JOURNAL OF ALGEBRA 107, 534-551 (1987)

The Arf Invariants of Brieskorn–Pham Singularities

F. J.-B. J. CLAUWENS

Department of Mathematics, Catholic University, Toernooiveld 5, 6525 ED Nijmegen, The Netherlands

Communicated by Wilberd van der Kallen

Received September 12, 1985

1. INTRODUCTION

The aim of this paper is to determine the Arf invariant of the quadratic form associated to a Brieskorn-Pham singularity, as described in Corollary 4 of [1]. By quadratic form we mean a triple (V, B, Q), where

- V is a vector space of finite dimension over the field F of two elements,
- B: $V \times V \rightarrow F$ is a bilinear map, and
- Q: $V \rightarrow F$ is a function such that Q(x + y) = Q(x) + Q(y) + B(x, y)for all $x, y \in V$.

In particular B(x, x) = 0 and B(y, x) = B(x, y) for all $x, y \in V$.

Two such triples (V, B, Q) and (V', B', Q') are called isometric, denoted by =, if there exists a linear isomorphism $A: V \to V'$ such that Q'(Ax) = Q(x) and so B'(Ax, Ay) = B(x, y) for all $x, y \in V$.

From two such triples (V_1, B_1, Q_1) and (V_2, B_2, Q_2) a third one (V_3, B_3, Q_3) can be constructed by taking $V_3 = V_1 \times V_2$, $B_3((x_1, x_2), (y_1, y_2)) = B_1(x_1, y_1) + B_2(x_2, y_2)$, $Q_3((x_1, x_2)) = Q_1(x_1) + Q_2(x_2)$. This construction is called orthogonal sum and denoted by \perp .

Any quadratic form (V, B, Q) is isometric to a repeated orthogonal sum of the following four types:

- (a) V_a has basis $\{e_a, f_a\}$ and $B_a(e_a, f_a) = 1$ and $Q_a(e_a) = Q_a(f_a) = 0$,
- (b) V_b has basis $\{e_b, f_b\}$ and $B_b(e_b, f_b) = 1$ and $Q_b(e_b) = Q_b(f_b) = 1$,
- (c) V_c has basis $\{e_c\}$ and $Q_c(e_c) = 0$,
- (d) V_d has basis $\{e_d\}$ and $Q_d(e_d) = 1$.

The summands of types (c) and (d) together form the kernel of (V, B, Q): the set of $x \in V$ such that B(x, y) = 0 for all $y \in V$; its dimension is called the corank of (V, B, Q). If the kernel contains an element x such that Q(x) = 1, i.e., if type (d) occurs as summand then we say that the quadratic form has Arf invariant undefined, denoted by ∞ . Otherwise the Arf invariant is the number modulo 2 of summands of type (b).

The Arf invariant is indeed an invariant of isometry since it is 0, 1 or ∞ according as $\tau(V, B, Q) = \sum_{x \in V} (-1)^{Q(x)}$ is positive, negative, or zero. It also determines a quadratic form of given dimension and corank up to isometry since:

$$(V_{d}, B_{d}, Q_{d}) \perp (V_{d}, B_{d}, Q_{d}) = (V_{d}, B_{d}, Q_{d}) \perp (V_{c}, B_{c}, Q_{c}),$$

$$(V_{b}, B_{b}, Q_{b}) \perp (V_{b}, B_{b}, Q_{b}) = (V_{a}, B_{a}, Q_{a}) \perp (V_{a}, B_{a}, Q_{a}),$$

$$(V_{b}, B_{b}, Q_{b}) \perp (V_{d}, B_{d}, Q_{d}) = (V_{a}, B_{a}, Q_{a}) \perp (V_{d}, B_{d}, Q_{d}).$$

Given natural numbers l, $a_1, a_2, ..., a_l$ the Brieskorn-Pham singularity $f: \mathbb{C}' \to \mathbb{C}$ is defined by $f(z_1, z_2, ..., z_l) = \sum_{k=1}^{l} (z_k)^{a_k}$. According to [1] the following quadratic form (V, B, Q) is associated to this singularity: V has a basis of elements e_l associated to sequences $I \in \mathbb{Z}'$ such that $0 < I(k) < a_k$ for k = 1, 2, ..., l;

$$B(e_{I}, e_{J}) = 1 \quad \text{for } I \neq J \quad \text{if } I - J \in \{0, 1\}^{I} \text{ or } J - I \in \{0, 1\}^{I},$$

$$B(e_{I}, e_{J}) = 0 \quad \text{otherwise;}$$

$$Q(e_{I}) = 1 \quad \text{for all } I.$$

The aim of this paper is to determine the Arf invariant of this form in terms of the data $a_1, a_2, ..., a_l$.

To describe the result we write $a_k = \alpha_k p_k$ where p_k is odd and α_k is a power of two. We write Ω for the map $\{p \in \mathbb{Z} \mid p \text{ is odd}\} \rightarrow \mathbb{Z}/2$ such that

$$\Omega(p) = 0$$
 if $p \equiv -1$ or $p \equiv +1$ modulo 8,

$$\Omega(p) = 1$$
 if $p \equiv -3$ or $p \equiv +3$ modulo 8.

We write g.c.d. for greatest common divisor.

THEOREM 2. If $\alpha_k = 1$ for some k then the Arf invariant is $\Omega(d) + \sum_{k=1}^{l} c_k \Omega(g.c.d.(d, p_k))$, where $d = g.c.d.\{p_k \mid \alpha_k = 1\}$ and where $c_k = 1$ means that $\alpha_k > 1$ and that $\operatorname{card}\{i \leq l \mid \alpha_i = A\}$ is even for $A > \alpha_k$.

THEOREM 3. If $\alpha_k \ge 2$ for all k then the Arf invariant is

- ∞ if the number of k for which $\alpha_k = A$ is even for $A \ge 4$;
- 1 if the number of k for which $\alpha_k = A$ is even for $A \ge 8$, and is 1 modulo 4 for A = 4;
- 0 otherwise.

The proofs of the above theorems depend on the abelian case of the following theorem, which has independent interest.

THEOREM 1. Let G be a group of odd order d. We define $g_1, g_2 \in G$ to be equivalent if g_2 is conjugate to g_1^n for n equal to some power of 2. Then the number of equivalence classes is equal to $1 + \Omega(d)$ modulo 2.

I would like to thank W. Janssen for suggesting the problem to me.

2. QUADRATIC FORMS OVER GROUP ALGEBRAS

We give another description of the explicit quadratic form of Section 1 which exploits its symmetry. To this end we consider quadratic forms in the sense of [2] over a general ring R, equipped with a map $-: R \to R$ such that

$$\overline{r_1 + r_2} = \overline{r_1} + \overline{r_2}, \quad \overline{r_1 r_2} = \overline{r_2 r_1}, \quad \text{and} \quad \overline{\overline{r}} = r \text{ for } r, r_1, r_2 \in R.$$

Such a quadratic form is a triple (M, b, q), where M is a left R-module, b is a map $M \times M \to R$, q is a map $M \to R$ modulo $\{r + \overline{r} \mid r \in R\}$ such that

$$b(x, y_1 + y_2) = b(x, y_1) + b(x, y_2),$$

$$b(x_1 + x_2, y) = b(x_1, y) + b(x_2, y),$$

$$b(r_1 x, r_2 y) = r_2 b(x, y) \overline{r_1},$$

$$b(y, x) = \overline{b(x, y)},$$

$$q(x + y) = q(x) + q(y) + b(x, y),$$

$$q(rx) = rq(x)\overline{r},$$

$$q(x) + \overline{q(x)} = b(x, x).$$

for $x, x_1, x_2, y, y_1, y_2 \in M$ and $r, r_1, r_2 \in R$. For R = F this reduces to the notion of quadratic form defined in Section 1; the notions isometry and orthogonal sum are defined as there.

Suppose that (M, b, q) is such a quadratic form over R, and that $S \subseteq R$ is a subring invariant under - equipped with a map $E: R \to S$ such that

$$E(r_1 + r_2) = E(r_1) + E(r_2), \qquad E(s_1 r s_2) = s_1 E(r) s_2, \qquad \overline{E(r)} = E(\bar{r})$$

for $r_1, r_2, r \in R$ and $s_1, s_2 \in S$. Then we consider M as an S-module, and composing b and q with E then gives a quadratic form over S.

In particular this applies if R is the group algebra FG over F of some finite group G: the set of formal F-linear combinations of elements of G,

with multiplication defined by linear extension of the product in G, and with involution $\overline{}$ defined by linear extension of the inversion in G. If H is a subgroup of G then $E: FG \to FH$ can be defined by E(g) = g for $g \in H$ and E(g) = 0 for $g \in G - H$.

This we will apply to two situations, in preparation for the proofs of the Theorems 1 and 2.

Case 1. Let G be a group of odd order d, and $H = \{1\}$. Let $\xi \in FG$ be the sum of all $g \in G$ for which $g \neq 1$; then there exists $\eta \in FG$ such that $\eta + \overline{\eta} = \xi$ and $E(\eta) = (d-1)/2$: this η has a summand g + 1 for each pair $\{g, g^{-1}\}$. Let M be the free FG module on one generator e and define

$$b(xe, ye) = y\xi \bar{x}, \qquad q(xe) = x\eta \bar{x} \quad \text{for } x, y \in FG.$$

The application of $E: FG \to F$ now yields a quadratic form (M, B, Q) as in Section 1, where M has a basis consisting of the $e_g = ge$ for $g \in G$,

$$B(e_g, e_h) = E(b(ge, he)) = 0 \text{ if } g = h \text{ and } 1 \text{ if } g \neq h,$$
$$Q(e_g) = E(q(ge)) = \frac{d-1}{2} \text{ for all } g.$$

Since (M, B, Q) only depends on d, its Arf invariant is a function of d; in [3, Proposition 2.6] it is checked that it is in fact $\Omega(d)$.

Case 2. Let G be the product, for k = 1 to l, of cyclic groups with generators T_k of order a_k . Take $\eta = \prod_{k=1}^{l} (1 + T_k) \in FG$ and $\xi = \eta + \bar{\eta} = \eta(1 + \prod_{k=1}^{l} T_k^{-1})$. Let again M be the free module on one generator e and define $b(xe, ye) = y\xi\bar{x}$, $q(xe) = x\eta\bar{x}$ for x, $y \in FG$. Then M has an F-basis consisting of elements $e_l = (\prod_{k=1}^{l} t(k, I(k)))e$ associated to sequences $I \in \mathbb{Z}^l$ such that $0 \leq I(k) < a_k$ for $k \leq l$. Here t(k, i) means T_k^i if $i \neq 0$ and $\sum_{j=0}^{a_k-1} T_j^i$ if i = 0. The application of E yields

$B(e_I, e_J) = 0$	if I or J contains a zero,
$B(e_I, e_J)$	is as in Section 1 otherwise;
$Q(e_I) = 0$	if I contains a zero and 1 otherwise.

Therefore up to some summands of type (c) which do not affect the Arf invariant we get exactly the quadratic form of [1].

3. QUADRATIC FORMS OVER FINITE FIELDS

In the remaining sections we are going to analyse the forms over FG described at the end of Section 2 by dissecting FG into finite fields.

Therefore it is useful to list a few properties of quadratic forms over finite fields.

First, a few remarks about the invariant τ :

PROPOSITION 1. $\tau((V_1, B_1, Q_1) \perp (V_2, B_2, Q_2)) = \tau(V_1, B_1, Q_1)$ $\tau(V_2, B_2, Q_2).$

The proof is obvious.

PROPOSITION 2. If (V, B, Q) has trivial kernel and $\dim(V) = 2n$ then $\tau(V, B, Q)^2 = 2^{2n}$.

Proof. From Proposition 1 checking the types (a) and (b). Or as follows:

$$\tau(V, B, Q)^{2} = \sum_{x \in V} \sum_{y \in V} (-1)^{Q(x) + Q(y)} = \sum_{x \in V} \sum_{z \in V} (-1)^{Q(x) + Q(x+z)}$$
$$= \sum_{z \in V} \sum_{x \in V} (-1)^{Q(z) + B(x,z)}$$
$$= \sum_{z \in V} (-1)^{Q(z)} [2^{2n} \text{ if } B(\cdot, z)] = 0 \text{ and } 0 \text{ otherwise }]. \quad \blacksquare$$

COROLLARY. The cardinality of $\{x \in V \mid Q(x) = 0\}$ is in the above case $2^{2n-1} \pm 2^{n-1}$ depending on the Arf invariant.

PROPOSITION 3. Suppose that $V = U \oplus W$ and that Q vanishes on U and on W and therefore B vanishes on $U \times U$ and $W \times W$. Then Arf(V, B, Q) = 0.

Proof. $\tau(V, B, Q) = \sum_{u \in U} \sum_{w \in W} (-1)^{Q(u+w)} = \sum_{u \in U} \sum_{w \in W} (-1)^{B(u,w)}$. Here the inner sum equals the cardinality of W if B(u,) = 0 and vanishes otherwise. Therefore the sum is positive.

Now a few remarks about finite fields. As is well known the group of automorphisms of a finite field K of cardinality 2^v is cyclic of order v generated by $\sigma: x \to x^2$. So the only possibility for an involution - is the identity, and if v = 2w also the map $\rho = \sigma^w$.

PROPOSITION 4. If $\rho(x) = x \in K$ then $x = y + \rho(y)$ for some $y \in K$, and also $x = z\rho(z)$ for some $z \in K$. If $\rho(x) = x^{-1} \in K$ then $x = z^{-1}\rho(z)$ for some $z \in K$.

Proof. The equation $y + \rho(y) = 0$ is a polynomial equation of degree 2^w so the kernel of the map $x \to x + \rho(x)$ has at most 2^w elements, and the image of the map $y \to y + \rho(y)$ has at least $2^v/2^w = 2^w$ elements. But that image is contained in that kernel; so both must coincide. The other statements are proven similarly.

The trace map $K \to F$ is nonzero since $\operatorname{Tr}(x) = x + \sigma(x) + \cdots + \sigma^{v-1}(x)$ is of degree 2^{v-1} in x so vanishes in at most 2^{v-1} elements. We use this map to define a quadratic form on the *F*-vectorspace K for v = 2w by $B(x, y) = \operatorname{Tr}(\rho(x)y), \ Q(x) = \operatorname{Tr}(\rho(x)x\chi)$ where $\chi \in K$ is chosen such that $\chi + \rho(\chi) = 1$.

PROPOSITION 5. This form (K, B, Q) has Arf invariant 1.

Proof. Choose $\omega \in K$ such that $\operatorname{Tr}(\omega) = 1$. Then for any $x \in K - \{0\}$ the element $y = \omega \rho(x)^{-1}$ satisfies B(x, y) = 1; therefore we are in the situation of Proposition 2. Any $x \in K$ for which Q(x) = 0 satisfies $x\rho(x) + \sigma(x\rho(x)) + \cdots + \sigma^{w-1}(x\rho(x)) = 0$ which is after elimination of a factor $x\rho(x)$ a polynomial equation of degree $(2^w + 1)(2^{w-1} - 1)$ in x. So there are at most $1 + (2^{w-1} - 1)(2^w + 1) = 2^{2w-1} - 2^{w-1}$ such x. Comparing this with the corollary to Proposition 2 we get the desired result.

PROPOSITION 6. Suppose (M, b, q) is a quadratic form over K with involution ρ . Consider it as a form over F using E = Tr. Then its Arf invariant is the K-rank of b.

Proof. Using Proposition 4 one can choose a K-basis $\{e_1, e_2, ..., e_n\}$ of M such that $b(e_i, e_i) = 0$ for $i \neq j$ and such that for some r:

$$q(e_i) = \chi$$
 for $i \leq r$

and

$$q(e_i) = 0$$
 for $i > r$,

both modulo $\{z + \rho(z) \mid z \in K\}$. Then the associated quadratic form over F consists of r copies of the situation of Proposition 5 and further has summands of type (c). Therefore the Arf invariant is r modulo 2.

4. Decomposition of FG and Proof of Theorem 1

Let G be a group of odd order d. We refer to Section 2 of [4] as the most concise reference for the following facts about the ring R = FG. It is a semisimple ring with minimum condition and therefore a direct sum of two-sided ideals R_i which are simple rings. The splitting is unique up to permutation of the summands. Each R_i is a full matrix ring Mat (K_i, n_i) with coefficients in a division ring K_i , in our case in a finite field. In the case of interest for Theorems 2 and 3 where G and so each R_i is commutative the dimensions n_i are all 1.

If we compute for $r \in R$ the trace of the *F*-linear map $x \to rx$ then we get E(r); therefore $E: R \to F$ is determined by the ring structure. In particular on R_i it is n_i times the composition of the field trace $K_i \to F$ with the matrix trace $Mat(K_i, n_i) \to K_i$.

PROPOSITION 7. The n_i are odd.

Proof. The F-bilinear form B on FG defined by $B(r_1, r_2) = E(r_1r_2)$ has on basis elements $g, h \in G$ the value B(g, h) = 1 if $g = h^{-1}$ and 0 otherwise. Therefore it has zero kernel. On the other hand the R_i are orthogonal for this B, and if any n_i were even then E would vanish on R_i and so would B on $R_i \times R_i$.

As ring with involution R can be decomposed into ideals R_i invariant under the involution and parts of the form $R_i \oplus R_j$ where the involution interchanges R_i and R_j . The second "hyperbolic" type of summand is isomorphic to $R_i \times R_i^{op}$ with involution $(x, y) \to (y, x)$. Here op means opposite multiplication. The isomorphism is given by $(x, y) \to x \oplus \overline{y}$. On the center K_i of an invariant summand $R_i = Mat(K_i, n_i)$ the involution induces the identity or ρ . We write \dagger for the composition of matrix transpose with 1 or ρ accordingly. Then the composition of the given involution

with the constructed involution \dagger is a K_i -linear automorphism of $Mat(K_i, n_i)$ and thus of the form $X \to U_i X U_i^{-1}$ for some invertible matrix U_i . Then $\overline{X} = U_i X^{\dagger} U_i^{-1}$ for all X. From $\overline{X} = X$ it follows that one can take $U_i^{\dagger} = U_i$.

PROPOSITION 8. The involution induces the identity on the center K_i of $R_i = Mat(K_i, n_i)$ only in the trivial case: for $K_i = F$ and $n_i = 1$.

Proof. We compute the *F*-vectorspace $\{x \in R | \bar{x} = x\}$ modulo $\{y + \bar{y} | y \in R\}$ on both sides of the identity $FG = \bigoplus_i R_i$.

On FG it is of dimension 1 generated by $1 \in G$. From summands $R_i \times R_i^{\text{op}}$ or summands $\text{Mat}(K_i, n_i)$ with $^- = \rho$ on K_i there is no contribution. However a summand $\text{Mat}(K_i, n_i)$ with $^- = 1$ on K_i yields as contribution: the space of $n_i \times n_i$ diagonal matrices multiplied with U_i .

In view of the above result it is better to decompose FG first as $R_0 \oplus R_\infty$ where R_0 is the invariant two sided ideal generated by $\sum_{g \in G} g$, so that $R_0 = F$, and where R_∞ is the invariant ideal generated by the $g + 1 \in FG$ for $g \in G$. One can decompose R_∞ further as $\bigoplus_{i=1}^N R_i$ as before; the exception mentioned in Proposition 8 does not occur any more.

Now we can prove the version of Theorem 1 needed for Theorem 2.

PROPOSITION 9. The Arf invariant of the quadratic form in Case 1 of Section 2 is the number N of nontrivial summands R_i of FG.

Proof. In R_0 the image of η is 0 and therefore $R_0 e$ is a summand of type (c) which does not contribute to the Arf invariant. If $R_i \oplus R_j$ is a hyperbolic summand of R_{∞} then it contributes 2 to N and zero to the Arf invariant, according to Proposition 3 with

$$V = (R_i \oplus R_i)e, \qquad U = R_i e, \qquad W = R_i e$$

Proposition 8 tells us that we can apply Proposition 6 to the other summands $R_i = Mat(K_i, n_i)$. Since ξ maps to 1 in R_{∞} the kernel of *B* vanishes and the rank is n_i^2 . So according to Proposition 7 one gets each time a contribution 1 to the Arf invariant.

Proof of Theorem 1. For each equivalence class we consider the element in FG which is the sum of all $g \in G$ in that class. Together these elements constitute a basis of the F-vectorspace of central idempotents of FG. On the other hand every summand $R_i = Mat(K_i, n_i)$ has centre K_i in which the set of idempotents is $\{0, 1\} = F$. So that vectorspace has dimension N + 1.

5. More about Counting Summands

In this section we study the product G for k = 1 to l of cyclic groups C_k of odd order p_k generated by X_k . We write FG for its group algebra over F. Similar to the splitting of R as $R_0 \oplus R_\infty$ in Section 4 there is a splitting of FG into the ideal generated by $1 + X_k$ and the ideal generated by $\sum_{j=1}^{p_k} (X_k)^j$; the latter is isomorphic to the group algebra of G/C_k over F. We can therefore distinguish between the summands K_i of FG contained in the first ideal, in which X_k does not map to 1, and summands contained in the second ideal, where it does. The latter summands are just the summands of $F(G/C_k)$. A similar argument works if we look at more then one X_k .

Now we count these different kinds of summands:

PROPOSITION 10. Let $I, J \subseteq \{1, 2, ..., l\}$ be disjoint. Then the cardinality modulo 2 of the collection N(I, J) of summands $K_i \subseteq FG$ in which X_k becomes 1 for $k \in I$ and X_k becomes $\neq 1$ for $k \in J$ is

$$1 + \sum_{k \notin I} \Omega(p_k) \quad \text{if } J = \emptyset,$$

$$\Omega(p_k) \quad \text{if } J = \{k\},$$

$$0 \quad \text{if } J \text{ is larger.}$$

Proof. There is a bijection between $N(I, \emptyset)$ and the collection of field summands that occur in the group algebra of $\prod_{k \notin I} C_k$ over *F*. According to Proposition 9 the number of those is $1 + \Omega(\prod_{k \notin I} p_k)$ modulo 2. The second statement follows from this by writing $N(I, \emptyset)$ as the disjoint union of $N(I \cup \{k\}, \emptyset)$ and $N(I, \{k\})$.

The third statement follows starting from the second one by induction on the cardinality of J, by writing N(I, J) as the disjoint union of $N(I \cup \{k\}, J)$ and $N(I, J \cup \{k\})$.

PROPOSITION 11. For any $J \subseteq \{1, 2, ..., l\}$ let P(J) be the collection of field summands $K_i \subseteq FG$ in which X_k becomes 1 for $k \notin J$, X_k becomes $\neq 1$ for $k \in J$, and $\prod_{k=1}^{l} X_k$ becomes 1. Then the cardinality modulo 2 of P(J) is:

1 if
$$J = \emptyset$$
,

- 0 if J has cardinality one,
- $\Omega(\text{g.c.d.} \{ p_k \mid k \in J \})$ if J is larger.

Proof. We prove the third statement since the others are obvious. We write the collection of summands in which $X_k = 1$ for $k \notin J$ and $\prod_{k=1}^{l} X_k = 1$ as the disjoint union of the P(I) with $I \subseteq J$. According to the induction hypothesis the P(I) with $I \neq J$ yield a contribution $1 + \sum \{ \Omega(g.c.d.\{p_k \mid k \in I\}) \mid I \subset J, \operatorname{card}(I) \ge 2 \}$ to the number modulo two of summands.

On the other hand these summands are precisely those that occur as summands in the group algebra of $(\prod_{k \in J} C_k)/(\text{subgroup generated by} \prod_{k \in J} X_k)$. That is a group of order $(\prod_{k \in J} p_k)/(\text{l.c.m.}\{p_k \mid k \in J\})$, where l.c.m. denotes least common multiple. The l.c.m. can be rewritten as $\prod_{\emptyset \neq I \subseteq J} (\text{g.c.d.}\{p_k \mid k \in I\})^{\varepsilon(I)}$, where $\varepsilon(I)$ is +1 or -1 according as I has odd or even cardinality. So the number modulo 2 of summands is $1 + \sum_{k \in J} \Omega(p_k) - \sum_{\emptyset \neq I \subseteq J} \Omega(\text{g.c.d.}\{p_k \mid k \in I\})$ according to Proposition 9.

PROPOSITION 12. For any $J \subseteq \{1, 2, ..., l\}$ the number modulo 2 of summands in which

$$X_k = 1$$
 for $k \notin J$, $X_k \neq 1$ for $k \in J$, and $\prod_{k=1}^{r} X_k \neq 1$

is

0 if $J = \emptyset$, and $\Omega(g.c.d.\{p_k | k \in J\})$ otherwise.

Proof. Subtract the result of Proposition 11 from the result of Proposition 10 for the case that I is the complement of J.

6. The Computation of Some Ranks

Since we are going to base the proof of Theorem 2 on Proposition 6 we have to compute some ranks.

Let K be a field of characteristic 2. If D is a commutative K-algebra and

 $x \in D$ then we write r(D, x) for the K-rank of the multiplication with $x: D \to D$.

PROPOSITION 13. Let β , $\gamma \in \mathbb{N}$; let $U, V \in D$ be such that $V^{\gamma} = 1$. Write DC for the group algebra over D of the cyclic group C of order $\beta\gamma$ generated by S, and write $W = U(1 + S)(1 + VS^{-\beta}) \in DC$. Then $r(DC, W) = (\beta\gamma - \beta - 1) r(D, U) + r(D, U\sum_{t=0}^{\gamma-1} V^t)$.

Proof. We may assume that $\gamma \ge 2$. Start with the D bases $\{e_i\}$ and $\{f_i\}$ of DC defined by $e_i = f_i = S^{i-1}$ for $1 \le i \le \gamma \beta$. Then

$$\begin{aligned} We_i &= U(f_i + f_{i+1} + Vf_{\gamma\beta - \beta + i} + Vf_{\gamma\beta - \beta + i+1}) & \text{if} \quad 1 \leq i \leq \beta - 1, \\ We_\beta &= U(f_\beta + f_{\beta+1} + Vf_{\gamma\beta} + Vf_1), \\ We_i &= U(f_i + f_{i+1} + Vf_{i-\beta} + Vf_{i-\beta+1}) & \text{if} \quad \beta + 1 \leq i \leq \gamma\beta - 1, \\ We_{\gamma\beta} &= U(f_{\gamma\beta} + f_1 + Vf_{\gamma\beta - \beta} + Vf_{\gamma\beta - \beta+1}). \end{aligned}$$

We define new bases $\{e'_i\}$ and $\{f'_i\}$ by

$$\begin{aligned} e'_{(j-1)\beta+i} &= \sum_{t=1}^{j} V^{j-t} e_{(t-1)\beta+i} & \text{if } 1 \leq i \leq \beta, 1 \leq j \leq \gamma, \\ f'_{(j-1)\beta+i} &= f_{(j-1)\beta+i} + V^{j} f_{(\gamma-1)\beta+i} & \text{if } 1 \leq i \leq \beta, 1 \leq j \leq \gamma-1, \\ f'_{(\gamma-1)\beta+i} &= f_{(\gamma-1)\beta+i} & \text{if } 1 \leq i \leq \beta; \end{aligned}$$

then

$$\begin{split} We'_{(j-1)\beta+i} &= U(f'_{(j-1)\beta+i} + f'_{(j-1)\beta+i+1}) & \text{if } 1 \leq i \leq \beta - 1, \ 1 \leq j \leq \gamma - 1, \\ We'_{j\beta} &= U(f'_{j\beta} + f'_{j\beta+1} + V^j f'_1) & \text{if } 1 \leq j \leq \gamma - 2, \\ We'_{(\gamma-1)\beta} &= U(f'_{(\gamma-1)\beta} + V^{\gamma-1} f'_1), \\ We'_{(\gamma-1)\beta+i} &= 0 & \text{if } 1 \leq i \leq \beta. \end{split}$$

We again define new bases $\{\tilde{e}_i\}$ and $\{\tilde{f}_i\}$ by

$$\begin{split} \tilde{e}_i &= \sum_{i=i}^{\gamma\beta} e'_i \quad \text{if} \quad 1 \leq i \leq \gamma\beta, \\ \tilde{f}_1 &= f'_1, \\ \tilde{f}_{(j-1)\beta+i} &= f'_{(j-1)\beta+i} + \left(\sum_{i=j}^{\gamma-1} V'\right) f'_1 \\ &\text{if} \quad 1 \leq j \leq \gamma, 1 \leq i \leq \beta, (j-1)\beta+i \neq 1; \end{split}$$

then

$$\begin{split} & W\tilde{e}_1 = \left(U \sum_{r=0}^{\gamma-1} V^r \right) \tilde{f}_1, \\ & W\tilde{e}_i = U\tilde{f}_i \quad \text{if} \quad 2 \leqslant i \leqslant (\gamma-1)\beta, \\ & W\tilde{e}_i = 0 \quad \text{if} \quad (\gamma-1)\beta + 1 \leqslant i \leqslant \gamma\beta. \end{split}$$

PROPOSITION 14. With the same assumptions as in Proposition 13 write $Y = U(1+S)(\sum_{r=0}^{\gamma-1} (VS^{-\beta})^r) \in DC$. Then $r(DC, Y) = (\beta-1)r(D, U) + r(D, U(1+V))$.

Proof. We start again with bases $\{e_i\}$ and $\{f_i\}$ defined by $e_i = f_i = S^{i-1}$ if $1 \le i \le \gamma \beta$ and we define new bases $\{e'_i\}$ and $\{f'_i\}$ by

$$e'_{i} = e_{i} \qquad \text{if} \quad 1 \leq i \leq \beta,$$

$$e'_{i} = e_{i} - Ve_{i-\beta} \qquad \text{if} \quad \beta + 1 \leq i \leq \gamma\beta,$$

$$f'_{i} = \sum_{t=1}^{\gamma} V'f_{(\gamma-t)\beta+i} \qquad \text{if} \quad 1 \leq i \leq \beta,$$

$$f'_{i} = f_{i} \qquad \text{if} \quad \beta + 1 \leq i \leq \gamma\beta;$$

then

$$Ye'_{i} = U(f'_{i} + f'_{i+1}) \quad \text{if} \quad 1 \leq i \leq \beta - 1,$$

$$Ye'_{\beta} = U(f'_{\beta} + Vf'_{1}),$$

$$Ye'_{i} = 0 \quad \text{if} \quad \beta + 1 \leq i \leq \gamma\beta.$$

We again define new bases $\{\tilde{e}_i\}$ and $\{\tilde{f}_i\}$ by

$$\begin{split} \tilde{e}_i &= \sum_{t=i}^{\gamma\beta} e_t' & \text{if} \quad 1 \leq i \leq \gamma\beta, \\ \tilde{f}_1 &= f_1', \\ \tilde{f}_i &= f_i' + V f_1' & \text{if} \quad 2 \leq i \leq \gamma\beta; \end{split}$$

then

$$\begin{split} Y \tilde{e}_1 &= U(1+V) \ \tilde{f}_1, \\ Y \tilde{e}_i &= U \tilde{f}_i & \text{if } 2 \leq i \leq \beta, \\ Y \tilde{e}_i &= 0 & \text{if } \beta+1 \leq i \leq \gamma \beta. \end{split}$$

544

PROPOSITION 15. Let D be as before and $U \in D$. Let $\alpha_k > 1$ be a power of two for $1 \leq k \leq p$. Let G be the product for k = 1 to p of cyclic groups of orders α_k generated by S_k . Write $Z = U \prod_{k=1}^{p} (1+S_k) \in DG$. Then $r(DG, Z) \equiv r(D, U)$ modulo 2.

Proof. We apply induction on p. If p=0 then DG=D and Z=U. Otherwise we write H for the product of the cyclic groups for k=1 to p-1; then DG is the group algebra over DH of the cyclic group of order α_p generated by S_p . The application of Proposition 14 with $\beta = \alpha_p$ and $\gamma = 1$ yields

$$r(DG, Z) = (\alpha_p - 1) r \left(DH, U \prod_{k=1}^{p-1} (1 + S_k) \right)$$

which is equivalent to r(D, U) modulo 2 by induction hypothesis.

PROPOSITION 16. Let $\alpha_k > \theta > 1$ be powers of two for $1 \le k \le p$. Let G be the product for k = 1 to p of cyclic groups of order α_k generated by S_k . Write

$$Z = \left(1 + \prod_{k=1}^{p} S_{k}^{-\theta}\right) \prod_{k=1}^{p} (1 + S_{k}) \in KG.$$

Then r(KG, Z) is even iff the number of k for which $\alpha_k = A$ is even for all A.

Proof. We apply induction on p. If p=0 then $G = \{1\}$, Z = 0, r(KG, Z) = 0 and the above mentioned number is also zero. Otherwise we may assume that α_k is a nondecreasing function of k. We write H for the product of the first p-1 cyclic groups. We apply Proposition 13 with

$$D = KH, \quad \beta = \theta, \quad \gamma = \theta^{-1}\alpha_p, \quad S = S_p, \quad U = \prod_{k=1}^{p-1} (1+S_k), \quad V = \prod_{k=1}^{p-1} S_k^{-\theta}.$$

Then the term $(\beta\gamma - \beta - 1) r(D, U)$ is odd according to Proposition 15.

Suppose that p = 1 or $\alpha_p > \alpha_{p-1}$. Then there is only one k for which $\alpha_k = \alpha_p$. On the other hand the term $r(D, U \sum_{t=0}^{\gamma-1} V^t)$ vanishes since $V^{\gamma/2} = 1$, hence r(KG, Z) is odd.

Now suppose that $\alpha_p = \alpha_{p-1}$. Then we must compute $r(KH, \prod_{k=1}^{p-1} (1+S_k) \sum_{\ell=0}^{\gamma-1} (\prod_{k=1}^{p-1} S_k^{-\theta})^{\ell})$. To do that we write N for the product of the first p-2 cyclic groups and apply Proposition 14 with

$$D = KN, \quad \beta = \theta, \quad \gamma = \theta^{-1} \alpha_{p-1} = \theta^{-1} \alpha_p, \quad S = S_{p-1},$$
$$U = \prod_{k=1}^{p-2} (1+S_k), \quad V = \prod_{k=1}^{p-2} S_k^{-\theta}.$$

Then the term $(\beta - 1) r(D, U)$ is odd according to Proposition 15. So in this case r(KG, Z) is equivalent modulo 2 to the second term

$$r(D, U(1+V)) = r\left(KN, \left(1 + \prod_{k=1}^{p-2} S_k^{-\theta}\right) \prod_{k=1}^{p-2} (1+S_k)\right)$$

which by induction is even iff the number of $k \le p-2$ for which $\alpha_k = A$ is even for all A. The restriction $k \le p-2$ is obviously immaterial.

PROPOSITION 17. Let D be as before and U, $V \in D$. Let C be the cyclic group of order θ generated by S. Write $Z = U(1 + VS^{-1})$. Then $r(DC, Z) = (\theta - 1) r(D, U) + r(D, U(1 + V^{\theta}))$.

Proof. We start with the D bases $\{e_i\}$ and $\{f_i\}$ of DC defined by $e_i = f_i = S^{i-1}$ for $1 \le i \le \theta$. Then

$$\begin{aligned} Ze_1 &= U(f_1 + Vf_{\theta}), \\ Ze_i &= U(f_i + Vf_{i-1}) \qquad \text{if} \quad 2 \leq i \leq \theta. \end{aligned}$$

We define new bases $\{e'_i\}$ and $\{f'_i\}$ by

$$e'_{1} = e_{1} + \sum_{t=1}^{\theta - 1} V^{t} e_{\theta - t+1},$$

$$e'_{i} = e_{i} \qquad \text{if} \quad 2 \leq i \leq \theta,$$

$$f'_{1} = f_{1},$$

$$f'_{i} = f_{i} + V f_{i-1} \qquad \text{if} \quad 2 \leq i \leq \theta;$$

then

$$Ze'_{1} = U(1 + V^{\theta}) f'_{1},$$

$$Ze'_{i} = Uf'_{i} \qquad \text{if} \quad 2 \leq i \leq \theta. \quad \blacksquare$$

PROPOSITION 18. Let G be the product for k = 0 to q of cyclic groups of orders $\alpha_k > 1$, with generators S_k . Let the α_k be powers of 2. Write $Z = (1 + S_0^{-1} \prod_{k=1}^q S_k^{-1}) \prod_{k=1}^q (1 + S_k) \in KG$. Then r(KG, Z) is odd if card $\{k \leq l | \alpha_k = A\}$ is even for all $A > \alpha_0$.

Proof. Let p be such that $\alpha_k > \alpha_0$ if $1 \le k \le p$ and that $\alpha_k \le \alpha_0$ if $p+1 \le k \le q$. We write H for the group generated by the S_k with $1 \le k \le p$. Write $S = S_0 \prod_{k=p+1}^q S_k$ since S order α_0 it can be used in place of S_0 to generate G together with the other S_k . We write N for the group generated by H and S. Then $Z = Y \prod_{k=p+1}^q (1+S_k)$ where Y = Y $(1 + S^{-1} \prod_{k=1}^{p} S_k^{-1}) \prod_{k=1}^{p} (1 + S_k) \in KN$. Therefore $r(KG, Z) \equiv r(KN, Y)$ modulo 2 according to Proposition 15. Now we apply Proposition 17 with

$$D = KH, \quad \theta = \alpha_0, \qquad U = \prod_{k=1}^{p} (1 + S_k), \quad \text{and} \quad V = \prod_{k=1}^{p} S_k^{-1}.$$

Then the first term $(\theta - 1) r(D, U)$ is odd according to Proposition 15 and the second term $r(D, U(1 + V^{\theta}))$ is dealt with in Proposition 16.

7. PROOF OF THEOREM 2

We refer to case (2) of Section 2. We write G_1 for the subgroup of G of elements of odd order and G_2 for the subgroup of elements of 2-power order. Now the canonical isomorphism $G \to G/G_2 \times G/G_1 = G_1 \times G_2$ makes it possible to view R = FG as group algebra of G_2 over $A = FG_1$. The image of $T_k \in G$ in G_1 will be denoted by X_k and the image in G_2 by S_k . So S_k is of order α_k and in particular $S_k = 1$ if $\alpha_k = 1$. We write Λ for the set of k for which $\alpha_k = 1$. So $\Lambda \neq \emptyset$ in this section.

As in Section 4, we decompose A into summands invariant under $\bar{}$; this induces a similar decomposition of $R = AG_2$. In particular a hyperbolic summand of A gives rise to a hyperbolic summand of R and contributes zero to the Arf invariant. Therefore we restrict our attention to the summands of A which are fields K invariant under $\bar{}$.

The quadratic form is determined by $\eta = \prod_{k=1}^{l} (1+T_k) = \prod_{k \in A} (1+X_k) \prod_{k \notin A} (1+X_k S_k)$ hence vanishes on KG_2 if $X_k = 1$ in K for some $k \in A$. Therefore we restrict our attention to fields K in which $X_k \neq 1$ for every $k \in A$. In particular $\overline{X}_k = X_k^{-1} \neq X_k$ which implies that $\overline{k} = \rho$. According to Proposition 6 the contribution of KG_2 to the Arf invariant is then equal to $r(KG_2, \xi)$ where $\xi = \eta + \overline{\eta} = (1 + \prod_{k=1}^{l} X_k^{-1} \prod_{k \notin A} S_k^{-1}) \prod_{k \notin A} (1+X_k) \prod_{k \notin A} (1+X_k S_k)$.

A factor $1 + X_k S_k$ is invertible if $X_k \neq 1$ since it has the same α_k power as $1 + X_k$. For this reason we write Δ for the set of $k \in \{1, 2, ..., l\} - \Lambda$ for which $X_k \neq 1$ and Γ for the set of $k \in \{1, 2, ..., l\} - \Lambda$ for which $X_k = 1$.

We distinguish three cases in the computation of $r(KG_2, \xi)$.

Case a. $\prod_{k=1}^{l} X_k \neq 1$. Then ξ is up to invertible factors equal to $Z = \prod_{k \in \Gamma} (1 + S_k) \in KG_2$.

Write H_a for the subgroup of G_2 generated by the S_k with $k \in \Gamma$; then KG_2 can be viewed as the group algebra of G_2/H_a over KH_a ; in particular KG_2 is of rank $\prod_{k \in A} \alpha_k$ over KH_a ; thus $r(KG_2, Z) = (\prod_{k \in A} \alpha_k) r(KH_a, Z)$.

Therefore $r(KG_2, Z)$ is even unless $\Delta = \emptyset$, in which case it is odd according to Proposition 15. A field K contributes 1 to the Arf invariant iff

 $X_k \neq 1$ for $k \in \Lambda$ and $X_k = 1$ for $k \notin \Lambda$; the number modulo 2 of such summands is Ω (g.c.d. $\{p_k \mid k \in \Lambda\}$) according to Proposition 12.

Case b. $\prod_{k=1}^{l} X_k = 1$ and $\Delta \neq \emptyset$. Then ξ is up to invertible factors equal to $Z = (1 + \prod_{k \in \Gamma \cup \Delta} S_k^{-1}) \prod_{k \in \Gamma} (1 + S_k)$.

Write H_b for the subgroup of G_2 generated by H_a and $\prod_{k \in A} S_k$; then KG_2 can be viewed as the group algebra of G_2/H_b over KH_b . Then $r(KG_2, Z)$ is even unless the group G_2/H_b is trivial, which would mean that Δ would consists of only one element δ . In that case $r(KG_2, Z)$ is given by Proposition 18 which says that it is odd iff card $\{k \in \Gamma | \alpha_k = A\}$ is even for all $A > \alpha_{\delta}$. Therefore for each $\delta \notin A$ a field K can contribute to the Arf invariant only if card $\{k \in l | k \notin A, k \neq \delta, \alpha_k = A\}$ is even for all $A > \alpha_{\delta}$ (which means $c_{\delta} = 1$ in the notation of the theorem) and if $X_k \neq 1$ for $k \in A \cup \{\delta\}$, $X_k = 1$ for $k \notin A \cup \{\delta\}$. The number modulo 2 of such fields is $\Omega(\text{g.c.d.}\{p_k | k \in A \cup \{\delta\}\})$ according to Proposition 11.

Case c. $\prod_{k=1}^{l} X_k = 1$ and $\Delta = \emptyset$.

We have to compute $r(KG_2, Z)$ where $Z = (1 + \prod_{k \in \Gamma} S_k^{-1})$ $\prod_{k \in \Gamma} (1 + S_k).$

That this rank is even can be seen by inductively applying Propositions 13 and 14 with $\beta = 1$, or by noting that this Z defines a quadratic form with coefficients in F.

8. PROOF OF THEOREM 3

We distinguish the same three kinds of summands K as in Section 7. In cases (a) and (b) the involution - must be ρ . In case (a) the rank $r(KG_2, \xi)$ is even unless $\Delta = \emptyset$ which is in contradiction with $\prod_{k=1}^{l} X_k \neq 1$. In case (b) the rank is even unless $\Delta = \{\delta\}$ which is in contradiction with $\prod_{k=1}^{l} X_k = 1$. So in these cases there is no contribution to the Arf invariant. Therefore the only contribution comes from case (c) where $X_k = 1$ for all k and K = F. That is exactly the whole quadratic form when $p_k = 1$ for all k.

To apply induction on *l* we need two propositions which play a role similar to Propositions 13 and 14 in Section 6 for $\beta = 1$.

PROPOSITION 19. Let D be a commutative K algebra with involution $\bar{}$. Let U, $V \in D$ be such that $U = \bar{U}V$, $\bar{V} = V^{-1}$, $V^{\theta} = 1$. Write C for the cyclic group of even order $\theta \ge 4$ generated by S, and C' for the cyclic group of order $\theta - 1$ generated by S'. Then the quadratic from over D defined on DC using $\eta = U(1 + S)$ is the orthogonal sum of the quadratic form defined on DC' using $\eta' = U(1 + S')$ and the quadratic form on D using $\tilde{\eta} = U \sum_{t=0}^{(\theta - 2)/2} V^{2t}$. *Proof.* There is a D basis $\{e_i\}$ of DC defined by $e_i = S^{i-1}$ for $1 \le i \le \theta$. Let $d_i = \sum_{j=0}^{i-1} V^j$ if $1 \le i \le \theta - 1$; then $d_{i+1} + d_i(1+V) + d_{i-1}V = 0$ if $1 \le i \le \theta - 1$. We define a new basis $\{e'_i\}$ by

$$e'_{i} = e_{i} \quad \text{if} \quad 1 \leq i \leq \theta - 2,$$
$$e'_{\theta-1} = \sum_{i=1}^{\theta} e_{i},$$
$$e'_{\theta} = \sum_{i=1}^{\theta-1} d_{i}e_{i}.$$

This is a basis because $d_{\theta-1}$ is a unit since $(d_{\theta-1})^2 = V^{-2}$. On this basis the quadratic form (DC, b, q) is described by

 $b(e'_i, e'_j) = \overline{U}$ if i+1 = j and $1 \le i, j \le \theta - 2$, $b(e'_i, e'_j) = U$ if i-1 = j and $1 \le i, j \le \theta - 2$, $b(e'_i, e'_i) = U + \overline{U}$ if i = j and $1 \le i, j \le \theta - 2$. $b(e'_{i}, e'_{i}) = 0$ otherwise if $1 \le i, j \le \theta - 2$. $b(e'_i, e'_{\theta-1}) = 0$ if $1 \leq i \leq \theta - 1$. if $1 \leq i \leq \theta - 1$, $b(e'_i, e'_{\theta}) = 0$ $q(e'_i) = U$ if $1 \le i \le \theta - 2$. $q(e'_{\theta-1}) = 2\theta U = 0$, $q(e_{\theta}') = \left(\sum_{i=1}^{\theta-1} \bar{d}_i d_i + \sum_{i=1}^{\theta-2} \bar{d}_{i+1} d_i\right) U = \left(\bar{d}_1 d_1 + \sum_{i=1}^{\theta-2} \bar{d}_{i+1} (d_i + d_{i+1})\right) U$ $= \left(1 + \sum_{i=1}^{\theta-2} \bar{d}_{i+1} V^i\right) U$ $= \left(1 + \sum_{i=1}^{\theta-2} d_{i+1}\right) U = \left(1 + \sum_{i=1}^{(\theta-2)/2} (d_{2t} + d_{2t+1})\right) U$ $= \left(1 + \sum^{(\theta-2)/2} V^{2t}\right) U.$

On the other hand DC' has a D basis $\{f_i\}$ defined by $f_i = (S')^{i-1}$ if $1 \le i \le \theta - 1$. We define a new basis $\{f'_i\}$ by

$$f'_{i} = f_{i} \quad \text{if} \quad 1 \leq i \leq \theta - 2,$$
$$f'_{\theta - 1} = \sum_{i=1}^{\theta - 1} f_{i}.$$

Then b and q assume on the f'_i the same values as on the e'_i with $i \leq \theta - 1$.

PROPOSITION 20. Let D, U, V, C, S, C', S' be as in Proposition 19. Then the quadratic form defined on DC using $\eta = U(1+S) \sum_{t=0}^{(\theta-2)/2} (VS)^{2t}$ is the orthogonal sum of the zero form on DC' and the form on D using $\tilde{\eta} = U$.

Proof. There is a D basis $\{e_i\}$ of DC defined by $e_i = S^{i-1}$ if $1 \le i \le \theta$. We define a new basis $\{e'_i\}$ by

$$\begin{split} e_1' &= e_1, \\ e_i' &= e_i + V^{1-i} e_1 \qquad \text{if} \quad 2 \leqslant i \leqslant \theta. \end{split}$$

Then $b(e'_i, e'_j) = 0$ if $i \neq 1$ or $j \neq 1$ because $b(e'_i, e'_j) = E(\bar{e}'_i \xi e'_j)$, where $\xi = \eta + \bar{\eta} = U(1+S) \sum_{t=0}^{\theta-1} (VS)^t$ and $e'_j = S^{j-1}(1+(VS)^{1-j})$ and thus $\xi e'_j = 0$. Therefore we are left with the quadratic form on e_1 ; it is given by $q(e_1) = E(\eta) = U$.

Remainder of the Proof of Theorem 3. We apply induction on l. We may assume that α_k is a nondecreasing function of k.

If $\alpha_i = 2$ then $\alpha_k = 2$ for all k and the quadratic form in the theorem has an F basis consisting of one element e such that Q(e) = 1: the element e_i where I consists of only ones (notation of case 2 in Sect. 2). Therefore the Arf invariant is undefined in this case.

Now assume that $\alpha_l > 2$. Then we write *H* for the subgroup of G_2 generated by the S_i for $1 \le i \le l-1$ and we apply Proposition 19 with

$$D = FH,$$
 $\theta = \alpha_l,$ $S = S_l,$ $U = \prod_{k=1}^{l-1} (1 + S_k),$ $V = \prod_{k=1}^{l-1} S_k.$

The proposition yields a first orthogonal summand of the type to which Theorem 2 applies, with data α_1 , α_2 ,..., α_{l-1} , $\alpha_l - 1$. According to the theorem the contribution to the Arf invariant is $\Omega(\alpha_l - 1)$, and therefore is 1 or 0 depending on whether α_l is 4 or larger.

If l=1 or $\alpha_l > \alpha_{l-1}$ then the second orthogonal summand vanishes because $V^{\theta/2} = 1$. If $\alpha_l \ge 8$ this makes the Arf invariant zero in agreement with the claim because there is only one k for which $\alpha_k = \alpha_l$. If $\alpha_l = 4$ this makes the Arf invariant one in agreement with the claim since the number of k for which $\alpha_k = A$ is zero for $A \ge 8$ and one for A = 4.

Now assume $\alpha_l = \alpha_{l-1}$. Then write N for the subgroup of H generated by the S_k for $1 \le k \le l-2$. We apply Proposition 20 with

$$D = FN, \quad \theta = \alpha_l, \quad S = S_{l-1}, \quad U = \prod_{k=1}^{l-2} (1+S_k), \quad V = \prod_{k=1}^{l-2} S_k.$$

According to the proposition the Arf invariant of the second summand is then equal to the Arf invariant of a quadratic form to which the induction hypothesis applies, with data α_i for $1 \le i \le l-2$. However, ommitting k = l-1 and k = l changes card $\{k \le l | \alpha_k = A\}$ by an even number if $A \ge 4$ and by 2 if $\alpha_l = \alpha_{l-1} = A = 4$.

References

- 1. A. M. GABRIELOV, Intersection matrices for certain singularities, Funct. Anal. Appl. 7 (1973), 182–193. Translation of Funkt. i Ego Priloz. 7 (3) (1973), 18–32.
- 2. C. T. C. WALL, On the axiomatic foundation of the theory of hermitian forms, Proc. Cambridge Philos. Soc. 67 (1970), 243-250.
- 3. W. BROWDER, Complete intersections and the Kervaire invariant, in "Algebraic Topology, Aarhus 1978" (J. Dupont and I. Madsen, Eds.), pp. 88–108, Springer Lecture Notes, Vol. 763, Springer-Verlag, Berlin, 1979.
- 4. J. P. JANS, "Rings and Homology," Athena Series, Holt, Rinehart & Winston, New York, 1963.