker(Homg(P*,—)).

Therefore, we can chooge= P* ®§ — and j' = Homg(P®, —).
SinceP* is a bounded complex @-R-bimodules with all of its terms being finitely generated qund-
jective asB-modules, there exists a natural isomorphism of functare &ection 2]1):

P @ — — Homg(P*,—) : € (B) — €(R).

This implies that the former functor preserves acyclic#tiyice the latter always admits this property. It
follows that the functor®** @5 — andP** @ — : 2(B) — 2(R) are naturally isomorphic, and therefore
j' ~P** ®E —. Clearly, the functoP** @§ — has a right adjoinRHomg(P**, —). This means that the functor
j' can also havé®Homg(P**, —) as a right adjoint functor (up to natural isomorphism). Hueere by the
uniqueness of adjoint functors in the recollement, we sagjths naturally isomorphic tRRHomg(P**, —).
Thus, we can choosg = RHomg(P**,—). This finishes the proof of Lemnia3.61

Now we consideB as a homomorphism d&-B-bimodules, and denote its mapping conaM{1]. Then
we have a distinguished triangle

we 5B e swey
in # (B®yzBC°P). This yields two relevant triangles
Wee LR Be N Ca —W°g[1]
in ¢ (B) fori =1,2. Note thaCe; ~ Ce, asB-modules.

Lemma 3.7. (1) There is a triangle We; — W*e; — P* — W*ey[1] in Z(B).
(2) j'(Wer) = j'(Ber) ~ §~1] and [ (W*e) = j'(Bep) ~ (Q" @R T)[~1] = Q*[-1] in Z(R).
(3) i,i*(Ber) ~i.i*(Be) in Z(B).
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Proof. (1) Let f° = ¢, and letf!: Ce — Ce be the right multiplication map induced kg, :=

< 8 é > € C. Then we can construct the following commutative diagrarB-iod:

Wee; : 0 Be, — % . Ce

N

Wee, : 0 Be— 2 . Ce
0,1

l l (-8 1¢>( )l (&) H

Cond f*): Be —=Ce ®Be, —=Ce

Consequently, we get a trianglé®e; L>W'e2 — Cong f*) — W*g[1] in 2(B). Since the mag! is an
isomorphism, one can check that Cof® ~ P* in Z(B). This proveg1).

(2) Since?(B)c_mod = Ker(j'), it follows fromC € 2(B)c_mod that j' (sC) = 0, and thereforg' (W*e; ) ~
j'(Ber) andj'(W*ey) ~ j'(Be) in Z(R). Note that the complex' (Be,) is of the form

-+ — 0 — Homg(Bey,Be)) L Homg(Bey,Be) — 0 — -

which is isomorphic t&—1] as complexes. Similarly, one can show tfléBe,) is isomorphic inZ (R) to the

complex0—T L S®rT — 0 overRwith T in degree 0. Recall that the latter complex is isomorphic to
Q°[—1] in Z(R) and thatQ* is isomorphic taQ* ®r T in Z(R), since the paifA, ) is exact (see the diagram
(). Thusj'(Be) ~ Q°[—1] ~ (Q* ®rT)[—1] in Z(R). This completes the proof ¢P).

(3) Since Horg(P*,—) : Tria(P*) — Z(R) is an equivalence by LemriaB.6, we see that the morphism
gpe - j1j'(P®) — P* is an isomorphism inZ(B). Hencei.i*(P*) = 0 in 2(B). Then, it follows from the
following commutative diagram with all rows and columnsrigetriangles inZ(B):

'()

j1j'(P*[-1)) —— j1j'(Be) — jij'(Bey) it (P*)
P*[-1) Be, ——— Be p*
Li* (P~ 1)) — i.i*(Bey) — - i,i*(Bey) iLi*(P*)

it (P?) jiit(Be) (1] — jij*(Bex)[1] — ji* (P*)[1]

thati.i*(¢) : i.i*(Bey) — i,.i*(B&) is an isomorphism irZ(B). This proves3). O

Lemma 3.8. If A : R— S is homological, then

(1) i.i*(Ber) ~ Be®K S inZ(B). In particular, H! (i,i*(Bey)) ~ { 0 ifj >0,

Tor?;(Be,S) if j <O0.
(2) The homomorphism ®rS— SLRT, defined by & s— (t)@(s)p fort € T and sc S, induces an
isomorphism of T-modules. Moreover ST ~ Endr (T ®rS) as rings.

Proof. Setl := SLRT. We define four homomorphisms:

M:SRRS—S, S0 +— 9, P1: SRRS— SRRTRRS SIS SIR1IRS,
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$2:SRRT®RS—T, s1@t@%— (s1)p(t)P(s2)p, $3: TRRS—T, t@si— (H)@(s)p

for 51,5 € Sandt € T. Note that they are all well defined. Moreover, we idenif$ ®r SandBe, ®rS
with (S%RS) and(siggs) asB-modules, respectively. Then there are two chain magg(B):

e o () S (415) o
" |®) (5)
Wee, : 0 (g) (5) (F) 0
o 0
Ber: 0 (5) 0 0

(1) Let ;Homg(P*,Bey) be a projective resolution of the complex HgfR*,Be;) in Z(R) with
1: pHomg(P*,Be;) — Homg(P*,Bey)

a quasi-isomorphism (see Section 2). Note that théleftodule structure of Hog{P*,Be, ) is induced from
the rightR-structure ofP* and that Horg(P*,Be;) ~ §—1] as complexes dR-modules. In the following, we
always identify Horg(P*,Be;) with S—1]. Then one can check directly that the couig, : jij'(Be) —
Be is just the composite of the following canonical morphisms:

i1 J'(Bey) = P* @, (Home(P*, Bey)) ™% P* o Home(P*,Bey) = P* i (S-1) 4 Be.
Now we apply the triangle functor ©kHomg(P*, Bey) to the distinguished triangle

Ber — P* — Bei[1] Y Bey[1]

in % (B®y R°p), and establish easily the following commutative diagrarthwal rows being distinguished
triangles inZ(B):

dDR1
Be, @ Homg(P*,Be;) — P* @k Homg(P*,Be;) —— Bey ©k Homg(P*, Bey)[1] —— Be, ® Homg(P*, Bey ) [1]

o1

Be®RrS
|®)
91 r
ca ()
nBel
L.i*(Be)

wherengg, is the unit adjunction of the adjoint pdir,i.), and where the first and third isomorphisms in the
third column follow from the fact thak : R — Sis homological. This implies that there is an isomorphism
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B:Be®kHomg(P*,Bey)[1] — i.i*(Bey) in 2(B) such that the following diagram commutes:

]L
P* @k Homg(P*,Be;) — Bey @k Homg(P®,Bey ) [1] —— L —— Be;®K HomB(P’ Be)[1] .
H <Bel®r>(g)l~ .
\
P* 2 Homg (P*, Bey) ———~ Bey = (3 1o i.i*(Be)

As a result, we havBe, @k S~ i,i*(Be) in 2(B). Itis clear thatH!(Be, @k S) ~ Tor?(Bez, S) for any
j € Z. Since isomorphic objects i@ (B) have the isomorphic cohomology groups in each degree, l{a)va
This finishes the proof ofl).
(2) Define
o=p ' (Be®1[l): ii"(Ber) — Be®rS

y= <$2>:BQ®RS—>C(§1 and w=nge0:Be — Be®RrS
3

Then, it follows from the above two commutative diagrams tha: (r(')‘)*1 (¢ ®1). This means thal; = wy.
Now, we claim that the mapis an isomorphism iB-Mod. In order to show this, it is sufficient to prove
thatBe, ®r Se€ C-Mod and that the induced map

Homg(y,M) : Homg(Ce;,M) — Homg(Be, ®r S M)

is bijective for everyC-moduleM.

In fact, by (1), we know thatH®(i.i*(Be;)) ~ Be ®r S. In particular, Be; ®r S € C-Mod because
i.i*(Be) € Z2(B)c_mod- Moreover, sinced : B — C is a ring epimorphism by Lemnia_3.1, the mép
always induces a bijection

Homg(81,M) : Homg(Cer,M) — Homg(Bey,M).

Then, it follows from6; = wy that Hong(61,M) = Homg(y,M)Homg(w,M). This means that, to verify the
bijection of Hong(y, M), it suffices to show that

Homg(w,M) : Homg(Be, ®r S M) — Homg(Bey, M)

is bijective. This is equivalent to verifying that both Hopg) (nge,; M)) and Homy, g (0, M) are bijective.
On the one hand, sind¢ € C-Mod andj; j' (Bey) € Tria(P*) by Lemmd3.5, we have Hoppg) (ji j' (Ber),Mn])
= 0 for anyn € Z. Applying Homy,g)(—, M) to the triangle

i1j'(Ber) =% Bey % i,i*(Bey) — 1 (Bey)[4],

we infer that
Homy(g)(NBe,, M) : Homy g (i.i*(Ber), M) — Homg(Bey, M)

is bijective. On the other hand, sincé (Bey) ~ Be; @k Sin 2(B) by (1), we know thaH ! (i.i*(Bey )) = 0 for
anyj>0andH®o) =H°(B) H(Be®1[1]) : HO(i,i*(Be ) — Bex®rS. Now, we apply the cohomology
functorH™(—) to the triangle

(1) U®* —ii*(Be) = Be®rS— U°[1]
in 2(B) induced fromo, and geH™(U*) = 0 for anym > 0. LetU*® = (U',d")icz andV* be the complex

U U2 ker(d ) — 00— -
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ThenV* ~U*®in 2(B), and therefore Hogyg)(U*, M) ~ Homgg)(V*,iM) ~ Hom(g)(V*,iM) = 0. Sim-
ilarly, we can show that Hopyg) (U *[1],M) = 0. Applying Homy, g (—, M) to the triangle(T), we conclude
that
Homyg)(0,M) : Homg(Be; ®rS, M) — Homg(i.i*(Bey), M)

is bijective. Thus, Hom(w, M) is bijective andy is an isomorphism dB-modules.

Now, it follows fromy = <$§) that¢s: T®rS— T is anisomorphism of -modules. Sinca : R — Sis
a ring epimorphism, we deduce from Lemima 2.5(1) that — [ is also a ring epimorphism, and therefore
I~ End (I ~Endr (I ~ Endr (T ®rS) as rings. This completes the proof(@). O

To prove Theorern 111, we need to establish the following twodrtant lemmas.

Lemma 3.9. If A : R— S is homological, thefor}(S, T) = 0 for any i> 0.

Proof. Recall that we have a distinguished trian@ex—> S— Q* — R[1] in Z(R). SinceA is homolog-

ical, it follows from [S, Theorem 4.4] thaX induces the following isomorphisn&—; S®k ng—%é S®KS
in 2(S). This clearly implies thaS®k Q* = 0 in #(S), and thereforeS®g Q* = 0 in Z(R). Since
(A, 1) is an exact pair, we have seen tpat Q* — Q° ®r T is an isomorphism iZ(R) (see the diagram
(). As a result, we hav8®g (Q° ®rT) ~ S®EQ®* =0 in Z(S). By applyingS®g — to the triangle

T2 SerT — Q*®rT — T[1], we obtainSek T ~ Swk (S2rT) in 2(S) (and also inZ(R)). This
yields that TOR(S,T) ~ TorX (S, S®rT) for anyi > 0. AsS®RT is a leftSmodule and\ is homological, it
follows that ToR(S,S®rT) = Tor(S,S@r T) = 0 for anyi > 0, and therefore T&S, T) = 0. This finishes
the proof.[]

Lemma 3.10. Given a commutative diagram of ring homomorphisms:

A

R———~

| f

T %o,

if A is homological andA, ) is exact, then the following statements are equivalent:
(1) The ring homomorphism gl — I is homological.
(2) The ring homomorphism

Bt g:B—> M(I), ( %1 ssztz > > ( (sg)f (Sz()tzgtgz)g ),s eSteT,i=12

is homological.

Proof. SetA:=My(IN). Lete; := < é 8 > andey ;= < 8 g > € B, and lete:= (e)6f g€ A. Thenwe

havee= €, Endy(Ae) ~ I and Eng(Be) ~ T. Observe thaf\eis a projective generator féx-Mod. Then,
by Morita theory, the tensor funct@\ ®a — : A-Mod — "'-Mod is an equivalence of module categories,
which can be canonically extended to a triangle equival&n@A @ —) : Z(\) — 2(I).

It is clear thatesB® g\ ~ & - A = e\ as T-A-bimodules, where the leff-module structure oA is
induced byg : T — I'. Thus the following diagram of functors between module gatties

A-Mod — 2"~ r_Mod

(o). s

B-Mod — 2“8~ T_Mod
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is commutative, Wheréefg)* andg, stand for the restriction functors induced by the ring horagehisms
0t 4 andg, respectively. Since all of the functors appearing in tregdim are exact, we can pass to de-
rived module categories and get the following commutatigihm of functors between derived module
categories:

D(eren—)
(T) 2(N) 2(I)

D(<ef‘g>*)l o(epee.) lD(gg

7(B) 2(T)

where the functob (eA ®, —) in the upper row is a triangle equivalence.

Note thatB¢ 4 : B — A (respectively,g: T — I ) is homological if and only if the functoD((ef,g)*)
(respectivelyD(g.) ) is fully faithful. This means that, to prove thgt) and(2) are equivalent, it is necessary
to establish some further connection betw8¥ls g)..) andD(g.) in the diagram(t).

Actually, the triangle functob(e;B ®g —) induces a triangle equivalence from Ti&,) to Z(T). This
can be obtained from the following classical recollemerderived module categories:

Beak-

&B®p—) 2(T)

~N_ 7 >~ 7

which arises form the triangular structure of the risig

Suppose that the image (((67g).)) of the functorD((6g4).) belongs to TriéBey). Then we can
strengthen the diagrarft) by the following commutative diagram of functors betweeartgulated cate-
gories:

(N) — &)

D((iy lD((ef.g») 7 lmg*)

9(B) ~— Tria(Bey) — =27

~

This implies thaD((ef.g)*) is fully faithful if and only if so isD(g.), and thereford; 4 is homological if
and only ifg is homological.

So, to finish the proof of Lemma3110, it suffices to prove thafD((81g).)) C Tria(Bey). In the
following, we shall concentrate on proving this inclusion.

In fact, it is known thatZ(A) = Tria(/Ae) andD( (8 g).) commutes with small coproducts since it admits
a right adjoint. Therefore, according to the property (2pectior 2.1, in order to check the above inclusion,
it is enough to prové\e € Tria(Bey) when considered asBrmodule viads 4. If we identify e,B ®@g — with
the left multiplication functor bye,, thenAe € Tria(Bey) if and only if Be; @k e, - (Ae) — Aein Z(B).
Clearly, the latter is equivalent to that f@Be, & - (Ae)) = 0 for anyn > 0 and the canonical multiplication
mapBe @t e - (Ae) — Aeis an isomorphism.

SetM := SerT and writeB-modules in the form of triple&X, Y, h) with X € T-Mod, Y € SMod andh:
M &t X —Y a homomorphism o&modules. The morphisms between two moduyksy, h) and(X’,Y’ i)
are pairs of morphism@&x, 3), wherea : X — X’ andf : Y — Y’ are homomorphisms ifi-Mod andS-Mod,
respectively, such thd@3 = (M @t a)h'.

With these interpretations, we rewrifee = (I', I',0r) € B-Mod, wheredr : M@t — I is defined
by (s@t)@y— (s)f(t)gy forse St € T andye . Thene,- (Ae) = eNe~T as left T-modules, and
Be, ~ M & T as rightT-modules. Consequently, we have

Beorer - (Ae)~Beorl ~ (I, M®1T,1) and Tof, (Be, & - (Ae)) ~ Torl (M& T,I) ~ Tor! (M,T)
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for anyn > 0. This implies that the multiplication mape, @1 € - (Ae) — Aeis an isomorphism if and
only if so is the magr. It follows thatBe, ®% e, - (Ae) ~ Aein 2(B) if and only if & is an isomorphism of
Smodules and Tgr(M, ") = 0 for anyn > 0.

In order to verify the latter conditions just mentioned, walsprove the following general result:

For anyl"-moduleW, if we regardW as a leftT-module viag and anS-module viaf, then the map
ow : M®@TW — W, defined by(s®t) @w— (s)f(t)gw for se St € T andw € W, is an isomorphism of
Smodules, and Tg(M,W) = 0 for anyi > 0.

To prove this general result, we fix a projective resolutrof Sg:

PPN VA BN VL e v S N S Sy

with V! a projective rightR-module for each. By Lemma3.p, we have TR(S T) =0 for anyj > 0. It
follows that the comple¥*® ®r T is a projective resolution of the right-moduleM. Thus the following
isomorphisms of complexes of abelian groups:

(V*RRT) T W = V* @ (T @71 W) =V QW

imply that Tof' (M,W) ~ TorR(SW) for anyi > 0. Recall thaW admits anSmodule structure via the
map f. Moreover, it follows fromAf = pg that theR-module structure oV endowed via the ring ho-
momorphismpu g is the same as the one endowed via the ring homomorphismThen, it follows from

A being a homological ring epimorphism that the multiplioatimapS®rW — W is an isomorphism of
S'modules and that TB(S W) = 0 for all i > 0 (see[[9, Theorem 4.4]). Therefore, for any 0, we have

Tor! (M,W) ~ Tor}(SW) = 0. Note that

M@TW = (S®rT) @TW ~ SRR (T @1 W) ~ SQpW ~W

asSmodules. Thus the mafy is an isomorphism o§modules. So the above-mentioned general result
follows.

Now, by applying the above general resulftave can show thair is an isomorphism and Th(M, ") =
0 for anyn > 0. This completes the proof of Lemra 3.10.

With the above preparations, we now give a proof of Thedréin 1.

Proof of Theorem[1.1.Note that the second part of Theoreml 1.1 is a consequenceroli@p[3.5 and
Lemmal3.8(2). Moreover, in Lemnia_3]10, if we take= SLRT, f :=p andg := ¢, thenB; 4y =6, and
therefore(1) and(2) in the first part of Theorem 1.1 are equivalent.

In the following, we shall prove thdtl) and(3) in the first part of Theorein 1.1 are equivalent.

In fact, by Lemma& 312, the ring homomorphig B — C is homological if and only iH"(i.i*(B)) =0
for anyn # 0. This is equivalent to saying thhit"(i..i* (Bey)) = 0 for anyn # 0 sincei.i*(B) ~i.i*(Bey) ®
i,i*(Be) ~i.i*(Bey) @i.i*(Be) in 2(B) by Lemmd3.J/(3). Furthermore, Leminal3.8 shows

. 0 ifn>0
ne o+ ~ s
H"(i.i" (Bey) —{ ToR (Be,S) if n<O.

This implies tha® is homological if and only if Td?,, (Bey, S) = 0 for anyn < 0. Note thaBey ~ T & (S2RT)
as rightR-modules and that there is an exact sequendeRfbimodules:

()

0 R se T ST — 0.

SinceA : R— Sis a homological ring epimorphism, we have Jfftﬁi S) =0 for any j > 0, and the map
A®rS: R@rS— S®rSis an isomorphism. It follows that TB(T,S) ~ Torf (S®r T,S) for j > 0 if we

21



apply the functor- @z Sto the above exact sequence. Thus{Tae,,S) ~ Tor(T,S) & Torf(T,S) for all

j > 0. Consequently, the mapis homological if and only if Tdf(T,S) = O for anyn > 0. This shows that
(1) and(3) are equivalent. Thus, we have verified that all the asseriiothe first part of Theorein 1.1 are
equivalent.[]

Now, let us illustrate Theorefm 1.1 visually by the followid@agram which indicates explicitly the rela-
tionship among all the assertions in Theofeni 1.1. For caemer of the reader, we state it as a corollary.

Corollary 3.11. LetA:R— S and it R— T be ring homomorphisms such th@t, p) is an exact pair.
Suppose that both : R— S andg@: T — SURT are homological. Then we can construct the following
‘pull-back’ of recollements of triangulated categories:

P(S) =—— ()

(1) e (1)

7(C) —> 9(B) 72(R) A
N— 7 \_/
PONREANSN
.@(Sl_lRT ) 2L (T \ Tria(Q")

Trla T ®R Q'

where Fis the canonical embedding for 1,2, and T®k — induces a triangle equivalence frommia(Q*)
to Tria(T ®rQ°).

Proof. First of all, we point out that, under the assumptions of Garg [3.11, all the assertions in
Theoreni L1 are true. In particular, the néapB — C is homological.

Next, we observe the following facts on the above diagram:

(1) The recollement of derived module categories in the secohdrm arises from the triangular struc-
ture of the triangular matrix ring.

(2) The recollement of triangulated categories in the thirdicoi follows from the assumption thatis
homological (see the end of Sectionl2.2).

(3) The recollement of derived module categories in the midde has been stated in Theorém]1.1,
where Eng (T ®rS) in Theoren L1l is isomorphic to the coprod&ctr T, which is Morita equivalent t€.

(4) The left square in the diagram has been discussed in the pfaeimmd3.1D.

So, to complete the proof of Corollary 3111, it remains tdfyehe following two statements:

(5) The recollement of triangulated categories in the third does exist.

(6) The functorT ®k — : Tria(Q*) — Tria(T ®r Q") is an equivalence of triangulated categories.

In order to prove(5), we consider the distinguished triangfe—> SUT — V* —» T[] in £ (T),
whereV* is the mapping cone af, and claim thaV* ~ T @gQ* in Z(T). In fact, from the triangle
R s ™ Q* — R[1] in #(R), we get the following commutative diagram with all rows kpiriangles
in2(T):

©) TokR¥ATeLs™ T ToLo — ~ TekR(

{ ool

T ©rRR—A T 9SS0 T 9rQ° —— T @rR[1]

L F T

T suT Ve T[]
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where the first and second isomorphisms in the second colatowffrom TorX(T,S) = 0 for each > 1 and
Lemmd3.8(2), respectively. ThiiszkQ® ~ T ®rQ* ~V*in 2(T). Sincepis homological, the recollement
in the third row of the diagram does exist (see Sedtioh 2.@)5%follows.

Finally, we prove (6). By the proof of (5), we see tfatk Q* ~ T ®rQ*. Hence the image of Tri®"*)
under the functol ®@§ — lies in Triag T ®rQ®). This follows from the property (2) in Sectién P.1.

To prove that the restriction functdrog — : Tria(Q®) — Tria(T ®r Q") is fully faithful, we shall show
that the following full subcategory

¥ ={Y* € Z(R)| T®g — : Homgy g (Q",Y*[n]) — Homy,1)(T @& Q", T @ Y*[n]) for all ne Z}

containsQ® and is closed under arbitrary direct SUMSA(R).

Indeed, letn : Idyr — D(1.)(T ®g —) be the unit adjunction with respect to the adjoint pdiroyg
—,D(W)), WhereD(p*) :92(T) = 2(R) is the derived functor induced from the functar : T-Mod —
R-Mod. Then, for eacly® € 2(R), there is a unique triangle (up to isomorphismy(R):

Cyo [—1] —Y* —) RT ®RY — CYc

whereCy. is an object inZ(R) uniquely determined by the morphisny. (up to isomorphism). Since
(T ®k —,D(1)) is an adjoint pair, one can further prove titcoincides with

{Y* € 2(R) | (ny+)" : Homy k) (Q°*,Y*[n]) = Homy, ) (Q°*,RT ®H§Y'[n]) for all n€ Z}.

Thus we have
% ={Y* € 2(R) | Homyg)(Q*,Cy-[n]) = 0 for all ne Z}.

Before giving a further description & in terms ofZ(S), we mention the following general fact:

For anyX*® € Z(R), we definesx. := {X*[n] | n € Z}. Then Ke(Homy,g)(—,Sx-)) is a full triangulated
subcategory of7(R) closed under arbitrary direct sums. Dually, Kdom/ ) (Sxe s —)) is a full triangulated
subcategory of7(R) closed under arbitrary direct products.

From this general fact, we deduce that

Ker(Homyg) (Tria(Q*), —)) = {Y* € 2(R) |[Homy g (Q*,Y*[n]) =0 for all n€ Z}.

Further, it follows from the recollement in the third ‘tittecolumn that% (S) = Ker(Homy, g (Tria(Q®),—)).
This implies that? = {Y* € Z(R) | Cy. € 2(S)}. Here, we conside®(S) as a full triangulated subcategory
of 7(R).

Note thatT ®k — commutes with arbitrary direct sums and tt%a¢S) is a triangulated subcategory of
2(R) closed under arbitrary direct sums. Consequently, theadabory? is also closed under arbitrary
direct sums iz (R).

To proveQ® € %/, we use the diagrarf()) and form another commutative diagramat{R):

s— -Q° v R[1]

e

2N T oL s M T oL Qr Y T orRIY

4

T—2 ~suT Ve T[],

where the composites of the two morphisms in the first andgecolumns are equal fpandp, respectively.
Let f* := (f!)icz be the chain map defined byt :=p, fO:=p andf' =0 fori # —1,0. SinceA is
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homological and sinc€U T is anSmodule, we have Hopyg)(Q*,SLIT) = 0. This means that there is a
unique morphisny: Q°* — V* such that the following diagram is commutative:

S— = Q" =R

-

suT Ve T[]

Since bothf* andnq.d make the diagram commutative, we hae=ngq.d in Z(R). Sinced is an isomor-
phism inZ(R), we have Congf*®) ~ Cq- in Z(R). Note that Congf*®) is of the form:

P
0 RN S@T@)swﬁ_)o

with SURT in degree 0, wherh is given bys®t — (s)p(t)@ for se€ Sandt € T (see the diagramx] at the
beginning of Sectiohl3). Let* be the following complex o&-modules:

0— = S@rT —"~ SLIRT ——=0

which can be considered as an objectZiiR), and letv® : Cond f*) — Z* be the chain map defined by

vl= (;") V0 = 1g .7 andV' = 0 for i # 0,—1. Since(A, ) is an exact pair, we infer that Cop@) is
acyclic and that Cor(d*) is isomorphic taz® in Z(R). Clearly,Z* lies in 2(S), and therefor€g. € Z(S)
andQ® € .

Recall that Tri&Q®) is the smallest full triangulated subcategory @fR), which containsQ® and is
closed under arbitrary direct sums. Consequently, thegoate? contains TrigQ®). This means that, for

anyY* € Tria(Q*®), we have
Homy g (Q°,Y*[n]) — Homy,1)(T @5 Q°, T ®g Y*[n)) for all n€ Z.
Now, fix N* € Tria(Q®) and consider the following full subcategory @fR):
e = {X* € 2(R) | T®g — : Homg g (X*,N*[n]) — Homyr) (T @ X*, T @ N°[n)) for all ne Z}.

Clearly,Q* € Zn.. Furthermore, one can verify th&ty. is a full triangulated subcategory 6f(R), which
is closed under arbitrary direct sums#(R). This implies thatZ . contains TrigQ*®). As a result, for any
M* € Tria(Q®), we have an isomorphism

T ®g — : Homg,g)(M*,N*) —= Homg,1)(T @gM*, T @ N°®).

This shows that the restriction @f@g — to Tria(Q®) is fully faithful. Further, sincel @k — commutes with
arbitrary direct sums antl @k Q* ~ T ®rQ® in 2(T), we can infer from the property (2) in Section]2.1 that
the restriction functol @k —: Tria(Q*) — Tria(T ®rQ") is a triangle equivalence. This completes the proof
of Corollary[3.11.0.

4 Proofs of Corollaries

In this section, we shall prove all corollaries of Theofed, Which were mentioned in Introduction.
We preserve all notation introduced in the previous sestion
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4.1 Proof of Corollary 1.2

As a preparation for the proof of Corolldry 1.2, we obtainfibllowing consequence of Theorém11.1, which
produces homological ring epimorphisms for quotient rifigen those between given rings.

Corollary 4.1. LetA : R— S be a homological ring epimorphism. Suppose that | is anl ideR such that
the image Jof | underA is a left ideal in S and that the restriction dfto | is injective. Let J be the ideal of

_ (S g7
S generated by’ Jand B:= ( 0 R/
(1) The homomorphism /R — S/J induced from\ is homological.
(2) Tor' 3/, S/3) = 0for alli > 1.

i
(3) The multiplication map ®rS— J is an isomorphism aniiorJR(I, S)=0forall j > 1.

. Then the following statements are equivalent:

If one of the above statements holds true, then there is dleevent of derived module categories:

RN N
2(S)3) —— 9(B) —— 9(R) .
N N

Proof. In TheorenLl1, we také€ := R/l and choosei: R— R/I to be the canonical surjective homo-
morphism of rings. Sinc# is a left ideal ofS we haveS@rT = S®r (R/I) ~ S/(S-1) = S/J. This means
thatB in Corollary[4.] coincides with the one in Theoréml1.1. Meerpone can verify that the paji, p)
is exact if and only iA|; : | — J’ is an isomorphism.

By Lemmd2.5(2), we see th8trT = SU(R/I) = S/J with J := J’Sand that the ring homomorphisg
T — SURT in Theoreni LIl can be chosen to be the canonicaﬁmﬂﬂ — S/J induced fromA. Therefore,
by Theoreni 111, ik is homological, then the recollement of derived modulegaties in Corollary 4211 does
exist. This finishes the proof of the second part of Corolfad)

To prove the first part of Corollafy 4.1, we shall show tfftis equivalent tq3) and(2), respectively.

In fact, due to Theorerf 1.1, we can see tfBtis equivalent to Tcﬁ'(R/I, Sy=0forall j>1. To
verify the latter condition, we apply- ®r S to the sequence 8— | — R — R/l — 0, and then get
Tor?, 1 (R/1,S) ~ Torf(1, S) and ToR(R/1, S) ~ Ker(3), whered : | @g S— J is the multiplication map de-
fined byx® s— (X)Asfor x € | ands € S Clearly, this implies thatl) is equivalent tq3).

Now we show that1) and(2) are equivalent.

According to Lemmé# 2]5(1) and the fact thais a ring epimorphism) is a ring epimorphism. By
assumption,))’ is a left ideal ofS, and thereforS®g (R/1) ~ S/(S-1) = S/J. Thanks to the general result
proved in the last part of the proof of Lemima3.10, we see that

Tor¥' (S/3, W) ~ Tor¥' (S®g (R/1), W) =0

for all i > 1 and allS/J-modulesw. It follows then that Taf' (S/J, S/J) = 0 for all i > 1. Consider the
short exact sequence of rigRf | -modules:

0—J/J —S/J—S/J—0.

If we apply the functor- @/, (S/J) to this sequence, then we can check thafﬁLQﬂ/J’, S/J) ~ Torm(S/J, S/J)
for alli > 1 and that the connecting homomorphism?f'c(tS/J, S/J) = (/) ®@ry (S/J) is injective.

Clearly, if Tof}' (5/3, 5/3) = 0, then Tof' (S/J, S/3) = 0 for all j > Lif and only if Tof¥' (3/J, §/3) =
0 for alli > 1. This implies that the statemerits) and(2) in Corollary[4.1 are equivalent.

Now, we claim that TolF|e>/I (S/J, S/J) = 0 always holds under the assumptions of Corollary 4.1. Tavsho
this claim, it is enough to prove thal/J’) ®g/ (S/J) = 0. Note that ifC — D is a ring epimorphism, then
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D ®c X ~ X asD-modules for anyp-moduleX, andY ®c D ~ Y as rightD-modules for any righD-module
Y. This fact together with properties of ring epimorphismgplies the following isomorphisms:

(3/3) @rp (S/3) = (3/) @r(S/3) = (I/T) @R (S2R(S/J)) = ((3/I) ®RS) ®R(S/J).

SinceSJ = J andJJ C J', we deduce thaf(J/J) ®rS)J = 0. This means thatl/J') ®rSis a right
S/J-module. Clearly, the composite of the two ring epimorptidti— Sand S — S/J is again a ring
epimorphism. It follows thaf(J/J') ®rS) ®r (S/J) ~ (J/I') @r Sas rightS/J-modules.
In the following, we shall show thdtl/J') ®r S= 0. Actually, applying the functor ®r Sto the exact
sequence
0—J-53—J3/J0—0

of right R-modules, we get an exact sequence
J 9rS™ X I@rS— (3/J) @RS — 0

of right Smodules. Sinced is a right Smodule and\ : R — Sis a ring epimorphism, the multiplication
mapy : J®rS— J, defined byx® s+— xsfor x € J ands € S is an isomorphism. Note that the map
(a@rSW: Y ®rS— Jis surjective. This yields that ®g Sis surjective and thatl/J’) ®r S= 0. Hence
TorY! (/3, 5/3) = 0.

Thus, we have shown that the three statements in Cor@lldirsiré. equivalent. This finishes the probf.

Remark.There is a connection between exact pairs and ring homorisongtdescribed in Corollafy 4.1.
Indeed, the proof of Corollafy 4.1 shows that each ring howmmismA : R — Stogether with an ideal
of R satisfying the assumption in Corollary ¥.1 provides us aacepair (A, 1), wherem: R — R/I is the
canonical surjection. Conversely, for any exact gai) of ring homomorphisma : R— Sandp: R— T,
the ideall := Ker(p) of R satisfies the assumption in Corollaryl4.1.

Proof of Corollary

(1) In Corollary[4.1, we také&:= R/l andl :=I,, and letA : R — Sbe the canonical surjective ring
homomorphism. Thed = (1)A = (I2+11) /11 = J, which is an ideal 0&. In particular, TOF/J (3/Y,8/3)=0
for all i > 0. FurthermoreS/J’' ~ R/(l1 +1,), and the mag\|, : | — (1)A is an isomorphism if and only if
I1:N 1, = 0. Hence Corollar{112(1) follows from Corollaky 4.1.

(2) Suppose that : R — Sis homological. In Theorein 1.1, we take= Rix M and defingi: R— T to
be the inclusion fronRRinto T. By LemmdZ.4, the rin&x M, together with the inclusiop : S— Sx M and
A:T — Sx M, is the coproduct o8andT overR. In particular, we can takqa:X in Theoreni 1.11.

First of all, we claim that(A, ) is an exact pair. Actually, it follows from the split exactgsence
0-—R™Y T M — 0 of RR-bimodules thakTr ~ R®& M as R-R-bimodules. Since\ is a ring
epimorphism and/ is anS S-bimodule, the map

SRRT — Sx M, s® (r,m) — (sr,sm)

for se Sandme M, is an isomorphism o&T-bimodules. Under this isomorphism, we can identify the map
W :S— S®T (see Introduction) withp, and the ringB in Theoren_LIL with the one defined in Corollary
[I.2(2). Note that 06— S, SxM—M—0isalsoa split exact sequenceS®S-bimodules. It follows
that Cokefp) ~ Coker(l') ~ M asR-R-bimodules, and therefore the pék, 1) is exact.

Next, we shall show that the asserti@®) in TheoreniL1l holds for the paik, ). In fact, for each > 1,
we have TOR(T,S) ~ TolR(R®&M, S) ~ Tor¥(M, S) ~ Tor>(M, S) = 0, where the third isomorphism follows
from the fact that\ is homological andM is a right Smodule. Now, the necessity condition of Corollary
[L.2(2) follows immediately from Theorelm 1.1.
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To see the sufficiency condition of Corolldry 11.2(2), we snsppthatx is homological. Then we may
apply Corollaryf4.1 to see thatis homological. This finishes the prodil

As an easy application of Corollafy 4.1, we obtain the follogvinteresting result in which the left-hand
side of the recollement is the derived module catego($/1) instead ofZ(S).

Corollary 4.2. Let RC S be an extension of rings. Suppose that | is an ideal of S witiRL Define
(S 9
0 R/
R/l — S/I induced fromA. In this case, there is a recollement of derived module caies:
TN TN
2(8/1) —— 2(B) —— 2(R) .
N~ N~

>. If the inclusion R— S is a homological ring epimorphism, then so is the homonismph

Remark.Note that, in Corollary_4]2, the ring is derived equivalent to the ring := ( 2 I|?> This

is an obvious consequence pf[19, Lemma 3.4]. Thus, the algeki-theory of T is isomorphic to that of
B. For further discussions on calculating higher algebkaigroups using derived equivalences ahesplit
sequences, we refer the reader td [19].

Finally, we point out a possible choice for the idéah Corollary[4.1.

Lemma 4.3. LetA : R— S be aring epimorphism such tHdomg(S A) : Homg(rS rR) — HOMR(rS,RS) is
injective. Define t= {(1)f | f € Homg(S,R)}. Then I is an ideal of R such that the imadgA of | underA
is a left ideal of S and that the restriction maf : | — (I)A is an isomorphism.

Proof. SinceA is a ring epimorphism, we have H@itkS rS) = Homs(sS sS). By identifying R andS
with Homg(R, R) and Homy(S, S) through the right multiplication, respectively, we carwegte Homg(A,R) :
Homg(S,R) — Rby f — (1)f, and Honk(SA) : Homg(S R) — Shy f — (1) fA for eachf € Homg(SR).

It follows that Honk(S A) = Homg(A,R)A, and therefore Hog(A,R) is injective. This also implies that
Al 1 — (1)A is anisomorphism. Since Hat(S R) is anS-R-bimodule, we know thdtis an ideal olR such
that(1)A is a left ideal ofS. This finishes the proof]

In the next section, we shall consider ring epimorphigmgth the property mentioned in Lemrha #.3 in
detail.

4.2 Proofs of Corollaried T.BE116

In this section, we follow again the notation introduced etfon 1. Fix a ring homomorphist: R — S
and let

(#) RS Q LR

be the distinguished triangle in the homotopy categ#fyR) of R, where the complex)® stands for the
mapping cone oA.

Now, we setS := Endy R (Q°), and defingl: R — S byr — f* forr € R, wheref* is the chain map
with f~1:=.r, f9:=.(r)A andf' =0 fori # 0,—1. Here,-r and- (r)A stand for the right multiplication
maps byr and(r)A, respectively. These data can be recorded in the followiagrdm:

R2-s- ™ Q Y-R[]
l‘r l«r)x lf' lmm
R2-s- ™. Q Y-R]1]
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The mapp is called the ring homomorphismssociated ta\. Note that ifA is injective, thenQ® can be
identified with theR-module S/R in Z(R), and, under this identification, the mapcoincides with the
induced map fronRto Enck(S/R) by the right multiplication. In this case, we shall replate tomplexQ®
with the R-moduleS/R.

Recall that/\ denotes the ring Engg) (S Q®) and thatrt* is the induced map

Homy g (S Q°, T1) : Homy, ) (S® Q°, S) — Homyr) (S Q°, Q°).

Let A : A — A Stand for the universal localization &fat 1t".

In [5, Lemma 6.5], we proved thatXis an injective ring epimorphism with TE)Q'S S) =0, then the pair
(A, P) is exact. As a generalization of this result, we shall shouhis section, that ik is a ring epimorphism
such that TdF(S S) = 0 = Homg(S Ker(A)), then(A, ) is exact. In this general case, the comp@xmay
have two terms of non-zero cohomologies.

If Ais aring epimorphism, theB~~ Endk(S) as rings, and therefore Hogk) (Q°, S) = 0. Moreover, there
is a canonical homomorphism S®rS — Homyr) (S Q*) of S-S-bhimodules, defined bg® f > s- (1tf)
forse Sandf € S. In this case, we obtain a relevant ring homomorphism:

~. (S S2rS S Homy g (SQ°)
T.<O : >H<O R >/\.

In the following lemma, we shall provide a sufficient conalitito ensure that the ring homomorphism
T is an isomorphism. This generalizes some known fact$lin fBnmas 6.4 and 6.5] on injective ring
epimorphisms.

Lemma 4.4. Suppose that : R— S is a ring epimorphism witfor}(S, S) = 0 such that the maplomg(A\, R) :
Homg(S,R) — Homg(R,R) is injective. Then the following holds:

(1) Homy () (Q*,S) = 0= Homgy g (Q*, S[1]).

(2) Ker(ln) ~ Homg(S, R) and Coker([1) ~ Extk(S,R) as R-R-bimodules. In particular, Exty(SR) =
then S~ R/I as rings, where t= {(1)h | h€ Homgr(S R)} is an ideal of R.

(3) The canonical homomorphisot S®rS — Homy g (S Q*) is an isomorphism of S-8imodules
such thatl ® 1 is mapped tat In particular,

('S SRS
’\—<o s >

(4) Suppose thak is injective. If R is commutative, then sois S

Proof. (1) We claim that ifA is an arbitrary homomorphism of rings, then Hom (Q®, Sli]) ~ Extx(S,S)
for anyi € Z\ {0}, and Homyg) (Q°, S) ~ Ker(Homg(A,9)).
In fact, applying Homg,g) (—, §j]) to the triangle(++), we get the following long exact sequence:

Homy g (R, S — 1]) — Homyg) (Q", S1j]) — Homy g (S S/j) - Homy, gy (R, )

for eachj € Z, where@j := Homgg)(A,§j]). Since Homyr)(R,Sk]|) = 0 for anyk # 0 and sinceyy :
Homg(S,S) — Homg(R,S) is surjectlve it is easy to verlfy that Hopk (Q°, Si]) ~ Homy, g (S Sii]) for
any 0#i € Z. We leave the details to the reader. Note that this claimigsghat Hong,r (Q' S[l]) 0 for
anyi < 0.

SinceA is a ring epimorphism with T@(SS) = 0, it follows from [16, Theorem 4.8] thafy is an
isomorphism and EX(S,S) ~ Ext§(S S) = 0. We have seen that Hojpk) (Q®,S) = 0. This proveg1).
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(2) First, we point out that Homr) (Q*,R) = 0. Actually, this can be concluded from the following

exact sequence:

Ho ()\)

0 — Homyg (Q°,R) — HoMg(S R) " Homg(R R)

together with the assumption on HaM, R).
Recall that we have the following commutative diagranvf(R) for eachr € R:

Note that if the above diagram is considered4R), then (r)f is the unique morphism i such that
the above diagram is commutative. In fact, if there existstla@r g € S such that this diagram com-
mutes, thergv = v(-r)[1] = (r)pv. This implies thaig — (r)i = g'mtfor someg’ € Homy,k)(Q*,S). Since
Homy k) (Q*,S) =0 by (1), we havey = 0 andg = (r)p. Thus, inZ(R), the map(r)fis unlquely determined
by the triangle(xx) and by the maps and-(r)A.

Next, we calculate the kernel and cokernefiofin fact, since Homr)(Q*,R) = 0, we can easily form
the following exact sequence:

0 — Homg(S,R) — Homg(R,R) i> Hom@(R>(Q'[—1], R) — Hom@(R)(S[—l], R)— 0

whereg := Homyg) (v[—1],R). Moreover, since Homyg, (Q*, S) = 0= Homy, g (Q°, S[1]) by (1), we know
that
Y := Homy,g) (Q°[—1],v[—1]) : Homy g (Q*[—1],Q°[-1]) — Homy, g (Q°[-1],R)

is an isomorphism. Certainly, the shift functdf induces an isomorphism of rings from Epng, (Q'[—l])
to S. Consider the compositap—[1] : Endz(R) — S. One can check directly that this map coincides gith
if Ris identified with Eng(R) by the right multiplication. Thus Kép) ~ Ker(§) and Cokeff1) ~ Coker(§)
sincey 1 is bijective, and therefore K&r) ~ Homg(S R) and Cokeffl) ~ Exth(S R) asR-R-bimodules. For
the last statement of Lemrha #.4(2), we observe that ifR) = 0, thenfiis surjective with Keffi) = I.

(3) We first prove thaBzg Coker(A) = 0 = Tor}(S Coker(A)). Indeed, by applying®r — to the exact
sequence

0— Ker(A) -2 R S— CokerA) — 0,
we get the following two relevant exact sequences:

SarKer(d) 28 SerR— SerIM(A) — 0,

0 — Tor(S Coker(A)) — S®rIM(A) — S®rS — S®gCoker(A) — 0.

SinceA is a ring epimorphism, the m&RrA : SRR — S®r Sis an isomorphism. Consequently, we get
S@rR~ S@rIM(A) ~ S®rS This means thad® w = 0 andSxr Coker\) = 0 = Tor(S Coker(\)).

Next, we show that Homg) (A, Q%) : Homy, k) (S, Q*) — Homyr) (R, Q*) is surjective. In fact, we have
the following commutative diagram:

Homy g (SQ°) —— SEEEN Homgy ) (R, Q*)

I [-

Homy (S Q%) SN Hom (R (R,Q°)
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where the vertical maps are the canonical localization nframs the homotopy category to its derived cat-
egory. One can check that the in the bottom row is surjective. This implies that the map loa top is
surjective, as desired. We should remark that Bag{A,Q®) is surjective for any ring homomorphisin
because our proof of this fact does not relay on any additicoaditions on\.

Now, by applying Hom,g)(—,Q*) to the triangle(++), we can construct the following long exact se-
quence oR-modules:

Homyg) (R[1], Q") ~= Homy, g (Q°,Q°%) > Homygr) (S Q) — Homy g (R,Q%) —

Write L := Im(Tt). Since Homyr)(R,Q*) =~ HO(Q*) ~ Coker(A), it follows from S®gr CokerA) = 0 =
Tor}(S Coker(A)) thatS®rL ~ S®R Homyr)(S,Q%). Clearly, the sequence

S(Vy)

S®R Hom@(R)(R[l],Q.) — S®R Homj (Q Q ) — S®rL—0

is exact. Note that Hogyg) (R[1],Q°) ~ H1(Q") ~ Ker()). Under these identifications, one can check step
by step thaw, : Ker(A\) — S is just the composite ab: Ker(A) -+ Randfi: R— S. SinceS® w =0, we
infer thatS® (v.) = 0, and therefor&®r S ~ S®rL ~ S®rHOMy R (S, Q%) asS-S-bimodules. Sincé
is a ring epimorphism, we know th&tg Homy, g (S, Q%) ~ Homyr (SQ ) asS-S-bimodules. It follows
that S®r S ~ Homy, g ) (S Q%) asSS- blmodules Clearly, under thls isomorphism, one can yehét the
element 121 in S®RS’ is sent tort. This finishes the proof of the first part (3).

By the first part of (3) and the fact that Honk) (Q®,S) = 0, we obtain the second part (8).

(4) This was proved ir |5, Lemma 6.5(5)] under the identif@abf Q° with S/R. [J

Let us remark that iA is a ring epimorphism such that Ha8 A) : Homgr(S R) — Homg(S,S) is injec-
tive, or equivalently, HorR(S,Ker(A)) = 0, then Hong(A,R) : Homr(S R) — Homg(R,R) is also injective
(see the proof of Lemnia 4.3). Clearly\fis injective, then so is HOg{S A).

As a consequence of Lemrhal.4, we have the following cormiusiich will be used in the proof of
Corollary[1.3.

Corollary 4.5. If A: R— Sis aring epimorphism such th'ﬁbr?(s S=0= HomR(S Ker()\)), then the pair
(A, P) is exact, whergl is the map associated o

Proof. On the one hand, since Haf6 Ker(\)) = 0, the map Hom(SA) is injective, and therefore
Homy, k) (S1],Q°) = 0 by applying Hony,r (S[l] —) to the triangle £x) and by observing the fact that
Homyr)(S[1],S) ~ Homy g (S §—1]) =~ ExtR (SS) = 0. On the other hand, we have a surjective map
Homyr) (A, Q°) : Homyr (SQ ) — Homy ) (R,Q*) (see the proof of Lemmia 4.4(3)). Thus, by com-
bining the diagran(x) at the beginning of Sectldﬂ 3 with Lemrha}4.4(3), we can cauastthe following
commutative diagram if#”(R) with two exact rows:

00— Ker(A) CokefA) ———0

R
0]
>

n
&
Py
0]

R

By calculating cohomology groups from this diagram, we ba&t® : Q° — Q°®* ®rS is a quasi-isomorphism
in ¢ (R). According to the equivalent conditions mentioned at thgibeng of Sectio 3, the pai\, ) is
exact.[
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Proof of Corollary L.3]
By Lemmd4.%(3), there are isomorphisms of rings

N:=Endyr (S& Q") ~ ( (S) Hom@(g(SQ') > ~B:= ( g SX)SRS >

where the second isomorphism se(d% g ) to ( 8 1@81 > Sete; .= < é 8 > ande, .= < 8 2 > €

B. Let$ : Bey — Be, be the map sendiné 3 > to < S@a 1 ) for se S Thentt* corresponds t¢ under the

isomorphismA ~ B, and thereforé\ : A — A is equivalent to the universal localizati@— By of B at
¢. Note that the latter map coincides wih B — C := M»(SLRrS) given in Theorem 1]1 (see also Lemma
[3:3). This means that is homological if and only i® is homological.

By Corollary[4.5, the paifA, ) is exact. Since is homological, Corollary 113 follows immediately from
Theoreni 1O

Combining Corollary 113 with Lemnia 2.6, we get the followicriterion forA to be homological.

Corollary 4.6. LetZ be a set of homomorphisms between finitely generated pgr@eRtmodules. Suppose
thatAs : R— Ry is homological such thatiomg(Rs,Ker(As) ) =0. Set S= Ry, A i=As and® = {S®Rr f |
f € £} . Then the universal localizatioh : A — Ay of A at T is homological if and only if the universal
localizationAq : S — S, of S at @ is homological. In particular, if one of the above equivaleonditions
holds , then there is a recollement of derived module categor

S VS

2(S) —= 92N ——2(R) .
N~ N~

As a consequence of Corolldry 4.6, we obtain the followirsmltewhich can be used to adjudge whether
a universal localizations of the foriy: : A — A is homological or not.
Corollary 4.7. Let CC D be an arbitrary extension of rings, that is, C is a subringtleé¢ ring D with
the same identity. Leb: D — D/C be the canonical surjection of C-modules. Set:F< Ig g > and
S:= My(D). LetA:R— S be the canonical inclusion, and lat: S— S/R be the canonical surjective
homomorphism of R-modules. Then the universal localizatjo: A — A+ of A at 1t° is homological if and
only if the universal localizationy : E — E of E atw* is homological, where E= End:(D @ D/C), and
W' :Homg(D® D/C,D) — Home(D @ D/C,D/C) is the homomorphism of E-modules induceddy

Proof. SinceQ* can be identified witf§/R in 2(R), we haveS = Endk(S/R). Thus the mapi: R —
S is given by the right multiplication. Sed := < é 8> e = < 8 2) andep, ;= < 8 é) eR
Furthermore, led : Re — Re and¢’ : S(e;)j — S(e;)H be the right multiplication maps @, and(e;2),
respectively.

It follows from Lemma 3]l and LicC = D thatA : R— Sis the universal localization dR at ¢. In
particular, A is a ring epimorphism. Sinc€ ~ ¢ R® e;R as rightR-modules, the embedding is even
homological. Note thaB @r ¢ can be identified withp’. By Corollary[4.6, the map : A — A iS
homological if and only if the may : S — S, is homological.

Clearly, R/RgR ~ C as rings. So, ever€-module can be regarded as Brmodule. In particular,
D ¢ D/C can be seen as &module. Further, one can check that the map

a: DeD/C—S/R, (d,t+C)— < 8 ?>+R
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for d,t € D, is an isomorphism oR-modules. Thus ~ E, ¢’ corresponds toy* under this isomorphism,
and3¢, ~ Ey. It follows thatAy : S — S¢, is homological if and only if so iy : E — E.. This finishes
the proof.[]

Before starting with the proof of Corollafy 1.4, we first intiluce a couple of more definitions and nota-
tion.

Recall that a compled® in Z(R) is called &ilting complex ifU* is self-orthogonal, isomorphic i?7(R)
to a bounded complex of finitely generated projecenodules, and Tri@*) = Z(R). It is well known
that ifU* is a tilting complex oveR, thenZ(R) is equivalent taZ (Endy ) (U*)) as triangulated categories
(seel[15, Theorem 6.4]). In this cageand End; ) (U*) are callecderived equivalent

If 1 is an index set, we denote by (1) the direct sum of copies ofU*® in 2(R), and by AddU*) the
full subcategory ofZ(R) consisting of all direct summands of arbitrary direct surihsopies ofU®.

The following result generalizes some known results in ttegdture. See, for examplé,][9, Theorem
4.14], [2, Theorem 3.5(5)] and [19, Lemma 3.1(3)], whererthg homomorphism\ : R — Sis required to
be injective. We shall use this generalization to prove Camp[l.4.

Lemma 4.8. LetA : R— S be a ring homomorphism, and let | be an arbitrary nonemptyBefine U’ :=
S® Q°. ThenHomy k) (U®,U* ") [n]) = 0for any0 # n € Z if and only if the following conditions hold:
(1) Homg (S, Ker(A)) = 0and
2) Ext(S,9") = 0= Exty1(SRY) for any i> 1.
In particular, the complex Uis a tilting complex inZ(R) if and only ifHomg (S, Ker(A)) = 0, Exti(S,S) =
0 and there is an exact sequend— P, — Py — rS— 0 of R-modules, such that B finitely generated and
projective for i=0, 1.

Proof. Recall that we have a distinguished triangle
(:) RS QLR

in # (R).
First of all, we mention two general facts: Liebe an arbitrary nonempty set.
(a) By applying Homyg)(—,S") to (++), one can prove that

Homy ) (Q", SV[i]) ~ Homy,r (S SV [i]) for i € Z\ {0} and Homy,r (Q",S") ~ Ker(Homg(A,S")).
(b) By applying Homyg)(—,R") to (xx), one can show that

Homy gy (Q",RV[j]) ~ Homy, g (S RV[j)) for j € 2\ {0,1}.

Next, we show the necessity of the first part of Lenima 4.8.

Suppose that Hogyg (U*,U* () [n]) = 0 for anyn# 0. Then Exk(S S!)) ~ Homy g (Q°*,S"[i]) = 0 for
anyi > 1, and Homy ) (S Q*[-1]) = 0. Consequently, the map H@S,A) : HomR(S R) — Homg(S S) is
injective. This means that the conditioh) holds. Further, applying Homg) (S, —) to the triangleR() 2 M
g ™ g RI[1], we get EXgH(SRY) ~ Homyg) (S, Q*(V[i]) = 0. Thus, the conditionsl) and
(2) in Lemmd4.8 are satisfied.

In the following, we shall show the sufficiency of the first paf Lemmd4.8.

Assume that the conditiod) and(2) in Lemmd& 4.8 hold true. Then, it follows froa) and(b) that

Hom, ) (Q",S"[n]) = 0= Homy g (Q*, R [m+ 1))
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for ne Z\ {0} andme Z\ {~1,0}. Applying Homyr)(Q* —) to the triangleR") Agn ™ et
R([1], one can show that Homg) (Q®,Q* '[m]) = 0 for me Z\ {—1,0}. Furthermore, we shall show that
the condition(1) in Lemme& 4.8 implies also that Hopk) (Q°, Q° (D[—1]) = 0: Clearly, Hong (S, Ker(A)") ~
Homg(S, Ker( ))' =0, where Kef))' stands for the direct product btopies of Ke(A). Since KefA)' con-
tains KefA)(!) as a submodule, we get Haif8 Ker(A)() ) =0 and KefHomg(S A1) ~ Homg(S,Ker(A)(1))
= 0. Now, it follows from the following exact commutative diam:

. e (V[*1]>* o () (A1) e ()
0 —— Homgyr (Q Q* [—1]) — Homyr,(Q*,R") —— Homyr)(Q*,S1)

t T e
\ ()¢

0 — Ker(Homg(SA))) ———— Homg(S,R1))

Homg(S. ")
that KefHomg(SA"))) ~ Homg (S Ker(A)V) = 0, and therefore Homg)(Q*,Q*([~1]) = 0. Thus,

Homy, ) (Q° ,Q*W[n]) =0 for n#£0.

It remains to prove Homr) (S Q° M [n]) =0 for n+ 0. Actually, applying Homy g, (S —) to the triangle

SO —>Q’ R([1], we have the following long exact sequence:

-+ = Homy (S S"[]) — Homy (S Q") [j]) —> Hom gy (SR [} + 1) 24 Homy, sy (S 8[j + 1]) -

for j € Z. Since HO@ (SS<I [r]) =0for 0% r € Z and Homyr) (S R[t]) =0fort € Z\ {0,1}, we see
that Homyr (S,Q*(V[j]) = OfOI’j € Z\ {—1,0} and that Horg, (S Q*V[-1]) ~ Ker(Homg(SA1))) =0.
It follows that Homy, (SQ‘ )[n]) =0 for n+ 0. Hence Homy g (U*, U*Un]) = 0 for anyn # 0. This
finishes the proof of the sufficiency.

As to the second part of Lemmha#.8, we observe the followirge domplexU® overR is a generator
of Z(R), that is, TrigU*®) = Z(R), sinceR € Tria(U*®) by the triangle(xx). Moreover, the complel® is a
tilting complex inZ(R) if and only if it is self-orthogonal, andShas a projective resolution of finite length
consisting of finitely generated projecti®Rrmodules. Furthermore, §S has finite projective dimension and
Exty1(S,R") =0 for anyi > 1, thengS does have projective dimension at most 1. Now, combiningethe
observations with the first part of Lemmal.8, we can show¢cersd part of Lemma4.8.]

Proof of Corollary .41
(1) Here, we follow the notation introduced in Sectidn 3. Let

. o (S S2rS
T:=S, u=n B._<O S >

SinceA is homological and Hom(s Ker()\)) = 0 by assumption, the pall\, 1) is exact by Corollarj/4]5.
Now, we assume thaiShas projective dimension at most 1. Let

O—>P’11>PO—>RS—>O

be a projective resolution @Swith all P! projectiveR-modules. This exact sequence gives rise to a triangle
P1-P—S—P11in 2(R).

By Theoreni 111, the map : A — A is homological if and only if Toj?(S’,S) =O0forall j>1. Let
us check the latter condition.
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First of all, by the assumption ogS, we have Td¥(S,S) = 0 for all i > 2. So, it remains to show
Tor}(S,S) = 0. Further, sinc@®e, = S & S®rS as rightR-modules, it is enough to show HiBe,S) = 0.

From the proof of Lemm@&a3.6, we obtain a triglg, j', j.) of adjoint triangle functors. Le : ldg @) —
j«J' be the unit adjunction with respect to the adjoint (it j.). Then we have the following fact:

For anyX*® € 2(B), there exists a canonical triangle 4(B):

it (X0) — X 25 LX) — it (X)),

wherej, j'(X*) = RHomg(P**,Homg (P*, X*)). For the other tripldi*, i, i') of adjoint triangle functors, we
refer the reader to the diagram) in SectiorB.
By applying this fact to each term of the triangle

PPl ws—P i

in 2(R), it follows from the recollementx) (see Sectiofil3) that there is the following exact commugativ
diagram:

L

i.i'(Be@rP 1) ———Be®rP ! ——— [.j'(Be®rP ) ——i.i'(Be@rP 1)[1]

128 j« i (128)
NBe,0gP0

i.i'(Be; @rPY) Be @rP°

j«i'(Be@rP°) i.i'(Bex@rPY)([1]

- "Beoks -
i.i' Be®kS) — = BekS————— j.j'(B&®kS) — i.i' (Be®k )[1]

i.i'(Be®rP ) [1] — Be@rP 1] — j.j'(Be@rP 1)[1] — i.i'(Be@rP1)[2]

Sincei.i*(Bey) ~ Be;®g Sin 2(B) by Lemmd3:B(1), we know that j' (Be; @k S) =~ j.j'i.i*(Ber) =0, due
to j'i. = 0 in the recollementx). It follows that j. j' (1® &) is an isomorphism, and soli$°(j. j'(1® 3)).

Suppose thati®(np) : P— H°(j.j'(P)) is injective for any projectivé®-moduleP. ThenH®(Nge,.p-1)
is injective sincexP~! is projective. It follows from the isomorphist®(j. j'(1® 8)) that the map © &
Be ®rP~! — Be;®rPPis injective. This implies that T§{Bey,S) = 0, as desired.

Thus, in the following, we shall prove th&t(np) : P — HO(j*j!(P)) is injective for any projective
B-moduleP. §

First, we point out thaH®(np) is injective if and only if Hom, ) (B,P) BN Homy g (j'(B),'(P)) is
injective. To see this, we consider the the following conilgosf maps:

wy. - Homg g (B, X*[n]) L Homg ) (J*'(B), j' (X*)[n]) — Homgg) (B, j.j'(X*)[n])
for eachn € Z, where the second map is an isomorphism induced by the agjain(j', j.). Then, one can
check directly thatof. = Homy g (B,Nx-[n)- Itis known that ther-th cohomology functoH"(—) : Z(B) —

B-Mod is naturally isomorphic to the Hom-functor Hong, (B, —[n]). So, under this identification, the map
. coincides withH"(nx.) : HM(X®*) — H"(j.j'(X*)). It follows thatH(np) is injective if and only if so

is the map Homg) (B, P) J—> Homy g (j'(B), ' (P)).

Second, we claim that if Hopg,(i.i*(B),P) = 0, then Homg)(B,P) —- Homy,g (j'(B), }'(P)) is
injective.
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Lete: jij' — ld4 @) be the counit adjunction with respect to the adjoint [@airj'). Then, for each
X* € 2(B), there exists a canonical triangle #(B):

BTXT) 25 X LX) — X[,

Now, we consider the following morphisms:

Homyg) (B, X*[m]) 5 Homyr (J'(B), J' (X*)[m) — Homyg) (j:]' (B), X" [ml)

for anym € Z, where the last map is an isomorphism given by the adjoint (gaij'). One can check that
the composite of the above two morphisms is the map Hgnes, X*[m]). This means that, to show that

Homy g (B,P) 7, Hom@(R>(j!(B), j'(P)) is injective, it suffices to show that Hoe,) (€8, P) is injective.
For this aim, we apply Homyg)(—,P) to the trianglej, j*(B) 8, B—i,i*(B) —> jij'(B)[1], and get the
following exact sequence of abelian groups:

Homg g) (¢e,P)

Homy, g, (i.i*(B),P) — Homy, g, (B,P) ———— Homy,g,(j1j'(B).P) .

Clearly, if Homyg (i.i*(B),P) =0, then Homy, g, (€g, P) is injective, and therefore the mgp Homy, g, (B, P)i>
Homy g (j'(B), j'(P)) is injective, as desired.

Third, we show that if Hom(S, S) = 0, then Hom,(g) (i.i*(B), P) = 0 for any projectiveB-moduleP.

In fact, by Lemmag=3]7(3) ariid3.8(1), we havié(Be,) ~ i.i*(Bey) ~ Be @k Sin 2(B). This implies
that Homyg, (i.i*(B),P) = 0 if and only if Homy,g) (Be; ®gS P) = 0. Consider the following isomorphisms

Homy g (Be; @k S P) ~ Homy, g (S RHomg(Be, P)) ~ Homyg) (S, €2P) ~ Homg(S, &,P).

Sinceey,B ~ S asR-modules, we have HoglS €;,B) ~ Homg(S, S) = 0. Note thatP € Add(gB) ande,P
Add(rS). Thus there is an index sétsuch thate,P is a direct summand ofS)("). Since(S)") is a
submodule of the produ¢8)' of S, it follows that Honk(S, (S)")) is a subgroup of Hog(S, (S)') which
is isomorphic to HorR(S,S)'. Hence Hom(S, (S)(") = 0, Honk(S, &;P) = 0 and Homy, g (i..i* (B),P) =0,
as desired.

Now, it remains to show that HogiS S) = 0. In the following, we shall prove a stronger statement,
namely, Hom,g) (S S[n|) = 0 for anyn € Z.

SinceAis a rlng epimorphism with T§(S, S) = 0, we know from[[16, Theorem 4.8] that

Exts(S,S") ~ Exty(S, ") =

for any setl. As gSis of projective dimension at most 1, we can apply Lenima 4.@®¢ocomplexJ® ;=
S®© Q*, and get Hom,g)(U*,U*[m]) = 0 for m# 0. This implies that Hom ) (Q*,Q*[m]) = 0 for m# 0,
and that

H™(RHomr(Q®, Q%)) ~ Homy g (Q°,Q°[m]) = {Og ii; rrr:]i%.

Thus the compleRHomg(Q®,Q°) is isomorphic inZ(R) to the stalk complex8. On the one hand, by the
adjoint pair(Q* ®g —,RHomg(Q®, —)) of the triangle functors, we have

Homy () (S S[n]) ~ Homy, g (S RHOomR(Q®, Q°)[n]) ~ Homy, g, (S RHomg(Q®, Q°[n])) ~ RHomg(Q® @& S, Q°[n))

for anyn € Z. On the other hand, since is homological by assumption, the homomorphiang S:
R®ES— S®k Sis an isomorphism iZ(R). It follows from the triangle

A
RekS ¥ saks— Q" 9k S— Rek S
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thatQ* ® S= 0. Hence Homr) (S, S[n]) ~ RHomg(Q* ®k S, Q°[n]) = 0 for anyn € Z.

Thus, we have proved that, for any projectB@noduleP, the homomorphisrti®(np) : P — HO(j.j'(P))
is injective inB-Mod. This finishes the proof of Corollaky 1.4(1).

(2) Combining Corollary3]5 with Lemnia3.6, we see that thg fi,+ is zero if and only if the functoj’
induces a triangle equivalence fram(B) to Z(R). This is equivalent to the statement th&iB) is a tilting
complex oveR. Note thatj'(B) ~ U*[—1] by Lemmd3.J7(2). Thus, the rinty, is zero if and only ifU* is
a tilting complex oveR. Now, the second part of Corollary 1.4 follows directly fraremmd 4.8 .

Proof of Corollary

Let us consider the paii, 1) of ring homomorphisma andp, wherefi is associated ta. By Corollary
4.3, the pair(A, i) is exact. It follows from Lemm@g4l4(4) th&tis a commutative ring sinckis an injective
homological ring epimorphism arf@is a commutative ring. This means that the tensor pro8ugt S of
SandS overRis a commutative ring. Moreover, the map: S — S®rS andf’ : S— S®grS are ring
homomorphisms. S&xrS is anS-S-bimodule via\'.

By Lemma3.9, we know that TB(S,S) = 0 for anyi > 0. SinceR, SandS are commutative rings, it
follows that Tof(S,S) ~ Tor(S,S) = 0. Note that\ is a ring epimorphism, and so¥: S — S®r S by
Lemmag 2.B and 2.5(1). Thus EA®B ®r S) ~ Endy (S®R S) ~ Endsz,s(S®RS) ~ S®R S as rings. Now,
Corollary[1.5 is an immediate consequence of Corollary [T.3.

Proof of Corollary
For a commutative ringR and a multiplicative se® of R, the localization maR — S:= ®~'Ris always
homological sinceSis flat. Therefore, by Corollarly_1.5, it suffices to show tBatr S is isomorphic to
W-1S. In fact, one can check that the well defined noapd*R®rS — WS, given by
r (Hp
xY om
forr e R, xe ®andy € S, is an isomorphism of rings, whepe R — S is the ring homomorphism associated
to A. Clearly, this map is surjective. To see that this map isctije, we note that the map: ¥~1S —
®'R@RrS, defined by — ¢ @yforxe ® andy € S, is a well defined ring homomorphism wie = 1.
Observe thatt preserves the multiplication &xrS. This finishes the proof of Corollafy 1.6
Finally, we mention a relationship between the results icti6e[3 and the ones in Sectibh 4.
Recall that we have defined the ring homomorphjsnR — S associated to a ring homomorphism
at the beginning of Sectidn 4.2. There is a connection betvwleie homomorphisnp and thep: R— T in
an arbitrary exact paifA,p) of ring homomorphisms. This connection is revealed by thieviong result
which not only establishes a relationship between the tesulSectior B and those in Sectioh 4, but also
demonstrates a “maximality” property pf
Let T be an arbitrary ring and: R— T a homomorphism of rings. If the paih, p) is exact, then there
exists a ring homomorphism: T — S such thafi= un.

Proof. We keep the notation introduced in Sectidn 3. Recall thattmplexQ® @rT is of the form

0T S®rT — 0 with T in degree—1, and isomorphic t@°® in Z(R) via the quasi-isomorphism
L :Q° — Q*®rT (see the diagram| in SectiorB).

We definew: T — Endyr)(Q*®rT) byt g°* fort € T, whereg® : Q° ®rT — Q°®rT is the chain
map withg1 := t, g°:= -t andg' = 0 fori # 0,—1, which can be described by the following diagram:

T2 S9rT — = Q*@rT —— T[1]

T

T ——=SQrT —= Q*®rT ——T[1]
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where-t stands for the right multiplication map lty Then, one can check thatis a ring homomorphism
and that

(NpK =1 ((NWw: Q* — Q*®@rT
as chain maps for anyc R. This implies that if we defing : T — S byt s p*g®(u®)~* for t € T, then
A=un. O

5 Examples

Now we present a few examples to show that some conditiongriresults cannot be dropped or weakened.

(1) The condition thak : R— Sis a homological ring epimorphism in Corolldry 1L.3 cannotmakened
to thatA : R— Sis a ring epimorphism.

k 0 0
LetR= ( K[X]/(x?) k 0 ) , wherek is a field andk[x] is the polynomial algebra ovédrin
KIX/0@) KIX/() k

one variablex. Let Sbe the 3 by 3 matrix ring/i3(k[X] /(x?)). Then the inclusion of Rinto Sis a universal
localization ofR, and therefore a ring epimorphism. Further, we hav§(®6) = 0+# Tory(S S) (see[13]).
ThusA is not homological. So;S cannot have projective dimension less than or equal to 1.eMar, one
can check that the ring homomorphigm R — S associated t@ is an isomorphism of rings. In this case,
we haveSLIrS = Sand@= (1)~*A : S — Sin Corollary[1.3. Consequentlgis not homological. However,
we shall show that the maj is homological. Hence, without the ‘homological’ assuraptionA, the
conditions(1) and(2) in Corollary[1.3 are not equivalent.

In the following, we prove thak is always homological, even though the ring epimorphlsnkR — S
may not be homological.

LetA : R— Sbe aring epimorphism such that ’f()& S =0= HomR(S Ker()\)). If the ring homomor-
phismfi: R— S associated ta is an isomorphism of rings, then the universal localizatign: A — Ay of
N\ atTt is always homological.

Proof. It follows from Lemmag§ 311 arld 4.4(3) that~ < S S

0 R > andAy ~ My(S) as rings. Under these

isomorphisms, the universal localizatiap : A — A is equivalent to the canonical ring homomorphism

6:B:<§ |§>—>M2(S):<§ g)

induced by the ring homomorphisi Clearly,8 is an ring epimorphism. Moreove¥,(S) is projective as
a rightB-module. Thu$ is homological, and consequenth: is homological.[]

(2) ThatA is homological does not guarantee that the universal ai@dn A : A — A Of A @t 1 in
Corollary[1.3 is always homological.

In the following, we shall use Corollafy 4.7 to give a courtemple.

Now, takeC = a 0 a,b ek} andD = k0 with k a field. Then one can verify that the
b a k k

extension\ : R— S, defined in Corollary 417, is homological, and that the cacedlrmapw: D — D/C is
a split epimorphism irc-Mod, and thereforgD ~ C@® D/C. Let e be the idempotent dE corresponding
the direct summan@ of theC-moduleD © D/C. ThenE,: ~ E/EeE~ My(k). Furthermore, the universal
localization Ay : E — E, of E at w* is equivalent to the canonical projectian E — E/EeE  Since
Ext2(E/EeE E/EeE) # 0, we see that is not homological. This implies that, is not homological, too.
ThusAr : A — Are is not homological by Corollarly 417, that is, the deriveddtat D((Are).) : Z(Are) —
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2(N) is not fully faithful. In addition, one can check that, foigtextension, thé&-modulegS has infinite
projective dimension.

(3) In Corollary[1.4(1), we assume that the projective digiem of gSis at most 1. But there does exist
an injective homological ring epimorphisit R— Ssuch that the projective dimensiongiis greater than
1 and that\ : A — Ar is homological.

Let R be a Prufer domain which is not a Matlis domain. Recall thistadlis domain is a domaiR for
which the projective dimension of the fractional figdof R as anR-module is at most 1. In this case, the
inclusionA : R— Qs an injective homological ring epimorphism. By Coroll@d, the map\rs : A — A
is homological.

(4) Now we display a concrete example which satisfies theitiond in Corollary(1.2(2).

We fix a fieldk. Let RandSbe thek-algebras given by the following quivers with relationsspectively:

a a
le~ o2 aBf=pa=0; le~ 2 aal=g,ala=e.
B at

LetA : R— Sbe the map defined iy — g, a+— a, B~ 0.ThenA is the universal localization ¢ at the map
Re — Re induced froma. SincerS~ Re ¢ Re, theR-moduleSis projective. Henca is homological. By
calculation, the trivial extensioR x S of R by theR-R-bimodulerSk is the algebra given by the following

quiver with relations:

a
A

loe <v—e2 o =pa =yay=0.

B

S &S

LetB:= < 0 RxS

). By Corollary[1.2(2), we have the following recollement:

N 2N
.@(SIX S) e .@(B) e .@(R)
N~ N

Note thatSx Sis isomorphic taVl, (K[X]/(X?)).

Finally, we mention an open question related to stratificetiand recollements in this paper. We have
exhibited counterexamples inl[5] (see alsb [6]) to the Jotidalder Theorem for the stratification of derived
module categories of rings by derived module categoriesngkr But in these recollements, not all of the
rings involved are finite dimensional algebras. So, one nadyrally ask the following question:

Question. If we restrict to derived categories of finite dimensionajediras, can the Jordandider
Theorem be true for stratifications of derived module catiegoof finite dimensional algebras by derived
module categories of finite dimensional algebras (up towdeliequivalence)?

Note that some positive answers to this question are giveantly in [1, Theorem 5.7]. Moreover, we
do not know any counterexample to this question at momeudteapect the results in this paper, especially
Corollary[1.2, could be helpful for understanding this dioes
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