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The aim of this paper is to determine how obstructions for surgery,
as introduced by C. T. C. Wall in his celebrated book [W1], behave with
respect to the operation of taking the cartesian product with a fixed
manifold P. We accomplish this, in contrast to other existing literature,
for the case of arbitrary fundamental groups, and in contrast to [R] in
a geometrical way.

In the following each manifold and Poincaré-complex will be under-
stood to be equipped with an orientation twisted by the first Stiefel-
Whitney class, or equivalently an honest orientation of the orientation
covering.

Let a finitely presented group G' and a homomorphism we: G — {+ 1}
be given.

DEFINITION: An n-manifold over (G, wg) is a pair consisting of an n-
manifold P in the above sense and a homomorphism o: my(P) — G such
that weo 1is the first Stiefel-Whitney class wi(P) of P.

There is an obvious concept of cobordism of such objects. We denote
the set of equivalence classes by 2,(G, wg); it is made into an abelian
group by the operation of disjoint union.

Equivalently one may look at the covering P of P induced by « together
with an orientation and a free action of G on P such that wg measures
the preservation of orientation.

121

=561




g

For calculations the following description is the most suitable one.
Given a space X with an involution ¢ we consider the bordism group
27 (X; 7) of n-manifolds together with an honest orientation, an orien-
tation reversing involution 7, and an equivariant map to X. Then we
take for X the double covering of the classifying space BG which is
induced by we and for v the covering transformation. In case wg is trivial
we so recover the classical identification of 2,(@, 1) with 2,(BG).

The following definition is found in chapter 9 of [W1].

DEFINITION: A4 surgery problem over (H, wy) is an object determined
by the following data: a finite Poincaré pair (X, dX) in the above sense,
a compact m-manifold with boundary (M, dM) in the same sense, a map
f: (M, 0M) — (X, dX) of pairs of degree one, inducing a homotopy equiva-
lence OM —> 0X, a bundle v over X, a stable trivialisation F of TM @ f*v
and a homomorphism §:m(X) — H such that waB is wi(X).

We will abbreviate this object to f. There is an obvious concept of
bordism between such objects; the set of bordism classes is made into
an abelian group by disjoint union and is denoted by Ln(H, wg).

Given objects as above one can construct a new surgery problem over
(G x H: wewp) determined by the following data: the finite Poincaré pair
(P x X, Px0X), the m+n manifold with boundary (P x M, P x OM), the
map idxf: PxM - PxX, the bundle vPx» over Px X, where yP
denotes the stable normal bundle of P i.e. a bundle with a framing F’
of TP @ vP, the framing F'xF of T(Px M) @® (1 x f)*»P x v)=(TP @
@»P)x (TM @ f*»), and the homomorphism « x f: my(P x X)=m(P) x
xm(X)— G@x H.

We will abbreviate this object to 1 x f. This construction is well defined
on classes and induces a biadditive pairing

Qn(G, we) X Ln(H, wy) — Lyym(Q x H, wWewn).

In this paper we study this map in the case that » and m are even: n— 2q
and m=2k.

We denote by 4 the integral group ring Z[G] equipped with the anti-
homomorphic involution ~ defined by the formula S ngg =1 we(g)nggt;
similarly one constructs B from (H, wy); then 4 ® B is associated with
(G x H, wewg). We then consider pairs (V, y) consisting of a stably free
left B module V and a nonsingular (— 1) symmetric quadratic form o
on V in the sense of [W2]. There is an obvious notion of direct sum of
such pairs. The Grothendieck group quotiented by the subgroup of
standard quadratic forms is denoted by La(B).

The importance of these concepts stems from the fact that for k> 2
a canonical isomorphism s: Lex(H, wr) — Lok(B) exists. If X is connected
and f is an isomorphism (which can be arranged by a bordism of f) then
s(f)=0 iff one can change f by surgery (i.e. a bordism that fixes X ) into
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a homotopy equivalence. For this reason s(f) is called the surgery ob-
struction of f.
In this paper we prove the following

THEOREM: There exists a free left A module K and a sesquilinear form
o on K such that ¢ ® vy is a nonsingular quadratic form representing s(1 x f),
where y is ome representing s(f).

The form o is nonsingular i.e. Ad(c) is invertible, and is almost (—1)
symmetric in the sense that (—1)4(Ad o) 1(Ad 6)t—1 is nilpotent. Further-
more (K, o) can be expressed in terms of the M. 1scenko/Ranicki [R) symmetric
Poincaré complex associated with P.

This tensor product of forms must be understood in a graded sense i.e.
(0® Y@ ® z,b® y)=(~1) o(a, b) ® p(a, y).

The paper is organized as follows: in section 1 we introduce some
notations; in section 2 we perform the low-dimensional surgery on id X f;
in section 3 we prove a few technical lemmas which are needed for the
computation of the mid-dimensional homology of the resulting surgery-
problem in section 4. In section 5 we establish a relation between the
data we used about P and the description of P on the chain level as in
[R]; in section 6 we describe the form o in these terms. In section 7 we
show how to represent homology-classes by immersions in the right
regular homotopy class and in section 8 we count the intersections, thereby
finishing the proof of the main theorem. Finally in section 9 we give
another description of the form ¢ and an example of application of the
theorem.

§ 1. DEFINITIONS AND NOTATIONS

We now consider a surgery problem f over (H, wyg) as in § 0. By a
bordism of f we can arrange X to be connected and g to be an isomorphism
(see [W1], p. 91), hence X is connected and simply connected. The groups
Hy(M) and Hy(X) have the structure of left B=Z[H] modules because
of the left H actions on M and X; fio: Hy(¥) — Hy(X) is a module homo-
morphism and is surjective since f is of degree one. We denote the kernel
by Ki(M).

By doing preliminary surgery we may suppose that f is k-connected,
hence that M is connected and simply connected and that K;(M) vanishes
unless ¢=/k; furthermore we may assume that Ki(M) is a free B module
with basis e, ..., e, say ([W1], p. 49).

Each ¢; € Ki(M) can be represented by an immersion g;: Sk x Dx(1) - M
together with a nullhomotopy ks of fog,( , 0). The regular homotopy
class of g; is well determined by the condition that the stable framing
of gs( , 0)*TM induced by the derivative of 95, together with the restriction
to S of the canonical framing of A}» corresponds under gi( , 0)* with the
given framing F of TM @ f*y.
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By general position we may assume that the g; intersect regularly i.e.
on an appropriate coordinate chart the intersection looks like (R* x 0,
0 x B¥) in R2%. By choosing a Riemann structure on M which is Euclidean
on the above-mentioned chart and by using the exponential map to
redefine g; we may assume that the g; are disjoint embeddings except
that for certain pairs of points (p, p’) and coordinate maps #,: (D¥(1), 0) —
—> (8%, p) and %, around those points and for certain y € H we have:

9i(no(x), y) =y7'95 (np'(y), x) for all z,y in DK(1).

We write D, and D, for the images of 5, and %, ; Dp(R) denotes the
np image of the disc of radius R.

Now we choose a C*® function » with values in [0, 1] on each copy
SF of the standard k-sphere such that for any intersection-pair {p, p’}
as above x=0 on Dy(}) and »=1 on Dy (}) or vice versa, and such that
» vanishes outside the images of the 7.

Now we define y by the formula y(e;, €)= Dyen (95-y195°)< ¥, Where -
denotes the ordinary intersection-number, which counts the number of
pairs (p, p') as above with multiplicity +1 or —1 depending on whether
7p’ preserves or changes orientation, and < means that we count only
those pairs for which »(p)<x(p’), hence »(p)=0 and x(p")=1.

If we count all pairs, we get the equivariant intersection-number
A(ej, ¢7). Since np changes orientation by a factor ep=(—1)kwn(y) ep- if
7p does so by a factor ey, we see that ey, e) — (e, &) =(— 1)* p(es, ¢):
a pair {p, p'} with »(p)>x(p’) such that g;(n,(x), y) =y 19, (np'(y), x) con-
tributes g5y to Ae, ¢); it can also be seen as a pair with x»(p’) <x(p)
such that g;-(np:(y), ) = ygs(np(x), y) and so it contributes epy1 to p(ey, ¢)
hence epry=(—1)k epp~1 to (—1)* plesy, ¢;).

This p extends to a pairing Kx(M)x Ki(M) — B which is sesquilinear,
i.e. biadditive and such that y(az, by)=by(x, y)a for », y € Kx(M) and
a,be B. For any left B module V, the dual Vé¢=Hompg(V, B) has the
structure of a left B module such that (af)(v)=f(v)a for a € B, fe V4,
v € V; in particular this applies to V = Ky(M). Saying that y is sesquilinear
is equivalent to saying that the map Ad(p): V — V defined by the formula
((ddy)x)(y)=y(z, y) is a module homomorphism.

The same applies to the symmetrisation 4 of y; since Ad(4) is an iso-
morphism one calls ¢ a nonsingular quadratic form [W2]. The class of ¢
in Lox(B) is independent of choices and defines s(f) (see [W1], p. 50).

For later use we introduce the notation g for the homomorphism V — V
corresponding to Ad under the isomorphism V — V¢ mapping the free
generators ¢ of V to their duals ¢; thus p(x)= X;_, v(z, ¢;)¢;. An inter-
section-pair {p, p'} with x(p)<x(p’) as above contributes (— 1)kepyles
to p(es). Notice that A(A-lyz, y)=y(x, ¥).

Now consider P. We suppose P triangulated; we denote the ¢-skeleton
by P;. In any C® neighbourhood of the identity one can find a diffeo-
morphism &: P — P which puts each simplex of P in transverse position
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with respect to the simplices of P. In particular PN Py_y 1 =0, EP; N P,
is discrete.

If we choose £ close enough to the identity, then we can find an isotopy
§: such that &=1id and &=¢: we embed P in some Euclidean space,
connect z and £x by a straight line segment, and project down to P;
if £ was chosen close enough to id this yields diffeomorphisms.

Now consider the path in the space of 0® maps P — P which is defined
by &1 for te[4, 1] and by &% for t [0, 1]: in any neighbourhood of
it we can find a path y with the same endpoints such that y puts the
product of [0, 1] and any simplex of P in transverse position with respect
to the simplices of P, and homotopic with it. If the path is sufficiently
close it consists entirely of diffeomorphisms.

Furthermore one can choose regular neighbourhoods S of P, ,, Q of
Pg1 and R of P; small enough so that

2([0, 1] x B) N S=x([0,11x Q) N Q=
ERNQ—(Q N R=0
S Cint (@) and Q C int (R).

We denote by P, the covering of P; induced by P; idem for Q, § etc.
Notice that our diffeomorphisms, being nullhomotopic, define unique
diffeomorphisms of P with similar properties.

§ 2. SURGERY BELOW THE MIDDLE DIMENSION

We define a map (;: P x Sk x D(}) - P x I by the formula

Oy, @, v) = (Exnpy, g, v)).

The (J; determine disjoint embeddings ©;: @ x §% x D¥() -~ P x M. For
suppose that Q(y, x, v)=(6 x y)L Qy(y', «’, v'): then Eupryy =0z yy’ and
gi(z, v) =y~1g;(2', v'). Unless z=2', v=2" and y=0"1y" the last formula
implies that for some intersection-pair {p, p'} we have zeD,, 2’ €D,
or vice versa i.e. x(z)=0, x(2')=1 or vice versa; hence we get a contra-
diction with £€Q N Q=0.

Hence we can use 2 to define a manifold by glueing:

W=PxMx[0,1]U Uj-1 @ x Df+' x Di(}).

Since £; is homotopic to 1 x g; we can extend 1 x f:PxM-—-PxX toa
map W — PxX; similarly we can extend the framing F, and axp
extends to an isomorphism 7 (W, *) ~ G x H by the van Kampen theorem.

Now oW is the disjoint union of d3_W >=~PxM and N=0.W ~
= (PXM—imQ)U -1 (@ x DE' x Sk-1(}) U Q x Di+1 x DE(3)).

THEOREM 1: The surgery problem N —> P x X thus obtained is (g+k)-
connected.
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PROOF: From now on we write Ki(W) for the kernel of the above-
mentioned map in homology: Hy(W)— Hi(Px X); similarly one has
Kz(PXM), Ki(N) ete.

We can construct a module map Hy(P) ® Ki(M) - Kix(P x M) which
maps {c} ® ¢; to the class represented by ¢ xg(9% x 0); this is an iso-
morphism by the Kunneth theorem.

Similarly we have a map

Hi(Q) ® Kx(M) — Kipa(W, Px M x[0,1]) = Ky (W, P x M)

mapping {c} ® ¢ to the class represented by ¢x Df*'x 0. This map is
isomorphic by excision and the Kunneth theorem.

From the way these maps are defined it follows that the following
diagram commutes

Hiy(Q) ® Ky(M) Hy(P) @ Kiy(M)

ch+i+1(W, Px M) _ K}cH(PXM)

where the upper horizontal arrow is induced by the inclusion @ C P. Since
Hy(P, Q)=Hy(P, Pg1)=0 for i <g—1, that map is a surjection for i <g—1
and an injection for ¢<¢—1, hence 0 is, as well. So Ky+(W) vanishes for
k+i<k+q-—1.

It is clear that the union of N and (Jj-, @ x Df*! x Dk(}) is a retract
of W relative to V; the intersection of these two is

Ui-1 {@ x i x S¥-1(3) U 3Q x D' x DE(})}.

Accordingly, we see that by retraction, excision and the Kunneth
theorem we have an isomorphism H;(@, 3Q) ® Ki(M) — Kix(W, N )
mapping {c} ® ¢; to the class of ¢x 0;x DE,

Since Hy(Q, 3Q) =~ H: () o2 H*(P,—1) vanishes for n—i>q ie. i<gq,
it follows that Ky (W, N)=0 for i+k<q+k.

Substituting the above results in the long exact homology sequence of
the pair (W, N) we deduce that Ky(N)=0 for ¢+ <q+k—1. Furthermore
the inclusion of N in W induces an isomorphism of fundamental groups:
the inclusion 0@ x D¥+1x S¥-1 C 3@ x D¥+1x Dt does, hence Q x Dk+lx
X §k=1 C Q) x DE+1 x §k-1 U 3@ x Dk+1 x Dk does by van Kampen, hence
Q x D+l x 8k-1 U dQ x Dk+1 x Dk C @ x D*+1 x Dk does, hence N C W does.

For a similar reason the inclusion P x M — W induces an isomorphism
of fundamental groups. Hence the isomorphism of = (M) and m;(X)
implies one of = (V) and 71 (P x X). Q.E.D.

§ 3. SOME MAPS AND DIAGRAMS

In this section we prove some results which are needed for the deter-
mination of Ky x(N) in the next section.
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LEMMA 1: Kix(W) is isomorphic to Hy(P, @) @ Ki(M).
PROOF: Kirst we note the existence of a homomorphism
Hy(P, @) ® Kp(M) — Kyi(W),

mapping {c} ® ¢ to Gi(cx Sk x0) Udcx DFF1x0C W.
Then the following diagram commutes by construction:

o Hia(P, )@ Kn(M) — Hi(Q) @ Ki(M) — Hi(P)® Ky(M) — HyP, §)® Ki(M)

v v v ¥
Ki+k+1(W) —> Ki+k+1(W, Px M) — Ki+k(P X M) —> KH_}‘:( W)

It follows that the map is an isomorphism, since we have seen in the
proof of theorem 1 that the other vertical maps are. Q.E.D.

LEMMA 2: There 1s a commutative ladder

Hy(P—Q)® Kx(M)~> Hy(P)® Ky(M) > HyP, P—§) ® K(M)— Hy1(P— ) ® Ky(IM)

|

Ky (N) ———— Kpp(W) ————s Kpp(W, N) Kip1(N)

Here the horizontal maps are the usual ones.

PROOF: We define the vertical arrows in step (a) and discuss the
commutativity of the three squares in the remaining three steps.

Step (@) We define a map ¥;: P xSt x Dt — P x M analoguous to &
by the formula Py(y, @, v) = (E1—way, gi(, v)). If w € D is of length % then
Yi((P—Q) xSt xw) CPx M is contained in the closure of Px M —im 0,
hence in N. For suppose that P(y, z, w)= (6 x )10 (y', ', v'), then
E1onfz)y = 06wz yy’ and g;(x, w) =yp-1g;(2’, v’'). The last formula implies that
either j=j’, x=2', w=1’, in contradiction with v’ € int (D¥3)), or for some
intersection-pair {p, p'} we have x € Dy(}), &' € Dpr(3) or vice versa i.e.
%#(x)=0, %(x')=1 or vice versa. But then the first formula says that
y=0"1y’, contradicting the fact that y € P—@ and 4’ € §. Thus ¥ deter-
mines a homomorphism Hy(P - @Q)® Ky(M)— Kin(N).

The second vertical arrow is the composition of the Kunneth isomorphism
HyP)® Kp(M) >~ Kii(P x M) and the inclusion P x # - W. The third
vertical map is the composition of the isomorphism Hy({, Q) ® Ki(M) —
— Kix(W, N) discussed in the proof of theorem 1, and the tensor-product
of the excision isomorphism Hy(Q, 8¢) ~ Hy(P, P—§) with (—1)%7.

Step (b) The commutativity of the first square is an immediate con-
sequence of the fact that ¥ is isotopic to 1xg; in Px M C W.
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Step (c) We have to prove the commutativity of the following diagram :

Hi(Q,3Q)® Kp(M) — Hy(P, P— Q) ® Ki(M) 7 Hi1(P-§)® Ki(M)
$ (= 1)¥%
Hi(Q, 3Q) ® Ki(M)

¥
Ki+k( W: N)

Kivr—1(N)

If we start with {c}® ¢ € Hi(@, Q) ® Ki(M) and go along the upper
side we get the class of Tj(dcx 8% xw)=0W(cx 8 xw) in Ky y(N).

Let A denote the union of the Dy(}) C 8%, where p runs through the
intersection points of g; with the g;. We will see that Pi(cx A xw) is
precisely the part of Wj(cx S¥xw)C Px M which lies in im (3); then
Pi(cx (Sk—A) xw) lies in N and can thus be viewed as an homology
between dWj(cx A xw) and 3¥j(cx Sk xw); subsequently we rewrite
i(c x4 xw) in terms of & and note that the result corresponds to the
other composition in the above diagram.

To prove these assertions we note that ¥j(y, z, w) = (6 x )10y, &, v')
implies that g;(x, w)=y-1g;(x', v'), hence that xe Dy(}), x' € Dp:(}) for
some intersection-pair {p, p'}; in particular, z € 4.

On the other hand such a pair with g;(np(a), b) =y-19;(np(b), a) for
a,be D¥(3) gives a contribution epy=(—1)kw(y)eyy to Ale, ), hence
epy~ley to (—1)ki(e;). Also we can identify the part e,%j(c x Dp(}) X w) of
Pi(ex St xw) with eyy10y(cx p’ x D(})) since x(p')=1 —x(p); this
represents eyyley in Kyu( W, N).

Step (d) We can use the foregoing calculation to prove the commu-
tativity of the following diagram

Hy(P)® Ky(M) - H(P, P-Q)® Kx(M) < Hy(§, 5§) ® Kx(M)
(—1)¥j

2
Kix(W) Ki(W, N)

An element {c} of Hi(P) can be represented by dy+da2 where d; C § and
ds C closure of P—{. The result on {c}® € of going along the left and
lower side to Kyx(W, N) is the image of ¢ x 8% x 0 under 1 x g; or equiva-
lently under ¥;. All but Pj(d;s x 4 x w) lands in ¥ and can be neglected ;
on the other hand, &,%(d1 x Dp(}) xw) can be replaced by emp-10;(dy x
x p’ x D¥(})) and those terms represent (— 1)¥7(e;) as we have seen above.

Q.E.D.
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LEMMA 8: There is a map Hy(R, §)® Ky(M) — Kyix(N) such that the
following diagrams commute:

HyR,Q)® Kuo(M)— Hy(P,Q)QKn(M) Hy(R)® Ki(M)->Hy(EB,§)® Ki(M)

l (@) l and l )]

Kop(N) ———s Kix(W) Hy(P—Q)® Kp(M) — Kii(N)
where the map Hy(R) — Hy(P—@Q) is induced by &.

PROOF: We start by defining the homomorphism w: Hy(R, §)®
® Ki(M) — Kix(N) which maps {¢}® ¢ to the class of Jy(cx 8% x 0) U
U 0c x Dt x 0 provided we choose the representing cycle ¢ in the closure
of B—@; that we end up in & follows from the fact that &R N @=REn
N &Q=9. By construction, then, the diagram (@) commutes. Now we
consider the two compositions U and V in diagram (b). There is a homo-
morphism Hy(RB) - Hyi(P, P— () which is induced by the map

([0, 11x B, {0, 1} x R) - (P, P— @)

which maps (£, y) to £&1&&w; furthermore Hyy(P, P — @) = Hya(G, 3Q)
by excision. Together with (—1)6: Ky(M) — Kp(M ) and the identifi-
cation Hi(Q, 0¢) @ Kp(M) =~ Kyinai(W, N), this defines a map

T: Hi(R) ® Kk(M) —> Ki+k+1(W, N)
We assert that U — V =03T'; this is illustrated in the following diagram:

i(R) ® Ki(M) )
1 v
Hin(P, P~ Q) ® Ky(M)
T I Hy(P Q) ® Kx(M) Hy(R, ) @ Kp(M)
Hi1(@, 0Q) ® Ky(M)
Kﬁll( W, N) 3 —= K u (V)

This assertion will be proved in the same style as in the foregoing. We
define a map [y: [0, 1]x P x Sk x D¥(}) - P x M by the formula

ity y, 2, v) = (En-sopbira-tiay, gi(z, v)),
then

(0, y, ,v) =)y, »,v) and [y(1, y, =, v)=TF(&y, z, ).

In this situation, 4 denotes the union of the Dy(}) C Sk where p belongs
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to an intersection-pair {p, p'} such that »(p)<w(p') i.e. x(p)=0. Then
I3[0, 1]x e x (Sk—A) x w) is a homology in N between

dIH([0, 1]x ¢ x A x w) C closure im ()

and
d1y([o, l]xchkxw)=]~’,(1xch’Cxw)——IN‘j(Oxch’cxw)z
= P(&c x 8% x w) — Fy(c x Sk x w),

which represents (U —V)(c® ¢).

To prove these claims we note that (t, Y, z, w)=(0x )10y, «', v')
implies gj(x, w)=y-1g;(a’, v') hence x e Dy(}), 2’ € Dy (3) for some inter-
section-pair {p,p'}. In case x(x)=1, »(2')=0 we further get Siy=0-1y’
contradicting &y € £E, y' € §, ER N §=0; hence x(x)=0 i.e. x e A.

On the other hand such a pair, with g,(5,(a), b) =y"1g;(np:(b), @) for
a, be Dk(}) gives a contribution e,y to p(e;, ¢;-) hence epy ey to (— 1)%ip(ey).
Also we can identify ep[y(txcx Dp(}) x w) with epy—10 (616w x 0 x
x D¥(})); hence ([0, 1]1x ¢ x 4 x w) represents T'(c ® ).

The map Z:[0, 11x [0, 1]x P — P defined by the formula

E(s, b, y) =& 2st Etr1-5) Ebpr—ayy for t<}
82 Eurs) Etiareryy for 1

satisfies

E(0, ¢, y) =£1&Ey for all ¢,
E(s, 0, y) =&y and (s, 1, y) =&y, for all s.

Accordingly, we may replace the map (f,y) > &6y in the above
statement by the map (¢, y) — &2, for ¢>} and &%y for t<1, hence by
t y) = 21y

This has the advantage that it shows that 7' factorizes over Hy(R, Q).
The above statement can now be read to say that U=V provided we
correct the original map Hy(E, Q) ® Kp(M) - Kyn(N ) by the term given
by either composition in the diagram

HyR, §) ® Kw(M)

J 1 ® (—1)kp
Hyu(P, IT Q) ® Ku(M) Y Hy(P—Q)® Ki(M)

Hy1(@, 3Q) @ Ki(M)

Kirena(W, N) Kein(N)

Notice that J-1 = (4d 1)-1(4d p) is independent of the choice of base {e;}.
This concludes the proof of the commutativity of (b); the commuta-

tivity of (a) is not disturbed by the addition of the correction term to w.

Q.E.D.
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§ 4 THE COMPUTATION OF Kg:x(NV)
We define K to be the cokernel of the map

(—& 1): Hy(B) > Hy(P- Q) @ Hy(R, §).
THEOREM 2: Kgii(N) is isomorphic to K @ Ky(M).

PROOF: According to Lemma 3b there are maps

U: H(P-Q) @ Ki(M) — Kpuz(IV)
and
V:Hy(R, §) @ Kp(M) - Kgui(N)

which agree on H,(£) ® Ky(M); hence there is an induced map
K® Ki(M) — Kgin(N).

This will be shown to be an isomorphism.
The following diagram has exact rows

Hyu(P, R) _~> H,(R)

|

Hgu(P, B) _.»H_,,R @) —— HyP, Q) —— 0

and the vertical maps are injective so
Hy(R, Q)/Hy(R) = Hy(P, §)/Hy(P).

The upper row of the next diagram is exact

Hq+1(Pa P—Q) *—0“9 q(P—Q) > Hq(p)
k l
Hen(P, P-) 29, g ) Hy(P, §)

The vertical maps are injective and their cokernels are isomorphic as
we have just seen; hence the lower row is exact. So we get an exact
sequence

0 —> Hgyy(P) - Hpy(P, P—-J) > K - HyP,J)—o0

Now consider the diagram

0 > Hya(P) @ Ki(M) - Houa(P, P—Q) ® Kx(M) > K @ Ku(M) > Hy(P, §) ® K(M) - 0

|

00— Kq+k+1(W) —> Kq+k+1( W, N) - Kq+k(N) —_> Kq+k( W) -0
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Of this diagram we know the following:
i) as we have just proved, the rows are exact
ii) the first and the fourth vertical maps are isomorphisms by lemma 1
iii) the second vertical map is so by the proof of theorem 1
iv) the first square commutes by lemma 2b
v) the second square commutes by lemma 2c¢
vi) the third square commutes by lemma 2a and lemma 3a.

The stated isomorphism now follows by application of the five lemma.
Q.E.D.

(To be continued)
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§ 5. CHAIN COMPLEXES ASSOCIATED TO P

We now prove a few lemmas which establish a relation between K
and the chain map which realizes the Poincaré duality of P.

LEMMA 4: The equivariant intersection-product A defines an equivariant
isomorphism o: Hy(P — Pu—y1, P—Pp4) — Hyo(Prs, Prs1)® which maps
d to (—1)idd.

PROOF: This is really a matter of stating the (sign) conventions.

Definitions of cup and cap-product are such as to make the following
relations hold on the chain level: (x U y) N a=a N (y N «) for any chain
«, cochains z,y; 0¥(x U y)=0%x Uy +(—1)% U d*y, where a=deg (x);
<%, a) =¢(x N «), where ¢ denotes augmentation.

From this follows that

Y N Oox=3(y N a)+(—1)®*y N «, where a=deg («)—deg (y)—1.

In particular: if « is an n-cycle then N « is a chain map from C* equipped
with (—1)1%: 7=t — O~ to (' equipped with d. The same holds when
0* stands for the boundary operator in the long exact sequence of a triple;
and the same holds for the Cech cap.

Hence the Poincaré-Lefschetz duality map

N [P]: HY (Pysy Ppiy) — H(P—Pyyy, P_P,y
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makes
(—1)0%*: He ™ (Pyy, Ppyr) — Hy Y (Pria, Pry)

correspond with
O:H(P—Ppyy, P—Ppy) > Hy(P—Ppy, P—Ppyy).

Moreover the naturality of the cap-product, applied to the left action
of y € @ on P implies that N [P] is equivariant if y € @ acts on Hj as Y
and on H™% as p*. Here p=w(y)y; we used that y,[P]=w(y)[P].

For any z € Hy Py, Pyy1) the map Hyi(Pns, Py-s—1) — Z[G] which
maps & t0 Dyea (¥, y"lx)y is a module homomorphism. This leads to a
map

Hy Py, Pu—iy) - Hui(Pyy, Pry)?

which is an equivariant isomorphism and makes (—1)®* correspond with
(—1)i0% The composite with (N [P])! is an equivariant isomorphism
Q- Hi(P_Pn—i‘l, P——Pn_i) —> Hn—*t(Pn—i, Pn_i_l)d which maps 0 to (-—— l)ibd.
Making use of the relation (x, a)=(x N [P])-a between cap and inter-
section product we see that p is precisely Ad (4).

DEFINITION: From now on C, will denote the chain complex such that
O¢=H1(P,,Pi‘1) and O:C; — Oy is the boundary operator of the triple
(P,, By, Pg_g) ; furthermore C* denotes the complex with Cn~t= (Cn—)? and
0= (—1)t0d: Cn—t — (Cn—t+1,

LEMMA 5: (o=0(£x): (Cy, 0) = (C*,0) is a chain equivalence.
PROOF: As we have just seen, g is an isomorphism between the obvious

chain complex with chain groups HyP —Pu 4, P—P, ;) and C*; e.g.

Hy(P, f“{jmi) = cokef : Hia(P— Py 3, P~ Ppyy) -
— H(P—Py i1, P—Pyy))

can be identified with coker (§: C~t-1 — On~t) using p, and in fact the
following diagrams correspond under o:

HyP Py yy) — Hy(P) ker § ——— ker d/im 6

| N

HyP Py 1, P—Pyy) > H(P,P—P,y) Cn—t — coker §

The diffeomorphism ¢&: P — P has the property that {-‘(f’i) C P-—P,,_H,
hence defines a homomorphism Hi(Pi, Pi_l) - Hi(P—-an_i, P——Pn_i)
respecting 0. Using ¢ we thus get a chain map f: (O, ) — (C*, 8). The
fact that & is homotopic to the identity map implies that it induces the
identity on Hy(P) and so an application of o tells us that {, induces an
isomorphism between H(C,,0) and H(C*, §). Q.E.D.
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LEMMA 6: There is an exact sequence

2@ Cpy > C1PC—K—0.

PROOF: According to lemma 5 the canonical map

im 6 @ O, R ker 6 @ C, =Hq(P—Pq—1)@Hq(PQ7Pq—1)
(—Co, 1)im d ~ (—Co, 1) kerd (— &4, 1)Hq(Py)

is an isomorphism; and in particular C¢-1 @ Cy maps onto K. Diagram
chasing now yields an exact sequence

O»kerb———»keré@Cq+1—5—>0‘1“1®04—>]{——>0
a

where a(x)=(—lox, z) and b(x, y)=(—x— Loy, 0Y)-
Lemma 5 now allows us to replace ker d by im 0 and ker é by im .
Q.E.D.
This invites us to make the following definition:

DEFINITION: The chain complex (B, dr) is given by the formulas
Ey=Cr-i-1 @ Cy, Ox(, y)=(—0z— Loy, 0Y);

the cokernel of d%™: By — By we denote by K.
This chaincomplex is acyclic according to lemma 5; hence K; is iso-
morphic to im dk=ker 05 ' and thus has a resolution

0—>K1—>~E¢_1 —>E¢..2—>... —>E_1—>O

by free modules; hence Kj; is stably free. On the other hand lemma 6
identifies K with K.

In order to identify g(é-!), we introduce the following notation. If @
is a homomorphism between modules 8 and V¢, the dual w? is one between
Vad and S¢; if V is finitely generated projective we can use the isomorphism
~. ¥ —» Vdd to identify this with a homomorphism w* between V and S%.
Given a map between a chain module S, and a cochain module V7 we
define Tw to be (—1)™w*.

Now for x4, ye Oy we get

(0(61)y)(@) =H(E71) uy> @) =AY, E42) = (— 1)MA(E42, y) =
= (— 1)o(g& @)(y) = (— L)*(Lox)(y) = (— 1)*F(Lo%)
= (—1)oe(£8g) () = (— 1)e2(Z8y) () = ((T'o)y ) ()

which means that g(é-1),=T¢. Hence, if we define {; by the formula
tic=px([0, 1]x c) we have the identity 1+ 10 =Co—T'lo.

In order to compare our {; with the ¢; of Ranicki [R], we consider
the chain complex 'C associated with the dual cell decomposition of P.
Then an isomorphism o:'Ct— Cn exists, defined by the formula
Mo(y), x)=y(x) for y € 'Ci, x €'Cy; it is a chain map ('C*, 6) > (U4, d).
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The associated map 7o satisfies MTo)y, z)= y(x) for yeC1, 2, and
Is also a chain map.
Now if ¢,: Crns — Ct-s ig defined in such g way that

OLs 4+ (— 1) 10d + (— 1)8(Zpy — Tls-1)=0

and if ¢s: '0f — "0y is defined by the formula ds=(— 1)®=98(Tw) s,
then we get the relation of [R]:

O+ (= 11~1hsd 4 (— 1ymto-1(g, ;4 (— 1)*Ts-1)=0.

§ 6. coNsTRUCTION OF THE SESQUILINEAR FORM ON K
The results of the last section are sufficient to prove:

THEOREM 3: There is a sesquilinear form on K which is determined by
the fact that the induced form o on Hyp(P—-P,,, PP )o@ Hy(P,, P, y)
18 given by the formula :

o((@, ), (+', ') =y, 02+ 40 + (E1) .y + 0y ([0, 1] Xy y').

PROOF: We construct a form on K,.
We start by identifying Fn-t-1— (Bn—s-1)% with O, @ C»*-1; under this
identification 0%: En-i-1 s pa-i is given by the formula

(@, ) = ((—1)+-1da, ddy — £3x).

We want to construct a chain transformation X (E, Og) — (B*, 0%)
such that

2(@, y)=(oay, B+ yil1y) for e Cr=i-1 e Oy

here «, 8, y are signs.
Since

OF Z(2, y) = ((~ 1)2-1dsy, — Eoouy + 0Bz +- dylry)
and
2 dg(x, y) = (x-10y, Bi-a(— 1)80%% — By Loy + y-1810y)

this works provided

ap=(—1)toy , B = (= 1)y
and
Bi-180— p4-1£10 — Edos + 0%yl =0,

But — Lo+ Cid+ (= 1)itm-0g% 1 (_1)t+13ar, — 0 g0 we must choose

Vi=pfr=(~ 1)1,
and
o= (= 1)in=0r+t6-1gy — (_ L)ine-D+in-0m-t-1g, .
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in particular oy=g;=y; if n=2¢. Thus
0% Z(, y) = org((— 1)®y, — 5y +dx+d41y) € Be for (z, y) € K.

Dualising the exact sequence Eg.; ~> B, — K, — 0 yields an exact
sequence 0 — Kg — Bt — Ea+l gince K, is finitely generated projective.
The map 0% X=X og: Eq — E¢ vanishes on im dg and maps into ker 0%,
hence factorizes uniquely over a map o: K, - K. Since X: E; — En—i-1
is isomorphic for all ¢ an application of the five lemma on the following
diagram tells us that ¢ is isomorphic

0 K B, E,.
q o g-1 dr -2
lo‘ 12 12
0 —— K¢—  Ba —6%_) Eatl

In other words 0% defines a sesquilinear form on E, which induces a
nonsingular one on its quotient K, denoted by o.
For @, 2" € Ce1 and y,y € Cy we get

ago((2, y), (&', ¥')) = oqlo(z, y))(&', y') =
=((—1)0y, —{y+ 0% +d¥1y)(x', y') =
=(—1)22'(dy) — (L8y)(¥') + (0%)(y") + (d%ay)(¥').

With the aid of ¢ this defines a form ¢ on
Hoy(P—Pyg, P—Pya) © Hy(Py, Poa)
such that

aqo((%, y), (%', y')) = (— 1)2(ex") (dy) — (Sy)(y") + (d%)(y") +
+(%%y) (")

We can rewrite the terms as follows

a) (—=1)9(e2")(0y) = (= 1)UA(2', 0y) = — 2(3«’, y) = (— 1)e*1](y, dx’)

b) (=8y)y)=— (N )= 9w’ ) =
=~ (Coy')(¥) = — (0¢,y")(y) =
= —'1(5*?/, y) = ( — 1)‘”'11(?/, 5*?/’)
=(=1HAUED ey, ¥).
¢) (0%x)(y')=(ox)(dy") = A(z, Oy") = (— 1)7+12(dz, y')
d) (Q%y)(y') = (C1y)dy’) = Ax4([0, 1] x y), 3y’)
= (— 1)2*14(0yx, ([0, 1] x y), ¥').

We thus fix a; to be (—1)etl, Q.E.D.

§ 7. THE REPRESENTATION OF Kgx(N) BY IMMERSIONS
In section 4 we have seen that Kyz(N) is generated by elements of the
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form ¥;(dc x 8% x 0) where ¢ € Hyri(P—8, P—@), or {(d x St x 0) where
d € Hy(R, @). In this section we show how to represent these classes by
framed immersions of (¢+ k)-spheres in a way given by the normal data.
An element ¢ € Hy(P—8, P—@) can be represented by a framed
immersion ¢: D2+l — P—§ such that e=d¢ maps 8¢ into P—.

LEMMA 7: The framing of Pj(e x id x w): 8¢ x 8% — N got by composing
Y. (P—Q)x M ~> N with the framed immersons e: S1x Dt — P_§ and
gs: 8k x Dk —> I is in accordance with the normal data.

PROOF: In step 1 we show that we may use S¢x S¥ instead of S+t
to measure intersections; in step 2 we check the framing.

Step 1: We consider the map ¥j(e x id X w): S¢x 8% — N. The image
in P xX of this map factorizes over Px M C W; but in Px M it is
homotopic to e xg;; furthermore e is nullhomotopic in P and fg; is so
in X; hence the afore-mentioned image in P x X is nullhomotopic. Now
if ze 8¢ is some fixed basepoint the same is true for the restriction to
zx Sk. Since the map N — P x X is highly-connected there exists a null-
homotopy of (e x id x w): z x Sk — N whose image in P x X is the afore-
mentioned nullhomotopy. All this means that ¥j(e x id x w) can be ex-
tended to a map S7x8¥ U zx D¥1>N whose image in P x X is null-
homotopie.

Let 4 be a little disc around 2z in S¢ and consider ¥ =8¢ x 8% x [0, 1] U
U 4 x D¥1 which is a (¢+k+1)-manifold with boundary consisting of
S2x 8% and Se+k. Using a homotopy-equivalence with the situation de-
scribed above we conclude that there exists a map ¥ — N whose image
in PxX is nullhomotopic in such a way that this situation extends
Pj(e x id x w) and its nullhomotopy in P x X. This yields a commutative
diagram of maps

Y— N

S

cone on ¥ > PxX

Furthermore the tangent bundle 7'Y has a canonical framing extending
the well-known stable ones of 7'(82+*%) and 7T'(8? x S¥). Hence, the above
diagram determines a regular homotopy class of immersions ¥ — N in
the way of theorem 1.1 of [W1]. By restriction to the boundary part
8%tk one gets a framed immersion of it, and the framing is determined
by the normal data in the way of the above-mentioned theorem 1.1.
We may assume that the immersed Y intersect each other and themselves
regularly i.e. along arcs ending on the boundary; this implies that both
boundary parts have the same intersection behaviour and in particular
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determine the same quadratic form. Therefore we may use the 89 x Sk
boundary part to determine the quadratic form.

Step 2: The restriction of the above diagram to the 87 x 8% boundary
part yields:

SexSk—  PxM—-imJCN

BN

Cone on S7x 8% Px X

It is more convenient to work with the inclusion of 8¢ x S in De+l x Dk+1
instead of the inclusion of 8¢x S* in its cone. The map on Do+l x D+l
is then ¢ x k;, where k; is the nullhomotopy of g; in X. Furthermore, we
note that everything takes place in P x M, and there Pile xid x w) is
isotopic to exg;( , 0).

Hence the framing is determined by the diagram

=

Sa x Sk

exg( ,

><'<-—‘><

Datl x Dk+1

Cth

In order to show that the framing of (e x g( , 0))*T(P x I} determined
by this dlagmm is equal to the product of the framing of e*T'P orginating
from ¢*TP and the framing of g;( , 0)*7 I determined by the normal data
for f, we must show that the sum with the framing of

(exgi( , 0)*(Ax /*(@P x»)

originating from c*»P x hfy equals (exg( , 0))* applied to the trivial
framing of TP @+P and the framing F of TM @ f*».

Well then, this equality is the sum of the one determining the fra,mlng
of g;( , 0)*T' M and the one which says that the framing of e*TP @ e*yP
originating from the bundle c*TP @ c*»P over the disc is Precisely e*
applied to the trivial framing of TP @ »P. Q.E.D.

An element d € Hy(R, §) can be represented by an immersion d: D? — B
such that 0d maps Se¢-1 into @.

LEMMA 8: The framed immersion (y(d xid x0): Dax Sk — K& got by
composing O with the framed immersions d: Dt x Dt — R and g;: Sk x Dk— M

18 the restriction of a framed immersion 81tk — K in accordance with the
normal data, and has no further selfintersections.
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PROOF: The image of d ® ¢; under the original map
w: Hy(R, @) @ Ki(M) — Kgr(N)

is represented by the map v: Se+% — N which is the union of ;(d x id x w):
D1 x 8k —» Ng and d x id x w: 821 x Dk+1 > @ x D+l x 81 C Ny (where Ny
denotes P x M —im Q and Ny =N — Ny), together with a nullhomotopy of
v in Px X, as is summarized in the diagram:

D2 x Sk U Se-1 x D+l N=NouU N

l dxh,v l

Da x Dk+1 PxX

One can write down an explicit formula for a framing of » which is as
stated on the first summand; to check wether it is the right one it is
sufficient to check the framed immersion which one gets by composing
with the collar ¥ x(0,1)C W.

Secondly one notes that W x (—2,2) is constructed from P x M x
x [0, 1] (—~2, 2) by attaching @ x Dj** x D¥(}) x (—2, 2) according to the
map @ x 8% x DE(}) x (=2, 2) > P x M x (—2, 2) which maps (y, 2, v, o) to
(&)Y, 9i(x, v), 0); this embedding is isotopic to the one mapping (y, z, v, o)
to (¥, gy(x, v), 750 +#(x)). The last one is defined for all y € P; thus we
get an embedding W x (—2,2) C P xT where

T =M x[0,1]x(—2, 2) U Dt+1(2) x DE(L) x (—2, 2)

identifying (zz, », ¢) with (gs(z, v), 2—7, {50 +=(x)) for T e[l, 2], xSk,
Furthermore the normal map extends to P x7T so we can test things
there. But the corresponding immersed sphere lies in the dise formed
by d and the second term of 7' as described above. In fact it is immersed
there in a standard way i.e. extendible to an immersion of D¥+etl; that
is just what the normal data prescribe. Q.E.D.

§ 8. COMPLETION OF THE PROOF

By subdividing the triangulation of P if necessary we can make certain
that K=K, is free; we choose a base f, ... f{p of K. Any f; can be seen
as the image of {a;}+ {b;} where {a;} € Hq+1(P -8 P- Q) and {b;} € Hq(l?, Q).
To be more precise we denote by

t: the map Hy(P—8, P—Q) @ Ki(M) - Kgi(N)
w: the uncorrected map Hy(R, @) @ Ky(M) — Kqix(N)
o’: the corrected map Hy(R, @) @ Kip(M) — Kgir(N).

Then there is a basis of K,x(N) consisting of the elements corresponding
to the f; ® ¢; i.e. the elements
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{as} ® )+ o' (b} ® &) =u{a} @ 5+ 35 (P)ssfer) ® e5) +
+To({b} ® ),
where {c;} denotes y, ([0, 1]x {b;}).

We must represent these basis elements by immersions consistent with
the normal data, define an ordering for the intersection pairs, and count
the intersections.

First we construct the immersions. We have denoted the i-skeleton
of the triangulation by Py; similarly we denote the i-skeleton of the
dual linear cell complex by ;P. Since 1P NPy o=0 we may assume
that § was chosen such that a1 N S=0; similarly there must be a
small regular neighbourhood Z of ;P such that Z N @ =9. Furthermore
we write ¢ for P—,P.

Now we consider a disc @ obtained from a (9+1) cell of 441 P by deleting
a small collar along the boundary which is contained in Z. Then a C Q.S
and da C Z C P—@ hence (a, d2) C (¢, -3, §, —@). By homotopy equiva-
lence it follows that the corresponding element of H,(Q' -8, §'—§) is
spherical if ¢’ is some regular neighbourhood of P,y containing @; we
may assume that @' N &0’ =0. So we can represent this element by a
smoothly embedded disc & C @’ —S such that da C Q' — @ meets P, trans-
versally.

The element {a;} € Hy1(P—8, P— @) which is a combination of such
cells can, thus, be represented by joining such embedded disc using
suitable ribbons inside ' — Q. This is possible since the inclusions @' —Q C
C Q’—Pq_l C @' C P induce isomorphisms on ;. The same goes for the
{ci}. We have shown that £a; N ag =Eay N cp =Ec; N ay = 0.

The element {b;} € Hy(R, ) is a sum of g-simplices of P,. Therefore we
consider the discs obtained from these simplices by deleting collars along
the boundaries contained in J; we then join them by suitable ribbons
inside Q——qu. Since b; looks like these simplices outside § it meets
Oayr, Oci or &by transversally.

The foregoing discussion combined with the theory of the last section
tells us how to construct the immersions. To define an ordering for the
intersection pairs we can restrict our attention to the individual terms
in the formuls for ¢; ® f;; we define the ordering with the aid of a real
valued function, like our former ». For the a; and b; term, where the
immersed manifold is 8¢x 8% resp. D¢ xSt we define this function by
projecting to S* and using x; for the ¢; term we use x— 2.

We are going to count the intersections between

{a} ® e+ 3 (I-19)s{ci} @ e5) +o({bi} @ )
and

e} ® e+ 3o (I 1p)ysr{or} @ esr)+o({b} @ ep).
1} Since &a; N y~la; =@ there is no intersection between ?’j(bai x 8k x 0)
and (y x 0)2%;(das- x S¥ x 0) and hence no contribution from {ai} ® ¢)
and «({arr} ® ey); the same is true for the other ; terms.
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2) In order to intersect ¥;(da; x S x 0) with (6 x )13 (by x S¥ x 0) we
have to solve g;(x, 0)=y~lg;(a’, 0), 2(x) <x(zx’) and &1y =01z y i.e.
y=0"1y'; so we get a contribution (—1)¥A(da;, bi) ® (e, ¢-) from the
terms i({a;} ® ¢) and o({b} ® ¢). Similarly we get a contribution
(—1)*aA(bs, 0ar) ® (e, ) from w({bi} ® ¢) and «({ar} ® ).

3) The terms «({c;} ® es) and w({bi'} ® ¢;) lead to a similar equation,
but with %(x) — 2 <x(«'), which is universally true; this yields a contribution
(—1)*2A(ci, bi') @ Ales, 7). The terms w({b;} ® €) and i({c;} ® &) lead to
the impossible formula x(z)<#x(z')—2 and give no contribution. Since
M3 (A-19)js6s, 1) =(es, ¢5v), the full contribution from the correction term
is (—1)%a(cs, bi') ® yley, &).

4) In order to intersect O;(b; x S¥) with (6 x )10y (b x 8%) we have
to solve s;(z, 0)=y1g;(x’, 0), x(x) <x(x') and Lemy =01y, ie. y=£&y';
so we get a contribution (— 1)%2A(6-1b;, by') ® (e, €) from w(b; ® ¢;) and
w(bi' ® ej').

Comparing the above result with that at the end of § 6 we see that the

total intersection is o((ai, by), (av, bi')) ® p(e;, ¢7) up to a factor (— 1)k,
This concludes the proof of the theorem.

§ 9. SOME REMARKS AND AN EXAMPLE
LEMMA 9: The form o is almost (—1)2 symmetric in the sense that it
satisfies o*=(—1)20(1+7r), where r is nilpotent.
PROOF: From the defining formula
2(x, y)=(ouy, Pix+ Pil1y) for xe Cr-t-1 ye C;
it follows that

2* (2, ¥) = (Bn-t-1Y, dn—1-1Z+ Bn—1-181Y)
= (= 1)irC-D(xy, Bz + (T 1)y),
where

(Tl1)y=(— L)ittn=t-1(7y,

Thus 21X*=(—-1)ir-D(1+7r) where r(z, y)=(T{)y—C1y, 0), hence
72=0. For n=2q this implies that ¢ is indeed almost (—1)¢ symmetric.
Q.E.D.

Let us look at the algebraic properties of such an almost (— 1)? symmetric
form o.

THEOREM 4: Tensor product with an almost (—1)2 symmelric form
induces a well-defined map Log(B) — Lagi24(4 @ B).

PROOF: If y is a nonsingular quadratic form with symmetrisation
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A=y (—1)yp* then o ® v has symmetrisation
Y v Y

0Q p+(—1)it0* @ p*=0 @ (p+(— 1)kp*)+
F(=1F(—1)0* ~0) @ p*=0 @ A+ (—1)ior @ p*
=(0 ®@ (1 +(—~1)kr @ A-lp*),

which is invertible, hence o ® p is nonsingular.
In the following computation we restrict ourselves to the case r2=0;
then (¢+or)r=0r and

1 —r=(1+r)=((—1)0-16%)1=¢1((— 1)1g(c*)1)o =
=0 Y1+r*)o=1-+ o lr¥g,

hence r*or= —gr2=0.
For any ¢, 0 ® y is isomorphic to

(1—r @ F)*0 ® p)(l—r ® A1) =
=0Q p—0r @ pilp—ric ® (A-lp)*p

which is equivalent to

0 Q@ y—or ® pilg—(—1)ktgtyr @ p*i-l =
=0Q yp—0r @ pi-lp—(—1)kor @ p*i-lg=
=0QY-0r@¢=0Qy+0® ¢—(—1)i0* ® $,

which is equivalent to o ® (W+d—(—1)kp*).
Furthermore (1 ® ¢)*(oc ® y)(1 ® $)=0 @ *pd, and ¢ ® preserves
isotropic subspaces. Q.ED.

Now we discuss another interpretation of (K, ¢). The map Hy(R, Q) —
— Hy(P -1, Q) induced by inclusion and the map Hy(P-§) —
— Hy(P—-&1@, ) induced by &1 agree on Hy(R) hence yield a map
K — Hy(P-£1Q, §). The following diagram commutes and has exact
rows.

|
1 or &1 &1

0 — Hy(P) — Hya(P, P—£10) HyP - £1Q, §) -~ Hy(P, Q)—o0

0 — Hy(P) — Hypy(P, P—§) K HyP, ) -0
| )
¢

DI

An application of the five lemma tells us that K =~ Hy(P -1, §).
On the one hand there exists an intersection-pairing between

Hy(P—&1Q, §)=Hy(P— 10§, 30)

and

Hy(P~§, £Q) = Hy(P - 1§ - §, 5£-1)).
On the other hand there exists a map

Hq(P—f_IQ, Q) - Hq(P—Q, E‘IQ)
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which maps the chain ¢ to the chain & — y([0, 1] x d¢), since %([0, 1] x @) C
C P—(. Together this defines a form on H,(P —&1@, ). If we pull this
form back to Hyu(P—8, P—Q) ® Hy(R, §) then we get precisely the
formula at the end of § 6. Hence the above construction describes o.

We conclude this paper with an application of the foregoing theory.

EXAMPLE: We take H={l,¢} and wgu(t)= —1.
The map Lox(B) = Logsog( B[H]) induced by multiplication with real
projective 2¢q space is precisely tensoring with #e,

PrROOF: This P has a cellular triangulation with one cell in each
dimension < 2¢; hence C; is a free Z[H] module of rank one for 0<7<2g;
thus E; is free of rank two if 0<7<2¢—1 resp. one if i=—1 or 2¢. So
we deduce inductively from the existence of an exact sequence 0 — K1 —
— By — K; — 0 that K; is stably free of rank one for 1<7<2q, hence
free; Ko=E_; is rank one since K_; CE_3=0. But any almost (—1)? sym-
metric form ¢ on a free module on one generator e is of the form o(e, €)= +1
resp. + ¢ if g is even resp. odd, where ¢ is the generator of H. Both choices
of the sign are equivalent since o(le, te) =to(e, )t = —o(e, ¢). Q.E.D.
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