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Homological ring epimorphisms and recollements from exactpairs, I.

Hongxing ChenandChangchang Xi∗

Abstract

Homological ring epimorphisms are often used in modern representation theory and algebraicK-
theory. In this paper, we give some new characterizations ofwhen a universal localization related to an
‘exact’ pair of ring homomorphisms is homological. These characterizations are flexible and applicable to
many cases, thus give rise to a wide variety of new recollements (of derived module categories) which have
become of interest in and attracted increasing attentions towards to understanding invariants in algebra
and geometry. As a consequence, we show that ifλ : R→ S is an injective homological ring epimorphism
between commutative ringsR andS, then the derived module category of the endomorphism ring of the
R-moduleS⊕ S/R always admits a recollement of the derived module categories of R and the tensor
productS⊗R EndR(S/R). In particular, this result is applicable to localizationsof integral domains by
multiplicative sets in commutative rings.
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1 Introduction

The investigation of homological ring epimorphisms has a long history, and there is a large variety of litera-
ture. For example, in representation theory, homological ring epimorphisms were used to study perpendicular
categories and sheaves, recollements and stratifications of derived module categories of rings (see [9], [5]),
and to construct infinitely generated tilting modules (see [2]). In algebraicK-theory, Neeman and Ranicki
used homological ring epimorphisms to establish a useful long exact sequence of algebraicK-groups (see
[12]), which generalizes many earlier results in the literature. Also, in Banach algebra, homological ring
epimorphisms were topologically modified to investigate the analytic functional calculus (see [17]), where
they were called “localizations”.

Let Rbe an associative ring with identity. Suppose thatλ : R→ Sandµ : R→ T are two homomorphisms
of rings. We may form the coproductS⊔RT of SandT overR. Let ρ : S→ S⊔RT andφ : T → S⊔R T be
the canonical ring homomorphisms given by the definition of coproducts ofR-rings. Then one may define a
homomorphismθ of the following rings:
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θ :

(
S S⊗RT
0 T

)
−→

(
S⊔RT S⊔RT
S⊔RT S⊔RT

)
,

(
s1 s2⊗ t2
0 t1

)
7→

(
(s1)ρ (s2)ρ(t2)φ

0 (t1)φ

)

for si ∈ Sandti ∈ T with i = 1,2.
For simplicity, we denote byB the former 2×2 triangular matrix ring, and byC the latter 2×2 full matrix

ring M2(S⊔RT) overS⊔RT.
The ring homomorphismθ : B→C is of particular interest in representation theory: It can be regarded

as the universal localization ofB at a homomorphism between finitely generated projectiveB-modules, and
therefore it is a ring epimorphism with TorB

1(C,C) = 0 (see [16]), and yields a fully faithful exact functor
θ∗ : C-Mod→ B-Mod, called the restriction functor, between the categoryof all left C-modules and the one
of all left B-modules.

Generally speaking,θ is not always homological. In[5], there is a sufficient condition forθ to be ho-
mological. Concisely, assume thatλ : R→ S is injective, and chooseT to be the endomorphism ring of the
R-moduleS/R andµ : R→ T to be the ring homomorphism defined byr 7→ (x 7→ xr) for r ∈ R andx∈ S/R.
If λ is additionally a ring epimorphism with TorR

1(S,S) = 0, thenB is isomorphic to the endomorphism ring
of the R-moduleS⊕S/R. Moreover, if RS has projective dimension at most 1, thenθ is homological. In
particular, the (unbounded) derived categoryD(B) of the ring B admits a recollement withD(C) on the
left-hand side andD(R) on the right-hand side (see[5]). This was used in [5] to establish the so-called Hap-
pel’s Theorem for infinitely generated tilting modules and to show that the Jordan-Hölder theorem fails for
stratifications of derived module categories by derived module categories. Here, the condition onRS only
ensures that theR-moduleS⊕ S/R is a tilting R-module of projective dimension at most 1 (see [2, 9]), and
consequently, the homomorphismλ itself is homological.

However, in general, for an arbitrary homological ring epimorphismλ : R→ S, the projective dimension
of RSmay be greater than 1 (see the examples in the last section). Thus, it is certainly of interest in stratifica-
tions of derived categories and in algebraicK-theory to find some other new and applicable criterions forθ
to be homological under a more general setting. Namely, the following question arises naturally:

Question. Given a pair(λ,µ) of ring homomorphisms withλ being homological, when isθ : B → C
homological, or equivalently, when is the derived functor D

(
θ∗
)

: D(C)→ D(B) fully faithful ?

In the present paper, we shall provide some answers to this question. Here, we assume neither thatλ is
injective, nor thatS⊕ S/R is a tilting R-module of projective dimension at most 1. Furthermore, we allow
some flexibilities for the choice of the ring homomorphismµ : R→ T. Under these general settings, we
shall provide some new and handy characterizations for the universal localizationθ to be homological. Our
characterizations will be given in terms of vanishing of homology groups ofR-modulesT andS, or in terms
of another ring homomorphism between two rings which are related to both(λ,µ) and the coproduct ofSand
T overR. In particular, the vanishing condition on homology groupscan be applied in many cases.

As a consequence of these characterizations, we can producea large variety of new recollements which
could be used to understand stratifications of derived module categories, or of derived categories of coherent
sheaves over geometric manifolds as well as to calculate algebraicK-theory of rings (see [2], [6], [9], [12]).
Moreover, we show in the present paper that ifλ is an injective homological ring epimorphism between two
commutative ringsR and S and if µ is the ring homomorphism fromR to the endomorphism ring of the
R-moduleS/R, defined by the right multiplication, thenθ is always homological, and therefore, the derived
category of the ringB is a recollement of the derived module categories ofR and the tensor product ofSand
EndR(S/R) overR.

To state our results more precisely, let us first introduce some definitions that will be employed throughout
the paper.
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Given a pair of ring homomorphismsλ : R→Sandµ : R→ T, there areR-R-bimodule structures onSand
T, respectively, and natural homomorphisms ofR-R-bimodules:λ′ = λ⊗T : T →S⊗RT defined byt 7→ 1⊗ t
for t ∈ T, andµ′ = S⊗µ : S→ S⊗RT defined bys 7→ s⊗1 for s∈ S. The pair(λ,µ) of ring homomorphisms

is calledsemi-exactif the map

(
µ′

−λ′

)
: S⊕T → S⊗RT is surjective. The kernel of this map is denoted by

K. Then one can check thatK is indeed a ring and that there is a canonical ring homomorphism ζ : R→ K,
defined byr 7→

(
(r)λ,(r)µ

)
for r ∈R. The pair(λ,µ) is calledexactif it is semi-exact andζ is an isomorphism

of rings. There is a recipe to get semi-exact pairs: LetIi be an arbitrary ideal ofR for i = 1,2. DefineS:=R/I1
andT := R/I2. Let λ andµ be the canonical surjective ring homomorphisms. Then the pair (λ,µ) is always
semi-exact, and it is exact if and only ifI1∩ I2 = 0.

Now we can state our main result in this paper as follows.

Theorem 1.1. Let (λ,µ) be an exact pair of ring homomorphismsλ : R→ S and µ: R→ T. Suppose that
λ : R→ S is homological. Then the following assertions are equivalent:

(1) The ring homomorphismθ : B→C is homological.
(2) The ring homomorphismφ : T → S⊔RT is homological.
(3) TorRi (T,S) = 0 for all i ≥ 1.

If one of the above assertions holds, then there exists a recollement of derived module categories:

D(EndT(T ⊗RS)) // D(B) //
ii

uu
D(R)

ff

xx
.

Note that the ring EndT(T ⊗R S) in Theorem 1.1 is isomorphic to the coproductS⊔R T (see Lemma
3.8(2)), which is Morita equivalent to the ringC.

Clearly,D(B) is always a recollement ofD(T) andD(S), in which the categoryD(R) is not involved.
However, Theorem 1.1 provides us a different recollement for D(B). A remarkable feature of this recollemnt
is that it containsD(R) as its member, and thus provides a way to understand properties of the ringR through
those of the ringsB, SandT. This idea will be discussed in another paper.

As a consequence of Theorem 1.1, we obtain the following result which can be seen as a concrete real-
ization of Theorem 1.1.

Corollary 1.2. (1) Let R be a ring, and let I1 and I2 be ideals of R with I1∩ I2 = 0. If the canonical surjective
ring homomorphism R→ R/I1 is homological (for instance, the ideal I1 is idempotent and projective as a left
module), then so is the canonical surjective ring homomorphism R/I2 → R/(I1+ I2), and therefore there is a
recollement of derived module categories:

D(R/(I1+ I2)) // D(B) //
hh

vv
D(R)

ff

xx
,

where B:=

(
R/I1 R/(I1+ I2)
0 R/I2

)
.

(2) Suppose thatλ : R→S is a homomorphism of rings and M is an S-S-bimodule. Letλ̃ : R⋉M →S⋉M
be the ring homomorphism between trivial extensions induced fromλ. Thenλ is homological if and only if
so isλ̃. In particular, if λ is homological, then there is a recollement of derived module categories:

D(S⋉M) // D(B) //
gg

ww
D(R)

ff

xx
,

where B:=

(
S S⋉M
0 R⋉M

)
.

Another realization of Theorem 1.1 occurs in universal localizations.
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Given a ring homomorphismλ : R→S, we may considerλ as a complexQ• of left R-modules withRand

Sin degrees−1 and 0, respectively. Then there exists a distinguished triangleR
λ

−→ S
π

−→ Q• −→ R[1] in the
homotopy categoryK (R) of the category of allR-modules. This triangle induces a canonical ring homomor-
phism fromR to the endomorphism ring ofQ• in K (R), and therefore yields a ring homomorphismµ from
R to the endomorphism ring ofQ• in D(R), which depends onλ (see Section 4.2). LetS′ := EndD(R)(Q

•).
Observe that ifλ is injective, thenQ• can be identified inD(R) with theR-moduleS/R, and consequently,
the mapµ coincides with the map fromR to EndR(S/R) by the right multiplication.

Further, letΛ := EndD(R)

(
S⊕Q•

)
, and letπ∗ be the induced map HomD(R)(S⊕Q•, π) : HomD(R)(S⊕

Q•, S)→ HomD(R)(S⊕Q•, Q•), which is a homomorphism of finitely generated projectiveΛ-modules. Let
λπ∗ : Λ → Λπ∗ stand for the universal localization ofΛ at π∗ in the sense of Cohn and Schofield (see [8, 16]).

If λ is a ring epimorphism such that TorR
1(S,S) = 0= HomR

(
S,Ker(λ)

)
, then we shall prove in Section

4.2 that the pair(λ,µ) is exact. Hence, the following corollary follows from Theorem 1.1.

Corollary 1.3. If λ : R→ S is a homological ring epimorphism such thatHomR
(
S,Ker(λ)

)
= 0, then the

following assertions are equivalent:
(1) The universal localizationλπ∗ : Λ → Λπ∗ of Λ at π∗ is homological.
(2) The ring homomorphismφ : S′ → S⊔RS′ is homological.
(3) TorRi (S

′,S) = 0 for any i≥ 1.
In particular, if one of the above assertions holds, then there exists a recollement of derived module

categories:

D(EndS′(S′⊗RS)) // D(Λ) //
ii

uu
D(R)

ff

xx
.

As an application of Corollary 1.3, we obtain the following result which generalizes the first statement
of [5, Corollary 6.6(1)] since we do not require that the ringepimorphismλ is injective. In this general case,
the moduleS⊕ S/Rmay not be a tiltingR-module.

Corollary 1.4. Let λ : R→ S be a homological ring epimorphism such thatHomR
(
S,Ker(λ)

)
= 0. Then we

have the following:
(1) If RS has projective dimension at most1, thenλπ∗ : Λ → Λπ∗ is homological.
(2) The ringΛπ∗ is zero if and only if there is an exact sequence0→ P1 → P0 → RS→ 0 of R-modules

such that Pi is finitely generated and projective for i= 0,1. In this case, the rings R andΛ are derived
equivalent.

As another application of Corollary 1.3, we have the following result, which extends greatly the second
statement of [5, Corollary 6.6(1)] since we do not impose anyrestriction on the projective dimension ofRS.

Corollary 1.5. Suppose thatλ : R→ S is an injective homological ring epimorphism between commutative
rings R and S. Then there exists a recollement of derived module categories:

D(S⊗RS′) // D(EndR(S⊕S/R)) //
ii

tt
D(R)

ii

uu
,

where S′ := EndR(S/R) is a commutative ring.

We remark that ifR is a commutative ring andΦ is a multiplicative subset ofR (that is, /0 6= Φ and
st∈ Φ whenevers, t ∈ Φ), then the localizationR→ Φ−1R of R at Φ is always homological. Iff : R→ S is
a homomorphism from the ringR to another commutative ringS, then the image of a multiplicative subset
of R under f is again a multiplicative set inS. So, as a direct consequence of Corollary 1.5, we obtain the
following result which may be of its own interest in commutative algebra.
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Corollary 1.6. Suppose that R is a commutative ring withΦ a multiplicative subset of R. Let S be the
localizationΦ−1R of R atΦ, and letλ : R→ S be the canonical ring homomorphism. If the mapλ is injective
(for example, if R is an integral domain), then there exists arecollement of derived module categories:

D(Ψ−1S′) // D(EndR(S⊕S/R)) //
ii

tt
D(R)

ii

uu
,

where S′ := EndR(S/R), andΨ is the image ofΦ under the ring homomorphismµ : R→ S′ associated toλ.

The contents of this paper are outlined as follows. In Section 2, we fix notation and recall some definitions
and basic facts which will be used throughout the paper. In particular, we shall recall the definitions of
universal localizations, recollements and coproducts of rings, and prepare several lemmas for our proofs. In
Section 3, we prove Theorem 1.1. In Section 4, we prove all corollaries mentioned in Section 1. Also, in this
section, we show a few other consequences of our results. Finally, in Section 5, we give several examples to
explain the necessity of some assumptions in our results.

2 Preliminaries

In this section, we shall recall some definitions, notation and basic results which are closely related to our
proofs.

2.1 Notation

Let C be an additive category.
Throughout the paper, a full subcategoryB of C is always assumed to be closed under isomorphisms,

that is, ifX ∈ B andY ∈ C with Y ≃ X, thenY ∈ B .
Given two morphismsf : X →Y andg :Y → Z in C , we denote the composite off andg by f g which is a

morphism fromX to Z. The induced morphisms HomC (Z, f ) : HomC (Z,X)→HomC (Z,Y) and HomC ( f ,Z) :
HomC (Y,Z)→ HomC (X,Z) are denoted byf ∗ and f∗, respectively.

We denote the composition of a functorF : C →D between categoriesC andD with a functorG : D →E

between categoriesD andE by GF which is a functor fromC to E . The kernel and the image of the functor
F are denoted by Ker(F) and Im(F), respectively.

Let Y be a full subcategory ofC . By Ker(HomC (−,Y )) we denote the left orthogonal subcategory with
respect toY , that is, the full subcategory ofC consisting of the objectsX such that HomC (X,Y) = 0 for all
objectsY in Y . Similarly, Ker(HomC (Y ,−)) stands for the right orthogonal subcategory ofC with respect
to Y .

Let C (C ) be the category of all complexes overC with chain maps, andK (C ) the homotopy category
of C (C ). WhenC is abelian, the derived category ofC is denoted byD(C ), which is the localization of
K (C ) at all quasi-isomorphisms. It is well known that bothK (C ) andD(C ) are triangulated categories.
For a triangulated category, its shift functor is denoted by[1] universally.

If T is a triangulated category with small coproducts (that is, coproducts indexed over sets exist inT ),
then, for each objectU in T , we denote by Tria(U) the smallest full triangulated subcategory ofT containing
U and being closed under small coproducts. We mention the following properties related to Tria(U):

Let F : T → T ′ be a triangle functor of triangulated categories, and letY be a full subcategory ofT ′.
We defineF−1Y := {X ∈ T | F(X) ∈ Y }. Then

(1) If Y is a triangulated subcategory, thenF−1Y is a full triangulated subcategory ofT .
(2) Suppose thatT andT ′ admit small coproducts and thatF commutes with coproducts. IfY is closed

under small coproducts inT ′, thenF−1Y is closed under small coproducts inT . In particular, for an object
U ∈ T , we haveF(Tria(U))⊆ Tria(F(U)).
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In this paper, all rings considered are assumed to be associative and with identity, and all ring homomor-
phisms preserve identity. Unless stated otherwise, all modules are referred to left modules.

Let Rbe a ring. We denote byR-Mod the category of all unitary leftR-modules. By our convention of the
composite of two morphisms, iff : M →N is a homomorphism ofR-modules, then the image ofx∈M under
f is denoted by(x) f instead off (x). The endomorphism ring of theR-moduleM is denoted by EndR(M).

As usual, we shall simply writeC (R), K (R) andD(R) for C (R-Mod), K (R-Mod) andD(R-Mod),
respectively, and identifyR-Mod with the subcategory ofD(R) consisting of all stalk complexes concentrated
in degree zero.

Let (X•,dX•) and(Y•,dY•) be two chain complexes overR-Mod. The mapping cone of a chain maph• :

X• →Y• is usually denoted by Cone(h•). In particular, we have a triangleX• h•
−→Y• −→Cone(h•)−→X•[1]

in K (R), called adistinguished triangle. For eachn ∈ Z, we denote byHn(−) : D(R) → R-Mod then-th
cohomology functor. Certainly, this functor is naturally isomorphic to the Hom-functor HomD(R)(R,−[n]).

The Hom-complex Hom•R(X
•,Y•) of X• andY• overR is defined to be the complex

(
Homn

R(X
•,Y•),dn

X•,Y•

)
n∈Z

with
Homn

R(X
•,Y•) := ∏

p∈Z

HomR(X
p,Yp+n)

and the differentialdn
X•,Y• of degreen given by

( f p)p∈Z 7→
(

f pdp+n
Y• − (−1)ndp

X• f p+1)
p∈Z

for ( f p)p∈Z ∈ Homn
R(X

•,Y•). For example, ifX ∈ R-Mod, then we have

Hom•
R(X,Y•) =

(
HomR(X,Yn),HomR(X,dn

Y•)
)

n∈Z;

if Y ∈ R-Mod, then

Hom•
R(X

•,Y) =
(
HomR(X

−n,Y), (−1)n+1HomR(d
−n−1
X• ,Y)

)
n∈Z.

For simplicity, we denote Hom•R(X,Y•) and Hom•R(X
•,Y) by HomR(X,Y•) and HomR(X•,Y), respectively.

Note that HomR(X•,Y) is also isomorphic to the complex
(
HomR(X−n,Y), HomR(d

−n−1
X• ,Y)

)
n∈Z.

Moreover, it is known thatHn(Hom•
R(X

•,Y•))≃ HomK (R)(X
•,Y•[n]) for anyn∈ Z.

Let Z• be a chain complex overRop-Mod. Then the tensor complexZ•⊗•
R X• of Z• andX• over R is

defined to be the complex
(
Z•⊗n

RX•,∂n
Z•,X•

)
n∈Z with

Z•⊗n
RX• :=

⊕

p∈Z

Zp⊗RXn−p

and the differential∂Z•,X• of degreen given by

z⊗x 7→ (z)dp
Z• ⊗x+(−1)pz⊗ (x)dn−p

X•

for z∈ Zp andx∈ Xn−p. For instance, ifX ∈ R-Mod, thenZ•⊗•
RX =

(
Zn⊗RX,dn

Z• ⊗1
)

n∈Z. In this case, we
denoteZ•⊗•

RX simply byZ•⊗RX.
The following result establishes a relationship between Hom-complexes and tensor complexes.
Let Sbe an arbitrary ring. Suppose thatX• = (Xn,dn

X•) is a bounded complex ofR-S-bimodules. IfRXn

is finitely generated and projective for alln∈ Z, then there is a natural isomorphism of functors:

HomR(X
•,R)⊗•

R−
≃

−→ Hom•
R(X

•,−) : C (R)→ C (S).

To prove this, we note that, for anyR-S-bimoduleX and anyR-moduleY, there is a homomorphism of
S-modules:δX,Y : HomR(X,R)⊗RY −→ HomR(X,Y) defined byf ⊗y 7→ [x 7→ (x) f y] for f ∈ HomR(X,R),

6



y∈Y andx∈X, which is natural in bothX andY. Moreover, the mapδX,Y is an isomorphism ifRX is finitely
generated and projective. For anyY• ∈ C (R) and anyn∈ Z, it is clear that

HomR(X
•, R)⊗n

RY• =
⊕

p∈Z

HomR(X
−p,R)⊗RYn−p and Homn

R(X
•,Y•) =

⊕

p∈Z

HomR(X
p,Yp+n)

sinceX• is a bounded complex. Now, we define∆n
X•,Y• := ∑p∈Z (−1)p(n−p)δX−p,Yn−p, which is a homo-

morphism ofS-modules from HomR(X•, R)⊗n
RY• to Homn

R(X
•,Y•). Then, one can check that∆•

X•,Y• :=(
∆n

X•,Y•

)
n∈Z is a chain map from HomR(X•,R)⊗•

RY• to Hom•
R(X

•,Y•). SinceRX−p is finitely generated and
projective for eachp∈ Z, the mapδX−p,Yn−p is an isomorphism, and so is the map∆n

X•,Y• . This implies that

∆•
X•,Y• : HomR(X

•,R)⊗•
RY• −→ Hom•

R(X
•,Y•)

is an isomorphism inC (S). Since the homomorphismδX,Y is natural in the variablesX andY, it can be
checked directly that

∆•
X•,− : HomR(X

•,R)⊗•
R−−→ Hom•

R(X
•,−)

defines a natural isomorphism of functors fromC (R) to C (S).
In the following, we shall recall some definitions and basic facts about derived functors defined on derived

module categories. For details and proofs, we refer to [4, 11].
Let K (R)P (respectively,K (R)I ) be the smallest full triangulated subcategory ofK (R) which
(i) contains all the bounded above (respectively, bounded below) complexes of projective (respectively,

injective)R-modules, and
(ii) is closed under arbitrary direct sums (respectively, direct products).

Note thatK (R)P is contained inK (R-Proj), whereR-Proj is the full subcategory ofR-Mod consisting
of all projectiveR-modules. Moreover, the composition functors

K (R)P →֒ K (R)→ D(R) and K (R)I →֒ K (R)→ D(R)

are equivalences of triangulated categories. This means that, for each complexX• in D(R), there exists a
complexpX• ∈ K (R)P together with a quasi-isomorphismpX• → X•, as well as a complexiX• ∈ K (R)I

together with a quasi-isomorphismX• → iX•. In this sense, we shall simply callpX• the projective resolution
of X• in K (R). For example, ifX is anR-module, then we can choosepX to be a deleted projective resolution
of RX.

Furthermore, if eitherX• ∈ K (R)P or Y• ∈ K (R)I , then HomK (R)(X
•,Y•) ≃ HomD(R)(X

•,Y•), and
this isomorphism is induced by the canonical localization functor fromK (R) to D(R).

For any triangle functorH : K (R) → K (S), there is a total left-derived functorLH : D(R) → D(S)
defined byX• 7→H(pX•), a total right-derived functorRH : D(R)→D(S) defined byX• 7→H(iX•). Observe
that, if H preserves acyclicity, that is,H(X•) is acyclic wheneverX• is acyclic, thenH induces a triangle
functor D(H) : D(R) → D(S) defined byX• 7→ H(X•). In this case, we haveLH = RH = D(H) up to
natural isomorphism, andD(H) is then called the derived functor ofH.

Let M• be a complex ofR-S-bimodules. Then the functors

M•⊗•
S− : K (S)→ K (R) and Hom•R(M

•,−) : K (R)→ K (S)

form a pair of adjoint triangle functors. Denote byM•⊗L

S− the total left-derived functor ofM•⊗•
S−, and by

RHomR(M•,−) the total right-derived functor of Hom•R(M
•,−). It is clear that

(
M•⊗L

S −,RHomR(M•,−)
)

is an adjoint pair of triangle functors. Further, the corresponding counit adjunction

ε : M•⊗L

S RHomR(M
•,−)−→ IdD(R)

7



is given by the composite of the following canonical morphisms inD(R): M•⊗L

SRHomR(M•,X•) = M•⊗L

S

Hom•
R(M

•, iX•)=M•⊗•
S

(
pHom•

R(M
•, iX•)

)
−→M•⊗•

SHom•
R(M

•, iX•)−→ iX• ≃
−→X•. Similarly, we have

a corresponding unit adjunctionη : IdD(S) −→ RHomR(M•, M• ⊗L

S −), which is given by the following

composites forY• ∈ D(S): Y• ≃
−→ pY• −→ Hom•

R(M
•,M• ⊗•

S (pY•)) −→ Hom•
R(M

•, i(M• ⊗•
S (pY•))) =

RHomR(M•,M•⊗•
S(pY•)) = RHomR(M•,M•⊗L

SY•).
ForX• ∈D(R) andn∈Z, we haveHn(RHomR(M•,X•))=Hn(Hom•

R(M
•, iX•))≃HomK (R)(M

•, iX•[n])
≃ HomD(R)(M

•, iX•[n])≃ HomD(R)(M
•,X•[n]).

2.2 Homological ring epimorphisms and recollements

Let λ : R→ Sbe a homomorphism of rings.
We denote byλ∗ : S-Mod→ R-Mod the restriction functor induced byλ, and byD(λ∗) : D(S)→ D(R)

the derived functor of the exact functorλ∗. We say thatλ is a ring epimorphismif the restriction functor
λ∗ : S-Mod→R-Mod is fully faithful. It is proved thatλ is a ring epimorphism if and only if the multiplication
mapS⊗RS→Sis an isomorphism asS-S-bimodules if and only if, for any two homomorphismsf1, f2 : S→T
of rings, the equalityλ f1 = λ f2 implies that f1 = f2. This means that, for a ring epimorphism, we have
X⊗SY ≃ X⊗RY and HomS(Y,Z) ≃ HomR(Y,Z) for all right S-modulesX, and for allS-modulesY andZ.
Note that, for a ring epimorphismλ : R→ S, if R is commutative, then so isS.

Following [9], a ring epimorphismλ : R→ S is calledhomologicalif TorR
i (S,S) = 0 for all i > 0. Note

that a ring epimorphismλ is homological if and only if the derived functorD(λ∗) : D(S) → D(R) is fully
faithful. This is also equivalent to saying thatλ induces an isomorphismS⊗L

R S≃ S in D(S). Moreover, for
a homological ring epimorphism, we have TorR

i (X,Y)≃ TorSi (X,Y) and ExtiS(Y,Z)≃ ExtiR(Y,Z) for all i ≥ 0
and all rightS-modulesX, and for allS-modulesY andZ (see [9, Theorem 4.4]).

Clearly, if λ : R→ S is a ring epimorphism such that eitherRS or SR is flat, thenλ is homological. In
particular, ifR is commutative andΦ is a multiplicative subset ofR, then the canonical ring homomorphism
R→ Φ−1R is homological, whereΦ−1Rstands for the (ordinary) localization ofR at Φ.

As a generalization of localizations of commutative rings,universal localizations of arbitrary rings were
introduced in [8] (see also [16]) and provide a class of ring epimorphisms with vanishing homology for the
first degree. Note that universal localizations were renamed as noncommutative localizations in [12]. Now
we mention the following basic fact on universal localizations.

Lemma 2.1. (see [8], [16])Let R be a ring and letΣ be a set of homomorphisms between finitely generated
projective R-modules. Then there is a ring RΣ and a homomorphismλΣ : R→ RΣ of rings such that

(1) λΣ is Σ-inverting, that is, ifα : P → Q belongs toΣ, then RΣ ⊗R α : RΣ ⊗R P → RΣ ⊗R Q is an
isomorphism of RΣ-modules, and

(2) λΣ is universalΣ-inverting, that is, if S is a ring such that there exists aΣ-inverting homomorphism
ϕ : R→ S, then there exists a unique homomorphismψ : RΣ → S of rings such thatϕ = λψ.

(3) λΣ : R→ RΣ is a ring epimorphism withTorR1(RΣ,RΣ) = 0.

TheλΣ : R→ RΣ in Lemma 2.1 is called theuniversal localizationof RatΣ. One should be aware thatRΣ
may not be flat as a right or leftR-module. Even worse, the mapλΣ in general is not homological (see [13]).
Thus it is a fundamental question to find conditions forλΣ to be homological. Obviously, if TorR

i (RΣ,RΣ) = 0
for all i ≥ 2, thenλΣ is homological.

Now, we recall the notion of recollements of triangulated categories, which was first defined in [3] to
study “exact sequences” of derived categories of coherent sheaves over geometric objects.
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Definition 2.2. Let D, D ′ andD ′′ be triangulated categories. We say thatD is a recollementof D ′ andD ′′

if there are six triangle functors among the three categories:

D ′′ i∗=i! // D
j != j∗ //

i!

^^

i∗

��
D ′

j∗

^^

j!

��

such that
(1) (i∗, i∗),(i! , i!),( j! , j !) and( j∗, j∗) are adjoint pairs,
(2) i∗, j∗ and j! are fully faithful functors,
(3) i! j∗ = 0 (and thus alsoj ! i! = 0 andi∗ j! = 0), and
(4) for each objectX ∈ D, there are two triangles inD:

i! i
!(X)−→ X −→ j∗ j∗(X)−→ i! i

!(X)[1],

j! j !(X)−→ X −→ i∗i
∗(X)−→ j! j !(X)[1].

By definition, we have the following property of recollements, which will be frequently used in our
proofs.

For any objectsX ∈ D ′ andY ∈ D ′′, we have

HomD

(
j!(X), i∗(Y)

)
= 0= HomD

(
i∗(Y), j∗(X)

)
.

A typical example of recollements of derived module categories is given by triangular matrix rings:

Suppose thatA andB are rings, and thatN is anA-B-bimodule. LetR=

(
A N
0 B

)
be the triangular matrix

ring associated withA,B andN. Then there is a recollement of derived module categories:

D(A) // D(R) //
ff

xx
D(B)

ff

xx
.

In this case, the six triangle functors in Definition 2.2 can be described explicitly:

Let e :=

(
0 0
0 1

)
∈ R. Then we have

j! = Re⊗L

B−, j ! = eR⊗L

R−, j∗ = RHomB(eR,−), i∗ = A⊗L

R−, i∗ = A⊗L

A−, i! = RHomR(A,−),

whereA is identified withR/ReR. Note that the canonical surjectionR→ R/ReRis always a homological
ring epimorphism.

As a further generalization of the above situation, it was shown in [14, Section 4] that, for an arbitrary
homological ring epimorphismλ : R→ S, there is a recollement of triangulated categories:

D(S) // D(R) //
ff

xx
Tria(Q•)

gg

ww

whereQ• is given by the distinguished triangleR
λ

−→ S−→ Q• −→ R[1] in D(R). In this case, the functorj!
is the canonical embedding and

j ! = (Q•[−1])⊗L

R−, i∗ = S⊗L

R−, i∗ = S⊗L

S −, i! = RHomR(RS,−).

Moreover, we haveD(S) ≃ Ker
(
HomD(R)(Tria(Q•),−)

)
:= {X• ∈ D(R) | HomD(R)(Y,X

•) = 0 for all Y ∈
Tria(Q•)}. This clearly implies that HomD(R)(Q

•,X•[n]) = 0 for all X• ∈ C (S) andn∈ Z.
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2.3 Coproducts of rings

Next, we recall the definition of coproducts of rings defined by Cohn in [7], and prove some basic properties
of coproducts.

Let R0 be a ring. AnR0-ring is a ring R together with a ring homomorphismλR : R0 → R. An R0-
homomorphismfrom anR0-ring R to anotherR0-ring Sis a ring homomorphismf : R→Ssuch thatλS= λR f .
If R0 is commutative and the image ofλR : R0 → R is contained in the centerZ(R) of R, thenR is called an
R0-algebra.

Thecoproductof a family{Ri | i ∈ I} of R0-rings withI an index set is defined to be anR0-ring R together
with a family {ρi : Ri → R | i ∈ I} of R0-homomorphisms such that, for anyR0-ring Swith a family of R0-
homomorphisms{τi : Ri → S| i ∈ I}, there exists a uniqueR0-homomorphismδ : R→ Ssuch thatτi = ρiδ
for all i ∈ I .

It is well known that the coproduct of a family{Ri | i ∈ I} of R0-rings exists. We denote this coproduct
by ⊔R0Ri. Clearly,R0⊔R0 S= S= S⊔R0 R0 for everyR0-ring S.

In general, the coproduct of twoR0-algebras may not be isomorphic to their tensor product overR0. For
example, given a fieldk, the coproduct overk of the polynomial ringsk[x] andk[y] is the free ringk〈x,y〉 in
two variablesx andy, while the tensor product overk of k[x] andk[y] is the polynomial ringk[x,y]. However,
under some extra assumptions, coproducts can be interpreted as tensor products of rings.

Lemma 2.3. [5, Lemma 6.3]Let R0 be a commutative ring, and let Ri be an R0-algebra for i= 1,2. If one of
the homomorphismsλR1 : R0 → R1 andλR2 : R0 → R2 is a ring epimorphism, then the coproduct R1⊔R0 R2 is
isomorphic to the tensor product R1⊗R0 R2, that is, the canonical maps R1 → R1⊗R0 R2 and R2 → R1⊗R0 R2

define the coproduct.

Another realization of coproducts may be the so-called trivial extensions.

Lemma 2.4. Suppose thatλ : R→S is a ring epimorphism and M is an S-S-bimodule. Letλ̃ : R⋉M →S⋉M
be the ring homomorphism between trivial extensions induced by λ. Then the coproduct S⊔R (R⋉M) is

isomorphic to S⋉M, that is, the inclusion S→ S⋉M and λ̃ define the coproduct.

Proof. Let µ : R→ R⋉M andρ : S→ S⋉M be the inclusions of rings. Note thatSandR⋉M areR-rings
via λ andµ, respectively, and thatλρ = µλ̃ : R→ S⋉M. We claim thatS⋉M, together withρ and λ̃, is
the coproduct ofSandR⋉M overR. Suppose thatf : R⋉M → Λ andg : S→ Λ are ring homomorphisms
such thatλg= µ f. In the following, we shall show that there is a unique ring homomorphismh : S⋉M → Λ
such that̃λh= f andρh= g. Clearly, if such ah exists, thenh must be defined by(s,m) 7→ (m) f +(s)g for
s∈ Sandm∈ M. This shows the uniqueness ofh. So, it remains to show that the above-defined maph is a
ring homomorphism. Certainly,h is a homomorphism of abelian groups. We have to show thath preserves
multiplication.

Let si ∈Sandmi ∈M for i = 1,2. On the one hand,
(
(s1,m1)(s2,m2)

)
h= (s1s2, s1m2+m1s2)h= (s1m2+

m1s2) f +(s1s2)g= (s1m2) f +(m1s2) f +(s1)g(s2)g. On the other hand,
(
(s1,m1)

)
h
(
(s2,m2)

)
h=

(
(m1) f +

(s1)g
)(
(m2) f +(s2)g

)
= (m1) f (m2) f +(m1) f (s2)g+(s1)g(m2) f +(s1)g(s2)g= (m1m2) f +(m1) f (s2)g+

(s1)g(m2) f + (s1)g(s2)g = (m1) f (s2)g+ (s1)g(m2) f + (s1)g(s2)g sincem1m2 = 0. This implies that if
(s1m2) f = (s1)g(m2) f and (m1s2) f = (m1) f (s2)g, then

(
(s1,m1)(s2,m2)

)
h = ((s1,m1))h((s2,m2))h. So,

to prove thath preserves multiplication, we need only to verify these additional conditions under the assump-
tions of Lemma 2.4.

Now, we show that(sm) f = (s)g(m) f and(ms) f = (m) f (s)g for s∈ Sandm∈ M.
To show the former, we first fix anm∈ M and define two maps as follows:

ϕ : S→ Λ, s 7→ (sm) f andψ : S→ Λ, s 7→ (s)g(m) f .
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One can check that bothϕ andψ are homomorphisms ofR-modules such thatλϕ = λψ due toλg = µ f.
Note thatλ : R→ S is a ring epimorphism andΛ is an S-module. This implies that the homomorphism
HomR(λ,Λ) : HomR(S,Λ) → HomR(R,Λ) is an isomorphism, and soϕ = ψ. Similarly, we can show that
(ms) f = (m) f (s)g. Consequently, the maph preserves multiplication and is actually a ring homomorphism.
Thus the ringS⋉M, together withρ andλ̃, is the coproduct ofSandR⋉M overR. �

Now we prove a couple of properties on coproducts of rings, which our later proofs will rely on.

Lemma 2.5. Let R0 be a ring, and let Ri be an R0-ring with ring homomorphismλRi : R0 → Ri for i = 1,2.
(1) If λR1 : R0 → R1 is a ring epimorphism, then so is the canonical homomorphismρ2 : R2 → R1⊔R0 R2.
(2) Let I be an ideal of R0, and let J be the ideal of R2 generated by the image(I)λR2 of I under the map

λR2. If R1 = R0/I and λR1 : R0 → R1 is the canonical surjective map, then R1⊔R0 R2 = R2/J.

Proof. (1) It follows from the definition of coproducts of rings thatλR1 ρ1 = λR2ρ2 : R0 → R1⊔R0 R2. We
point out thatρ2 is a ring epimorphism. In fact, iff ,g : R1⊔R0 R2 → Sare two ring homomorphisms such that
ρ2 f = ρ2g, thenλR2ρ2 f = λR2ρ2g. This means thatλR1ρ1 f = λR1ρ1g, and thereforeρ1 f = ρ1g sinceλR1 is a
ring epimorphism. By the universal property of coproducts,we haveg= f . Thusρ2 is a ring epimorphism.

(2) Let ρ2 : R2 → R2/J be the canonical surjection, and letρ1 : R1 → R2/J be the ring homomorphism
induced byλR2 sinceJ = R2(I)λR2 R2 ⊇ (I)λR2. Now, we claim thatR2/J together withρ1 andρ2 is the
coproduct ofR1 andR2 overR0. Clearly, we haveλR1 ρ1 = λR2ρ2 : R0 → R2/J. Further, assume thatτ1 : R1 →
Sandτ2 : R2 → Sare two ring homomorphisms such thatλR2τ2 = λR1τ1. Then(I)λR2τ2 = (I)λR1τ1 = 0, and
therefore(J)τ2 = 0. This means that there is a unique ring homomorphismδ : R2/J → Ssuch thatτ2 = ρ2δ.
It follows thatλR1τ1 = λR2τ2 = λR2ρ2δ = λR1ρ1δ. SinceλR1 is surjective, we haveτ1 = ρ1δ. This shows that
R1⊔R0 R2 = R2/J. �

The next result tells us that universal localizations are preserved by taking coproducts of rings.

Lemma 2.6. [5, Lemma 6.2]Let R0 be a ring,Σ a set of homomorphisms between finitely generated projec-
tive R0-modules, andλΣ : R0→R1 := (R0)Σ the universal localization of R0 at Σ. Then, for any R0-ring R2, the
coproduct R1⊔R0 R2 is isomorphic to the universal localization(R2)∆ of R2 at the set∆ := {R2⊗R0 f | f ∈ Σ}.

3 Proof of Theorem 1.1

From now on, we keep the notation introduced in Section 1.
Given ring homomorphismsλ : R→ Sandµ : R→ T, we have defined

B :=

(
S S⊗RT
0 T

)
, C := M2(S⊔RT) =

(
S⊔RT S⊔RT
S⊔RT S⊔RT

)
,

and a ring homomorphismθ : B−→C in Section 1.
Summing up our notation introduced before, we reach at the following commutative diagram inK (R)

with two rows being distinguished triangles:

(∗) R

µ

��

λ // S

µ′

��
ρ

��

π // Q•

µ•

��

ν // R[1]

µ[1]
��

T λ′
//

φ
,,

S⊗RT

h
%%

// Q•⊗RT // T[1]

S⊔RT
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whereρ andφ come from the definition of coproducts ofR-rings, the maph is defined bys⊗ t 7→ (s)ρ(t)φ
for s∈ Sandt ∈ T, andµ• := (µi)i∈Z is the chain map defined byµ−1 := µ, µ0 := µ′ andµi = 0 for i 6=−1,0.

Recall that(λ,µ) is semi-exact if the homomorphism

(
µ′

−λ′

)
: S⊕T →S⊗RT is surjective. The kernel

of this map is denoted byK. It is clear thatK is indeed a subring of the direct sumS⊕T of the ringsSand
T. If, moreover, the canonical ring homomorphism fromR to K is an isomorphism, then(λ,µ) is called an
exact pair of ring homomorphisms. Note that(λ,µ) is exact if and only if the mapping cone

0−→ R
(−λ,µ)
−→ S⊕ T

(
µ′

λ ′

)

−→ S⊗RT −→ 0

of the chain mapµ• in C (R) is an exact sequence ofR-modules. Clearly, this is equivalent to saying thatµ•

is a quasi-isomorphism inK (R), that is, the chain mapµ• : Q• → Q•⊗RT is an isomorphism inD(R).

Sete1 :=

(
1 0
0 0

)
, e2 :=

(
0 0
0 1

)
∈B, and letϕ : Be1 →Be2 be the map sending

(
s
0

)
to

(
s⊗1

0

)

for s∈ S. Under the isomorphism HomB(Be1,Be2)≃ S⊗RT, the mapϕ corresponds to 1⊗1 in S⊗RT.

Let P• be the complex 0→ Be1
ϕ

−→ Be2 → 0 overB with Be1 andBe2 in degrees−1 and 0, respectively.
Clearly,P• is a bounded complex overB consisting of finitely generated projectiveB-modules, and there is a
distinguished triangle inK (B):

Be1
ϕ

−→ Be2 −→ P• −→ Be1[1].

Note thatBe1 andBe2 are also rightR-modules viaλ andµ, respectively, and that the mapϕ is actually a
homomorphism of rightR-modules. Hence, we can easily see that the above triangle isalso a distinguished
triangle inK (B⊗Z R

op
). In addition,Be1 andBe2 can be regarded as a rightS-module and a rightT-module,

respectively.
The mapϕ will play an important role in our discussion below.

Lemma 3.1. [16, Theorem 4.10, p. 59]The universal localization Bϕ of B at ϕ coincides with the ring
homomorphismθ defined in Introduction. In particular, we have Bϕ =C.

Combining Lemma 2.1 with Lemma 3.1, the ring homomorphismθ : B→C is a ring epimorphism, and
therefore the restriction functorθ∗ : C-Mod→ B-Mod is fully faithful. Now, we define a full subcategory of
D(B):

D(B)C-Mod := {X• ∈ D(B) | Hn(X•) ∈C-Mod for all n∈ Z}.

Clearly, we haveX[n]∈D(B)C-Mod for all X ∈C-Mod and alln∈Z. Also, by [5, Proposition 3.3(3)], we have

D(B)C-Mod = Ker
(
HomD(B)(Tria(P•),−)

)
= {X• ∈ D(B) | HomD(B)(P

•,X•[n]) = 0 for all n∈ Z},

or equivalently,
D(B)C-Mod = {X• ∈ D(B) | Hn(Hom•

B(P
•,X•)

)
= 0 for all n∈ Z}.

The following result is taken from [5, Proposition 3.6(a) and (b)(4-5)]. See also [12, Theorem 0.7 and
Proposition 5.6].

Lemma 3.2. Let i∗ be the canonical embedding ofD(B)C-Mod into D(B). Then there is a recollement

D(B)C-Mod

i∗ // D(B) //
gg

i∗

ww
Tria(P•)

gg

ww

such that i∗ is the left adjoint of i∗. Moreover, the mapθ : B→C is homological if and only if Hn
(
i∗i∗(B)

)
= 0

for all n 6= 0. In this case, the derived functor D(θ∗) : D(C)→ D(B)C−Mod is an equivalence of triangulated
categories.

12



To realize Tria(P•) in Lemma 3.2 by the derived category of a ring, we first establish some connec-
tions between semi-exact pairs of ring homomorphisms and self-orthogonal complexes in derived module
categories. Recall that a complexX• in D(B) is calledself-orthogonalif HomD(B)(X

•,X•[n]) = 0 for any
n 6= 0.

Lemma 3.3. (1) EndD(B)(P
•)≃ K as rings.

(2) The pair(λ,µ) is semi-exact if and only ifHomD(B)

(
P•,P•[n]

)
= 0 for any n 6= 0.

Proof. (1) Note thatP• is a bounded complex overB consisting of finitely generated projectiveB-
modules. It follows that EndD(B)(P

•) ≃ EndK (B)(P
•) as rings. Since HomB(Be2,Be1) = 0, we see that

EndK (B)(P
•) ≃ EndC (B)(P

•). Moreover, if EndB(Be1) and EndB(Be2) are identified withS andT, respec-
tively, then each chain map in EndC (B)(P

•) corresponds uniquely to an element ofK. It is easy to check that
this correspondence is a ring isomorphism. Thus EndD(B)(P

•)≃ K as rings.
(2) It is clear that HomD(B)

(
P•,P•[n]

)
≃ HomK (B)

(
P•,P•[n]

)
= 0 for all n ∈ Z with |n| ≥ 2. Since

HomB(Be2,Be1) = 0, we get HomD(B)

(
P•,P•[−1]

)
= 0. Observe that HomK (B)

(
P•,P•[1]

)
= 0 if and only if

HomB(Be1,Be2) = ϕEndB(Be2)+EndB(Be1)ϕ. If we identify HomB(Be1,Be2), EndB(Be1) and EndB(Be2)
with S⊗RT, SandT, respectively, then the latter condition is equivalent to that the map

(
µ′

−λ′

)
: S⊕T −→ S⊗RT, (s, t) 7→ s⊗1−1⊗ t, s∈ S, t ∈ T,

is surjective, that is, the pair(λ,µ) is semi-exact by definition. This finishes the proof of(2). �

Corollary 3.4. If (λ,µ) is semi-exact, then there is a recollement of derived modulecategories:

D(B)C-Mod
// D(B) //

gg

ww
D(K)

ff

xx
.

Moreover, if(λ,µ) is exact, then the K can be replaced by R in the recollement.

Proof. Since(λ,µ) is semi-exact, we see from Lemma 3.3 that the compact complexP• is self-orthogonal
with EndD(B)(P

•)≃ K. Now, it follows from [11, Corollary 8.4, Theorem 8.5] that Tria(P•) is equivalent to
D(K) as triangulated categories. Thus we get the above recollement. Now, the last statement of Corollary
3.4 follows immediately from the definition of exact pairs. This finishes the proof.�

As a consequence of Corollary 3.4 and Lemma 3.2, we get the following important result which will be
used in the proof of Theorem 1.1.

Corollary 3.5. Suppose that(λ,µ) is an exact pair. Ifθ : B→C is homological, then there exists a recollement
of derived module categories:

D(S⊔RT) // D(B) //
gg

ww
D(R)

ff

xx
.

Throughout the rest of this section,we always assume that(λ,µ) is an exact pair.

Thus, it follows from Corollary 3.4 that there exists a recollement of triangulated categories:

(⋆) : D(B)C-Mod

i∗ // D(B)
j ! //

i!

gg

i∗

ww
D(R)

j∗

ff

j!
xx
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wherei∗ is the canonical embedding and the other functors will be specified in the next lemma. In particular,
if ε : j! j ! → IdD(B) is the counit adjunction with respect to the adjoint pair( j!, j !), then, for anyX• ∈ D(B),
there exists a canonical triangle

j! j !(X•)
εX•
−→ X• −→ i∗i

∗(X•)−→ j! j !(X•)[1].

Before we state the next lemma, we first defineP•∗ := HomB(P•,B) which is isomorphic to the complex

0−→ e2B
ϕ∗
−→ e1B−→ 0 overBop with e2B ande1B in degrees 0 and 1, respectively. Clearly, the latter is a

complex ofR-B-bimodules. Here, the leftR-module structures ofe1B ande2B are given via the mapsλ and
µ, respectively.

Lemma 3.6. In the recollement(⋆), we have

j! = P•⊗L

R−, j ! = Hom•
B(P

•,−), j∗ = RHomR(P
•∗,−).

Moreover, the functor j! induces a triangle equivalence fromTria(P•) to D(R).

Proof. The idea of our proof is motivated by [11]. SinceP• is a complex ofB-R-bimodules, the total left-
derived functorP•⊗L

R− : D(R)→ D(B) and the total right-derived functorRHomB(P•,−) : D(B)→ D(R)
are well defined. Moreover, sinceP• is a bounded complex of finitely generated projectiveB-modules,
the functor Hom•B(P

•,−) : K (B)→ K (R) preserves acyclicity, that is, Hom•B(P
•,M•) is acyclic whenever

M• ∈ C (B) is acyclic. This automatically induces a derived functorD(B) −→ D(R), which is defined by
M• 7→ Hom•

B(P
•,M•). Therefore, we can replaceRHomB(P•,−) with the Hom-functor Hom•B(P

•,−) up to
natural isomorphism.

Now, we claim that the functorP•⊗L

R− is fully faithful and induces a triangle equivalence fromD(R) to
Tria(P•).

To prove this claim, we first show that the functorP•⊗L

R− : D(R)−→ D(B) is fully faithful.
Let

Y := {Y• ∈ D(R) | P•⊗L

R− : HomD(R)(R,Y
•[n])

≃
−→ HomD(B)(P

•⊗L

R R,P•⊗L

RY•[n]) for all n∈ Z}.

Clearly,Y is a full triangulated subcategory ofD(R). SinceP•⊗L

R− commutates with arbitrary direct sums
and sinceP• is compact inD(B), we know from the property (2) in Section 2.1 thatY is closed under
arbitrary direct sums inD(R).

In the following, we shall show thatY containsR. It is sufficient to prove that
(1)P•⊗L

R− induces an isomorphism of rings from EndD(R)(R) to EndD(R)(P
•⊗L

R R), and
(2)HomD(B)(P

•⊗L

R R,P•⊗L

R R[n]) = 0 for anyn 6= 0.

SinceP•⊗L

R R≃ P• in D(B), we know that(1) is equivalent to saying that the right multiplication map
R→ EndD(R)(P

•) is an isomorphism of rings, and that(2) is equivalent to HomD(B)(P
•,P•[n]) = 0 for any

n 6= 0. Actually, since(λ,µ) is an exact pair,(1) and (2) follow directly from Lemma 3.3 (1) and (2),
respectively. This showsR∈ Y .

Thus we haveY =D(R) sinceD(R) = Tria(R). Consequently, for anyY• ∈D(R), there is the following
isomorphism:

P•⊗L

R− : HomD(R)(R,Y
•[n])

≃
−→ HomD(B)(P

•⊗L

R R,P•⊗L

RY•[n]) for all n∈ Z.

Now, fix N• ∈ D(R) and consider

XN• := {X• ∈ D(R) | P•⊗L

R− : HomD(R)(X
•,N•[n])

≃
−→ HomD(B)(P

•⊗L

R X•,P•⊗L

R N•[n]) for all n∈ Z}.
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Then, one can check thatXN• is a full triangulated subcategory ofD(R), which is closed under arbitrary
direct sums inD(R). SinceR∈ XN• andD(R) = Tria(R), we getXN• = D(R). Consequently, for any
M• ∈ D(R), we have the following isomorphism:

P•⊗L

R− : HomD(R)

(
M•,N•[n]

) ≃
−→ HomD(B)

(
P•⊗L

R M•,P•⊗L

R N•[n]
)

for all n∈ Z. This means thatP•⊗L

R− : D(R)→ D(B) is fully faithful.
Recall that Tria(P•) is the smallest full triangulated subcategory ofD(B), which containsP• and is closed

under arbitrary direct sums inD(B). It follows that the image ofD(R) underP•⊗L

R− is Tria(P•) (see the
property (2) in Section 2.1) and thatP•⊗L

R− induces a triangle equivalence fromD(R) to Tria(P•).
Note that Hom•B(P

•,−) is a right adjoint ofP• ⊗L

R −. This means that the restriction of the functor
Hom•

B(P
•,−) to Tria(P•) is the quasi-inverse of the functorP• ⊗L

R − : D(R) → Tria(P•). In particular,
Hom•

B(P
•,−) induces an equivalence of triangulated categories:

Tria(P•)
≃

−−−−→ D(R).

Furthermore, it follows from [5, Proposition 3.3(3)] that

D(B)C−Mod = {X• ∈ D(B) | HomD(B)(P
•,X•[n]) = 0 for all n∈ Z}= Ker

(
Hom•

B(P
•,−)

)
.

Therefore, we can choosej! = P•⊗L

R− and j ! = Hom•
B(P

•,−).
SinceP• is a bounded complex ofB-R-bimodules with all of its terms being finitely generated andpro-

jective asB-modules, there exists a natural isomorphism of functors (see Section 2.1):

P•∗⊗•
B−

≃
−→ Hom•

B(P
•,−) : C (B)−→ C (R).

This implies that the former functor preserves acyclicity,since the latter always admits this property. It
follows that the functorsP•∗ ⊗L

B − andP•∗⊗•
B− : D(B) → D(R) are naturally isomorphic, and therefore

j ! ≃P•∗⊗L

B−. Clearly, the functorP•∗⊗L

B− has a right adjointRHomR(P•∗,−). This means that the functor
j ! can also haveRHomR(P•∗,−) as a right adjoint functor (up to natural isomorphism). However, by the
uniqueness of adjoint functors in the recollement, we see that j∗ is naturally isomorphic toRHomR(P•∗,−).
Thus, we can choosej∗ =RHomR(P•∗,−). This finishes the proof of Lemma 3.6.�

Now we considerθ as a homomorphism ofB-B-bimodules, and denote its mapping cone byW•[1]. Then
we have a distinguished triangle

W• ξ
−→ B

θ
−→C−→W•[1]

in K (B⊗Z Bop). This yields two relevant triangles

W•ei
ξi

−→ Bei
θi−→Cei −→W•ei [1]

in K (B) for i = 1,2. Note thatCe1 ≃Ce2 asB-modules.

Lemma 3.7. (1) There is a triangle W•e1 −→W•e2 −→ P• −→W•e1[1] in D(B).

(2) j !(W•e1)≃ j !(Be1)≃ S[−1] and j!(W•e2)≃ j !(Be2)≃ (Q•⊗RT)[−1]≃ Q•[−1] in D(R).

(3) i∗i∗(Be1)≃ i∗i∗(Be2) in D(B).
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Proof. (1) Let f 0 = ϕ, and let f 1 : Ce1 → Ce2 be the right multiplication map induced bye12 :=(
0 1
0 0

)
∈C. Then we can construct the following commutative diagram inB-Mod:

W•e1 :

f •

��

0 //

��

Be1
θ1 //

ϕ
��

Ce1

f 1 ≃

��
W•e2 :

��

0 //

��

Be2
θ2 //

(0,1)
��

Ce2

Cone( f •) : Be1
(−θ1,ϕ)// Ce1⊕Be2

(
f 1

θ2

)

// Ce2

Consequently, we get a triangleW•e1
f •

−→W•e2 −→ Cone( f •)−→W•e1[1] in D(B). Since the mapf 1 is an
isomorphism, one can check that Cone( f •)≃ P• in D(B). This proves(1).

(2) SinceD(B)C−Mod=Ker( j !), it follows fromC∈D(B)C−Mod that j !(BC)= 0, and thereforej !(W•e1)≃
j !(Be1) and j !(W•e2)≃ j !(Be2) in D(R). Note that the complexj !(Be1) is of the form

· · · −→ 0−→ HomB(Be2,Be1)
ϕ∗
−→ HomB(Be1,Be1)−→ 0−→ ·· ·

which is isomorphic toS[−1] as complexes. Similarly, one can show thatj !(Be2) is isomorphic inD(R) to the

complex 0−→ T
λ′

−→ S⊗RT −→ 0 overRwith T in degree 0. Recall that the latter complex is isomorphic to
Q•[−1] in D(R) and thatQ• is isomorphic toQ•⊗RT in D(R), since the pair(λ,µ) is exact (see the diagram
(∗)). Thus j !(Be2)≃ Q•[−1]≃ (Q•⊗RT)[−1] in D(R). This completes the proof of(2).

(3) Since Hom•B(P
•,−) : Tria(P•)−→ D(R) is an equivalence by Lemma 3.6, we see that the morphism

εP• : j! j !(P•) → P• is an isomorphism inD(B). Hencei∗i∗(P•) = 0 in D(B). Then, it follows from the
following commutative diagram with all rows and columns being triangles inD(B):

j! j !(P•[−1])

≃

��

// j! j !(Be1)
j! j !(ϕ) //

εBe1

��

j! j !(Be2) //

εBe2

��

j! j !(P•)

εP• ≃

��
P•[−1]

��

// Be1

��

ϕ // Be2

��

// P•

��
i∗i∗(P•[−1]) //

��

i∗i∗(Be1)
i∗i∗(ϕ) //

��

i∗i∗(Be2)

��

// i∗i∗(P•)

��
j! j !(P•) // j! j !(Be1)[1] // j! j !(Be2)[1] // j! j !(P•)[1]

that i∗i∗(ϕ) : i∗i∗(Be1)−→ i∗i∗(Be2) is an isomorphism inD(B). This proves(3). �

Lemma 3.8. If λ : R→ S is homological, then

(1) i∗i∗(Be1)≃ Be2⊗
L

R S inD(B). In particular, H j
(
i∗i∗(Be1)

)
≃

{
0 if j > 0,
TorR− j (Be2,S) if j ≤ 0.

(2) The homomorphism T⊗R S→ S⊔R T, defined by t⊗ s 7→ (t)φ(s)ρ for t ∈ T and s∈ S, induces an
isomorphism of T-modules. Moreover, S⊔RT ≃ EndT(T ⊗RS) as rings.

Proof. SetΓ := S⊔RT. We define four homomorphisms:

m : S⊗RS→ S, s1⊗s2 7→ s1s2, ϕ1 : S⊗RS→ S⊗RT ⊗RS, s1⊗s2 7→ s1⊗1⊗s2,
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ϕ2 : S⊗RT ⊗RS→ Γ, s1⊗ t ⊗s2 7→ (s1)ρ(t)φ(s2)ρ, ϕ3 : T ⊗RS→ Γ, t ⊗s1 7→ (t)φ(s1)ρ

for s1,s2 ∈ S andt ∈ T. Note that they are all well defined. Moreover, we identifyBe1⊗R S andBe2⊗RS

with
(

S⊗RS
0

)
and

(
S⊗RT⊗RS

T⊗RS

)
asB-modules, respectively. Then there are two chain maps inC (B):

P•⊗R(S[−1]) :

f •

��

0 //
(

S⊗RS
0

)

≃ (m
0 )

��

( ϕ1
0 ) //

(
S⊗RT⊗RS

T⊗RS

)

(
ϕ2
ϕ3

)

��

// 0

W•e1 :

ξ1

��

0 //
(

S
0

) ( ρ
0 ) //

(
Γ
Γ

)

0

��

// 0

Be1 : 0 //
(

S
0

)
// 0 // 0

(1) Let pHomB(P•,Be1) be a projective resolution of the complex HomB(P•,Be1) in D(R) with

τ : pHomB(P
•,Be1)−→ HomB(P

•,Be1)

a quasi-isomorphism (see Section 2). Note that the leftR-module structure of HomB(P•,Be1) is induced from
the rightR-structure ofP• and that HomB(P•,Be1)≃S[−1] as complexes ofR-modules. In the following, we
always identify HomB(P•,Be1) with S[−1]. Then one can check directly that the counitεBe1 : j! j !(Be1)−→
Be1 is just the composite of the following canonical morphisms:

j! j !(Be1) = P•⊗•
R

(
pHomB(P

•,Be1)
) P•⊗τ
−→ P•⊗•

RHomB(P
•,Be1) = P•⊗•

R(S[−1])
f • ξ1
−→ Be1.

Now we apply the triangle functor−⊗L

R HomB(P•,Be1) to the distinguished triangle

Be2 −→ P• −→ Be1[1]
ϕ[1]
−→ Be2[1]

in K (B⊗Z R
op
), and establish easily the following commutative diagram with all rows being distinguished

triangles inD(B):

Be2⊗
L
R HomB(P•,Be1) //

��

P•⊗L
R HomB(P•,Be1)

εBe1

��❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃

//

P•⊗τ
��

Be1⊗
L
R HomB(P•,Be1)[1]

Be1⊗τ ≃

��

ϕ⊗L

R1 // Be2⊗
L
R HomB(P•,Be1)[1]

Be2⊗τ[1]
��

Be2⊗RHomB(P•,Be1) // P•⊗•
RHomB(P•,Be1) // Be1⊗RHomB(P•,Be1)[1]

ϕ⊗1 // Be2⊗RHomB(P•,Be1)[1]

Be2⊗R(S[−1]) //

��

P•⊗•
R(S[−1])

f •

��

// Be1⊗RS

(m
0 )≃

��

ϕ⊗1 // Be2⊗RS
(

ϕ2
ϕ3

)

��(
Γ
Γ

)
[−1] // W•e1

ξ1 // Be1 =
(

S
0

)

ηBe1

**❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

θ1 // Ce1 =
(

Γ
Γ

)

i∗i∗(Be1)

whereηBe1 is the unit adjunction of the adjoint pair(i∗, i∗), and where the first and third isomorphisms in the
third column follow from the fact thatλ : R→ S is homological. This implies that there is an isomorphism
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β : Be2⊗
L

R HomB(P•,Be1)[1] −→ i∗i∗(Be1) in D(B) such that the following diagram commutes:

P•⊗L

R HomB(P•,Be1) // Be1⊗
L

R HomB(P•,Be1)[1]
ϕ⊗L1 //

(Be1⊗τ)(m
0 ) ≃

��

Be2⊗
L

R HomB(P•,Be1)[1]

β ≃

��✤
✤

✤

P•⊗L

R HomB(P•,Be1)
εBe1 // Be1 =

(
S
0

) ηBe1 // i∗i∗(Be1)

.

As a result, we haveBe2 ⊗
L

R S≃ i∗i∗(Be1) in D(B). It is clear thatH j
(
Be2⊗

L

R S
)
≃ TorR− j(Be2,S) for any

j ∈Z. Since isomorphic objects inD(B) have the isomorphic cohomology groups in each degree, (1) follows.
This finishes the proof of(1).

(2) Define
σ = β−1(Be2⊗ τ[1]) : i∗i

∗(Be1)−→ Be2⊗RS,

γ =
(

ϕ2

ϕ3

)
: Be2⊗RS−→Ce1 and ω = ηBe1σ : Be1 −→ Be2⊗RS.

Then, it follows from the above two commutative diagrams that ω=
(m

0

)−1
(ϕ⊗1). This means thatθ1 =ωγ.

Now, we claim that the mapγ is an isomorphism inB-Mod. In order to show this, it is sufficient to prove
thatBe2⊗RS∈C-Mod and that the induced map

HomB(γ,M) : HomB(Ce1,M)−→ HomB(Be2⊗RS,M)

is bijective for everyC-moduleM.
In fact, by (1), we know thatH0(i∗i∗(Be1)) ≃ Be2 ⊗R S. In particular, Be2 ⊗R S∈ C-Mod because

i∗i∗(Be1) ∈ D(B)C−Mod. Moreover, sinceθ : B → C is a ring epimorphism by Lemma 3.1, the mapθ1

always induces a bijection

HomB(θ1,M) : HomB(Ce1,M)
≃

−→ HomB(Be1,M).

Then, it follows fromθ1 = ωγ that HomB(θ1,M) = HomB(γ,M)HomB(ω,M). This means that, to verify the
bijection of HomB(γ,M), it suffices to show that

HomB(ω,M) : HomB(Be2⊗RS,M)−→ HomB(Be1,M)

is bijective. This is equivalent to verifying that both HomD(B)(ηBe1,M)) and HomD(B)(σ,M) are bijective.
On the one hand, sinceM ∈C-Mod andj! j !(Be1)∈Tria(P•) by Lemma 3.6, we have HomD(B)( j! j !(Be1),M[n])

= 0 for anyn∈ Z. Applying HomD(B)(−,M) to the triangle

j! j !(Be1)
εBe1−→ Be1

ηBe1−→ i∗i
∗(Be1)−→ j! j !(Be1)[1],

we infer that
HomD(B)(ηBe1,M) : HomD(B)(i∗i

∗(Be1), M)−→ HomB(Be1,M)

is bijective. On the other hand, sincei∗i∗(Be1)≃Be2⊗
L

RSin D(B) by (1), we know thatH j(i∗i∗(Be1))= 0 for
any j > 0 andH0(σ)=H0(β)−1H0(Be2⊗τ[1]) : H0(i∗i∗(Be1))

≃
−→Be2⊗RS. Now, we apply the cohomology

functorHm(−) to the triangle

(†) U• −→ i∗i
∗(Be1)

σ
−→ Be2⊗RS−→U•[1]

in D(B) induced fromσ, and getHm(U•) = 0 for anym≥ 0. LetU• = (U i ,di)i∈Z andV• be the complex

· · · −→U−3 d−3

−→U−2 d−2

−→ Ker(d−1)−→ 0−→ ·· · .
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ThenV• ≃U• in D(B), and therefore HomD(B)(U•,M)≃ HomD(B)(V•, iM)≃ HomK (B)(V•, iM) = 0. Sim-
ilarly, we can show that HomD(B)(U

•[1],M) = 0. Applying HomD(B)(−,M) to the triangle(†), we conclude
that

HomD(B)(σ,M) : HomB(Be2⊗RS, M)−→ HomB(i∗i
∗(Be1),M)

is bijective. Thus, HomB(ω,M) is bijective andγ is an isomorphism ofB-modules.

Now, it follows fromγ =
(

ϕ2
ϕ3

)
thatϕ3 : T⊗RS→ Γ is an isomorphism ofT-modules. Sinceλ : R→ S is

a ring epimorphism, we deduce from Lemma 2.5(1) thatφ : T → Γ is also a ring epimorphism, and therefore
Γ ≃ EndΓ(Γ)≃ EndT(Γ)≃ EndT(T ⊗RS) as rings. This completes the proof of(2). �

To prove Theorem 1.1, we need to establish the following two important lemmas.

Lemma 3.9. If λ : R→ S is homological, thenTorRi (S,T) = 0 for any i> 0.

Proof. Recall that we have a distinguished triangleR
λ

−→ S→ Q• → R[1] in D(R). Sinceλ is homolog-

ical, it follows from [9, Theorem 4.4] thatλ induces the following isomorphismsS
≃

−→ S⊗L

R R
S⊗L

Rλ
−→ S⊗L

R S
in D(S). This clearly implies thatS⊗L

R Q• = 0 in D(S), and thereforeS⊗L

R Q• = 0 in D(R). Since
(λ,µ) is an exact pair, we have seen thatµ• : Q• → Q•⊗R T is an isomorphism inD(R) (see the diagram
(∗)). As a result, we haveS⊗L

R

(
Q• ⊗R T

)
≃ S⊗L

R Q• = 0 in D(S). By applyingS⊗L

R − to the triangle

T
λ′

−→ S⊗R T −→ Q•⊗RT −→ T[1], we obtainS⊗L

R T ≃ S⊗L

R

(
S⊗R T

)
in D(S) (and also inD(R)). This

yields that TorRi (S,T)≃ TorRi (S,S⊗RT) for any i ≥ 0. AsS⊗RT is a leftS-module andλ is homological, it
follows that TorRi (S,S⊗RT) = TorSi (S,S⊗RT) = 0 for anyi > 0, and therefore TorR

i (S,T) = 0. This finishes
the proof.�

Lemma 3.10. Given a commutative diagram of ring homomorphisms:

R

µ

��

λ // S

f
��

T
g // Γ,

if λ is homological and(λ,µ) is exact, then the following statements are equivalent:
(1) The ring homomorphism g: T → Γ is homological.
(2) The ring homomorphism

θ f ,g : B−→ M2(Γ),
(

s1 s2⊗ t2
0 t1

)
7→

(
(s1) f (s2) f (t2)g

0 (t1)g

)
, si ∈ S, ti ∈ T, i = 1,2

is homological.

Proof. SetΛ :=M2(Γ). Lete1 :=

(
1 0
0 0

)
ande2 :=

(
0 0
0 1

)
∈B, and lete:= (e2)θ f ,g ∈Λ. Then we

havee= e2, EndΛ(Λe)≃ Γ and EndB(Be2)≃ T. Observe thatΛe is a projective generator forΛ-Mod. Then,
by Morita theory, the tensor functoreΛ⊗Λ − : Λ-Mod −→ Γ-Mod is an equivalence of module categories,
which can be canonically extended to a triangle equivalenceD(eΛ⊗Λ −) : D(Λ)→ D(Γ).

It is clear thate2B⊗ BΛ ≃ e2 ·Λ = eΛ asT-Λ-bimodules, where the leftT-module structure ofeΛ is
induced byg : T → Γ. Thus the following diagram of functors between module categories

Λ-Mod
eΛ⊗Λ− //

(
θ f ,g

)
∗
��

Γ-Mod

g∗
��

B-Mod
e2B⊗B− // T-Mod
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is commutative, where
(
θ f ,g

)
∗

andg∗ stand for the restriction functors induced by the ring homomorphisms
θ f ,g andg, respectively. Since all of the functors appearing in the diagram are exact, we can pass to de-
rived module categories and get the following commutative diagram of functors between derived module
categories:

(†) D(Λ)
D
(

eΛ⊗Λ−
)

//

D
(
(θ f ,g)∗

)
��

D(Γ)

D(g∗)
��

D(B)
D
(

e2B⊗B−
)
// D(T)

where the functorD
(
eΛ⊗Λ −

)
in the upper row is a triangle equivalence.

Note thatθ f ,g : B → Λ (respectively,g : T → Γ ) is homological if and only if the functorD
(
(θ f ,g)∗

)

(respectively,D(g∗) ) is fully faithful. This means that, to prove that(1) and(2) are equivalent, it is necessary
to establish some further connection betweenD

(
(θ f ,g)∗

)
andD(g∗) in the diagram(†).

Actually, the triangle functorD(e2B⊗B−) induces a triangle equivalence from Tria(Be2) to D(T). This
can be obtained from the following classical recollement ofderived module categories:

D(S)
S⊗L

S− // D(B)
D(e2B⊗B−) //

bb

||
D(T)

bb

Be2⊗
L

T−

}}

which arises form the triangular structure of the ringB.
Suppose that the image Im

(
D
(
(θ f ,g)∗

))
of the functorD

(
(θ f ,g)∗

)
belongs to Tria(Be2). Then we can

strengthen the diagram(†) by the following commutative diagram of functors between triangulated cate-
gories:

D(Λ)
D
(
(θ f ,g)∗

)

yyss
ss
ss
ss
s

D(eΛ⊗Λ−)

≃
//

D
(
(θ f ,g)∗

)
��

D(Γ)

D(g∗)
��

D(B) Tria(Be2)? _oo D(e2B⊗B−)

≃
// D(T)

This implies thatD
(
(θ f ,g)∗

)
is fully faithful if and only if so isD(g∗), and thereforeθ f ,g is homological if

and only ifg is homological.
So, to finish the proof of Lemma 3.10, it suffices to prove that Im

(
D
(
(θ f ,g)∗

))
⊆ Tria(Be2). In the

following, we shall concentrate on proving this inclusion.
In fact, it is known thatD(Λ) = Tria(Λe) andD

(
(θ f ,g)∗

)
commutes with small coproducts since it admits

a right adjoint. Therefore, according to the property (2) inSection 2.1, in order to check the above inclusion,
it is enough to proveΛe∈ Tria(Be2) when considered as aB-module viaθ f ,g. If we identify e2B⊗B− with

the left multiplication functor bye2, thenΛe∈ Tria(Be2) if and only if Be2⊗
L

T e2 · (Λe)
≃

−→ Λe in D(B).
Clearly, the latter is equivalent to that TorT

n (Be2, e2 · (Λe)) = 0 for anyn> 0 and the canonical multiplication
mapBe2⊗T e2 · (Λe) −→ Λe is an isomorphism.

SetM := S⊗RT and writeB-modules in the form of triples(X,Y,h) with X ∈ T-Mod,Y ∈ S-Mod andh :
M⊗T X →Y a homomorphism ofS-modules. The morphisms between two modules(X,Y,h) and(X′,Y′,h′)
are pairs of morphisms(α,β), whereα : X → X′ andβ : Y →Y′ are homomorphisms inT-Mod andS-Mod,
respectively, such thathβ = (M⊗T α)h′.

With these interpretations, we rewriteΛe= (Γ, Γ,δΓ) ∈ B-Mod, whereδΓ : M ⊗T Γ → Γ is defined
by (s⊗ t)⊗ γ 7→ (s) f (t)gγ for s∈ S, t ∈ T and γ ∈ Γ. Thene2 · (Λe) = eΛe≃ Γ as leftT-modules, and
Be2 ≃ M⊕T as rightT-modules. Consequently, we have

Be2⊗T e2 · (Λe) ≃ Be2⊗T Γ ≃ (Γ, M⊗T Γ, 1) and TorTn (Be2, e2 · (Λe))≃ TorTn (M⊕T,Γ)≃ TorTn (M,Γ)
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for any n > 0. This implies that the multiplication mapBe2⊗T e2 · (Λe) −→ Λe is an isomorphism if and
only if so is the mapδΓ. It follows thatBe2⊗

L

T e2 · (Λe)≃ Λe in D(B) if and only if δΓ is an isomorphism of
S-modules and TorT

n (M,Γ) = 0 for anyn> 0.
In order to verify the latter conditions just mentioned, we shall prove the following general result:
For anyΓ-moduleW, if we regardW as a leftT-module viag and anS-module via f , then the map

δW : M ⊗T W →W, defined by(s⊗ t)⊗w 7→ (s) f (t)gw for s∈ S, t ∈ T andw∈W, is an isomorphism of
S-modules, and TorT

i (M,W) = 0 for anyi > 0.
To prove this general result, we fix a projective resolutionV• of SR:

· · · −→Vn −→Vn−1 −→ ·· · −→V1 −→V0 −→ SR −→ 0

with V i a projective rightR-module for eachi. By Lemma 3.9, we have TorR
j (S,T) = 0 for any j > 0. It

follows that the complexV• ⊗R T is a projective resolution of the rightT-moduleM. Thus the following
isomorphisms of complexes of abelian groups:

(
V•⊗RT

)
⊗T W ≃V•⊗R

(
T ⊗T W

)
≃V•⊗RW

imply that TorTi (M,W) ≃ TorRi (S,W) for any i > 0. Recall thatW admits anS-module structure via the
map f . Moreover, it follows fromλ f = µg that theR-module structure ofW endowed via the ring ho-
momorphismµg is the same as the one endowed via the ring homomorphismλ f . Then, it follows from
λ being a homological ring epimorphism that the multiplication mapS⊗RW −→ W is an isomorphism of
S-modules and that TorR

i (S,W) = 0 for all i > 0 (see [9, Theorem 4.4]). Therefore, for anyi > 0, we have
TorTi (M,W)≃ TorRi (S,W) = 0. Note that

M⊗T W = (S⊗RT)⊗T W ≃ S⊗R(T ⊗T W)≃ S⊗RW ≃W

asS-modules. Thus the mapδW is an isomorphism ofS-modules. So the above-mentioned general result
follows.

Now, by applying the above general result toΓ, we can show thatδΓ is an isomorphism and TorT
n (M,Γ) =

0 for anyn> 0. This completes the proof of Lemma 3.10.�

With the above preparations, we now give a proof of Theorem 1.1.

Proof of Theorem 1.1.Note that the second part of Theorem 1.1 is a consequence of Corollary 3.5 and
Lemma 3.8(2). Moreover, in Lemma 3.10, if we takeΓ := S⊔R T, f := ρ andg := φ, thenθ f ,g = θ, and
therefore(1) and(2) in the first part of Theorem 1.1 are equivalent.

In the following, we shall prove that(1) and(3) in the first part of Theorem 1.1 are equivalent.
In fact, by Lemma 3.2, the ring homomorphismθ : B→C is homological if and only ifHn(i∗i∗(B)) = 0

for anyn 6= 0. This is equivalent to saying thatHn(i∗i∗(Be1)) = 0 for anyn 6= 0 sincei∗i∗(B) ≃ i∗i∗(Be1)⊕
i∗i∗(Be2)≃ i∗i∗(Be1)⊕ i∗i∗(Be1) in D(B) by Lemma 3.7(3). Furthermore, Lemma 3.8 shows

Hn(i∗i∗(Be1)
)
≃

{
0 if n> 0,
TorR−n(Be2,S) if n≤ 0.

This implies thatθ is homological if and only if TorR−n (Be2,S)= 0 for anyn< 0. Note thatBe2≃T⊕(S⊗RT)
as rightR-modules and that there is an exact sequence ofR-R-bimodules:

0−→ R
(−λ,µ)
−→ S⊕ T

(
µ′

λ′

)

−→ S⊗RT −→ 0.

Sinceλ : R→ S is a homological ring epimorphism, we have TorR
j (S,S) = 0 for any j > 0, and the map

λ⊗R S : R⊗R S→ S⊗R S is an isomorphism. It follows that TorR
j (T,S) ≃ TorRj (S⊗R T,S) for j > 0 if we
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apply the functor−⊗R S to the above exact sequence. Thus TorR
j (Be2,S) ≃ TorRj (T,S)⊕TorRj (T,S) for all

j > 0. Consequently, the mapθ is homological if and only if TorRn (T,S) = 0 for anyn> 0. This shows that
(1) and(3) are equivalent. Thus, we have verified that all the assertions in the first part of Theorem 1.1 are
equivalent.�

Now, let us illustrate Theorem 1.1 visually by the followingdiagram which indicates explicitly the rela-
tionship among all the assertions in Theorem 1.1. For convenience of the reader, we state it as a corollary.

Corollary 3.11. Let λ : R→ S and µ: R→ T be ring homomorphisms such that(λ,µ) is an exact pair.
Suppose that bothλ : R→ S andφ : T → S⊔R T are homological. Then we can construct the following
‘pull-back’ of recollements of triangulated categories:

D(S)

��

D(S)

D(λ∗)
��

D(C)
D(θ∗) //

≃e2·

��

D(B)
j ! //

e2·

��

@@ ^^

gg

C⊗L

B−

zz
D(R)

j!
vv

j∗

hh

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

?? __

D(S⊔RT)
D(φ∗) // D(T)

]]AA

''❖❖
❖❖

❖❖
❖❖

❖❖
❖dd

zz
Tria(Q•)

F1nn
YY

T⊗L

R−

≃ww♦♦♦
♦♦
♦♦
♦♦
♦♦

Tria(T ⊗RQ•)

F2oo
ZZ

where Fi is the canonical embedding for i= 1,2, and T⊗L

R− induces a triangle equivalence fromTria(Q•)
to Tria(T ⊗RQ•).

Proof. First of all, we point out that, under the assumptions of Corollary 3.11, all the assertions in
Theorem 1.1 are true. In particular, the mapθ : B→C is homological.

Next, we observe the following facts on the above diagram:
(1) The recollement of derived module categories in the second column arises from the triangular struc-

ture of the triangular matrix ringB.
(2) The recollement of triangulated categories in the third column follows from the assumption thatλ is

homological (see the end of Section 2.2).
(3) The recollement of derived module categories in the middle row has been stated in Theorem 1.1,

where EndT(T ⊗RS) in Theorem 1.1 is isomorphic to the coproductS⊔RT, which is Morita equivalent toC.
(4) The left square in the diagram has been discussed in the proofof Lemma 3.10.
So, to complete the proof of Corollary 3.11, it remains to verify the following two statements:
(5) The recollement of triangulated categories in the third rowdoes exist.
(6) The functorT ⊗L

R− : Tria(Q•)−→ Tria(T ⊗RQ•) is an equivalence of triangulated categories.

In order to prove(5), we consider the distinguished triangleT
φ

−→ S⊔T −→ V• −→ T[1] in K (T),
whereV• is the mapping cone ofφ, and claim thatV• ≃ T ⊗R Q• in D(T). In fact, from the triangle

R
λ

−→ S
π

−→ Q• −→ R[1] in K (R), we get the following commutative diagram with all rows being triangles
in D(T):

(♦) T ⊗L

R R

≃

��

1⊗Lλ // T ⊗L

R S
1⊗Lπ //

≃

��

T ⊗L

R Q• //

��

T ⊗L

R R[1]

≃

��
T ⊗RR

1⊗λ //

≃

��

T ⊗RS

≃

��

1⊗π // T ⊗RQ•

��

// T ⊗RR[1]

≃

��
T

φ // S⊔T // V• // T[1]
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where the first and second isomorphisms in the second column follow from TorRi (T,S) = 0 for eachi ≥ 1 and
Lemma 3.8(2), respectively. ThusT⊗L

RQ• ≃T⊗RQ• ≃V• in D(T). Sinceφ is homological, the recollement
in the third row of the diagram does exist (see Section 2.2). So (5) follows.

Finally, we prove (6). By the proof of (5), we see thatT ⊗L

R Q• ≃ T ⊗RQ•. Hence the image of Tria(Q•)
under the functorT ⊗L

R− lies in Tria(T ⊗RQ•). This follows from the property (2) in Section 2.1.
To prove that the restriction functorT⊗L

R− : Tria(Q•)−→ Tria(T⊗RQ•) is fully faithful, we shall show
that the following full subcategory

Y := {Y• ∈ D(R) | T ⊗L

R− : HomD(R)(Q
•,Y•[n])

≃
−→ HomD(T)(T ⊗L

R Q•,T ⊗L

RY•[n]) for all n∈ Z}

containsQ• and is closed under arbitrary direct sums inD(R).
Indeed, letη : IdD(R) −→ D(µ∗)(T ⊗L

R−) be the unit adjunction with respect to the adjoint pair(T ⊗L

R
−,D(µ∗)), whereD(µ∗) : D(T) → D(R) is the derived functor induced from the functorµ∗ : T-Mod →
R-Mod. Then, for eachY• ∈ D(R), there is a unique triangle (up to isomorphism) inD(R):

CY• [−1]−→Y• ηY•−→ RT ⊗L

RY• −→CY•

whereCY• is an object inD(R) uniquely determined by the morphismηY• (up to isomorphism). Since
(T ⊗L

R−,D(µ∗)) is an adjoint pair, one can further prove thatY coincides with

{Y• ∈ D(R) | (ηY•)∗ : HomD(R)(Q
•,Y•[n])

≃
−→ HomD(R)(Q

•,RT ⊗L

RY•[n]) for all n∈ Z}.

Thus we have
Y = {Y• ∈ D(R) | HomD(R)(Q

•,CY• [n]) = 0 for all n∈ Z}.

Before giving a further description ofY in terms ofD(S), we mention the following general fact:
For anyX• ∈ D(R), we defineSX• := {X•[n] | n∈ Z}. Then Ker

(
HomD(R)(−,SX•)

)
is a full triangulated

subcategory ofD(R) closed under arbitrary direct sums. Dually, Ker
(
HomD(R)(SX• ,−)

)
is a full triangulated

subcategory ofD(R) closed under arbitrary direct products.
From this general fact, we deduce that

Ker
(
HomD(R)(Tria(Q•),−)

)
= {Y• ∈ D(R) |HomD(R)(Q

•,Y•[n]) = 0 for all n∈ Z}.

Further, it follows from the recollement in the third ‘tilted’ column thatD(S) =Ker
(
HomD(R)(Tria(Q•),−)

)
.

This implies thatY = {Y• ∈D(R) |CY• ∈D(S)}. Here, we considerD(S) as a full triangulated subcategory
of D(R).

Note thatT ⊗L

R − commutes with arbitrary direct sums and thatD(S) is a triangulated subcategory of
D(R) closed under arbitrary direct sums. Consequently, the subcategoryY is also closed under arbitrary
direct sums inD(R).

To proveQ• ∈ Y , we use the diagram(♦) and form another commutative diagram inD(R):

R

ηR

��

λ // S π //

ηS

��

Q• ν //

ηQ•

��

R[1]

��
T ⊗L

R R
1⊗Lλ //

≃

��

T ⊗L

R S

≃

��

1⊗Lπ // T ⊗L

R Q•

≃δ
��

1⊗Lν // T ⊗RR[1]

≃

��
T

φ // S⊔T // V• // T[1],

where the composites of the two morphisms in the first and second columns are equal toµandρ, respectively.
Let f • := ( f i)i∈Z be the chain map defined byf−1 := µ, f 0 := ρ and f i = 0 for i 6= −1,0. Sinceλ is
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homological and sinceS⊔T is anS-module, we have HomD(R)(Q•,S⊔T) = 0. This means that there is a
unique morphismγ : Q• →V• such that the following diagram is commutative:

R

µ

��

λ // S π //

ρ
��

Q• ν //

γ
��

R[1]

µ[1]
��

T
φ // S⊔T // V• // T[1]

Since bothf • andηQ•δ make the diagram commutative, we havef • = ηQ•δ in D(R). Sinceδ is an isomor-
phism inD(R), we have Cone( f •)≃CQ• in D(R). Note that Cone( f •) is of the form:

0 // R
(−λ,µ)// S⊕ T

(
ρ
φ

)

// S⊔RT // 0

with S⊔RT in degree 0, whereh is given bys⊗ t 7→ (s)ρ(t)φ for s∈ Sandt ∈ T (see the diagram (∗) at the
beginning of Section 3). LetZ• be the following complex ofS-modules:

0 // S⊗RT h // S⊔RT // 0

which can be considered as an object inD(R), and letν• : Cone( f •) → Z• be the chain map defined by

ν−1 =
(

µ′

λ′

)
, ν0 = 1S⊔RT andνi = 0 for i 6= 0,−1. Since(λ,µ) is an exact pair, we infer that Cone(ν•) is

acyclic and that Cone( f •) is isomorphic toZ• in D(R). Clearly,Z• lies in D(S), and thereforeCQ• ∈ D(S)
andQ• ∈ Y .

Recall that Tria(Q•) is the smallest full triangulated subcategory ofD(R), which containsQ• and is
closed under arbitrary direct sums. Consequently, the category Y contains Tria(Q•). This means that, for
anyY• ∈ Tria(Q•), we have

HomD(R)(Q
•,Y•[n])

≃
−→ HomD(T)(T ⊗L

R Q•,T ⊗L

RY•[n]) for all n∈ Z.

Now, fix N• ∈ Tria(Q•) and consider the following full subcategory ofD(R):

XN• := {X• ∈ D(R) | T ⊗L

R− : HomD(R)(X
•,N•[n])

≃
−→ HomD(T)(T ⊗L

R X•,T ⊗L

R N•[n]) for all n∈ Z}.

Clearly,Q• ∈ XN• . Furthermore, one can verify thatXN• is a full triangulated subcategory ofD(R), which
is closed under arbitrary direct sums inD(R). This implies thatXN• contains Tria(Q•). As a result, for any
M• ∈ Tria(Q•), we have an isomorphism

T ⊗L

R− : HomD(R)(M
•,N•)

≃
−→ HomD(T)(T ⊗L

R M•,T ⊗L

R N•).

This shows that the restriction ofT ⊗L

R− to Tria(Q•) is fully faithful. Further, sinceT ⊗L

R− commutes with
arbitrary direct sums andT ⊗L

R Q• ≃ T ⊗RQ• in D(T), we can infer from the property (2) in Section 2.1 that
the restriction functorT⊗L

R−: Tria(Q•)→ Tria(T⊗RQ•) is a triangle equivalence. This completes the proof
of Corollary 3.11.�.

4 Proofs of Corollaries

In this section, we shall prove all corollaries of Theorem 1.1, which were mentioned in Introduction.
We preserve all notation introduced in the previous sections.
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4.1 Proof of Corollary 1.2

As a preparation for the proof of Corollary 1.2, we obtain thefollowing consequence of Theorem 1.1, which
produces homological ring epimorphisms for quotient ringsfrom those between given rings.

Corollary 4.1. Let λ : R→ S be a homological ring epimorphism. Suppose that I is an ideal of R such that
the image J′ of I underλ is a left ideal in S and that the restriction ofλ to I is injective. Let J be the ideal of

S generated by J′, and B:=

(
S S/J′

0 R/I

)
. Then the following statements are equivalent:

(1) The homomorphism R/I → S/J induced fromλ is homological.

(2) TorR/I
i

(
J/J′, S/J

)
= 0 for all i ≥ 1.

(3) The multiplication map I⊗RS→ J is an isomorphism andTorRj (I , S) = 0 for all j ≥ 1.

If one of the above statements holds true, then there is a recollement of derived module categories:

D(S/J) // D(B) //
gg

ww
D(R)

ff

xx
.

Proof. In Theorem 1.1, we takeT := R/I and chooseµ : R→ R/I to be the canonical surjective homo-
morphism of rings. SinceJ′ is a left ideal ofS, we haveS⊗RT = S⊗R(R/I)≃ S/(S· I) = S/J′. This means
thatB in Corollary 4.1 coincides with the one in Theorem 1.1. Moreover, one can verify that the pair(λ,µ)
is exact if and only ifλ|I : I → J′ is an isomorphism.

By Lemma 2.5(2), we see thatS⊔RT =S⊔(R/I) =S/J with J := J′Sand that the ring homomorphismφ :
T → S⊔RT in Theorem 1.1 can be chosen to be the canonical mapλ̃ : R/I → S/J induced fromλ. Therefore,
by Theorem 1.1, if̃λ is homological, then the recollement of derived module categories in Corollary 4.1 does
exist. This finishes the proof of the second part of Corollary4.1.

To prove the first part of Corollary 4.1, we shall show that(1) is equivalent to(3) and(2), respectively.
In fact, due to Theorem 1.1, we can see that(1) is equivalent to TorRj (R/I , S) = 0 for all j ≥ 1. To

verify the latter condition, we apply−⊗R S to the sequence 0−→ I −→ R−→ R/I −→ 0, and then get
TorRj+1(R/I , S) ≃ TorRj (I , S) and TorR1(R/I , S) ≃ Ker(δ), whereδ : I ⊗RS→ J is the multiplication map de-
fined byx⊗s 7→ (x)λs for x∈ I ands∈ S. Clearly, this implies that(1) is equivalent to(3).

Now we show that(1) and(2) are equivalent.
According to Lemma 2.5(1) and the fact thatλ is a ring epimorphism,̃λ is a ring epimorphism. By

assumption,J′ is a left ideal ofS, and thereforeS⊗R (R/I) ≃ S/(S· I) = S/J′. Thanks to the general result
proved in the last part of the proof of Lemma 3.10, we see that

TorR/I
i (S/J′,W)≃ TorR/I

i (S⊗R(R/I),W) = 0

for all i ≥ 1 and allS/J-modulesW. It follows then that TorR/I
i (S/J′, S/J) = 0 for all i ≥ 1. Consider the

short exact sequence of rightR/I -modules:

0−→ J/J′ −→ S/J′ −→ S/J −→ 0.

If we apply the functor−⊗R/I (S/J) to this sequence, then we can check that TorR/I
i (J/J′, S/J)≃TorR/I

i+1(S/J, S/J)

for all i ≥ 1 and that the connecting homomorphism TorR/I
1 (S/J, S/J)→ (J/J′)⊗R/I (S/J) is injective.

Clearly, if TorR/I
1 (S/J, S/J) = 0, then TorR/I

j (S/J, S/J) = 0 for all j ≥ 1 if and only if TorR/I
i (J/J′, S/J) =

0 for all i ≥ 1. This implies that the statements(1) and(2) in Corollary 4.1 are equivalent.

Now, we claim that TorR/I
1 (S/J, S/J) = 0 always holds under the assumptions of Corollary 4.1. To show

this claim, it is enough to prove that(J/J′)⊗R/I (S/J) = 0. Note that ifC → D is a ring epimorphism, then
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D⊗C X ≃ X asD-modules for anyD-moduleX, andY⊗C D ≃Y as rightD-modules for any rightD-module
Y. This fact together with properties of ring epimorphisms implies the following isomorphisms:

(J/J′)⊗R/I (S/J)≃ (J/J′)⊗R(S/J)≃ (J/J′)⊗R
(
S⊗R(S/J)

)
≃

(
(J/J′)⊗RS

)
⊗R(S/J).

SinceSJ′ = J′ and JJ′ ⊆ J′, we deduce that
(
(J/J′)⊗R S

)
J′ = 0. This means that(J/J′)⊗R S is a right

S/J-module. Clearly, the composite of the two ring epimorphisms R→ S and S→ S/J is again a ring
epimorphism. It follows that

(
(J/J′)⊗RS

)
⊗R(S/J)≃ (J/J′)⊗RSas rightS/J-modules.

In the following, we shall show that(J/J′)⊗R S= 0. Actually, applying the functor−⊗RS to the exact
sequence

0−→ J′
α

−→ J −→ J/J′ −→ 0

of right R-modules, we get an exact sequence

J′⊗RS
α⊗RS
−→ J⊗RS−→ (J/J′)⊗RS−→ 0

of right S-modules. SinceJ is a right S-module andλ : R→ S is a ring epimorphism, the multiplication
map ψ : J⊗R S→ J, defined byx⊗ s 7→ xs for x ∈ J and s∈ S, is an isomorphism. Note that the map
(α⊗R S)ψ : J′⊗R S→ J is surjective. This yields thatα⊗R S is surjective and that(J/J′)⊗R S= 0. Hence

TorR/I
1 (S/J, S/J) = 0.
Thus, we have shown that the three statements in Corollary 4.1 are equivalent. This finishes the proof.�

Remark.There is a connection between exact pairs and ring homomorphisms described in Corollary 4.1.
Indeed, the proof of Corollary 4.1 shows that each ring homomorphismλ : R→ S together with an idealI
of R satisfying the assumption in Corollary 4.1 provides us an exact pair(λ,π), whereπ : R→ R/I is the
canonical surjection. Conversely, for any exact pair(λ,µ) of ring homomorphismsλ : R→ Sandµ : R→ T,
the idealI := Ker(µ) of Rsatisfies the assumption in Corollary 4.1.

Proof of Corollary 1.2.
(1) In Corollary 4.1, we takeS := R/I1 and I := I2, and letλ : R→ S be the canonical surjective ring

homomorphism. ThenJ′=(I)λ=(I2+ I1)/I1 = J, which is an ideal ofS. In particular, TorR/J
i

(
J/J′, S/J

)
= 0

for all i > 0. Furthermore,S/J′ ≃ R/(I1+ I2), and the mapλ|I : I → (I)λ is an isomorphism if and only if
I1∩ I2 = 0. Hence Corollary 1.2(1) follows from Corollary 4.1.

(2) Suppose thatλ : R→ S is homological. In Theorem 1.1, we takeT := R⋉M and defineµ : R→ T to
be the inclusion fromR into T. By Lemma 2.4, the ringS⋉M, together with the inclusionρ : S→ S⋉M and
λ̃ : T → S⋉M, is the coproduct ofSandT overR. In particular, we can takeφ = λ̃ in Theorem 1.1.

First of all, we claim that(λ,µ) is an exact pair. Actually, it follows from the split exact sequence
0 −→ R

µ
−→ T −→ M −→ 0 of R-R-bimodules thatRTR ≃ R⊕M as R-R-bimodules. Sinceλ is a ring

epimorphism andM is anS-S-bimodule, the map

S⊗RT −→ S⋉M, s⊗ (r,m) 7→ (sr,sm)

for s∈ Sandm∈ M, is an isomorphism ofS-T-bimodules. Under this isomorphism, we can identify the map
µ′ : S→ S⊗T (see Introduction) withρ, and the ringB in Theorem 1.1 with the one defined in Corollary

1.2(2). Note that 0−→ S
ρ

−→ S⋉M −→ M −→ 0 is also a split exact sequence ofS-S-bimodules. It follows
that Coker(µ) ≃ Coker(µ′)≃ M asR-R-bimodules, and therefore the pair(λ,µ) is exact.

Next, we shall show that the assertion(3) in Theorem 1.1 holds for the pair(λ,µ). In fact, for eachi ≥ 1,
we have TorRi (T,S) ≃ TorRi (R⊕M,S)≃ TorRi (M,S)≃ TorSi (M,S) = 0, where the third isomorphism follows
from the fact thatλ is homological andM is a rightS-module. Now, the necessity condition of Corollary
1.2(2) follows immediately from Theorem 1.1.
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To see the sufficiency condition of Corollary 1.2(2), we suppose that̃λ is homological. Then we may
apply Corollary 4.1 to see thatλ is homological. This finishes the proof.�

As an easy application of Corollary 4.1, we obtain the following interesting result in which the left-hand
side of the recollement is the derived module categoryD(S/I) instead ofD(S).

Corollary 4.2. Let R⊆ S be an extension of rings. Suppose that I is an ideal of S with I⊆ R. Define

B :=

(
S S/I
0 R/I

)
. If the inclusion R→ S is a homological ring epimorphism, then so is the homomorphism

R/I → S/I induced fromλ. In this case, there is a recollement of derived module categories:

D(S/I) // D(B) //
ff

xx
D(R)

ff

xx
.

Remark.Note that, in Corollary 4.2, the ringB is derived equivalent to the ringT :=

(
S I
S R

)
. This

is an obvious consequence of [19, Lemma 3.4]. Thus, the algebraic K-theory ofT is isomorphic to that of
B. For further discussions on calculating higher algebraicK-groups using derived equivalences andD-split
sequences, we refer the reader to [19].

Finally, we point out a possible choice for the idealI in Corollary 4.1.

Lemma 4.3. Letλ : R→ S be a ring epimorphism such thatHomR(S,λ) : HomR(RS,RR)→ HomR(RS,RS) is
injective. Define I:= {(1) f | f ∈ HomR(S,R)}. Then I is an ideal of R such that the image(I)λ of I underλ
is a left ideal of S and that the restriction mapλ|I : I → (I)λ is an isomorphism.

Proof. Sinceλ is a ring epimorphism, we have HomR(RS,RS) = HomS(SS,SS). By identifying R andS
with HomR(R,R) and HomS(S,S) through the right multiplication, respectively, we can re-write HomR(λ,R) :
HomR(S,R)→ R by f 7→ (1) f , and HomR(S,λ) : HomR(S,R)→ Sby f 7→ (1) f λ for each f ∈ HomR(S,R).
It follows that HomR(S,λ) = HomR(λ,R)λ, and therefore HomR(λ,R) is injective. This also implies that
λ|I : I → (I)λ is an isomorphism. Since HomR(S,R) is anS-R-bimodule, we know thatI is an ideal ofRsuch
that(I)λ is a left ideal ofS. This finishes the proof.�

In the next section, we shall consider ring epimorphismsλ with the property mentioned in Lemma 4.3 in
detail.

4.2 Proofs of Corollaries 1.3–1.6

In this section, we follow again the notation introduced in Section 1. Fix a ring homomorphismλ : R→ S,
and let

(∗∗) R
λ

−→ S
π

−→ Q• ν
−→ R[1]

be the distinguished triangle in the homotopy categoryK (R) of R, where the complexQ• stands for the
mapping cone ofλ.

Now, we setS′ := EndD(R)(Q
•), and defineµ : R→ S′ by r 7→ f • for r ∈ R, where f • is the chain map

with f−1 := ·r, f 0 := ·(r)λ and f i = 0 for i 6= 0,−1. Here,· r and ·(r)λ stand for the right multiplication
maps byr and(r)λ, respectively. These data can be recorded in the following diagram:

R

·r

��

λ // S

·(r)λ
��

π // Q•

f •

��

ν // R[1]

(·r)[1]
��

R λ // S π // Q• ν // R[1]
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The mapµ is called the ring homomorphismassociated toλ. Note that ifλ is injective, thenQ• can be
identified with theR-moduleS/R in D(R), and, under this identification, the mapµ coincides with the
induced map fromR to EndR(S/R) by the right multiplication. In this case, we shall replace the complexQ•

with theR-moduleS/R.
Recall thatΛ denotes the ring EndD(R)

(
S⊕Q•

)
and thatπ∗ is the induced map

HomD(R)(S⊕Q•, π) : HomD(R)(S⊕Q•, S)−→ HomD(R)(S⊕Q•, Q•).

Let λπ∗ : Λ → Λπ∗ stand for the universal localization ofΛ at π∗.

In [5, Lemma 6.5], we proved that ifλ is an injective ring epimorphism with TorR
1(S,S) = 0, then the pair

(λ,µ) is exact. As a generalization of this result, we shall show, in this section, that ifλ is a ring epimorphism
such that TorR1(S,S) = 0= HomR

(
S,Ker(λ)

)
, then(λ,µ) is exact. In this general case, the complexQ• may

have two terms of non-zero cohomologies.
If λ is a ring epimorphism, thenS≃EndR(S) as rings, and therefore HomD(R)(Q

•,S)= 0. Moreover, there
is a canonical homomorphismτ : S⊗RS′ → HomD(R)(S,Q

•) of S-S′-bimodules, defined bys⊗ f 7→ s· (π f )
for s∈ Sand f ∈ S′. In this case, we obtain a relevant ring homomorphism:

τ̃ :

(
S S⊗RS′

0 S′

)
−→

(
S HomD(R)(S,Q

•)

0 S′

)
= Λ.

In the following lemma, we shall provide a sufficient condition to ensure that the ring homomorphism
τ̃ is an isomorphism. This generalizes some known facts in [5, Lemmas 6.4 and 6.5] on injective ring
epimorphisms.

Lemma 4.4. Suppose thatλ : R→S is a ring epimorphism withTorR1(S,S)= 0such that the mapHomR(λ,R) :
HomR(S,R)→ HomR(R,R) is injective. Then the following holds:

(1) HomD(R)(Q•,S) = 0= HomD(R)(Q•,S[1]).
(2) Ker(µ)≃ HomR(S,R) andCoker(µ)≃ Ext1R(S,R) as R-R-bimodules. In particular, ifExt1R(S,R) = 0,

then S′ ≃ R/I as rings, where I:= {(1)h | h∈ HomR(S,R)} is an ideal of R.
(3) The canonical homomorphismτ : S⊗R S′ −→ HomD(R)(S,Q

•) is an isomorphism of S-S′-bimodules
such that1⊗1 is mapped toπ. In particular,

Λ ≃

(
S S⊗RS′

0 S′

)
.

(4) Suppose thatλ is injective. If R is commutative, then so is S′.

Proof. (1) We claim that ifλ is an arbitrary homomorphism of rings, then HomD(R)(Q•,S[i])≃ExtiR(S,S)
for any i ∈ Z\{0}, and HomD(R)(Q

•,S)≃ Ker
(
HomR(λ,S)

)
.

In fact, applying HomD(R)(−,S[ j]) to the triangle(∗∗), we get the following long exact sequence:

HomD(R)(R,S[ j −1])−→ HomD(R)(Q
•,S[ j]) −→ HomD(R)(S,S[ j])

φ j
−→ HomD(R)(R,S[ j])

for each j ∈ Z, whereφ j := HomD(R)(λ,S[ j]). Since HomD(R)(R,S[k]) = 0 for anyk 6= 0 and sinceφ0 :
HomR(S,S) → HomR(R,S) is surjective, it is easy to verify that HomD(R)(Q

•,S[i]) ≃ HomD(R)(S,S[i]) for
any 06= i ∈ Z. We leave the details to the reader. Note that this claim implies that HomD(R)(Q

•,S[i]) = 0 for
any i < 0.

Sinceλ is a ring epimorphism with TorR
1(S,S) = 0, it follows from [16, Theorem 4.8] thatφ0 is an

isomorphism and Ext1
R(S,S)≃ Ext1S(S,S) = 0. We have seen that HomD(R)(Q

•,S) = 0. This proves(1).
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(2) First, we point out that HomD(R)(Q•,R) = 0. Actually, this can be concluded from the following
exact sequence:

0−→ HomD(R)(Q
•,R)−→ HomR(S,R)

HomR(λ,R)
−→ HomR(R,R)

together with the assumption on HomR(λ,R).
Recall that we have the following commutative diagram inK (R) for eachr ∈ R:

R

·r

��

λ // S

·(r)λ
��

π // Q•

(r)µ
��

ν // R[1]

(·r)[1]
��

R λ // S π // Q• ν // R[1]

Note that if the above diagram is considered inD(R), then (r)µ is the unique morphism inS′ such that
the above diagram is commutative. In fact, if there exists another g ∈ S′ such that this diagram com-
mutes, thengν = ν(· r)[1] = (r)µν. This implies thatg− (r)µ= g′π for someg′ ∈ HomD(R)(Q

•,S). Since
HomD(R)(Q

•,S) = 0 by (1), we haveg′ = 0 andg= (r)µ. Thus, inD(R), the map(r)µ is uniquely determined
by the triangle(∗∗) and by the maps·r and·(r)λ.

Next, we calculate the kernel and cokernel ofµ. In fact, since HomD(R)(Q
•,R) = 0, we can easily form

the following exact sequence:

0−→ HomR(S,R)−→ HomR(R,R)
ξ

−→ HomD(R)(Q
•[−1],R)−→ HomD(R)(S[−1],R)−→ 0

whereξ :=HomD(R)

(
ν[−1],R

)
. Moreover, since HomD(R)(Q

•,S) = 0=HomD(R)(Q
•,S[1]) by (1), we know

that
ψ := HomD(R)

(
Q•[−1],ν[−1]) : HomD(R)

(
Q•[−1],Q•[−1]

)
−→ HomD(R)

(
Q•[−1],R

)

is an isomorphism. Certainly, the shift functor[1] induces an isomorphism of rings from EndD(R)

(
Q•[−1]

)

to S′. Consider the compositeξψ−1 [1] : EndR(R)→ S′. One can check directly that this map coincides withµ
if R is identified with EndR(R) by the right multiplication. Thus Ker(µ)≃ Ker(ξ) and Coker(µ)≃ Coker(ξ)
sinceψ−1 is bijective, and therefore Ker(µ)≃HomR(S,R) and Coker(µ)≃Ext1R(S,R) asR-R-bimodules. For
the last statement of Lemma 4.4(2), we observe that if Ext1

R(S,R) = 0, thenµ is surjective with Ker(µ) = I .
(3) We first prove thatS⊗RCoker(λ) = 0= TorR1(S,Coker(λ)). Indeed, by applyingS⊗R− to the exact

sequence

0−→ Ker(λ) ω
−→ R

λ
−→ S−→ Coker(λ)−→ 0,

we get the following two relevant exact sequences:

S⊗RKer(λ) S⊗ω
−→ S⊗RR−→ S⊗R Im(λ)−→ 0,

0−→ TorR1(S,Coker(λ))−→ S⊗R Im(λ)−→ S⊗RS−→ S⊗RCoker(λ)−→ 0.

Sinceλ is a ring epimorphism, the mapS⊗Rλ : S⊗RR−→ S⊗RS is an isomorphism. Consequently, we get
S⊗RR≃ S⊗R Im(λ)≃ S⊗RS. This means thatS⊗ω = 0 andS⊗RCoker(λ) = 0= TorR1(S,Coker(λ)).

Next, we show that HomD(R)(λ,Q•) : HomD(R)(S,Q
•)−→HomD(R)(R,Q

•) is surjective. In fact, we have
the following commutative diagram:

HomD(R)(S,Q
•)

λ∗−−−−→ HomD(R)(R,Q
•)

x
x≃

HomK (R)(S,Q
•)

λ∗−−−−→ HomK (R)(R,Q
•)
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where the vertical maps are the canonical localization mapsfrom the homotopy category to its derived cat-
egory. One can check that theλ∗ in the bottom row is surjective. This implies that the map on the top is
surjective, as desired. We should remark that HomD(R)(λ,Q•) is surjective for any ring homomorphismλ
because our proof of this fact does not relay on any additional conditions onλ.

Now, by applying HomD(R)(−,Q•) to the triangle(∗∗), we can construct the following long exact se-
quence ofR-modules:

HomD(R)(R[1],Q
•)

ν∗−→ HomD(R)(Q
•,Q•)

π∗−→ HomD(R)(S,Q
•)−→ HomD(R)(R,Q

•)−→ 0.

Write L := Im(π∗). Since HomD(R)(R,Q
•) ≃ H0(Q•) ≃ Coker(λ), it follows from S⊗R Coker(λ) = 0 =

TorR1(S,Coker(λ)) thatS⊗RL ≃ S⊗RHomD(R)(S,Q
•). Clearly, the sequence

S⊗RHomD(R)(R[1],Q
•)

S⊗(ν∗)
−→ S⊗RHomD(R)(Q

•,Q•)−→ S⊗RL −→ 0

is exact. Note that HomD(R)(R[1],Q•)≃ H−1(Q•)≃ Ker(λ). Under these identifications, one can check step
by step thatν∗ : Ker(λ) → S′ is just the composite ofω : Ker(λ) → R andµ : R→ S′. SinceS⊗ω = 0, we
infer thatS⊗ (ν∗) = 0, and thereforeS⊗R S′ ≃ S⊗R L ≃ S⊗R HomD(R)(S,Q

•) asS-S′-bimodules. Sinceλ
is a ring epimorphism, we know thatS⊗RHomD(R)(S,Q

•) ≃ HomD(R)(S,Q
•) asS-S′-bimodules. It follows

thatS⊗R S′ ≃ HomD(R)(S,Q
•) asS-S′-bimodules. Clearly, under this isomorphism, one can verify that the

element 1⊗1 in S⊗RS′ is sent toπ. This finishes the proof of the first part of(3).
By the first part of (3) and the fact that HomD(R)(Q

•,S) = 0, we obtain the second part of(3).
(4) This was proved in [5, Lemma 6.5(5)] under the identification of Q• with S/R. �

Let us remark that ifλ is a ring epimorphism such that HomR(S,λ) : HomR(S,R)→ HomR(S,S) is injec-
tive, or equivalently, HomR(S,Ker(λ)) = 0, then HomR(λ,R) : HomR(S,R) → HomR(R,R) is also injective
(see the proof of Lemma 4.3). Clearly, ifλ is injective, then so is HomR(S,λ).

As a consequence of Lemma 4.4, we have the following conclusion which will be used in the proof of
Corollary 1.3.

Corollary 4.5. If λ : R→ S is a ring epimorphism such thatTorR1(S,S) = 0=HomR
(
S,Ker(λ)

)
, then the pair

(λ,µ) is exact, whereµ is the map associated toλ.

Proof. On the one hand, since HomR
(
S,Ker(λ)

)
= 0, the map HomR(S,λ) is injective, and therefore

HomD(R)(S[1],Q
•) = 0 by applying HomD(R)(S[1],−) to the triangle (∗∗) and by observing the fact that

HomD(R)(S[1],S) ≃ HomD(R)(S,S[−1]) ≃ Ext−1
R (S,S) = 0. On the other hand, we have a surjective map

HomD(R)(λ,Q•) : HomD(R)(S,Q
•) −→ HomD(R)(R,Q

•) (see the proof of Lemma 4.4(3)). Thus, by com-
bining the diagram(∗) at the beginning of Section 3 with Lemma 4.4(3), we can construct the following
commutative diagram inC (R) with two exact rows:

0 // Ker(λ) //

≃

��

R

µ

��

λ // S

µ′

��

// Coker(λ)

≃

��

// 0

S′ λ′
// S⊗RS′

≃

��
0 // HomD(R)(R[1],Q

•)
ν∗ // HomD(R)(Q

•,Q•)
π∗ // HomD(R)(S,Q

•)
λ∗ // HomD(R)(R,Q

•) // 0

By calculating cohomology groups from this diagram, we see thatµ• : Q• −→Q•⊗RS′ is a quasi-isomorphism
in C (R). According to the equivalent conditions mentioned at the beginning of Section 3, the pair(λ,µ) is
exact.�
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Proof of Corollary 1.3.
By Lemma 4.4(3), there are isomorphisms of rings

Λ := EndD(R)

(
S⊕Q•

)
≃

(
S HomD(R)(S,Q

•)

0 S′

)
≃ B :=

(
S S⊗RS′

0 S′

)

where the second isomorphism sends

(
0 π
0 0

)
to

(
0 1⊗1
0 0

)
. Sete1 :=

(
1 0
0 0

)
ande2 :=

(
0 0
0 1

)
∈

B. Let ϕ : Be1 → Be2 be the map sending

(
s
0

)
to

(
s⊗1

0

)
for s∈ S. Thenπ∗ corresponds toϕ under the

isomorphismΛ ≃ B, and thereforeλπ∗ : Λ → Λπ∗ is equivalent to the universal localizationB→ Bϕ of B at
ϕ. Note that the latter map coincides withθ : B→C := M2(S⊔RS′) given in Theorem 1.1 (see also Lemma
3.1). This means thatλπ∗ is homological if and only ifθ is homological.

By Corollary 4.5, the pair(λ,µ) is exact. Sinceλ is homological, Corollary 1.3 follows immediately from
Theorem 1.1.�

Combining Corollary 1.3 with Lemma 2.6, we get the followingcriterion forλπ∗ to be homological.

Corollary 4.6. Let Σ be a set of homomorphisms between finitely generated projective R-modules. Suppose
thatλΣ : R→ RΣ is homological such thatHomR

(
RΣ,Ker(λΣ)

)
= 0. Set S:= RΣ, λ := λΣ andΦ := {S′⊗R f |

f ∈ Σ} . Then the universal localizationλπ∗ : Λ → Λπ∗ of Λ at π∗ is homological if and only if the universal
localizationλΦ : S′ → S′Φ of S′ at Φ is homological. In particular, if one of the above equivalent conditions
holds , then there is a recollement of derived module categories:

D(S′Φ) // D(Λ) //
gg

xx
D(R)

ff

xx
.

As a consequence of Corollary 4.6, we obtain the following result which can be used to adjudge whether
a universal localizations of the formλπ∗ : Λ → Λπ∗ is homological or not.

Corollary 4.7. Let C⊆ D be an arbitrary extension of rings, that is, C is a subring ofthe ring D with

the same identity. Letω : D → D/C be the canonical surjection of C-modules. Set R:=

(
D D
0 C

)
and

S := M2(D). Let λ : R→ S be the canonical inclusion, and letπ : S→ S/R be the canonical surjective
homomorphism of R-modules. Then the universal localization λπ∗ : Λ → Λπ∗ of Λ at π∗ is homological if and
only if the universal localizationλω∗ : E → Eω∗ of E atω∗ is homological, where E:= EndC(D⊕D/C), and
ω∗ : HomC(D⊕D/C,D)→ HomC(D⊕D/C,D/C) is the homomorphism of E-modules induced byω.

Proof. SinceQ• can be identified withS/R in D(R), we haveS′ = EndR(S/R). Thus the mapµ : R→

S′ is given by the right multiplication. Sete1 :=

(
1 0
0 0

)
, e2 :=

(
0 0
0 1

)
ande12 :=

(
0 1
0 0

)
∈ R.

Furthermore, letϕ : Re1 → Re2 andϕ′ : S′(e1)µ→ S′(e2)µ be the right multiplication maps ofe12 and(e12)µ,
respectively.

It follows from Lemma 3.1 andD⊔C C = D that λ : R→ S is the universal localization ofR at ϕ. In
particular, λ is a ring epimorphism. SinceS≃ e1R⊕ e1R as rightR-modules, the embeddingλ is even
homological. Note thatS′ ⊗R ϕ can be identified withϕ′. By Corollary 4.6, the mapλπ∗ : Λ → Λπ∗ is
homological if and only if the mapλϕ′ : S′ → S′ϕ′ is homological.

Clearly, R/Re1R≃ C as rings. So, everyC-module can be regarded as anR-module. In particular,
D⊕D/C can be seen as anR-module. Further, one can check that the map

α : D⊕D/C→ S/R, (d, t +C) 7→

(
0 0
d t

)
+R
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for d, t ∈ D, is an isomorphism ofR-modules. ThusS′ ≃ E, ϕ′ corresponds toω∗ under this isomorphism,
andS′ϕ′ ≃ Eω∗ . It follows thatλϕ′ : S′ → S′ϕ′ is homological if and only if so isλω∗ : E → Eω∗. This finishes
the proof.�

Before starting with the proof of Corollary 1.4, we first introduce a couple of more definitions and nota-
tion.

Recall that a complexU• in D(R) is called atilting complex ifU• is self-orthogonal, isomorphic inD(R)
to a bounded complex of finitely generated projectiveR-modules, and Tria(U•) = D(R). It is well known
that ifU• is a tilting complex overR, thenD(R) is equivalent toD(EndD(R)(U

•)) as triangulated categories
(see [15, Theorem 6.4]). In this case,Rand EndD(R)(U

•) are calledderived equivalent.
If I is an index set, we denote byU• (I) the direct sum ofI copies ofU• in D(R), and by Add(U•) the

full subcategory ofD(R) consisting of all direct summands of arbitrary direct sums of copies ofU•.
The following result generalizes some known results in the literature. See, for example, [9, Theorem

4.14], [2, Theorem 3.5(5)] and [19, Lemma 3.1(3)], where thering homomorphismλ : R→ S is required to
be injective. We shall use this generalization to prove Corollary 1.4.

Lemma 4.8. Let λ : R→ S be a ring homomorphism, and let I be an arbitrary nonempty set. Define U• :=
S⊕Q•. ThenHomD(R)(U

•,U• (I)[n]) = 0 for any0 6= n∈ Z if and only if the following conditions hold:
(1) HomR

(
S,Ker(λ)) = 0 and

(2) ExtiR(S,S
(I)) = 0= Exti+1

R (S,R(I)) for any i≥ 1.
In particular, the complex U• is a tilting complex inD(R) if and only ifHomR

(
S,Ker(λ))= 0, Ext1R(S,S)=

0 and there is an exact sequence:0→ P1 → P0 → RS→ 0 of R-modules, such that Pi is finitely generated and
projective for i= 0,1.

Proof. Recall that we have a distinguished triangle

(∗∗) R
λ

−→ S
π

−→ Q• ν
−→ R[1]

in K (R).
First of all, we mention two general facts: LetI be an arbitrary nonempty set.
(a) By applying HomD(R)(−,S(I)) to (∗∗), one can prove that

HomD(R)(Q
•,S(I)[i])≃ HomD(R)(S,S

(I)[i]) for i ∈ Z\{0} and HomD(R)(Q
•,S(I))≃ Ker

(
HomR(λ,S(I))

)
.

(b) By applying HomD(R)(−,R(I)) to (∗∗), one can show that

HomD(R)(Q
•,R(I)[ j])≃ HomD(R)(S,R

(I)[ j]) for j ∈ Z\{0,1}.

Next, we show the necessity of the first part of Lemma 4.8.
Suppose that HomD(R)(U

•,U• (I)[n]) = 0 for anyn 6= 0. Then ExtiR(S,S
(I))≃HomD(R)(Q

•,S(I)[i]) = 0 for
any i ≥ 1, and HomD(R)(S,Q

•[−1]) = 0. Consequently, the map HomR(S,λ) : HomR(S,R)→ HomR(S,S) is

injective. This means that the condition(1) holds. Further, applying HomD(R)(S,−) to the triangleR(I) λ(I )

−→

S(I)
π(I )

−→ Q•(I) −→ R(I)[1], we get Exti+1
R (S,R(I)) ≃ HomD(R)

(
S,Q•(I)[i]

)
= 0. Thus, the conditions(1) and

(2) in Lemma 4.8 are satisfied.
In the following, we shall show the sufficiency of the first part of Lemma 4.8.
Assume that the conditions(1) and(2) in Lemma 4.8 hold true. Then, it follows from(a) and(b) that

HomD(R)(Q
•,S(I)[n]) = 0= HomD(R)(Q

•,R(I)[m+1])
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for n ∈ Z \{0} andm∈ Z \{−1,0}. Applying HomD(R)(Q
•−) to the triangleR(I) λ(I )

−→ S(I)
π(I )

−→ Q•(I) −→

R(I)[1], one can show that HomD(R)(Q
•,Q• (I)[m]) = 0 for m∈ Z\{−1,0}. Furthermore, we shall show that

the condition(1) in Lemma 4.8 implies also that HomD(R)(Q
•,Q• (I)[−1]) = 0: Clearly, HomR

(
S,Ker(λ)I

)
≃

HomR
(
S,Ker(λ)

)I
= 0, where Ker(λ)I stands for the direct product ofI copies of Ker(λ). Since Ker(λ)I con-

tains Ker(λ)(I) as a submodule, we get HomR
(
S,Ker(λ)(I)

)
= 0 and Ker

(
HomR(S,λ(I))

)
≃HomR

(
S,Ker(λ)(I)

)

= 0. Now, it follows from the following exact commutative diagram:

0 // HomD(R)(Q
•,Q• (I)[−1])
_�

��✤
✤

✤

(ν[−1])∗// HomD(R)(Q
•,R(I))

_�

π∗
��

(λ(I ) )∗ // HomD(R)(Q
•,S(I))

_�

π∗
��

0 // Ker
(
HomR(S,λ(I))

)
// HomR(S,R(I))

(λ(I ) )∗ // HomR(S,S(I))

that Ker
(
HomR(S,λ(I))

)
≃ HomR

(
S,Ker(λ)(I)

)
= 0, and therefore HomD(R)(Q

•,Q• (I)[−1]) = 0. Thus,

HomD(R)(Q
•,Q• (I)[n]) = 0 for n 6= 0.

It remains to prove HomD(R)(S,Q
• (I)[n]) = 0 for n 6= 0. Actually, applying HomD(R)(S,−) to the triangle

R(I) λ(I )

−→ S(I)
π(I )

−→ Q•(I) −→ R(I)[1], we have the following long exact sequence:

· · · → HomD(R)(S,S
(I)[ j])−→ HomD(R)(S,Q

•(I)[ j])−→ HomD(R)(S,R
(I)[ j +1])

(λ(I ) )∗
−→ HomD(R)(S,S

(I)[ j +1])→ ···

for j ∈ Z. Since HomD(R)(S,S
(I)[r]) = 0 for 0 6= r ∈ Z and HomD(R)(S,R

(I)[t]) = 0 for t ∈ Z\{0,1}, we see
that HomD(R)(S,Q

•(I)[ j]) = 0 for j ∈Z\{−1,0} and that HomD(R)(S,Q
•(I)[−1])≃Ker

(
HomR(S,λ(I))

)
= 0.

It follows that HomD(R)(S,Q
• (I)[n]) = 0 for n 6= 0. Hence HomD(R)(U

•,U• (I)[n]) = 0 for anyn 6= 0. This
finishes the proof of the sufficiency.

As to the second part of Lemma 4.8, we observe the following: The complexU• over R is a generator
of D(R), that is, Tria(U•) = D(R), sinceR∈ Tria(U•) by the triangle(∗∗). Moreover, the complexU• is a
tilting complex inD(R) if and only if it is self-orthogonal, andRShas a projective resolution of finite length
consisting of finitely generated projectiveR-modules. Furthermore, ifRShas finite projective dimension and
Exti+1

R (S,R(I)) = 0 for anyi ≥ 1, thenRSdoes have projective dimension at most 1. Now, combining these
observations with the first part of Lemma 4.8, we can show the second part of Lemma 4.8.�

Proof of Corollary 1.4.
(1) Here, we follow the notation introduced in Section 3. Let

T := S′, µ := µ, B :=

(
S S⊗RS′

0 S′

)
.

Sinceλ is homological and HomR
(
S,Ker(λ)

)
= 0 by assumption, the pair(λ,µ) is exact by Corollary 4.5.

Now, we assume thatRShas projective dimension at most 1. Let

0−→ P−1 δ
−→ P0 −→ RS−→ 0

be a projective resolution ofRSwith all P j projectiveR-modules. This exact sequence gives rise to a triangle
P−1 → P0 → S→ P−1[1] in D(R).

By Theorem 1.1, the mapλπ∗ : Λ → Λπ∗ is homological if and only if TorRj (S
′,S) = 0 for all j ≥ 1. Let

us check the latter condition.
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First of all, by the assumption onRS, we have TorRi (S
′,S) = 0 for all i ≥ 2. So, it remains to show

TorR1(S
′,S) = 0. Further, sinceBe2 = S′⊕S⊗RS′ as rightR-modules, it is enough to show TorR

1(Be2,S) = 0.
From the proof of Lemma 3.6, we obtain a triple( j! , j ! , j∗) of adjoint triangle functors. Letη : IdD(B) →

j∗ j ! be the unit adjunction with respect to the adjoint pair( j !, j∗). Then we have the following fact:
For anyX• ∈ D(B), there exists a canonical triangle inD(B):

i∗i
!(X•)−→ X• ηX•

−→ j∗ j !(X•)−→ i∗i
!(X•)[1],

where j∗ j !(X•) =RHomR(P•∗,Hom•
B(P

•,X•)). For the other triple(i∗, i∗, i!) of adjoint triangle functors, we
refer the reader to the diagram(⋆) in Section 3.

By applying this fact to each term of the triangle

P−1 → P0 → S→ P−1[1]

in D(R), it follows from the recollement(⋆) (see Section 3) that there is the following exact commutative
diagram:

i∗i!(Be2⊗RP−1)

��

// Be2⊗RP−1
ηBe2⊗RP−1

//

1⊗δ
��

j∗ j !(Be2⊗RP−1) //

j∗ j !(1⊗δ)
��

i∗i!(Be2⊗RP−1)[1]

��
i∗i!(Be2⊗RP0) //

��

Be2⊗RP0

��

ηBe2⊗RP0
// j∗ j !(Be2⊗RP0)

��

// i∗i!(Be2⊗RP0)[1]

��
i∗i!(Be2⊗

L

R S) //

��

Be2⊗
L

R S
η

Be2⊗
L
RS

//

��

j∗ j !(Be2⊗
L

R S) //

��

i∗i!(Be2⊗
L

R S)[1]

��
i∗i!(Be2⊗RP−1)[1] // Be2⊗RP−1[1] // j∗ j !(Be2⊗RP−1)[1] // i∗i!(Be2⊗RP−1)[2]

Sincei∗i∗(Be1)≃Be2⊗
L

RSin D(B) by Lemma 3.8(1), we know thatj∗ j !(Be2⊗
L

RS)≃ j∗ j ! i∗i∗(Be1) = 0, due
to j ! i∗ = 0 in the recollement(⋆). It follows that j∗ j !(1⊗δ) is an isomorphism, and so isH0( j∗ j !(1⊗δ)).

Suppose thatH0(ηP) : P→ H0
(

j∗ j !(P)
)

is injective for any projectiveB-moduleP. ThenH0(ηBe2⊗RP−1)
is injective sinceRP−1 is projective. It follows from the isomorphismH0( j∗ j !(1⊗ δ)) that the map 1⊗ δ :
Be2⊗RP−1 → Be2⊗RP0 is injective. This implies that TorR

1(Be2,S) = 0, as desired.
Thus, in the following, we shall prove thatH0(ηP) : P → H0

(
j∗ j !(P)

)
is injective for any projective

B-moduleP.

First, we point out thatH0(ηP) is injective if and only if HomD(B)(B,P)
j !

−→ HomD(R)

(
j !(B), j !(P)

)
is

injective. To see this, we consider the the following composite of maps:

ωn
X• : HomD(B)(B,X

•[n])
j !

−→ HomD(R)

(
j !(B), j !(X•)[n]

) ≃
−→ HomD(B)(B, j∗ j !(X•)[n])

for eachn∈ Z, where the second map is an isomorphism induced by the adjoint pair ( j ! , j∗). Then, one can
check directly thatωn

X• =HomD(B)(B,ηX•[n]). It is known that then-th cohomology functorHn(−) : D(B)→
B-Mod is naturally isomorphic to the Hom-functor HomD(B)(B,−[n]). So, under this identification, the map
ωn

X• coincides withHn(ηX•) : Hn(X•)→ Hn( j∗ j !(X•)). It follows thatH0(ηP) is injective if and only if so

is the map HomD(B)(B,P)
j !

−→ HomD(R)
(

j !(B), j !(P)
)
.

Second, we claim that if HomD(B)(i∗i
∗(B),P) = 0, then HomD(B)(B,P)

j !
−→ HomD(R)

(
j !(B), j !(P)

)
is

injective.
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Let ε : j! j ! → IdD(B) be the counit adjunction with respect to the adjoint pair( j!, j !). Then, for each
X• ∈ D(B), there exists a canonical triangle inD(B):

j! j !(X•)
εX•
−→ X• −→ i∗i

∗(X•)−→ j! j !(X•)[1].

Now, we consider the following morphisms:

HomD(B)(B,X
•[m])

j !
−→ HomD(R)

(
j !(B), j !(X•)[m]

) ≃
−→ HomD(B)

(
j! j !(B),X•[m]

)

for anym∈ Z, where the last map is an isomorphism given by the adjoint pair ( j! , j !). One can check that
the composite of the above two morphisms is the map HomD(B)(εB,X•[m]). This means that, to show that

HomD(B)(B,P)
j !

−→ HomD(R)

(
j !(B), j !(P)

)
is injective, it suffices to show that HomD(B)(εB,P) is injective.

For this aim, we apply HomD(B)(−,P) to the trianglej! j !(B)
εB−→ B−→ i∗i∗(B) −→ j! j !(B)[1], and get the

following exact sequence of abelian groups:

HomD(B)(i∗i
∗(B),P) // HomD(B)(B,P)

HomD(B)(εB,P) // HomD(B)( j! j !(B),P) .

Clearly, if HomD(B)(i∗i
∗(B),P)= 0, then HomD(B)(εB,P) is injective, and therefore the mapj ! : HomD(B)(B,P)

j !
−→

HomD(R)

(
j !(B), j !(P)

)
is injective, as desired.

Third, we show that if HomR(S,S′) = 0, then HomD(B)(i∗i
∗(B),P) = 0 for any projectiveB-moduleP.

In fact, by Lemmas 3.7(3) and 3.8(1), we havei∗i∗(Be2) ≃ i∗i∗(Be1) ≃ Be2⊗
L

R S in D(B). This implies
that HomD(B)(i∗i

∗(B),P) = 0 if and only if HomD(B)(Be2⊗
L

RS,P) = 0. Consider the following isomorphisms

HomD(B)(Be2⊗
L

R S,P)≃ HomD(R)(S,RHomB(Be2,P))≃ HomD(R)(S,e2P)≃ HomR(S,e2P).

Sincee2B≃ S′ asR-modules, we have HomR(S,e2B)≃ HomR(S,S′) = 0. Note thatP∈ Add(BB) ande2P∈
Add(RS′). Thus there is an index setI such thate2P is a direct summand of(S′)(I). Since(S′)(I) is a
submodule of the product(S′)I of S′, it follows that HomR(S,(S′)(I)) is a subgroup of HomR(S,(S′)I ) which
is isomorphic to HomR(S,S′)I . Hence HomR(S,(S′)(I)) = 0, HomR(S,e2P) = 0 and HomD(B)(i∗i

∗(B),P) = 0,
as desired.

Now, it remains to show that HomR(S,S′) = 0. In the following, we shall prove a stronger statement,
namely, HomD(R)(S,S

′[n]) = 0 for anyn∈ Z.
Sinceλ is a ring epimorphism with TorR

1(S,S) = 0, we know from [16, Theorem 4.8] that

Ext1R(S,S
(I))≃ Ext1S(S,S

(I)) = 0

for any setI . As RS is of projective dimension at most 1, we can apply Lemma 4.8 tothe complexU• :=
S⊕Q•, and get HomD(R)(U

•,U•[m]) = 0 for m 6= 0. This implies that HomD(R)(Q
•,Q•[m]) = 0 for m 6= 0,

and that

Hm(RHomR(Q
•,Q•))≃ HomD(R)(Q

•,Q•[m]) =

{
0 if m 6= 0,
S′ if m= 0.

Thus the complexRHomR(Q•,Q•) is isomorphic inD(R) to the stalk complexS′. On the one hand, by the
adjoint pair

(
Q•⊗L

R−,RHomR(Q•,−)
)

of the triangle functors, we have

HomD(R)(S,S
′[n])≃ HomD(R)

(
S,RHomR(Q

•,Q•)[n]
)
≃ HomD(R)

(
S,RHomR(Q

•,Q•[n])
)
≃ RHomR(Q

•⊗L

R S,Q•[n])

for any n ∈ Z. On the other hand, sinceλ is homological by assumption, the homomorphismλ ⊗L

R S :
R⊗L

R S−→ S⊗L

R S is an isomorphism inD(R). It follows from the triangle

R⊗L

R S
λ⊗L

RS
−→ S⊗L

R S−→ Q•⊗L

R S−→ R⊗L

R S[1]
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thatQ•⊗L

R S= 0. Hence HomD(R)(S,S′[n])≃ RHomR(Q•⊗L

R S,Q•[n]) = 0 for anyn∈ Z.
Thus, we have proved that, for any projectiveB-moduleP, the homomorphismH0(ηP) : P→H0( j∗ j !(P))

is injective inB-Mod. This finishes the proof of Corollary 1.4(1).
(2) Combining Corollary 3.5 with Lemma 3.6, we see that the ringΛπ∗ is zero if and only if the functorj !

induces a triangle equivalence fromD(B) to D(R). This is equivalent to the statement thatj !(B) is a tilting
complex overR. Note that j !(B)≃U•[−1] by Lemma 3.7(2). Thus, the ringΛπ∗ is zero if and only ifU• is
a tilting complex overR. Now, the second part of Corollary 1.4 follows directly fromLemma 4.8.�.

Proof of Corollary 1.5.
Let us consider the pair(λ,µ) of ring homomorphismsλ andµ, whereµ is associated toλ. By Corollary

4.5, the pair(λ,µ) is exact. It follows from Lemma 4.4(4) thatS′ is a commutative ring sinceλ is an injective
homological ring epimorphism andR is a commutative ring. This means that the tensor productS⊗R S′ of
S andS′ over R is a commutative ring. Moreover, the mapλ′ : S′ → S⊗R S′ andµ′ : S→ S⊗R S′ are ring
homomorphisms. So,S⊗RS′ is anS′-S′-bimodule viaλ′.

By Lemma 3.9, we know that TorR
i (S,S

′) = 0 for anyi > 0. SinceR, SandS′ are commutative rings, it
follows that TorRi (S

′,S) ≃ TorRi (S,S
′) = 0. Note thatλ is a ring epimorphism, and so isλ′ : S′ → S⊗R S′ by

Lemmas 2.3 and 2.5(1). Thus EndS′(S′⊗RS)≃ EndS′(S⊗RS′)≃ EndS⊗RS′(S⊗RS′)≃ S⊗RS′ as rings. Now,
Corollary 1.5 is an immediate consequence of Corollary 1.3.�

Proof of Corollary 1.6.
For a commutative ringRand a multiplicative setΦ of R, the localization mapR→ S:= Φ−1R is always

homological sinceRS is flat. Therefore, by Corollary 1.5, it suffices to show thatS⊗R S′ is isomorphic to
Ψ−1S′. In fact, one can check that the well defined mapα : Φ−1R⊗RS′ −→ Ψ−1S′, given by

r
x
⊗y 7→

(r)µy
(x)µ

for r ∈R, x∈ Φ andy∈S′, is an isomorphism of rings, whereµ : R→S′ is the ring homomorphism associated
to λ. Clearly, this map is surjective. To see that this map is injective, we note that the mapβ : Ψ−1S′ −→
Φ−1R⊗RS′, defined by y

(x)µ 7→ 1
x ⊗y for x∈ Φ andy∈ S′, is a well defined ring homomorphism withαβ = 1.

Observe thatα preserves the multiplication ofS⊗RS′. This finishes the proof of Corollary 1.6.�

Finally, we mention a relationship between the results in Section 3 and the ones in Section 4.
Recall that we have defined the ring homomorphism ¯µ : R→ S′ associated to a ring homomorphismλ

at the beginning of Section 4.2. There is a connection between this homomorphism ¯µ and theµ : R→ T in
an arbitrary exact pair(λ,µ) of ring homomorphisms. This connection is revealed by the following result
which not only establishes a relationship between the results in Section 3 and those in Section 4, but also
demonstrates a “maximality” property of ¯µ.

Let T be an arbitrary ring andµ : R→ T a homomorphism of rings. If the pair(λ,µ) is exact, then there
exists a ring homomorphismη : T → S′ such thatµ= µη.

Proof. We keep the notation introduced in Section 3. Recall that thecomplexQ•⊗R T is of the form

0−→ T
λ′

−→ S⊗RT −→ 0 with T in degree−1, and isomorphic toQ• in D(R) via the quasi-isomorphism
µ• : Q• → Q•⊗RT (see the diagram (∗) in Section 3).

We defineω : T → EndD(R)(Q
•⊗R T) by t 7→ g• for t ∈ T, whereg• : Q•⊗RT → Q•⊗RT is the chain

map withg−1 := ·t, g0 := ·t andgi = 0 for i 6= 0,−1, which can be described by the following diagram:

T

·t

��

λ ′
// S⊗RT

·t
��

// Q•⊗RT

g•

��

// T[1]

(·t)[1]
��

T λ ′
// S⊗RT // Q•⊗RT // T[1]
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where· t stands for the right multiplication map byt. Then, one can check thatω is a ring homomorphism
and that

(r)µµ• = µ•
(
(r)µ

)
ω : Q• −→ Q•⊗RT

as chain maps for anyr ∈ R. This implies that if we defineη : T → S′ by t 7→ µ•g•(µ•)−1 for t ∈ T, then
µ= µη. �

5 Examples

Now we present a few examples to show that some conditions in our results cannot be dropped or weakened.

(1) The condition thatλ : R→ S is a homological ring epimorphism in Corollary 1.3 cannot beweakened
to thatλ : R→ S is a ring epimorphism.

Let R=




k 0 0
k[x]/(x2) k 0
k[x]/(x2) k[x]/(x2) k


 , wherek is a field andk[x] is the polynomial algebra overk in

one variablex. Let Sbe the 3 by 3 matrix ringM3(k[x]/(x2)). Then the inclusionλ of R into S is a universal
localization ofR, and therefore a ring epimorphism. Further, we have TorR

1(S,S) = 0 6= TorR2(S,S) (see [13]).
Thusλ is not homological. So,RScannot have projective dimension less than or equal to 1. Moreover, one
can check that the ring homomorphismµ : R→ S′ associated toλ is an isomorphism of rings. In this case,
we haveS⊔RS′ = Sandφ = (µ)−1λ : S′ → S in Corollary 1.3. Consequently,φ is not homological. However,
we shall show that the mapλπ∗ is homological. Hence, without the ‘homological’ assumption on λ, the
conditions(1) and(2) in Corollary 1.3 are not equivalent.

In the following, we prove thatλπ∗ is always homological, even though the ring epimorphismλ : R→ S
may not be homological.

Let λ : R→ Sbe a ring epimorphism such that TorR
1(S,S) = 0= HomR

(
S,Ker(λ)

)
. If the ring homomor-

phismµ : R→ S′ associated toλ is an isomorphism of rings, then the universal localizationλπ∗ : Λ → Λπ∗ of
Λ at π∗ is always homological.

Proof. It follows from Lemmas 3.1 and 4.4(3) thatΛ≃

(
S S
0 R

)
andΛπ∗ ≃M2(S) as rings. Under these

isomorphisms, the universal localizationλπ∗ : Λ → Λπ∗ is equivalent to the canonical ring homomorphism

θ : B=

(
S S
0 R

)
−→ M2(S) =

(
S S
S S

)

induced by the ring homomorphismλ. Clearly,θ is an ring epimorphism. Moreover,M2(S) is projective as
a rightB-module. Thusθ is homological, and consequently,λπ∗ is homological.�

(2) Thatλ is homological does not guarantee that the universal localizationλπ∗ : Λ → Λπ∗ of Λ at π∗ in
Corollary 1.3 is always homological.

In the following, we shall use Corollary 4.7 to give a counterexample.

Now, takeC =
{( a 0

b a

)
| a,b ∈ k

}
andD =

(
k 0
k k

)
with k a field. Then one can verify that the

extensionλ : R→ S, defined in Corollary 4.7, is homological, and that the canonical mapω : D → D/C is
a split epimorphism inC-Mod, and thereforeCD ≃ C⊕D/C. Let e be the idempotent ofE corresponding
the direct summandC of theC-moduleD⊕D/C. ThenEω∗ ≃ E/EeE≃ M2(k). Furthermore, the universal
localization λω∗ : E → Eω∗ of E at ω∗ is equivalent to the canonical projectionτ : E → E/EeE. Since
Ext2E(E/EeE,E/EeE) 6= 0, we see thatτ is not homological. This implies thatλω∗ is not homological, too.
Thusλπ∗ : Λ → Λπ∗ is not homological by Corollary 4.7, that is, the derived functor D

(
(λπ∗)∗

)
: D(Λπ∗)→
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D(Λ) is not fully faithful. In addition, one can check that, for this extension, theR-moduleRShas infinite
projective dimension.

(3) In Corollary 1.4(1), we assume that the projective dimension ofRS is at most 1. But there does exist
an injective homological ring epimorphismλ : R→ Ssuch that the projective dimension ofRS is greater than
1 and thatλπ∗ : Λ → Λπ∗ is homological.

Let R be a Prüfer domain which is not a Matlis domain. Recall that aMatlis domain is a domainR for
which the projective dimension of the fractional fieldQ of R as anR-module is at most 1. In this case, the
inclusionλ : R→ Q is an injective homological ring epimorphism. By Corollary1.5, the mapλπ∗ : Λ → Λπ∗

is homological.
(4) Now we display a concrete example which satisfies the conditions in Corollary 1.2(2).
We fix a fieldk. Let RandSbe thek-algebras given by the following quivers with relations, respectively:

1•
α **

•2
β

jj αβ = βα = 0; 1•
α **

•2

α−1

jj αα−1 = e1, α−1α = e2.

Let λ : R→Sbe the map defined byei 7→ ei , α 7→α, β 7→ 0.Thenλ is the universal localization ofRat the map
Re2 → Re1 induced fromα. SinceRS≃ Re1⊕Re1, theR-moduleSis projective. Henceλ is homological. By
calculation, the trivial extensionR⋉Sof R by theR-R-bimoduleRSR is the algebra given by the following
quiver with relations:

1•

α **
•2

β
jj

γoo αβ = βα = γαγ = 0.

Let B :=

(
S S⋉S
0 R⋉S

)
. By Corollary 1.2(2), we have the following recollement:

D(S⋉S) // D(B) //
gg

ww
D(R)

ff

xx

Note thatS⋉S is isomorphic toM2
(
k[X]/(X2)

)
.

Finally, we mention an open question related to stratifications and recollements in this paper. We have
exhibited counterexamples in [5] (see also [6]) to the Jordan-Hölder Theorem for the stratification of derived
module categories of rings by derived module categories of rings. But in these recollements, not all of the
rings involved are finite dimensional algebras. So, one may naturally ask the following question:

Question. If we restrict to derived categories of finite dimensional algebras, can the Jordan-Ḧolder
Theorem be true for stratifications of derived module categories of finite dimensional algebras by derived
module categories of finite dimensional algebras (up to derived equivalence)?

Note that some positive answers to this question are given recently in [1, Theorem 5.7]. Moreover, we
do not know any counterexample to this question at moment, and expect the results in this paper, especially
Corollary 1.2, could be helpful for understanding this question.
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