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1. INTRODUCTION 

The aim of this paper is to determine the Arf invariant of the quadratic 
form associated to a Brieskorn-Pham singularity, as described in 
Corollary 4 of [ 11. By quadratic form we mean a triple ( V, B, Q), where 

V is a vectorspace of finite dimension over the field F of two elements, 

B: V x V + F is a bilinear map, and 

Q: V + F is a function such that Q(x + y) = Q(X) + Q(y) + B(x, y) 
for all x, y E V. 

In particular B(x, x) = 0 and B( y, x) = B(x, y) for all x, y E V. 
Two such triples (V, B, Q) and (V’, B’, Q’) are called isometric, denoted 

by =, if there exists a linear isomorphism A: V+ v’ such that Q’(Ax) = 
Q(x) and so B’(Ax, Ay) = B(x, y) for all x, y E V. 

From two such triples (V,, B,, Q,) and (V,, B,, Q,) a third one 
(V,, B,, Q3) can be constructed by taking V, = V, x V,, B,( (x1, x,), 

(Y,, .d)=B,(xl, Y~)+BA%~ ~4, Q,(b,, xz))=Ql(xl)+ Qh). This 
construction is called orthogonal sum and denoted by 1. 

Any quadratic form (V, B, Q) is isometric to a repeated orthogonal sum 
of the following four types: 

(a) V, has basis (e,, f,> and B,(e,, f,) = 1 and QAeJ = Qa(fo) = 0, 

(b) Vb has basis {eb,fb} and Bde,,f,)= 1 and Qb(eh)= Qb(fb)= 1, 
(c) V,. has basis {e,.} and Q,(e,) = 0, 

(d) Vd has basis (ed} and Qd(ed) = 1. 

The summands of types (c) and (d) together form the kernel of (V, B, Q): 
the set of x E V such that B(x, y) = 0 for all y E V; its dimension is called 
the corank of (V, B, Q). 

534 
0021-8693/87 $3.00 
Copyright 0 1987 by Academic Press, Inc. 
All rights of reproduction in any lorm reserved. 



ARF INVARIANTS OF SINGULARITIES 535 

If the kernel contains an element x such that Q(x) = 1, i.e., if type (d) 
occurs as summand then we say that the quadratic form has Arf invariant 
undefined, denoted by co. Otherwise the Arf invariant is the number 
modulo 2 of summands of type (b). 

The Arf invariant is indeed an invariant of isometry since it is 0, 1 or cc 
according as r( I’, B, Q) = C,, V( - 1) Q(r’ is positive, negative, or zero. It 
also determines a quadratic form of given dimension and corank up to 
isometry since: 

(v<,, B,> Qd-( f’c,, B,, !A) = (f’,, B,, QcJU v,> B,., Q,.L 

( v,, B,, QdU f’,> B,, Q/,) = (vu, B,, QcN( v,, B,> Q,), 

(VI,> B,, Q/N-( v,, B,, Qti) = (vu, B,, Qo,l(J’c~, B,, QcA. 

Given natural numbers f, a,, a2 ,..., a, the Brieskorn-Pham singularity 
f’: C’-+ C is defined by f(~,, z2 ,..., z,) = xi=, (z,)+. According to [l] the 
following quadratic form (V, B, Q) is associated to this singularity: V has a 
basis of elements e, associated to sequences IE Z’ such that 0 < I(k) < ak for 
k = 1) 2,..., 1; 

We,, e.,) = 1 forI#J ifZ-J~(O,l}lorJ-Z~(O,l}‘, 

We,, e.,) = 0 otherwise; 

Q(e,) = 1 for all I. 

The aim of this paper is to determine the Arf invariant of this form in terms 
of the data a,, a, ,..., a,. 

To describe the result we write ak = ak pk where pk is odd and ak is a 
power of two. We write 52 for the map {p E Z 1 p is odd} + Z/2 such that 

Q(p)=0 ifp= -lorp= +lmodulo8, 

C?(p)=1 ifp= -3orp~ +3modulo8. 

We write g.c.d. for greatest common divisor. 

THEOREM 2. Zf elk = 1 for some k then the Arf invariant is 
Q(d) + Ck=, c,L?(g.c.d.(d, pk)), where d = g.c.d.(p, 1 elk = 1 } and where 
c,=l meansthatcr,>l andthatcard{i<l[a,=A} isevenforA>a,. 

THEOREM 3. Zf txk > 2 for all k then the Arf invariant is 

co if the number qf k for which ak = A is even for A 2 4; 

1 if the number of k for which elk = A is even for A > 8, 

and is 1 module 4 for A = 4; 

0 otherwise. 

48, 107’2-16 
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The proofs of the above theorems depend on the abelian case of the 
following theorem, which has independent interest. 

THEOREM 1. Let G be a group of odd order d. We define g, , g, E G to be 
equivalent if g, is conjugate to g; for n equal to some power qf 2. Then the 
number of equivalence classes is equal to 1 + Q(d) module 2. 

I would like to thank W. Janssen for suggesting the problem to me. 

2. QUADRATIC FORMS OVER GROUP ALGEBRAS 

We give another description of the explicit quadratic form of Section 1 
which exploits its symmetry. To this end we consider quadratic forms in 
the sense of [2] over a general ring R, equipped with a map -: R -+ R such 
that 

r,=r,+r,+, qq=qq, and T=r for r,r,,r2ER. 

Such a quadratic form is a triple (M, b, q), where A4 is a left R-module, b is 
a map MxM+ R, q is a map M +R modulo {r+fl rgR} such that 

0, Y, +~r)=b(x, y,)+b(x, ~21, 

b(x, + ~2, Y) = bb,, Y) + b(.x,, Y), 

b(r, x, r2 Y) = r2b(x, Y)?, 

4 y, x) = b(x, Y), 

dx + Y) = q(x) + q(y) + b(x> Y)> 

q(rx) = rq(xF, 

q(x) + q(x) = b(x, -x). 

for x,x~,x~,Y,.Y~,.Y~EM and r,rI, r2 E R. For R = F this reduces to the 
notion of quadratic form defined in Section 1; the notions isometry and 
orthogonal sum are defined as there. 

Suppose that (M, 6, q) is such a quadratic form over R, and that S c R is 
a subring invariant under ~ equipped with a map E: R + S such that 

E(r, + r2) = E(r,) + E(r2), E(s,rs,) = sI E(r)s,, E(r) = E(P) 

for r,, rz, r E R and s,, s2 E S. Then we consider M as an S-module, and 
composing b and q with E then gives a quadratic form over S. 

In particular this applies if R is the group algebra FG over F of some 
finite group G: the set of formal F-linear combinations of elements of G, 
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with multiplication defined by linear extension of the product in G, and 
with involution ~ defined by linear extension of the inversion in G. If H is 
a subgroup of G then E: FG -+ FH can be defined by E(g) = g for g E H 
and E(g)=0 for gEG-H. 

This we will apply to two situations, in preparation for the proofs of the 
Theorems 1 and 2. 

Case 1. Let G be a group of odd order d, and H = { 1). Let 5 E FG be 
the sum of all g E G for which g # 1; then there exists q E FG such that 
q + q = 5 and E(v) = (d - 1)/2: this q has a summand g + 1 for each pair 
{ g, g ’ }. Let M be the free FG module on one generator e and define 

h(xe, ye) = y&f, q(xe) = xtp for x, y E FG. 

The application of E: FG + F now yields a quadratic form (M, B, Q) as in 
Section 1, where M has a basis consisting of the eR = ge for g E G, 

B(e,,e,)=E(b(ge,he))=O if g=hand 1 ifg#h, 

Q(eK)=E(dge))=y for all g. 

Since (M, B, Q) only depends on d, its Arf invariant is a function of d; in 
[3, Proposition 2.61 it is checked that it is in fact Q(d). 

Cuse 2. Let G be the product, for k = 1 to I, of cyclic groups with 
generators T, of order uk. Take q=ni=,(l +T,)eFG and {=q+yI= 
q( 1 + n: =, T; I). Let again A4 be the free module on one generator e and 
define h(xe, ye) = y&Y, q(xe) = xy]X for x, y E FG. Then M has an F-basis 
consisting of elements e, = (n:=, t(k, I(k)))e associated to sequences ZE H’ 
such that 0 6 I(k) < uk for k d 1. Here t(k, i) means T;, if i # 0 and Cgk=-O’ Ti 
if i = 0. The application of E yields 

We,, e,) = 0 if I or J contains a zero, 

He,, 61~) is as in Section 1 otherwise; 

Q(e,) = 0 if I contains a zero and 1 otherwise. 

Therefore up to some summands of type (c) which do not affect the Arf 
invariant we get exactly the quadratic form of [ 11. 

3. QUADRATIC FORMS OVER FINITE FIELDS 

In the remaining sections we are going to analyse the forms over FG 
described at the end of Section 2 by dissecting FG into finite fields. 
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Therefore it is useful to list a few properties of quadratic forms over finite 
fields. 

First, a few remarks about the invariant T: 

P~oPosm0N 1. z((V,, B,> Q,, A- (Vr, B,, Q,,, = $V,, B,, Q,, 
T( f’,, B,, Qd 

The proof is obvious. 

PROPOSITION 2. If (V, B, Q) has trivial kernel and dim(V) = 2n then 
T( V, B, Q)’ = 22”. 

Proqc From Proposition 1 checking the types (a) and (b). Or as 
follows: 

T(V,B,Q)'= c c (-f)Q’li)+Q’)‘)= 
YE v VE v 

y& =F, (- 1)4xr)+Q(r+=l 

’ = -Fv J,, (- l)Q(=)+B(\-.=) 

= W;v ( - 1 )Q(‘)[22’7 if B( , z) = 0 and 0 otherwise]. 1 

COROLLARY. The cardinality of {x E V 1 Q(x) =0} is in the above case 
22”p ’ f 2”- ’ depending on the Arf invariant. 

PROPOSITION 3. Suppose that V = U @ W and that Q vanishes on U and 
on W and therefbre B vanishes on U x U and W x W. Then Arf( V, B, Q) = 0. 

Proof: t(V, B, Q) = ~uEU~,I.EW(-l)Q’U+‘)=~UE~,~II.EW(-l)B(U~M’. 
Here the inner sum equals the cardinality of W if B(u, ) = 0 and vanishes 
otherwise. Therefore the sum is positive. i 

Now a few remarks about finite fields. As is well known the group of 
automorphisms of a finite field K of cardinality 2“ is cyclic of order v 
generated by rs: x -+ x2. So the only possibility for an involution ~ is the 
identity, and if v = 2~ also the map p = crH. 

PROPOSITION 4. If p(x) =x E K then x = y + p( y) for some YE K, and 
also x = zp(z) ,for some z E K. If p(x) = x-’ E K then x = z-‘p(z) for some 
7 E K. A 

Proqfi The equation y + p(y) = 0 is a polynomial equation of degree 2” 
so the kernel of the map x + x + p(x) has at most 2”’ elements, and the 
image of the map y --+ y + p(y) has at least 2”/2” = 2” elements. But that 
image is contained in that kernel; so both must coincide. The other 
statements are proven similarly. 1 
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The trace map K 4 F is nonzero since Tr(x) =x + a(x) + .. . + cr’- ‘(x) 
is of degree 2 ‘-’ in x so vanishes in at most 2”-’ elements. We use this 
map to define a quadratic form on the F-vectorspace K for u= 2w by 
B(x, y) = Tr(p(x)y), Q(x) = Tr(p(x) xx) where XE K is chosen such that 

x+P(x)= 1. 

PROPOSITION 5. This ,form (K, B, Q) has Arf invariant 1. 

Proqf: Choose w E K such that Tr(o) = 1. Then for any x E K - (0) the 
element y = wp(x) ’ satisfies B(x, v) = 1; thereore we are in the situation 
of Proposition 2. Any XE K for which Q(x) = 0 satisfies xp(x) + 
o(xp(x)) + ... + (T” ‘(xp(x)) =0 which is after elimination of a factor 
-up(x) a polynomial equation of degree (2’V + 1)(2” ~ ’ - 1) in x. So there 
are at most 1 + (2”’ ’ - 1)(2”’ + 1) = 22’V ’ - 2”’ ’ such x. Comparing this 
with the corollary to Proposition 2 we get the desired result. 1 

PROPOSITION 6. Suppose (A4, h, q) is a quadratic form over K with 
involution p. Consider it as a ,form over F using E = Tr. Then its Arf 
invariant is the K-rank qf h. 

Prooj Using Proposition 4 one can choose a K-basis (e,, e2,..., e,,} of 
M such that h(e,, e,) = 0 for i # j and such that for some Y: 

de,) = I! for i<r 

and 

de,) = 0 for i>r, 

both modulo {z + p(z) / z E K}. Then the associated quadratic form over F 
consists of r copies of the situation of Proposition 5 and further has sum- 
mands of type (c). Therefore the Arf invariant is r modulo 2. 1 

4. DECOMPOSITION OF FG AND PROOF OF THEOREM 1 

Let G be a group of odd order d. We refer to Section 2 of [4] as the 
most concise reference for the following facts about the ring R = FG. It is a 
semisimple ring with minimum condition and therefore a direct sum of 
two-sided ideals Ri which are simple rings. The splitting is unique up to 
permutation of the summands. Each Ri is a full matrix ring Mat(K,, ni) 
with coefficients in a division ring Ki, in our case in a finite field. In the 
case of interest for Theorems 2 and 3 where G and so each Ri is com- 
mutative the dimensions ni are all 1. 
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If we compute for r E R the trace of the F-linear map x + rx then we get 
E(r); therefore E: R + F is determined by the ring structure. In particular 
on Ri it is ni times the composition of the field trace Ki -+ F with the matrix 
trace Mat(K,, ni) + K,. 

PROPOSITION 7. The nj are odd 

Proof: The F-bilinear form B on FG defined by B(r, , r2) = E(r, ra) has 
on basis elements g, h E G the value B( g, h) = 1 if g = h-’ and 0 otherwise. 
Therefore it has zero kernel. On the other hand the R, are orthogonal for 
this B, and if any ni were even then E would vanish on Ri and so would B 
on RixRi. # 

As ring with involution R can be decomposed into ideals R, invariant 
under the involution and parts of the form Rj@ R, where the involution 
interchanges Ri and R,. The second “hyperbolic” type of summand is 
isomorphic to Rix RPP with involution (x, y) + (y, x). Here op means 
opposite multiplication. The isomorphism is given by (x, y) -+ x @ j. On 
the center K, of an invariant summand R, = Mat(K,, n,) the involution 
induces the identity or p. We write t for the composition of matrix trans- 
pose with 1 or p accordingly. Then the composition of the given involution 

with the constructed involution t is a K;linear automorphism of 
Mat(K,, ni) and thus of the form X + UjXU; l for some invertible matrix 
U,. Then x= U,pU,: ’ for all X. From w= X it follows that one can take 
u,‘= ui. 

PROPOSITION 8. The involution induces the identity on the center K, of 
R, = Mat(K,, ni) only in the trivial case: for K, = F and n, = 1. 

Proof. We compute the F-vectorspace {XE R ( X =x} modulo { y+j 1 ye R} 
on both sides of the identity FG = 0, Ri. 

On FG it is of dimension 1 generated by 1 E G. From summands Rj x RPP 
or summands Mat(K;, n;) with ~ =p on K, there is no contribution. 
However a summand Mat(K,, n,) with ~ = 1 on K, yields as contribution: 
the space of n, x n, diagonal matrices multiplied with U,. 1 

In view of the above result it is better to decompose FG first as R,@ R, 
where R, is the invariant two sided ideal generated by CXEG g, so that 
R, = F, and where R, is the invariant ideal generated by the g + 1 E FG for 
gE G. One can decompose R, further as @,“= r Ri as before; the exception 
mentioned in Proposition 8 does not occur any more. 

Now we can prove the version of Theorem 1 needed for Theorem 2. 

PROPOSITION 9. The Arf invariant of the quadratic form in Case 1 of 
Section 2 is the number N of nontrivial summands R, of FG. 
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Proof: In R, the image of r) is 0 and therefore R, e is a summand of 
type (c) which does not contribute to the Arf invariant. If Ri@ Rj is a 
hyperbolic summand of R, then it contributes 2 to N and zero to the Arf 
invariant, according to Proposition 3 with 

V= (R;@ R,)e, U = R,e, W = R,e. 

Proposition 8 tells us that we can apply Proposition 6 to the other sum- 
mands Ri= Mat(K,, n,). Since 4 maps to 1 in R, the kernel of B vanishes 
and the rank is nf. So according to Proposition 7 one gets each time a con- 
tribution 1 to the Arf invariant. 1 

Proof of Theorem 1. For each equivalence class we consider the element 
in FG which is the sum of all gE G in that class. Together these elements 
constitute a basis of the F-vectorspace of central idempotents of FG. On the 
other hand every summand Ri= Mat(K,, n;) has centre K, in which the set 
of idempotents is (0, 1 } = F. So that vectorspace has dimension N + 1. 1 

5. MORE ABOUT COUNTING SUMMANDS 

In this section we study the product G for k = 1 to 1 of cyclic groups C, 
of odd order pk generated by X,. We write FG for its group algebra over F. 
Similar to the splitting of R as R,@ R, in Section 4 there is a splitting of 
FG into the ideal generated by 1 +X, and the ideal generated by 
x::,=, (X,)‘; the latter is isomorphic to the group algebra of G/C, over F. 
We can therefore distinguish between the summands K, of FG contained in 
the first ideal, in which X, does not map to 1, and summands contained in 
the second ideal, where it does. The latter summands are just the sum- 
mands of F(G/C,). A similar argument works if we look at more then 
one X,. 

Now we count these different kinds of summands: 

PROPOSITION 10. Let I, JG (1, 2,..., I} be disjoint. Then the cardinality 
module 2 of the collection N(I, J) of summands Ki c FG in which X, becomes 
1 forkEIundX,hecomes #l forkEJis 

l+ c Q(P,) ifJ=O, 
k&l 

O(pk) ifJ= fkl, 
0 if J is larger. 

ProoJ There is a bijection between N(Z, 0) and the collection of field 
summands that occur in the group algebra of nk $I Ck over F. According 
to Proposition 9 the number of those is 1 +Q(n, $, pk) modulo 2. The 
second statement follows from this by writing N(I, 0) as the disjoint union 
of N(Zu {k}, 0) and N(Z, {k}). 
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The third statement follows starting from the second one by induction 
on the cardinality of J, by writing N(Z, .Z) as the disjoint union of 
N(Zu {k), J) and N(Z, Ju {k)). 1 

PROPOSITION 11. For any J& { 1, 2,..., l} let P(J) be the collection of 
field summands Ki c FG in which X, becomes 1 for k $ J, X, becomes # 1 ,for 
k E J, and n: =, X, becomes 1. Then the cardinality module 2 of P(J) is: 

1 ij-J=@, 

0 if J has cardinality one, 

Q(g.c.d. { pk 1 k E J}) ! f  J is larger. 

ProoJ: We prove the third statement since the others are obvious. We 
write the collection of summands in which X, = 1 for k $ J and 
n:=, X, = 1 as the disjoint union of the P(Z) with Zc J. According to the 
induction hypothesis the P(Z) with If J yield a contribution 
1 + C{Q(g.c.d.{ ~~ 1 k E I}) ( Zc J, card(Z) > 2) to the number modulo two 
of summands. 

On the other hand these summands are precisely those that occur as 
summands in the group algebra of (nkEJ C,)/(subgroup generated by 
nkGJ X,). That is a group of order (nktr Pk)/l.c.m. { Pk 1 k E J}, where 
1.c.m. denotes least common multiple. The 1.c.m. can be rewritten as 

FI, + ,,,k.c.d. { ok I k E 11 Y(“> where E(Z) is + 1 or - 1 according as Z has 
odd or even cardinality. So the number modulo 2 of summands is 

1 +Ckt./ wPk)-c,,.,,.l Qk.c.d.{ Pk I k E 1) ) according to Proposition 9. 

I 

PROPOSITION 12. For any Jz { 1, 2,..., 1) the number mod&o 2 qf sum- 
mands in which 

X, = 1 .for k +! J, X, # 1 ,for k E J, and h X, # 1 
k=l 

is 
0 ifJ=@, and Q(g.c.d.{ pk I k E J}) otherwise. 

Proof: Subtract the result of Proposition 11 from the result of 
Proposition 10 for the case that Z is the complement of J. 1 

6. THE COMPUTATION OF SOME RANKS 

Since we are going to base the proof of Theorem 2 on Proposition 6 we 
have to compute some ranks. 

Let K be a field of characteristic 2. If D is a commutative K-algebra and 
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x E D then we write r(D, x) for the K-rank of the multiplication with 
x: D + D. 

PROPOSITION 13. Let /?, y  E N; let U, VE D be such that I” = 1. Write 

DC for the group algebra over D of the cyclic group C of order jIy generated 
by S, and write W = U( 1 + S)( 1 + VSmB) E DC. Then r(DC, W) = 
(fly-/i’- 1) r(D, U)+r(D, UC:‘:: V). 

ProofI We may assume that y 3 2. Start with the D bases {e,} and {j;j 
of DC defined by e, = f; = S’ ’ for 1 < i < yfl. Then 

then 

We;,m,,lj+r= u(f~,~l),~+i+.tlj~I),~+i+l) if 1 <i<B- 1, 1 <j<Y-1, 

Wf$ = uC.f$ + .r;;l + I + Vir;) if 1 <j<y--2, 

We;; 1 )/I = wf,: 1 )/S + p ‘fll 

We;., -0 11/r+,- if 1 <i</3. 

We again define new bases {Pi} and {x} by 

7lJ 
Z,= 1 e: if l<i<yp, 

,=i 

7, = .1;‘> 
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wzl=(“:F;: vp, 
WC, = uj: if 2 d i < (y - 1 )B, 

we;=0 if (y-l)p+l<i<yj?. I 

PROPOSITION 14. With the same assumptions as in Proposition 13 write 
Y = U( 1 + S)(C;,; ( VSpp)‘) E DC. Then r(DC, Y) = (p- 1) r(D, U) + 
r(D, U(1 + V)). 

Proqf: We start again with bases (e,} and {fi} defined by ei=fi= S’- ’ 
if 1 6 i< yfl and we define new bases {el} and {A.‘} by 

then 

Yei = WC + L’+ I) if l<i<fi-1, 

Ye; = U(fi + Vf;), 

Ye;=0 if fi+ 1 <iGyp. 

We again define new bases { gi> and {I.} by 

then 

Ye, = U(1 + V,YI, 

YCi = ujy if 2<i<p, 

yci=o if p+l<i<yP. I 
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PROPOSITION 15. Let D be as before and U E D. Let elk > 1 be a power of 

two for 1 <k < p. Let G be the product for k = 1 to p of cyclic groups of 
orders elk generated by Sk. Write Z= Un[=,(l +S,)EDG. Then 
r(DG, Z) = r(D, U) modulo 2. 

Proof. We apply induction on p. If p = 0 then DG = D and Z = U. 
Otherwise we write H for the product of the cyclic groups for k = 1 to 
p- 1; then DG is the group algebra over DH of the cyclic group of order 
clp generated by S,,. The application of Proposition 14 with fi = cl,, and y = 1 
yields 

(l+Sk) 
> 

which is equivalent to r(D, U) modulo 2 by induction hypothesis. 1 

PROPOSITION 16. Let uk > ~9 > 1 be powers of two for 1 < k d p. Let G be 
the product,for k = 1 to p of cyclic groups of order ak generated by Sk. Write 

Then r( KG, Z) is even if f  the number of k for which c(~ = A is even for all A. 

Proof We apply induction on p. If p = 0 then G = { 1 }, Z= 0, 
r( KG, Z) = 0 and the above mentioned number is also zero. Otherwise we 
may assume that elk is a nondecreasing function of k. We write H for the 
product of the first p- 1 cyclic groups. We apply Proposition 13 with 

P-1 P-1 
D=KH, b=d, y=d~-‘cr,, S=S,, U=n (l+S,), V=n S,O. 

k=l k=l 

Then the term (By-b - 1) r(D, U) is odd according to Proposition 15. 
Suppose that p = 1 or clp > app,. Then there is only one k for which 

zk=up. On the other hand the term r(D, U C::A V’) vanishes since 
VI2 = 1, hence r(KG, Z) is odd. 

Now suppose that up=up-,. Then we must compute 
r(KH, n$:j(l +S,) C;:i (nf:: SF”)‘). To do that we write N for the 
product of the first p - 2 cyclic groups and apply Proposition 14 with 

D=KN, /I=& ~=~~‘u,~,=O-~U,, S=Sp-,, 

P-2 p ~- 2 

u= n (l+s,), v= n s,? 

k=l k=l 
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Then the term (fi - 1) r(D, U) is odd according to Proposition 15. So in 
this case r(KG, Z) is equivalent modulo 2 to the second term 

p-2 

n (l+S,) 
k=l 

which by induction is even iff the number of k d p - 2 for which ak = A is 
even for all A. The restriction k < p - 2 is obviously immaterial. 1 

PROPOSITION 17. Let D he as before and U, V E D. Let C he the cyclic 
group of order 6, generated by S. Write Z = U( 1 + VS- ‘). Then 
r(DC, Z) = (0 - 1) r(D, U) + r(D, U( 1 + V”)). 

Proof: We start with the D bases {e,} and {h} of DC defined by 
e,=f;=S’+’ for 1 <i<8. Then 

Ze, = Uf, + VfO), 

Ze,= U(f,+ Vf,- I) if 2<i<0. 

We define new bases {e,‘} and {f,‘} by 

0 - I 
ei=e,+ C V’e, [+,, 

r=, 

e: = ei 

X=f,, 

.f:=fi+ ‘L-1 

if 2 d i d 0, 

if 2di<& 

then 

Ze;=U(l+P)f;, 

Ze( = Uf.’ if 2<i<O. 1 

PROPOSITION 18. Let G be the product for k = 0 to q of cyclic groups of 
orders ak > 1, with generators Sk. Let the ak be powers of 2. Write 
Z=(~+S;‘~~=,S;‘)~~=,(~+S,)EKG. Then r(KG,Z) is odd if 
card{kflla,=A} is evenfor all A>a,. 

Proof: Let p be such that ak>aO if 1 d k$p and that ak<aO if 
p + 1 <k < q. We write H for the group generated by the Sk with 1 d k d p. 
Write S=S,n%=p+, Sk since S order a,, it can be used in place of SO 
to generate G together with the other Sk. We write N for the group 
generated by H and S. Then Z= YnazD+,(l+Sk) where Y= 
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(l+s-‘ng=,s,‘)ng=,(l+S,)~KN. Therefore r(KG,Z)=r(KN, Y) 
modulo 2 according to Proposition 15. Now we apply Proposition 17 with 

D=KH, t!?=q,, u= fi (l+Sk), and v= fi S-i’. 
&=I &=I 

Then the first term (0 - 1) r(D, U) is odd according to Proposition 15 and 
the second term r(D, U( 1 + I@)) is dealt with in Proposition 16. g 

7. PROOF OF THEOREM 2 

We refer to case (2) of Section 2. We write G, for the subgroup of G of 
elements of odd order and Gz for the subgroup of elements of 2-power 
order. Now the canonical isomorphism G -+ G/G, x G/G, = G, x G, makes 
it possible to view R = FG as group algebra of G, over A = FG, . The image 
of Tk E G in G, will be denoted by X, and the image in G, by Sk. So Sk is 
of order uk and in particular Sk = 1 if uk = 1. We write /1 for the set of k for 
which uk = 1. So A # @ in this section. 

As in Section 4, we decompose A into summands invariant under -.; this 
induces a similar decomposition of R = AG,. In particular a hyperbolic 
summand of A gives rise to a hyperbolic summand of R and contributes 
zero to the Arf invariant. Therefore we restrict our attention to the sum- 
mands of A which are fields K invariant under -. 

The quadratic form is determined by q=nL=,(l + Tk)= 
nkEn(l+Xk)~kgn(l+XkSk) hence vanishes on KG, if X,=1 in 
K for some kEii. Therefore we restrict our attention to fields K 
in which X, # 1 for every k E LI. In particular yk = Xi1 #X& which 
implies that ~~ = p. According to Proposition 6 the contribution of KG, to 
the Arf invariant is then equal to r(KG,, 5) where 5 =y~ + yI= 

(I +n:=, x,-’ nk$,j s,‘)nk./l(l +Xk)nk,.(l +xksk). 

A factor 1 + X&S, is invertible if X, # 1 since it has the same uk power as 
1 +X,. For this reason we write d for the set of ke { 1, 2,..., 1} -/i for 
which X, # 1 and r for the set of k E (1, 2,..., 1) - n for which X, = 1. 

We distinguish three cases in the computation of r(KG,, [). 

Case a. nL=, X, # 1. Then 5 is up to invertible factors equal to 
z=n,.,-(1 +s,)EKG,. 

Write H, for the subgroup of G, generated by the S, with kE r, then 
KG, can be viewed as the group algebra of G,fH, over KH,; in particular 
KG, is of rank n ksd elk over KH,; thus r(KG,, Z)= (nkEd uk) r(KH,, Z). 

Therefore r(KG,, Z) is even unless d = a, in which case it is odd 
according to Proposition 15. A field K contributes 1 to the Arf invariant iff 

4X1,107’2-17 
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X, # 1 for k E /i and X, = 1 for k 4 A; the number modulo 2 of such sum- 
mands is Q (g.c.d. { pk 1 k E /i }) according to Proposition 12. 

Case b. n:= i X, = 1 and d # 0. Then 5 is up to invertible factors 
equal to Z= (1 +rIkervd %‘I FLEA1 + Sk). 

Write H, for the subgroup of G, generated by H, and nkEd S,; then 
KG, can be viewed as the group algebra of GJH, over KH,. Then 
r(KG,, Z) is even unless the group GJH, is trivial, which would mean that 
A would consists of only one element 6. In that case r(KG,, Z) is given by 
Proposition 18 which says that it is odd iff card{ k E rl tlk = A ) is even for 
all A > clg. Therefore for each 6 # /i a field K can contribute to the Arf 
invariant only if card{kdllk$,4, k#S, cc,=A} is even for all A>cr, 
(which means cg = 1 in the notation of the theorem) and if X, # 1 for 
k E /i u { 6 >, X, = 1 for k $ /1 u {S}. The number modulo 2 of such fields is 
Q(wdh I kEA u Wf) according to Proposition 11. 

Casec. nk=, X,= 1 and A=@. 

We have to compute r(KG,,Z) where Z=(l +nktrSk’) 
rI/r,r(l + S/r). 

That this rank is even can be seen by inductively applying 
Propositions 13 and 14 with /I = 1, or by noting that this Z defines a 
quadratic form with coefficients in F. 

8. PROOF OF THEOREM 3 

We distinguish the same three kinds of summands K as in Section 7. In 
cases (a) and (b) the involution - must be p. In case (a) the rank 
r(KG,, 5) is even unless A = 0 which is in contradiction with n: = i X, # 1. 
In case (b) the rank is even unless A = (6) which is in contradiction with 
ni= I X, = 1. So in these cases there is no contribution to the Arf invariant. 
Therefore the only contribution comes from case (c) where X, = 1 for all k 
and K= F. That is exactly the whole quadratic form when pk = 1 for all k. 

To apply induction on 1 we need two propositions which play a role 
similar to Propositions 13 and 14 in Section 6 for B = 1. 

PROPOSITION 19. Let D be a commutative K algebra with involution --. 
Let U, VED be such that U= DV, P= VP’, p= 1. Write Cfor the cyclic 
group of even order 9 > 4 generated by S, and C’ for the cyclic group of order 
0 - 1 generated by s’. Then the quadratic from over D defined on DC using 
q = U(1 + S) is the orthogonal sum of the quadratic form defined on DC’ 
using q’ = U( 1 + S’) and the quadratic form on D using ij = U C$zi’)/’ V*‘. 
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Proof: There is a D basis {ei} of DC defined by ei = Sip’ for 1 d id 8. 
Let d,=Cf:b Vj if l<i<&1; then di+l+di(l+V)+dip,V=O if 
ldidB--1. Wedefineanewbasis (e:} by 

el= e, if 1 <i<8-2, 

ek-,= 2 ei, 
i= 1 

H-I 

eL= c diei. 
,=I 

This is a basis because d,.. , is a unit since (do- ,)* = Vp2. On this basis the 
quadratic form (DC, b, q) is described by 

b(e:, e,‘) = i7 if i+ 1 =jand 1 <i, j<O-2, 

b(e:, e,‘) = U if i-l=jandldi,j<Q-2, 

b(e:, e,‘)= U+ 0 if i= jand 1 <i, j<d-2, 

b(ei,e,‘)=O otherwise if 1 6 i, j < 0 - 2. 

b(e:,ek-,)=O if 161’68-1, 

b(e,!, ek) = 0 if 1 <ido-1, 

q(ei) = U if 1 <i<&2, 

q(ekmm,)=28U=0, 

( 

0 - I H-2 H-2 

q(4)= C didi+ C d,+l di 
> ( 

U= dIdI+ 1 d,+,(di+d,+,) 
i= I i=l i= I > 

U 

( 

0 -- 2 

= l+ 1 d;+*V’ 
> 

u 
i= 1 

= 1+x d;+, 
( 

o-2 

> ( 

(Q - 2w 
u= l+ 1 (4+&+, 

i=l I=1 O” 
(H-*1/* 

= 1 + c 
( 

V2’ 
> 

u. 
I=1 

On the other hand DC’ has a D basis {f;} defined by fi= (,S’)i-l if 
1 <ibe- 1. We define a new basis {h’} by 

.fi’=.fi if 1 Qi<8--2, 

o-1 
&I= c f,. 

r=l 
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Then b and q assume on the f,’ the same values as on the e( with 
i<0-1. 1 

PROPOSITION 20. Let D, U, V, C, S, C’, S’ be as in Proposition 19. Then 
the quadratic form defined on DC using q = U( 1 + S) ~:~~‘J/‘( VS)‘* is the 
orthogonal sum of the zero form on DC’ and the form on D using 6 = U. 

Proof There is a D basis {e,} of DC defined by ei = Sip ’ if 1 < i< 0. 
We define a new basis {e: } by 

e; =e,, 

e!=e.+ V”e I I 1 if 2 < i < 8. 

Then b(ei,el)=O if i#l or j#l because b(e:,ej)=E(e:tei), where [= 
v]+ij= U(1 +S)Cy:d (VS)’ and e,‘=S’-‘(1 +(VS)‘-j) and thus (e;=O. 
Therefore we are left with the quadratic form on e, ; it is given by 
de,)=E(rl)= U. I 

Remainder of the Proof of Theorem 3. We apply induction on 1. We 
may assume that elk is a nondecreasing function of k. 

If CC, = 2 then elk = 2 for all k and the quadratic form in the theorem has 
an F basis consisting of one element e such that Q(e) = 1: the element e, 
where I consists of only ones (notation of case 2 in Sect. 2). Therefore the 
Arf invariant is undefined in this case. 

Now assume that a,> 2. Then we write H for the subgroup of G, 
generated by the S; for 1 d id I- 1 and we apply Proposition 19 with 

/- I /-~ I 
D=FH, 0 = a,, s=s,, u= fl (1 +S,), v= n Sk. 

k=l k=l 

The proposition yields a first orthogonal summand of the type to which 
Theorem 2 applies, with data ~1,) CI~ ,..., c(,- , , c(,- 1. According to the 
theorem the contribution to the Arf invariant is CI(cr,- l), and therefore is 
1 or 0 depending on whether d~[ is 4 or larger. 

If I=1 or tx,>c(,~, then the second orthogonal summand vanishes 
because Ve/’ = 1. If a, > 8 this makes the Arf invariant zero in agreement 
with the claim because there is only one k for which elk = c(/. If tl, = 4 this 
makes the Arf invariant one in agreement with the claim since the number 
of k for which elk = A is zero for A > 8 and one for A = 4. 

Now assume c(, = GL[ .~, . Then write N for the subgroup of H generated by 
the Sk for 1 < k < I - 2. We apply Proposition 20 with 

/-2 I-2 

D=FN, 0 = a), s=s,-,, u= n (l+Sk), v= n Sk. 

k=l k=l 
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According to the proposition the Arf invariant of the second summand is 
then equal to the Arf invariant of a quadratic form to which the induction 
hypothesis applies, with data cli for 1 6 i< 1- 2. However, ommitting 
k=l-1 and k=lchanges card{k<lla,=A} by an even number if A84 
and by 2 if cr,=ol,-,=A=4. 1 
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