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Homological ring epimor phisms and recollements|1: Algebraic K-theory

Hongxing Chen andChangchang Xi*

Abstract

For a homological ring epimorphism from a rifyto another ringS, we prove that if the module
rS has a finite-type resolution, then the algebigitheory space oR decomposes as a product of the
ones ofSand a differential graded algebra. In addition, if the homg@tal ring epimorphism induces a
recollement of derived module categories of rings, thendifferential graded algebra involved can be
replaced by a usual ring. This result is then applied to nomoatative localizations and to homological
exact pairs introduced in the first paper of this series. kammle, we get a long Mayer-Vietoris sequence
of higher algebrai&-groups for homological Milnor squares, including a residlKaroubi.
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1 Introduction

Recall that a ring epimorphisiR — S between rings with identity is said to B®mologicalif the derived
module category of the rin§can be regarded as a full subcategory of the derived modtdgay of the ring
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R by restriction. For a homological noncommutative locdl@aA : R — S of rings, Neeman and Ranicki
have discovered a remarkable long exact sequence of aig&bgroups in[16]:

cor — Knpa(8) — Kn(R ) — Kn(R) — Kn(S) — Kn-1(R ) —

e — KO(K) — KO(R) — KO(S)

for all n € N, whereg is an exact category determinedXyThis result extends many results in the literature
(see[[15]). On the one hand, this long sequence, in genared, bt have to split into a series of short exact
sequences of the corresponding algebkaigroups, and moreover, thé-theory of the categorg seems
not to be easy to handle. On the other hand, there are manyldgic® ring epimorphisms which do not
arise from noncommutative localizations, but do give rieenénts of derived module categories (see the
discussion in[[5]). As is known, recollements are a gereatibn of derived equivalences, while derived
equivalences preserve algebréietheory of rings (se€_[7]). So, an interesting question facalation of
algebraicK-groups of rings is: When does such a long exact sequencegaedfralick -groups split? Or more
generally, can we read off information on algebréi¢heory of rings from recollements of derived module
categories? Precisely, we consider the following question

Question. Let R, SandT be rings with identity. Suppose that there is a recollememntray the derived
module categorie¥(T), Z(R) andZ(S) of the ringsT, RandS
/i_\ N
2(9) ——— 2(R) ——— 9(T)
N N
such thai.(S) is quasi-isomorphic to a bounded complex of finitely geregtairojectiveR-modules. Is the
K-theory spac& (R) of R homotopy equivalent to the product of tKetheory spaces ddandT? That is,
does the following isomorphism hold true:

Kn(R) ~ Kn(S) @ Kn(T) for eachne N?

Here, we denote bl (&) the K-theory space of an exact categafyn the sense of Quillen, bl (R) the K-
theory space of the exact category of finitely generateceptivp R-modules, and bi(,(R) then-th algebraic
K-group ofR for eachn € N.

We remark that, without the assumptionig(tS), the isomorphisnkK,(R) ~ K,(S) & K,(T) cannot hold.
This was shown by an example id [4, Section 8, Remark (2)hfer0.

The main purpose of the present paper is to provide an affirenanswer to the above question for
homological ring epimorphisms. To attack the question, wlkamploy ideas from the representation theory
of algebras. As a consequence of our methods, we shall isstablong Mayer-Vietoris sequence of higher
algebraicK-groups for the so-called homological Milnor squares ofsistudied in[[3]. This strategy might
lead to a bridge between the representation theory of algednd algebraik-theory of rings.

Before stating our results precisely, we first recall sonfendiens.

Let R be a ring with identity. ArR-moduleM has afinite-type resolutiorprovided that there is a finite
projective resolution by finitely generated projectRenodules, that is, there is an exact sequeneeR®), —

-+ — Py — Py — M — 0 for somen € N such that alR-modulesP; are projective and finitely generated.

Let X andY be pointed topological spaces. A mépX — Y is called ahomotopy equivalencéthere
isamapy:Y — X such thatfg: X — X andgf:Y — Y are pointed-homotopic to the identitiesXfandy,
respectively. Here, by a map between pointed topologicatepwe always mean a pointed continuous map.
If there is a homotopy equivalence betwe€andY, then we say thaX andY arehomotopy equivalenand
simply write X =Y.

For a differential graded algeb#s, we denote byK(A) the algebraik-theory space defined in Subsec-
tion[3.3, and byK,(A) then-th homotopy group oK(A) for n € N.

Our general result on homological ring epimorphisms readsl&ows.
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Theorem 1.1. LetA : R— S be a homological ring epimorphism.
(1) If S admits a finite-type resolution, then there is a diffeedrgraded ringT determined by such
that K(R) —— K(S) x K(T) as K-theory spaces, and therefore

Kn(R) ~ Kn(S) & Kn(T) forall neN.
(2) Suppose that there exists a ring T and a recollement amondeheed module categorie®(T),
2(R) and Z(S) of therings T, R and S:
TN TN

P(S) ———= P(R) — 2(T)
N N

where | is the restriction functor induced from If the modulesS or & has a finite-type resolution, then
K(R) — K(S) x K(T)
as K-theory spaces, and therefore
Kn(R) ~Kn(S) @ Kn(T) forall neN.

Theorem[ 11l provides a partial answer to the above questidnegtends both [5, Theorem 1.1 (2)]
and some cases i [27]. As a consequence of the proof of Tindbi® we have the following corollary
on noncommutative localizations, which, under the finjiget condition, provides a strong result (compare
with [16, Theorem 0.5]). Note that the terminology “noncountative localization” was originally called
“universal localization” in the literature.

Corollary 1.2. LetR be aring and a set of injective homomorphisms between finitely genegatgdctive
R-modules. Suppose that the universal localizatior: Ry of R at> is homological and that the left R-
module R has a finite-type resolution. Then

K(R) — K(Rg) x K(&)

where & is the small exact category @R, X)-torsion modules which are exactly those finitely presented
R-modules M of projective dimension at mbsuch that R @rM = 0 = Tor}(Rs,M).

As an application of our methods developed in this paper,amsider exact pairs introduced I [3] (see
also Subsection 5.2 below). In this case, we get a long M¥lgtoris sequence df-groups for homological
Milnor squares of rings.

Theorem 1.3. Let (A, ) be an exact pair of ring homomorphisii\s R— S and p R— T, and let $IrT,
together with the ring homomorphismps S— SLRT and@: T — SURT, be the coproduct of S and T over
R. Suppose that is a homological ring epimorphism arbr(T,S) = 0 for all i > 0. Then the following
statements hold true:

(1) The sequence of K-theory spaces

K(p)
K(R) —>(7K(M’K(“)) K(S) x K(T) —>(K“”> K(SLRT)

is a weak homotopy fibration, whereK (M) denotes the composite of X) with K([1]). In particular, there
is a long exact sequence of K-groups:

(=Ka(A).Kn(h) (foe)

coo — Knp2(SURT) — Kn(R) Kn(S) & Kn(T)
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e KO(R) — Ko(S) S5 Ko(T) — KO(Sl—lRT)

foralln e N.
(2) If, in addition, the modulgS or Tk has a finite-type resolution, then

K(R) x K(SURT) — K(S) x K(T)
as K-theory spaces, and therefore
Kn(R) @ Kn(SLRT) ~ Kn(S) @& Kn(T) forall neN.

We remark that, by [3, Lemma 3.8 (2)], the coprod8cir T in Theoren 1B is actually isomorphic to
the endomorphism ring ERdT @R S).

As an immediate consequence of Theofenh 1.3, we get a resgéirofibi, namely Corollarfy 513, which
provides a long exact sequence of algebkaigroups for localizations. As another consequence of Tdmor
[I.3, we have the following result on a class of homologicdhiti squares.

Corollary 1.4. (1) Let R be a ring with two idealg land b such that{ NI, = 0. Suppose that the canonical
ring homomorphism R> R/1; is homological. If the left R-modulg ér the right R-modulejhas a finite-type
resolution, then

Ka(R) & Kn(R/ (11 +12)) = Kn(R/11) & Kn(R/12)

foralln e N.
(2) Suppose thak : R— S is a homomorphism of rings and M is an S-S-bimodulk.id¢fa homological
ring epimorphism, then
Kn(R) ® Kn(Sx M) ~ Kp(S) @ Kn(Rix M)

for all n € N, where S< M stands for the trivial extension of S by M.

This paper is organized as follows: In Sectidn 2, we briefgaiesome definitions and basic facts on
triangulated categories, homological ring epimorphismag @collements. In Sectidd 3, we first recall the
algebraicK-theories developed by Waldhausen for Waldhausen caesgand Schlichting for Frobenius
pairs, and then introduce our definition of algebrditheory spaces for differential graded algebras, which
is a modification of Schlichting’s definition in [20]. In Sém[4, we prove the main result, Theorém]1.1.
But, before starting with our proof, we first consider honpgtaplit injections forK-theory spaces as a
preparation, and then prove the first part of Theokemh 1.1chvehows that, in general, the algebriie
theory of recollements induced from homological ring epipisms involves differential graded algebras.
With the help of the first part of Theorem 1.1, we then give fsad the second part of Theordm 1.1 and its
Corollary[1.2. In Sectioh]5, we apply our results in the prasisections to homological exact pairs defined in
the first paper([3] of this series, and get a long Mayer-Vistsequence df-groups, which shows Theorem
[I.3. As an immediate consequence of Theokem 1.3, we rechtMayer-Vietoris sequence in Corollary
[5.3, due originally to Karoubi, for positivi€-theory of localizations. At the end of this section, we dezlu
Corollary[1.4 from Theorem11.3. In Sectibh 6, we illustrate tesults by an example which shows that the
differential graded algebra in Theorém]|1.1 (1) cannot bsti#uked by its underlying ring (just forgetting the
differential).

2 Préiminaries

In this section, we shall fix notation which will be employdutdughout the paper, and provide some basic
facts which will be used in our later proofs.



2.1 General terminology and notation on categories

Let ¢ be an additive category.

We always assume that a full subcategaryof ¢ is closed under isomorphisms, that isXife 3 and
Y € ¢ withY ~ X, thenY € 3.

Given two morphismd : X — Y andg:Y — Zin ¢, we denote the composite dfandg by fg which is
a morphism fronX to Z, while given two functors- : ¢ — » andG: © — £ among three categories D
andz, we denote the composite BfandG by GF which is a functor front to £.

Let Ker(F) and Im(F) be the kernel and image of the functey respectively. That is, KéF) := {X €
C|FX~0}and ImF):={Y e |3X e c,FX~Y}. Inparticular, KetF) and ImF) are closed under
isomorphisms it and?, respectively.

An additive functorF : 2 — 3 between two additive categoriesand is called anequivalence up to
factorsif F is fully faithful and each object a is isomorphic to a direct summand of the image of an object
of 2 underF.

Let 2 be a triangulated category anda full triangulated subcategory af. Then, essentially due to
Verdier, there exists a triangulated categaryx, and a triangle functay: 2 — 4 /x with x C Ker(q) such
that q has the following universal property: ¢f : 2 — 7 is a triangle functor withx C Ker(q'), thend
factorizes uniquely through LN 4 /x (seel14, Theorem 2.18]). The categoryx is called theVerdier
quotientof 2 by x, and the functoq is called theVerdier localization functar In this case, Keig) is the
full subcategory ofa consisting of direct summands of all objectsxin We remark that the objects of the
categorya /x are the same as the objectsm{see [14, Chapter 2] for details).

A sequencez Fo3 S ¢ of triangle functord= andG between triangulated categories is said to be
exactif the following four conditions are satisfied:

(i) The functorF is fully faithful.

(i) The composité&sF : 2 — ¢ of F andGis zero.

(iii ) The image InfF) of F is equal to the kernel d&.

(iv) The functorG induces an equivalence from the Verdier quotiensdiy Im(F) to c.

Clearly, if x is closed under direct summands 4n then we have an exact sequence of triangulated
categories:

X——s21 —q>ﬂ/x .

Let 7 be a triangulated category with small coproducts (thatdpreducts indexed over sets existiin.

An objectU € 7 is said to becompactf Hom, (U,—) commutes with small coproducts in. The full
subcategory of consisting of all compact objects is denotedmy:

For any non-empty clas¥’ of objects in7', we denote by Trig”’) (respectively, thick¥)) the smallest
full triangulated subcategory af containing.¥” and being closed under small coproducts (respectivelctir
summands). If7 consists of only one objett, then we simply write TrieJ ) and thickU ) for Tria({U })
and thick{U }), respectively. The notation Tri&”) without referring toz will not cause any confusions
because this notation can be clarified from the contexts ofonsiderations.

The following facts are in the literature (séel[14, Propositl.6.8] and[[3, Section 2.1]).

Lemma2.1. (1) If 7 is a full triangulated subcategory af such thatrg is closed under countable coprod-
ucts, thenry is closed under direct summandsan

(2) Let7’ be a triangulated category with small coproducts, and let#— 7’ be a triangle functor. If
F preserves small coproducts, theiiTia(U)) C Tria(F(U)) foranyUe 7.

Finally, we mention a special case of the result [14, Theotehd] for3 = 0.



Lemma 2.2. Let s be a triangulated category with small coproducts. ketC s be a full triangulated
subcategory, closed under the formation of the coproducts of any set of its objects. Let :=$/%.
Assume further that there exist: (i) A set of objects.&, so thats = Tria(S). (ii) A set of objects R £ Ns°€,
so that® = Tria(R). Then the following hold true:

(1) The inclusiong. C s takes compact objects to compact objects, and so does ttieMercalization
functors — 7. In other words, we have a commutative diagram

RC SC {TC

]

R———5 ——T.

Moreover, we hav@ria(® )¢ = Tria(® ) N s = thick(g ).
(2) The composit& ¢ — s — 7 ¢ in the above diagram must vanish, since it is just the retsricto % ©
of a vanishing functor o® . We therefore have a factorization 9 — 7° as

§C SC/KC _|> s
The functor i s¢/® © — 7 ¢ is an equivalence up to factors.

2.2 Complexesover module categories

Throughout the paper, by a ring we always mean an assocraitysvith identity.

Let Rbe aring. We denote big-Mod, R-proj and2?<*(R) the categories of leRR-modules, finitely gen-
erated projective lefR-modules and lefR-modules having finite-type resolutions, respectivelyudsal, the
complex, homotopy and derived categoriedReflod are denoted by’ (R),.# (R) and Z(R), respectively.
Clearly, Z(R) = Tria(R). By usual convention, we writ&’°(R) for Z(R)°.

For eachn € Z, we denote the-th cohomology functor byH"(—) : Z(R) — R-Mod.

Now we briefly recall the definitions of Hom-complexes andstarcomplexes.
Let (X*,dx-) and(Y*,dy.) be complexes if¢' (R). The Hom-complex oK*® andY* overR is a complex
Homg(X®,Y*®) := (HomR(X*,Y*),d5. v. ) ., Where

nez

Homi(X°®,Y*) := I_L Homg(XP,YP™)
pe

and the differentiatly. . of degreenis given by

(hP)pez — (APdy " — (=1)"dk.hPH) )

fOI’ (hp) peZ S HOI’nE(X',Y')
Let Z* be another object if (R). We define

o1 Hom&(X®,Y*) x Homx(Y*®,Z*) — Homix(X*,Z%), (f.,g) — (fPgP*™) ey

for f:= (fP)pez € HOMR(X®,Y*) andg := (gP)pez € HOMR(Y*,Z*) with m,n € Z. Thus the operation

is associative and distributive, and therefore KX?,X*) is aZ-graded ring. For simplicity, the Hom-
complex Honk(X*®,X*) is denoted by Erfg{X*). In fact, Eng(X*®) is a differential graded ring (see Sec-
tion [3.3 for definition) and will be called thdg endomorphism ringf X*. Note thatH"(End}(X*)) ~
Hom () (X*®,X*[n]) for anyn € Z.



Moreover, the above-defined operatiosatisfies the following identity:
(fog) il = fo (@) 7o+ (~1)"(F)dR v 00,

Let W* be a chain complex ové®"-Mod. Then the tensor complex @f* andX*® overR is a complex
W @ X 1= (W REX®, 00 x ) oy, Where
WeRRX® = @Wp ®QrX"P
pPEZ

and the differentiady- x. of degreenis given by
W@ X (W)dfye @ X+ (—1)Pwe (x)dy. P

forwe WP andx € X"P.

Let S be another ring an® a complex ofR-S-bimodules. The total left-derived functor M* ©g —
is denoted byM* @5 — : 2(S) — Z(R), and the total right-derived functor of HtM*, —) is denoted by
RHomg(M*,—) : Z(R) — 2(S). Clearly, (M* ®g —, RHomg(M*, —)) is an adjoint pair of triangle functors.

2.3 Recollements and homological ring epimorphisms

In this subsection, we recall the notion of recollementsclvhirere introduced by Beilinson, Bernstein and
Deligne (se€l]1]), and are widely used in algebraic georeidyrepresentation theory. Typical examples of
recollements can be constructed from homological ring epatmisms.

Let o, o’ andD” be triangulated categories with shift functors denotedeansally by [1].

We say thatp is arecollemeniof »” and®” if there are six triangle functors as in the following diagra

such that

(1) the 4 pairg(i*,i.), (ir,i'), (ji,j') and(j*, j.) are adjoint pairs of functors;

(2) the 3 functorg,, j. andj, are fully faithful;

(3) the composite of two functors in each row is zero, that js,= 0 (and thus alsg'i; = 0 andi* j, = 0);
and

(4) there are 2 canonical triangles<nfor each objecKX € »:

' (X) = X == L (X) — 1 (X)[1],

1iH(X) — X — " (X) — i (X)[1],

wherej j' (X) — X andi;i' (X) — X are counit adjunction maps, and whete- i.i*(X) andX — j, j*(X)
are unit adjunction maps.

It is known that, up to equivalence of categories, recolleim®f triangulated categories are the same
as torsion torsion-free triples (TTF-triples) of triangtdd categories (see, for example, [4, Section 2.3] for
details). In the following lemma we mention some facts aleabllements for later proofs.



Lemma 2.3. Suppose that the above recollement is given. Then the fotidwold:

(a) The images of the three fully faithful functorsij and j. are closed under direct summandszin

(b) The Verdier quotients ab by the images of the triangle functorsaind i, are equivalent ta” and
D', respectively.

(c) Assume thap, »" and »” admit small coproducts. Then bothand i preserve compact objects.
Suppose further thab is compactly generated, that is, there is a set S of compgetishin® such that
Tria(S) = », then . preserves compact objects if and only if so'is Ip this case, we can obtain a “half
recollement” of subcategories of compact objects:

Note that(a) and(b) follow from [2, Chapter |, Proposition 2.6], whilee) follows from [2, Chapter III,
Lemma 1.2 (1) and Chapter IV, Proposition 1.11].

A typical example of recollements is provided by homologitag epimorphisms. Recall that a ring
epimorphismA : R — Sis said to behomologicalif Tor}(S,S) = 0 for all n > 0 (see([8[16]). This is also
equivalent to saying that the restriction funcl..) : 2(S) — Z(R) is fully faithful.

The following result can be concluded from [17, Section 4].

Lemma 2.4. LetA : R— S be a homological ring epimorphism. Then there is a recaldnof triangulated
categories:

Tria(RQ')
~— N~

where Q is the two-term compled — R 2. s 0owithRand Sin degredsandl, respectively, and where
ji is the canonical embedding and

j! = Q. ®HF\;_7 "= S®% — = D()\*)

Thus, if we define? := {Y € Z(R) | Homyg)(X,Y) =0 for any X € Tria(rQ*)}, then it follows from
Lemmd 2.4 that

¥ =1{Y € 2(R) | Homyr (Q*,Y[n]) =0for ne Z} = {Y € 2(R) | Q° @RY = 0},

and that, induces an equivalencg(S) — % .

In general, for a rindR, the categories?(R) and 2(R™) are not triangle equivalent. Nevertheless, with
the help of LemmB&2]4, we can establish the following reshictvwill be used in the proof of Theordm 1.1.

Lemma25. LetA : R— S be a homological ring epimorphism. Then the following a@iealent for a ring
T:
(1) There is a recollement of derived categories:
‘/D(ﬁ S

5

2(9)

(2)There is a recollement of derived categories:

//D(X*)\ T o
2(SP) ———= Z(RP) ——— 9(T°P)
N N



Proof. Observe that ifA : R— Sis a homological ring epimorphism, then so is the ma@R°P — S°P
by [8, Theorem 4.4]. Moreover, it follows from [17, CoroNaB.4] that(1) holds if and only if there is a
complexP*® € €°(R-proj) such that TrigP*) = Tria(rQ*), Endy ) (P*) ~ T and Homy, gy (P*,P*[n]) = 0 for
anyn # 0, whereQ?* is the complex -+ R— S— 0. However, for such a compldéX, we always have

HomMy(rop) (P**, P**[N]) =~ Homy,w) (P*,P*[n]) for all n€ Z,

whereP** := Homg(P*,R) € €®(R°P-proj). So, to prove thatl) and(2) are equivalent, it is enough to prove
the following statement:

If P* € °(R-proj) such that TrigP*) = Tria(rQ"), then TridP**) = Tria(Qy).

In fact, letP*® be such a complex and define

7" :={Y € Z2(R®) | Homy g (X,Y) = 0 for X € Tria(P**)}.

SinceP* € €°(R-proj), we haveP** € ¢P(ROP-proj). It follows from [4, Lemma 2.8] that there is a recolle-

ment: T P——
@' —— = P(RP) — Tria(P**)

N~ ~—
wherep is the inclusion. This implies that

(@) Tria(P*") = {X € Z2(R®) | Homy o) (X,Y) =0 for Y € Z'}.
Furthermore, we remark that
' ={Y € 9(R°P) | Homy ey (P**,Y[n]) = 0 for ne Z} = {Y € 2(R°P) | RHomgor(P**,Y) = 0},

and that
RHOMgop(P**, —) ~ — @K P*: 2(RP) — 9(Z)

by [3, Section 2.1]. Thug?’ = {Y € 2(R°) | Y @k P* = 0}. However, by Lemm&2l1 (2), for a given
Y € 2(R°P), the left-derived tensor functdf @i — : 2(R) — 2(Z) sends TriéQ"®) (respectively, Trié&P*))
to zero if and only ifY ®5Q* = O (respectivelyY @& P* = 0). Since Tri@P*) = Tria(rQ") by assumption,
we certainly obtair?’ = {Y € 2(R?) | Y k Q* = 0}.

Sincel : R°P — SP is also a homological ring epimorphism, we obtain anotheolfement by Lemma

2.4: _
“D) S g
9 (SP) —— 2(R°P) —— Tria(QR)
\_/ \_/

whereF is the inclusion an@ is the tensor functor @§ Q°. This implies that IniD(A.)) = Ker(G) and

(b)  Tria(Qr) = {X € Z2(R°) | Homyrer) (X,Y) =0 for Y € Ker(G)}.
Since#’ = Ker(G), we conclude fron{a) and (b) that Trig P**) = Tria(Qg). This finishes the proof of
Lemmd 2.5

3 Algebraic K-theory

In this section, we briefly recall some basics on algehikatbeory of Waldhausen categories and Frobenius
pairs developed in [24] and [20], respectively. And we thiestalss algebraik-theory of differential graded
algebras and prove a few lemmas as preparations for prodifie ahain results.
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3.1 K-theory spaces of small Waldhausen categories

Let us first recall some elementary notion and facts abouKttigeory of small Waldhausen categories (see
[24,123)18]).

Let ¢ be a small Waldhausen category, that is, a pointed categonyigped with a zero object) with
cofibrations and weak equivalences. [In/[24, Section 1.3]dW#isen has definedkatheory spaceK(¢)
for ¢, which is a pointed topological space, andrath homotopy grougK,(c) of K(¢) for eachn € N,
which is called then-th K-group ofc. Clearly, if a Waldhausen category is essentially smallthat is, the
isomorphism classes of objects@fform a set, then the definition of Waldhaug€stheory still makes sense
for ¢’ because, in this case, one can choose a small Waldhausextesydogc of ¢’ such that is equivalent
to ¢’, and define th&-theory ofc’ through that ofc.

Note thatk (¢) is always homotopy equivalent to a CW-complex. In fact, toiows from the following
observation: The classifying space of a small categorytmasttucture of a CW-complex and the loop space
of a CW-complex is homotopy equivalent to a CW-complex (863)[ while K(¢) is the loop space of a
classifying space constructed fram

TheK-theory space defined by Waldhausen is natural in the fatigwense: Each exact functer. ¢ —

D between Waldhausen categoriesand® induces a continuous mag(F) : K(¢) — K(2) of (pointed)
topological spaces, and a homomorphilptF ) : Kn(c) — Kq(2 ) of abelian groups for eaame N. If G:
D — £ is another exact functor between Waldhausen categoriesKtGF) = K(F)K(G) in our notation.

The cartesian product x ¢ of a Waldhausen categotyis again a Waldhausen category with cofibrations
and weak equivalences defined in an obvious way.

Note that finite coproducts always existdn and that the coproduct functor

U:cxc—c¢, (M,N)—MLN forall M,N € ¢,

is an exact functor between Waldhausen categories. Morertart, with the induced malg (L)) : K(¢) x
K(c) — K(c), the spac&(c) becomes a homotopy-associative pointedpace, and the homomorphism
Kn(L) : Kn(C) x Kn(c) — Kn(c) is actually given by(y, z) — y+zfory,z € Kq(C).

Recall that a pointed spa¢X, e) with X a topological space arek X is called shomotopy-associative
pointed H-spacésee [22, Chapter 7]) if there is a pointed map —) : X x X — X satisfying the following
two conditions:

(1) The mapge,—) and(—, e) are pointed-homotopic to the identitgty of X.

(2) The respective composites of the following maps:

X x (X X) 20D s x 0% and (X x X) x X — I x5
are pointed-homotopic.

Clearly, the associated poiat of K(¢) corresponds to the image of the mép{0}) — K(¢) induced
from the inclusion{0} — ¢, where 0 denotes the zero objectaf

Next, we shall discuss some additivity of exact functorsveen Waldhausen categories.

Let ¢i be a small Waldhausen category fet 1,2. Denote by : ¢ — C1 X Co andp; : C1 X C2 — ¢ the
canonical injection and projection, respectively. T, x ¢2) = K(c1) x K(¢2) and

K(A1) 1 K(c1) = K(C1 % C2), €1+ (C1,€c,),

K(A2) : K(c2) = K(c1 % €2), C2— (€,C2),
K(pi) : K(c1x ¢c2) = K(ci), (C1,C2) + G
for ¢ € K(¢j) withi=1,2.
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Onthe one hand, iB: ¢1 x ¢z — ¢ is an exact functor, thek(G) : K(c1) x K(c2) — K(¢) is given by
the composite of the following two maps:

K(G1) x K(Gy) : K(c1) x K(c2) = K(c) xK(c) and K(U) : K(c) xK(c) — K(c)
whereG,; : ¢; — ¢ is defined to be the composition df with G. This is due to the following identities:
G(Cl,Cz) = G((Cl,O) LI (O,Cz)) = G(Cl,O) L G(O,Cg) = Gl(Cl) L Gz(Cz)

for G € ¢j.
On the other hand, ifl : ¢ — ¢1 x ¢2 is an exact functor, then

K(H) = (K(H1),K(H2)) : K(¢) = K(c1) x K(c2)

whereH; : ¢ — ¢j is defined to be the composition Efwith p;.

Finally, we recall some definitions and basic facts in homptiheory for later proofs. For more details,
we refer the reader t6_[26, Chapters Ill and IV] ahdl[22, Ceaf@]. Those readers who are familiar with
homotopy theory may skip the rest of this subsection.

Let (Y,yo) N (Z,29) be a map of pointed topological spaces. Hoenotopy fibre Fg) of g is defined
to be the following pointed topological space

F@) ={(wy) |w:[0,1] = ZyeY, (Ow=2z, (l)w=(y)g}

with the base—poin(czc,yo), wherec,, is the constant path— 7, for t € [0, 1]. If we defineh: F(g) — Y by
(w,y) — yfor any(w,y) € F(g), then there is a long exact sequence of homotopy groups:

h
e Ta(Z.20) — T (F(9), (C,Y0)) ™ Th(Y, Yo) ™% T0(Z,20) — T 1(F(9), (€21 ¥0)) —

-+ == To(F(9), (Cz:Y0)) — (Y, Yo) — To(Z, 20)
whereT,(Z, Z9) denoteshe n-th homotopy grouef (Z, zy) for eachn € N (see[[26, Corollary IV. 8.9]).

A sequencéX,Xp) L> (Y,Yo) N (Z,zy) of pointed topological spaces is callachomotopy fibratiorif
the composite of andgis equal to the constant map which sends exaryX to the base-point of, and if
the natural map

X —F(g), X (Cq,(X)f) for xeX
is a homotopy equivalence.

The sequencéX, xo) —f> (Y,Yo) N (Z,zy) of pointed topological spaces is calledveak homotopy
fibration if there is a pointed topological spa¢g’,z,), and two pointed mapg; : Y — Z' andg, : 2/ — Z
with g = g1 such that

(1) the sequencéX, xo) N (Y, yo) -2 (Z',z,) is a homotopy fibration, and that
(2) gz induces an injectiomy(Z’, z)) — To(Z,2) and a bijection,(Z', 7)) — T, (Z, 2) for n > 0.
g

Assume that X, xo) N (Y,Yo) — (Z,29) is a weak homotopy fibration. Then there is a long exact
sequence of homotopy groups:

f
o Thia(Z020) — Th(X,%0) = T (Y, yo) ¥ 11(Z,20) — T 1(X,%0) —

- — (X, X0) — To(Y,Yo) — To(Z, 20)
for all n e N, andg, induces a weak equivalence from the loop spa¢#', z)) of (Z’, z,) to the one of Z, z).
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3.2 Frobeniuspairs

We recall some definitions given in [20].

By a Frobenius categoryve mean an exact category (seel [18, 10]) with enough pregeatid injective
objects such that projectives and injectives coincide. Av fioetween two Frobenius categories is an exact
functor which preserves projective objects.

Let ¢ be a Frobenius category.

We denote by -proj the full subcategory af consisting of all projective objects. Itis well known thigét
factor category of ¢ moduloc-proj, called thestable categoryf ¢, is a triangulated category. Moreover,
two objectsX andY of ¢ are isomorphic irc if and only if X@P ~Y @ Qin ¢ for someP,Q € ¢-proj. In
particular,X ~ 0 in ¢ if and only if X € c-proj.

A subcategoryx of ¢ is called aFrobenius subcategorgf ¢ if x is a Frobenius category and the
inclusionx C ¢ is a fully faithful map of Frobenius categories. In this gaseroj C ¢-proj, and a morphism
in x factorizes throughx -proj if and only if it factorizes througtr-proj. This implies that the inclusion
Xx C ¢ induces a fully faithful inclusionx C ¢ of triangulated categories. In generaldoes not have to be
a triangulated subcategory ofsincex is not necessarily closed under isomorphisms .itHowever, by our
convention, the image of the inclusionC ¢ is indeed a triangulated subcategorycof

A pair C := (¢, ¢o) of Frobenius categories is called~eobenius pairif ¢ is a small category and, is
a Frobenius subcategory of A map from a Frobenius pai, co) to another Frobenius paft’, ¢f) is a
map of Frobenius categories— ¢’ such that it restricts to a map from to ¢/ (see [20, Section 4.3]).

LetC := (¢, co) be a Frobenius pair. Then the image of the inclugiga: ¢ is a triangulated subcategory
of ¢. So we can form the Verdier quotient ofby this image, denoted by

Zr(C):=C/Co

which is called thelerived categoryf the Frobenius pai€C. Here, we use the same notatiori ¢o as in [20]

to denote the derived category®©f but the meaning af /o in our paper is slightly different from the one in
[20] because we require that the image of an inclusion furistolosed under isomorphisms. Nevertheless,
all results in[[20] work with this modified definition of deed categories.

Clearly, if co = c-proj, thenZg(C) = c. In this case, we shall often write for the Frobenius pair
(c,c-proj).

The categoryc of a Frobenius pai€ := (¢, o) can be regarded as a small Waldhausen category (for
definition, seel[24] o [5]): The inflations in form the cofibrations of', and the morphisms ia which are
isomorphisms irZg (C) form the weak equivalences of In this note, we shall writ€ for the Waldhausen
categoryc to emphasize the role @f. According to our foregoing notation, we denotedyhe Waldhausen
category defined by the Frobenius pair, c-proj). For the Waldhausen categdty we denote th&-theory
space ofC in the sense of Waldhausen KyC) which is a pointed topological space, and thth K-group
of K(C) by Ky(C) for eachn € N.

It is known thatKo(C) is naturally isomorphic to the Grothendieck grokig(Ze(C)) of the small tri-
angulated categorgr (C) (see [23, Section 1.5.6], [25, Chapter IV, Proposition &#dd [21, Proposition
3.2.22)).

Let G: C — C’ be a map of Frobenius pairs. On the one h&hdutomatically induces a triangle functor
7k (G) : Ze(C) — Z&(C’), which sendX € ¢ to G(X) € ¢’. On the other hand3: ¢ — ¢’ is an exact
functor of associated Waldhausen categories, which irda@®ntinuous mak(G) : K(C) — K(C’).

In this paper, we assume that all Waldhausen categoriegdeoed arise from Frobenious pairs.

3.3 Examples of Frobenius pairsand their derived categories

Two typical examples of Frobenius pairs are of our interest.
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(a) The first typical example of Frobenius pairs is providgdHhe categories of bounded complexes over
exact categories.

Let & be a small exact category (for definition, see [18] [10R. denote bys(&£) the category of
bounded chain complexes owér Then%®(&) is a small, exact category with degreewise split conflations
that is, a sequenc¥® — Y* — Z* is a conflation ing®(&) if X' — Y' — Z' is isomorphic to the split
conflationX' — X' @ Z' — Z' for each € Z. Actually, (&) is even a Frobenius category in which projective
objects are exactly bounded contractible chain complexes®. Recall that a chain complex® is called
contractiblewhen the identity orX*® is null-nomotopic. Moreover, the stable categoryz®¥(&) is the usual
bounded homotopy category ®(&), that is, Zg (€°(&)) = #°(&).

Recall that a complex*® = (X',d")icz over & is calledacyclicif d' is a composite of a deflatior
with an inflationA' such thatA', 1i*1) is a conflation for ali. Let €2(&) C €°(&£) be the full subcategory
of objects which are homotopy equivalent to acyclic chaimptexes overs’. Then%2(&) contains all
projective objects of the Frobenius categ@f(&£), and is closed under extensions, kernels of deflations as
well as cokernels of inflations i#°(&"). Thus@X,(&) inherits a Frobenius structure froeP(£) and

C:= (€°(6),6ql))

is a Frobenius pair. In particular, the pélr(or the associated categoP(£)) can be regarded as a Wald-
hausen category: A chain mdp: X* — Y* in €°(&) is called a cofibration if' : X' — Y' is a split inflation

in & for eachi € Z; a weak equivalence if the mapping coneféfbelongs tdz2(&). Moreover, Z¢ (C)
coincides with the bounded derived categér§(&) of €°(&£), which is defined as follows:

Let &’ be an arbitrary exact category. The objectsZ8{&”) are the objects 0&°(&”). The morphisms
of 2°(&") are obtained from the chain maps by formally inverting th@snahose mapping cones are acyclic
(as complexes of objects ifi'). For example, if6” is the usual exact categoBMod with R a ring, then
2P°(&") is the usual derived categogg®(R). Further, any exact functdt : &1 — &> between exact categories
induces a triangle functdd(F) : 2°(&1) — 2°(&,). For more details, seg[10].

Assume that the exact structure &fis induced from an abelian categagy. That is,& C & is a full

. . f , o
subcategory such that it is closed under extensions, ahd semguenc — Y -9, Zwith all terms in& is a

conflation in& if and only if 0— X —f> Y 257 0is an exact sequencedd. Furthermore, assume thét
is closed under kernels of epimorphisms in the abelian cage¢n this case, the chain mdp : X* —Y*®isa
weak equivalence i€ if and only if f* is a quasi-isomorphism i («7), that is,H'(f*) : H'(X*) — H'(Y*)

is an isomorphism i/ for eachi € Z.

Note that an exact categogy itself can also be understood as a Waldhausen category efitirations
being inflations, and weak equivalences being isomorphiddgsto now, there are at least three algebraic
K-theory spaces associated with a small exact catefjofijhe QuillenK-theory space of the exact category
&, the WaldhauseHK -theory space with respect to the Waldhausen cate§jpand the Waldhausef-theory
space of the Waldhausen category defined by the Frobeniuﬁﬁ%ﬂéo),%;’c(é")). However, these spaces
are the same up to homotopy equivalence (s€e [24, Sectihrah®[23, Theorem 1.11.7]). So, in this paper,
we always identify these spaces.

(b) The next example of Frobenius pairs is constructed fratagories of finitely generated projective
modules.

Let R be a ring. Then the categof-proj of finitely generated projectivB-modules is a small exact
category with split, short exact sequences as its conflatiGtearly, this exact structure étaproj is induced
from the usual exact structure of the abelian cate§hod. Following Quillen[18], thealgebraic K-theory
space KR) of Ris defined to be the spa¢g R-proj) of R-proj, and then-th algebraic K-group K(R) of R
to be then-th homotopy group oK (R).

According to (a), the pairs™®(R-proj), 62.(R-proj)) and (¢°(2<*(R)),¢2(2<*(R))) are Frobenius
pairs. In this way, botk™®(R-proj) and¢®(22<*(R)) can be regarded as small Waldhausen categories. Note
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that <" (R) is a small exact category.

Itis easy to see thaf2,(R-proj) consists of all bounded contractible chain complexes Bveroj, which
are exactly projective objects in the Frobenius categ8tyR-proj), that is,4”(R-proj)-proj = €2(R-proj).
Thus Zk (¢°(R-proj)) is the bounded homotopy catego#®(R-proj). Since each compact object &f(R)
is quasi-isomorphic to an object &f°(R-proj), we know that#®(R-proj) is equivalent toZ°(R) via the
Verdier localization functor?’ (R) — Z(R).

Hence, we see th#t(R), K(£P(R-proj)) andK (C) with C := (¢°(R-proj), €.2(R-proj)) are homotopy
equivalent, and therefore their algebr&iggroups are all isomorphic.

Note that#®(2<*(R))-proj # €2(2<*(R)) in general.

Let Sbe another ring ani* a bounded complex &-S-bimodules. 1iRM* € €°(R-proj), then the tensor
functorM® @& — : €°(Sproj) — €°(R-proj) is a well-defined map of Frobenius pairs.

Finally, we establish a useful result about constructingpsraetween some special Frobenius pairs.

Lemma 3.1. Let R and S be rings, and let*@ ¢°(R®zS") such thatrQ" € #<*(R) for all n € Z.
Consider the following Frobenius pairs:

A = (€°(Sproj), €2(Sproj)) and B:= (¢°(2<"(R)),E2(2<"(R))).

Then the following statements hold:

(1) The functorrQ*® ®g— : A — B is a well-defined map of Frobenius pairs.

(2) The induced functoZe (rRQ* ®g—) : Zr(A) — Z¢(B) of derived categories is given by the compo-
sition of the following functors:

T (A) = e (€°(Sprof) —— 42 (Sproj) 2t #P(9<2(R) —= 2°(P<*(R) —— %¢(B)
where q is the Verdier localization functor.

Proof. Recall that#®(S-proj) and¢®(2<*(R)) are Frobenius categories in which the conflations are
degreewise split exact sequences of chain complexes, anprdfective objects are bounded contractible
chain complexes oved-proj and.#?<*(R), respectively.

SinceQ* € ¥°(R®z S”) with RQ" € Z<(R) for all n € Z, we havezsQ® € ¢°(2<*(R)), and therefore
G :=RrQ* ®&— : €P(Sproj) — €P(2<*(R)) is an additive functor. Clearlys preserves both degreewise
split conflations and contractible chain complexes. T@&us a map of Frobenius categories. In particuar,
induces a triangle functar®(S-proj) — .#(2<*(R)) of homotopy categories. To shdd), it remains to
check thatG can restrict to a functoe(S-proj) — €2(27<*(R)). However, this follows from the following
two observations:

(I) €2(Sproj) consists of all bounded contractible chain complexes 8yanoj, which are exactly pro-
jective objects in the Frobenious categ@(S-proj).

(1) All bounded contractible chain complexes ov&t<*(R) belong t062%(2<*(R)).

ThusG is a map of Frobenius pairs. This sho(is.
Recall thatZg (G) : Zx (A) — Z¢ (B) is defined byX — G(X) for X € €°(S-proj). Clearly,(2) holds.

3.4 Fundamental theoremsin algebraic K-theory of Frobenius pairs

Now, we recall some basic results on algebigaitheory of Frobenious pairs in terms of derived categories.
Our main reference in this section is the paper [20] by Shhitig.

The following localization theorem may trace back to thal@ation theorem i [18, Section 5, Theorem
5] for exact categories, the fibration theorem/[inl[24, Theore6.4] for Waldhausen categories, and the
localization theorem in[[23, Theorem 1.8.2] for compliclaWaldhausen categories. For a proof of the
present form, we refer the readerl[tol[20, Propositions 3 apdl26 and p.128]. Also, the approximation and
cofinality theorems are taken froin |20, Propositions 3 and 4]
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Lemma3.2. (1) Localization Theorem:

LetA B -S:Cbhea sequence of Frobenius pairs. If the sequereéA ) 7 E) Z(B) 7 Q) Z:(C)

of derived categories is exact, then the induced sequefige KE) K(B) ) K(C) of K-theory spaces is a

homotopy fibration, and therefore there is a long exact seqa®f K-groups

Kn(F Kn(G
e K (C) — Kn(A) B K (B) Y Kn(C) — Kna(A) —

<o —> Ko(A) — Ko(B) — Ko(C) — 0O

forallne N.

(2) Approximation Theorem:

Let G: B — C be a map of Frobenius pairs. If the associated functp(G) : Z¢ (B) — Z¢ (C) of derived
categories is an equivalence, then the induced mgp)K K (B) — K(C) of K-theory spaces is a homotopy
equivalence. In particular, KG) : Kn(B) — Kn(C) for alln € N.

(3) Cofinality Theorem:

Let G: B — C be a map of Frobenius pairs. If the associated functp(G) : Z¢ (B) — Z¢ (C) of derived
categories is an equivalence up to factors, then the indmeg K(G) : K(B) — K(C) of K-theory spaces
gives rise to an injection ¢G) : Ko(B) — Ko(C) and an isomorphism: |{G) : K,(B) — Kq(C) for all
n> 0.

Note that the surjectivity of the last map in the long exaciusmce in Lemmia_3.2 (1) follows from the
fact thatKo(C) is isomorphic to the Grothendieck grotp(Zr (C)) of Z(C).

The following result is a slight variation of [20, Sectiorlpwhich has been mentioned there without
proof. For the convenience of the reader, we include hereaf f§see also [16, Lemma 2.5] for a special
case).

Lemma 3.3. Thickness Theorem:

LetC := (¢, o) be a Frobenius pair. Suppose that there is a triangulatecégatty 4" together with a
triangle equivalence G%(C) — ¢. Let 2" be a full triangulated subcategory @f . Definex to be the
full subcategory of" consisting of objects X such thatX) € 2". Then the following statements are true:

(1) The categoryx containscy and is closed under extensionsdn Moreover,x naturally inherits a
Frobenius structure fronz, and becomes a Frobenius subcategory afuch thatx -proj = ¢-pro;j.

(2) BothX := (x, o) andC 4 := (c,x ) are Frobenius pairs, and the inclusion functor— ¢ and the
identity functorc — ¢ induce the following commutative diagram of triangulatedegories:

D (X)—> Z¢(C) —— e (C)

-k

2 % ¢

(3) If 2" is closed under direct summandsdh then both rows in the diagram ¢2) are exact sequences
of triangulated categories.

Proof. (1) By definition of Zr (C) := ¢ / Co, the objects ofZF (C) are the same as the objectsofThus,
if M € coorM € c-proj, thenM ~ 0 in Z¢ (C). This implies thatx contains bothcy andc-proj. SinceG
is a triangle functor and?” is a full triangulated subcategory @f, it is easy to see that is closed under
extensions irc.

Sincex is closed under extensions in we can endowx with an exact structure induced from the one
of ¢, namely, a sequencé — Y — Z with all terms inx is called a conflation irx if it is a conflation in
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¢c. Then one can check that, with this exact structurdgecomes an exact category. Now, we claim that
is even a Frobenius category such thiaproj = ¢-proj. Indeed, it suffices to show thatlif— P — N is a
conflation inc with P € ¢-proj, thenL € x if and only if N € x . Actually, such a conflation can be extended
to a distinguished triangle — P — N — L[1] in ¢, and further, to a distinguished triangle % (C). Since
P~0in 2:(C), we haveN ~ L[1] in Z¢(C). As 2" is closed under shifts i@ andG is a triangle functor,
we know thatG(L) € 2" if and only if G(N) € 2". In other words|. € x if and only if N € x. This verifies
the claim.

(2) Note thatcg € x C ¢ and ¢o-proj C x-proj = ¢-proj. ThusX := (x,¢o) andCy = (C,x) are
Frobenius pairs.

Recall thatZr (X) := x /co and Z¢ (C4°) := ¢ /x. Clearly, the inclusion functok : x — ¢ and the
identity functorld, : ¢ — ¢ are maps from the Frobenius pairto the Frobenius pair€, and fromC to
C 4, respectively. So we have two triangle functsiis(\) : x /co — ¢ /Co and Zg(Id;) : ¢ /Co — C /X,
which are induced from the inclusion C ¢ and the identity functor of, respectively.

Clearly, x containscy, that is, the objects afy is a subclass of the objects @fwith the morphism set
Hom,,(X,Y) =Homy (X,Y) for all objectsX,Y in ¢o. Since the inclusionr C ¢ is fully faithful, the functor

Pk (M) is also a fully faithful inclusion which gives rise to the fflmling commutative diagram:

e (A
() x/co M e
o
Consequently(s induces a triangle equivalence
Gi:(c/co)/(x/Co) —C| X

By the universal property of the Verdier localization fumoty : ¢ — ¢ /x (respectivelygz : ¢ /Co —
(€ /Ca)/(x /Co)), thereis atriangle functap: ¢ /x — (C /Co)/(X /o) (respectively: (¢ /o) /(X /Ca) —
C /X ) such thatpqo = @q; (respectively,Zk (I1d.-) = Wap), whereqo : ¢ — ¢/ is the Verdier localization
functor. Sincegs = Z¢(1d:)do, we have

W1 = Y20 = Zr (1dc)go = a1 and ¢Zk (1d.)do = Pt = G-

It follows thaty@= Id and@Zg (1d;) = gp. As@Pap = @PeZe (1d.-) = @Z (1d) = gz, we obtaingy = Id.
Thusgis a triangle isomorphism.
Now, we defineG := G1@: ¢ /x — ¢/ % . Then the following diagram of triangulated categories

(#x) C/Co c/x
o~ q l
¢ — 6|

is commutative, wherg is the Verdier localization functor. NoWR) follows from (x) and ).
(3) In this case 2" is the kernel of the localization functar: € — ¢ /2. Thus(3) follows. [J.
3.5 Algebraic K-theory of differential graded algebras

In this subsection, we shall give a definitionkftheory spaces of differential graded algebras, which gen-
eralizes the one df-theory spaces of ordinary rings and modifies slightly thignden in [20]. But, at the
level of homotopy groups, the two definitions give the isopmac algebraid,-groups fom € N.
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Throughout this subsectiok,stands for an arbitrary but fixed commutative ring (for examihe ringZ
of integers), and all rings considered here lei@gebras. Note that each ordinary ring with identity can be
regarded as Z-algebra.

Let A be a differential graded (dg) associative and unitaatgebra, that isA = &n.zA" is aZ-graded
k-algebra with a differentiad” : A" — A" such that A", d"),cz is a chain complex df-modules and

(xy)d™" = x(yd") + (—1)"(xd")y

forme Z,x e AMandy € A". Thus the mapg @ A — A, a®¢b— baforab e A, is a chain map.
A left dg A-moduleM* is aZ-graded left moduléV® = ®,czM" over theZ-gradedk-algebraA, with
a differentiald such thatM",d),cz is a complex ok-modules, and for ang € A", x € M", the following
holds:
(ax)d™™" = a(xd") + (—1)"(ad™)x.

In particular, each dg\-module is &-gradedA-module (forgetting the differential).

We should observe that the dg algebfad) and left dgA-moduleM* defined in this paper are actually
the dg algebrgdA™,d) and right dgA™-module in the sense dfl[9, Summary], respectively.

For a dgA-moduleM*®, we denote by *[1] the shift ofM*® by degree 1.

A homomorphismf® : M®* — N°® of dg A-modules is a chain map of complexes okgwhich commutes
with the A-actions onM*® andN°®. We say thatf® is aquasi-isomorphisnif it is a quasi-isomorphism as a
chain map of complexes ovér that is,H'(f*) : H'(M*) — H'(N*®) is an isomorphism for everyc Z. For
more details, we refer to[9, Summary].

We denote bys'(A) the category of left dg\-modules. It is known tha¥’(A) is a Frobenius category
(seel[9, Section 2]) by declaring a conflation to be a shoreece of dg\-modules such that the underlying
sequence of gradeld-modules (forgetting differentials) is split exact. Thatde category o%’(A) is the dg
homotopy category? (A) in which the objects are the dig-modules and the morphisms are the homotopy
classes of homomorphisms of dgmodules. By inverting all quasi-isomorphisms of dgmodules, we
obtain thedg derived categoryZ(A) of A. This is a triangulated category and generated by the dg lmodu
A, thatis,Z(A) = Tria(A).

Observe that an ordinalkralgebraA can be regarded as a dg algebra concentrated in degree Gyaand t
the above-mentioned categorig§A), % (A) and Z(A) coincide with the usual complex, homotopy and
derived categories ohA-modules, respectively. In this case, eachAdmodule is exactly a complex &-
modules, and a homomorphism of dgmodules is a chain map of complexes o¥erMoreover, for any
X* € ¥(A), the dg endomorphism algebra Eii¥°) is a dg algebra with the differential and multiplication
o given in Subsection 2.2. By the formula on the multiplicatig if Y* € ¢’ (A) is another dgA-module, then
the Hom-complex Horl(X*,Y*) is actually a left dg Ent{(X*)- and right dg Engi(Y*)- bimodule.

A dg A-module is said to bacyclicif it is acyclic as a complex ok-modules. A dgA-moduleM® is
said to have theroperty (P) if Hom (4)(M®,N*) = 0 for any acyclic dgA-moduleN®. Note that the class
of dg A-modules with the propertyP) is closed under extensions, shifts, direct summands ardtdiums
in ¢(A). We denote by (A), the full subcategory of#"(A) consisting of all modules with the property
(P). Thenz' (A)p, C 22 (A) is a triangulated subcategory containifigand being closed under direct sums.
More important, the Verdier localization functgr. 7 (A) — 2(A) restricts to a triangle equivalencg:
H(A)p — 92(A) (seel[9, Section 3.1]). Particularly, this implies that ayasi-isomorphism between two
dg A-modules with the propert{P) is an isomorphism in# (A) and that, for each dg.-moduleM?®, there
is a (functorial) quasi-isomorphisgM*® — M* of dg A-modules such thgfM* has the propertyP).

Let B be another dg algebra abtt a dgB-A-bimodule. For a dg\-moduleV*, we defineU® @4 V* to
be the quotient complex &f* @ V* modulo the subcomple®/* := (W")ncz, whereW" is thek-submodule
of U* ®V* generated by all element®v—u®avforuecU’, ac A®andv e V' with r,s,t € Z and
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n=r+s+t. ThenU® ®4 V* is indeed a dg@-module. This gives rise to the following tensor functor
U*ei—:%A) — % (B), V' —U*®3 V"

Furthermore, the total left-derived functor® @} — : 2(A) — 2(B) of this tensor functor is defined by
Ve = U®®5 (pV°) (seel, Section 6]). In particular,Vf* has the propertyP), thenU® @ V* =U*® @4 V*

in 2(B). Note that ifA andB are dg algebras concentrated in degree 0, then the abowe fenstor and
total left-derived functor coincide with the ones define®ibsection 2]2.

A dg A-moduleM is calledrelatively countable projectiveespectivelycountable projectiveif there is
a dgA-moduleN such thatM & N is isomorphic tod;,; A[ni] as dgA-modules (respectively, d-graded
A-modules), wheré is a countable set ang € Z. Observe that relatively countable projective modules are
countable projective modules and always have the prog@pecause Homp () (A[i],M) ~ H-'(M) for
all'i.

Let x (A) be the full subcategory 6’ (A) consisting of countable projectivé-modules. Thenx (A)
is an essentially small category. This is due to the foll@nservation: Let; (A) be the category of.-
gradedA-modules. For ever¥ := @;., X' € G (A), we have the following{a) The classu (X) consisting
of isomorphism classes of direct summand¥ah ¢ (A) is a set. In fact, there is a surjection from the set
of idempotent elements of Epgh)(X) to @ (X). (b) The classy (X) consisting of all dgA-modules with
X as the underlying gradefi-module is also a set since (X) is contained into the sdt(X,d')icz | d' €
Hom(X',X'*1)}, which is a countable union of sets.

Furthermore,x (A) is closed under extensions, shifts, direct summands andtaiole direct sums in
C(A).

Let (A, o) be the smallest full subcategory ©{A) such that it

(1) contains all relatively countable projectidemodules;

(2) is closed under extensions and shifts;

(3) is closed under countable direct sums.

Then %' (A,p) is essentially small, inherits an exact structure fr@hA), and becomes a fully exact
subcategory ofg'(A). Even more, % (A,0p) is a Frobenius subcategory &f(A), in which projective-
injective objects are the ones @f(A) belonging to% (A, o). This can be concluded from the following
fact: For eactM € %'(A), there is a canonical conflatiod — C(M) — M[1] in ¥ (A) such thaC(M) is a
projective-injective object o&'(A) (seel[9, Section 2.2]). Hen&&(A, ) provides a natural Frobenius pair
(¢(A,0o), % (A,Uo)-proj), and the inclusiory’(A, o) C ¥(A) induces a fully faithful inclusion from the
derived categonZe (¢’ (A,0o)) of €(A, Do) to # (A).

We denote by (A,p) the full subcategory of# (A) consisting of those complexes which are iso-
morphic in.#Z (A) to objects of¢’(A,Og). Then# (A,Oo) is a triangulated subcategory of (A) by the
condition(2), and the inclusiorZe (¢'(A, o)) C 22 (A,Op) is a triangle equivalence. Since the full subcat-
egory of x (A) consisting of all dgA-modules with the propertyP) satisfies the above conditioif$)-(3),
we deduce that each object@{ A, o) has the propertyP). This implies that’# (A,Og) C J# (A),. Fur-
thermore, by definitionz’(A, o) is closed under countable direct sumsifA ), and therefore# (A, o)
is closed under countable direct sumsAn(A)p. It follows from Lemmd 2L (1) thatZ (A, Op) is closed
under direct summands it (A),.

Now, let 2" (A) be the full subcategory a¥(A) consisting of all those objects which are isomorphic in
2(A) to the images of objects o (A, o) under the equivalendg: % (A)p — Z(A). Then 2 (A) is a
triangulated subcategory 6f(A) closed under direct summands, apehduces a triangle equivalence from
(A,0o) to Z°(A). In all, we have

Pr (€ (A,0p)) € 2 (A,Oo) € (A)p, Z(A)CZ(A)
and
e (€ (A, 00)) — A (A, Do) — 2 (A)
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as triangulated categories.
Recall that a dg\-moduleM is called &finite cell moduldf there is a finite filtration

0=MpCM; CM2C---CMp=M

of dg A-modules such that, for each<0i < n— 1 € N, the quotient modul®/;, ;1 /M; is isomorphic toA [n;]
for somen; € Z (see [11, Part Ill]). Clearly, each finite cell-module belongs t&’(A,g). Moreover,
the category of finite celh-modules is closed under extensionsdifA, Jp). Actually, this category is a
Frobenius subcategory @f(A, Op), in which projective-injective objects are the one&df\, () belonging
to this subcategory.

An objectM € Z(A) is said to becompactif Homg4) (M, —) commutes with direct sums i (A). Let
2°(A) be the full subcategory a¥(A) consisting of all compact objects. Thérf(A) is the smallest full
triangulated subcategory &f(A) containingA and being closed under direct summands of its objects. In
fact, each compact object 6f(A) is a direct summand of a finite cell module #(A) (see[[9, Section 5]).
This implies the following chain of full subcategorie®(A) C 2 (A) C Z(A).

Now, we definew, to be the full subcategory &f' (A, o) consisting of all those objects i# (A, Do)
such that they are isomorphic #(A) to compact objects a#(A). Clearly, w, is essentially small. More-
over, by applying Lemm@a3.3 to the Frobenius péi, 0o) and the equivalencgr (¢ (A, o)) — 27 (A)
with the triangulated subcategory©(A) of 27 (A), we deduce thatv, is a Frobenius subcategory of
% (A,Op) with the same projective objects, and that the followingydaan of triangulated categories com-
mutes:

() Ze(Wa)— Zr(¢(A,00))— H (A)p—— H (A)

N

P A ———— 2 (A) ——2(A)

From now on, we regardy, as a Waldhausen category in the sense of Subséctibn 3.2lynéragses
exactly from the Frobenius paim/ s, w4 -proj).

We define thalgebraic K-theory space of the dg k-algehkao be the spack (/4 ), denoted byK (A).
Forn € N, then-th K-groupof A is defined to be the-th homotopy group oK (A), denoted by,(A). Note
that Ko(A) is isomorphic toKo(Z (",)), the Grothendieck group of the (essentially small) tridatpa
categoryZg (W) of the Frobenius paifw ,, W 4-proj)(see Subsectidn 3.2).

Consequently, we have obtained the following result.

R

Lemma 3.4. The Verdier localization functor (A) — 2(A) induces a triangle equivalenceZe (w,) —»
2°(A). In particular, Ko(%4) is isomorphic to the Grothendieck group(€7°(A)) of 2°(A).

To illustrate our definition oK-theory spaces of dg algebras, we first establish the faligwesult.

Lemma 3.5. Let ¥, be the full subcategory @/, consisting of all finite celh-modules. Then the inclusion
Fa — W, induces an injection i 7, ) — Ko(%,4 ) and an isomorphism K7, ) — Kn(%, ) for each n> 0.

Proof. Note that#, is a Frobenius subcategory of, and that the inclusiong, C w4 C ¥ (A) induce
fully faithful inclusions Z¢ (#a) € Zr (Wa) € % (A), (see Subsectidn 3.2).

To show that the inclusiot¥e (74) — 2= (W4) is an equivalence up to factors, we shall compare the
images of these two categories under the equivalgncg [A), — Z(A) in the above diagramkj. In fact,
by Lemmd 34, the restriction of the functgtd Z¢ (W, ) gives rise to a triangle equivalenéa- (', ) —
2°(A). Let % be the smallest full triangulated subcategory%f(A) containingA. Since the objects
of Zx(¥4) are the same as the ones ®f, the image of the restriction of the functgrté Zg(7,) is
contained in?Z, and therefore is equal t& . Thusq'induces a triangle equivalencg: (7,) — #%. Since
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Z°(A) = thick(A) andA € % C 2°(A), we have thick%) = 2°(A). So the inclusior” — Z°(A) is an
equivalence up to factors. Consequently, the inclusipiiFs) — Z¢ (W, ) induced from#, C W, is also
an equivalence up to factors. Now, Lemind 3.5 follows from beai8.2 (3).1.

Remark 3.6. In [20], Section 12.3], &-theory spectruni (¥, ) is defined for the category,. Moreover, it
is known in [20, Theorem 8] that, for eacre N, then-th homology group oK(#4) is given by

Kn(7a) if n>0,
T (K(74)) = { KO(Q%(A)) if n=0.

Thus LemmaB3]5 afd 3.4 show tha{ K (7)) ~ Kn(A) for all n € N, and therefore, at the level of homotopy
groups, our definition oK-theory for dg algebras is isomorphic to the one defined byi&tng in [20].

The following result, together with Lemnha B.5, may expldia advantage of defining-theory of arbi-
trary dg algebras by using the categaory, rather thany,.

Lemma3.7. Let A be an algebra with identity, and létbe the dg algebra A concentrated in degBedhen
K(A) — K(A) as K-theory spaces.

Proof. Clearly, ¢ (A) = € (A), # (A) = % (A) and2(A) = Z(A). In particular,2°(A) = 2°(A). By
the construction oy, we see that™®(A-proj) C w, and€®(A-proj)-proj = €2(A-proj) C W ,-proj. Thus
the inclusionj : °(A-proj) — w, is a fully faithful map of Frobenius pairs. In other word€?(A-proj) is
a Frobenius subcategory of,. This implies that the triangle functa?r (j) : Zr (€°(A-proj)) — Zr (W)
is fully faithful (see Subsection 3.2). Now we show that(j) is an equivalence. On the one hand, the
localization functorg : 7 (A) — Z(A) induces an equivalena® : Zg (Wa) — 2°(A) by Lemmd3.4. On
the other hand, the composite of the following functors:

HP(Rproj) = Ze (€°(Aproj)) FX g (wy) % 75(A)

is also an equivalence induced §yThusZk(j) is a triangle equivalence. By Lemimal3.2 (2), we know that
K(A) — K(w,) =: K(A) asK-theory spaced.]

The following result is in the literaturé [7, Propositiorv@&and Corollary 3.10] where proofs use knowl-
edge on model categories. For the convenience of the readdnclude here another proof based on the
facts mentioned in the present paper.

Lemma 3.8. LetA : B — A be a homomorphism of dg algebras which is a quasi-isomonphi$hen the
functor A @3 — : ¢'(B) — €' (A) induces a homotopy equivalencéB) — K(A) of K-theory spaces. In
particular, if H'(A) = Ofor all i # 0, then K(A) —~ K(HO(A)).

Proof. Note that the functoA @3 — : W — W, is a well-defined map of Frobenius pairs and that objects
belonging towy or w4 always have the proper{y?). So we can form the following commutative diagram
of functors:

Dk (W) e (hes) Dr(Wa)
7°(8) — - 7°(n)

where the equivalences in vertical direction are inducedhieylocalization functors? (B) — #(B) and
H(A) — 2(A), respectively (see Lemnia 8.4). SinkeB — A is a quasi-isomorphism, it follows from
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[11, Proposition 4.2] that the functdr®g, — induces a triangle equivalence(B) — Z(A) which restricts
to an equivalenc&®(B) — 2°(A) (see also[[9, Section 3.1]). Thus the functor

Te(A®g—): Ze(WB) — Ze(Wy)

is a triangle equivalence. Now, the first part of Lenima 3.®fe$ from Lemmd 312 (2).
Suppose thah := (A", d")icz with H'(A) = 0 for all i # 0. We definet=°(A) to be the following dg
algebra:

-3 -2 -1
-'-—>A’3d—>A’2d—>A’1d—>Ker(d0)—>O—>-~.

Then there exist two canonical quasi-isomorphisri&A) — A andt=%(A) — H%(A) of dg algebras. It
follows from the first part of Lemmia_3.8 that

K(T=0(A)) -5 K(A) and K (T0(A)) = K(HO(A)).

Combining these homotopy equivalences with Lenima 3.7, wetlsatK (A) — K(H%(A)) asK-theory
spaces(]

The following result will be used in proofs of our main result

Lemma3.9. Let A be an algebra and*P= €°(A-proj). DefineS := Endy(P*) and to be the full subcate-
gory of €°(A-proj) consisting of all those complexes which, regarded as abjac? (A), belong toTria(P*).
Then KS) — K(#) as K-theory spaces.

Proof. We remark that is a Frobenius subcategory 6P (A-proj) such that its derived categofj ()
is equivalent toZ™ := Tria(P*) N 2°(A) via the Verdier localization functay: 2 (A) — Z(A).

In fact, since2” is a full triangulated subcategory 6#°(A) and Zk (¢°(A-proj)) = # °(A-proj) —
2°(A), we see thatr is exactly the full subcategory &®(A-proj), in which the objects are complexes in
%P (A-proj) such that they are isomorphic i#°(A) to objects 0f2". Hence, by Lemma3.%; is a Frobenius
subcategory o%"(R-proj) and the functog induces an equivalenag : Z¢ (?) — 2.

Now we view A as a dg algebra concentrated in degree 0, and lbe the full subcategory oft/a
consisting of those objects that are isomorphicZifiA) to objects of 2". Then, applying Lemma=3.3
to the Frobenius paiwa and the equivalenc&e (wa) — Z°(A) in Lemmal3.4, we get a Frobenius pair
(x, wa-proj) which is included in the Frobenius pdin/, wa-proj), and an equivalenag : Z¢ (x ) — 2~
induced from the functog. Note thatx -proj = wa-proj. Recall that, for a dg algebra, w,-proj consists
of all those objects which are homotopy equivalent to the pdject ing’ (A).

In the following, we first show that(?) — K(x), and then thak(S) — K(x ) asK-theory spaces.
With these two homotopy equivalences in mind, we will obgigthaveK (S) — K(2), as desired.

Let us check thak(#) — K(x). Actually, it follows from ¢°(A-proj) C wa that® C x. Since
P-proj = €2 (A-proj) C wa-proj = x -proj, the inclusioru: » — x of Frobenius categories induces a fully
faithful functor Z¢ (W) : Ze(?) — Ze(x). Sinceqr = Q2 Zk (M), we see thaZg (W) is an equivalence. Thus
the mapK(?) — K(x ) is a homotopy equivalence by Lemimal3.2 (2).

Next, we prove that there is a homotopy equivalek¢s) — K(x).

To prove this statement, we defie:= P* ®g — : € (S) — ¢'(A) and claim thaG : Ws — x is a map
of Frobenius pairs. We first show th@tis well defined, that isG(ws) C x. In fact, as a graded-module,
P* is equal tod;., P', which is a finitely generated projectiemodule. Letx (S) andx (A) be the full
subcategories of (S) and ¢’ (A) consisting of countable projective modules, respectivalien, due to
G(S) = P*®¢ S ~ P*, we see that the functds : x (S) — x (A) is well defined. Note thaG(S) ~ P* €
€°(A-proj) € € (A,0p) and the functoiG : x (S) — x (A) preserves conflations and commutes with both
shifts and countable direct sums. This implies that thevalhg full subcategory

G Y€ (A 0p):={Xex(S)|GX)e €A Ty}
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of x (S) contains all relatively countable projectivemodules, and is closed under extensions, shifts and
countable direct sums.

Since?’(S,yp) is the smallest subcategory ®fS) which admits these properties, we h&#é€S, ) C
G Y€ (A,0p)). ThusG(¢'(S,00)) € €(A,Op) andG: € (S,0o) — €' (A, 0o) is a well-defined functor.

Furthermore, since ead!l € ¥'(S,0o) always has the propertyP), we see thaP® @5 M = G(M) in
2(A). So, to show thaG(ws) C x, it suffices to prove that iM € ws, thenP® ®H§ M e 2. Actually,
let M € ws. ThenM € Z°(S). AsP* @5 S ~ P* € Z°(A), the functorP® @% — : 2(S) — Z(A) preserves
compact objects. This implieB® ®% M € 2°(A). Note thatZ(S) = Tria(S) andP* ®% — commutes with
direct sums. By Lemma2.1 (2), we hakex: M € Tria(P*). ThusP®* @5 M € Tria(P*) N 2°(A) = 2.

As a result, we hav&(ws) C x . SinceG always preserves conflations and homotopy equivalences, we
know thatG sends projective objects afs to the ones ofr, and therefor& : ws — x is a map of Frobenius
pairs.

Finally, we show that the functa? (G) : Ze (Ws) — Z¢(x ) induced fromG is a triangle equivalence.

Indeed, byl[9, Section 3.1], the functGr= P* g — : €(S) — € (A) induces a triangle equivalence:

P* @5 — : 2(S) — Tria(P*),

which restricts to an equivalence®(S) — 2" since 2~ coincides with the full subcategory of T(R®)
consisting of all compact objects in T(Rf) by Lemma 2.2 (1). Moreover, according to Lemma 3.4, the
localization functor.# (S) — 2(S) induces an equivalenag: Zg (ws) — Z°(S). Consequently, we can
form the following commutative diagram of functors:

De(Ws) Dr(X)
Zlq Ql:
7o) — o 2

Thus Z¢ (G) : Zr (Ws) — Z¢(x) is an equivalence. This implies th&(S) — K(x ) by Lemmd3.2 (2).
AsK(?) — K(x), we see thaK (S) — K(») asK-theory spaced.]

As a further preparation for proofs of our main results, we necall a useful fact aboug-theory spaces
of ordinary rings, which is a revisited version of a speciade of the classical ‘resolution theorem’ due to
Quillen (seel[1B, Section 4, Corollary 2]). For more genarshngement of this result for exact categories,
we refer the reader t0 [21, Proposition 3.3.8]. For the coigrece of the reader, we include here a proof for
this special case.

Lemma 3.10. Let A be aring. Then the following are true.
(1) The inclusions Aproj — Z<*(A) — A-Mod of exact categories induce equivalences:

A P(A-proj) = Z°(2<"(A)) = Z°(A).

(2) The inclusion Aproj — 22<*(A) induces a homotopy equivalencéAy — K(£<*(A)), where
K(2<*(A)) is the K-theory space of the exact category-(A).

Proof. (1) Recall thatz®(22<>(A)) denotes the bounded derived category of the exact categof3(A)
defined in Subsection_3.3. By the dual bf[10, Theorem 12§, inclusionA-proj — £2<%(A) induces a
fully faithful functor .#°(A-proj) — 2°(22<=(A)). Actually, this functor is also dense since each mod-

ule in 2<*(A) has a finite resolution by finitely generated projecthvnodules. Thus#®(A-proj) —
Z°(2<>(A)). Note that the inclusion??<*(A) — A-Mod is an exact functor of exact categories. This
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directly yields a triangle functo?®(2<*(A)) — 2(A) which factorizes througl#°(A). Since the compo-
sition of the following two functors:

AP (A-proj) — Z°(P<*(A)) — Z°(A)

is an equivalence, we see that the latter is also an equesldrhis shows$1).
(2) The inclusionA-proj < 2<*(A) induces an inclusion functag®(A-proj) — €°(2<*(A)) and a
map between the Frobenius pairs

A = (€°(A-proj), Ca(A-proj)) and B := (€°(2<"(A)), Co(P2~"(A))).

Note thatk (A) ~ K(A) andK(B) ~ K(Z<*(A)). Now, (2) follows from(1) and Lemm&312 (2)J

4 Algebraic K-theory of recollements: Proof of Theorem 1.1

The main purpose of this section is to prove Thedrem 1.1 amdli@oy[1.2. We first make a few preparations.

4.1 Homotopy-split injections on K-theory spaces of Frobenius pairs

As the first step toward the proof of our main result, Theoteflh tve will discuss when maps between
K-theory spaces, which are induced from maps of Frobenius, @i homotopy-split injections.

Let X andY be two pointed topological spaces. By a map between topmabgpaces we always mean
a pointed and continuous map. Recall that a maX — Y is called ahomotopy-split injectionf there is a
mapg:Y — X such thatfg: X — X is pointed-homotopic to the identity map Xf Dually, we can define
the homotopy-split surjections.

Homotopy-split injections provide us usually with decorspions of topological spaces. The follow-
ing result, due to[[22, Corollary 7.1.5 and Theorem 7.1.1dt] 26, Chapter lll, 6.9, is useful for our
considerations.

Lemma4.l. Let(X,Xp) —f> (Y,Yo) N (Z,2y) be a homotopy fibration. Suppose that¥Xand Z are homo-
topy equivalent to CW-complexes and that g induces a sivgeataprp(g) : To(Y,Yo) — To(Z, Z) of theO-th
homotopy groups. If the map f is a homotopy-split injecttben Y is homotopy equivalent to the product of
X and Z.

Recall that th&K -theory spac& (¢ ) of a small Waldhausen categaryis always homotopy equivalent to
a CW-complex (see Subsection]3.1). So, in our considetatiertan apply Lemnia4.1 to discuss homotopy-
split injections betweelK-theory spaces of small Waldhausen categories. In fact,d@mgrhag 3.2 (1) and
[4.3, we have the following consequence Kotheory spaces.

Corollary 4.2. LetA F,8 % cChea sequence of Frobenius pairs. Suppose that the seqaeriée %—(F>)

Ze(B) 7 Q) 7k (C) of triangulated categories is exact. If the mapR : K(A) — K(B) induced by F is a

homotopy-split injection, then
K(B) — K(A) x K(C).

Next, we establish the following result which generalizesnmd 3.2 (2).

Lemma4.3. LetH: A — B and G: B — C be maps of Frobenius pairs such that
(1) Ze(GH) : Ze(A) — Z¢(C) is fully faithful, and
(2) Im(Z¢ (G)) = Im(Z& (GH)) in Z&(C).

Then the map KH) : K(A) — K(B) induced by H is a homotopy-split injection.
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Proof. Let B := (B,8¢), C:= (C,Co) and 2" := Im(Z¢(G)). By (1) and (2), we see that?" is a
full triangulated subcategory @ (C). Let x be the full subcategory af consisting of all these objects
which, viewed as objects a¥r(C), belong to.2", and letX := (x, o). ThenX is a Frobenius pair and
P (X) = 2 by Lemma3.B. Clearly, we hav@(3) C x. This implies thatG : B — C induces a map
E : B — X of Frobenius pairs, that i§ is a composition oE with the inclusionX <— C. Now we consider
the following commutative diagrams:

A-MB and 2 A) FM %)
EHl ° lG @F(EH)l %y l%@
X—C Pr (X)— Z¢(C)

By (1), we see thatZp (EH) = Ze (E)Z:(H) : Ze(A) — Ze(X) is fully faithful. By (2), we haveZ™ =
IM(Ze (GH)) = Im(Z: (EH)). ThusZe(EH) : 2 (A) — Z¢(X) is an equivalence between derived cate-
gories of Frobenius pairs. Now, it follows from Leminal3.2 {23t the map

K(EH) = K(H)K(E): K(A) — K(X)

is a homotopy equivalence. This means #aH ) is a homotopy-split injectiori]

As an application of Lemma4.3, we have the following resuitcl will serve as a preparation for the
proof of Theoreni 1]1.

Corollary 4.4. Let R and S be rings, and let*@e a complex ir6?(Roz S") with RQ" € 2<*(R) for
all n € Z. Let# be a full triangulated subcategory @°(S), and definer C €°(S-proj) to be the full
subcategory of objects which belong&6as objects in7¢(S). Then the following hold:

(1) The pairP := (2, %€2(S)-proj) is a Frobenius pair and the inclusioR C €°(S-proj) is a map of
Frobenius pairs.

(2) If the functor @ ®% — : 2(S) — 2(R) induces a triangle equivalenc® — 2" := Tria(rQ®) N
2°(R), then the map KP) — K(¢®(S-proj)) induced from the inclusioR — ¢®(S-proj) is a homotopy-split
injection.

Proof. (1) We consider the Frobenius p&i®(S-proj) and the triangle equivalencgr (¢°(S-proj)) =
A P(Sproj) — 2°(S) induced by the canonical localization functor. Then, by beai3.3 (1), we know
thatP is a Frobenius subcategory @f(S-proj), and the inclusiorP C 4®(S-proj) is a map of Frobenius
pairs.

(2) LetB = (¢°(#<"(R)),€(#<"(R))). ThenZ (B) = 2°(#<*(R)). SinceQ* € ¢*(R®;S")
with gQ" € 7<= (R) for all n € Z, it follows from Lemmd 3. that

G:=rQ ®%—: €°(Sproj) — B

is a map of Frobenius pairs and the derived funcn(G) : Z (€°(Sproj)) — Z¢(B) is given by the
composition of the following functors:

T (°(Sproj)) —— #P(Sproj) s P(7<*(R) —= 7P(P<(R)) —— T (B)

whereq is the localization functor.

Since2(S) = Tria(sS) andQ*® @5 S= Q* in Z(R), the image of the functa®® @5 — : 2(S) — Z(R) is
contained in TrigrQ*) by LemmdZ1L (2). So we writ®* @5 — : 2(S) — Z(R) as the following composi-
tion: 2(S) — Tria(rQ®) — Z(R). SinceQ® € ¥°(R®zS") with Q" € Z<*(R) for all n € Z, it follows
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from 2<*(R) C 2°(R) thatrQ® € Z°(R). Note that.#®(Sproj) — 2°(S) andQ* @5 S= Q* in Z(R).
Thus the restriction o® @5 — to 2°(S) is actually a triangle functor fron@(S) to 2"

Suppose tha®® ®% —: 2(S) — 2(R) induces a triangle equivalené® — 2. LetF : P — €°(Sproj)
be the inclusion map of the Frobenius pairs. Now, we show that

(1) Z(GF) : 2 (P) — Zr(B) = 2°(27<*(R)) is fully faithful, and

(2) IM(Z¢ (G)) = IM(Z¢ (GF)) € 2°(2<°(R)).

In fact, by Lemma&3.70, the inclusion #<*(R) — R-Mod induces a triangle equivalence

D(j): 2°(2<*(R)) — Z°(R).

According to Lemm&3]3 (2), we can construct the followinghooutative diagram of triangulated categories
(up to natural isomorphism):

7e(P) 5L o(sproj) —C . b= (R))
T |
S LT o8 P°(R)C 2(R)
= \ %/

This implies thaD () Z: (G)Z& (F) : Ze (P) — 2°(R) is fully faithful and that
IM(D(j)Ze(G)) = Im((Q° @5 —)|ae(s)) = 2 = Im(D(j) Z (G) Zk (F)).
Now, (1) and (2) follow from the equivalenc®(j) : 2°(2<*(R)) — 2%(R). By Lemma4.B, we infer
that the magK (F) : K(P) — K(€®(Sproj)) is a homotopy-split injection]
From the proof of Corollari/4]l4, we obtain the following résu

Lemma 4.5. let R and S be rings, and let'R ¢ (R®7S") such thatsP* € €°(R-proj), Homg(P*,R) €
2°(S) and the functor Pe% —: 2(S) — Z(R) is fully faithful. Assume that there exists a complexeQ
¢~ (S®7zR”) such thatsQ" € 22<=(S) for all n € Z and that

Q* @5 — — Homg(P*,R)®§ — : Z2(R) — 2(S).
Then the map KP* @2 —) : K(S) — K(R), induced from the magP® @& — : €°(S-proj) — P (R-proj), is a
homotopy-split injection.

Proof. We first point out thaQ® in Lemma4.b can be chosen to be a bounded complex, that is,
¢°(S@zR”™). Indeed, leQ* be of the from:

od? qdl o
QoSS — - s — 00— -

with somet € N, and letP** := Homg(P*, R). SinceQ® @k — — P** @k — : 2(R) — 2(S) by assumption,
we have

Q =Q @kR— P*®kR=P** in 2(9).
In particular,H"(Q*) ~ H"(P**) for all n € Z. Note thatP** is a bounded complex sing®* € ¢°(R-proj).
Thus there is an integer< t such thaH'(Q*) = 0 for alli < s. LetW* be the following complex obtained
from the canonical truncation in degree

--'—>O—>Coker(ds‘1)—>QS+1d—SH>QS+2d—S+2>---—>Qt—>O—>~-.
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ThenW* € ¥°(S®; R") and there is a canonical quasi-isomorphigf: Q° — W* in ¥(S@zR"). In
particular,Q® ~W* in Z(S). SinceP** ~ Q* in Z(S) andP** € 2°(S), we see that bot* andW?* lie in
7°(S).
On the one hand, by [9, Lemma 4.2 (d)], the quasi-isomorpHisrmduces a natural isomorphism of
derived functors:
Qe5— W' Rk—: 2(R) — 2(9),

and therefor&V* of — — P** @k — : 2(R) — 2(S). On the other hand, sing®" € 2<=(S) for s+1 <
n <t and sinceZ<*(S) C 2°(9), we see fromW* € 2°(S) that the module Cokéds1) is in 2°(S), and
therefore it lies in?<*(S). This implies that each term ¥f* as anSmodule belongs t&”<*(S). Thus we
can replac&® in Lemmd4.b by the bounded compM&.

Now, we assum&* € ¢°(Sez R") and defineB := (¢°(2<*(9)),¢2(2<*(9))). Then Z¢(B) =
P°(2<>(9)). SincesQ" € Z<=(S) for all n € Z, we haveQ®* @R~ Q* € ¥°(#<(9)) transparently. By
Lemmd3.1, the additive functor

G:=Q ®xr—: €°(Rproj) — B

is a map of Frobenius pairs. Singe® € €°(R-proj), the functorF := gP* @2 — : €°(Sproj) — € (R-proj)
is also a map of Frobenius pairs. Consider the following comative diagram of triangulated categories:

() #O(Sproj) L s P(Reproj) — L gb(pem(s))
:l l: le(j)
oL ool
799 = 9o R — . gn(g)

where the equivalend®( j) is induced by the inclusion: £2<*(S) — SMod by Lemmd 3.70.

In the following, we claim that the composition of the two &ors in the second row of the above
diagram is an equivalence.

Indeed, on the one hand, sin@®® @5 —, RHomg(P*, —)) is an adjoint pair an®* @5 — : 2(S) — Z2(R)
is fully faithful, the unit adjunction

N :ldgys — RHomg(P*, P* &5 —) : 2(S) — 2(9)
is a natural isomorphism. On the other hand, sigRtec % (R-proj), we know from [3, Section 2.1] that
P** @k — — RHomg(P*, —) : 2(R) — 2(9).

Thus
Id@(s) — (P** ®HF3 —)(P* ®% —):2(8 — 2(9).

Due to the natural equivalen€@ ®f — — P** @k —: 2(R) — 2(S), we certainly have
ldgg — (Q°@r—)(P*®5—): 2(S) — 2(S).

Consequently, the functqiQ® @k —)(P* ®% —) : 2(S) — 2(S) is an equivalence, and therefore so is its
restriction toZ¢(S). This finishes the claim.

By the diagram(x), the composite ofZ¢ (F) with Z¢(G) is an equivalence of derived categories of
Frobenius pairs. Now, it follows from LemriaB.2 (2) that thapK (GF) = K(F)K(G) : K(S) = K(S)is a
homotopy equivalence d€-theory spaces. This shows th&tF) is a homotopy-split injection, completing
the proof of Lemm&4]5.]
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Remark 4.6. A sufficient condition to guarantee that
Q ®r— — P*®g—: 2(R) — 2(9)

in Lemmal4.5b is that the complex€¥ andP** are connected by a series of quasi-isomorphisms among
chain complexes ove3®7, ROP:

Q" «+—Uj—Ul+— - — Uy +—U;— P

for somen € N. For a proof of this fact, we refer the reader[to [9, Lemma d)2 (

4.2 Algebraic K-theory of recollementsinduced by homological ring epimor phisms

To prove Theorem 111, we shall establish the following sartisl result, Propositidn 4.7, d&-theory spaces
of rings which are linked by homological ring epimorphisniBhis result involveK-theory spaces of dg
algebras, which are introduced in Subseclion 3.5, and givdlscomposition of higher algebraicgroups.
The conclusion of our result under the assumption of finifetresolution is, of course, stronger than the

result in [16].

Proof of Theorem[1.7](1).
For the convenience of references, we restate the first pahemreni 1]l more precisely as the following
proposition.

Proposition 4.7. LetA : R— S be a homological ring epimorphism such th8tc 22<*(R). Then there is

a complex P € €°(R-proj) such thatTria(P*) = Tria(rQ*) € Z(R), where Q[1] is the mapping cone .
Further, if we definél := Endy(P*), then K(R) — K(S) x K(T) as K-theory spaces, and therefore

Kn(R) ~ Kn(S) & Kn(T) forall neN.

Moreover, ifHomy, g (P*,P*[i]) = 0 for all i # 0, then K(R) — K(S) x K(T) as K-theory spaces, where
T := Endyg)(P*). In particular,

Kn(R) ~ Kn(S) & Kn(T) forall neN.

Proof. Under the assumptiogS € 22<*(R), we can choose a compléX in °(R-proj) such thairS
is isomorphic toS’ in Z(R). So we get a chain map frogR to S’ such that its mapping core®[1] is
isomorphic inZ(R) to the mapping con®*[1] of A. This complexP*® satisfies the property in Proposition
[4.7. Now, let us fix such a compléX throughout the proof.

By definition, Q® is the two-term complex 8> R 2, 5 0withRandSin degrees 0 and 1, respectively.
Clearly, Q* € ¥°(R®zR"). SincerSec Z<*(R), we haverQ" ¢ 2<“(R) for all n € Z. Therefore,Q*
satisfies the first assumption in Corolléaryl4.4.

Let

2 =Tria(rRQ")N Z°(R), 2 :={X* € ¢ (Rproj)|X*c 2} and P:=(2,%5(Rproj)).

Then it follows from Corollarf 44 (1) that the inclusidh: P — %°(R-proj) is a map of Frobenius pairs.
Considering the following sequence of Frobenius pairs:

€P(Sproj) SOR— €°(R-proj) -Fop,

we then obtain a sequence of triangulated categories:

Tk (S2R—)

(+)  Ze(€P(Spraj) T (€ (Reprof)) 222 7 (P).

27



Let 2’ be the full subcategory of#°(R-proj) consisting of all those objects which, regarded as objects
of 2°(R), belong to 2. Since Z¢ (¢°(R-proj)) = #P(R-proj) — 2%R) and 2 is a full triangulated
subcategory of7¢(R), we see from Lemmia_3.3 (2) thatz (P) = &’. So the sequence) is exactly the
following sequence:

—@F(SgR_> (ji/b(R_prOJ) '@F(F) >¢@/

H°(S-proj)

Now, we claim that this sequence (of triangulated categpiteexact (see Subsection]2.1 for definition).
Actually, there is a commutative diagram of triangulatetbgaries:

Dk (SRR—) Zk(F)

H°(Sproj) K O(R-proj) <——— '

|k |

7°9) 7°R) > P

in which the square on the right-hand side follows from LenB#(2). So it is sufficient to show that the
bottom sequence in the above diagram is exact.
Sincel : R— Sis a homological ring epimorphism, it follows from Lemfnal2ht there is a recollement
of triangulated categories:
(xx)  2(S) —— Z(R) ——— Tria(rQ")
N N—

where j, is the canonical inclusion arid is the restriction functoD().) induced fromA, and wherej' :=
Q* ®g— andi* ;= S®K —.

SincerSe Z<*(R), we have . (S) = rS€ Z°(R). This implies thaf., preserves compact objects. Note
that 2 (R) is compactly generated by the compact objget Thus, by Lemm&2]3 (c), we see thak) gives
rise to the following “half recollement” at the level of thelsategories of compact objects:

P99 —~ 9°(R) ——~ P = Tria(Q")N 2°(R)

which satisfies the following properties:

(a) The inclusionj, : & — 2°(R) is fully faithful. Since both TriézQ®) (see Lemm&2]3 (a)) and
2°(R) are closed under direct summand#(R), we know that?’ is also closed under direct summands in
7°(R).

(b) The composite of, with i* is zero, and the functat induces an equivalencg®(R)/ % — 2°(S)
of triangulated categories. In particula? coincides with the kernel of the restrictioniéfto 2¢(R).

As a result, the following sequence

Sek—

79) PR~

is exact, and therefore so is the sequefige This finishes the claim.
By Lemmd 3.2, the exactness (@f) implies that the sequence Kftheory spaces:

K(S2r—) K(F)

K(S)

K(R) K(P)

is a homotopy fibration.
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Next, we shall apply Corollarfy 4.4 to show thH&tF) is a homotopy-split injection.

By Corollary[Z:3, it suffices to check thilt: 2(R) — Z(R) induces an auto-equivalencé — 2.

Indeed, by the recollemerftx), the composite of, with j' is naturally isomorphic to the identity of
Tria(rQ®). This implies thatj' : Tria(rQ*) — Tria(rQ®) is an auto-equivalence. Singealways preserves
compact objects, we see that coincides with the full subcategory of T({Q®) consisting of all compact
objects in TrigrQ") (see also Lemmia 2.2 (1)). Thisinduces an auto-equivalenc® — 2. It follows
from Corollary[4.4 thaK (F) is a homotopy-split injection. By Corollafy 4.2, we see that

K(R) = K(S) x K(P)

asK-theory spaces.

In the following, we shall apply Lemnfa 3.9 to prove tlatP) is homotopy equivalent t&(T), where
T := Endy(P*) is the dg endomorphism ring &.

Recall thatP* € € (R-proj) and TrigP*) = Tria(rQ*) € Z(R). In particular, we have

2 =Tria(rQ*)NZ°(R) = Tria(P*) N 2°(R) C 2°(R).
By Lemmd3.9, there is a homotopy equivalekdd’) — K(P). Thus
K(R) =5 K(S) x K(T)

asK-theory spaces, and therefdfg(R) ~ Kn(S) & Kn(T) for n € N. This shows the first part of Proposition
4.7.

Note thatH'(T) ~ Homy, g (P*,P*[i]) for eachi € Z. Now, the second part of Proposition 4.7 is a
consequence of Lemrha 8.8 together with the first part of Ritpo[4.7. Thus Theorefn 1.1 (1) followsl

Remark 4.8. By the recollement+x) and LemmaZ2]2 (1), we conclude that, under the assumptidPopb-
sition[4.7, the category” := Tria(rQ®) N Z°(R) coincides with any one of the following three categories:

(1) The full subcategory of TrigQ*®) consisting of all compact objects in T(Q"*).

(2) The smallest full triangulated subcategory ®f(R) which containsQ® and is closed under direct
summands.

(3) The full subcategory of7¢(R) consisting of all objectX*® such thaS®j X* = 0in 2(S).

Particularly, (3) implies that the category, defined in the proof of Propositidn 4.7, is equal to the full
Frobenius subcategory @f°(R-proj) consisting of all those complex&€ such thatSeg X* is acyclic, that
is, H(S®rX*) =0 for all i € Z. In the literature, for example, s€e [16, Theorem 0.5] a&j fheorem
14.9], it was shown that, for homological ring epimorphisinsR — Swith additional conditions, there is a
weak homotopy fibration:

K(S2r—)

K(R) K(9).

This implies that, in general, the mép(S®r —) : Ko(R) — Ko(S) does not have to be surjective. However,
Propositior 4.7 shows a stronger conclusion, namely, uithdeassumptiopS< Z<*(R), the sequencét)
splits up to homotopy equivalence:

K(R) — K(S) x K(P).

Now we turn to the proof of Theoreim 1.1 (2). The main ingretli#grthe proof is Proposition 41.7.
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Proof of Theorem[1.1](2).
Given a recollement of derived module categories:
it
/i_\ TN
29 ——— 2(R) —— 2(T)
N~ N~

we can obtain the following two consequences:
(1) The complexj;(T) is compact inZ(R) and

Endyr)(1(T)) =T, Homgw (ji(T), ji(T)[n]) =0 for n#0.

(2) Tria(ji(T)) = {X € 2(R) | Homyr)(X,Y) =0 for eachy € #(S)}.
Moreover, since\ : R — Sis a homological ring epimorphism, there is a recollementriahgulated

categories by Lemnia2.4:

F
N T~

2(S) —— 9(R) Tria(rQ*)
N N—

whereF is the inclusion an®*[1] is the mapping cone d¥. It follows that
Tria(rQ*) = {X € Z(R) | Homy ) (X,Y) =0 for eachy € Z(S)}.

By (2), we have Trigj(T)) = Tria(rQ*) € Z(R).
Since j(T) is compact inZ(R), we can choos®® € ¢°(R-proj) such thatP® ~ j(T) in Z(R). Then
Tria(P*) = Tria(rQ*) € Z(R), and by(1), we have

End,r)(P*) ~ T and Homyg (P*,P°[n]) =0 for n# 0.

Now, suppose thatSe 22<>(R). It follows from Propositiof 417 tha€ (R) — K(S) x K(T) asK-theory
spaces, and therefore
Kn(R) ~ Kn(S) @ Kn(T) forall neN.

This finishes the proof of Theordm 1.1 (2) for the caSe 2=~ (R).

Similarly, we can prove Theorem 1.1 (2) for the c&e= ZZ<*(R°P). In fact, this can be understood
from Lemmd2.b and the following fact: For any rig there is a homotopy equivalensgA) — K (A°P)
(seel[18, Sections 1 (3) and 2 (5)]). Thus the proof of Thedehhas been completed..

Proof of Corollary[1.2
We shall apply Propositidn 4.7 arild |15, Theorem 0.5] to shonoary[1.2.
Let A : R— S:= Ry be the universal localization d? at 2. By abuse of notation, we identify each

homomorphisn; L> Py in X with the two-term complex 6+ Py L> Po—0in %b(R-proj), whereP is in
degrees-i fori =0,1.

First of all, we recall the definition of a small Waldhausetegary % . The categoryr is the smallest
full subcategory of6®(R-proj) which

(i) contains all the complexes K

(ii) contains all acyclic complexes,

(iii ) is closed under the formation of mapping cones and shifts,

(iv) contains any direct summands of any of its objects.

We remark thair was first defined in[16, Definition 0.4] and denoted Ry Observe that, ik , the
cofibrations are injective chain maps which are degreewite and the weak equivalences are homotopy
equivalences. Moreoveg, has the following additional properties:
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(v) % is closed under finite direct sums¥P(R-proj).

(vi) If N* € £ andM* € €°(R-proj) such that, in#®(R-proj), M* is a direct summand dfi*, then
Me € % . In particular,_is closed under isomorphisms.id®(R-proj).

Actually, these two properties can be deduced fi@n(iv) with the help of the following two general
facts: LetX®,Y* € €°(R-proj). Then

(1) X* @ Y* is exactly the mapping cone of the zero map fréfj—1] to'Y*.

(2) X* ~Y* in 2 °(R-proj) if and only if there are two complexés®, V* € €2(R-proj) such thaiX® @
U* ~Y*@V* in €°(R-proj), becauses®(R-proj) is a Frobenius categorg™®(R-proj)-proj = €2 (R-proj)
and Zg (¢°(R-proj)) = #°(R-proj).

In the following, we shall prove that the Waldhausen catggorcoincides with the Waldhausen category
» defined by the Frobenius pdr:= (2, €2(R-proj)), wheree is a full subcategory o&°(R-proj) defined
by

? == {X* € €°(R-proj) | X* is isomorphic in Z(R) to an object in Tri&rQ")}

andQ?® is the two-term complex 6+ R A, s 0withRin degree 0.

In fact, by Remark4]8, we see thatis the same as the full subcategory#®?(R-proj) consisting of
those complexeX® such thaSxr X* is acyclic (or equivalentlyS®g X* = 0in 2(9)). Itis easy to see that
the latter subcategory satisfies the conditigngiv). This gives rise t&®. C 2.

Next, we show the converse inclusienC % .

Let Z be the full subcategory of#°(R-proj) consisting of all objects of . Then, due tdi)-(vi), we
see thatZ is a full triangulated subcategory o °(R-proj) containingX and being closed under direct
summands. Sincér (P) C .#°(R-proj), we know from(vi) that» C % if and only if Z¢(P) C %Z. To
show Z¢ (P) C Z, it is enough to show tha¥r (P) is exactly the smallest full triangulated subcategory of
2 °(R-proj) which contains and is closed under direct summands.

Indeed, by the proof of Propositidn #.%r (P) is the full subcategory of#®(R-proj) in which the
objects, regarded as objectsaf(R), belong to.2 := Tria(rQ*) N Z°(R). As &7 = thick(rQ®) by Remark
4.8, 7 (P) is actually the full subcategory o °(R-proj) in which the objects, regarded as objects/f(R),
belong to thickrQ®). We claim that thickQ®) = thick(X).

SinceA is a homological ring epimorphism, we know from [4, Propiosit3.6] and Lemma 24 that
Tria(Z) = Tria(rQ®) in Z(R). Since both Tri&) and TrigrQ*®) are closed under small coproductsitiR),
they have the same subcategories of compact objects, th#itias>)® = Tria(rQ®)¢ C Z°(R). Clearly,

2 C 2°R) andrQ* € Z°(R) sincerS € Z<%(R) C Z°(R) by our assumption. By definition, thi¢k)

(respectively, thickkQ®)) is the smallest full triangulated subcategory@f(R) containingZ (respectively,
Q°) and being closed under direct summands. Then, by LdmmaR thick(Z) = Tria(X)¢ and thicKrQ"®) =

Tria(rQ*)¢, and therefore thicle) = thick(rQ*) C Z°(R).

Thus Zk (P) is the full subcategory of#®(R-proj) consisting of all those objects which, viewed as
objects of7°(R), belong to thickZ). Since.#®(R-proj) ~ 2°(R) andZ C ¢°(R-proj), we conclude that
Zk(P) is equal to the smallest full triangulated subcategory#0f(R-proj) containingX and being closed
under direct summands. Consequentyc % .

Hence? = % as full subcategories &°(R-proj). Furthermore, the category, regarded as a Wald-
hausen category defined by the Frobenius Paihas injective chain maps which are degreewise split as
cofibrations, and has homotopy equivalences as weak eguees. This implies that = £ as Waldhausen
categories.

Suppose that all maps Fare injective. Le¥’ be the exact category OR, Z)-torsion modules. Then, itis
shown in[15, Theorem 0.5] thist(% ) — K (&) asK-theory spaces. Sinee= % as Waldhausen categories,
we obtaink (P) :=K(?) — K(&). As A : R— Sis homological angShas a finite-type resolution, it follows
from the proof of Proposition 417 that

K(R) =5 K(S) x K(2) 5 K(S) x K(&).
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This finishes the proof of Corollafy 1.2]
As a consequence of Propositionl4.7, we have the followisgltén [27, Lemma 3.1].

Corallary 4.9. If A : R— Sis an injective ring epimorphism such tk& is projective and finitely generated,
then, for each e N,
Kn(R) =~ Kn(S) & Kn(Endr(S/R)).

Proof. Under our assumption ok, we see that E{(S/R,S/R) = 0 for all i > 0. Then the corollary
follows from the second part of Propositibn 4(7.

Remark 4.10. In Theoren{ 11l (2), we assume the existence of a recolleniefgrived module categories
of rings. For some necessary and sufficient conditions thiativ for the existence of such a recollement, we
refer the interested reader to the prepfint [6].

5 Applicationsto homological exact pairs

In this section, we shall apply our results in the previougisas to homological ring epimorphisms afforded
by exact pairs defined in][3].

5.1 A supplement to algebraic K-theory of recollements

Let R be a ring. Recall thaK(R) is a homotopy-associative pointéttspace with the multiplication map
K(U): K(R) x K(R) = K(R), which is induced from the coproduct functor. R-proj x R-proj — R-proj (see
Subsection 3]1). For any two mapsg : K(R) — K(R), we denote byf - g: K(R) — K(R) the composite of
the following three maps:

K(R) -2 K(R) x K(R) "9 K(R) x K(R) "™ K(R),

whereA is the diagonal mag — (x,X) for x € K(R).

Observe that the shift functdf] : €°(R-proj) — ¢°(R-proj) is also an exact functor of Waldhausen
categories, and that the induced m&@1]) : K(R) — K(R) is ahomotopy inversef K(R) in the sense that
bothK([1]) - Idk(r) andldg g - K([1]) are pointed-homotopic to the constant niaiR) — K(R) defined by
X — e, wheree is the associated point &(R). For eachn € N, sinceKp(A) : Kn(R) = Kn(R) x Kn(R) is
still the diagonal map, the homomorphidfg([1]) : Kn(R) — Kn(R) is exactly the minus map of the additive
groupsK,(R) (see also[23, Corollary 1.7.3]).

Let She another ring andl* a bounded complex & R-bimodules. IfsN® € €°(S-proj), then the tensor
functorN® @ — : €°(R-proj) — € (S-proj) is an exact functor of Waldhausen categories. In ¢ase — S
is a ring homomorphism, we chooblE = sSg, where the righR-module structure o8is induced froma,
and denote b¥K(A) the mapK(Ser—) : K(R) — K(S).

We first establish the following result dfxtheory of recollements.

Lemma5.1. Let R be aring forl <i < 3, and let M € ¥ (R, 7z R") and N* € ¢ (Rs @7 R5") such that
rR,M* € P (Ro-proj) andg,N* € €°(Rs-proj). Define

F=M*®p, — : €°(Ri-proj) — ¢°(Re-proj) and G:= N*@p, — : €°(Re-proj) — ¢ (Rs-proj).
Suppose that there is a recollement of derived module cagsgyo

I (Rg) ——= Z(Rp) ——= 7(Ry)
S~ N~
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such that j = M* ®{%1 —and i =N° ®HF32 —. Then the sequence of K-theory spaces

K(R) “DK(Re) “D K (Rs)

is a weak homotopy fibration, and therefore there is a longegaquence of K-groups:

s Knpa(Re) — Kn(R) M Kn(Re) " Kn(Rs) — Kn_1(Ry) —

- — Ko(R1) — Ko(R2) — Ko(Rs)

foralln € N.

Proof. Our proof will use some ideas from the proof of [20, Theorem 9]
It follows from the given recollement and Leminal2.3 that thiéofving sequence

P(R) = 2(Re) ——~ 9(Ry)

of derived module categories is exact (see Subselction 2.1):

(a) The functorj, is fully faithful and induces an equivalenég(R;) — Tria(r,M*).

(b) The composition of;; with i* is zero.

(c) Ker(i*) = Im(ji) = Tria(gr,M*).

(d) The functori* induces an equivalence : 2(R,)/Ker(i*) — 2(Rg).

Let 2" be the full subcategory of K&f) consisting of all compact objects. Then, it follows frdit €
7°(Rp) and Lemma&2]2 (1) tha?” € 2°(Ry). Now, we definex to be the full subcategory &°(Rx-proj)
consisting of the objects which are isomorphicdi{R;) to objects of.2". Note that#®(Rx-proj)-proj =
€2 (Ro-proj) by Example (b) in Subsectidn 3.3. Applying Lemmal 3.3 to thebEnius paifs™®(R,-proj) to-
gether with the equivalenc# ®(R,-proj) — 2°(R,), we see thax is a Frobenius subcategory@f(R,-proj)
containing all projective objects &f°(Ry-proj). DefineX = (x,%2(R-proj)) andY = (¢°(Ro-proj), x).
Then, by Lemmd& 313 (2)X andY are Frobenius pairs withr -proj = ¢®(Rx-proj)-proj, and we have a
sequence of Frobenius pairs:

x P @P(Ry-proj) —Z- ¥
whereG; is the identity functor, such that the following diagram mdéihgulated categories are commutative:

7 () 2% g (4 (Ro-proj)) Fr(Y)

- F )

p S— (= P (Ry) | X

7 (G1)

Since 2" is closed under direct summands#t(R), the bottom sequence in the above diagram is an exact
sequence of triangulated categories. By Leriméa 3.2 (1) andefinition ofK-theory spaces of Frobenius
pairs, we deduce that the following sequenc& etheory spaces

K(F) K(Gy)

K(x) —=K(Ry) K().

is a homotopy fibration, wherg is the Waldhausen category defined by the FrobeniusYpaihat is, o
has the same objects, morphisms and cofibrationgaB,-proj), but the weak equivalences 4n are those
chain maps such that their mapping cones lig in
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Observe thaF (4P (Ry-proj)) € x and thatG(U) € €2(Rs-proj) for U € x sincer,N* € €°(Rs-proj)
andG(U) =i*(U) =0in 2(Rs). Consequently andG induce two canonical maps of Frobenius pairs

F1: 6°(Ri-proj) — x and Gy : Y — €°(Rs-proj)

such thaF = FF andG = G,Gq, respectively. This can be illustrated by the followinggiem of Frobenius
pairs:

F G

%P (Ry-proj) %" (Ry-proj) %" (Rs-proj)
X Y
Next, we point out that the magp(F;) : K(Ry) — K(x ) is a homotopy equivalence. Actually, by Lemma
B2 (2), it suffices to prove that the funct@i: (F1) : Z (¢°(Ry-proj)) — Zk (x) is a triangle equivalence.
This follows from the following commutative diagram:

e (F
T (%°(Ru-proj)) =2 e (x)

Nl L:

2°(Ry) Z

~

where the equivalence of the second row is du@jand(c).
Consequently, the following sequencekotheory spaces

K(F) K(G1)
K(Ry) —= K(Rp) —= K (o).

is a homotopy fibration. So, to prove that the sequende-thfeory spaces
K(F K(G
K(R) “F K (Re) “C K (Ro)
is a weak homotopy fibration, it is enough to show that the KéB,) : K(9) — K(R3) gives rise to an
injection Ko(Gy) : Ko(7") — Ko(Rs) and an isomorphisii,(G,) : Kn(9) — Kn(Rs) for eachn > 0.

In fact, by Lemm& 312 (3), we only need to check tiat(G,) : Z¢(Y) — 2 (€P(Rs-proj)) is an
equivalence up to factors (see Subsection 2.1 for defipitiéior this aim, let?” be the full subcategory
of Z(Ry)/Ker(i*) consisting of all compact objects. Consider the followirmaenical exact sequence of
triangulated categories:

() Ker(i*)—— 2(Ry) — 2(Ry) /Ker(i*).
SinceZ(Ry) and TrigM*) are triangulated categories with small coproducts ancesyid® € Z°(Ry), we
know from Lemma 22 thaft) induces a sequence of the subcategories of compact objects:

X—s 9°R) —=¥

such thatZ" is closed under direct summands4ti(R,) and that the induced functét; : 2°(Ry)/ 2" — %
is an equivalence up to factors. Moreover, the equival@nire(d) induces a triangle equivalend® : % —;
7°(Rg). DefineH, : 2°(Ry)/ 2 — 2°(Rs) to be the composite dfi; with ®°. ThenH; is an equivalence
up to factors. Since the following diagram

(G .
Te (V) 2% G (%D (Re-pro)))

Lo
7°(Re)/ 2 7°(Rs)

is commutative, we see th&i: (G;) is an equivalence up to factors. This finishes the proof of ieff.1.0]
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5.2 Long Mayer-Vietoris sequences: Proof of Theorem [1.3

In this section, we shall show Theorém]1.3. Here, we follogvribtation introduced i [3].
Throughout this section, we suppose thaR — Sandu: R— T are ring homomorphisms such that the
pair (A, 1) is exact, that is, the sequence

()

0—R—SHT — S®rT —0
of R-R-bimodules is exact, where
N=AT:t—1xt, ' =Sou:s—s®1

fort € T ands e S(see[3] for more information).
Let SLIRT be the coproduct of the ringdandT overR, and letp: S— SLIRT and@: T — SLRT be the
defining ring homomorphisms of the coproduct. Then we hagddhowing commutative diagram:

R———S

a
SURT

whereh is defined bys®@t — (s)p(t)@fort € T ands e S. Note that the square in this diagram is both a
push-out and a pull-back. This implies that the mapping @@hef A is quasi-isomorphic to the mapping
coneQ* ®rT of A as complexes.

Given such a diagram, there is a ring homomorphisnB — C defined in[[3]:

. p h . - S SRRT . SLURT SURT
e._<0 (p)' B‘(o T >—>C_<SI_|RT Sl_lRT>'

Furthermore, we defing, := < é 8), e = < 8 2) eB and

¢:Be —Be: <3>n—><S@61> for se S

Let P* be the complex 68— Be i> Be, — 0 with Be; andBe, in degrees—1 and 0, respectively. Then
P* c ¥°(B®; R") andgP* € ¢ (B-proj), whereBe; andBe; are regarded as rigiR-modules via\ andy,
respectively. LeP** := Homg(P*,B) € ¥P(R@; B”), which is isomorphic to the complex & ;B >
e;B — 0 with e,B ande; B in degrees 0 and 1, respectively.

In case both\ andg are homological ring epimorphisms, we say that the exact(pajt) is homological
or that the square defined Ry, @ andp is ahomological Milnor squareFor a homological Milnor square,
the following result has been shown in [3, Theorem 1.1 andlGZoy 3.11].
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Lemma5.2. Suppose thak is a homological ring epimorphism aribr(T,S) = 0 for all i > 0. Then there
is the following ‘pull-back’ of recollements of trianguéat categories:

2(9) —7(9
osk- (o)) i D(X>>s@a
D(©.) v m v
2(C) o .@(B)\/ 7(R) B
e NN
P(SURT) —== 9(T) . Tria(rQ")
TR
Tria(+T ®rQ°) )

wheret : B— S= B/(B&B) is the canonical surjection,; ks the canonical embedding fos 1,2, and

j! = BP. ®%— and j! = HOm’B(P”_) ~ p** ®E—

Proof of Theorem[L3
(1) By Lemmd5.2, there is a recollement of derived module categjo

wherei* ;== C®§ —. Obviously, P* € €(B®zR"), gP* € €°(B-proj), cCs € ¢(C ®zB”) andcC ¢
%€P(C-proj). By (a) and LemmB5l1, the following two functors:

P* ®p — : €°(R-proj) — €°(B-proj) and C®g — : ¢°(B-proj) — € (C-proj)
induces a weak homotopy fibration ftheory spaces:

K(P*@R—) K(Ceg—)

(b)  K(R) K(B)
SinceB is a triangular matrix ring, we see that thetheory space&K(B) of B is homotopy equivalent to
K(S) x K(T). Thus we get Theorem 1.3 (1) without an explicit descriptbthe maps in the sequence.

In the following, we shall work out the maps in detalils.

SinceC is Morita equivalent toSLR T, the mapK(exC ®c —) : K(C) — K(SURrT) induced from the
exact functore,Cx¢ : C-proj — (SLR T )-proj is a homotopy equivalence by Lemmal3.2 (2). Thus weinbta
a weak homotopy fibration d€-theory spaces:

K(C).

K(P*®R—) K(eCg—)

(c) K(R) K(B) K(SURT).
Clearly,e;B~ T ~ esBey, Be,B ~ Be, andS~ B/(Be;B) = Bey. From the triangular structure & we see

that the following two maps

(d) K(B)— L K(9) X K(T)
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are mutually inverse homotopy equivalences.
Now, by (c) and(d), we obtain a weak homotopy fibration §ftheory spaces:

K(P*or—)a

K(R) —F2R9 e (g) s K (T) BRI

K(Sl_lRT).

It is trivial to check the following natural isomorphismsfahctors (see the diagram in Lemial5.2):
(&C®p —)(8S®s—) — (2C2BS) ®s— — (SLRT) ®s— : S-proj—s (SLRT)-proj,
(eC®p—)(Be®T —) — (2C2pBe&) @1 — — (SLRT) ®1 — : T-proj — (SLRT)-proj,
(&) (P* @ —)) — (2P*) 9x — — T ®r — : R-proj — T-proj,
(S®g—)(P* @k —)) — (S®eP*) ®r— — (P*/(B&B)P*) @k — — (S®r—)[1] : €°(R-proj) — €®(S-proj).
Consequently, we have the following homotopic maps

K(P* @k —)a = (K(P*®g—)K(S®e —), K(P* @k —)K(e2)) — (K((S®r—)[1]), K(T ®r~-)) =t (—K(A), K(W))

and
_ [ K(eS@s—)K(eLws—) \ ~ (K((SUrT)®s—)\ _. (K(p)
P(eLwe—) = (K(Bez®T—>K<ezc:®B—>) — (K((suRn@T—)) = (K(cp) )

Hence, the sequence Kftheory spaces:

(—K).K(W) (%)

(e) KR ————=K(§ xK(T) K(SLRT)

is a weak homotopy fibration, which yields the long exact sege ofK-groups in Theorem 11.3 (1).

(2) To prove Theorer 113 (2), we first show th&t € #2<*(B) if and only if gS€ Z<*(R).

In fact, by Lemmd2J3 (c), the functdd(A,) preserves compact objects if and only if sojis That
is, gC € 22<*(B) if and only if j'(B) ~ P** € 2°(R). Note thatQ* ®rT ~ Q* in Z(R) and thatrP** is
isomorphic in%'(R) to the direct sum of§—1] and (Q* ®r T)[—1]. ThusgP** ~ (S&Q°*)[—1] in Z(R).
SinceQ* is the two-term complex 6+ R S— 0, we infer thatP** e Z°(R) if and only if gSe Z°(R),
and thereforgC € &2<%(B) if and only if RS€ Z<*(R).

Next, we show that ikRSe Z<*(R), then the sequende) splits up to homotopy equivalence.

Let 2" := Tria(gP*) N 2°(B), and letx be the full subcategory & (B-proj) consisting of those objects
such that they belong t&@” when viewed as objects 6f(B). ThenX = (x ,‘Kg’c(B—proj)) is a Frobenius pair,
and in this way we consider as a Waldhausen category. Sin € ¢°(B-proj), we see from Lemmia 2.2
(1) that.2" is equal to the full subcategory of K&r) consisting of all compact objects.

Let L; : ¥°(R-proj) — x be the functor induced b* @% — andL, : x — %°(B-proj) the inclusion.
Then bothL; andL, are maps of Frobenius pairs, and therefore we have a seqokRogbeniues pairs:

&P (C-proj) <2~ %P(B-proj) <X

Now, by the proof of Lemm@&l 1, the sequeribg can be decomposed into the following form:

P ®p— K(C®g—)

K(R) —
&Ll)

K
K(x)

K(C)

L Kk(B)
(L2)

such thaK(L;) is a homotopy equivalence.
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SincerS e Z<*(R), we getgC € #<*(B). Further, the recollement (a) implies tHat B — C is a
homological ring epimorphism. Thus it follows from the pfed Propositiof 4.l that the following sequence
of K-theory spaces:

K(L2) K(Cos—)

K(x) —2 k(B K(C)

is a homotopy fibration and th#t(L») is a homotopy-split injection. Therefore the above seqeerfd-
theory spaces splits up to homotopy equivalence KAls;) is a homotopy equivalence, we further deduce
that the mapK (P* @r—) : K(R) — K(B) is a homotopy-split injection. Thus the sequelice(and also each
of the sequenceg), (d) and(e)) splits up to homotopy equivalence. Hence

(x) K(R)x K(SLRT) = K(S) x K(T).

Finally, we shall show thatx) also holds ifTr € 22<®(R°P). By Theoreni_1l, it suffices to prove that
Tre Z<*(R%P) if and only if Cg € &7<%(B°P).

Indeed, by(a) and Lemmad_2]4, we certainly have T@&*) = Ker(i*) = Im(j;) = Tria(gW*), where
gP* € €P(B-proj) andW* denotes the mapping cone @f Then one can follow the proof of LemrhaR.5 to
show that the recollemerff) has a dual form:

i
(@ 2(C%®) 2(B%®) — Z(R?)
N~ N~

D(6,)

where B -
jii=—®KP* and j' := Homgep(P**, —) ~ — @8 P".

By Lemma2.B (c), we infer tha®* € 2°(R°P) if and only if Cg € &2<*(B°P). Note thatP3 is isomorphic

in ¢ (R°P) to the direct sum of and the mapping cone Cofg) : 0 — s, S®RT — 0 of u’. However,
since(A, ) is an exact pair, it is easy to see that Cquigis actually quasi-isomorphic to the mapping cone
Condp):0—R 2, T — 0 of the chain map. This gives rise t®* ~ T @ Condp) in Z(R°P), which implies
thatTgr € 2<°(R™) if and only if P* € Z°(RP). ThusTg € 2<*(R°P) if and only if Cg € 22<*(B°). O

As a consequence of Theorém]1.3 (1), we reobtain the follpwasult of Karoubil[25, Chapter V, Propo-
sition 7.5 (2)].

Corollary 5.3. Let A and B be arbitrary rings, and let:fA — B be a ring homomorphism arl a central
multiplicatively closed set of nonzerodivisors in A suchttthe image of® under f is a central set of
nonzerodivisors in B. Assume that f induces a ring isomsrh/sA—; B/sB for each s ®. Then there
is a Mayer-Vietoris sequence

o = Kpp1(@71B) — Kp(A) — Ky(®@71A) @ Ky (B) — Kn(®71B) — Kp_1(A) —

- — Ko(A) — Ko(®A) & Ko(B) — Ko(®'B)
for all n € N, where® A stands for the localization of A &b.

Proof. DefineR:=A, S:= ® A T:=Bandu:= f. LetA:R— Sbe the canonical map of the
localization. By [4, Lemma 6.2], we hav8Lir T = ® 1B, which is defined by the canonical maps
oA~ o~ 'Bandg: B— ®1B. Sinced and(®d) f do not contain zerodivisors, botdhand@are injective.
As the modulea® 1A andg® B are flat, botm\ andg are homological ring epimorphisms.

Now, we claim that(A, ) is an exact pair. To show this, we first prove that the follaywrell-defined
map

h: > 'A@AB — ® 1B, a/seb ((af)b)/(sf)
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forae A, se ® andb € B, is an isomorphism ob~'A-B-bimodules. In fact, sinc®@ 1A= lims A, where
s !A:={a/s|ac A} C d 1A, we have

®'AaB = (lims *A) ©AB — lim (s "A®aB) — lim(sf) "B = ®~'B.
scd scd sed
Next, we show that the cokernels ©fnd@ are isomorphic aé-modules. Actually,

-1 o . —1 ~ . —1 ~ .
O 'A/A= (limsTA) /A lim (s A/A) — lim
sed sed sed

(A/SA).

Similarly, ®~*B/B — lim (B/sB). SinceA/sA——: B/sBfor eachs e ®, the mapf induces an isomorphism
s

of A-modules:®*A/A — ®~'B/B, that is, CokefA) ~ Cokel(q).

Finally, we point out that the may : B — @ *A®,B, defined byb— 1® b for b € B, is injective and
that CokefA) — Coker(\’). This is due to the equalitg = A'h.

Thus /

)\I
(x)

00— Ao 1a0 B ¢ tA@AB — 0

is an exact sequence Afmodules, whergl : @ 1A — ®1A®,B s defined by — x® 1 forx € ®~1A. By
definition, the pairA, ) is exact.

Since®d consists of central, nonzerodivisor elementa,itheA-modulea®Ais flat. Thus Tof (B, ®~1A)
=0 foralli > 0. Hence all conditions in Theordm 1L.3 are satisfied. Nowp{lay[5.3 follows from Theorem
I3 (1) immediately]

Proof of Corollary[1.4

(1) Let S:=R/l3, T :=R/I2, and letA : R— Sandp: R— T be the canonical surjections. Then, it
follows from the proof of [3, Corollary 1.2 (1)] that, undéret assumptions of Corollafy 1.4 (1), the pair
(A1) is exact, the surjective ring homomorphisiis homological with Tdf(T,S) = 0 for alli > 0, and
SURT =R/(I1+12). Now, (1) is an immediate consequence of Theofem 1.3 (2).

(2) Let T := Rx M, and letp: R— T be the canonical inclusion froR into T. Assume thaf\ is
a homological ring epimorphism. Then, it follows from thepf of [3, Corollary 1.2 (2)] thatA,p) is an
exact pair with Tof(T,S) = 0 for alli > 0, and thaBx M, together wittp : S Sx M and@: Rx M — Sx M
induced fromA, is the coproducBLIR T of the ringsSandT overR. Now, by Theoreni 113 (1), we have a
long exact sequence &f-groups:

(—Ka(h),Kn(W) (%)

co = Knp1(Sx M) — Kn(R) Kn(S) @ Kn(Rx M)

Kn(Sx M) — Kn_1(R)

— -+ — Ko(R) — Ko(S) @ Ko(Rix M) — Ko(Sx M)

forallne N.
Lett: Rx M — Rbe the canonical surjection. Tham = Idgr. This implies that the composite of

K(p : K(R) — K(Rx M) with K(m) : K(Rx M) — K(R)

is homotopic to the identity oK (R), and therefore<, (1) Kn (1) = Idg, (&) for all n > 0. It follows that the

map (—Kq(A), Ka(W)) is a split injection fom > 0. Therefore, fon > 0, the map( '}2((‘(3 ) is surjective, the
sequence

“Kn(A),Kn Kr:](P)
0 Kn(R)( ) Ko) Kn(S) @ Kn(Rx M) M)

Kn(Sx M) —= 0
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is split exact and,(R) @ Kn(Sx M) ~ Kp(S) @ Kh(Rix M).

To check the isomorphism for the case- 0, we use the following known result: Kis aring and is a
nilpotent ideal ofA, then the canonical surjectigh— A/l induces an isomorphisiikg(A) — Ko(A/1). This
implies that

Ko(Rx M) — Ko(R) and Ko(Sx M) — Ko(S).

Consequently, botKo(l) : Ko(R) — Ko(Rx M) andKg(p) : Ko(S) — Ko(Sx M) are isomorphisms. Hence
Ko(R) & Ko(Six M) =~ Ko(S) & Ko(Rix M). This completes the proof of Corollary 1 4.

6 Anexample

In the following, we give an example to illustrate the keympiPropositio 4J7, in our proof of the main
result, Theorerh 111.

Example 1. Letk be a field, and leR be ak-algebra with the % 2 matrix ringM2(k) overk as its vector
space, and with the multiplication Rgiven by

a by/a b\ ([ ad ab+bd
c d/\cd d/) \cd~+dd dd
fora,a,b,b/,c,c,d,d € k. Note thatR can be depicted as the following quiver algebra with retetio

a

(%) 1.:.2, apf = Ba = 0.

B

Let g be the idempotent element Bfcorresponding to the vertéxor i = 1,2. We consider the universal
localizationA : R— Sof Rat the homomorphisn : Re — Re induced byo. This means that, to work out
the new algebr&, we need to add a new arraw* : 2 — 1 and two new relationga ! = e andata =&
to the quiver(#). Thus we havd = e, = a~tap = 0 in Ssinceaf = 0. In other wordsScan be expressed
as the following quiver algebra with relations:

a
P

le 2, oo l=e andala=e,
S
Gfl

which is isomorphic to the usual matrix ridd (k) overk. Moreover, the ring homomorphisi: R — Scan
be given explicitly by
e—e,e—e d—adfp—0.
It is easy to see th&#e ~ Sg ~ Rg andS~ Sq & Se ~ Rg & Rg asR-modules. In particulagSis a
finitely generated projectivR-module and\ is a homological ring epimorphism wiggse 22<*(R).
Now, we define

Q=0-—Re - Reg—0 and PP:=0— RS-0
whereRe andR are of degree 0. ClearlyQ* ¢ ¢°(R-proj) and P*[1] is the mapping cone of. Since
Se ~ Sq ~ Reg asR-modules, we infer tha®® ~ P* in ¢ (R) and TrigdQ*) = Tria(rP*) € Z(R). Thus all
the assumptions of Propositibn 1.7 are satisfied. It follss Propositio 4.7 that

K(R) = K(S) x K(T)
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asK-theory spaces, whefE := Endk(Q®) is the dg endomorphism algebra @ (see Subsection 2.1 for
definition). _
It is easy to check that the dg algefita= (T')icz is given by the following data:

T 1=k T°=kok T'=kT =0fori#—1,0,1,
with the differential:
07100l
and the multiplicatiors : T x T — T (see Subsectidn 2.1):
T loT t=TloTl=0=TtoT!=TLoT}
(a,b)o(c,d) = (ac,bd), fo(a,b) = fa, (a,b)o f =bf, go(a,b)=gb, (a,b)og=ag,

where(a,b),(c,d) e T?, f ¢ T"tandg e T
SinceH(T) = 0, we see that the dg algebfais quasi-isomorphic to the following dg algebra®(T)
overk:
0— T -2 Ker(d®) — 0

whered® = (_11) :T9 — T1L. Clearly, the latter algebra is isomorphic to the dg algebra

A=0—k-2k—0

where the firstkk is of degree—1 and has &-k-bimodule structure via multiplication. Thus the algebra
structure ofA (by forgetting its differential) is precisely the triviakiensionk x k of k by the bimodulek.
Now, by Lemmd 3.8, we know that

K(T) =5 K(1=%(T)) > K(A)
asK-theory spaces. Thu§(R) — K(S) x K(A). In particular,
Kn(R) ~ Kn(S) & Kn(A) forall neN.

It is worth noting that we cannot replace the dg algebria the above isomorphism by the trivial extension
k x k since the algebraik-theory of dg algebras is different from that of usual rinlgsfact, in this example,
K]_(R) = Kl(k) D Kl(k) =k* @k, K]_(S) =k* and Kl(A) = k*, but Kl(k X k) =kdpk*. So K]_(R) ;ﬁ
K1(S) @ Ki(k x k). For information orKn(k) with k a finite field, we refer the reader {0 [19].
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