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AN ALGEBRAIC CLASSIFICATION OF
SOME EVEN-DIMENSIONAL KNOTS

C. KzarTon*
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§0. INTRODUCTION
AN n-KNOT k is a smooth submanifold 3" of "2, where 3" is homeomorphic to the n-sphere S".
When n = 2q — 1 or 2, the knot is called simple if its complement has the homotopy (g — 1)-type
of S": this is the most that can be asked if k is not to be trivial (except perhaps when n =2). The
simple (2¢ — 1)-knots, g = 2, have been classified by J. Levine[7] in terms of their Seifert
matrices modulo S-equivalence.

A simple 2q-knot is called odd if the ¢** homotopy group of its complement has no 2-torsion.
This paper provides a classification of odd simple 2q-knots, g = 3, in terms of an algebraic gadget
called a (=1)*-form, modulo an equivalence relation called T-equivalence.

I should like to thank Andrew Ranicki for many helpful conversations: the notation used here
is modelled on his work.

§1. ¢-FORMS

Let € denote *. Let P = 7> and P*=Hom; (P,Z). A Seifert map is a homomorphism
9: P — P* such that 6 + e6™: P _ P* is an isomorphism, where 6* is the dual of 8 and P** is
identified with P. Define 6(a, b)=6(b)a) and if F C P let the annihilator of F be
Ft={x € P: 8(F, x) = 0}. A subgroup F of P is self-annihilating if F= F*. Note that this
implies that F is a direct summand of rank n.

An e-form is a quadruple (8, F, G, ¢) where § is a Seifert map with domain P, F and G are
self-annihilating subgroups of P, and there is an exact sequence of Abelian groups

0F+G+2P<sP ST S3FNG-0

with a bilinear pairing ¢: I X - Z, such that for a € P, b € I,

¢(ia, b)=0(a, hb) mod 2
¢ (b, ia)=0(hb, a).

It is easy to see that F N G is a direct summand of P, of rank r, say.
An isomorphism between two ¢-forms (8, F, G, ) and (8', F', G', ¢') is a pair of maps .8
satisfying

PP, gl-—D>Il, fF=F, fG=0
0— F+G +2P —P —I—FN G—0
lf l! le ll
0—> F' +G' +2P'— P'—>I'— F' N G'—0
commutes and
0'(fa, fb) = 0(a, b) Ya, b € P, ¢'(ga, gb) = $(a, b) VYa, b € 1L

An e-form (6, F, G, ¢) is called odd if the torsion subgroup of P/(F + G) has odd order.
At this point we prove two technical lemmas about e-forms which will be needed later.

Lemma 1.1. If (8, F,G,¢) is an e-form, then there is a subgroup T of TI such that
hl;: T>F N Gisan isomorphism and @|rxr is symmetric.

Proof Let by, ..., b € TI be such that kb, ..., hb, is a basis of F N G.kLeta.,...,a, eEP
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be such that (8 +ef*)a; x)=1 if x = hb;, 0 otherwise; this is possible as 6 +e6* is an
isomorphism. Then

¢(b1 + iak, bl) - ¢(bl, bl + iak)
= ¢(by, b)) — ¢(by, b)) + dlia, b)) — (bs, iar)
= ¢(by, b)) — ¢(bi, b))+ 0(ax, kb))~ 6(hb, ai)
= (b, b)) — d(by, b)) + Bu.

Let L be the subset of 2,. .., r for which ¢(by, bi) # &(by, by), and define bi=b,+ 2 i,

kel
Then ¢ (b}, b) = & (b, b)) for2<k =r and hb’ = hb,.Iterate this process toobtain b3, b3, etc. [

We call T a symmetric subgroup of II.

Lemma 1.2. Let (6, F, G, ¢) be an odd e-form, and R, T symmetric subgroups. If b, ..., b isa
basis of R and b',..., b, a *3is of T such that hb, = hb' for 1<j=<r, ther there exists
a,...,a € Pand Ay € Z (1=}, k <r) with the following properties.

@) 0(a;,x)+eb(x,a;)=1 if x=hb; and 0 otherwise.

(i) bi=bi+ 3 Aoia, Yk
s=1
(lll) Akl = /\u( mod 2, Vk, l.

Proof. The existence of a,,...,a, € P with property (i) follows because 6 +ef* is an
isomorphism. Because the e-form is odd, ia,, ..., ia, is a basis of Imi, and so bi— b. can be

r
expressed as % Awia, for some A
s=1

¢(b ;(’ b’l) = ¢(bk, bl) + Es’\ls‘b(bky ias) + EsAks(b(ias» bl)
Since ¢ is symmetric on R and T, we obtain

S (b (b, ia,) — dlia,, b )]+ 2Aldlias, bi) —~ ¢ (b, ia)]=0
and so
- Zsaks)\,s + Es&sl\ks =0 mod?2
At = Age.

§2. T-EQUIVALENCES
If M, N, P, Q are free Abelian groups of finite rank, elements of Homz (M @ N, P @ Q) can
be displayed as matrices

_ (#B). N x\ _ (a(x)+B(y)

f_<y8>'M@N POQ f(y) (Y(X)Jrﬁ()’))’

where « € Homz (M, P), B € Homz (N, P), y € Homz (M, Q), 6 € Hom: (N, Q).
al

. 5) will be denoted by a @ .

Throughout this section, U=V =R=S =7 and the lower case letters will denote a
generator: thus U = (uA). AW§ Qeﬁne th; following moves on an e-form (8, F, G, ¢).
T0. (8, F, G, d)— (6, F, G, ¢), P=P@®R®S,

(800 6 00
=10 0 1 or 000
0 00 010

F=F®R G=G®S, Tli=I, é¢=4¢
T1. 9 0 + ¢ — ep* where ¢: P - P* has rank one and yF =0, U*G =0.
T2. (8, F, G, )~ (6, F, G, $),

P=P®R®S, F=F®S, G=G®S,

Moreover, (

9 a 0 8 0 0
é=(o 0 1) or (13 0 0)

0 0 0 0 1 0 @D
I=N@[R2R)® S where 0>F+G+S+2R+2P>PA®RB®S —

NORRR)OS —2(F n G)®S~0.

and (2): R - R/2R is the quotient map.
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SMxI=¢ .
D SHxS=0=¢|SxMDS).
Note that ¢ is determined elsewhere by 6.
T3. (8,F, G, ¢)— (8, F, C, $)
Q=Z"7P=Q@ROSOUDV

Y 0 a v 10 «
=1 0 Jo 1 or 0 (0 0
-ea*] 0 0 ~ea*l 1 0

where w:Q@R@Se(Q@R@S)*.
F=A(-D(s—mv)@V, AC
G=B@®S®(u-mr+pv), B

Q’
A 3 c
F=A®(-m)@U,

Q

It follows from these assumptions that ¢ induces é on I =T11/r (V +R), and we have an exact

sequence 0>A + B +2Q - Q —iﬁjA N B -0. Consider the exact sequence

0-A+B+S+2R+20-Q@DR® S — 22, [i® (RLR)® §

E29 L(A N BY®S 0.

Begaus_e iv =0and iu = mr, this sequence determine_s =0 ® (R I2R) ® S, and ¢ is given by
|lIxM=¢, ¢ symmetric on IIDS)xS U SxII@S).

The moves T0-3 generate an equivalence relation on the set of e-forms which will be called
T-equivalence.

§3. STATEMENT OF RESULTS

It will be shown in the sequel that any simple 2q-knot, g =3, gives rise to a (—=1)?*-form, via a
Seifert surface.

THeorEM 3.1. Let (8, F, G, ¢) be a (=1)*-form. If g =3, there is a simple 2q-knot giving rise to

. (8,F,G, ¢).

THEOREM 3.2. Let k be a simple 2q-knot, g =3. Then any two (=1)?-forms arising from k are
T-equivalent.

THEOREM 3.3. Let k, E_ be two odd simple 2q-knots, q =3, giving rise to (—1)“-f9rms
(6,F,G,¢) and (6,F, G, $) respectively. If these forms are T-equivalent, then k and k are
isotopic.

Remark. In §13, Theorem 3.1 is refined to Theorem 13.1; this completes the algebraic
 classification of odd simple knots in terms of e-forms and T-equivalence.

§4. CROSS-SECTIONS OF A KNOT
Let k be a 2g-knot, (§29*2, 3%4), and let $?7*' denote the equatorial sphere of $*¢*2 Suppose
that 3*¢ meets S**' transversely in an equatorial sphere $*~" of 3** so that 32 is the union of
two smooth 2¢-balls along their common boundary $2*~". Let k' be the knot (S, §2¢°) and
denote the two null-cobordisms of k' by b., b_.
If Y is a smooth proper submanifold of a manifold X, then the complement of Y in X is the
closed complement of a tubular neighbourhood N of Y in X, where N N 4X is a tubular

_ neighbourhood of 3Y in 6X, Let K denote the complement of 3* in $29*2; we shall abbreviate

this to “K is the complement of k. Similarly, let K’ be the complement of k' and K* the
complement of b,, € = +. We shall always take K* to be the restriction of K to the appropriate

_hemisphere B2**? of §%9*% and K'= K N S2*!.

In these circumstances, k' is a cross-section of k if (K*, K') is g-connected for € = = .
It is known[5] that any knot k is spanned by a Seifert surface V; so that 32 = 3V where V is
smooth submanifold of §29*2 If V meets §2¢* transversely, then the intersection is a Seifert

urface V' of k. V' is a cross-section of V if (V<, V') is g-connected for e = +, where
Ve=V n B2
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PropoSITION 4.1. Let k be a 2q-knot, q =3, spanned by a Seifert surface V. Then k has a
cross-section k' spanned by a cross-section V' of V.

Proof. Regard 3** as the union of two 2g-balls, B> Ug«-1B,* Let N_.UN,
be a tubular neighbourhood of 34, with (N., B.>?) an unknotted ball pair such that V. =V 0 N,
is a tubular neighbourhood of B.** rel $**~" in V. Since V has a tubular neighbourhood rel 3V of
the form V X B', it is clear that a handle decomposition of V based on V_ gives rise to a handle
decomposition of a tubular neighbourhood N of V, by handle - handle x B'. Note that N_ and
N. are exceptions to this: indeed N, is not a handle, but a (2q + 2)-ball added by a face.

Choosing a handle decomposition of M = §%?*? - N, we obtain a handle decomposition of
S$29*2 based on N_ (in which N, appears as a (2q + 2)-handle).

We may add these handles in order of increasing index, in the usual way. Regard the handles
as being added to N_— B_?%, and let L be the manifold obtained when all the g-handles have
been added. Since K is a homology circle, L ias ilie homology of S'x B**' with some

- g-handles added. For each (g + 1)-handle of V, add a trivial pair of (q + 1), (¢ + 2)-handles to M
and move the new (q + 1)-handle of M over the (q + 1)-handle obtained from V. After perhaps
moving some of the (g + 1)-handies of M over each other, L U (suitable (g + 1)-handles of M) is
a homology circle. Call this manifold L,. Then L, U B_** is a homotopy ball, and hence a ball,
B_**?gay. Let B,*¥*?= §%¢**— B_?7*2 The common boundary S$***' contains a knot k' which is
the required cross-section of k, spanned by V'; for K* has a handle decomposition based on K’
containing only handles of index at least ¢ + 1, and similarly for V<, V'. a

Remark. By taking handle decompositions of V*, V™ based on V', we can see that every
cross-section arises in the manner described above.
Recall that a knot k is r-simple if K has the homotopy r-type of a circle.

LemMa 4.2. If k is r-simple, then so is every cross-section, and if V is r-connected so is every
cross-section, forr < q. Conversely, if k' is r-simple so is k and if V' is r-connected so is V.
The proof is easy.

§5. THE ¢-FORM OF A KNOT

Let k be a simple 2q-knot, q =3; then by Lemma 4.2 any cross-section k' is also simple. By
a result of Levine[5], k has a Seifert surface V which is (g — 1)-connected, so that V has a
cross-section V' which is also (g — 1)-connected. V has a tubular neighbourhood, mod 4V, of the
form V x B', where B' =[~1, 1] and +1 corresponds to the positive normal direction. We may
assume that V' X B' C §2*',

V' has homology only in dimension g, so that H,(V"’) is free of rank 2n, say. Setting
P =H,(V)=Z™, the map H,(V')—> H,(V' X 1) together with Alexander duality provides a map
0: P — P*. Alternatively we may define §: P X P > Z by 0(a, b) = L(z,, z, X 1) where z,, z, are
cycles representing a, b, and L denotes linking in $>**'. 8 +(—1)?0* defines the intersection
pairing on V', and so @ is a Seifert map.

Define F =ker(H,(V)>H, (V7)) and G =ker(H,(V')->H,(V"); work of Levine[6]
shows that F and G are self-annihilating subgroups of P.

Let 1T = m,.(V); we define a homotopy linking ¢: [I1xI1—>Z,. If a,b € 1I, they may be
represented by embedded spheres z,, z,, each of which is unknotted in S***2. The spheres
Za, 26 X 1 are disjoint and the complement of z, in $29** has the homotopy type of S* Thus z, X 1
defines an element of ,,.(S?)= Z,, denoted by ¢(a, b). Clearly ¢ is bilinear.

From the Mayer-Vietoris sequence, 0—>Hq+1(V)-';Hq(V’)——>H,,(V‘)@Hq(V*)—>, we see

that H, .,(V)— F N G.Define  to be the composite mys1(V) —— Hy(V)> F N G where H

is the Hurewicz map. From the diagram

Tari(V) =5 e (V) =2 mrgui(V, V) —>

PP

0— H,.(V)— Hyu(V, V) —>
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we see that ker h = ker j, = Imi,. Up to homotopy type, V™~ is the wedge of n q-spheres, so that
m,(V)= H,(V") may be identified with P|F and (by the work of Hilton[9]) m,.(V") with
P/(F +2P). With these identifications, ker i, = (G + F + 2P)/(F +2P), and so we have an exact
sequence

0->F+G+2P>P>I->F N G-0

where ia is just the composite of a map representinga € P = I1,(V’) with the non-zero element
of mg41(S9).

Let a € P, b € T. The homological linking of z, and zm X1 in S§24*2 is @(a, hb), so
¢(ia, b)=0(a, hb) mod 2. .

Let hy, ..., hs be the handles of V(e =) based on V'x B! in the cross-section. Let
p: V' x B'-> V' x1 be projection. Suppose that p (the attaching sphere of &) wwincides with
that of k" for 1 =i <r. Then these attaching spheres represent a basis of F N G, and the union
of the cores of k™, ki (1 =i = r) with the collars of their attaching spheres in V' X B’ represent
a basis of a symmetric subgroup T of II. In these circumstances we say that T is
well -represented. ’

§6. SYMMETRIC SUBGROUPS

In this section we show that a symmetric subgroup can be well-represented when the e-form
is odd.

LemMa 6.1. Let M= # " (S9x S**"),-int B**', ¢ =3, and let
i=1

a; € w (M) be represented by (S° x0);,
b, € m,.1(M) be represented by (0x S**"),
¢ € m,(M) be represented by (¢ X0),,

where ¢ is the non-zero element of m,.(S%)=Z.. Suppose that d; € m,..(M) are such that
hd, = hb, 1 <i <n, where h is the Hurewicz map. Then d;, 1 <i =<n, are represented by a set of
disjoint embedded spheres if and only if

d=bi+3 Mo with Ay +(=1yh, =0 (mod 2).
i=1

Proof. First we prove necessity. Clearly d; must have the form b; + i Ayc; if hb; = hd;. Let
i=1

d'=b.+ 3 Ay = d: — Auc.. The d; are a set of disjoint embedded spheres, and we can arrange

i#*l
for d; to meet a; transversely in a single point, and miss all the other a;. Thus the d’ can be
represented by a set of disjoint embedded spheres, such that d; meets a; transversely in a single
point and misses all the other a;. Now b; and ¢; have trivial normal bundles, and so therefore has

d'. Thus we can write M = # "(S¢ X $7*");-int B**' as above, but with d; represented by

0x 8.
If [,] denotes the Whitehead product, then _2 [a;, b:]=14m, where 7 is a generator of

i=1

=1
m2a(0M)=Z and ¢, is the map 2q(3M) = 724(M) induced by inclusion. The same equation
holds with d' in place of b;, so we have

> [a.-, > /\i,c,-] =0
i=1 jA
from which it follows that A; +(=1)%A; =0, i# j. This is equivalent to the equation above.
To prove sufficiency, consider first replacing b: by b: + i, j# i. We may represent b +¢; by
an embedded sphere with trivial normal bundle, meeting a; transversely in a single point.
Therefore a tubular neighbourhood of the wedge of the spheres representing & and b; + ¢; has
the form S® X §%*-int B>**!, so we may split this off as part of a connected sum. Thus
M =(S*x 8%") % N-int B***', where S X0 represents a; 0x S9! represents b; +c;. Now
m(M)=m(S° X S @ m(N) for i = q +1: this follows from the formula for the homotopy




368 C. KEARTON

groups of a wedge of two spaces and the relative Hurewicz theorem[2]. Thus in N, hb; is a
spherical class, and the necessity condition shows that it must be represented by b; + ..
To replace b; by b; + c; is easy: we only need appeal to standard embedding theorems.

LeMMA 6.2. Assume that (8, F, G, $) is an odd €-form, and let T be a symmetric subgroup of
I1. Then T is well-represented.

Proof. By moving the handles of V over each other, we may change base in F and G. In this
way we can obtain some symmetric subgroup R of IT which is well-represented. Let by, . .., b, be
the basis of R determined by the handle decomposition, and let b1, ..., b} be'a basis of T such
that hb| = hb; for 1 =i <r. Then Lemma 1.2 and 6.1 complete the proof. ]

§7. WHEN A KNOT IS DETERMINED BY ITS ¢-FORM

ProvostTion 7.1. Provided that q =3 and H,(V) has no 2-torsion, a simple 2q-knot k with
Seifert surface V is determined up to isotopy by its (—1)*-form.

Proof. $***' has a tubular neighbourhood of the form S$***'Xx B'; as V meets §¢*!
transversely, we may assume that V N (S***'x B')= V' x B'. Arrange that V*(¢ =) has a
handle decomposition on V' x B' as described at the end of §5, and let a® € P = H, (V') be the
element determined by the attaching sphere of h®. Thus a;* = a; for 1=<i=r. Recall that
6 +(—1)76* is the intersection pairing on V', which we shall denote by a.B. Since F = F*, there is
abasis @;7,..., 0, ¥1,...,%. of P such that & - y;=8; and vy - v, =0 for all i, j.

Let £ be another such knot, and distinguish the machinery associated with k by " Let
(,q): (0, F, G, ¢)—+(é, F G, d3) be an isomorphism between the (—1)?-forms of the two knots,
and let &¢ =fa’, . = fy, 1=i=n.

Recall that §2¢*?=B_22*> U (§**'x B') U B,>**?, and let D; denote the core of h;.
Allowing the boundaries to move within dB_***?, we may isotop D, onto D, 1<i<n Now we
resort to an argument of Levine[7]. Let v be the positive unit normal field to k™ on D.. By the
tubular neighbourhood theorem, we may assume that h;” is the orthogonal complement of v; in a
normal disc bundle neighbourhood N; of D; = D; in B>**2. Therefore, if we can homotop v; to &,
we obtain an isotopy of A~ to h~ within N, Since we are willing to allow movement on the
boundary, v; is homotopic to 6, and we obtain the desired isotopy.

Each basis element a,™, ..., @, Y1,. . ., ¥ 0f H,(V') may be represented by a handle of V",
and from the argument of Levine{7] we see that as

6(fa, f8) = 0(e, B) Va,B € P,

Y’ may be isotoped onto V' without disturbing the A", and so we may isotop b_ to coincide with
b..

Let C. denote the core of h*. If 1<i=<r, D, U (D xB") U C is an embedded
(q + 1)-sphere representing an element b, € I1,and b, . . ., b, is a basis of a symmetric subgroup
T.Put b, =gb, 1<i=<r;by Lemma6.2, T = g(T) is well-represented and we may arrange that
D, U (3D; x B" U C; represents b, Isotop C, onto C, keeping the boundary fixed. The
obstruction to isotoping C. onto C, keeping the boundary fixed and without disturbing C,
may be identified with ¢(b,, by)— 43(51, b,) = 0. Continuing in this way, we isotop C; onto ¢,
1<i=r Toisotop hi* onto A", 1=<i <r, we adopt the same method as above; the obstruction
may be identified with ¢(bi, bi) — $(bs, b)) =0.

By a change of basis, we can arrange that ;" = 3 aya;” + diy;, r <i < n, where the d; are the
j=1

torsion numbers of H,(V). The same tactics can now be tried on C,, r <i < n, and then h;", but
with this difference: the obstruction at each stage may be identified with an isotopy in $**' of the
handle of V' corresponding to vy, using the fact that d; is odd. The isotopy brings the handle back
to its original position. Thus the obstruction can be removed by allowing the handles of V'
corresponding to the y; to move, and this is allowable because it does not affect b_ adversely.
O
§8. CHANGE OF CROSS-SECTIONS

We begin to investigate the extent to which k determines (6, F, G, ¢), where k is a simple
2g-knot. Given a (g — 1)-connected V spanning k, to what extent can the cross-section be
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changed? We can pass from one handle decomposition of V to any other by moving handles over
one another and by adding or deleting cancelling pairs of index r, r + 1: these are the well-known
moves employed in the proof of, say, the h-cobordism theorem. The only move that affects the
e-form is that of adding (or deleting) a cancelling pair of index g, g + 1, and this gives rise to the
move TO of §2 (or its inverse).

It may happen that in the construction of a cross-section there are two handles Bt o3 of
S$?¢*2- N (where N is a tubular neighbourhood of V), with h4*' C B2*? and that
(B2~ h_*") U h,**! forms another cross-section. In other words, when deciding which
(g + 1)-handles of $>**2— N to add in order to cancel the g-handles homologically, we can use
h.2"" in place of h_*",

Suppose that for a fixed V there are given two cross-sections C; and C,; then these
correspond to two handle decompositions G,, G, of $24**— N. As above, it is possible to pass
from G, to G, via a sequence of handle moves. Those moves involving only handles below
(above) the middle dimension do not affect the cross-section, so we may ignore them. Moreover, if
any handle pairs of ‘index (q, g +1) need to be added, then they may be introduced at the
beginning and so be assumed to form part of G; dually, any cancelling pairs of this index may be
left to form part of G,.

Let hy*™', ..., h,""" be the (q + 1)-handles of G, which are contained in B3%*?, where the
subscript 1 corresponds to C,; these are the (g + 1)-handles of G, which are used to cancel
homologically in the construction of C,. Add trivial handle pairs 2, B 1<i< m, to G,, and
move h°*' over h*' for each i. Now replace h*' by h“*' to obtain a new cross-section in
which all the original (¢ + 1)-handles of G, are contained in B,?**2. All the handle moves which
involve moving the (g + 1)-handles over one another may now be performed without disturbing
the new cross-section. After a change of basis in the £,°*', ... , if,.,‘”', if necessary, we may
replace each A" by the appropriate handle in B.***? to obtain the cross-section C,.

Thus we only need to consider the effect on (6, F, G, ¢) of replacing one handle h_**' by
another, h.7*', as described above.

Lemma 8.1. This procedure induces a move T1 on (6, F, G, ¢).

Proof. The effect of replacing h_?*' by h.?*' is to perform two surgeries of index g + 1 on
§?4*! to obtain another equatorial sphere: thus we have a compact manifold M C $29*2x [ with
M N (S**2xt)= 8" t=0,1. M has two critical levels with respect to the height function
induced by S$%**xI-], each of index g+1l, and M N (VxI)=V'xI where
VXTI C §**2x I by (inclusion X identity).

M splits qu] :2@>J<_I into two components, L * and L, and the Mayer-Vietoris sequence yields,
0->Hy o o(M)———— H,.(L*)® H,..(L")—~0, where H,.(L")=Z =H,..(L"). Thus we may
take as a basis for H,.(M) elements ¢ and m, being generators of ker J~ and ker J*, with
§-n=1=(1""n-¢and - £ =79 =0.

Consider V'xI C M; suppose that a’,...,a% is a basis for H,(V'x0). Let & =
a’X1 C V'xI, so that 8G; = &' — & and ai',. ., a3, is a basis for H,(V' x 1).

" If & is regarded as a cycle of H,.(M, aM), then & ~ v(aé - bm) where
v: Hyi(M)— Hy (M, 3M) is the obvious isomorphism. It follows that a, — t(a:é — bm) is a chain
with boundary &' — o representing 0 in H,.,(M, oM). If ¢ denotes & pushed off V' X I in the
positive direction, then

(e, ') = 0o(@, o) = [& — v (aié — bm)] - [& — v(a; — byn)]
= —(a§ - bm) - (aié — bm)
= ab; + (=1)""'ab..

Thus if the matrix of 8, with respectto ay', ..., a3, is A, t =0,1, and a, b denote the column
vectors with entries a;, b;, we have A,— Ay=ab’' +(-1)*"'ba’.
Suppose that a’,.. ., a,” is a basis of F, and let D; be the (g + D)-chain in V- with boundary

a’. Then D; X I C V- X[ is a chain with boundary & mod VX 4I; thus . '@ € ker J~ and so
bi=0,1<i<n

With respect to the basis a/’, . .., a2, and its dual, ab’ represents a map ¢: P> P*. It is easy
-~ to check that ¢ has rank one and ¢/(F) = 0; moreover any such map is represented by a matrix of
the form ab’ with b, =0, 1<i<n. Dually, it can be checked that y*(G)=0. O
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§9. SURGERY ON V
Let k be a simple 2q-knot, g = 3. By results of Levine[5], there exists a (g — 1)-connected
Seifert surface of k. If Vo, V, are two such surfaces, Levine has shown([7] that there exists a
cobordism between them, V C §2¢**x], where V=V, U (@VoXD)U V, and
aVox I C §29**x I by (inclusion X identity). Applying the results of [S] we may arrange for V to
be (q — 1)-connected.

Lemma 9.1. Let f: V -1 be the restriction to V of the projection $*¢** X I - 1. We may isotop
V.rel Vo U V,, so that f has critical levels of index q, q + 1, and q +2 only, which appear in order
of increasing index.

Proof. Let X be $**2x I split open along V, so that X contains two copies U™, U~ of V.
X, denotes $29+% x 0 split open along Vs, Us" = U N Xo, etc. Let i*: Hy(U*, Us")— Ho(X, Xy),
€ = =+, be induced by inclusion. We can use V to construct the universal (infinite cyclic) cover ¥
of Y = §?9%2x I — §?% x I, as in [8]. Since H, (¥, ¥o)= (Y, Yo) = m,(Y, Yo) =0, the argument
of [8] using integer coefficients shows that at least one of i*, i~ is singular. If say @ € ker i*, then
since by the Hurewicz theorem m, (U™, Us*) = H,(U*, Uy"), @ may be represented by a singular
disc. Applying resuits of Haefliger[1], @ may be represented by a g-ball properly embedded in
(U*, Uy*). By Hurewicz's theorem, H, (X, Xo) = m,(X, Xo), s0 a is null-homotopic in (X, X,).
Repeated application of Haefliger’s results[1] shows that there is a (g + 1)-ball B**! properly
embedded in (X, aX) with the following properties. 3B°*' = B,* U B_4, B, N B_*=§%"" B¢
is properly embedded in (U*, U,") so as to represent a, and B_? is properly embedded in
(Xo, Uo™).

By considering a tubular neighbourhood of B**' we may isotop V so that @ € H,(V, Vo) is
represented by the core of the handle corresponding to a critical level of f: see [3] for details in
the PL case. Continuing in this way, we reduce to the case H,(V, Vo) =0, and dually we may
arrange for H,(V, V,)=0. A similar argument now works for Hg..(V, V,); the details are
omitted. O

Suppose now that V has a single critical level, of index q. If V4 is a cross-section of Vo, then
(Vo, Vi) is a g-connected pair; thus in the notation used above S?~' may be homotoped (and
therefore isotoped) to lie within V5. We should like to isotop B_? into §>**' x 0, keeping S~
fixed. Let X, denote $2¢*'x0 split along Vy; then (Xo, X¢) is g-connected (recall the
construction of a cross-section), and as $*" is null-homotopic in V' this is enough to show that
B_* can be homotoped (and therefore isotoped) into S***' x 0 keeping S*~' fixed.

We are thus able to obtain a cross-section V) of V, from the cross-section Vg of Vo; the
cobordism V' =V N ($2¢*' x I) between Vj and V| has a single critical level, of index g.

Now suppose that V has a single critical level, of index g + 1. By the remarks above, V, may
be obtained from V, by a surgery embedded in $>¢**. Thus if V,Xx B'is a tubular neighbourhood
of V,in $79*2, there is an embedding of a (2q +2)-ball, i: B**' x B4*'-> §2¢*2 meeting V, X B'
in  i(6B*"'xB') C Voxn where n=1 or -1, and such that V,=
Vo— (3B " xIB¥ )X 0) U (i(dB**' X 33B**")x[0,7]) U i(B*"' X 3B,

We can choose a handle decomposition of V,, involving handles only in dimensions 0, g,
g +1, such that i(3B**' X B**")x0 C Vox0is h° U h* and Imi is the (q + 1)-handle of the
complement used to cancel h¢ in the construction of a cross-section Vg of Vo. Then Vi=Via
cross-section of V,, but the roles of B9*'x0 and 0x3B°*' are interchanged. Thus if
a € H,(V})is represented by i(9B**' x x) x 0 for suitable x € 4B**',and B by i(y X dB**) X
0 for suitable y € aB**", then a € ker (H,(Vi— H,(V,)) and B € ker (H,(Vy)-=> H, (Vo).
Indeed, a is represented by the boundary of a (g + 1)-ball i(B**' x x) U (i(3B**' x x) x [0, 1])
embedded in $2*' and meeting V, only in i(4B**' x x) X 0.

§10. T2 AND T3

Lemma 10.1. In the situation of the previous section, let V and V' each have a single critical
level, of index q. Then the (—1)*-form of V is obtained by a T2-move on the (=1)9-form of V.

Proof. By work of Levine[7], 6 has the form shown. A generator of S is represented by the
belt sphere of the surgery performed on Vo, and this is the equator of the belt sphere of the
surgery performed on V. This sphere is the boundary of the cocore of the surgery, and so ¢ has
the form shown. ad
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Lemma 10.2. In the situation of the previous section, let V have a single critical level, of index
q + 1. Then there are cross-sections of V, and V, such that the corresponding (—1)*-forms are
related by a move T3 or its inverse.

Proof. By the proof of [5; Lemma 5] we may assume that the ¢*™ Betti number of V, exceeds
that of V,. Let my € H,(V,) be the element on which the surgery is performed, v being
primitive and m € Z*. Choose a handle decomposition h* U h* U -+~ U he*t of Vysothata
spine of h° U h, represents y; we may also arrange that the attaching sphere of h,**' coincides
with the belt sphere of k% and that no other h*"' meets h,*. Introduce a trivial pair h%, k"', and
move h? — m times over h,%. Then the spine of h° U h represents my, and so we are now in the
position described at the end of §9. There is a cross-section Vo of V, with the following
properties.  H,(VH)=Q@(r)®(s)®{u)® (v), where Q is supported by
3(h° U hy? U -+ - U h?), r is homologous to a spine of h® U 7 s is represented by the
attaching sphere of #,%*', u is homologous to a spine of h® U h“ and v is represented by the belt
sphere of h% Thus u corresponds to « in §9, and v corresponds to 8. The belt sphere of h,°
represents s —muv, and the attaching sphere of he*! represents u — mr + pv for some p € Z.

If (8, F, G, ¢) is the (—1)*-form arising from V5, and (6, E, G, ¢) corresponds to V1, then 8 has
the form shown in T3 since u is spanned by a (q + 1)-bail embedded in $?¢*". It follows from the
remarks above that F, G, F, G have the form shown in T3. It is easy to check that 6 vanishes on
(V+R)x(F N G), so that ¢ vanishes on #(V+R)xTl, and similarly $ vanishes on
1 x {(V + R); thus d> induces ¢ on [ =11/f(V + R). Since iv =0 and iu = mr, ¢ and II are
determined by the second exact sequence of T3 and conditions on ¢.

Thus (6, F, G, $) is obtained from (6, F, G, ¢) by a move T3. O

§11. REALISING THE MOVES GEOMETRICALLY
LEmMA 11.1. The move T1 may be effected geometrically.

Proof. Leta,, ..., a, beabasis of F, and extend this to a basis a,, . . . , a2, of P. With respect
to this basis and its dual, ¢ is represented by a matrix ab’, where b; = 0 for 1< i = n (cf the proof
of Lemma 8.1). Embed S? in §29*' — V" so that its linking with the basis a, . . ., @2n is described
by the vector —b. Since b; =0 for 1 <i =< n, we may extend S to a proper embedding of B**" in
B 292 which does not meet V. Use this B**' to perform a surgery on S**', obtaining a
manifold T C S**2,

Let B.**' be the cocore of the surgery, oriented so that B¢*' - B.**' = +1. Thus if T is the
closed complement of T which contains B.**? B,%*' is properly embedded in T.. Embed
another $° in T N §2** with the following properties:

(i) S? is homologous to 4B.**" in T,

(ii) the linking in $***" of S$ with a,,..., a2, is described by the vector -D*"a.

The orientation of S* is determined by that of B.*"".

By duality, the condition ¢ *G = 0 ensures that there isa (q +1)-ball B"" properly embedded
in T., with boundary S which does not meet V*. Use this B**! to perform a surgery on T,
obtaining a new equatorial sphere S***".

§7 is spanned by a (g + 1)-ball in $>***, and the union of this with B%*'is a sphere $**' which
after a trivial isotopy represents a basis element ¢ of H,.(M) where M C §%"*x1 is the
cobordism defined by the two surgeries we have performed. If G =a; XTI C V'xI, then the
intersection in M of ¢ and &,, ..., &, is described by the vector —b.

Similarly, the sphere §° gives rise to a sphere S?*' representing a basis element 7 of H,...(M),
and the intersection in M of 5 and d,, ..., &, is described by the vector -D)*""a

By construction, £ - é=n -1 =0, -n=1.Since - &= —bandn - & = (-1)"*'a; we have
@ = u(a:£ — bm) for 1=<i<2n, where ¢: Hy (M) Hoi(M, M) is the usual isomorphism.

The result now follows from the proof of Lemma 8.1. 0

LemMA 11.2. The move T2 can be realised geometrically.

Proof. The work of Levine[7] shows how to realise the enlargement of 6 by a surgeryon V',
this surgery being embedded in S***'. A tubular neighbourhood of S§29*! in §%9*? is of the form
S2a*'x B' and V meets this in V' x B' embedded product wise. Thickening the surgery in the
obvious way produces the desired result. O
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LemMA 11.3. The move T3 and its inverse can be realised geometrically.

Proof. To obtain the move T3, note that by work of Levine[7] we could embed a (g + 1)-ball
B*'in §29*' so that B**' N V' = dB**! which represents u € H,(V"). Recalling that S§29*! hag
a tubular neighbourhood $2¢*' x B', move B**" into B_***?, and use it to perform surgery on V:
the result is to induce the move T3 as desired.

To obtain the inverse of T3, note that since F=F* and 8(u, v) or 6(v,u)=0, there is a
(q +1)-ball B*** embedded in B_**** and meeting V™~ in 4B°*'; moreover we may arrange that
9B C V' x -1 C S**'x B", Using B®*" to perform a surgery on V, we obtain a move (T3)
the form of ¢ on (1@ S) x S is determined by the homotopy linking of B**' mod 4B**" with
balls in V- whose boundaries represent a basis of E

§12. PROOFS OF THE MAIN THEOREMS
Proof of Theorem 3.1. This is clear from the work of ‘Kervaire {4] and Levine[6].

Proof of Theorem 3.2. This is a consequence of Lemmas 8.1, 9.1, 10.1, 10.2.

PropositioN 12.1. Let k, k be two simpl_e 2q-knots, q =3, giving rise to the same (-1)*-forms
(6, F, G, ¢). If k is odd, k is isotopic to k. .

Proof. Let V, V be Seifert surfaces of k, k giving rise to the form (6, F, G, ¢). By the work
of Levine[5], we may perform surgery on V to obtain V, with H,(V,) 2-torsion-free, and by the
previous sections this involves algebraic moves (T0)*', T1, (T3)*', only. These algebraic moves
may be realised geometrically on V to obtain V,. By Proposition 7.1, V; and V,areisotopic. [J

LemMa 12.2. The move (T2)™' may be realised geometrically on an odd knot k.

Proof. Let V be a Seifert surface giving rise to (6, F, G, ¢). By Theorem 3.1, there is a knot k
with surface V giving rise to (T 2)"' (8, F, G, $). Realise T2 on V to obtain V. By Proposition
12.1, k is isotopic to k. 0

Proof of Theorem 3.3. All the algebraic moves can be realised geometrically. O

§13. CONCLUSION

We have not quite classified the odd simple 2q-knots: Theorem 3.1 needs to be strengthened
slightly.

Let V bea (g — 1)-connected Seifert surface of a 2q-knot, g =3. Let V' be a cross-section of
V and (6, F, G, ¢) its associated (~1)*-form. We define F°* C P* by F°={f € P*: f(x)=0,
Vx € F}.

If y€F, then 8y € F° similarly if y € G then 0y € G°. Thus 6 induces a map
0: P/(F+G)-P*|(F°+G°).

Recalling that by Alexander duality P*= H, (8 —V"), it is easy to see that
F° =ker (H,(S**'= V')> H,(B**"*— V")) with a similar statement for G°. Thus in a natural
way P/(F+G)=H,(V) and P*/(F°+ G%=H,(S***- V). As 6 corresponds to translating
g-cycles off V' in the positive normal direction, so does @ with V. Similar remarks are true for 6%,
0*.

Following Kervaire [4; I1L.4], we call V and (0, F, G, ¢) minimal if @ and @* are injections.
Kervaire has shown that in these circumstances T,(V)= T,(K), where T,(X) denotes the
Z-torsion subgroup of H,(X) and K is the universal cover of K.

Thus we have the following:

TuroreM 13.1. If ¢ =3 and (8, F, G, ¢) is T-equivalent to an odd minimal (—1)?-form, then
there is an odd simple 2q-knot giving rise to (6, F, G, ¢).

Remark. The Z[t]-module H,(K) is presented by 1@ — 8%; see Kervaire[4] for details. From
this can be derived the usual Alexander invariants.
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