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THE K-THEORY OF ALMOST SYMMETRIC FORMS

F.J.-B.J. Clauwens

INTRODUCTION

To motivate this paper we first recall a few facts.

According to [W! , chapter 5] a nommal map f between manifolds of di-
mension 2k and fundamental group w aives rise to a (so-called quadratic)
form ¢ defined on some finitely generated free left B module V, where B de-
notes the integral group ring z[w]. The appropriate equivalence class of
in L2k(B) is the obstruction s(f) for changing f into a homotopy equivalence
by surgery (for k > 2).

According to [C] a closed manifold P of dimension 2g and fundamental
group p gives rise to a (so-called almost symmetric) form ¢ defined on scme
finitely generated free left A module K, where A is Z[p]. The main theorem
there states that 0 ® Y represents the obstruction for doing surgery on
idp x £ if Y does so for f.

In this paper we will study the algebra of almost symmetric forms; there-
fore we first recall the main things about quadratic forms from [w2].

Orientability considerations give rise to a homomorphism w: 7 =+ {+1},
Ehe map —:_é-f B dffined by the formula f;;a = anw(g)g-l satisfées §:§ =
X+y, Xy =y x and x = x. For such an involuted ring B the dual V =
HomB(V,B) of a left B-module V inherits the structure of a left B-module by
(af) (v) = f(v)a; the canonical map “: V A-Vdd defined by ®(f) = £(x) is an
isomorphism prévided V is finitely generated projective. A form [ on V can
be viewed as a homomorphism v - Vd; then C* = Cd o ":V > Vdd - Vd is one

such too.

DEFINITION. Let € be a sign. An e-quadratic form over B consists of a finite-
ly generated free left B-module V and a class of forms ¢ on V defined up to

*
the equivalence § ~ ¢ + £ - €Z . It is called nonsingular if the symmetrisa-~

* d
tion A = ¢ + ey 1is an isomorphism V =+ V. We call (W,¢dw¢) isomorphic to




<“.l'llllll-li-"'

42 CLAUWENS
"(v,y) if ¢ is a module isomorphism W > V. nvertible exactl
! . a
If F is f.g. free the quadratic form ¢ on F ® F defined by wF(x,f) = THEOREM 2. There
! THEOREZ =
(f,0) is nonsingular; any quadratic form of this isomorphism type is called
standard. Now LZk(B) is defined as the quotient of the Grothendieck group qu(A[

of nonsingular (—1)k quadratic forms over B by the subgroup generated by

standard such forms. which assigns to

A and the quadra
DEFINITION. Let n be a sign, A an involuted ring. A nonsingular almost n-

symmetric form over A consists of a finitely generated free left A module XW(X_
. 4d *
K and an isomorphism o: K + K such that o = no (1+N), where N is nilpotent
(compare [C; §9]). Again ¢d0¢ is considered to be isomorphic to ¢ for any over A ® B. INnF
module isomorphism ¢. form with a quac
AIMOST SYMMETRIC FORMS ARE QUADRATIC PROOF. Again wri
q we start w:
Let A be an involuted ring, n = (-1)°. We consider quadratic forms over
. als] we have
the polynomial ring aAls] over A equipped with the involution — such that
za.s) = fa, (1—5)3. *
J 3 AT (
THEOREM 1. Any element in qu(A[s]) can be represented by a quadratic form
¥ which is linear in s. Any such linear Y can be viewed as an almost (—1)q
symmetric form.
PROOF. Let the element be represented by a quadratic form Y = ZWisl of de-
gree M in s. By the addition of a standard form and the use of an isomorphism Hence the symme
we get (in matrix notation)
AY(
* -
1 -s wMu—s)Ml y o ol [t 0 o v-vus" 0 -s
M-1
0 1 0 c 0 1 -1+s 1 0 = WMS 0 1 which is inver
M_
(¢] o 1 0 0 0 WMs 1 0 1 0 0 0 the equivalent
a form of degree M-1 if M 2 2; so we can make that M = 1. AY(
We can get rid of the constant term by using the equivalence
=)
Yo+ Y4y ¥ (1-s) + n¥is = (¥, + ¥+ ¥
ot ¥ys T gt ¥ys - Yplims) won¥gs = {Fy R T RIS
which is equir
To prove the last clause we consider the linear Y = Wls and write o for If we change '

* * *
n¥.. Then the symmetrisation A = ¥ + n¥ of ¥ becomes ¢ + (no -o0)s which is

1
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. c s : -1 % . .
invertible exactly if o is invertible and no ¢ -1 is nilpotent. Q.E.D.

THEOREM 2. There is a well defined biadditive pairing

L q(A[s]) x L, (B) (A ®B)

> L
2 2k 2q+2k

which assigns to the quadratic form Y = ZWisl over Als] with symmetrisation

A and the quadratic form { over B with symmetrisation )\ the quadratic form
waty = Ty, ® 07t

over A ® B. In particular it extends the familiar product of a symmetric

form with a quadratic form.
. . q k
PROOF. Again write n = (-1)7, e = (-1)".

We start with the observation that for a general form T = ZI‘isl over

Als] we have
AF oy = zr; o 12Tyt = zr: e Aen 5t
- EZF: o 2 (05 TN = eZF: o w 0N hha

Lyt = earo” oy

= e{sr, ® A(x"
i
Hence the symmetrisation of the image is

Wl & enOw oI = T + o = T

which is invertible since both A and A are. Furthermore if we change Y into

the equivalent Y + Z - nz* the image changes into
-1 -1 * -1
AY(A TP) 4+ Az ) - ndz (A TY) =
- - - *
a0l +oazo iy - nelzoTind

-1
which is equivalent to AY(X "¢).

da . .
If we change ¥ into the isomorphic ¢ Y¢ the image changes into
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- - - - 1 - -
A¢d(x 1W)W(A IW)¢(A 1w) = {9(X 1&)}(AW(A 1w)¢(x 1?)

: -1 . Ce oy s -
which is isomorphic to A¥(A "¢). Finally if ¥ is standard then AY (A 1w) is
also standard: in fact such a ¥ is induced from a quadratic form over A for

which this statement is well-known. Since our pairing obviously respects

direct sums we have proven that the class of the image in L2q+2k(AﬁbB) is
independent of the choice of the representing element for the class in
L2 (als]).

q

Now by Theorem 1 we may from now on assume that ¥ is of the type Os,
where ¢ is nonsingular, almost n symmetric; so XW(A_lw) is just o @ Y.

Firétly if we change ¥ by an isomorphism ¢ into ¢*w¢ then ¢ ® § changes
by the isomorphism 1 @ ¢.

Secondly the isomorphism K @ (F@Fd) S (K®F) ® (K@F)d which maps
a® (x,f) to (a®x, g(a)® f) lets g @ wF correspond with wK@F' So standard
forms are mapped to standard forms.

*
It remains to be shown that the equivalence ¢ ~ ¥ + [ ~ €L changes

0 ® ¥ into something in the same class; this will be a consequence of the

following lemma.

LEMMA. For every integer p 2 O there is an isomorphism @p and there are

forms Zp and Hp over A ® B such that
*
(bd(o@u;)du =0® (y+C-€C ) +2 -¢enz’ +H (Np+1®1)
P p p p P

, -1 * .
where N is no "0 - 1 and thus nilpotent.

PROOF. We apply induction. For p = 0 we take

*
®0 =1, Z0 = -0 ® HO = -g0 ® [ .

In general ¢p will be of the form 1 + N®(b1+... +bﬁ)®¢p and H_ of the form

d
c®8 + ® el . i ®
00 oN epl + If we assume all this for p then ¢p+1(0 w)¢p+1
becomes

*
0@ (Y+r-€C ) +Z - enz +H (Np+1® 1) +
p jo P

D
d, p+l d 3 d. p+l a
+ (N7) g ® ¢p+1¢ + i (N7) oN- ® ¢p+1w¢j +
p+1 K
p+1 d j p+t- - ad
+ ON ® o,y j£1 (N") “oN ® ¢jw¢p+1.

Now we rewrite (N7)

THE K-

d p+1O

+1
(ahHP o e o
*
+ e(no -—O)Np

and we want the last ter
of HP(Np+1 ® 1) hence we
7 by defining Zp+1 = zp

The remaining temm
as are the remaining ter
sible because Ndo can be

and H of the right fc

p+l

By viewing almost s
classifying the latter v
lence relation on them.

According to Theore
formulation of the produ
sufficiently coarse to ¢
‘Poincaré complexes in tt
plexes: As expléined in
o to a 2g-dimensional al
class in qu(A[s]). The
as taking the tensor prc
g = 1.

Both the inherent f
able for quzmake it prc
tions then L q(A) is.

One could hope that
to an honest (—1)q Symme
shows that this is not {
the ring A contains a c¢
Dedekind domain.

The two-dimensiona:
and hence to an element
1r1(T2) = Z X 2. Suppost

symmetric form o; then ¢

FrrwiSe W s o




I ===

: THE K-THEORY OF ALMOST SYMMETRIC FORMS 45

d, pt+l 4a
Now we rewrite (N )p o ® ¢ w + cN ® ¢¢

is {(Nd)P“oeqad v - eno NP ®¢¢ K.

for
* p+l

* pt+l *
+ g(no - 0)N @y ¢ + ON ® {(y+ey )¢p+1

uz

p+l
is
p+1 . p+1
and we want the last term ON ® X¢ to cancel the first term ON ® epo

of H (NE ® 1) hence we deflne op+l = —A 19 p0° The first term we absorb in
4, p+!
= + ®
S, 7 by deflnlng 2 1 Z (N ) o ¢ 1

P26 1y,

P
The remaining temm EONP ® w [} p+1 will be absorbed in Hp+ (N
anges as are the remaining terms of Hp(Np+l ® 1) and the I-terms. The last is pos-
4 -1
sible because N ¢ can be rewritten as —oN{(14N) ~. So there exists ¢P+1, pt1

f and Hp+1 of the right form. Q.E.D.

By viewing almost symmetric forms A as quadratic forms over Als] and
classifying the latter up to stable isomorphism we have defined an equiva-
lence relation on them.

according to Theorem 2 this relation is sufficiently fine to admit the
formulation of the product formula (for surgery obstructions). It is also

sufficiently coarse to define a bordism invariant of algebraic symmetric

o

Poincaré complexes in the sense of [R], hence one of geometric Poincaré com—
plexes: As explained in [c] we can associate an almost (—1)q symmetric form
o to a 2q—dimensional algebraic symmetric Poincaré complex and then take its
class in L2 (als]). The result is well-deflned on L q(A) since it can be seen
as taking the tensor product with the element of LO(Z[S]) represented by
o= 1.

Both the inherent periodicity in g and the wealth of techniques avail-
able for quzmake it probable that L2 (als]) is better suited for calcula-
tions then L () is.

One could hope that an almost (- 1)q symmetric form is always equivalent

e form to an honest (—1)q symmetric one; the following example, due to A. Ranicki

p+l shows that this is not the case. However we will see that it is the case if
the ring A contains a central element t such that t + T =1or if it is a
Egdekind dgggig. ) . . )

The two-dimensional torus T =8 x § gives rise to an element in L°(B),
and hence to an element in L (als]), where A is the integral group ring of
nl(Tz) = 7Z x 7. Suppose that this element could be represented by an anti-

symmetric form o; then O could be written as ¢ - ¢ the result ¢ ® VY of its
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*
action on a (-1)-quadratic form ¢ would be equivalent to ¢ ® (p~¥ ), hence

*
would depend only on the symmetrisation § - ¢ of Y. In particular it woulg

kill the Arf nontrivial element in Lz(z). On the other hand it follows frop

[sH] that multiplication with a circle induces a split injection on L-groupe

and hence the product with T2 gives a split injection Lz(Z)-+ L4(A).

SOME CALCULATIONS

A

THEOREM 3. If there exists a central element t of X such that t + £ = 1 then

the canonical map qu(A) > qu(A[s]) is an isomorphism.

s

PROOF. The map Als] + A substituting t for s gives a left inverse so we must

show that for any integer p = 0 there is an isomorphisfi ¢p and there are

forms z and 6 such that
P P

d * p+l
(os)¢_ = ot + - ng_ + oN° 6.
¢P ¢P CP CP b
For p = 0 we take ¢0 =1, EO'= os(l-t), 90 = (1-s)t. In general ¢p will be
of the form 1+oa N+ ...+ N° and 6 =8 _+6 N+8© N2-+... where the a,
1 P p p0 pl p2 i

and eij are polynomial in s and t with Z coefficients, hence central.

. 4
If we assume all this for p then ¢p+1(os)¢p+1 becomes

ot + ¢ - ne” + ol 4
p p P

+a wHPes o

— d)p+1
p+l

o (N OSQ,NJ +
Pl J

.
It~/

1
+1
P p+l

p+1
+ osup+1N + z a (N ) osap+1N .

+ +
(Nd)p 105 + Oso Np ! as

We rewrite o
p+l

- d, p+1 * P+l B
{ap+1(N ) os - no N ap+1(1 s)}

* p+1 _ _ pt+l
+ (no g)N ap+1(1 s) + o(s + (1 s))ap+1N

+1
Then we let the last term cancel the first term of cN 6 by defining

ap+1 = —epo and absorb the first term in [ by defining

_ p+1
Cp+1 = EP + a (N ) os.

THE K-1

4
The middle term on®

terms and the remaining t

M 4.
THEOREM =

ne

LO(Z[s]) z,
PROOF. Accordlng to Theor
Y of the type no s, where
z-module K. Thus N = no_

of finite index h in some

L
For x € L= = {x|a(

* e-1 '
since no N = = (0 +ON)N

oy ) =

i .
.Furthermore L ¢ L since

So ¢ induces a well-defi
ﬁ(x+L) = Nx + L hence N

Now L ® 2[s] is a ¢
If x = ijsj e X @ z[s]

of § then we have for al
0=2rxLetl, !
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. p+2 . . p+2
The middle term ON ap+1(1—s) is absorbed in oN 9p+1' as are the I
+1
terms and the remaining terms of ch ep. Q.E.D.
THEOREM 4.
Ly(2ls] =z, 1,zls] = (0).

PROOF. Accoxding to Theorem ! we may restrict attention to n-quadratic forms
*
Yy of the type no s, where 0 is an almost n-symmetric form on some f.g. free
-1 -
z-module K. Thus N = no "0 -1 satisfies N =0 for some e. Then N° 1K is

of finite index h in some direct summand L of K.

For x € Ll = {x |0(x)(L)==O} we have also o(L) (x) = 0 and vice versa,

* a-1 -1 -1
since no N® = (0+0N)Ne = on® implies
e-1 e-1
(N~ "y)(x) = no(x)N y), for y € K.
L d * .
Furthermore L ¢ L~ since oN = -nN 0 implies
- - -2
on® ) el = —no B (%) = 0.

~ 1 ~ ~
So ¢ induces a well-defined form ¢ on L' /L, and N = ng "0 -~ 1 satisfies
~ -1 ~e—1
N(x+L) = Nx + L hence TR e L implies N® = 0.

Now L ® Z{s] is a direct summand of K ® 2Z[s] which is isotropic for Y.

]

l .
If x = ijs € K ® 2z[s] is in (L®2[s])” for the symmetrisation A = ¢ + oNs

of y then we have for all £ ¢ L that
0=1rfel, ijsj) = zo(!_,xj)sj + I0(NL,x,) (1-s)s? = zo(e,xj)sj

hence xj e L', We see that U;@Z[s])l/UL®Z[s]) is just (LL/L) @ z{s] and
obviously the induced quadratic form E on it is just ng*s.

It is well known that y is stably equivalent to E and we have just seen
that the latter is associated to an almost n-symmetric form o which has a
better e. We can go on inductively until e = 1 which means that we get an
n-symmetric form.

It is also well known [SE] that a (-1)-symmetric form is stably trivial
and a (+1)-symmetric form stably isomorphic to some multiple m of the form

(1) of rank one. Finally m can be detected by taking the signature of the




"""llllIIllllllll"""""""_

=S
o

CLAUWENS

. . 1
qguadratic form over R which we get by mapping s to 5 Q.E.D.

: Now some general remarks about torsion are necessary. If we start with
a finite Poincaré complex P our module K gets a natural basis (see §6 of
(ch.

The symmetrization A of the associated quadratic form is o (1+Ns) and
according to Lemma 9 of [C] we have N2 = 0 and 1 + Ns has a resolution by
automorphisms 1 + ((—1)1E~1E*-‘1)s of the Ei which are simple; in particular
the isomorphisms involving N in the proofs of Theorems 2 and 3 are simple.
So the torsion of A lives in El(A) c El(A[s]) and the appropriate L groups
qu(A[s]) have X = Wh{p) in the general case and (0) in the case of simple
Poincaré complexes.

At the time this is written we do not have theorems as the above for
the odd~dimensional case. Note however, that if we did, we could use the
long exact sequence 9.4 of [R] for the L groups to calculate Ln(Z[p][s])
for p the cyclic group of prime order p > 2. If w denotes exp(2"i/p) and FD
is the field of p elements, there are maps from Z[{plls] to zZlwlls] and Z[sa
and from these to Fp[s] satisfying all necessary conditions. Since

Kz(FP[s]) = 0 according to Theorem 11 of [Q] and 9.13 of [M] the map
K (z[p]ls]) ~ ¥, (2lwlls]) ® K, (2[s])

is injective, so we may use the "simple" L-groups throughout and we get an

exact segeunce
. L (Fsh~1 z[plsD »1L_ ZlwllsherL (z[s])~»L (F {s])
n+l p n n n n-p

But Ln(Z[w][s]) = Ln(Z[m]) by Theorem 3, hence is known, and similarly
L (F [s) =1 (F).
n p n p

The author has now calculated Ln(Z[p][s]) for p cyclic.
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