repts for arbiresults are:
ruction of a
properties

THE K-THEORY OF ALMOST SYMMETRIC FORMS

F.J.-B.J. Clauwens

Comment. Math.

space,

1 (1974),

?, Amsterdam,

rect to a uni-72, 130-137,

INTRODUCTION

To motivate this paper we first recall a few facts.

According to [W1 , chapter 5] a normal map f between manifolds of dimension 2k and fundamental group π gives rise to a (so-called quadratic) form ψ defined on some finitely generated free left B module V, where B denotes the integral group ring $Z[\pi]$. The appropriate equivalence class of ψ in $L_{2k}^{}(B)$ is the obstruction s(f) for changing f into a homotopy equivalence by surgery (for k>2).

According to [C] a closed manifold P of dimension 2q and fundamental group ρ gives rise to a (so-called almost symmetric) form σ defined on some finitely generated free left A module K, where A is $Z[\rho]$. The main theorem there states that $\sigma \otimes \psi$ represents the obstruction for doing surgery on id ρ × f if ψ does so for f.

In this paper we will study the algebra of almost symmetric forms; therefore we first recall the main things about quadratic forms from [W2].

Orientability considerations give rise to a homomorphism $w\colon \pi\to \{\pm 1\}$. The map $-\colon B\to B$ defined by the formula $\overline{\Sigma_n} g=\Sigma_n w(g)g^{-1}$ satisfies $\overline{x+y}=\overline{x+y}$, $\overline{xy}=\overline{y}$ and $\overline{x}=x$. For such an involuted ring B the dual $V^d=Hom_B(V,B)$ of a left B-module V inherits the structure of a left B-module by (af) (v)=f(v) is the canonical map f(x)=f(x) defined by f(x)=f(x) is an isomorphism provided V is finitely generated projective. A form f(x) on V can be viewed as a homomorphism f(x)=f(x) then f(x)=f(x) is one such too.

<u>DEFINITION</u>. Let ϵ be a sign. An ϵ -quadratic form over B consists of a finitely generated free left B-module V and a class of forms ψ on V defined up to the equivalence $\psi \sim \psi + \zeta - \epsilon \zeta^*$. It is called nonsingular if the symmetrisation $\lambda = \psi + \epsilon \psi^*$ is an isomorphism $V \to V^{d}$. We call $(W, \phi^{d} \psi \phi)$ isomorphic to

42

 (V,ψ) if ϕ is a module isomorphism $W \to V$.

If F is f.g. free the quadratic form ψ on F \oplus F^d defined by $\psi_F(x,f) = (f,0)$ is nonsingular; any quadratic form of this isomorphism type is called standard. Now $L_{2k}(B)$ is defined as the quotient of the Grothendieck group of nonsingular $(-1)^k$ quadratic forms over B by the subgroup generated by standard such forms.

CLAUWENS

DEFINITION. Let η be a sign, A an involuted ring. A nonsingular almost η -symmetric form over A consists of a finitely generated free left A module K and an isomorphism $\sigma\colon K\to K^{\mbox{$\rm d$}}$ such that $\sigma^*=\eta\sigma(1+N)$, where N is nilpotent (compare [C; §9]). Again $\phi^{\mbox{$\rm d$}}\sigma\phi$ is considered to be isomorphic to σ for any module isomorphism ϕ .

ALMOST SYMMETRIC FORMS ARE QUADRATIC

Let A be an involuted ring, $\eta = (-1)^q$. We consider quadratic forms over the polynomial ring A[s] over A equipped with the involution — such that $\overline{\Sigma a_j} = \overline{\Sigma a_j} (1-s)^j$.

THEOREM 1. Any element in L_{2q} (A[s]) can be represented by a quadratic form Ψ which is linear in s. Any such linear Ψ can be viewed as an almost (-1) Ψ symmetric form.

<u>PROOF.</u> Let the element be represented by a quadratic form $\Psi = \Sigma \Psi_{\mathbf{i}} \mathbf{s}^{\mathbf{i}}$ of degree M in s. By the addition of a standard form and the use of an isomorphism we get (in matrix notation)

$$\begin{pmatrix} 1 & -s & \psi_{\mathbf{M}}^{\star} (1-s)^{\mathbf{M}-1} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \psi & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ -1+s & 1 & 0 \\ \psi_{\mathbf{M}} s^{\mathbf{M}-1} & 0 & 1 \end{pmatrix} = \begin{pmatrix} \psi - \psi_{\mathbf{M}} s^{\mathbf{M}} & 0 & -s \\ \psi_{\mathbf{M}} s^{\mathbf{M}-1} & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

a form of degree M-1 if M \geq 2; so we can make that M = 1. We can get rid of the constant term by using the equivalence

$$\Psi_0 \, + \, \Psi_1 s \, \sim \, \Psi_0 \, + \, \Psi_1 s \, - \, \Psi_0 \, (1-s) \, + \, \eta \Psi_0^\star s \, = \, (\Psi_1 \, + \, \Psi_0 \, + \, \eta \Psi_0^\star) \, s \, .$$

To prove the last clause we consider the linear $\Psi=\Psi_1^s$ and write σ for $\eta\Psi_1^*$. Then the symmetrisation $\Lambda=\Psi+\eta\Psi^*$ of Ψ becomes $\sigma+(\eta\sigma^*-\sigma)s$ which is

invertible exactl

THEOREM 2. There

L20 (A[

which assigns to Λ and the quadra

λΨ(λ

over $A \otimes B$. In p

PROOF. Again wrj

We start w: A[s] we have

λ**Γ***(

Hence the symme

λΨ(

which is inver

λΨ(

which is equiv

invertible exactly if σ is invertible and $\eta \sigma^{-1} \sigma^* - 1$ is nilpotent. Q.E.D.

THEOREM 2. There is a well defined biadditive pairing

$$L_{2q}(A[s]) \times L_{2k}(B) \rightarrow L_{2q+2k}$$
 (A \otimes B)

which assigns to the quadratic form $\Psi=\Sigma\Psi_{\bf i} {\bf s}^{\bf i}$ over A[s] with symmetrisation Λ and the quadratic form Ψ over B with symmetrisation Ψ the quadratic form

$$\lambda \Psi (\lambda^{-1} \psi) = \Sigma \Psi_{i} \otimes \lambda \cdot (\lambda^{-1} \psi)^{i}$$

over A \otimes B. In particular it extends the familiar product of a symmetric form with a quadratic form.

PROOF. Again write $\eta = (-1)^{\mathrm{q}}$, $\epsilon = (-1)^{\mathrm{k}}$.

ed

hism

for

We start with the observation that for a general form $\Gamma = \Sigma \Gamma_{i} s^{i}$ over A[s] we have

$$\begin{split} \lambda \Gamma^{*} (\lambda^{-1} \psi) &= \Sigma \Gamma_{\mathbf{i}}^{*} \otimes \lambda (1 - \lambda^{-1} \psi)^{\mathbf{i}} = \Sigma \Gamma_{\mathbf{i}}^{*} \otimes \lambda (\varepsilon \lambda^{-1} \psi^{*})^{\mathbf{i}} \\ &= \varepsilon \Sigma \Gamma_{\mathbf{i}}^{*} \otimes \lambda^{*} ((\lambda^{*})^{-1} \psi^{*})^{\mathbf{i}} = \varepsilon \Sigma \Gamma_{\mathbf{i}}^{*} \otimes (\psi^{*} (\lambda^{*})^{-1})^{\mathbf{i}} \lambda^{*} \\ &= \varepsilon \{ \Sigma \Gamma_{\mathbf{i}} \otimes \lambda (\lambda^{-1} \psi)^{\mathbf{i}} \}_{*} = \varepsilon \{ \lambda \Gamma (\lambda^{-1} \psi) \}^{*} \end{split}$$

Hence the symmetrisation of the image is

$$\lambda \Psi \left(\lambda^{-1} \psi \right) \; + \; \epsilon \eta \left\{ \lambda \Psi \left(\lambda^{-1} \psi \right) \right\}^{\star} \; = \; \lambda \Psi \left(\lambda^{-1} \psi \right) \; + \; \eta \lambda \Psi^{\star} \left(\lambda^{-1} \psi \right) \; = \; \lambda \Lambda \left(\lambda^{-1} \psi \right)$$

which is invertible since both λ and Λ are. Furthermore if we change Ψ into the equivalent Ψ + Z - ηZ^* the image changes into

$$\begin{split} \lambda \Psi \left(\lambda^{-1} \psi \right) &+ \lambda Z \left(\lambda^{-1} \psi \right) &- \eta \lambda Z^{\star} \left(\lambda^{-1} \psi \right) &= \\ &= \lambda \Psi \left(\lambda^{-1} \psi \right) &+ \lambda Z \left(\lambda^{-1} \psi \right) &- \eta \epsilon \left\{ \lambda Z \left(\lambda^{-1} \psi \right) \right\}^{\star} \end{split}$$

which is equivalent to $\lambda\Psi(\lambda^{-1}\psi)$. If we change Ψ into the isomorphic $\Phi^{\vec{d}}\Psi\Phi$ the image changes into

$$\lambda \Phi^{\mathbf{d}}(\lambda^{-1} \psi) \Psi(\lambda^{-1} \psi) \Phi(\lambda^{-1} \psi) = \{ \Phi(\lambda^{-1} \psi) \}^{\mathbf{d}} \lambda \Psi(\lambda^{-1} \psi) \Phi(\lambda^{-1} \Psi)$$

which is isomorphic to $\lambda\Psi(\lambda^{-1}\psi)$. Finally if Ψ is standard then $\lambda\Psi(\lambda^{-1}\psi)$ is also standard: in fact such a Ψ is induced from a quadratic form over A for which this statement is well-known. Since our pairing obviously respects direct sums we have proven that the class of the image in $L_{2q+2k}(A\otimes B)$ is independent of the choice of the representing element for the class in $L_{2q}(A[s])$.

Now by Theorem 1 we may from now on assume that Ψ is of the type σs , where σ is nonsingular, almost η symmetric; so $\lambda \Psi(\lambda^{-1} \psi)$ is just $\sigma \otimes \psi$.

Firstly if we change ψ by an isomorphism ϕ into $\phi^*\psi\phi$ then $\sigma\otimes\psi$ changes by the isomorphism $1\otimes\phi$.

Secondly the isomorphism $K \otimes (F \oplus F^d) \cong (K \otimes F) \oplus (K \otimes F)^d$ which maps $a \otimes (x,f)$ to $(a \otimes x, \sigma(a) \otimes f)$ lets $\sigma \otimes \psi_F$ correspond with $\psi_{K \otimes F}$. So standard forms are mapped to standard forms.

It remains to be shown that the equivalence $\psi \sim \psi + \zeta - \epsilon \zeta^*$ changes $\sigma \otimes \psi$ into something in the same class; this will be a consequence of the following lemma.

$$\boldsymbol{\Phi}_{\mathbf{p}}^{\mathbf{d}}(\sigma\otimes\psi)\,\boldsymbol{\Phi}_{\mathbf{p}} = \sigma\otimes(\psi+\zeta-\varepsilon\zeta^{\star}) + \mathbf{Z}_{\mathbf{p}} - \varepsilon \mathbf{n}\mathbf{Z}_{\mathbf{p}}^{\star} + \mathbf{H}_{\mathbf{p}}(\mathbf{N}^{\mathbf{p}+1}\otimes\mathbf{1})$$

where N is $\eta\sigma^{-1}\sigma^{\star}$ - 1 and thus nilpotent.

PROOF. We apply induction. For p = 0 we take

$$\Phi_0 = 1$$
, $Z_0 = -\sigma \otimes \zeta$ $H_0 = -\varepsilon\sigma \otimes \zeta^*$.

In general ϕ_p will be of the form $1+N\otimes\phi_1+\ldots+N^p\otimes\phi_p$ and H of the form $\sigma\otimes\theta_p0+\sigma N\otimes\theta_{p1}+\ldots$. If we assume all this for p then $\phi_{p+1}^d(\sigma\otimes\psi)\phi_{p+1}$ becomes

$$\begin{split} &\sigma \, \otimes \, (\psi + \zeta - \varepsilon \zeta^{\star}) \, + \, Z_{p} \, - \, \varepsilon \eta Z_{p}^{\star} \, + \, H_{p} (N^{p+1} \otimes 1) \, + \\ &+ \, (N^{d})^{p+1} \sigma \, \otimes \, \phi_{p+1}^{d} \psi \, + \, \sum_{j=1}^{p} \, (N^{d})^{p+1} \sigma N^{j} \, \otimes \, \phi_{p+1}^{d} \psi \phi_{j} \, + \\ &+ \, \sigma N^{p+1} \, \otimes \, \psi \phi_{p+1} \, + \, \sum_{j=1}^{p+1} \, (N^{d})^{j} \sigma N^{p+1} \, \otimes \, \phi_{j}^{d} \psi \phi_{p+1} \, . \end{split}$$

Now we rewrite $(N^d)^{p+1}\sigma$

$$\{(N^d)^{p+1}\sigma \otimes \phi$$

and we want the last ter of $\mathbf{H}_{p}(\mathbf{N}^{p+1}\otimes \mathbf{1})$ hence we z by defining $\mathbf{Z}_{p+1}=\mathbf{Z}_{p}$

The remaining term as are the remaining term sible because $N^d\sigma$ can be and H_{p+1} of the right for

By viewing almost s classifying the latter $\boldsymbol{\upsilon}$ lence relation on them.

According to Theore formulation of the production of the explained in the plexes: As explained in the class in $L_{2q}(A[s])$. The as taking the tensor production of $\sigma = 1$.

Both the inherent ${\tt f}$ able for L $_{\tt 2q}$ make it protions then L $^{\tt 2q}({\tt A})$ is.

One could hope that to an honest $(-1)^{\mathbf{q}}$ symmes shows that this is not the ring A contains a contains a contains a contains.

The two-dimensional and hence to an element $\pi_1(T^2) = \mathbf{Z} \times \mathbf{Z}$. Suppose symmetric form σ ; then σ

Now we rewrite $(N^d)^{p+1}\sigma\otimes\phi_{p+1}^d\psi+\sigma N^{p+1}\otimes\psi\phi_{p+1}$ as

$$\{\,({\scriptscriptstyle N}^d)^{\,p+1}\sigma\,\otimes\,\varphi_{\,p+1}^d\psi\,-\,\varepsilon\eta\sigma^{\textstyle \star}{\scriptscriptstyle N}^{\,p+1}\,\otimes\,\psi^{\textstyle \star}\varphi_{\,p+1}^{}\,\}\,\,+\,$$

and we want the last term $\sigma N^{p+1} \otimes \lambda \phi$ to cancel the first term $\sigma N^{p+1} \otimes \theta_{p0}$ of $H_p(N^{p+1} \otimes 1)$ hence we define $\phi_{p+1} = -\lambda^{-1}\theta_{p0}$. The first term we absorb in

sible because N $^{d}\sigma$ can be rewritten as $-\sigma N (1+N)^{-1}$. So there exists $^{\Phi}_{p+1}$, $^{Z}_{p+1}$ and H_{p+1} of the right form.

By viewing almost symmetric forms A as quadratic forms over A[s] and classifying the latter up to stable isomorphism we have defined an equivalence relation on them.

According to Theorem 2 this relation is sufficiently fine to admit the formulation of the product formula (for surgery obstructions). It is also sufficiently coarse to define a bordism invariant of algebraic symmetric Poincaré complexes in the sense of [R], hence one of geometric Poincaré complexes: As explained in [C] we can associate an almost $(-1)^{\mathrm{q}}$ symmetric form σ to a 2q-dimensional algebraic symmetric Poincaré complex and then take its class in $L_{2q}^{(A[s])}$. The result is well-defined on $L^{2q}(A)$ since it can be seen as taking the tensor product with the element of $L_0^{(Z[s])}$ represented by

Both the inherent periodicity in q and the wealth of techniques available for L $_{\rm 2q}^{\rm make}$ it probable that L $_{\rm 2q}^{\rm (A[s])}$ is better suited for calculations then L $^{\rm 2q}(\rm A)$ is.

One could hope that an almost $(-1)^{\mathbf{q}}$ symmetric form is always equivalent to an honest $(-1)^{\mathrm{q}}$ symmetric one; the following example, due to A. Ranicki shows that this is not the case. However we will see that it is the case if the ring A contains a central element t such that $t + \overline{t} = 1$ or if it is a Dedekind domain.

The two-dimensional torus $T^2 = S^1 \times S^1$ gives rise to an element in $L^2(A)$, and hence to an element in $L_2(A[s])$, where A is the integral group ring of $\pi_1(T^2) = Z \times Z$. Suppose that this element could be represented by an antisymmetric form σ ; then σ could be written as ϕ - ϕ *; the result σ \otimes ψ of its

the

is

for

is

anges

Hard

≥S

e form

p+1

action on a (-1)-quadratic form ψ would be equivalent to ϕ \otimes $(\psi-\psi^{\star})$, hence would depend only on the symmetrisation $\psi-\psi^{\star}$ of $\psi.$ In particular it would kill the Arf nontrivial element in $L_2\left(\mathbb{Z}\right)$. On the other hand it follows from [SH] that multiplication with a circle induces a split injection on L-groups and hence the product with T^2 gives a split injection $L_2\left(\mathbb{Z}\right) \to L_4\left(\mathbb{A}\right)$.

SOME CALCULATIONS

A

<u>PROOF.</u> The map A[s] \rightarrow A substituting t for s gives a left inverse so we must show that for any integer p \geq 0 there is an isomorphism ϕ_p and there are forms ζ_p and θ_p such that

$$\phi_{\mathbf{p}}^{\mathbf{d}}(\sigma \mathbf{s})\phi_{\mathbf{p}} = \sigma \mathbf{t} + \zeta_{\mathbf{p}} - \eta \zeta_{\mathbf{p}}^{\star} + \sigma N^{\mathbf{p}+1}\theta_{\mathbf{p}}.$$

For p = 0 we take ϕ_0 = 1, ζ_0 = $\sigma s(1-t)$, θ_0 = (1-s)t. In general ϕ_p will be of the form $1+\alpha_1N+\ldots+\alpha_pN^p$ and θ_p = $\theta_{p0}+\theta_{p1}N+\theta_{p2}N^2+\ldots$ where the α_i and θ_{ij} are polynomial in s and t with Z coefficients, hence central.

If we assume all this for p then $\phi_{p+1}^d(\sigma s)\phi_{p+1}$ becomes

$$\begin{split} & \text{st} + \zeta_{p} - \eta \zeta_{p}^{*} + \sigma N^{p+1} \theta_{p} + \\ & + \overline{\alpha}_{p+1} (N^{d})^{p+1} \sigma s + \sum_{j=1}^{p} \overline{\alpha}_{p+1} (N^{d})^{p+1} \sigma s \alpha_{j} N^{j} + \\ & + \sigma s \alpha_{p+1} N^{p+1} + \sum_{j=1}^{p+1} \overline{\alpha}_{j} (N^{d})^{j} \sigma s \alpha_{p+1} N^{p+1}. \end{split}$$

We rewrite $\frac{1}{\alpha}$ _{p+1} (N^d)^{p+1} σ s + σ s α _{p+1} N^{p+1} as

$$\{\overline{\alpha}_{p+1}(N^d)^{p+1}\sigma s - \eta \sigma^* N^{p+1}\alpha_{p+1}(1-s)\}$$

$$+ \ (n\sigma^{*} - \sigma) N^{p+1} \alpha_{p+1}^{} (1-s) \ + \ \sigma(s + (1-s)) \alpha_{p+1}^{} N^{p+1}$$

Then we let the last term cancel the first term of $\sigma N^{p+1}\theta_p$ by defining $\begin{array}{ll} \alpha_{p+1} &= -\theta_{p0} & \text{and absorb the first term in } \zeta \text{ by defining} \\ \zeta_{p+1} &= \zeta_p + \overline{\alpha}_{p+1} \left(N^d\right)^{p+1} \sigma s. \end{array}$

The middle term σN^{p+} terms and the remaining t

$$L_0(Z[s]) \cong Z$$
,

PROOF. According to Theory of the type $\eta \sigma^* s$, where z-module K. Thus $N = \eta \sigma^{-1}$ of finite index h in some

For $x \in L^{\perp} = \{x \mid \sigma(x) \}$ since $\eta \sigma^* N^{e-1} = (\sigma + \sigma N) N^{e}$

$$\sigma(N^{e-1}y)(x) =$$

Furthermore $L \subset L^{\perp}$ since

$$\sigma (N^{e-1}y) (N^{e-1}$$

So σ induces a well-defi $\widetilde{N}(x+L) = Nx + L$ hence N^{ϵ} Now $L \otimes Z[s]$ is a ϵ If $x = \Sigma x_j s^j \in K \otimes Z[s]$ of ψ then we have for al

$$0 = \lambda (\ell \otimes 1, :$$

hence $x_j \in L^1$. We see the obviously the induced quantity to see the contract of the second property of the se

It is well known that the latter is assobetter e. We can go on η -symmetric form.

It is also well kn and a (+1)-symmetric fo (1) of rank one. Finall The middle term $\sigma N^{p+2} \alpha_{p+1} (1-s)$ is absorbed in $\sigma N^{p+2} \theta_{p+1}$, as are the Σ

ar it would follows from on L-groups (A).

+ t = 1 then

e so we must mere are

will be \tilde{e} the α_i

THEOREM 4.

terms and the remaining terms of $\sigma N^{p+1}\theta_n$.

 $L_0(Z[s]) \cong Z$, $L_2(Z[s]) \cong (0)$.

PROOF. According to Theorem 1 we may restrict attention to η -quadratic forms ψ of the type $\eta\sigma^*s$, where σ is an almost η -symmetric form on some f.g. free Z-module K. Thus $N = \eta \sigma^{-1} \sigma^* - 1$ satisfies $N^e = 0$ for some e. Then N^{e-1} K is of finite index h in some direct summand L of K.

For $x \in L^{\perp} = \{x \mid \sigma(x)(L) = 0\}$ we have also $\sigma(L)(x) = 0$ and vice versa, since $\eta \sigma^* N^{e-1} = (\sigma + \sigma N) N^{e-1} = \sigma N^{e-1}$ implies

$$\sigma(N^{e-1}y)(x) = \eta \overline{\sigma(x)(N^{e-1}y)}, \quad \text{for } y \in K.$$

Furthermore $L \subseteq L^{\frac{1}{2}}$ since $\sigma N = -\eta N \overset{d}{\sigma}^*$ implies

$$\sigma(N^{e-1}y)(N^{e-1}x) = -\eta\sigma(N^{e}x)(N^{e-2}y) = 0.$$

So σ induces a well-defined form $\overset{\sim}{\sigma}$ on L¹/L, and $\tilde{N} = \overset{\sim}{\eta} \overset{\sim}{\sigma} \overset{\sim}{\sigma} - 1$ satisfies $\stackrel{\sim}{N}(x+L) = Nx + L \text{ hence } \stackrel{e-1}{N}K \subseteq L \text{ implies } \stackrel{\sim}{N}e^{-1} = 0.$

Now L \otimes Z[s] is a direct summand of K \otimes Z[s] which is isotropic for ψ . If $x = \sum x_i s^j \in K \otimes Z[s]$ is in $(L \otimes Z[s])^{\perp}$ for the symmetrisation $\lambda = \sigma + \sigma Ns$ of ψ then we have for all $\ell \in L$ that

$$0 = \lambda(\ell \otimes 1, \Sigma x_{j} s^{j}) = \Sigma \sigma(\ell, x_{j}) s^{j} + \Sigma \sigma(N\ell, x_{j}) (1-s) s^{j} = \Sigma \sigma(\ell, x_{j}) s^{j}$$

hence $x_{i} \in L^{1}$. We see that $(L \otimes Z[s])^{1}/(L \otimes Z[s])$ is just $(L^{1}/L) \otimes Z[s]$ and obviously the induced quadratic form ψ on it is just $\eta \sigma^*$ s.

It is well known that ψ is stably equivalent to $\widetilde{\psi}$ and we have just seen that the latter is associated to an almost η -symmetric form $\overset{\sim}{\sigma}$ which has a better e. We can go on inductively until e = 1 which means that we get an

It is also well known [SE] that a (-1)-symmetric form is stably trivial and a (+1)-symmetric form stably isomorphic to some multiple m of the form (1) of rank one. Finally m can be detected by taking the signature of the

ining

quadratic form over IR which we get by mapping s to $\frac{1}{2}$. Q.E.D.

Now some general remarks about torsion are necessary. If we start with a finite Poincaré complex P our module K gets a natural basis (see §6 of [C]).

The symmetrization λ of the associated quadratic form is $\sigma(1+Ns)$ and according to Lemma 9 of [C] we have $N^2=0$ and 1 + Ns has a resolution by automorphisms 1 + $((-1)^1\Sigma^{-1}\Sigma^*-1)s$ of the E_i which are simple; in particular the isomorphisms involving N in the proofs of Theorems 2 and 3 are simple. So the torsion of λ lives in $K_1(A) \subset K_1(A[s])$ and the appropriate L groups $L_{2q}^X(A[s])$ have $X=Wh(\rho)$ in the general case and (0) in the case of simple Poincaré complexes.

At the time this is written we do not have theorems as the above for the odd-dimensional case. Note however, that if we did, we could use the long exact sequence 9.4 of [R] for the L groups to calculate L (Z[ρ][s]) for ρ the cyclic group of prime order p > 2. If ω denotes $\exp(^{2\pi i}/p)$ and F is the field of p elements, there are maps from Z[ρ][s] to Z[ω][s] and Z[s] and from these to F satisfying all necessary conditions. Since $K_2(F_p[s]) = 0$ according to Theorem 11 of [Q] and 9.13 of [M] the map

$$\widetilde{\kappa}_{1}(\mathtt{Z[\rho][s]}) \to \widetilde{\kappa}_{1}(\mathtt{Z[\omega][s]}) \, \oplus \, \widetilde{\kappa}_{1}(\mathtt{Z[s]})$$

is injective, so we may use the "simple" L-groups throughout and we get an exact sequence

$$\dots \ \, \operatorname{L}_{n+1}(\operatorname{F}_p[\mathtt{s}]) \to \operatorname{L}_n(\operatorname{Z[\rho][\mathtt{s}]}) \to \operatorname{L}_n(\operatorname{Z[\omega][\mathtt{s}]}) \oplus \operatorname{L}_n(\operatorname{Z[s]}) \to \operatorname{L}_n(\operatorname{F}_p[\mathtt{s}]) \ \dots$$

But $L_n(Z[\omega][s]) \stackrel{\sim}{=} L_n(Z[\omega])$ by Theorem 3, hence is known, and similarly $L_n(F_p[s]) \stackrel{\sim}{=} L_n(F_p)$.

The author has now calculated L $_{n}\left(Z[\rho][s]\right)$ for ρ cyclic.

REFERENCES

- [C] CLAUWENS, F.J.B.J., Surgery on products, Indag. Math., <u>82</u> (1979) 121-144.
- [M] MILNOR, J., Introduction to algebraic K-theory, Annals of Math. Studies 72, Princeton University Press, Princeton 1971.

- [Q] QUILLEN, D., Hig
- [R] RANICKI, A., An 1975.
- [SE] SERRE, J.P., Con 1970.
- [SH] SHANESON, J.L., of Math.
- [W₁] WALL, C.T.C., S
- [W2] WALL, C.T.C., O forms, Pr

Q.E.D.

we start with (see §6 of

of (1+Ns) and solution by in particular are simple.

ite L groups

e of simple

above for d use the $_{n}^{\text{(Z[p][s])}} ^{\pi i}/p) \text{ and } F_{p}^{\text{[s] and } Z[s]}$ nce

1 we get an

e map

 $L_n(F_p[s])$...

ilarly

[Q] QUILLEN, D., Higher K-theory for categories with exact sequences, London Math. Soc. Lecture Note Series 11, 1974, 95-103.

[R] RANICKI, A., An algebraic theory of surgery, preprint, Cambridge, 1975.

[SE] SERRE, J.P., Cours d'Arithmetique, Presses Universitaires de France, 1970.

[SH] SHANESON, J.L., Wall's surgery obstruction groups for G \times Z, Annals of Math. 90 (1969) 296-334.

[W₁] WALL, C.T.C., Surgery on compact manifolds, Academic Press 1970, London.

[W₂] WALL, C.T.C., On the axiomatic foundation of the theory of hermitian forms, Proc. Cambridge Philos. Soc. 67 (1970), 243-250.

F.J.-B.J. Clauwens
Department of Mathematics
Catholic University
Toernooiveld
6525 ED Nijmegen
The Netherlands

1979)

ath. Studies

