AN ALGEBRAIC CLASSIFICATION OF SOME EVEN-DIMENSIONAL KNOTS

C. KEARTON*

(Received 2 October 1975)

§0. INTRODUCTION

An *n*-knot *k* is a smooth submanifold Σ^n of S^{n+2} , where Σ^n is homeomorphic to the *n*-sphere S^n . When n = 2q - 1 or 2q, the knot is called *simple* if its complement has the homotopy (q - 1)-type of S^1 : this is the most that can be asked if k is not to be trivial (except perhaps when n=2). The simple (2q-1)-knots, $q \ge 2$, have been classified by J. Levine [7] in terms of their Seifert matrices modulo S-equivalence.

A simple 2q-knot is called *odd* if the qth homotopy group of its complement has no 2-torsion. This paper provides a classification of odd simple 2q-knots, $q \ge 3$, in terms of an algebraic gadget called a $(-1)^q$ -form, modulo an equivalence relation called T-equivalence.

I should like to thank Andrew Ranicki for many helpful conversations: the notation used here is modelled on his work.

§1. ε-FORMS

Let ϵ denote \pm . Let $P \cong Z^{2n}$ and $P^* = \operatorname{Hom}_Z(P, Z)$. A Seifert map is a homomorphism $\theta: P \to P^*$ such that $\theta + \epsilon \theta^*: P \to P^*$ is an isomorphism, where θ^* is the dual of θ and P^{**} is identified with P. Define $\theta(a,b) = \theta(b)(a)$ and if $F \subseteq P$ let the annihilator of F be $F^{\perp} = \{x \in P : \theta(F, x) = 0\}$. A subgroup F of P is self-annihilating if $F = F^{\perp}$. Note that this implies that F is a direct summand of rank n.

An ϵ -form is a quadruple (θ, F, G, ϕ) where θ is a Seifert map with domain P, F and G are self-annihilating subgroups of P, and there is an exact sequence of Abelian groups

$$0 \rightarrow F + G + 2P \hookrightarrow P \stackrel{i}{\rightarrow} \Pi \stackrel{h}{\rightarrow} F \cap G \rightarrow 0$$

with a bilinear pairing $\phi: \Pi \times \Pi \rightarrow Z_2$ such that for $a \in P$, $b \in \Pi$,

$$\phi(ia, b) \equiv \theta(a, hb) \mod 2$$

 $\phi(b, ia) \equiv \theta(hb, a).$

It is easy to see that $F \cap G$ is a direct summand of P, of rank r, say.

An isomorphism between two ϵ -forms (θ, F, G, ϕ) and (θ', F', G', ϕ') is a pair of maps (f, g)satisfying

$$f: P \xrightarrow{\sim} P', \quad g: \Pi \xrightarrow{\sim} \Pi', \quad fF = F', \quad fG = G',$$

$$0 \longrightarrow F + G + 2P \longrightarrow P \longrightarrow \Pi \longrightarrow F \cap G \longrightarrow 0$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow f$$

$$0 \longrightarrow F' + G' + 2P' \longrightarrow P' \longrightarrow \Pi' \longrightarrow F' \cap G' \longrightarrow 0$$

commutes and

$$\theta'(fa, fb) = \theta(a, b) \quad \forall a, b \in P, \qquad \phi'(ga, gb) = \phi(a, b) \quad \forall a, b \in \Pi.$$

An ϵ -form (θ, F, G, ϕ) is called *odd* if the torsion subgroup of P/(F+G) has odd order. At this point we prove two technical lemmas about ϵ -forms which will be needed later.

LEMMA 1.1. If (θ, F, G, ϕ) is an ϵ -form, then there is a subgroup T of Π such that $h|_T: T \to F \cap G$ is an isomorphism and $\phi|_{T \times T}$ is symmetric.

Proof. Let $b_1, \ldots, b_r \in \Pi$ be such that hb_1, \ldots, hb_r is a basis of $F \cap G$. Let $a_1, \ldots, a_r \in P$

^{*}Current address: College of St. Mild and St. Bede, Durham, DH1 1S2.

be such that $(\theta + \epsilon \theta^*)(a_i, x) = 1$ if $x = hb_i$, 0 otherwise; this is possible as $\theta + \epsilon \theta^*$ is an isomorphism. Then

$$\phi(b_1 + ia_k, b_l) - \phi(b_l, b_1 + ia_k)
= \phi(b_1, b_l) - \phi(b_l, b_1) + \phi(ia_k, b_l) - \phi(b_l, ia_k)
\equiv \phi(b_1, b_l) - \phi(b_l, b_1) + \theta(a_k, hb_l) - \theta(hb_l, a_k)
\equiv \phi(b_1, b_l) - \phi(b_l, b_1) + \delta_{kl}.$$

Let L be the subset of 2,..., r for which $\phi(b_1, b_k) \neq \phi(b_k, b_1)$, and define $b_1' = b_1 + \sum_{k \in I} ia_k$.

Then $\phi(b_1', b_k) = \phi(b_k, b_1')$ for $2 \le k \le r$ and $hb_1' = hb_1$. Iterate this process to obtain b_2', b_3' , etc. \square We call T a symmetric subgroup of Π .

LEMMA 1.2. Let (θ, F, G, ϕ) be an odd ϵ -form, and R, T symmetric subgroups. If b_1, \ldots, b_r is a basis of R and b'_1, \ldots, b'_r a basis of T such that $hb_i = hb'_i$ for $1 \le i \le r$, then there exists $a_1, \ldots, a_r \in P$ and $\lambda_{jk} \in Z$ $(1 \le j, k \le r)$ with the following properties.

(i) $\theta(a_i, x) + \epsilon \theta(x, a_i) = 1$ if $x = hb_i$ and 0 otherwise.

(ii)
$$b'_{k} = b_{k} + \sum_{s=1}^{r} \lambda_{ks} i a_{s}, \quad \forall k.$$

(iii) $\lambda_{kl} \equiv \lambda_{lk} \mod 2, \quad \forall k, l.$

(iii)
$$\lambda_{kl} \equiv \lambda_{lk} \mod 2$$
, $\forall k, l$.

Proof. The existence of $a_1, \ldots, a_r \in P$ with property (i) follows because $\theta + \epsilon \theta^*$ is an isomorphism. Because the ϵ -form is odd, ia_1, \ldots, ia_r is a basis of Imi, and so $b'_k - b_k$ can be expressed as $\sum_{k}^{r} \lambda_{ks} i a_s$ for some λ_{ks} .

$$\phi(b_k',b_l') = \phi(b_k,b_l) + \sum_s \lambda_{ls} \phi(b_k,ia_s) + \sum_s \lambda_{ks} \phi(ia_s,b_l).$$

Since ϕ is symmetric on R and T, we obtain

$$\sum_{s}\lambda_{ls}[\phi(b_{k},ia_{s})-\phi(ia_{s},b_{k})]+\sum_{s}\lambda_{ks}[\phi(ia_{s},b_{l})-\phi(b_{l},ia_{s})]=0$$

and so

$$-\sum_{s}\delta_{ks}\lambda_{ls} + \sum_{s}\delta_{ls}\lambda_{ks} \equiv 0 \mod 2$$

$$\lambda_{kl} \equiv \lambda_{lk}.$$

§2. T-EQUIVALENCES

If M, N, P, Q are free Abelian groups of finite rank, elements of $\operatorname{Hom}_Z(M \oplus N, P \oplus Q)$ can be displayed as matrices

$$f = \begin{pmatrix} \alpha \beta \\ \gamma \delta \end{pmatrix} : M \oplus N \to P \oplus Q, \qquad f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha(x) + \beta(y) \\ \gamma(x) + \delta(y) \end{pmatrix},$$

where $\alpha \in \text{Hom}_Z(M, P)$, $\beta \in \text{Hom}_Z(N, P)$, $\gamma \in \text{Hom}_Z(M, Q)$, $\delta \in \text{Hom}_Z(N, Q)$.

Moreover, $\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}$ will be denoted by $\alpha \oplus \delta$.

Throughout this section, $U \cong V \cong R \cong S \cong Z$, and the lower case letters will denote a generator: thus $U = \langle u \rangle$. We define the following moves on an ϵ -form (θ, F, G, ϕ) .

T0.
$$(\theta, F, G, \phi) \rightarrow (\hat{\theta}, \hat{F}, \hat{G}, \hat{\phi}), \qquad \hat{P} = P \oplus R \oplus S,$$

$$\hat{\theta} = \begin{pmatrix} \theta & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \theta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\hat{F} = F \oplus R, \qquad \hat{G} = G \oplus S, \qquad \hat{\Pi} = \Pi, \qquad \hat{\phi} = \phi.$$

T1. $\theta \mapsto \theta + \psi - \epsilon \psi^*$ where $\psi \colon P \to P^*$ has rank one and $\psi F = 0$, $\psi^* G = 0$.

T2. $(\theta, F, G, \phi) \rightarrow (\hat{\theta}, \hat{F}, \hat{G}, \hat{\phi})$,

$$\hat{\Pi} = \Pi \oplus (R/2R) \oplus S \text{ where} \qquad 0 \to F + G + S + 2R + 2P \to P \oplus R \oplus S \xrightarrow{i \oplus (22) \oplus 0} \Pi \oplus (R/2R) \oplus S \xrightarrow{h \oplus 00 \oplus 1} (F \cap G) \oplus S \to 0.$$

and (2): $R \rightarrow R/2R$ is the quotient map.

s an

L ia_k .

, is a

is an

) can

ıte a

`→ `→ $\hat{\phi}|\Pi \times \Pi = \phi$ $\hat{\phi}|(\Pi \oplus S) \times S = 0 = \hat{\phi}|S \times (\Pi \oplus S).$

Note that $\hat{\phi}$ is determined elsewhere by $\hat{\theta}$.

$$\theta = \begin{pmatrix} \psi & 0 & \alpha \\ 0 & 0 & 1 \\ -\epsilon \alpha^* & 0 & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \psi & 0 & \alpha \\ 0 & 0 & 0 \\ -\epsilon \alpha^* & 1 & 0 \end{pmatrix}$$

where $\psi: Q \oplus R \oplus S \rightarrow (Q \oplus R \oplus S)^*$.

$$F = A \bigoplus \langle s - mv \rangle \bigoplus V, \qquad A \subseteq Q,$$

$$G = B \bigoplus S \bigoplus \langle u - mr + pv \rangle, \qquad B \subseteq Q,$$

$$\hat{F} = A \bigoplus \langle s - mv \rangle \bigoplus U,$$

It follows from these assumptions that $\hat{\phi}$ induces $\bar{\phi}$ on $\bar{\Pi} = \hat{\Pi}/\hat{t}(V+R)$, and we have an exact sequence $0 \to A + B + 2Q \to Q \to \bar{\Pi} \to A \cap B \to 0$. Consider the exact sequence

$$0 \to A + B + S + 2R + 2Q \to Q \oplus R \oplus S \xrightarrow{\bar{i} \oplus (2) \oplus 0} \bar{\Pi} \oplus (R/2R) \oplus S$$

$$\xrightarrow{\bar{\kappa}\oplus 0\oplus 1} (A \cap B) \oplus S \to 0.$$

Because iv = 0 and iu = mr, this sequence determines $\Pi = \bar{\Pi} \oplus (R/2R) \oplus S$, and ϕ is given by $\phi | \bar{\Pi} \times \bar{\Pi} = \bar{\phi}$, ϕ symmetric on $(\bar{\Pi} \oplus S) \times S \cup S \times (\bar{\Pi} \oplus S)$.

The moves T0-3 generate an equivalence relation on the set of ϵ -forms which will be called *T*-equivalence.

§3. STATEMENT OF RESULTS

It will be shown in the sequel that any simple 2q-knot, $q \ge 3$, gives rise to a $(-1)^q$ -form, via a Seifert surface.

THEOREM 3.1. Let (θ, F, G, ϕ) be a $(-1)^q$ -form. If $q \ge 3$, there is a simple 2q-knot giving rise to (θ, F, G, ϕ) .

THEOREM 3.2. Let k be a simple 2q-knot, $q \ge 3$. Then any two $(-1)^a$ -forms arising from k are T-equivalent.

THEOREM 3.3. Let k, \bar{k} be two odd simple 2q-knots, $q \ge 3$, giving rise to $(-1)^q$ -forms (θ, F, G, ϕ) and $(\bar{\theta}, \bar{F}, \bar{G}, \bar{\phi})$ respectively. If these forms are T-equivalent, then k and \bar{k} are isotopic.

Remark. In §13, Theorem 3.1 is refined to Theorem 13.1; this completes the algebraic classification of odd simple knots in terms of ϵ -forms and T-equivalence.

§4. CROSS-SECTIONS OF A KNOT

Let k be a 2q-knot, (S^{2q+2}, Σ^{2q}) , and let S^{2q+1} denote the equatorial sphere of S^{2q+2} . Suppose that Σ^{2q} meets S^{2q+1} transversely in an equatorial sphere S^{2q-1} of Σ^{2q} so that Σ^{2q} is the union of two smooth 2q-balls along their common boundary S^{2q-1} . Let k' be the knot (S^{2q+1}, S^{2q-1}) , and denote the two null-cobordisms of k' by b_+ , b_- .

If Y is a smooth proper submanifold of a manifold X, then the complement of Y in X is the closed complement of a tubular neighbourhood N of Y in X, where $N \cap \partial X$ is a tubular neighbourhood of ∂Y in ∂X . Let K denote the complement of Σ^{2q} in S^{2q+2} ; we shall abbreviate this to "K is the complement of k". Similarly, let K' be the complement of k' and K^{ϵ} the complement of b_{ϵ} , $\epsilon = \pm$. We shall always take K^{ϵ} to be the restriction of K to the appropriate hemisphere B_{ϵ}^{2q+2} of S^{2q+2} , and $K' = K \cap S^{2q+1}$.

In these circumstances, k' is a cross-section of k if (K^a, K') is q-connected for $\epsilon = \pm$. It is known[5] that any knot k is spanned by a Seifert surface V; so that $\sum^{2q} = \partial V$ where V is

It is known[5] that any knot k is spanned by a Seifert surface V; so that $\Sigma^{2q} = \partial V$ where V is a smooth submanifold of S^{2q+2} . If V meets S^{2q+1} transversely, then the intersection is a Seifert surface V' of k'. V' is a cross-section of V if (V^*, V') is q-connected for $\epsilon = \pm$, where $V^* = V \cap B_{\epsilon}^{2q+2}$.

PROPOSITION 4.1. Let k be a 2q-knot, $q \ge 3$, spanned by a Seifert surface V. Then k has a cross-section k' spanned by a cross-section V' of V.

Proof. Regard Σ^{2q} as the union of two 2q-balls, $B_-^{2q} \cup_{S^{2q-1}} B_+^{2q}$. Let $N_- \cup N_+$ be a tubular neighbourhood of Σ^{2q} , with $(N_\epsilon, B_\epsilon^{2q})$ an unknotted ball pair such that $V_\epsilon = V \cap N_\epsilon$ is a tubular neighbourhood of B_ϵ^{2q} rel S^{2q-1} in V. Since V has a tubular neighbourhood rel ∂V of the form $V \times B^1$, it is clear that a handle decomposition of V based on V_- gives rise to a handle decomposition of a tubular neighbourhood V of V, by handle V handle handle by a face.

Choosing a handle decomposition of $M = \overline{S^{2q+2} - N}$, we obtain a handle decomposition of S^{2q+2} based on N_- (in which N_+ appears as a (2q+2)-handle).

We may add these handles in order of increasing index, in the usual way. Regard the handles as being added to $N_- - B_-^{2q}$, and let L be the manifold obtained when all the q-handles have been added. Since K is a homology circle, L has the homology of $S^1 \times B^{2q+1}$ with some q-handles added. For each (q+1)-handle of V, add a trivial pair of (q+1), (q+2)-handles to M and move the new (q+1)-handle of M over the (q+1)-handle obtained from V. After perhaps moving some of the (q+1)-handles of M over each other, $L \cup (\text{suitable } (q+1))$ -handles of M is a homology circle. Call this manifold L_1 . Then $L_1 \cup B_-^{2q}$ is a homotopy ball, and hence a ball, B_-^{2q+2} say. Let $B_+^{2q+2} = \overline{S^{2q+2} - B_-^{2q+2}}$. The common boundary S^{2q+1} contains a knot K' which is the required cross-section of K, spanned by V'; for K^e has a handle decomposition based on K' containing only handles of index at least Q + 1, and similarly for V^e , V'.

Remark. By taking handle decompositions of V^+ , V^- based on V', we can see that every cross-section arises in the manner described above.

Recall that a knot k is r-simple if K has the homotopy r-type of a circle.

Lemma 4.2. If k is r-simple, then so is every cross-section, and if V is r-connected so is every cross-section, for r < q. Conversely, if k' is r-simple so is k and if V' is r-connected so is V.

The proof is easy.

§5. THE ϵ -FORM OF A KNOT

Let k be a simple 2q-knot, $q \ge 3$; then by Lemma 4.2 any cross-section k' is also simple. By a result of Levine [5], k has a Seifert surface V which is (q-1)-connected, so that V has a cross-section V' which is also (q-1)-connected. V has a tubular neighbourhood, mod ∂V , of the form $V \times B^1$, where $B^1 = [-1, 1]$ and +1 corresponds to the positive normal direction. We may assume that $V' \times B^1 \subset S^{2q+1}$.

V' has homology only in dimension q, so that $H_q(V')$ is free of rank 2n, say. Setting $P = H_q(V') \cong Z^{2n}$, the map $H_q(V') \to H_q(V' \times 1)$ together with Alexander duality provides a map $\theta \colon P \to P^*$. Alternatively we may define $\theta \colon P \times P \to Z$ by $\theta(a, b) = L(z_a, z_b \times 1)$ where z_a, z_b are cycles representing a, b, and L denotes linking in S^{2q+1} . $\theta + (-1)^q \theta^*$ defines the intersection pairing on V', and so θ is a Seifert map.

Define $F = \ker (H_q(V') \to H_q(V^-))$ and $G = \ker (H_q(V') \to H_q(V^+))$; work of Levine [6] shows that F and G are self-annihilating subgroups of P.

Let $\Pi = \pi_{q+1}(V)$; we define a homotopy linking $\phi: \Pi \times \Pi \to Z_2$. If $a, b \in \Pi$, they may be represented by embedded spheres z_a , z_b , each of which is unknotted in S^{2q+2} . The spheres z_a , $z_b \times 1$ are disjoint and the complement of z_a in S^{2q+2} has the homotopy type of S^q . Thus $z_b \times 1$ defines an element of $\pi_{q+1}(S^q) \cong Z_2$, denoted by $\phi(a, b)$. Clearly ϕ is bilinear.

From the Mayer-Vietoris sequence, $0 \to H_{q+1}(V) \stackrel{\partial}{\to} H_q(V') \to H_q(V^-) \oplus H_q(V^+) \to$, we see that $H_{q+1}(V) \stackrel{\partial}{\longrightarrow} F \cap G$. Define h to be the composite $\pi_{q+1}(V) \stackrel{H}{\longrightarrow} H_{q+1}(V) \stackrel{\partial}{\to} F \cap G$ where H is the Hurewicz map. From the diagram

$$\pi_{q+1}(V^{-}) \xrightarrow{i_{*}} \pi_{a+1}(V) \xrightarrow{j_{*}} \pi_{q+1}(V, V^{-}) \longrightarrow$$

$$\downarrow H \qquad \qquad \downarrow H$$

$$0 \longrightarrow H_{q+1}(V) \longrightarrow H_{q+1}(V, V^{-}) \longrightarrow$$

we see that ker $h = \ker j_* = \operatorname{Im} i_*$. Up to homotopy type, V^- is the wedge of n q-spheres, so that $\pi_q(V^-) \cong H_q(V^-)$ may be identified with P/F and (by the work of Hilton[9]) $\pi_{q+1}(V^-)$ with P/(F+2P). With these identifications, $\ker i_* = (G+F+2P)/(F+2P)$, and so we have an exact sequence

$$0 \rightarrow F + G + 2P \rightarrow P \stackrel{i}{\rightarrow} \Pi \stackrel{h}{\rightarrow} F \cap G \rightarrow 0$$

where ia is just the composite of a map representing $a \in P = \Pi_q(V')$ with the non-zero element of $\pi_{q+1}(S^q)$.

Let $a \in P$, $b \in \Pi$. The homological linking of z_a and $z_{Hb} \times 1$ in S^{2q+2} is $\theta(a, hb)$, so $\phi(ia, b) \equiv \theta(a, hb) \mod 2$.

Let $h_1^{\epsilon}, \ldots, h_n^{\epsilon}$ be the handles of $V^{\epsilon}(\epsilon = \pm)$ based on $V' \times B^1$ in the cross-section. Let $p: V' \times B^1 \to V' \times 1$ be projection. Suppose that p (the attaching sphere of h_i^-) coincides with that of h_i^+ for $1 \le i \le r$. Then these attaching spheres represent a basis of $F \cap G$, and the union of the cores of h_i^- , h_i^+ ($1 \le i \le r$) with the collars of their attaching spheres in $V' \times B^1$ represent a basis of a symmetric subgroup T of Π . In these circumstances we say that T is well-represented.

§6. SYMMETRIC SUBGROUPS

In this section we show that a symmetric subgroup can be well-represented when the ϵ -form is odd.

LEMMA 6.1. Let
$$M \cong \#_{i=1}^{n} (S^{q} \times S^{q+1})_{i}$$
-int $B^{2q+1}, q \geq 3$, and let

 $a_i \in \pi_q(M)$ be represented by $(S^q \times 0)_i$,

 $b_i \in \pi_{q+1}(M)$ be represented by $(0 \times S^{q+1})_i$,

 $c_i \in \pi_{q+1}(M)$ be represented by $(\xi \times 0)_i$,

I

where ξ is the non-zero element of $\pi_{q+1}(S^q) \cong \mathbb{Z}_2$. Suppose that $d_i \in \pi_{q+1}(M)$ are such that $hd_i = hb_i$, $1 \le i \le n$, where h is the Hurewicz map. Then d_i , $1 \le i \le n$, are represented by a set of disjoint embedded spheres if and only if

$$d_i = b_i + \sum_{j=1}^n \lambda_{ij} c_j \quad \text{with} \quad \lambda_{ij} + (-1)^q \lambda_{ji} \equiv 0 \pmod{2}.$$

Proof. First we prove necessity. Clearly d_i must have the form $b_i + \sum_{j=1}^{n} \lambda_{ij} c_j$ if $hb_i = hd_i$. Let

 $d'_i = b_i + \sum_{j \neq 1} \lambda_{ij} c_j = d_i - \lambda_{ii} c_i$. The d_i are a set of disjoint embedded spheres, and we can arrange for d_i to meet a_i transversely in a single point, and miss all the other a_i . Thus the d'_i can be represented by a set of disjoint embedded spheres, such that d'_i meets a_i transversely in a single point and misses all the other a_i . Now b_i and c_j have trivial normal bundles, and so therefore has

 d_i' . Thus we can write $M \cong \underset{i=1}{\sharp}^n (S^q \times S^{q+1})_i$ -int B^{2q+1} , as above, but with d_i' represented by $(0 \times S^{q+1})_i$.

If [,] denotes the Whitehead product, then $\sum_{i=1}^{n} [a_i, b_i] = \iota_* \eta$, where η is a generator of $\pi_{2q}(\partial M) \cong Z$ and ι_* is the map $\pi_{2q}(\partial M) \to \pi_{2q}(M)$ induced by inclusion. The same equation holds with d'_i in place of b_i , so we have

$$\sum_{i=1}^{n} \left[a_i, \sum_{i \neq i} \lambda_{ij} c_i \right] = 0$$

from which it follows that $\lambda_{ij} + (-1)^q \lambda_{ji} = 0$, $i \neq j$. This is equivalent to the equation above.

To prove sufficiency, consider first replacing b_i by $b_i + c_i$, $j \neq i$. We may represent $b_i + c_j$ by an embedded sphere with trivial normal bundle, meeting a_i transversely in a single point. Therefore a tubular neighbourhood of the wedge of the spheres representing a_i and $b_i + c_j$ has the form $S^a \times S^{a+1}$ -int B^{2a+1} , so we may split this off as part of a connected sum. Thus $M \cong (S^a \times S^{a+1}) \# N$ -int B^{2a+1} , where $S^a \times 0$ represents a_i , $0 \times S^{a+1}$ represents $b_i + c_j$. Now $\pi_i(M) \cong \pi_i(S^a \times S^{a+1}) \oplus \pi_i(N)$ for $i \leq q+1$: this follows from the formula for the homotopy

groups of a wedge of two spaces and the relative Hurewicz theorem[2]. Thus in N, hb_i is a spherical class, and the necessity condition shows that it must be represented by $b_i + c_i$.

To replace b_i by $b_i + c_i$ is easy: we only need appeal to standard embedding theorems.

LEMMA 6.2. Assume that (θ, F, G, ϕ) is an odd ϵ -form, and let T be a symmetric subgroup of Π . Then T is well-represented.

Proof. By moving the handles of V over each other, we may change base in F and G. In this way we can obtain some symmetric subgroup R of Π which is well-represented. Let b_1, \ldots, b_r be the basis of R determined by the handle decomposition, and let b'_1, \ldots, b'_r be a basis of T such that $hb'_1 = hb_i$ for $1 \le i \le r$. Then Lemma 1.2 and 6.1 complete the proof.

§7. WHEN A KNOT IS DETERMINED BY ITS ϵ -FORM

PROPOSITION 7.1. Provided that $q \ge 3$ and $H_q(V)$ has no 2-torsion, a simple 2q-knot k with Seifert surface V is determined up to isotopy by its $(-1)^q$ -form.

Proof. S^{2q+1} has a tubular neighbourhood of the form $S^{2q+1} \times B^1$; as V meets S^{2q+1} transversely, we may assume that $V \cap (S^{2q+1} \times B^1) = V' \times B^1$. Arrange that $V^{\epsilon}(\epsilon = \pm)$ has a handle decomposition on $V' \times B^1$ as described at the end of §5, and let $\alpha_i^{\epsilon} \in P = H_q(V')$ be the element determined by the attaching sphere of h_i^{ϵ} . Thus $\alpha_i^+ = \alpha_i^-$ for $1 \le i \le r$. Recall that $\theta + (-1)^q \theta^*$ is the intersection pairing on V', which we shall denote by $a.\beta$. Since $F = F^\perp$, there is a basis $\alpha_1^-, \ldots, \alpha_n^-, \gamma_1, \ldots, \gamma_n$ of P such that $\alpha_i^- \cdot \gamma_i = \delta_{ij}$ and $\gamma_i \cdot \gamma_j = 0$ for all i, j.

Let \hat{k} be another such knot, and distinguish the machinery associated with \hat{k} by \hat{k} . Let $(f, q): (\theta, F, G, \phi) \rightarrow (\hat{\theta}, \hat{F}, \hat{G}, \hat{\phi})$ be an isomorphism between the $(-1)^q$ -forms of the two knots, and let $\hat{\alpha}_i^e = f\alpha_i^e$, $\hat{\gamma}_i = f\gamma_i$, $1 \le i \le n$.

Recall that $S^{2q+2} = B_{-}^{2q+2} \cup (S^{2q+1} \times B^1) \cup B_{+}^{2q+2}$, and let D_i denote the core of h_i^- . Allowing the boundaries to move within ∂B_{-}^{2q+2} , we may isotop D_i onto \hat{D}_i , $1 \le i \le n$. Now we resort to an argument of Levine [7]. Let v_i be the positive unit normal field to h_i^- on D_i . By the tubular neighbourhood theorem, we may assume that h_i^- is the orthogonal complement of v_i in a normal disc bundle neighbourhood N_i of $D_i = \hat{D}_i$ in B^{2q+2} . Therefore, if we can homotop v_i to \hat{v}_i , we obtain an isotopy of h_i^- to \hat{h}_i^- within N_i . Since we are willing to allow movement on the boundary, v_i is homotopic to \hat{v}_i , and we obtain the desired isotopy.

Each basis element $\alpha_1^-, \ldots, \alpha_n^-, \gamma_1, \ldots, \gamma_n$ of $H_q(V')$ may be represented by a handle of V', and from the argument of Levine[7] we see that as

$$\hat{\theta}(f\alpha, f\beta) = \theta(\alpha, \beta) \quad \forall \alpha, \beta \in P,$$

V' may be isotoped onto \hat{V}' without disturbing the h_i^- , and so we may isotop b_- to coincide with \hat{b}_- .

Let C_i denote the core of h_i^+ . If $1 \le i \le r$, $D_i \cup (\partial D_i \times B^1) \cup C_i$ is an embedded (q+1)-sphere representing an element $b_i \in \Pi$, and b_1, \ldots, b_r is a basis of a symmetric subgroup T. Put $\hat{b}_i = gb_i$, $1 \le i \le r$; by Lemma 6.2, $\hat{T} = g(T)$ is well-represented and we may arrange that $\hat{D}_i \cup (\partial \hat{D}_i \times B^1) \cup \hat{C}_i$ represents \hat{b}_i . Isotop C_1 onto \hat{C}_1 keeping the boundary fixed. The obstruction to isotoping C_2 onto \hat{C}_2 keeping the boundary fixed and without disturbing C_1 may be identified with $\phi(b_1, b_2) - \hat{\phi}(\hat{b}_1, \hat{b}_2) = 0$. Continuing in this way, we isotop C_i onto \hat{C}_i , $1 \le i \le r$. To isotop h_i^+ onto \hat{h}_i^+ , $1 \le i \le r$, we adopt the same method as above; the obstruction may be identified with $\phi(b_i, b_i) - \hat{\phi}(\hat{b}_i, \hat{b}_i) = 0$.

By a change of basis, we can arrange that $\alpha_i^+ = \sum_{j=1}^n a_{ij}\alpha_j^- + d_i\gamma_i$, $r < i \le n$, where the d_i are the torsion numbers of $H_q(V)$. The same tactics can now be tried on C_i , $r < i \le n$, and then h_i^+ , but with this difference: the obstruction at each stage may be identified with an isotopy in S^{2q+1} of the handle of V' corresponding to γ_i , using the fact that d_i is odd. The isotopy brings the handle back to its original position. Thus the obstruction can be removed by allowing the handles of V' corresponding to the γ_i to move, and this is allowable because it does not affect b_- adversely.

§8. CHANGE OF CROSS-SECTIONS

We begin to investigate the extent to which k determines (θ, F, G, ϕ) , where k is a simple 2q-knot. Given a (q-1)-connected V spanning k, to what extent can the cross-section be

moves ϵ -forr move

It 1 S^{2q+2} $\overline{(B_{-}}^{2q+}$ (q+1) h_{+}^{q+1} Supportes from (above

chang

one ai

left to
Let
subscr
homolo
move i
which
involve
the ner
replace

any ha

beginn

Thu another

LEM

Pro S^{2q+1} to $M \cap (, induceous V \times I \in V)$

M s $0 \rightarrow H_{q+}$ take as $\xi \cdot \eta =$ Con

 $\alpha_i^0 \times I$ If $\iota: H_{q+1}$ with bo
positive

Thus vectors
Supp α_i^0 . Then $b_i = 0, 1$ With to check the form

changed? We can pass from one handle decomposition of V to any other by moving handles over one another and by adding or deleting cancelling pairs of index r, r+1: these are the well-known moves employed in the proof of, say, the h-cobordism theorem. The only move that affects the ϵ -form is that of adding (or deleting) a cancelling pair of index q, q+1, and this gives rise to the move T0 of §2 (or its inverse).

It may happen that in the construction of a cross-section there are two handles h_+^{a+1} , h_-^{a+1} of $S^{2q+2}-N$ (where N is a tubular neighbourhood of V), with $h_{\epsilon}^{a+1} \subset B_{\epsilon}^{2q+2}$; and that $\overline{(B_-^{2q+2}-h_-^{q+1})} \cup h_+^{a+1}$ forms another cross-section. In other words, when deciding which (q+1)-handles of $S^{2q+2}-N$ to add in order to cancel the q-handles homologically, we can use h_+^{a+1} in place of h_-^{q+1} .

Suppose that for a fixed V there are given two cross-sections C_1 and C_2 ; then these correspond to two handle decompositions G_1 , G_2 of $S^{2q+2}-N$. As above, it is possible to pass from G_1 to G_2 via a sequence of handle moves. Those moves involving only handles below (above) the middle dimension do not affect the cross-section, so we may ignore them. Moreover, if any handle pairs of index (q, q+1) need to be added, then they may be introduced at the beginning and so be assumed to form part of G_1 ; dually, any cancelling pairs of this index may be left to form part of G_2 .

Let $h_1^{q+1}, \ldots, h_m^{q+1}$ be the (q+1)-handles of G_1 which are contained in B_1^{2q+2} , where the subscript 1 corresponds to C_1 ; these are the (q+1)-handles of G_1 which are used to cancel homologically in the construction of C_1 . Add trivial handle pairs $\hat{h_i}^{q+1}, \hat{h_i}^{q+2}, 1 \le i \le m$, to G_1 , and move $\hat{h_i}^{q+1}$ over h_i^{q+1} for each i. Now replace h_i^{q+1} by $\hat{h_i}^{q+1}$ to obtain a new cross-section in which all the original (q+1)-handles of G_1 are contained in B_+^{2q+2} . All the handle moves which involve moving the (q+1)-handles over one another may now be performed without disturbing the new cross-section. After a change of basis in the $\hat{h_1}^{q+1}, \ldots, \hat{h_m}^{q+1}$, if necessary, we may replace each $\hat{h_i}^{q+1}$ by the appropriate handle in B_+^{2q+2} to obtain the cross-section C_2 .

Thus we only need to consider the effect on (θ, F, G, ϕ) of replacing one handle h_{-}^{q+1} by another, h_{+}^{q+1} , as described above.

LEMMA 8.1. This procedure induces a move T1 on (θ, F, G, ϕ) .

Proof. The effect of replacing h_{-}^{q+1} by h_{+}^{q+1} is to perform two surgeries of index q+1 on S^{2q+1} to obtain another equatorial sphere: thus we have a compact manifold $M \subset S^{2q+2} \times I$ with $M \cap (S^{2q+2} \times I) \cong S^{2q+1}$, t=0,1. M has two critical levels with respect to the height function induced by $S^{2q+2} \times I \to I$, each of index q+1, and $M \cap (V \times I) = V' \times I$ where $V \times I \subset S^{2q+2} \times I$ by (inclusion \times identity).

M splits $S^{2q+2} \times I$ into two components, L^+ and L^- , and the Mayer-Vietoris sequence yields, $0 \to H_{q+1}(M) \xrightarrow{J^+ \oplus J^-} H_{q+1}(L^+) \oplus H_{q+1}(L^-) \to 0$, where $H_{q+1}(L^+) \cong Z \cong H_{q+1}(L^-)$. Thus we may take as a basis for $H_{q+1}(M)$ elements ξ and η , being generators of ker J^- and ker J^+ , with $\xi \cdot \eta = 1 = (-1)^{q+1} \eta \cdot \xi$ and $\xi \cdot \xi = \eta \cdot \eta = 0$.

Consider $V' \times I \subset M$; suppose that $\alpha_1^0, \ldots, \alpha_{2n}^0$ is a basis for $H_a(V' \times 0)$. Let $\tilde{\alpha}_i = \alpha_i^0 \times I \subset V' \times I$, so that $\partial \tilde{\alpha}_i = \alpha_i^1 - \alpha_i^0$ and $\alpha_1^1, \ldots, \alpha_{2n}^1$ is a basis for $H_a(V' \times 1)$.

If $\tilde{\alpha}_i$ is regarded as a cycle of $H_{q+1}(M, \partial M)$, then $\tilde{\alpha}_i \sim \iota(a_i \xi - b_i \eta)$ where $\iota \colon H_{q+1}(M) \to H_{q+1}(M, \partial M)$ is the obvious isomorphism. It follows that $\tilde{\alpha}_i - \iota(a_i \xi - b_i \eta)$ is a chain with boundary $\alpha_i^{-1} - \alpha_i^{-0}$ representing 0 in $H_{q+1}(M, \partial M)$. If $\tilde{\alpha}_i$ denotes $\tilde{\alpha}_i$ pushed off $V' \times I$ in the positive direction, then

$$\theta_{1}(\alpha_{i}^{1}, \alpha_{j}^{1}) - \theta_{0}(\alpha_{i}^{0}, \alpha_{j}^{0}) = [\tilde{\alpha}_{i} - \iota(a_{i}\xi - b_{i}\eta)] \cdot [\tilde{\alpha}_{j} - \iota(a_{j}\xi - b_{j}\eta)]$$

$$= -(a_{i}\xi - b_{i}\eta) \cdot (a_{j}\xi - b_{j}\eta)$$

$$= a_{i}b_{i} + (-1)^{q+1}a_{i}b_{i}.$$

Thus if the matrix of θ_t with respect to $\alpha_1', \ldots, \alpha_{2n}'$ is $A_t, t = 0, 1$, and a, b denote the column vectors with entries a_i , b_i , we have $A_1 - A_0 = ab' + (-1)^{a+1}ba'$.

Suppose that $\alpha_1^0, \ldots, \alpha_n^0$ is a basis of F, and let D_i be the (q+1)-chain in V^- with boundary α_i^0 . Then $D_i \times I \subset V^- \times I$ is a chain with boundary $\tilde{\alpha}_i \mod V^- \times \partial I$; thus $\iota^{-1}\tilde{\alpha}_i \in \ker J^-$ and so $b_i = 0, 1 \le i \le n$.

With respect to the basis $\alpha_1^0, \ldots, \alpha_{2n}^0$ and its dual, ab' represents a map $\psi: P \to P^*$. It is easy to check that ψ has rank one and $\psi(F) = 0$; moreover any such map is represented by a matrix of the form ab' with $b_i = 0$, $1 \le i \le n$. Dually, it can be checked that $\psi^*(G) = 0$.

§9. SURGERY ON V

q +

rela

tha

prii

spii

wit.

pos

pro

∂(h

atta

sph

rep

the

ren

(V)

ĤΧ

dete

to tl

of I

by t

 B_{-}^{2}

mar

clos

ano

in 7

obta

afte

cobe

inte

and

 $\tilde{\alpha}_i =$

ł

this

S^{2q} dobyi

Let k be a simple 2q-knot, $q \ge 3$. By results of Levine[5], there exists a (q-1)-connected Seifert surface of k. If V_0 , V_1 are two such surfaces, Levine has shown[7] that there exists a cobordism between them, $V \subset S^{2q+2} \times I$, where $\partial V = V_0 \cup (\partial V_0 \times I) \cup V_1$ and $\partial V_0 \times I \subset S^{2q+2} \times I$ by (inclusion \times identity). Applying the results of [5] we may arrange for V to be (q-1)-connected.

Lemma 9.1. Let $f: V \to I$ be the restriction to V of the projection $S^{2q+2} \times I \to I$. We may isotop V, rel $V_0 \cup V_1$, so that f has critical levels of index q, q+1, and q+2 only, which appear in order of increasing index.

Proof. Let X be $S^{2q+2} \times I$ split open along V, so that ∂X contains two copies U^+ , U^- of V. X_0 denotes $S^{2q+2} \times 0$ split open along V_0 , $U_0^{\epsilon} = U^{\epsilon} \cap X_0$, etc. Let $i^{\epsilon} \colon H_q(U^{\epsilon}, U_0^{\epsilon}) \to H_q(X, X_0)$, $\epsilon = \pm$, be induced by inclusion. We can use V to construct the universal (infinite cyclic) cover \tilde{Y} of $Y = S^{2q+2} \times I - S^{2q} \times I$, as in [8]. Since $H_q(\tilde{Y}, \tilde{Y}_0) \cong \pi_q(\tilde{Y}, \tilde{Y}_0) \cong \pi_q(Y, Y_0) = 0$, the argument of [8] using integer coefficients shows that at least one of i^+ , i^- is singular. If say $\alpha \in \ker i^+$, then since by the Hurewicz theorem $\pi_q(U^+, U_0^+) \cong H_q(U^+, U_0^+)$, α may be represented by a singular disc. Applying results of Haefliger[1], α may be represented by a q-ball properly embedded in (U^+, U_0^+) . By Hurewicz's theorem, $H_q(X, X_0) \cong \pi_q(X, X_0)$, so α is null-homotopic in (X, X_0) . Repeated application of Haefliger's results[1] shows that there is a (q+1)-ball B^{q+1} properly embedded in $(X, \partial X)$ with the following properties. $\partial B^{q+1} = B_+^q \cup B_-^q, B_+^q \cap B_-^q = S^{q-1}, B_+^q$ is properly embedded in (U^+, U_0^+) so as to represent α , and B_-^q is properly embedded in (X_0, U_0^+) .

By considering a tubular neighbourhood of B^{q+1} we may isotop V so that $\alpha \in H_q(V, V_0)$ is represented by the core of the handle corresponding to a critical level of f: see [3] for details in the PL case. Continuing in this way, we reduce to the case $H_q(V, V_0) = 0$, and dually we may arrange for $H_q(V, V_1) = 0$. A similar argument now works for $H_{q+1}(V, V_0)$; the details are omitted.

Suppose now that V has a single critical level, of index q. If V_0' is a cross-section of V_0 , then (V_0, V_0') is a q-connected pair; thus in the notation used above S^{q-1} may be homotoped (and therefore isotoped) to lie within V_0' . We should like to isotop B_{-}^q into $S^{2q+1} \times 0$, keeping S^{q-1} fixed. Let X_0' denote $S^{2q+1} \times 0$ split along V_0' ; then (X_0, X_0') is q-connected (recall the construction of a cross-section), and as S^{q-1} is null-homotopic in V_0' this is enough to show that B_{-}^q can be homotoped (and therefore isotoped) into $S^{2q+1} \times 0$ keeping S^{q-1} fixed.

We are thus able to obtain a cross-section V_1' of V_1 from the cross-section V_0' of V_0 ; the cobordism $V' = V \cap (S^{2q+1} \times I)$ between V_0' and V_1' has a single critical level, of index q.

Now suppose that V has a single critical level, of index q+1. By the remarks above, V_1 may be obtained from V_0 by a surgery embedded in S^{2q+2} . Thus if $V_0 \times B^1$ is a tubular neighbourhood of V_0 in S^{2q+2} , there is an embedding of a (2q+2)-ball, $i : B^{q+1} \times B^{q+1} \to S^{2q+2}$, meeting $V_0 \times B^1$ in $i(\partial B^{q+1} \times B^{q+1}) \subset V_0 \times \eta$ where $\eta = 1$ or -1, and such that $V_1 = \overline{V_0 - (i(\partial B^{q+1} \times \frac{1}{2}B^{q+1}) \times 0)} \cup (i(\partial B^{q+1} \times \partial \frac{1}{2}B^{q+1}) \times [0, \eta]) \cup i(B^{q+1} \times \partial \frac{1}{2}B^{q+1})$.

We can choose a handle decomposition of V_0 , involving handles only in dimensions 0, q, q+1, such that $i(\partial B^{q+1}\times B^{q+1})\times 0\subset V_0\times 0$ is $h^0\cup h^q$ and Imi is the (q+1)-handle of the complement used to cancel h^q in the construction of a cross-section V_0' of V_0 . Then $V_0'=V_1'$ a cross-section of V_1 , but the roles of $B^{q+1}\times 0$ and $0\times \frac{1}{2}B^{q+1}$ are interchanged. Thus if $\alpha\in H_q(V_0')$ is represented by $i(\partial B^{q+1}\times x)\times 0$ for suitable $x\in \partial B^{q+1}$, and β by $i(y\times \partial B^{q+1})\times 0$ for suitable $y\in \partial B^{q+1}$, then $\alpha\in \ker(H_q(V_1'\to H_q(V_1^-)))$ and $\beta\in \ker(H_q(V_0'\to H_q(V_0^-)))$. Indeed, α is represented by the boundary of a (q+1)-ball $i(B^{q+1}\times x)\cup (i(\partial B^{q+1}\times x)\times [0,\eta])$ embedded in S^{2q+1} and meeting V_0 only in $i(\partial B^{q+1}\times x)\times 0$.

§10. T2 AND T3

Lemma 10.1. In the situation of the previous section, let V and V' each have a single critical level, of index q. Then the $(-1)^q$ -form of V_0 is obtained by a T2-move on the $(-1)^q$ -form of V_0 .

Proof. By work of Levine [7], θ has the form shown. A generator of S is represented by the belt sphere of the surgery performed on V_0 , and this is the equator of the belt sphere of the surgery performed on V_0 . This sphere is the boundary of the cocore of the surgery, and so $\hat{\phi}$ has the form shown.

iected cists a and r V to

isotop 1 order

of V. $(X, X_0),$ over Y *yument* +, then ingular Ided in X, X_0). roperly $^{1-1}$, B_{+}^{q}

 $^{\prime}$, $V_{\rm o}$) is etails in we may ails are

ided in

 V_0 , then ed (and $ng S^{q-1}$ call the 10w that

 V_0 ; the lex q. , V_1 may ourhood $V_0 \times B^1$ $V_1 =$

ons 0, q, le of the $V_0' = V_1'$ a Thus if $\partial B^{q+1}) \times$ $H_a(V_0^-)$. $)\times [0,\eta])$

ele critical of Vo.

ted by the ere of the $d so \phi has$

LEMMA 10.2. In the situation of the previous section, let V have a single critical level, of index q+1. Then there are cross-sections of V_0 and V_1 such that the corresponding $(-1)^q$ -forms are related by a move T3 or its inverse.

Proof. By the proof of [5; Lemma 5] we may assume that the q^{th} Betti number of V_0 exceeds that of V_1 . Let $m\gamma \in H_q(V_0)$ be the element on which the surgery is performed, γ being primitive and $m \in Z^+$. Choose a handle decomposition $h^0 \cup h_1^q \cup \cdots \cup h_l^{q+1}$ of V_0 so that a spine of $h^0 \cup h_1^q$ represents γ ; we may also arrange that the attaching sphere of h_1^{q+1} coincides with the belt sphere of h_1^q , and that no other h_i^{q+1} meets h_1^q . Introduce a trivial pair h^q , h^{q+1} , and move $h^q - m$ times over h_1^q . Then the spine of $h^0 \cup h^q$ represents $m\gamma$, and so we are now in the position described at the end of §9. There is a cross-section V'_0 of V_0 with the following $H_a(V_0) = Q \oplus \langle r \rangle \oplus \langle s \rangle \oplus \langle u \rangle \oplus \langle v \rangle$, where Q is $\partial(h^0 \cup h_2^a \cup \cdots \cup h_l^a)$, r is homologous to a spine of $h^0 \cup h_1^a$, s is represented by the attaching sphere of h_1^{q+1} , u is homologous to a spine of $h^0 \cup h^q$ and v is represented by the belt sphere of h^q . Thus u corresponds to α in §9, and v corresponds to β . The belt sphere of h_1^q represents s - mv, and the attaching sphere of h^{q+1} represents u - mr + pv for some $p \in Z$.

If (θ, F, G, ϕ) is the $(-1)^q$ -form arising from V_0 , and $(\theta, \hat{F}, \hat{G}, \hat{\phi})$ corresponds to V_1 , then θ has the form shown in T3 since u is spanned by a (q+1)-ball embedded in S^{2q+1} . It follows from the remarks above that F, G, \hat{F} , \hat{G} have the form shown in T3. It is easy to check that θ vanishes on $(V+R)\times(\hat{F}\cap\hat{G})$, so that $\hat{\phi}$ vanishes on $\hat{i}(V+R)\times\hat{\Pi}$, and similarly $\hat{\phi}$ vanishes on $\hat{\Pi} \times \hat{\iota}(V+R)$; thus $\hat{\phi}$ induces $\bar{\phi}$ on $\bar{\Pi} = \hat{\Pi}/\hat{\iota}(V+R)$. Since iv = 0 and iu = mr, ϕ and Π are determined by the second exact sequence of T3 and conditions on ϕ .

Thus $(\theta, \hat{F}, \hat{G}, \hat{\phi})$ is obtained from (θ, F, G, ϕ) by a move T3.

§11. REALISING THE MOVES GEOMETRICALLY

LEMMA 11.1. The move T1 may be effected geometrically.

Proof. Let $\alpha_1, \ldots, \alpha_n$ be a basis of F, and extend this to a basis $\alpha_1, \ldots, \alpha_{2n}$ of P. With respect to this basis and its dual, ψ is represented by a matrix ab', where $b_i = 0$ for $1 \le i \le n$ (cf the proof of Lemma 8.1). Embed S^q in $S^{2q+1} - V'$ so that its linking with the basis $\alpha_1, \ldots, \alpha_{2n}$ is described by the vector -b. Since $b_i = 0$ for $1 \le i \le n$, we may extend S^q to a proper embedding of B^{q+1} in B_{-}^{2q+2} which does not meet V^{-} . Use this B^{q+1} to perform a surgery on S^{2q+1} , obtaining a manifold $T \subset S^{2q+2}$.

Let B_+^{q+1} be the cocore of the surgery, oriented so that $B_+^{q+1} \cdot B_+^{q+1} = +1$. Thus if T_+ is the closed complement of T which contains B_{+}^{2q+2} , B_{+}^{q+1} is properly embedded in T_{+} . Embed another S^q in $T \cap S^{2q+1}$ with the following properties:

(i) \underline{S}^{q} is homologous to ∂B_{+}^{q+1} in T,

(ii) the linking in S^{2q+1} of \underline{S}^q with $\alpha_1, \ldots, \alpha_{2n}$ is described by the vector $(-1)^{q+1}a$.

The orientation of S^q is determined by that of B_+^{q+1} .

By duality, the condition $\psi *G = 0$ ensures that there is a (q + 1)-ball \underline{B}^{q+1} properly embedded in T_+ , with boundary \underline{S}^q , which does not meet V^+ . Use this \underline{B}^{q+1} to perform a surgery on T, obtaining a new equatorial sphere S^{2q+1} .

 S^q is spanned by a (q+1)-ball in S^{2q+1} , and the union of this with B^{q+1} is a sphere S^{q+1} which after a trivial isotopy represents a basis element ξ of $H_{q+1}(M)$ where $M \subset S^{2q+2} \times I$ is the cobordism defined by the two surgeries we have performed. If $\tilde{\alpha}_i = \alpha_i \times I \subset V' \times I$, then the intersection in M of ξ and $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_{2n}$ is described by the vector -b.

Similarly, the sphere S^q gives rise to a sphere S^{q+1} representing a basis element η of $H_{q+1}(M)$, and the intersection in M of η and $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_{2n}$ is described by the vector $(-1)^{q+1}a$.

By construction, $\xi \cdot \xi = \eta \cdot \eta = 0$, $\xi \cdot \eta = 1$. Since $\xi \cdot \tilde{a}_i = -b_i$ and $\eta \cdot \tilde{a}_i = (-1)^{q+1}a_i$ we have $\tilde{\alpha}_i = \iota(a_i \xi - b_i \eta)$ for $1 \le i \le 2n$, where $\iota: H_{q+1}(M) \to H_{q+1}(M, \partial M)$ is the usual isomorphism. The result now follows from the proof of Lemma 8.1.

LEMMA 11.2. The move T2 can be realised geometrically.

Proof. The work of Levine [7] shows how to realise the enlargement of θ by a surgery on V', this surgery being embedded in S^{2q+1} . A tubular neighbourhood of S^{2q+1} in S^{2q+2} is of the form $S^{2q+1} \times B^1$, and V meets this in $V' \times B^1$ embedded product wise. Thickening the surgery in the obvious way produces the desired result.

3. C. K

7. J. L.

9. P. J.

Dept.

Mill 1 Camt

LEMMA 11.3. The move T3 and its inverse can be realised geometrically.

Proof. To obtain the move T3, note that by work of Levine [7] we could embed a (q+1)-ball B^{q+1} in S^{2q+1} so that $B^{q+1} \cap V' = \partial B^{q+1}$ which represents $u \in H_q(V')$. Recalling that S^{2q+1} has a tubular neighbourhood $S^{2q+1} \times B^1$, move B^{q+1} into B^{-2q+2} , and use it to perform surgery on V: the result is to induce the move T3 as desired.

To obtain the inverse of T3, note that since $F = F^{\perp}$ and $\theta(u, v)$ or $\theta(v, u) = 0$, there is a (q+1)-ball B^{q+1} embedded in B^{-2q+2} and meeting V^{-} in ∂B^{q+1} ; moreover we may arrange that $\partial B^{q+1} \subset V' \times -1 \subset S^{2q+1} \times B^1$. Using B^{q+1} to perform a surgery on V, we obtain a move (T3)⁻¹; the form of ϕ on $(\bar{\Pi} \oplus S) \times S$ is determined by the homotopy linking of B^{q+1} mod ∂B^{q+1} with balls in V^{-} whose boundaries represent a basis of \hat{F} .

§12. PROOFS OF THE MAIN THEOREMS

Proof of Theorem 3.1. This is clear from the work of Kervaire [4] and Levine [6].

Proof of Theorem 3.2. This is a consequence of Lemmas 8.1, 9.1, 10.1, 10.2.

PROPOSITION 12.1. Let k, \bar{k} be two simple 2q-knots, $q \ge 3$, giving rise to the same $(-1)^q$ -forms (θ, F, G, ϕ) . If k is odd, k is isotopic to \bar{k} .

Proof. Let V, \bar{V} be Seifert surfaces of k, \bar{k} giving rise to the form (θ, F, G, ϕ) . By the work of Levine [5], we may perform surgery on V to obtain V_1 with $H_q(V_1)$ 2-torsion-free, and by the previous sections this involves algebraic moves $(T0)^{\pm 1}$, T1, $(T3)^{\pm 1}$, only. These algebraic moves may be realised geometrically on \bar{V} to obtain \bar{V}_1 . By Proposition 7.1, V_1 and \bar{V}_1 are isotopic. \Box

LEMMA 12.2. The move (T2)-1 may be realised geometrically on an odd knot k.

Proof. Let V be a Seifert surface giving rise to (θ, F, G, ϕ) . By Theorem 3.1, there is a knot \bar{k} with surface \bar{V} giving rise to $(T2)^{-1}$ (θ, F, G, ϕ) . Realise T2 on \bar{V} to obtain \bar{V} . By Proposition 12.1, k is isotopic to \bar{k} .

Proof of Theorem 3.3. All the algebraic moves can be realised geometrically. \Box

§13. CONCLUSION

We have not quite classified the odd simple 2q-knots: Theorem 3.1 needs to be strengthened slightly

Let V be a (q-1)-connected Seifert surface of a 2q-knot, $q \ge 3$. Let V' be a cross-section of V and (θ, F, G, ϕ) its associated $(-1)^q$ -form. We define $F^0 \subseteq P^*$ by $F^0 = \{f \in P^*: f(x) = 0, \forall x \in F\}$.

If $y \in F$, then $\theta y \in F^{\circ}$; similarly if $y \in G$ then $\theta y \in G^{\circ}$. Thus θ induces a map $\theta \colon P/(F+G) \to P^*/(F^{\circ}+G^{\circ})$.

Recalling that by Alexander duality $P^* = H_q(S^{2q+1} - V')$, it is easy to see that $F^0 = \ker(H_q(S^{2q+1} - V') \to H_q(B_-^{2q+2} - V^-))$ with a similar statement for G^0 . Thus in a natural way $P/(F+G) \cong H_q(V)$ and $P^*/(F^0 + G^0) \cong H_q(S^{2q+2} - V)$. As θ corresponds to translating q-cycles off V' in the positive normal direction, so does θ with V. Similar remarks are true for θ^* , θ^*

Following Kervaire [4; II.4], we call V and (θ, F, G, ϕ) minimal if θ and θ^* are injections. Kervaire has shown that in these circumstances $T_q(V) \cong T_q(\tilde{K})$, where $T_q(X)$ denotes the Z-torsion subgroup of $H_q(X)$ and \tilde{K} is the universal cover of K.

Thus we have the following:

THEOREM 13.1. If $q \ge 3$ and (θ, F, G, ϕ) is T-equivalent to an odd minimal $(-1)^q$ -form, then there is an odd simple 2q-knot giving rise to (θ, F, G, ϕ) .

Remark. The Z[t]-module $H_q(\tilde{K})$ is presented by $t\theta - \theta^*$; see Kervaire[4] for details. From this can be derived the usual Alexander invariants.

REFERENCES

- 1. A. HAEFLIGER: Plongements différentiables de variétés dans variétés. Comm. Math. Helv. 36 (1962), 47-82.
- 2. S-T. Hu: Homotopy theory. Academic Press (1959).

3. C. KEARTON and W. B. R. LICKORISH: Piecewise linear critical levels and collapsing. Trans. Am. Math. Soc. 170 (1972), 415-424.

4. M. A. Kervaire: Les noeuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), 225-271.

5. J. LEVINE: Unknotting spheres in codimension two. Topology 4 (1965), 9-16.

6. J. LEVINE: Knot cobordism groups in codimension two. Comm. Math. Helv. 44 (1969), 229-244.

7. J. LEVINE: An algebraic classification of some knots of codimension two. Comm. Math. Helv. 45 (1970), 185-198.

8. J. LEVINE: Polynomial invariants of knots of codimension two. Ann. Math. 84 (1966), 537-554.

9. P. J. Hilton: On the homotopy groups of the union of spheres. J. Lond. Math. Soc. 30 (1955), 154-172.

Dept. Pure Maths, Mill Lane, Cambridge

all

as

a

at -1,

th

ns

rk ne es

k n(\Box \Box

bέ

of 0,

ιp

at al ıg

s. e

'n

n