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HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES
OVER CH"™ AND THE COMPLEX HEISENBERG GROUPS

YouNcal CHOI AND KYUNG BAl LEE

ABSTRACT. For the “Hopf bundle” S' — §2™1 — CH™, horizontal lifts
of simple closed curves are studied. Let v be a piecewise smooth, simple
closed curve on a complete totally geodesic surface S in the base space.
Then the holonomy displacement along v is given by

V(y) = XA,

where A(7y) is the area of the region on the surface S surrounded by =;
A =1/2 or 0 depending on whether S is a complex submanifold or not.

We also carry out a similar investigation for the complex Heisenberg
group R — H27+1 5 Cn.

1. Introduction

Consider the Hopf fibration S — $% — S2. Let « be a simple closed curve
on S2. Pick a point in S® over v(0), and take the unique horizontal lift 5 of ~.
Since (1) = v(0), (1) lies in the same fiber as (0) does. We are interested
in understanding the difference between 5(0) and 7(1). The following equality
was already known [2]:

V(y) =240,

where V() is the holonomy displacement along 7, and A(v) is the area of the
region surrounded by 7.

In this paper, we shall generalize this fact to (higher dimensional) pseudo-
spheres and the complex Heisenberg group. First we look at the fibration of
the pseudo-sphere §2m!
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a principal S'-bundle over the complex hyperbolic space CH™. Let S be a
complete totally geodesic surface in the base space CH", and &g be the pull-
back bundle over S. Let « be a piecewise smooth, simple closed curve on S
parametrized by 0 < ¢ < 1, and 7 its horizontal lift. The pullback over the
curve 7 is called a Hopf torus (so 7 is a curve on the Hopf torus). Then

3(1) = €247 5(0)  or  F(0),

depending on whether S is a complex submanifold or not, where A(y) is the
area of the region on the surface S surrounded by v (See Theorem 3.3).

We also carry out a similar investigation for the complex Heisenberg group.
Let 1 - R — H?"*! — C™ — 1 be the central short exact sequence of the
complex Heisenberg group. Let S be a complete totally geodesic plane in C",
and g be the pullback bundle over S. Let v be a piecewise smooth, simple
closed curve on S. Then

V(v) =e(§s) - A(v),

where A(y) is the area of the region on the surface S surrounded by +, and
the number e(£g) is determined by the equality [v,w] = e({s)eant1 for an
orthonormal basis {v,w} for the tangent space of S (See Theorem 4.1).

2. Preliminaries

The proof of the statement in the introduction (in the case of the Hopf
fibration ST — S3 — 52) uses the Gauss-Bonnet theorem. For S' — §21 —
CH?, such is not available because the base space is not compact. Therefore, we
cannot apply the arguments in [2] directly, and need to develop a new method
of proof. It turns out that S%! is the building blocks for higher dimensional
cases.

Let F — E % B be a principal F-bundle (F = R! or S!) of Riemannian
manifolds, with B a 2-dimensional complete manifold and p a Riemannian
submersion. For a simple closed cure v(¢),0 < t < 1 on B, the holonomy
displacement V() along ~ is defined as follows: Let F(t) be the horizontal lift
of 4. Then

(1) =V(y)-7(0)

for some V(v) € F. We shall establish a technical lemma which will be used
later.

Lemma 2.1. Suppose V(v) = A(7)A(y) (F =RY), or XMAMiI(F = 81 for
a constant \(7), where A(7y) is the area of the region on B surrounded by a
piecewise smooth simple closed curve . If A(7y) is constant for all v’s which
are the boundaries of rectangular regions, then it is constant for every piecewise
smooth simple closed curve 7.
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Proof. Let us assume that F = R. The case of ' = S! will be similar. Let
Yo be a curve on B. Since the region surrounded by g is compact, we may
assume that this region is contained completely in one local patch. Let

0:R®>UCB

be a local chart, and p~!'(U) ~ U x F. For notational simplicity, we shall
identify R? with U (and suppress ). Let Q(U,70(0)) and Q(R,0) be the
space of paths emanating from ~o(0) and 0 € R, respectively. For each v €
Q(U,70(0)), let w, be the unique curve in R so that n(t) = y(t) - w,(¢) is the
horizontal lift of . This defines a map

3:QU) — Q(R)
by 3(7)(t) = wy(t). We use the sup metrics p on both Q(U) and Q(R). That

is,
p(11,72) = sup d(71(t),72(t)),
te[0,1]

where d is the distance function on U. A similar definition holds for Q(R). We
wish to show that 3 is continuous at 7g. Let € > 0 be given. By the continuity
of the connection, for each ¢ € [0, 1], there is an open neighborhood W of ~()
such that any piecewise smooth curve in W has a horizontal lift which lies
in W x (—€/2,€/2). Since vo(I) is compact, we can find ¢ > 0 such that if
p(70,7) < 6, then p(wy,,wy) < e. This proves that 3 is continuous.

Any piecewise smooth simple closed curve can be approximated by a se-
quence of piecewise linear curves which are sums of boundaries of rectangular
regions. Since A(7) is constant for rectangular regions, the same is true for any
piecewise smooth simple closed curve. O

Next, we need to know all complete totally geodesic submanifolds of the base
space of the principal bundle S' — $2™! — CH™. Since S?™! is a symmetric
space, the following gives a complete answer.

Proposition 2.2 ([1, XI Theorem 4.3]). Let (G, H,o) be a symmetric space
and g = h + m the canonical decomposition. Then there is a natural one-
to-one correspondence between the set of linear subspaces m' of m such that
[, w'],m'] C m' and the set of complete totally geodesic submanifolds M’
through the origin 0 of the affine symmetric space M = G/H, the correspon-
dence being given by m’ = To(M').

3. The bundle S —» §2™1 5 CH"™

We shall study the bundle
U(l) — U(1,n)/U(n) 2 U(1,n)/(UQ1) x U(
n

, x U(n)).
Note that U(1,n)/U(n) = S§?™1 and U(1,n)/(U(1) x U(n)) = CH™, where

Sl = HU20 = {(zg,...,2,) € C" : —|2]2 + Y1 |z|> = —1}. For more
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information on S?™! see [3]. We first consider the case when n = 1. Rather
than using U(1) — U(1,1)/U(1) —» U(1,1)/(U(1) x U(1)), we shall use
U(l) —» SU(1,1) —» SU(1,1)/U(1).

Here SU(1,1) = {A € GL(2,C) : AJA* = J and det(4) = 1} where J =
(%7

0o 1]

From now on, we shall use the convention of gl(n,C) C gl(2n,R) by
11 —Yir Ti2 —Y12
Y11 T11 Y12 12
To1 —Y21 T2 Y22
Y21 T21 Y22 T22

The group SU(1,1) has the following natural representation into GL(4, R):

211 212
221 %22

| —

w1y w2 w3 Wy
) w1 —Wy4 w3
w3z —Wy w1 —W2
Wy w3 w2 w1

with the condition w? + w3 — w? — w3 = 1. In fact, the map

w =

w1 + wat + w3j + wak — w
is a monomorphism from the unit quaternions into GL(4,R). Therefore,
SU(1,1) = §%1.

Sl{{g S_iz} SOSZSQTF}

is a subgroup of SU(1,1), and acts on SU(1,1) as right translations, freely
with quotient CH', the complex hyperbolic line, giving rise to the fibration

St — SU(1,1) — CH".

In order to understand the projection map better, let w be the “i-conjugate”
of w (replace wy by —wsq). That is,

The circle group

wp —Way w3 W4
~ Wo w1 —Wy4 W3

w =
w3z —Wy wy Wz
Wy w3 —w2 W
Then,
wi +w? + w3 + w3 0 2(wiws — wawy) 2(wows + wiwy)
Wi = 0 w? +w? +wd +w? —2(wews + wiwy) 2(wywz — wawy)
2(wiws — wawy) —2(wow3 + wiwy)  w? 4+ wi + w3 + w? 0
2(wows + wiwy) 2(wyws — wowy) 0 w? + w3 + w3 +w?
and

(w? + w? + w3 +w)? — (2Qwiws — 2wawy)? — (2wows + 2wywy)? = 1.



HOLONOMY DISPLACEMENTS IN HOPF BUNDLES 737

Clearly, CH! can be identified with the following

T 0 Yy oz
CH! = 2 —ﬁ _; g syt =22 =1, 2>0
z Y 0 =z

Therefore, the map
p:SU(1,1) — CH!
defined by p(w) = ww has the following properties:
p(wv) = wp(v)w for all w,v € SU(1,1),
p(wv) = p(w) if and only if v € S*.
This shows that the map p is, indeed, the orbit map of the principal bundle
S — SU(1,1) — CH!'. The Lie group SU(1,1) will have a left-invariant

Riemannian metric given by the following orthonormal basis on the Lie algebra
su(l,1)

0 010 0 0 0 1 010 0
loo0 o1 lo 0 -1 0 100 0
“Tl1r o000 -1 00T 000 -1

01 0 0 1 0 0 0 0 0 1 0
Notice that e; and ey correspond to [{] and [?] in gl(2,C) and [eq, e] =

—2e3. Consider the subset of SU(1,1):

. 7zy
T { [ coshx (sinh x)e

i : > <y<
(sinhz)e® coshx ] r2>20,0<y< 277}

coshz 0  (sinhz)(cosy) (sinhz)(siny)

. 0 coshz —(sinhz)(siny) (sinhz)(cosy)
a (sinhz)(cosy) —(sinhx)(siny) coshx 0
(sinhz)(siny)  (sinhx)(cosy) 0 coshz

which is the exponential image of

_ffo g,
w2 8] cec)
Of course, SU(1,1) is topologically a product S* x CH!. The map p restricted
to T is just the squaring map; that is,

p(w)=w? weT.

Theorem 3.1. Let S' — SU(1,1) — CH! be the natural fibration. Let v be
a piecewise smooth, simple closed curve on CH'. Then the holonomy displace-
ment along 7y is given by

V(y)=e2*0i e g,
where A(v) is the area of the region on CH' enclosed by 7.
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Proof. Let v(t) be a closed loop on CH! with v(0) = p(I4). Therefore,

cosh 2x(t) 0  sinh2z(t)cosy(t) sinh2x(t)siny(t)
(t) = 0 cosh2x(t) —sinh2z(t)siny(t) sinh2z(t)cosy(t)
T =1 sinn 2x(t) cosy(t) —sinh2z(t)siny(t) cosh 2z(t) 0
sinh 2z(¢)siny(t)  sinh2z(t) cos y(¢) 0 cosh 2z(t)
Let
cosh x(t) 0  sinha(t)cosy(t) sinhz(t)siny(t)
~(t) _ 0 coshz(t) —sinha(t)siny(t) sinha(t)cosy(t)
T =1 sinn z(t) cosy(t) —sinhx(t)siny(t) cosh z(t) 0
sinhz(t)siny(t)  sinhx(¢) cosy(t) 0 cosh z(t)
with z(¢) > 0 so that p(3(¢)) = ~(t) (7 is a lift of ), and let
cosz(t) —sinz(t) 0 0
| sinz(t)  cosz(t) 0 0
wit) = 0 0  cosz(t) sinz(t)
0 0 —sinz(t) cosz(t)

Put n(t) = 5(t) -w(t). We still have p(n(t)) = v(t), and 7 is another lift of y. We
wish 7 to be the horizontal lift of 7. That is, we want 7’ (¢) to be orthogonal to
the fiber at 7(t). The condition is that (1)/(t), (£,))«(e3)) = 0, or equivalently,
((Lyy-1)«n'(t), e3) = 0. That is,

n(t)" 0/ (t) = ater + azes
for some a1, as € R. From this, we get the following equation:
(3-1) 2/ (t) = sinh? z(t)y' (t).

By virtue of Lemma 2.1, it will be enough to prove the statement for a
particular type of curves as follows: Suppose we are given a rectangular region
in the zy-plane

p<z<pt+a, qg<y<q+b
Consider the image R of this rectangle in CH' by the map
(z,y) — r(z,y) = (cosh 2z, (sinh 2x)(cos y), (sinh 2z)(siny)),
CH' with the (+ — —) metric. The area of R can be calculated as follows:
r, X 1, = ((2cosh 2z)(sinh 2z), —(2sinh? 2z)(cos y), — (2 sinh? 2z) (sin y)).
Now
[lry x ry|| =2|sinh2z|, (+ — —)-norm
= 2sinh 2z (because x > 0).
Thus, the area is

q+b rpta ptal]dtd
/ / 2sinh 2z dzdy = [[2 sinh? x]p } = 2b(sinh®(p + a) — sinh*(p)).
a Jp

q

On the other hand, the change of z(t) along the boundary of this region
can be calculated using condition (3-1). Label the four vertices by A(p,q),
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B(p +a,q), C(p+a,q+b), and D(p,q +b). AB can be parametrized by
=p+at, y(t) = q, t € [0,1] so that y'(t) = 0. For BC, z(t) = p + a,
+bt, t € [0,1]. Then

1
z(1) — 2(0) = /0 2 (t)dt = /Sinh2(p +a)b dt = b -sinh®(p + a).

Similarly, z(¢) does not change along CD, but on DA, x(t) = p, y(t) = ¢+b—bt,
t €10,1]. So

z(l)—z(O):/o z’(t)dt:/sinh2(p)(—b)dt:—b-sinhQ(p).

Thus the total vertical change of z-values, z(1) — z(0), along the perimeter of
this rectangle is b - (sinh?(p 4 a) — sinh?(p)) which is 1/2 times the area. [

)

Now we turn to the general case
St — 5% 25 CH™.
We are viewing S?™! =2 U(1,n)/U(n), and CH™ = U(1,n)/(U(1) x U(n)). The
Lie algebra of U(1,n) is u(1,n), and has the following canonical decomposition:
g = b+ m, where

hu(l)+u(n){[3 g} A+ A=0, Beu(n)}

o {[2] cec)

Lemma 3.2. A 2-dimensional subspace m’ of m C u(1,n) gives rise to a com-
plete totally geodesic submanifold of CH™ if and only if either

and

(1) w' is J-invariant (i.e., has a complex structure), or

(2) m’ has tangent vectors v and w such that vw — vw = 0.
Furthermore, for each of these cases, the pullback of the bundle S* — S?™1 —
CH™ by the inclusion is isomorphic to the standard bundle S* — SU(1,1) —
CH?" for (1), or the product bundle S* x CH' for (2), respectively.

Proof. With the notation m as above, let v and w be elements of m whose &’s
are given by

1 +1iy1 ay + iby
2 .—i.—.zy2 for v and @2 .—’_—.ZbQ for w.
Ty + Yn an +iby

Then by Proposition 2.2, m’ is a totally geodesic sub-manifold if and only if
[[m,m'],m'] C m’. Some calculations show the following equality
[[v,w],v] = Z(mkak + yrbr)v — Z(mi + 9w —3 Z(mkbk — yrag)(iv)

k=1 k=1 k=1
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holds. Therefore, [[v,w],v] = pv + qw for some real p and ¢ if and only if
iv = pv + gw has solution for some real p and gq.

Suppose m’ has a complex structure. Then we can take v and w in m’
so that iv = w (so ap = —yg and by = x for all k = 1,2,...,n). Thus,
[[v, W], v] = pv+qw has a solution for p and gq. Suppose vw—vw = 2Im(vw) =
23— (@kbr —yrar) = 0. Then clearly [[v, w], v] = pv + ¢gw has a solution for
p and gq.

Conversely, suppose [[v, w],v] = pv + gw has a solution for p and ¢q. Then
iv = pv + gw must have a real solution for p and ¢q. Suppose ZZ=1(Ikbk' -
yrar) 7 0. Then, at least one of the summands is non-zero, say x1b; —y1a1 # 0.
This means that we can find a new basis for span{v, w} with

xlzl,y1:0; a1:0,b1:1.

Then the equation pv + gw = iv is quickly reduced to p =0 and ¢ = 1 (from

k = 1), and hence we obtain zy = by, yp = —ay for all K = 2,...,n. This

shows w = iv, and the space spanned by v and w has a complex structure.
For the second part of the statement, it is enough to observe that

v, w] = A0

) 0 0 b

where A = vw — vw. If A = 0, then the distribution m’ is integrable, and the
bundle is trivial. O

By combining Theorem 3.1 and Lemma 3.2, we have now:

Theorem 3.3. Let St — S?»! — CH™ be the natural fibration. Let S be a
complete totally geodesic 2-dimensional surface in CH™, and s be the pullback
bundle over S. Let v be a piecewise smooth, simple closed curve on S. Then
the holonomy displacement along v is given by

Viv) = 240 op 0 ¢ g1,

where A(v) is the area of the region on the surface S surrounded by vy, depending
on whether S is a complexr submanifold or not.

Since the length of 7 is half of the length of 7, we have:

Corollary 3.4. Suppose 7y is a piecewise smooth, simple closed curve parametr-
ized by arc length. Then the Hopf torus in S*™' over ~y is isometric to the torus
generated by the lattice {(27,0), (A(v)/2, L(v)/2)} in R?, where L(v) is the
length of ~y.

4. The complex Heisenberg group H2?"*1
We consider #2"+!. This is R x C" with group operation given by
(s,2)(t,2) = (s +t+21Im{zz'}, z +2),

where Im{Zz'} is the imaginary part of the complex number z12] + Z225 +
o+ Zpzl for z = (21,22,...,2n), 7 = (21,25,...,2) € C". This is a 2-step
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nilpotent Lie group with center Z(H?"*!) = R. In the case of n = 1, H3 is
isomorphic to the ordinary 3-dimensional Heisenberg group by

1 = =z
4z —2zy,z+iy)«— | 0 1 y
0 0 1

For the sake of computations, we use the following affine representation of
H2 L into Aff(2n + 1) C GL(2n + 2):

1 -2y 2x1 -+ 2y, 2z, S
o+ iy 0 1 0 - 0 0 m
1 1
. 0 o0 1 .- 0 0
22 + iy S
87 e —> . . . .
+ 0 0 0 1 0 Zn
Tn T Wn 0 0 0 ) 1 oy
L0 0 0 - 0 0 1 |

The Lie algebra has a following orthonormal basis

002 - 000 0 -2 0 -~ 00 0
000 - 00 1 00 0 -+ 000
000 - 000 00 0 -~ 00 1

a=| . . . |e=l .
000 000 0 0 0 000
000 000 0 0 0 000
000 00 0] 0 0 0 00 0]
[0 0 0 —2 0 0] 0 0 0 00 1]
000 0 0 0 00 0 000
000 0 0 0 000 000

en=| . . . | ema=|_ .
000 -+ 0 00 000 000
000 - 0 01 000 - 000
(000 - 0 0 0| (000 - 00 0]

which defines a left-invariant Riemannian metric on H2"t!. The short exact
sequence of groups

1 —R-—H B0 —1

is a fiber bundle, which is topologically trivial. The left invariant metric natu-
rally induces a connection on this principal R-bundle. There is a unique metric
on C" (standard Euclidean metric) which makes the projection map p a Rie-
mannian submersion.
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Theorem 4.1. Let 1 — R — H2"*1 B C" — 1 be the central short exact
sequence of the complex Heisenberg group. Let S be a complete totally geodesic
plane in C™, and £g be the pullback bundle over S. Lety be a piecewise smooth,
simple closed curve on S. Then

V(v) =e(§s) - A(v),

where A(y) is the area of the region on the surface S surrounded by v, and
the number e(£s) is determined by the equality [v,w] = e(€s)eant1 for an
orthonormal basis {v,w} for the tangent space of S.

Proof. Every complete totally geodesic submanifold of C™ is an R-linear sub-

space of C". Therefore S = span{v, w} for some orthonormal basis v, w where

v =" (a; +ibj) and w = 3" (¢c; +id;) € C". Then v is of the form
v(t) =zt)v+yt)we S cC”,

where z(t) and y(t) are scalars. We want to find a curve z(t) in R so that

n(t) = (2(¢t),7(¢t)) is orthogonal to the fiber for every ¢. In other words,

<77/(t)7 (fn(t))*62n+1> =0,
where £ is the left translation. This is equivalent to ((f;(lt))*n’(t), eant1) = 0.

Note that n(t)~! = (—=2(¢) + 2 Im{~(t)y(t)}, —(t)). Using the affine represen-
tation, (£,¢)—1)«n'(t) is

0 —=2(2'()by +y/(t)dr) -+ 2'() = 2(x(t)y'(t) — 2’ ()y(t)) Im{Vw} |
0 0 e ' (t)ay + ' (t)ey
0 0 e ' (t)by + v/ (t)ds
6 0 ' (t)ay + Yy (t)en
0 0 z' ()b, + v/ (t)dn

0 0 o 0
where Im{Vw} = "7 (a;d; — c;b;). Note that Im{vVw} = Im{Vv'w'} for any

orthonormal basis {v’,w’}. The equation ((£,)-1)+7'(t), €2n1) = 0 gives rise
to

(4-1) () = 2(x(t)y'(t) — 2" (t)y(t)) Im{yw} = 0.

Suppose we are given a rectangular region on xy-plane

p<z<p+ta ¢<y<q+b
Consider the image R of this rectangle in S C C™ by the map
(z,y) — zv + yw.

Then R is a rectangle with vertices pv+qw, (p+a)v+qw, (p+a)v+ (¢+b)w,
pv + (¢ + b)w. Let v(¢) be the piecewise linear boundary curve. It can be
represented by ((p+4at)v,qw) for 0 <t < 1/4, ((p+a)v, (g+b(4t —1))w) for
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1/4 <t <1/2, ((p+a(3—4t))v, (¢+b)w) for 1/2 <t < 3/4, (pv, (g+b(4—4t))w)
for 3/4 <t <1.
Then, from the equation (4-1),

z(1) — z(0) = 2/0 (x(t)y'(t) — 2" (t)y(t)) Im{vw}dt = 4ab Im{vw}.
On the other hand,

000 -+ 0 0 Im{vw} |

oo o0 -~ 00 0

0 0 O 0 0 0
vowl=4| S

0 00 0 0 0

0 0 0 0 0 0

00 0 00 0 |

This means that [v,w] = 4Im{Vw}es,1+1 = e(€s) eant1 so that V() = e(€s) -
A(y) with e(€s) = 4Im{vw}.

Having shown the statement for rectangular regions, now we apply Lemma
2.1 to conclude that the same formula holds for any piecewise smooth, simple
closed curve. O

Corollary 4.2. Suppose v is a piecewise smooth, simple closed curve parametr-
ized by arc-length. Then the Hopf cylinder in H*" ! over v is isometric to the
cylinder generated by the translation (z,y) — (z + e(€s) A(v), y + L(7)) on
R?, where L(v) is the length of .
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